18 Proposal to Make ECO-DAMs

18.1 Conception of ECO-DAM

9

1

Dam is one of the largest facilities and is usually constructed over the beautiful natural river. Then it is undeniable to give various effects on natural ecosystem. There is strong opposition to make dams on such rivers, especially from the NGO people of natural environmental conservation. Currently in the U.S.A., dam construction is said to be almost completely given up, and removal of some existing dams that lost the economical value is said to be started.

The situation in Philippines may be somewhat different from the one in the U.S.A.. Philippines anticipates rapid increase of its population and also improvement of the living standard. These factors usually demand the increase of the water consumption, not only concerning for the domestic usage but also for the irrigation, industrial and service usage and power generation. If increase of the water resources consumption is really unavoidable, construction of water development facilities, especially dams and reservoirs is also inevitable.

If construction of dams and reservoirs is really inevitable, these facilities should be ECO-DAM, that is the dam with affluent natural ecosystem. Of course it is no way to recover the exterminated species, ECO-DAM cannot become the substitute for them. Conservation of the endangered and threatened species is the prerequisite for any dam construction. With conservation of these endangered and threatened species, ECO-DAM shall contribute for the conservation and promotion of the natural ecosystem and global environment.

And much natural ecosystem has already been destroyed and exterminated on vast Philippines land, ECO-DAM with environmental restoration of these area may improve the situation of the natural environment significantly.

The basic idea of ECO-DAM is "Wonderland Meshed with Forest and Lake". Promotion of ECO-DAM consists of two (2) basic strategies, that is, developing the whole dam and reservoir region into;

- Bio-Torp, and
- Eco-School

Bio-Torp is defined as "the living space of the society of living creatures". Developing the whole dam and reservoir region into Bio-Torp means practicing various measures to present abundant living sites for the living creatures in the dam and reservoir region.

It is instructive to present the space for people to encounter with the natural environment, in order to educate them with the manner to manage the natural ecosystem. Dam and Reservoir may become a ECO-School that assume this function, and people can experience and learn about natural environment.

18.2 Image and Strategy of ECO-DAM

Figure I-8 shows the image of ECO-DAM and Table I-19 shows the strategy of ECO-DAM. With these figure and table, the outline of ECO-DAM will be grasped.

Before proceeding to the explanation of the strategy of ECO-DAM, an explanation of the

effect of dam on ecosystem is given herein.

Dam is one of the largest facilities and is usually constructed over the beautiful natural river. Then it is undeniable to give various effects on natural ecosystem as shown below.

DIRECT EFFECT

Loss of Living and Growing Site of Plants and Animals

 Loss of living and growing site of plants and animals with the reservoir and the related road. - Loss of living and growing site of plants and animals with the production of dam material and filling the neighbor valley with the remaining soil.

Cutting off the Living Site

- Dam body cut off the upper and lower river, and hinders the pass of animals living in rivers. The animals (fishes), which go up and down the rivers and sea, cannot survive, or are enclosed in the reservoir.
- Filling site of the remaining soil at the neighbor valley cut off the torrent, and hinder the animals in the torrent to pass there.
- Reservoir and the related road cut off the living zone of the small animals that have weak migration capacity.
- Appearance of the Dam Reservoir.
- Ecosystem of the torrent and forest is lost with the appearance of the vast dam reservoir, and the lake ecosystem appear instead.

INDIRECT EFFECT

Effect to the Circumference and the Downstream

- Noise, vibration and dust accompanied by the construction works donate the effects on the animals and plants living around the project site.
- Related facilities such as the operational equipment donated the permanent effects on the animals and plants living around the project site.
- Decrease of the flood and the soil supply are brought about with the dam construction, and this may change the environment of the downstream and the mouth of the river.

Human Kind and the Foreign Enemy Species Invasion

 Careless invasion of human kind and the enemy species give the adverse effect on the nature. Reservoir may hinder these invasion into the forest on the upper stream, and the related road may solicit them instead.

The strategy of ECO-DAM shown in Table I-19 is produced to mitigate these adverse effect of dam construction. This strategy consists of two (2) basic strategies, that is; Bio-Torp Formation, and Eco-School Education.

Bio-Torp Formation has seven (7) strategies, that is;

1) Environmental Assessment. Performs the environmental assessment before dam

construction, and follow up monitoring after the completion of the construction.

2) Setting the Route and Site of the Related Facilities --- Maximum possible consideration are taken when the route and the site of the related facilities are set. The points of this strategy is as follows:

Related Road --- The route of the related road are selected with maximum consideration for the ecosystem, especially the endangered plants and animals conservation. If possible, route over reservoir with the continuous bridges will be employed.

Production Site of the Dam Material --- Production site of the dam material are selected with maximum consideration for the ecosystem, especially the endangered plants and animals conservation. The site in the planed reservoir region is first considered.

Filling Site of the Remaining Soil --- Filling of the remaining soil at the neighboring natural torrent will be avoided. Sometimes these soil will be presented to other projects that needs filling soils, and sometimes these soil will be filled at the mouse of the influent torrent into the planed reservoir.

3) Minimizing the Area of the Environmental Change --- Employ the plan, structure and method of the construction that minimize the change of the living and growing environment of the animals and plants. The points of this strategy is as follows:

Related Road --- Along the ridges of the mountainous area, soil cut off area is reduced with the elevated road longitudinal course and the adoption of the tunnel structure. And torrents and wetland are overpassed with the bridge structure to conserve theses natural ecosystem.

Remaining Soil --- Remaining soil is reduced with the temporary storing of excavated soil and reuse of this soil to refilling at the production of the dam material and at the excavation of the dam basement. For rock fill type dams, dam body zoning method is employed to reduce the remaining rock.

Test Water Storage --- During the test water storage, water level is elevated to the surcharge level and over the constant high level of dams. This causes the destruction of the natural forest that locates at the height between these two (2) water levels. If temporary weir is set at the mouth of the influent river, and water upstream of this weir is pumped out, these natural forests may be conserved.

#Temporary Road --- Temporary road used for the construction material transportation is reduced as few as possible. And the unavoidable temporary road is passed in the planed reservoir area.

4) Prompt Recovery of the Temporary Change --- Promote the prompt recovery of the ecosystem when temporary change is incurred.

Denuded Land --- Denuded land at the slope along the road will be replanted promptly with the young tree planting and seeding of the native kind. Surface soil at the site that contains the seeds of natural habitat is used as the refill to the excavated area. Proper combination of trees is selected and proper maintenance is performed to enhance the reforestation.

Land after the Temporary Facilities Removal --- Temporary facilities such as the temporary road, the sedimentation tank and the construction plant have the structure that can be removed easily. Land after the temporary facilities removal is rehabilitated to

I

enable the animals and plants live and grow. For the temporary road, materials can be put on the plastic sheet to enable the easy removal.

5) Reducing the Adverse Effect when Permanent Environmental Change is conducted --- Reduce the each adverse effects when permanent environmental change is conducted.

Lost of the Living and Growing Site --- Endangered and threatened species of plants and animals living in the planed reservoir area and in the construction area are moved or replanted at the neighboring sites of similar environmental condition. Species of very limited number and species of which replanting is very difficult are conserved in the greenhouse. Such Bio-Torp facilities as the shelter for the insects, substitute cave, man made nest tree and recovery of torrents will be set.

Cutting Off the Living Site --- Fish way is set to pass the aquatic animals of which the passage is hindered by the dam. Related roads pass over any tiny torrents and the animal's way with small bridges and box culverts. Ditches along the road have the slope structure that enable the small animals pass across it.

Construction Conducted --- Cutting the trees in the planed construction area is performed as late as possible, and schedule is adjusted that cutting trees is conducted after the end of breeding period of the endangered and threatened animals. Construction works will be interrupted until the end of the breeding period when the nesting and the egg laying of the endangered and threatened animals are found. When stream of river is changed into a temporary bypass, aquatic animals such as fishes are moved to the safe place. Large construction site with several heavy vehicles and machines is surrounded with the cloth sheet, in order for the small animals to migrate into the site.

Operational Facility --- Maximum consideration is taken concerning the operational facilities of the dam. Illumination for maintenance is constrained minimum, and the usage of the sodium lump that tends to attract few insects is preferred. And some warning seal should be stick on the window glass for the small birds not to collide on it. Sometimes eagle is drawn on that seals, of which small birds are afraid.

Catch the Invader --- Invading animals and pet animals that returned wild should be caught to protect the native species after the dam completion.

6) Formation of New Environment that Presents Living Spaces for Various Living Creatures --- Form the new environment and device the related facilities that present living spaces for various living creatures.

Paradise for Various Living Creatures --- New environment after the appearance of the reservoir is improved to allow more living creatures to live in it. There are many strategies for it. Wet land bio-torp can be set at the inlet of the reservoir that presents the living sites for water born plants and dragonflies. Some ponds should be set on the midway of fish ways of the dam for the fishes to rest, because the length of fish ways of the dam tends to become larger. Floating islands on the reservoir presents the rest and feeding sites for the water born birds. River bio-torp can be formed with securing the maintenance flow. Cave bio-torp can be formed for the bats with reuse of the tunnels used for the dam construction.

Related Facilities --- Many strategies are devised to present affluent living and growing sites when the related facilities of dams are set. Man made nests can be set at the bridge platforms. Some walls of the concrete structures are got uneven for birds and bees to nest. Planting of the stoppage for driftwood is installed.

7) Reduce the Soil Erosion and Soil Precipitation Rate in the Reservoir --- Reduce the soil erosion in the watershed of the reservoir, and also reduce the soil precipitation rate in the reservoir.

Soil Protection and Watershed Management

Sabo Dam at the Mouth of the Influent River --- Eroded soil flowing into the reservoir may be reduced with the sabo dam set at the mouth of the influent river.

Forest Protection --- Deforestation increase the soil erosion. Then forest protection against the reckless deforestation is important to reduce the soil erosion.

Reforestation in the Watershed --- Reforestation should also been conducted as the same reason for forest protection.

Eco-School Education has three (3) strategies, that is;

- 1) Experience and Study the Nature System --- Furnish the site for visitors to experience and study the nature system.
 - # Eco Museum --- Eco museum is built to educate systematically the visitors with the curriculum of animals, plants and ecosystem. Other nature observation facilities such as the observation road and the instruction board are also installed.
 - # Nature Observation Meeting --- Nature observation and experience meetings is held by the dam management organization. And pamphlets that give the basic information of nature observation are also distributed.
- 2) Base Site for Eco Tour --- Base site setting for Eco Tour into the surrounding forests. # Base Site Facilities --- Seminar room is furnished in the dam management office and is presented for public. Experience exchange facility of the biological researchers and naturalists is also arranged.
 - # Service for the Visiting Tourist Groups --- Model courses of the nature observation for each tourist groups are arranged. Guide map for these courses is distributed. Environmental guides for these tours are introduced by the dam management. And other necessary equipment for nature observation, such as the field glass and the picture book will be loaned out.
- 3) Checkpoint for Forest Entrance --- Dam and reservoir can function as the checkpoint for forest entrance of visitors.
 - # Eco Museum --- At ECO DAM, nature conservation is also taught. Visitors should first enter the ECO Museum to learn about the manner of dealing with the nature, and visit the forests thereafter.
 - # Sightseeing Route --- Passing the observation route along the excellent natural ecosystem strictly needs the environmental guide's escort.
 - # Reservoir --- Reservoir can function as the barrier for reckless entrance into the upstream forests, because this separates the upstream from the downstream human residential area.

18.3 Institutional Arrangements for ECO-DAM

I

Eco system conservation with ECO-DAM strategy also needs some institutional arrangements. Three (3) items should be considered as shown herein:

- Proceeds the Study of Ecosystems, --- Various studies and experiments are conducted under the researchers' and specialists' instruction concerning the distribution and the ecology of the endangered and threatened species and the invading animals, or the conservation of ecosystem.
- 2) Guidance, Instruction, Advice and the Watching of the Researchers and the Specialists -- Ecosystem conservation is conducted under the guidance, instruction, advice of the researchers and specialists. Construction works is also conducted under the biological specialists' watching on the environment.
- 3) Open Information Offering --- Data and information gained during the survey and research activities should be offered openly to the biological researchers and the public. And the information concerning the strategies taken in this project should be offered to other enterprises.

19 Alternative Planning Formula of Water Resources Management Plan

An alternative planning formula of Water Resources Management Plan, which is more suitable from the environmental conservation standpoints is proposed hereinafter.

19.1 Objective and the Coverage of the Plan

19.1.1 Objective of the WATER RESOURCES MANAGEMENT PLAN

The objective of the WATER RESOURCES MANAGEMENT PLAN is to supply adequate water for such peoples' needs as the municipal/industrial usage, agricultural irrigation, fish pond, without any adverse effects on the environment, and based on the appropriate cost that people are afford to pay for.

19.1.2 Coverage of the Plan

9

T

This WATER RESOURCES MANAGEMENT PLAN covers the whole water resources usage such as municipal/industrial usage, agricultural irrigation, fishpond, urban wastewater, environmental conservation of river flow. Excluded is power generation and flood control, because power generation is non-consumptive use of water, and flood control is usually separately treated when multi-purpose dam is planned and operated. Plan for the power generation and flood control is made independently, and adjustment to the water resources management plan should be conducted later at the multi-purpose dam planning stage, etc.

Contingency plan for water shortage period is included in the WATER RESOURCES MANAGEMENT PLAN, but it is treated separately. The criterion that distinguishes the contingent water shortage situation and the usual one should be designated. In Japan, minimum annually dry flow rate during recent ten (10) years is used for this criterion. (annually dry flow rate = tenth minimum daily flow rate in a year)

19.2 Basic Items

19.2.1 Basic Assumptions

- 1) Population in Philippines is still rapidly increasing.
- 2) Philippines is a developing country, and has the right to expect the improvement of the life standard of its people.
- 3) Water resources such as the groundwater and the river flow are over exploited and mismanaged on many regions of this country.
- 4) Main facilities of water supply, such as the dams, weirs and the main wells is relatively well maintained, however, the number and volume of them is very limited.
- 5) Whereas, the distribution network of the water supply, such as the waterworks pipelines, the irrigation channel and the sewerage is not well maintained, and prompt rehabilitation of them is necessary.
- 6) There is very small kilometers of sewerage exists, and most of the effluent is discharged directly into the nearby streams.

19.2.2 Precondition

- (1) All water usage are metered; waterworks, irrigation channels and wells.
- (2) All water usage is appropriately priced. At least, cost of water supply should be covered with its revenue.

19.2.3 Items for Study

- Water usage quantity that is commensurate to the level of water tariff. Net revenue for these tariff level. Net amount of money that is available for the redemption of the investment for water works facilities. This item is for the economic measures of the water demand management.
- 2) Potential quantity of water conserved with the regulatory measures.
- 3) Tariff levels that people can pay for, or willing to pay for.
- 4) Financial measures for the investment for water work facilities. Is it possible with the private sector initiative only? Or, some subsidy is necessary?

19.2.4 Institutional Matter

- 1) Approval system for the commencement of the water related enterprises, its work plan and its tariff system.
- 2) Measures for bringing forth the appropriate tariff level.
- 3) Measures for soliciting the private and public water related enterprises to improve their facilities.
- 4) Mechanism to allocate the water for each users at the water shortage period.
- 5) Water authority that treats the whole water related items in a river basin + its utilization zones synthetically, such items as the waterworks, irrigation, fish pond, sewerage and the environment.
- 6) Water conservation planning.
- 7) Land uses regulation upstream of the water source.
- 8) Democratic and transparent procedures to forge the consensus on the water resources management plan.

19.3 Formulation of the Water Resources Management Plan - Main Portion (WRMP)

WATER RESOURCES MANAGEMENT PLAN – MAIN PORTION (WRMP) shall cover the whole water resources usage including the municipal/industrial usage, agricultural irrigation, fish pond, urban wastewater, environmental conservation of river flow. Power generation and flood control are excluded. Contingency plan for water shortage period is also not included. This is included in the SUPPLEMENTAL PLAN (SP).

WRMP should be made for each river basin + its water utilization zone, using the river basin concept of integrated water resources management.

Zoning in the river basin + its utilization zone is necessary, concerning the densely populated area (municipality, barangay, city etc.), large factories, lots of agricultural land, large fish ponds etc. And main water distribution lines and its inflow and outflow should be thoroughly understood.

A flowchart for the WATER RESOURCES MANAGEMENT PLAN - MAIN PLAN

19.3.1 Setting the Target Level for the Domestic, Urban, Industrial, Agricultural, Fishponds and Environmental Water Demands

Target level is set for the final year and also for the appropriate interim years.

As shown in Figure I-9, the water saved at the consumer level is not considered at the first stage. However, this factor is considered at the second stage to reduce the water demand further, if the first stage trial does not solve all of the water related problems or the projects are not financially viable.

Target level is set for each water usage as shown below:

1) Domestic

Water demand per head that is commensurate with the income level is set. Not only the average income level but also its classification should be considered. Multiplying this value with the estimated future population gives the domestic water demand.

And water demand for each purpose should be set, such as for toilet, shower, cleaning, kitchen, other indoor services and outdoor gardening.

Reclaimed water and the urban rain water availability should also be set.

2) Urban

Water demand per square meters of the floor area of the supermarkets, malls, restaurants etc. should be set. These values may be present in the building code or architectural law. Multiplying this value with the estimated future floor area gives the urban water demand.

And water demand for each purposes should be set, such as for toilet, restaurant, hotel guest room, outdoor gardening etc..

Reclaimed water, desalination water and the urban rain water availability should also be set.

3) Industrial

1

Industrial water demand is not estimated with the inter-sectional GDP value, because the composition of the industrial output changes drastically year by year, and the productivity is perpetually improving. And the recycle ratio (water used in the production process / water input to the factory from outside sources) can also be much increased.

Multiplying sectional output with the unit water consumption and the recycle ratio can give the industrial water demand estimation. For these purposes, Japanese experience for the unit water consumption and the recycle ratio can be utilized.

And industrial enterprises tend to reduce the expenditure for the water usage, it is usually unnecessary to increase the industrial water demand after the appropriate water tariff is levied on the industry.

Reclaimed water, desalination water and the urban rain water availability should also be set.

4) Agricultural

Pirst, main irrigation water canals and its inflow and outflow should be determined. Sometimes, metering at the intake structure may be necessary. Especially, return flow from the agricultural land to the river should be determined.

Next, composition of the crops should be known. Multiplying the unit water consumption and the acreage of each crops gives the water consumption demand of the agricultural section and the degree of water wastage in the irrigation system.

Reclaimed water availability should also be set.

5) Environmental

Maintenance flow at certain points on the river should be set. Even if it is difficult to set this value based on the Philippines' data, Japanese and U.S.A. experience can be utilized.

19.3.2 Understanding the Current Water Usage Structure in the River Basin + Its Water Utilization Zone

First, make the water usage structure map as shown in Figure I-10. All of the water usage units, such as the farm lots, densely populated area, factories and fishponds etc. are plotted. And main water related facilities, such as the dams, intake weir, irrigation canals, return flow, well zone, effluent line and river are also indicated.

Main flow rates at each water-related facility and the water consumption quantity at each water usage units are elucidated. These flow-rates and the water consumption quantity should be based on the minimum annual dry flow rate during the last ten years.

For the current water usage, problems are listed up, such as;

- Water shortage in urban area,
- Insufficient maintenance flow in the river.
- Over exploitation of groundwater, and the salt-water intrusion.

19.3.3 Set the Target Level Water Demands for Each Water Usage Units

Target level water demands for each water usage units obtained in section 19.3.1 are indicated on the Figure I-11. This target level is set for the final year and the appropriate interim years. Then, in the real practice, Figure I-11 (1), I-11 (2), I-11 (3) will be prepared.

The water demands for each water usage units are set, and the main water related facilities are not changed.

For the target level water demand, problems are listed up, such as;

- More critical water shortage in urban area.
- No maintenance flow at the usual time.
- More serious salt intrusion.
- No water source for the newly established farm lot, factory and the newly developed town zone.
- River water quality deteriorated.

19.3.4 Study on the Menu of the Water Usage Situation Improvement

First, menu of available counter measures for the water usage situation improvement is made.

This menu includes such items presented herein, and does not include the water conservation measures at the consumer level.

- Improve the existing distribution line. Leakage of water is decreased -- its possibility, time span, cost (redemption amount per year), expected developmental water volume, cost-benefit analysis (developmental water volume / cost), secondary benefit such as the sanitation improvement.
- New water development scheme including the dam construction name of dam, expected developmental water volume, cost (redemption amount per year), cost-benefit analysis (developmental water volume / cost), environmental and social restriction.
- Usage of the reclaimed water available water volume (production, demand site), cost (redemption amount per year), cost-benefit analysis (developmental water volume / cost), secondary environmental benefit such as the water quality improvement.
- Re-allocating the irrigation water to domestic water its possibility, cost (redemption amount per year), expected developmental water volume, cost-benefit analysis (developmental water volume / cost), social restriction.
- Recharge of the groundwater water source, its possibility, cost (redemption amount per year), expected developmental water volume, cost-benefit analysis (developmental water volume / cost).
- And other measures,

Priority order for each menu listed is set, and presented as shown in Table I-20.

19.3.5 Selection of the Menu

Selection of the menu listed in Table I-20 is conducted as follows. These steps shown herein shall go through for the final target year and also for the appropriate interim years.

First, select menu #1, and this information is put on Figure I-10 and I-11. Check whether the problems listed up in section I.9.3.3 and I9.3.4 is solved or not. If all problems listed are solved, then only the menu #1 is adopted.

Select menu #2 in addition to #1, if not all problems listed are solved. Check whether the problems listed up in section 19.3.3 and 19.3.4 is solved or not. If all problems listed are solved, then only the menu #1 + #2 is adopted.

These procedures will go on until all of the problems listed in section 19.3.3 and 19.3.4 is solved. If selected menu is #1 + #2 + #3 + #4, then water usage structure will be as shown in Figure I-12.

These steps will be done for the final year and the appropriate interim years. Then, in the real practice, Figure I-12 (1), I-12(2), I-12(3) will be prepared.

If not all of the problems listed up in section 19.3.3 and 19.3.4 is solved after every menu listed in Table I-20 is adopted, then return to section 19.3.1. Before returning to section 19.3.1, section 19.3.6 "water saving at the consumer level and restriction of the regional growth" should be considered.

19.3.6 Study of Water Saved at the Consumer Level and the Restriction of the Regional Growth

The measures studied in this stage are only adopted when the first trial measures (from section 19.3.2 to 19.3.5) failed to solve all problems or to finance the facility construction. Such measures shown herein should be considered.

- Domestic water saving devices
- More efficient irrigation method
- Planting of alternative crops (less water consuming variety)
- Change of the products in industry.

If these measures are also shown to be insufficient to solve the problems, restriction on the regional growth should be considered.

19.3.7 Setting the Effluent Discharge and Treatment Scheme

After the adoption of the selected water resources developmental menu (Figure I-12), municipal/industrial effluent discharge and treatment scheme is adopted.

First, the discharge points should be designated. When discharge points is selected, following item should be considered.

- 1) Usually municipal/industrial wastewater is treated with the biological methods, such as the activated sludge and trickling filter etc.. They can reduce only the biodegradable organic matters, and are useful for the preservation of the Dissolved Oxygen level in the accepting rivers. However, they can reduce only a tiny portion of the nutrients, and almost no reduction is expected for the very small amount of the halogenated organics such as the PCB and Dioxin, and the environmental hormone. And considerable reduction may be attained for the bacteria, however virus and cysts are not well removed. More advanced method, such as the R.O. membrane method may be employed, however its cost is high. Then, effluent discharge points after the treatment should be where a lot of dilution water is available, such as:
 - # Ocean out of the bay. Bottom of the deep sea is better. Discharging near the coast sometimes cause the contamination of the beach,
 - # Main river flow where flow rate is large. Cautious consideration is needed after these river water containing the effluent is used for the drinking and recreational purpose.

However, the cost for the discharge facilities should be considered.

- 2) Recycling of the effluent to the garden irrigation in the town and to the agricultural irrigation such as for the fruit trees is useful not only for the water resources saving but also for the water quality conservation in the rivers and ocean.
 However, the cost for the discharge facilities should be considered.
- 3) Treatment method is selected based on the condition of the discharge point. If affluent dilution water is available, only the easier sedimentation method may be sufficient.
- 4) Figure I-13 shows the water usage structure after the adoption of the effluent discharge and treatment scheme. This figure is also prepared for the final and the appropriate

19.3.8 Construction Plan of Each Facilities

Yearly construction plan of each facilities is made at this stage. This plan should consider the target level at the final year and the appropriate interim years as set in section 19.3.1.

Based on this construction plan, Financial Plan is prepared.

19.3.9 Financial Plan

()

1

Based on the construction plan, financial plan for these facilities are set. And necessary tariff level is estimated based on this financial level, if the amount of ODA or government subsidy is assumed. If this tariff is below the level which people are afford to pay for, then this water management plan is viable. The tariff level that people are affords to pay for is studied in 19.2.3.

If necessary tariff level is more than what people can pay for, or willing to pay for, then returning to section 19.3.1 and section 19.3.6 is needed. Before going back to these stages, measures shown in section 19.3.10 should be considered.

19.3.10 Reduction of the Life Standard

If the necessary tariff level is more than what people can pay for or willing to pay for, reduction of the life standard is demanded. To minimize the adverse effect of these measures, selection of the policies needs most cautious consideration. Such menu may be listed:

- Decrease the water supply level for some users
- Change the crop production plan
- Extension of the sewerage construction plan

19.3.11 Study of the implementation plan

(1) Factors of the implementation plan

Implementation plan contains such factors:

- Setting the tariff system
- Executive organization
- Administrative organization
- Land uses regulation upstream of the water source
- Water conservation plan

Tariff system that is required for the execution of this WATER RESOURCES MANAGEMENT PLAN is set and presented in the implementation plan.

And, the executive organization for the project construction and maintenance and the administrative organization for this plan are designated also in this plan.

Sometimes, it is beneficial for the water quantity and quality conservation to discourage the development in land located upstream of the water sources, and to regulate the human activities inside of these area. This is also contained in the implementation plan.

Water conservation plan should routinely be prepared by the executive organization, and is submitted to the administrative organization. This is explained next section.

(2) Water Conservation Plan

The objective of the water conservation plan is to make water saving measures listed in section 19.3.1, 19.3.4 and 19.3.6 realized. This plan usually contains such items as shown below:

Outline of the executive organization - locations of the organization, area, water usage quantity, water distribution facilities, and tariff system.

- Water usage situation where, when and what purpose the water is utilized.
- Elucidation of the subjects on the water usage, and targets of the water resources conservation.
- Existing water conservation measures.
- Priority measures for the water resources conservation.
- Water conservation measures expected to be introduced in future.
- Monitoring the effectiveness of the water conservation measures.
- Environmental review of the water conservation plan.

19.4 Contingency Plan for Water Shortage Period

This is the sub plan that supplement the MAIN PLAN of the WATER RESOURCES MANAGEMENT PLAN. This plan contains the items shown below:

- (1) List up the examples of the critical water shortage episodes, and gather the information and data concerning these events.
- (2) Gather the information on the regulatory process of water allocation during the water shortage period, and the records of the damage incurred.
- (3) Existing regulatory framework for water allocation, the organization responsible and its power.
- (4) Cost estimate of the dam construction for drought.
- (5) Study of the drought insurance. Its cost.
- (6) Study of the necessary measures, with comparing the results of (2), (4) and (5).

Part – I

Tables

Table I-1 LIST OF RARE AND ENDANGERED SPECIES OF WILDLIFE (A)

COX	YON NAME	LOCAL NAME	SCIENTIFIC NAME	CITES APPENDIX
A.	FAUNA			
	I. MAYMALIA			
1.	Dugong	Dugong	Dugong dugon	1
2.	Tanaray	Tamaray	Anga mindorensis	Ĭ
	Ant Eater	Pangolin	Sanis layanica	11
4.	Philippine Deer **	Usa	Cervus sp.	
5,	Mouse Deer **	Pilandok	Tragulus oigricans	
	Philippine Tarsier	Malmag/Mago	Tarsius philippensis	[]
7,	Calamian Deer	Usa	Axis calamiansis	1
8.	Water Buffalo **	Cimaron	Bubalus moellendorfi	
đ	Mindanas Cyanuna	Tali-rah bali	Da ta average Aurest	
	Mindanao Cymnure Philippine Monkey	tooey Tsonggo	Podogymoura truci Macaca fascialensis	11
10.	•	Taunggo	Macaca Tascialensis	11
	II. AVIES			
	Philippine Eagle	Aguila	Pithecophaga jefferji	t
	Philippine Falconet	Dumagat	Microbictax e. erythrogon	Ĥ
	Peregrine Falcon	Dumagat	Falco peregriaus	<u>l</u>
	Palavan Peacock Pheasant	Bartik	Polyplectron emphanuu	Ī
	Spotted Green Shank	D 1	Ţringa_guttifera	Į.
	Pygay Curley Nicoban Biggar	Balangkawitan	Numerius minulus	ĮĮ.
	Nicobar Pigeon	Sicte Colores Balud	Caloenas nicobarica	1
	Mindoro Imperial Pigeon Bleeding Heart Pigeon	Punalada	Ducula mindorensis	Į.
	Calabero	runarada	Gallicocymba luzonica	11 11
	Philippine Cockatoo	Katala	Balbopsittacus 1. lunulatus Cacatua baeniaturo pygia	11
22.	Philippine Hanging Parakeet	Kolasisi	Loriculus philippensis	11
	Blueheaded Parrot			
24.	Short-tailed Parrot	Loro de paleta	Prionitucus montanus	11
		_	Psittacifornes spp.	
	Parrots (All species)	Loro	Balbopsittacus 1.	11
	Kochs Pitta	Liaco	<u>Pitta kochi</u>	
	Owl	Kuvago	Strigiformes.spp.	ij
	Giant Scops Ovl Scops Ovl	Kuvago	Olus gurneyi	i
	Rufous Scops Ov1	Kuyago	Olus scops longicarnis	11
	Oriental Screet Ovl	Kuvago Kuvago	Olus rufescens buibidgin Olus bakkamoena Megalotis	11 11
-	Phil. Hornes Ovl	Kuvago	Babo philippensis	ii
	Phil. Boobook Owl	Kuvago	Minox p. philippensis	11
	Phil. Bank Onl	Kuwago	Minox scutulata randi	ii
	Seleputs Ovi	Kuvago	Strix selepula vaepkeni	ii
36.	Short-lared Ovl	Kuvago	Asio f. flammens	ij
37.	Rufous Hornbill	Kalav	Buceros hydrocorax	П
38.	Cebu Black Shama "	Siloy	Consychus cebuensis	
	Ashy Ground Trush *		Zoothera cinerea	
40.	Eastern Sarus Crane	Tipol	Grus antimone sharphi	1
	III. REPTILIA			
4i.	Leatherback Turtle (1)	Pavikan	Dermochelys coriacea	ı
42	Green Sea Turtle ***	Pavikan	Chelonia Mydas	ī
43.	Hawsbill Tuctle ***	Pavikan	Fretnochelys inbricata	i
	Olive-backed or Pacific Ridler's Turtle ***		Lepidochelys olivacea	i
45	Loggerhead Turtle	Pavikan	reprovered 13 offices	Į.
	Soft Shelled or Freshvater Turtle ***	Bao	Triopyx so.	
40.	out outlied of Fleshfater fullte	Date	Crocodylus novaeguineae	
47.	Philippine Crocodile	Buwaya	pindorensis	I
	Saltvater or Estuarine Crocodile	Buwaya	Crocodylus porosus	ĺ
	Lizards	Bayarak	Yarianidae Spp.	Ĥ
50.	Water Monitor Lizard	Bayavak	<u>Yaranus salvator</u>	11
	Grains Monitor Lizard	Bulaan	Varanus grayi	11
52.	Python	Sawa/Bitin	Python reticulatus	11
	IV. INSECTA			
	Mountain Apollo Butterfly		Painassius apollo	11
	Dindring Berthand)		Trigonopeera Spp. Troiden	
	Birdving Butterfly		Spp	{[[

Table 1-1 LIST OF RARE AND ENDANGERED SPECIES OF WILDLIFE (B)

COMMON NAME	LOCAL NAME	SCIENTIFIC NAME	CLIES APPENDIX
B. FLORA			
1. Sander's Alocasia		Alocasia Sanderana	1
2. Striped Alocasia		Alocasia sanderana	I
3. Pitcher Plant		Nepenthes raigh	I
4. Orchids		Orchidaceae Spp.	11
5. Bungang Ipod (Palm)		Arcea Ipod	11
		Phoenix hanceana yar.	
6. Voyavoy		philippensis	11
7. Igan		Podocanous costahis	[
8. Calakab		Sadaceae chamberlainii	11
9. Tagbak		Pedichium philippensis	;
10. Cycas or Pitogo (All Species)		Cycadaecae Spp.	II
11. Ferns (Ali Species)		Cystheaceae Spp.	П
12. Aloe or Sabila		Aloe Spp.	II
13. Cactus		Caotaceae Spp.	

Note:

Source: DENR Protected Areas and Wildlife Bureau

Listed in the EED DATA BOOK, International Union for the Conservation of Nature and Natural Resources (UC
 BFD List of Rare and Endangered Species of Wildlife.
 Barned Species per MNR Administrative Order No. 12; Series of 1979.

Table I-2 CRITERION OF FLOW TO JUDGE THE PRESERVATION OF 12 FISHES

)

	Water	Water Depth (cm)				Water Velocity (cm/s)	(cm/s)	
Name of Fishes	Incubation Fry		Maturated	Spawn	Incubation	Frv	Maturated	Spawn
Salvelinus leucomaenis f. pluvius	g sprin	summer	all the year	autump	winter-spring	winter-spring spring-summer	all the year	autumn
		Ş		4-24			20	20
Salvelinus leucomaenis	winter-spring spring	spring-summer 5	all the year u	all the year ummer-autumn 4-24	winter-spring	winter-spring spring-summer	all the year ummer-autumn 2020	umer-autumn 20
Salmo (Parasalmo) masou masou	winter-spring spring-summer	summer	all the year u	all the year ummer-autumn	winter-spring :	winter-spring spring-summer	all the year ummer-autumn50,10-35	mer-autumn 50,10-35
Salmo (Parasalmo) masou macrosto winter-spring		spring-summer	all the year u	all the year ummer-autumn 10-30	winter-spring :	winter-spring spring-summer	all the year ummer-autumn 30	rmer-autumn 30
Salmo (Oncorhymchus) keta	winter-spring spring-summer	aummer	Sea S	sea autumn-winter	winter-spring spring-summer 10-14 20	spring-summer 20	sea an	sea autumn-winter 20,0-40
Plecoglossus altivelis altivelis	autumn-winter	mu guirds	mer-autumn u 20	spring ummer-autumn autumn-winter 20 30-60 3	autumn-winter 3	spring v 40-60	spring ummer-autumn ummer-autumn 40-60	nmer-autumn 30-70,60-120
Leuciscus (Tribolodon) hakonensis	autumn winter	winter-spring	all the year s	all the year spring-summer 20-70	autumn	winter-spring	all the year spring-summer 30-70	nng-summer 30-70
Zacco platypus	autumn winter	winter-spring 10	all the year	summer 5-20,5-10	autumn	winter-spring	all the year	summer 5-30
Zacco temminckii	autumn winter	winter-spring	all the year	summer 5-20,5-10	autumn	winter-spring 10	all the year	summer 5-30
Cottus pollux	swmner ummer-autumn	autumn	all th year 20-90	winter-spring	summer u	summer ummer-autumn	all th year w	winter-spring 10-100
Costus nozawae	summer autumn-spring	spring-	all th year 20-90	summer 30	summer	summer autumn-spring	all th year	summer 10-100
Sicyoplerus japonicus	summer autumn-spring	-spring	all the year	summer 20-100	summer	sunmer autumn-spring	all the year	summer

Note; spring: March-May, summer: June-August, autumn: September-November, winter: December-February

Table I-3 AN EXAMPLE OF EPMF ESTIMATION

Carrisons of Disase			2				U			c						
Season	ennos .	Symmer	autorbh	wither	âuluds	-timmer	AUTUMA	WINIFE	Souds	summer	ansumo	winyer	طوسط	SUMME	Jutumn	wither
Feb Species																
A Louis (Tribataling) hakonensa	07-(00)	(20)-70	650	<u>(2</u>	(20)-70	(30)-70	ĝ	(20)	(20)-70	02-(02)	(50)	ĝ		Not selected for study	study	
N. Y. Second Contraction	(5) (6)	ش	3	(0.03)	-10.03	5-10.5-20, (3)	3).	10, (5)		Not selected for study	ž.			Not selected for study	tudy	
of text in fathliften					1			Ċ	SC/	CONTRACTOR OF CONTRACTOR OF	W (W)	9		Not selected for such	wady	
c) Placoplassus adrivetis atrivetis		Not selected for study	study		(20)	20, 40-00, (30) 20, 40-00, (30)	(0.000.00	(20)	·:	· · · · · · · · · · · · · · · · · · ·	, A. C. C. C.		;	010 02 01	95. 95. 94	Ċ
da Nalma i Parasalnus mascu marrestemas		Net witected for study	study			Not scheded for study	study			Not selected for study	≱.		SE.	19:30, (10) 19:30, (40)	10 TO 100	Ē
A signature	8	20	ខ្ព	ន	9	۶	Q.	ទ	Я	۶.	30	ጸ	9	ō	ò	2
	Energy (Sept. 19	Fac at fish in spring and summer, value for spawn is chosen.	r, value for spawr	1 is choses.	For a) and b) fis	For a) and b) fish, it is some with B case,	B case,		Pora) and c) fin	For a) and c) fish, it is same with C case.	.э.кс.	-	For di fish, m su	For diffish, in summer and autumn, value for spawn is chosen.	n, value ior spuv	en is chosen.
602	The lower on	The lower one of (20) is set.	-		For cy fish, in st	or e.) fish, in summer and autuma, two values of 20 for	a, two values of	20 for				•	The lower one of (10) is set.	rf (10) is set.		
W.	For at fish, in	For a) fish, in autumn and winter, no value is given.	no value is give		maturated and	maturated and 30-60 for spawn is given.	given,		Criterion Value	Criterion Value Determination		-	Pord) fish, m w	For d) fish, in winter and spring, no value is given	no value is given	_
	Then, value &	Then, value for spring and summer is used for this case.	ier is used for this	35.	Select the bigge	Select the bigger (stricter) case of 30-60, and the lower one	130-60, and the		Compare the va	Compare the values of fish a) and c) for each season,	for each season.		Then, value for a	Then, value for summer and autumn is used for this case,	mn is used for th	IS CANC.
	For M fish, in	For b) (ish, in summer, two values for spawn is given.	"S for spawn is gu		of 30 is chowen.				The bigger (SR	The bigger (smorer) value is chosen.						
	The Land of the Control of the Contr	One lands and in some of (8) for hoth case and is charsen	horh cases and it	Ę	Sor of the man	Born's fish to winter and some no value is civen.	no value is piven.					,	Criterion Value Determination	Determination		
	IN TOWER ON	is senior of the lea	- Aut - Co.									•	Total of the state of	On the field of contact	and thus a che	ş
	For b) fish, in	For b) fish, in spring and winter, only upper one for fry is given. Because fish c) lives all the year, and the value for	only upper one fi	or fry is given.	Because fish c)	lives all the year.	and the value for					-	July Inc value	Only including for 6) that is given, and this is creating	STATE OF SECTION SECTION	÷
	Then, value fo	Then, value for summer is used for this case.	for this case.		maturated of 26	maturated of 20 is used for this case,	250.									
	For to) fish, in	For b) fish, in autumn, no value is given,	s given,													
	Then, value fo	Then, value for summer is used for this case.	or this case.		Criterion Value Determination	Determination										
					Compare the va	Compare the values of fish a), b) and c) for each senson,	and c) for each x	TRSON,								
	Criterion Valu	Criterion Value Determination			The bigger (sire	The bigger (sirieter) value is chosen,	æn,									
	Compare the	Compare the values of fish a) and b) for each season,	1 b) for each seas	on.												
	i de la constante de la consta	The Branch of Continues of the State of the	1													

			g			~	i.				c				2	
Section of the sectio	suius .	A)WWIth	3utumn	winter	dujub	Summer	antumb	winter	Spring	ummer	антиши	winter	auds.	Summer	autuma	winter
Cich Coucies																
on a process	07-(01)	07-(04)	90	93	(30)-70	0.30)-70	(O)	(30)	02-(00)	(30)-70	ĝ	É		Not selected for study	r study	
by Zueran adatumas	(1) (1) ···		<u></u> 6	-10,(5)	10, (5)	9 .(9)	જ	10.(5)		Not selected for study	Apmis.			Not selected for study	r study	
of Director Contractions		7	rende			0	30-70,(50)-120	3, (3)	09-(0 1)	021-(00)-07-05	30-703(60)-120-30-703(60)-120	€) \{		Not selected for study	r study	
Colored Charles and Colored Co		Not selected for study	rstade				study			Not selected for study	study		(30)	-30 (30)	-30 (30) -30 (30)	(0.)
Constitution	S	9	9	8	9	8	ક	8.	3	8	8	9.	9	ጀ	S	ደ
ing the second	For a) fieb. is	For a) (st. in sector and summer, value (or soown is chosen.	er, value for soom,	n is chosen.	For a) and b) fis	For a) and b) fish, it is some with B case,	B case.		For a) and c) fis	For a) and c) fish, it is same with C case.	Ccase.		For d) fish, in s	For d) fish, in summer and autumn, value for spawn is chosen,	ma, value for spar	wn is chosen,
35%	The lower or	The lower one of (30) is set,			For c) fish, in su	Por c) fish, in summer and autumn, two values of 30-70,	in, two values of .	30.70					The value of (30) is set.	30) is sec.		
į.	For a) fish, ii	For a) fish, in autumn and winter, no value is given.	er, no value is give		and 60-120 for s	and 60-120 for sprawn is given.			Ontenon Value	Criterion Value Determination			For d) fish, in v	For d) fish, in winter and spring, no value is given.	ano value is give	L
	Then, value	Then, value for spring and summer is used for this case.	mer is used for thi	1 %	Select the bugge	Select the bigger (stricter) case of 60-120, and the lower one	f 60-120, and the		Compare the va	dues of fish a) an	Compare the values of fish a) and c) for each season,	É	Then, value for	Then, value for summer and autumn is used for this case.	tumn is used for the	his case.
	For b) fish, ii	For b) fish, in summer values for spawn 5-30 is given,	ir spawn 5-30 is g		of 60 is chosen.			•	The bigger (stri	The bigger (sincier) value is chosen.	××n.					

Only the value for d) fish is given, and this is chosen.

Criterion Value Determination

For c) fish, in spring, value of 40-60 is given for fry.

For b) fish, in spring and winter, only upper one for fry is given. The lower one of (40) is chosen.

The lower one of (5) is chosen.

Criterion Value Determination Compare the values of fish a), b) and c) for met season. The bigger (stricter) value is chosen. Compare the values of fish a) and b) for each season. Criterion Value Determination

The bigger (stricter) value is chosen.

Then, value for summer is used for this case. Then, value for summer is used for this case. For h) fish, in autumn, no value is given,

		שייחורים שי	0.03W
	2	summer sutumh widter	weno.
		Aummer.	0.03W
		spring	WEOD
		winter	W40.0
1	C)	sammer antumn winter	0.1834
			0,1XW
		spring	WXO,0
		winter	M50.0
	Ü	RHUMN	0.18W
		Summer	
W . wolay wou		ولهراناة	0.08W
- The Value S		Wenter	0.06W
m)/•W)/ 10,000	н	autumn	0.06W
- Water Width (summer.	0.06W
Velocity (cm/s)		summe . Konds	O.OKW
rh (cm) • Waier	<		
) Chierron for Flow (m^Nu) = Water Deph (cm) * Water Velocity (cm/s) * Water Width (m/s=W) / 10,000 = The Value Show	ections of River		υυ
S E	Section	Sea	Criterion

I

Table I-4 ENVIRONMENTALLY CRITICAL PROJECTS (ECPs)

A. Heavy Industries	1. Non-Ferrous Metal Industrics	
	2. Iron and Steel Mills	
	3. Smelting Plants	
	4. Petroleum and Petri-Chemical Indutries,	
	including Oil and Gas	
B. Resource Extractive Indub	B. Resource Extractive Indutrie: 1. Major Mining and Quarrying Projects	
	2. Forestry Projects	# Logging, # Major Wood Processing Projects, # Forest Occupancy
		(Occupancy of people residing within public forests for livelihood
		purposes and associated management projects.)
		# Introduction of Flora & Fauna in Public/Private Forests
		# Extraction of Mangrove Products, # GrazingProjects
	3. Fishery Projects	# Dikes for/and fishpond development projects
C. Infrastructure Projects	1. Major Dams	This shall refer to all impoudment structures and appurtenances
		with storage volumes equal to or exceeding 20 million cubic meters.
	2. Major Power Plants	This shall refer to power generating plants utilizing, or are run by,
		fossil fuels, geothermal resources, the nuclear fission process,
		natural river discharge, pondage or pump storage.
		This classification shall include all nuclear power plants, all geo-
		thermal power plants, thermal power plants with rated capacities
		equal to or exceeding 10 megawatts and hydroelectric power plants
		with rated capacities equal to or exceeding 6 megawatts.
	3. Major Reclamation Projects	This shall refer to projects which involve the filling or draining of
		areas (foreshore, marshes, swanps, lakes, nivers, etc) to or exceeding 1 ha
	4. Major Roads and Bridges	This shall refer to the construction of all national and provincial
		roads and bridges and any significant extension or improvement
		thereof which will:

a) Traverse any highly developed urban area(s); b) Affect the hydrology of the traversed area(s); and

c) Substantially increase or impede traffic flow.

Table I-5 ENVIRONMENTAL CRITICAL AREAS (ECAs)

A. All areas declared by law as national parks, watershed reserves, wildlife preserves and sanctuaries.

B. Areas set aside as aesthetic potential tourist spots.

C. Areas which constitute the habitat for any endangered or threatened species of indigenous Philippines wildlife (flora and Fauna).

D. Areas of unique historic archaelogical or scientific interest.

E. Areas which are traditionally occupied by cultural communities or tribes (indigenous cultural communities).

F. Areas frequently visited and/or hard-hit by natural calamities (geologic hazards, floods, typhoons, volcanic activity, etc.)

G. Areas with critical slopes.

H. Areas classified as prime agricultural lands.

I. Recharged greas of aquifers — Recharged areas of aquifers shall refer to sources of water replenishment where rainwater or seepage actually enters the auifers. Areas under this classification shall be limited to all local or non-national watershed and geothermal reservationas.

J. Water bodies characterized by one or any combination of the following conditios:

1. tapped for domestic purposes

2. within the contorolled and/or protected areas declared by appropriate authrities

3. which support wildlife and fishery activities.

K. Mangrove areas characterized by one or any combination of the following conditions:

1. with primary pristine and dense young growth

2. adjoining mouth of major niver systems

3. near or adjoining to traditional productive fry or fishing grounds

4. which act as natural buffers against shore erosion, strong winds and storm floods

5. on which people are dependent for their livelihood

L. Coral reefs characterized by one or any of the combination of the following conditions:

1. with 50% and above live coralline cover

2. spawning and nursery grounds for fish

3. which act as natural breakwater of coastlines

Table I-6 CLASSIFICATION OF WATERS

Classification	Beneficial Use
Class AA	Public Water Supply Class I. Waters having watersheds
	which are uninhavited and otherwise protected and which
	require only approved disinfection in order to meet the
	National Standards for Drinking Water (NSDW) of the
	Philippines.
Class A	Public Water Supply Class II. Sources of water supply
	that will require complete treatment (coagulation, sedimentation,
	filtration and disinfection) in order to meet the NSDW,
Class B	Recreational Water Class I. Waters for primary contact
	recreation such as bathing, swimming, skin diving, etc.
	particularly those designated for tourism purposes.
Class C	 Fishery Water for the propagation and growth of fish and other aquatic resources.
	2. Recreational Water Class II (Boating, etc.)
	3. Industrial Water Supply Class 1 (for manufacturing processes after treatment
Class D	1. For agriculture, irrigation, livestock watering, etc.
	2. Industrial Water Supply Class II (e.g. cooling, etc.)
	Other inland waters, by their quality, belong to this classification
COASTAL AND N	MARINE WATERS
Classification	Beneficial Use
Class SA	1) Waters suitable for the propagation, survival and harvesting of shell fish
	for commercial purposes.
	2) Tourist zones and national marine parks and reserves established under
	Presidential Proclamation No.1801 existing laws and/or declared as such
	by the appropriate government agency.
	 Coral reef parks and reserves designated by law and concerned authorities
Class SB	1) Recreational Water Class I (Areas regularly used by the publixe for
	batuing, swimming, skinmdiving, etc.)
	2) Fishery Water Class I (Spawning areas for Chanos-chanos or "Bangus" and similar species.
Class SC	1) Recreational Water Class II (e.g. boating, etc.)
25500	2) Fishery Water Class II (Commercial and sustenance fishing)
	3) Marshy and/or mangrove areas declared as fish and wildlife sanctuaries.
Class SD	1) Industrial Water Supply Class II (e.g. cooling, etc.)
	2) Other coastal and marine waters, by their quality, belong to this
	., There is a man were thereto, of their downiel's extend to the

Table I-7 UPDATED LIST OF CLASSIFIED WATER BODIES OF MARCH 1997 (1/7)

Name of River		WATER BODIES AS OF Location	Region	Class	Year
1 Abra		Hocos Sur	1	A	1993
2 Agno	Lower	Pangasinan	l	C	1993
3 Amburayan		Hocos Sur-La Union	1	c	1993
4 Aringay		La Union	1	В	1993
5 Bacarra-Vintar		Hocos Norte	i	Α	1993
6 Balincaguing		Pangasinan	1	В	1993
7 Barroro		La Union	1	Α	1993
8 Bauang	Lower	La Union	1	C	1993
9 Bonga		Hocos Norte	1	Α	1993
10 Buaya		Hocos Sur	1	Α	1993
11 Dagupan	Upper	Pangasinan	ì	Α	1993
Dagupan	Lower	Pangasinan	i	C	1993
12 Laoag		llocos Norte	1	Α	1993
13 Patalan		Pangasinan	1	С	1993
14 Abulug		Kalinga Apayao	CAR	C	1993
15 Agno	Upper	Benguet	CAR	Α	1993
16 Amburayan	Upper	Benguet	CAR	В	1994
17 Alimit	• •	Mt. Province	CAR	\mathbf{c}	1993
18 Ambalanga		Benguet	CAR	C	1993
19 Bokod		Benguet	CAR	Α	1993
20 Bued*		Benguet	CAR	C	1995
21 Ibulao		Mt. Province	CAR	C	1993
22 Lamut		Mt. Province	CAR	C	1993
23 Naguillan	Upper	Benguet	CAR	Α	1975
Naguillan	Lower	La Union	1	c	1975
24 Tanudan		Kalinga Apayao	CAR	Α	1993
25 Tineg		Abra	CAR	8	1993
26 Galiano	Upper	Tuba Benguet	CAR	В	1993
27 Chico	Upper	Mt. Province	CAR	В	1994
28 Abuan	• •	Isabela	2	C	1993
29 Balasig		Isabela	2	D	1993
30 Cabicungan	Upper	Cagayan	2	В	1994
Cabicungan	Lower	Cagayan	2	C	1994
31 Cagayan	Upper	Quezon	2	Α	1993
Cagayan	Lower	Cagayan	2	c	1993
32 Diadi		Isabela	2	C	1993
33 Disabungan		Isabela	2	c	1993
34 Ganano		Isabela	2	c	1993
35 Ilagan		Isabela	2	c	1993
36 Linao		Cagayan	2	\mathbf{c}	1993
37 Magat		Isabela	2	c	1993
38 Matuno		Nueva Vizcaya	2	C	1993
39 Palanan-Pinacanaua	ın	Isabela	2	D	199
40 Parred		Cagayan	2	Ċ	1993
41 Pinacanauan		Isabela	2	Ď	199

Table I-7 UPDATED LIST OF CLASSIFIED WATER BODIES OF MARCH 1997 (2/7)

Name of Ri	ver	Location	Region	Class	Year
12 Tangatan*		Cagayan	2	C	1995
13 Sta. Fe		Nueva Vizcaya	2	C	1993
14 Siffu		Isabela	2	c	1993
15 Tamauni		Isabela	2	Ð	1993
16 Tuguegarao	Upper	Cagayan	2	В	1993
Tuguegarao	Lower	Cagayan	2	C	1993
17 Aguang		Nueva Ecija	2	Α	1993
18 Angat	Upper	Bulacan	3	В	1993
Angat	Lower	Bulacan	3	C	1993
19 Bagac Bay		Bataan	3	SB	1993
50 Balagtas		Bulaçan	3	C	1975
51 Bamban		Tarlac	3	Α	1993
52 Bambang		Bulaçan	3	C	1975
53 Bancal		Zambales	3	C	1993
54 Binuangan		Bulacan	3	С	1975
55 Bocaue	Upper	Bulacan	3	Α	1975
Bocaue	Lower	Bulacan	3	C	1975
56 Bucao		Zambales	3	В	1993
57 Bulacan		Bulacan	3	C	1975
58 Cabigo Point		Bataan	3	SC	1993
59 Calumpit		Bulacan	3	C	1975
60 Camiling		Tarlac	3	c	1993
61 Eguia		Zambales	3	D	1933
62 Guiguinto		Bulacan	3	c	1975
63 La Paz		Tarlac	3	Α	1993
64 Lawis		Zambales	3	В	1993
65 Looc Bay		Bataan	3	SB	1993
66 Mabayuan		Zambales	3	Α	1993
67 Marilao	Upper	Butacan	3	Α	1975
Marilao	Lower	Bulacan	3	C	1975
68 Meycanayan		Bulacan	3	C	1975
69 Napot Point		Bataan	3	SC	1993
70 Nayom*	Upper	Zambales	3	В	1995
Nayom*	Lower	Zambales.	3	c	1995
Cagayan	Lower	Cagayan	2	C	1993
71 O'Donnel		Tarlac	3	C	1993
72 Pamatawan	Upper	Zambales	3	В	1993
Pamatawan	Lower	Zambales	3	C	1994
73 Pampanga	Upper	Nueva Ecija	3	Ā	1975
Pampanga	Lower	Pampanga	3	C	1975
74 Pantabangan		Nueva Ecija	3	Ċ	1993
75 Pantal		Zambales	3	Č	1993
76 Parongking		Zambales	3	č	1993
77 Polo		Bulacan	3	č	1975
78 Porac	Upper	Pampanga	3	Ä	19

Table I-7 UPDATED LIST OF CLASSIFIED WATER BODIES OF MARCH 1997 (3/7)

Name of River		Location	Region	Class	Year
78 Porac	Lower	Pampanga	3	C	199
79 Rio Chico		Tarlac	3	C	199
80 San Fernando		Pampanga	3	C	197
81 San Juan		Bataan	3	С	197
82 Sinocalan		Zambales	3	C	199
83 Sorabia		Tarlac	3	Α	199
84 Sta. Rita	Upper	Zambates	3	Α	199
Sta. Rita	Lower	Zambales	3	C	199
85 Sto. Tomas		Zambates	3	Α	199
86 Tarlac		Tarlac	3	\mathbf{c}	199
87 Banadero		Laguna	4	С	197
88 Balete		Oriental Mindoro	4	C	199
89 Bansud		Oriental Mindoro	4	C	199
90 Batangas Bay		Batangas	4	SC	199
91 Baroc		Oriental Mindoro	4	Ċ	199
92 Binambang		Batangas	4	č	197
93 Boac		Marinduque	4	č	197
94 Bongabong		Oriental Mindoro	4	Ď	199
95 Bulalacao		Oriental Mindoro	4	č	199
96 Buso-buso		Rizal	4	č	199
97 Butas		Oriental Mindoro	4	c	199
98 Caguray		Occidental Mindoro	4	Ä	199
99 Dacanlao		Batangas	4	Č	199
100 Dumacaa		Quezon	4	c	199
101 Iyam		Quezon	4	C	199
102 Kalumpang		Batangas	4	c	199
103 Katubusan		Palawan	4	c	199
				C	
104 Lagnas 105 Lumintao		Quezon Occidental Mindoro	4	_	19
			4	A	19
106 Mag-asawang Tubig		Oriental Mindoro	4	A	19
107 Magbando		Occidental Mindoro	4	A	19:
108 Malaking ilog		Tiaong, Quezon	4	C	19
109 Malatgao		Palawan	4	A	199
110 Malaylay-Buco		Oriental Mindoro	4	A	19
III Mamburao		Occidental Mindoro	4	A	19:
112 Masin		Quezon	4	C	19
113 Mogpog		Marinduque	4	C	19
114 Molino		Cavite	4	C	19
115 Pagbahan		Occidental Mindoro	4	C	19
116 Pagsanjan		Laguna	4	В	19
117 Palico		Batangas	4	С	19
118 Pandanan		Palawan	4	C	19
119 Pansipit		Batangas	4	· C	19
120 Puerto Galera (Mulle B	ay)	Oriental Mindoro	4	SA	19
121 Pula		Oriental Mindoro	4	С	19

Table I-7 UPDATED LIST OF CLASSIFIED WATER BODIES OF MARCH 1997 (4/7)

Name of River		Location	Region	Class	Year
22 Pulang Tubig		Oriental Mindoro	4	A	199
123 Rosario		Lobo, Batangas	4	Λ	199
124 Sumagui		Oriental Mindoro	4	C	199
125 San Cristobal		Laguna	4	С	199
126 San Juan	Upper	Batangas	4	Α	199
San Juan	Lower	Laguna		C	199
127 San Pedro		Laguna	4	C	197
128 Sta. Cruz		Laguna	4	C	197
129 Sta. Rosa		Laguna	4	В	199
130 Sapang Baho		Quezon	4	C	199
131 Tayuman		Palawan	4	C	199
132 Teretian		Palawan	4	\mathbf{c}	199
133 Tigas		Laguna	4	A	199
34 Ylang-Ylang	Upper	Cavite	4	В	198
Ylang-Ylang	Lower	Cavite	4	C	198
35 Bicol		Camarines Sur	5	Α	199
136 Bombon		Albay	5	Α	199
137 Cawayan		Sorsogon	5	В	199
138 Dact	Upper	Camarines Norte	5	Α	199
Dact	Lower	Camarines Norte	5	C	199
139 Gumaus		Camarines Norte	5	D	199
140 Labo	Upper	Camarines Norte	5	A	199
Labo	Lower	Camarines Norte	5	C	199
41 Lagonoy		Camarines Sur	5	С	199
42 Malaguit		Camarines Norte	5	C	199
143 Naga		Camarines Sur	5	C	199
144 Quinale		Albay	5	C	199
145 Pawili		Camarines Sur	5	C	199
146 Salog River*	Upper	Sorsogon	5	В	199
Salog River*	Lower	Sorsogon	5	C	199
147 San Francisco		Albay	5	В	199
148 Tagas		Albay	5	C	199
149 Talisay	Upper	Camarines Norte	5	Α	199
Talisay	Lower	Camarines Norte	5	C	199
150 Tayli		Albay	5	Α	199
151 Yawa		Albay	5	Α	197
152 Aklan	Upper	Aklan	6	Α	199
Aklan	Lower	Aklan	6	В	199
153 Alacaygan		Hoito	6	С	199
154 Alugon		Capiz	6	С	197
155 Bago		Negros Occidental	6	c	199
156 Balantias		Itoilo	6	В	199
157 Barotac		Iloilo	6	В	199
158 Batiano		lioilo	6	c	199
159 Cairnan	Upper	Antique	6	Å	199

Table 1-7 UPDATED LIST OF CLASSIFIED WATER BODIES OF MARCH 1997 (5/7)

	Name of River		Location	Region	Class	Year
59	Cairnan	Lower	Antique	6	В	199
60	Calajunan Creek		lloilo	6	C	199
61	-		Antique	6	Α	199
62	Guimbal		Iloilo	6	В	199
63	Himoga-an		Negros Occidental	6	С	199
64	Ilog	Upper	Negros Occidental	6	Α	197
	llog	Lower	Negros Occidental	6	C	197
65	Jalaur	Upper	Hoito	6	Α	191
	Jalaur	Lower	Heilo	6	C	19
66	Jaro - Agaman		lloilo	6	C	19
67	Jaro	Upper	Iloilo	6	Α	19
	Jaro	Lower	Iloilo	6	В	199
68	Malihao*	Upper	Negros Occidental	6	В	19
	Malihao*	Lower	Negros Occidental	6	\mathbf{c}	19
69	Palawan		Antique	6	Α	19
70	Panay		Capiz	6	Α	19
71	Pontevedra		Negros Occidental	6	\mathbf{c}	19
72	Salamanca		Negros Occidental	6	C	19
73	Sicaba		Negros Occidental	6	\mathbf{c}	19
74	Sibalom*		lloilo - Antique	6	В	19
75	Sibatom	Upper	Antique	6	Α	19
76	Sipalay	Upper	Negros Occidental	6	Α	19
	Sipalay	Lower	Negros Occidental	6	С	19
77	Tumagbok	Upper	Iloilo	6	Α	19
	Tumagbok	Lower	Itoilo	6	C	19
78	Abatan*	Upper	Behol	7	Α	19
	Abatan*	Middle	Bohol	7	В	19
	Abatan*	Lower	Bohol	7	C	19
79	Argao	Upper	Cebu	7	A	19
	Argao	Lower	Cebu	7	В	19
180	Balamban	Upper	Cebu	7	Α	19
	Balamban	Lower	Cebu	7	В	19
81	Banica*	Upper	Negros Oriental	7	A	19
	Banica*	Middle	Negros Oriental	7	В	19
	Banica*	Lower	Negros Oriental	7	$\bar{\mathbf{c}}$	19
182	Danao*	Upper	Cebu	7	Ã	19
	Danao*	Lower	Cebu	7	В	19
183	Guindarohan	Upper	Cebu	7	Ā	19
	Guindarohan	Lower	Cebu	7	č	19
184			Bohol	7	В	19
	Luyang	Upper	Cebu	7	Ä	- 19
_ ~ ~	Luyang	Lower	Cebu	'n	Ċ	19
186	Manaba*	Upper	Bohol	'n	Ä	19
	Manaba*	Middle	Bohol	'n	. Д	19
	Manaba*	Lower	Bohol	7	C	19

Table 1-7 UPDATED LIST OF CLASSIFIED WATER BODIES OF MARCH 1997 (6/7)

Name of River		Location	Region	Class	Year
187 Ocoy*	Upper	Negros Oriental	7	Λ	199
Ocoy*	Lower	Negros Oriental	7	В	199
88 Panamangan		Negros Oriental	7	\mathbf{c}	199
89 Sapang Daku	Upper	Cebu	7	Α	199
Sapang Daku	Lower	Cebu	7	C	199
90 Tanjay		Negros Oriental	7	В	199
191 Bao		Leyte	8	Α	199
192 Taft		Samar	8	С	199
193 Tigbao*		Leyte	8	C	199
194 Mercedes*	Upper	Zamboanga	9	В	199
Mercedes*	Lower	Zamboanga		\mathbf{c}	199
195 Tumaga*	Upper	Zamboanga	9	Α	199
Tumaga*	Middle	Zamboanga	9	В	199
Tumaga*	Lower	Zamboanga	9	С	199
196 Adgawan		Agusan del Sur	10	Α	199
97 Agusan*	Upper	Misamis Oriental	10	Α	199
Agusan*	Lower	Misamis Oriental	10	C	19:
198 Agusan*		Agusan del Norte	10	C	199
199 Alae*	Upper	Bukidnon	10	Α	19
Alac*	Lower	Bukidnon	10	C	19
200 Balatocan		Misamis Oriental	10	Α	19
201 Bigaan*	Upper	Misamis Oriental	10	Α	19
Bigaan*	Lower	Misamis Oriental	10	С	19
202 Cabadbaran		Agusan dei Norte	10	Α	19
203 Cagayan		Misamis Oriental	10	Α	19
204 Clarin		Misamis Occidental	10	Α	19
205 Cabulig		Misamis Oriental	10	Α	19
206 Cugman	Upper	Misamis Oriental	10	Α	19
Cugman	Lower	Misamis Oriental	10	\mathbf{c}	19
207 Gibong		Agusan del Sur	10	Α	19
208 Gingoog		Misamis Oriental	10	Α	19
209 Gingoog Bay		Misamis Occidental	10	SC	19
210 Ihawan		Misamis Oriental	10	Α	19
211 Iponan		Misamis Oriental	10	Α	19
212 Odiongan		Misamis Oriental	10	Α	19
211 Ojot		Agusan del Norte	10	A	19
214 Oroquieta		Misamis Occidental	10	Α	19
215 Magallanes		Agusan del Norte	10	c	19
216 Magpayang		Misamis Oriental	10	Ä	19
217 Magsaysay		Misamis Oriental	10	A	19
218 Naawan		Misamis Oriental	10	Ä	19
219 Palilan*	Upper	Misamis Oriental	10	A	19
Palilan*	Lower	Misamis Oriental	10	Č	19
220 Polangi	₩ V 11 V L	Bukidnon	10	Ä	19
221 Sawaga	٠.	Bukidnon	10	A	19

Table I-7 UPDATED LIST OF CLASSIFIED WATER BODIES OF MARCH 1997 (7/7)

UPDATED LIST OF C	LASSIFIED	WATER BODIES AS OF			
Name of River		Location	Region	Class	Year
222 Simulao		Agusan del Sur	10	Λ	1993
223 Solana		Misamis Oriental	10	٨	1993
224 Surigao		Surigao del Norte	10	Α	1993
225 Tagolo-an		Misamis Oriental	10	Α	1993
226 Tubay		Agusan del Norte	10	Α	1993
227 Umalag*	Upper	Misamis Oriental	10	A	1995
Umalag*	Lower	Misamis Oriental	10	C	1995
228 Wawa		Agusan del Norte	10	Α	1993
229 Davao*	Upper	Davao City	11	Α	1995
Davao*	Lower	Davao City	11	В	1995
230 Digos*	Upper	Davao del Sur	11	В	1995
Digos*	Lower	Davao del Sur	11	C	1995
231 Hijo-Masara*		Davao del Norte	П	Ð	1995
232 Lasang*		Davao City	11	В	1995
233 Padađa*		Davao del Sur	11	D	1995
234 Sibulan*	Upper	Davao del Sur	11	Α	1995
Sibulan*	Lower	Dayao del Sur	11	В	1995
235 Talomo*		Davao City	11	В	1995
236 Tagum*		Davao del Norte	11	Ð	1995
237 Tuganay*		Davao del Norte	11	В	1995
238 Agus		Lanao del Norte	12	С	1993
239 Allah*		Sultan Kudarat	12	В	1995
240 Libungan*		Cetabato	12	D	1996
241 Marble	Upper	Cotabato	12	В	1994
Marble	Lower	Cotabato	12	Ð	1994
242 Matingao		Cotabato	12	В	1994
243 Nuangan*		Cotabato	12	D	1996
244 Panguil Bay*		Lanao del Norte	12	SC	1996
245 Polangi*		Cotabato	12	D	1995
246 Rio Grande de Minda	nao*	Cotabato	12	С	1995
247 Marikina	Upper	Metro Manila	NCR	Α	1975
Marikina	Lower	Metro Manila	NCR	C	1975
248 Paranaque-Zapote		Metro Manila	NCR	c	1975
249 Pasig		Metro Manifa	NCR	C	1975
250 San Juan		Metro Manila	NCR	c	1975
251 Tullahan-Tenejeros		Metro Manila	NCR	C	1975

Table I-8 AREA DISTRIBUTION OF EROSION CLASSES BY ISLAND GROUPING, 1993

(

1

		:	į		Eros	Erosion Class		i				
Island Grouping No Apparent	No Ap	parent	Slight	ght	Mod	Moderate		Severe	Uncla	Unclassified	ř	Total
	Area	%	Area	%	Area	%	Area	%	Area	%	Area	%
Luzon	4.1	57.7	4.1	46.6	4.1	48.2	1.7	32.7	0.2	20	14.2	(47)
Visayas	1.2	16.9	1.7	19.3	1.5	17	1.1	21.2	0.1	25	5.6	(19)
Mindanao	1.8	25.4	m	34.1	2.9	34.1	2.4	46.1	0.1	25	10.2	(34)
Philippines	7.1	23.7	89	29.4	8.5	28.3	5.2	17.3	0.4	1.3	30	(100)

Source: Bureau of Soils and Water Management - Department of Agriculture

Note:

Table I-9 FOREST LANDS BY REGION, 1995

		Trafactor			Classif	Classified Forest				Total Forest
Ycar	Kegron	Circlassince	TATA	V	ď	C	Q	ш	Ħ	Lands
		rorest	TOIGT	ζ.			7.3.5			1 488 717
1005	άV	21.135	1.467.577	804,795	655,321	6.907	400	•		1,400,11
	á .	32122	440.802	276.846	199,140	12.999	288	923	909	473,957
	~	55,155	70000	000000	100 100 1	36 200	410	8 031	1.089	1,723,694
	7	146,305	1,577,389	209,288	187,156,1	000.07	77	1000	2001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	; er	26.874	744 300	166,104	422,729	32,780	117,019	808 408	4,00,4	+/ 1,1,1
	า •	176.048	0 271 A70	455 395	831,455	1.029.501	3,835	45,278	5,008	2,546,520
	† '	010,01	217.41.0.2	60.030	412 996	25.276	•	63	3,042	541,189
	'n	29,873	OTC.LIC	02,227	7777			3,50	23.000	612 690
	¥	1 606	611.923	135,344	428,939	23,505	•	CC7	25,300	747.010
	> t	252 07	746 364	49.407	397.450	15,054	++	114	4,335	535,919
	•	מממיאט	100,001		90000	901.4	761	698	5 637	1,119,454
	90	38.925	1,080,529	51,508	1,018,258	0011	27	100		1000
	· c	178 37	\$10.611	424 924	300.288	2,607	ያ	2,611	10,135	857.48
	ν;	1000	1715,217	21.4 816	1 326 965	55 734	•	6,209	11,387	1,765.843
	10	20,,05	111,617,1	010,410	700,040	53 643		10,127	2 744	1 956 835
		116,774	1,840,061	217,841	1,546,706	25.040	•	17,14		
	: :	40 631	840.815	122.346	608.674	20,552	7,996	80,789	458	880,44
	77	04 672	573,379	24 359	465.684	31.943	•	٠	1,343	618,002
	AKINIM	C/0'+A	140,040 140,040		700 710 01	1 240 220	130 330	165 746	75 548	15.882.756
		221 157	200 700 7	17/17	10,015,550	つつつつきつこ	00000			

Source: Forest Management Bureau, NAMRIA

A = Established forest reserves B = Established timberlands C = National Parks Note:

D = Military and Naval reservations
 E = Civil reservations
 F = Fishponds

()

Table I-10 FOREST TYPE, 1990-1994

						Forest Type	ype				Omer, noomers	
Year -	Total		Dipterocarp	dı,	Pine		Submarginal	ıal	Mossy		Mangrove	/e
•	Area	%	Area	%	Area	%	Area	%	Area	%	Area	%
1990	6,158,800	100	4,148,800	6.79	236,400	3.7	527,400	8.5	1,113,700	18	132,500	2.1
1991	6,015,400	100	4,029,200	29	235,100	4	519,500	8.6	1,102,400	18.3	129,200	2.1
1992	5,900,200	100	3,936,800	66.7	233,900	4	511,700	8.7	1,091,500	18.5	126,300	2.1
1993	5,787,458	100	3,846,658	66.5	232,700	4	503,900	8.7	1,080,800	18.7	123,400	2.1
1994	5,686,055	8	3,767,555	66.2	231,500	4.1	496,500	8.7	1,070,000	8. 8.	120,500	17

Source: Forest Management Bureau

Table I-11 DEFORESTATION BY REGION, 1990-1995

			0001	9					21	1661					1992	ដ		
									j	Causes					Causes	NO.		
			Causes	NCS				William	E Caroni					Denal	Forest			
		Illega!	Forest		;			inegani	1610	100	T.0.00		Kainoin	Looving	Fire	Others.	Total	
Region	Kainein	Cogging	Fire	Others.	Total	_	Kaingin	Logging	r1rc	See	10.1		ı				7.400	Š
(C)	A #00	1	Ames	Area	Arca	%	Area	Area	Arca	Arca	Area	%	Arca	Area	Area	VIC.	22.5	2
	200	3		į	2,500,00	1734	C	C	604 93	C	604.93	8.36	0	0	2,429.19	0	2,429.19	4.73
ž	•	>	2,048,00	21	7077	20.71	>	> '	1		00,00	77.61	<	c	112411	С	1136.11	6
-	20	0	833	489	1,351.00	6.0	48	0	398.01	458.4	901.58	14.40	>	> •	11.00.00	• (44.0000	i
٠ (•	• •	235	891	7734 00	38	C	C	303.45	0	303.45	4.2	0	0	2,886.90	>	7,880.90	20.0
٠4	>	>	20.00.7	•	20.60) o	020		0.0 305 0	C	2 070 95	412	0	0	9,937.83	0	9,937.83	19.34
ო	0	0	2,792.00	>	2,792.00	91	2,4	9	2000	•	00.00		24.76	~	3070	C	368.5	0.70
•	•	-	830 00	200	923	9	83	0	1,694.00	0	1,781,00	74.07	34.73	>	0.000	> .	2000	
†	> 0	> 6	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	5	ì	· c		366	c	C	38.6	0.05	0	0	459.5	0	459.5	68.0
'n	0	>	>	>	>	٠ د	7	9 4		, (SE OCC	ç	<		75036	C	2 259 36	4
9	68	15	439	1.403.00	1,946.00	Ę	81.23	0	()	7!	67.007	7.17	>	> 1	2000	• <	0.0.0	76.3
• •	3 8		300	20	413	(*	S	22	45	0	72	0.0	34.14	0	2,718.10	>	7,718.10	8
•	7	> 1	C67	961	000	,	. <	٦	C	C	0	0	0	0	551,48	\rightarrow	551.48	0
∞	0	၁	783	>	507	4 !	}	۰ د		• <	71.00	• •		C	07 570	C	975.39	1.93
œ	8	8	C 4	0	113	0.07	72.01	၁	30.13	>	100.14	4	. 1	۰ (,	10000	5
, 5	707	75	1 405 00	177	2 193 00	14	0	0	0	0	0	0	0	0	11.592.24	>	11.374.4	1
<u> </u>	200) }		13	5	187	20	9	0	213	73	c	0	14,712.17	0	14,712.17	28.62
=	17	>	>	> -	<u> </u>	, (Š				. <	c	c	c	1 483 61	0	1.483.61	2.87
27	0	0	0	0	3	>	>	>	>	> -	> •	•	•			•	<	<
ADAGA	C	c	C	O	0	0	0	0	0	0	0	0	>		>	>	> 1	> :
DI HI	, ,		90 11 877 00 2 868 00 15 549 00	00 848 6	15 549 00	8	759.23	71.6	71.6 5.871.02	530.4	7,232.25	8	85.89	0	51.310.38	0	0 51,398,27	100
i	3		2011	2000											İ			
																	(Unit hectares)	(33)

Illegal Forest Causest Causest	hers Total Area Area 0 1,438.92 0 1,032.83	Kaingin % Area		Causes						Causes			
Illegal Forest Fo	hers Total Area Area 0 1,438.92 0 1,032.83				200						S.		
Kaingin Logging Fro Area	Area 1,438.92 1,032.83	8	111,000	CARRET					Hevai	Forest			
Kaingin Logging Fig.	Total Area 1,438.92 1,032.83	8	viicgan	roics.	1	ŧ	7	Voimain I	Commo	ų.	Others*	Total	
Area Area Area 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Area 0 1,438.92 0 1,032.83 0 3 682 68	8	Buiggo	rire	S COUCH	no i		Ί	2 may .	2		2000	9.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 1,438.92 0 1,032.83 0 3,682.68	0 %0%	Area	Arca	Arca	Arca	, %	Arca	Arca	Arca	Arca	Arca	0/
0000 0000 0000 0000 0000 0000 0000 0000 0000			0	205.27	٥	205.27	0.2	355	7.86	1,479,07	0	1,841.93	3
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1		9	C	1.850.56	720.4	2.570.96	55	24.73	0	1,678.96	720.4	1,703.69	7.07
		0 6906	· c	0053	Q	905.3	6	25.11	0	4,296.65	0	4,321,76	17.93
		3 -		1 8/0 9/1	, % yo	215530	21	O	0	1.808.94	12	1,820,94	7.56
		7.047 17.77	> :	10.500*1	20:07	00 E07	i (0		14.15	2 238 40	225435	938
00.0	15.1 2,017.41	œ,	107.16	300	661	47:/50	7.0	0.	٠,			20000	
	4	14.56 5.23	0	108.74	0	113.97	1.1	3.31	0	0	00.866,01	15,996,91	45.07
30000C	1 124 17		0.2	0	0	4.7	0.01	0	0	183.54	0	33.54	0.76
8 0 0 415.41 9 0 0 15.9 10 0 0 186.13	77,577	. 9	c	8883	c	584.45	7	0	0	432.8	70.55	503.35	2.08
8 0 0 415.41 9 0 0 15.9 10 0 0 186.13	0 106.4	333 11 33	· c	00	33.91	144 53	4	0	0	43	0	43 83	0.18
9 0 0 15.9 10 0 0 186.13 11 0 0 63.97	74.514	<u>.</u>	> <			16.01		(c	204	c	202	0.85
10 0 0 186.13	0 50.24	0.03 11.91	>	^	>	10.91	0.01	>	> <	5	,	100	
11 0 0 63.97	200 386.13	2.16 11.32	ဂ	1,677.46	0	1,688.78	16.33	٥	0	153.54	40	4.5	o O
	70 63 07	0.04 6.35	0	148	0	154.35		0	0	36.07	0	36.07	0.15
, ,		- -	C	05	c	1 060.00	10.25	0	0	0	0	0	0
12 0 0 40.4	1,01	-₹ -}-	•	3				. <	•	<	c	c	C
ARMM 0 0 0	0	0	0	0	>	>		>	> ;	> (> 1	> 9	
0.00	0.00 15,329.86 2,441.89 17,862.09	100 1.528.56	107.36	7.719.77	986.16 10.341.85	0.341.85	28	408.95	8.86	0.330.72	8.86 10.330.72 13.353.95 24.102.48	24.102.48	3

Source: Planning and Policy Studies Service, DENR

()

Table I-12 INITIAL COMPONENT OF THE NIPAS (1/15)
(1) Distribution of Proclaimed Watershed Reservations

(e)

EIOGEO- FRAPHIC ZONE	NAME OF PROTECTED AREA	MUNICIPALITY	PROVINCE	REGION	AREA (ha)	PROCLAMA- TION NO	PROCLAMATI DATE
В	I. Aribulfa»-Birga	Aloe, Bokod	Mt Province	CAR	63,650	549	C)
	2 Ambeklas	Also, Bokod	Mt. Province	CAR	9,700	120	11/2
	3. Lower-Agno	San Manuel, San Nacolas	Paguo City	CAR	39,304	2320	1972
	4 Basol	Bagnio City and La Triridad	Bengnet	CAR	337	15	4/1
	5 Marcos Highway	Tuha	Benguet	CAR	6,165	1754	6/2
c	1 Infanta	In Canta	Quezon	4	394	158	2,
	2 Pohtlo	Pohilo	Quezon	4	(30	72	5
	3. Malawin Spring	Guinayangan	Quezon	4	204	365	1
	4 Lopez	Lopez	Quezan	4	419	566	6:
	5. Calubagan	Casignuan	Ачычи	4	4,803	915	
	6. Dipaculao	Dipaculao	Aurora	4	1 785	116	6
	7. Dinadiawan River	Dipaculas	Aurora	4	3 387	918	Ĭ.
	8. Alubat	Alahat	Quezna	7	699	156	9.
	9. Algora	Paler	7	4	436	34	37
	10 Tiblang-Damagandong		Quezon	4	290	295	6/
	11. Anto River	Quezon	Quezon	4		633	
		Carigorea कार्य श्रीसम्बद्ध	Aurora		6,470		8/
	12 Talaytay River	Dinalungan	Aurera	4	3,626	370	13
	33. Binahaan River	Pagbilao and Mauban	Quezon	4	465	735	5/
	14 Simbshan-Talagas River	Dingalaa	Quezon	4	2,265	905	5/
	15 Dibalo-Pingit-Zibali-Malayat	Baler and S≥a Luis	Astrita	4	4,528	908	5
Ð	I floors Norte Metro	Pasugian	Rocos Norte	1	7,934	733	2
	2. Мадицанд	Patac	Hoere Norte	l.	152	\$10	
	3. Kibunao Spring	Sinait	Horne Sur	t	47	410	16
	4 Bigbiga Spring	Narvacan	flocos Sur	1	135	431	8
	5. Santa	Santa	flece + Sur	1	25	841	9:
	6. Lidhdda	Lidadda	floces Sur	1	1,228	79	9/
	7. Sta. Eucia	Sta Encia	Bocos Sur	ι	174	333	19
	8. Nagrulian	Nagnilian	La Union	ı	90	52	4:
	9. Tanap	Burgos	Recos Norte	- 1	- 6	83	:
	10. Caseenan River	Dupax del Norte and del Sur	N. Vezcaya	2	65,219	136	8.
	11 Dupax	Dupax	N. Vizcaya	2	425	720	1
	12 Bawa	Gonzaga and Lat-to	Cagayan	2	8,955	108	5,
	13. Wangag	Gonzaga and Lal-lo	Cagayan	2	6,992	107	5,
	14 Angat Watershod Metro Water District	Montalban, Son Jose, Norzagaray, San Rafuel, Infinia	Rizal, Bulacan, Nueva Ecita	. 3	55,707	71	2
	15. Pantabangan-Carranglan	Pantahagan, Carranglan	Nueva Ecija	3	84,500	561	5,
	16. Angal Watershed and Forest Range (Pilot)	Norragaray, San Jose, Montalban	Bulacan, Rizal	3	6,600	391	4
	17. Talayera	Sta Fe, Carranglan, Lupuo, San Jose	Nueva Ecija, N	3,2	37,295	350	12
	18. Dona Remedios General Tixio	Dona Remedies, General Tinio	Bulacan, Nueva Ecija	3	20,760	230	2.
	19. Marikina (Amended)	Antipolo, Montalban	Rizal	á	18,966	2480	14
		=			-		
	20. Mulanay	Mukanay	Quezon	4	26	296	7.
	21. Buenavista	Mulanay	Quezon		356	166	6
	22. Terrijos	Torrijos	Marinduque	4	105	463	
•	23. Calmag	Calanag	Quezon	4	328	367	
	24. Catanduanes	Virac, Bato, San Mignet	Cutanduanes	5	26,010	123	6
	25, Eagenoy	Lagonoy	Camarines Sur	5	470	500	9
	26. Bahican	Mabulao	Canonines Norte	5	41	592	6
	27. Capalonga	Capalongan	Camarines as the	5	752	120	11
	28 Abasig-Mategdon-Manang (Amendment)	Labo, San Lorenzo Ruíz & San Vicente	Camarines Norte	5	5,545	835	11
E	1. Watershed Purposes of Mariveles (Palanas)	Mariveles	Bataan	3	325		2
	2 Olongapo	Olongapo	7 anibales	3	6.424	66	3
G	3. Calatrava, San Andres, San Agustin	Calatrava, San Andres, San Agustin	Rembles	4	2,670	2,186	4
	2 Pan-ay Rivet	Tapaz	Capiz	6	4,350	599	6
	3. Aklan River	Madalag & Libacao	Aklan	6	23,185	600	6
	4. Jalaur River	Calinog	Bollo	6	9,228	601	6
	3 Hog-Hilabangan	Himmoylan & Kabankalan	Negros Occidental	6	10,211	602	6
	6 Dalanas River	Burbaza	Antique	6	8,558	503	6-
	7. Bago River	Talisay, Murcia, Don Salvador, Benedicto,		6	61,926	604	6
	8. Tipulu-an Man-it River Watershed	Calatrava Sibalom	Antique	6	7,737	605	6
н	1 Loboc	Balahan, Bilar, Butuan	Bohol	1	19,410	453	12
	2 Alijawan-Caranhay-Ambongan River	Duero, lagna	Behel	7	3,630	881	3
	3. Pan-as Falls Hay-ban	Cetaman & Calbayog City	Samar	8	7,832	318	17:
	4. Palempon	Palonipon, Villaba	Lesta	8	2,392	212	1-
	5. Secontal	Dolores & Canovid	Eastern Samar	8	7,390	882	3.

Table I-12 INITIAL COMPONENT OF THE NIPAS (2/15) (1) Distribution of Proclaimed Watershed Reservations

BIOGEO- GRAPHIC ZONE		NAME OF PROTECTED AREA	MUNICIPALITY	PROVINCE	REGION A	REA (12)	PROCLAMA- TION NO.	FROCLAMATION DATE
К	1 2	alawan Hora A Fauna	Puerto Princesa City	Palawan	4	4,726	2221	7/14:80
.,		acuit	Pacuit	Palawan	4	91	785	3/28.31
		Palawan Flora & Fanna (parcel 2)	Puerto Princesa City	Palawan	4	3,224	2:25	14/22/8:
М	l P	asonano s	Zambeanga City	Zamboanga del Norte	9	10,560	199	12/17/81
	2 E	Bung	Bung	Zamboanga del Sur	ARMM	108	81	8.9/6
	3 S	Siegon	Stocon	Zamboanga del Norte	9	612	155	9.18.8
N	1 N	Mideta-Manupali	Lantapan & Pangantukan	Bukidnon	10	61,500		
	2 5	Ut. Midsindang NP & Watershed*	Orequieta, Ozania City, Calamba,	Misantia Occidental an				
			Bonifacio, Irnenez	Zaniboanga	10		R.A. 6266	6/19/7
	3. 3	Mahabisan Falls	Talisayan	Misamis Oneutal	10	72	51	4/11/3
	4. 1	Mahoganao	Cavayan	Misamis Oriental	10	136	470	4/29/3
	5 5	Surigao	Surigeo City	Surigao del Norte	13	967	635	8/29.9
	6 /	Andenan River	Sibagat & Bayugan	Agus an del Sur	13	15,097	731	
	7 (Cabadharan	Cabadbaren	Agioran del Norte	13	16,025	834	11/13/9
	8 1	Malagos	Guingana	Davao	11	235	612	
	9 /	Allah	Isulan, Banga, Surallan, Chamba	South Cotabato	11	92,450	2455	
	10 5	Sebu	Bunga & Kraniba	South Colabato	11	9,900	65	8.4 6
	11.3	Mab	Mati	Davao	11	890	322	7/26/6
	12 5	South Upi	South Upi	North Cetabato	11	1,894	65	
	13.1	Libourgas	Libungun and Alamada	Cotabato	13	52,820	563	
	14	Lake Lagge		Lanao del Sur	ARMM	180,460	878	2/26/9
	35.	Baganga	Baganga	Davan Orientid	- 11	114	195	1288
REMARKS			Also entered in Table(s)	Site count			Area Count	Region
		roctained both as National Park and Watershed					r.	
	Res	ec∩ €	2	syl)t			aplit .	19

Source: Protected Areas and Wildlife Bureau 1996 December

Table I-12 INITIAL COMPONENT OF THE NIPAS (3/15) (2) DISTRIBUTION OF SWAMP FOREST RESERVES

(8)

1

(Proclamation 2152, S. 1981)

BIO- GEOGRAP HIC ZONE		COORDINATES	LOCATION	REGION
1	Patire Province of Palawan		Palewan	4
2	Palanhingan River up to Maxintuto River	Long.12° 42′ 44° to 121° 44′ 16° and tat. 13° 58′ 10° to 13° 59′ 19°	Tayahas Bay, Quezon	4
	Paccing River up to Sundered Point	Long.122° 19' 36" and Lat.13' 37' 48"; Long.122° 17' 05" and Lat.13" 34' 26"; Long.122° 12' 40" and Lat.13" 36' 28"		
	Palay Peint up to Miducay River, Bondoc Perinsola	Long.122° 19' 36" and Lat.13° 34' 60" (Long.122° 19' 41" and Lat.13° 33' 36" (Long.122° 21' 57" and Lat.13° 33' 30" (Long.122° 23' 50" and Lat.13° 31' 10"		
	Bondee river in Amera up to Puramutangan Point, Bondee Peninsula	Long. 122° 30′ 00″ and tat. 13° 14′ 25″; Long. 122° 31′ 50″ and tat. 13° 20′ 58″		
	Sun Andres to arena Point, Dondoe Perúnsula	long.123° 46° 00° and tat.13° 15' 05°		
3	blands of Polillo, Alabat, Cabalete, Jornalig Patmanonga, Kelotlot, Kalongkooun, Patissan, Calabao, Icol and San Rafael		Lamon Bay, Queaon	4
4	Islands of Sta Cruz and Salomoque		Maindaque	4
	For exhoreline of the Daydap and alabo up to the mouth of Tigrum River	Long.182° 04' 12" and tat.13° 22' 45"; Long.182' 04' 27" and tat.13° 28' 28"; Long.182' 07' 01" and tat.13° 29' 00'		
	Malmao Creek up to Salomaque Point	tong.122' 06' 42" and Lat.13" 23' 12"; Long.122' 08' 42" and Lat.13' 22' 18"		
	Foreshoreline of Bo-Cabuayagan to the wastern side of Dating Bayan River in Calancan Bay	Long.121° 58' 20° to 122' 03' 00° and Lat, 13° 30' 28"		
5	Sibuyan Island?			4
6	Mangrove areas along the banks of Maniburao River	long.120° 35′ to 120° 36′ 14″ and tat. 13° 13′ 32″ to 13° 14′ 29″	Mindoro	4
	Duluagan river to Lagrana River, Naujan	tong.121° 17′ 42″ to 121° 20′ 17° and lat. 13° 17′ 68″ to 13° 20′		
	Mangrove areas in the banks of Batel Creek, Ste. Criz	Long.120° 42° 35° to 120° 41° 65° and Lat. 13° 04° 14° to 13° 68° 29°		
	Salitayan Point up to the mouth of Bagong Sahang River	Long.120° 45′ 31″ to 120° 46′ 00° and lat. 12° 44′ 38″ to 12° 50° 34″		
	Bo. Labangan to Calalaysun Point, Ilin Island	Long.121° 02' 42" to 121° 01' 32" and Lat. 12° 18' 14" to 12° 17' 15"		
	Mangroves at the western side of Sukol River Bongabong	tong.121° 28′ 21° to 121° 29′ 25° and lat. 12° 45′ 00° to 12° 42′ 20°		
	Mangroves at the western side of Casiliga River Island of Soguicary			
7	Mangrove areas from Dd Pilar River to Palita Island, Bo. Salvacion and Dahican	Long.122° 23′ 25" and Lat.14° 16′ 68"	Camarines Norte	5
8	Tanglar Point to Pacol River	Long.122' 14' 24" and Lat. 13' 44' 42" :Long.123' 07' 12" and Lat. 13' 44' 00"	Cararines Sur	5
	Mingroves along the banks of Loop River	Long.123° 18' 57" and Eat. 13° 54' 25" :Long.123' 26' f0" and Eat. 13' 59' 60"		
	Mangrove areas of Port Tambang including bodies of Tambang River and Olas Erver	Long.123° 24′ 40° and Lat. 13° 54′ 00° ;tong.127° 27′ 55° and Lat. 13° 57° 28°		
	Mangroves in Bo. Gibges and Tabaen	tong.123° 45′ 56° and tat.13° 50′ 00°; Long.123° 46′ 00° and tat.13° 53′ 40°; Long.123° 48′ 20° and tat.13° 53′ 39°		
	Mangreves along the banks of Sulvg River at	Long 123° 42′ 50° and tat. 13° 52′ 100° :tone 123° 41′ 30° and tat. 14° 03′ 30°		
	Mangroves along the banks of Delchi River, Buang Creek and Parusan River in Inuran and Sopitan Pary	teng.123° 15′ 00° and Lat. 14° 00′ 00° ;tong.123° 17′ 30° and Lat. 14° 03′ 30°		

Table I-12 INITIAL COMPONENT OF THE NIPAS (4/15) (2) DISTRIBUTION OF SWAMP FOREST RESERVES

(Proclamation 2152, S. 1981)

BIO- GEOGRAP		COORDINATES	LOCATION	REGION
HC ZONE	Mangroves along the banks of Sugray River	Long.123° 31′ 20° and Lat. 13° 35′ 48° :Long.123° 31′ 25° and Lat. 13° 36′ 20°		
	Quinabeceasur Point to Sun Vicerde Pay	long.123° 19′ 39″ and tat. 14° 00′ 28″ :lone.123° 22′ 00″ and 1at. 14° 05′ 00″		
	Northern Benk of Caima Rever up bto Bo. Binabian	Long.122° 52′ 35″ and Lat. 13° 40′ 57″ :tong.122° 51′ 19″ and Lat. 13° 54′ 09″		
	Canguray Pass to Gimbal Pt in Caragay Island	tong.127° 27′ 56″ and Lat.13° 57′ 28″ (Long.123° 52′ 41″ and Lat. 13° 20° 40″		
	fslands of Labay, Lucsulón, Haponan, Quinabungan, malabungot, laudi sad Batan	13° 17° 50″		
9	Eighnean to Paron Point	tong.123° 50′ 57″ and Lat. 123° 54′ 08″	Maniks, Albay	5
10	Putano River to Malbog River	Long.123° 40° 33° and tat.12° 55° 00°; tong.123° 41° 30° and tat.12° 58° 40°; Long.123° 00° 00° and tat.13° 00° 00°	Sovsogon	\$
	Genumbo Point up to the Municipality of Sorsogon	Long.123° 55′ 30″ and Lat.124° 00″ 00″ :Long.12° 57′ 12″ and Lat. 12° 59′ 12″		
	Millianibo Point to the Municipality of Juban in Society on Pay	Long.123° 55° 28" and Lat.12° 50' 35" (Long.124° 00' 00" and Eat. F2° 53° 24"		
	Mangreves along the bards of Dansel River	long.123° \$6° 57° and tat. 123° 54' 68°		
	Papucha Point in Sugot up to Bo. Quidatog, Prieto Diaz boundaries divided unto 2 quadrants. (a) Sta. Lucia to Buenavista, (b) Buenavista to Dingay point.	Long.124° 03′ 39″ to 124° 06′ 15″; Long.124° 04′ 10″ to 123° 12′ 35″; Lat.123° 50′ 57″ to 13° 04′ 47″		
	Peruntingen Point in Gubet up to Tagdon River in Percelona	Long.124° 55′ 24° to 12° 24′ 39°; Long.124° 05′ 40° to 124° 09′ 07°; Lat.12° 55′ 24° to 12° 57′ 10°		
	Sinagat in Pay to Mantay Point in Ginablan	tong.124° 44′ 00° to 124° 06′ 15″		
11	Mahaquing River up to Mabung River	long.124° 08° 28° to 123° 11° 52°; lat.12° 54° 23° to 13° 00° 00°	Burias Island	5
	Cueva Point up to Kamartines Point	Long. 124° 04′ 10″ to 123° 12′ 35″; Lat. 13° 04′ 25″ to 13° 07′ 13″		
	Kabugao Point up to Kabalong Andang Point	long.123° 08′ 53″ to 123° 12′ 17″; Lat.12° 53′ 44″ to 13° 01′ 15″		
12	Basın İsland		(near Burias Island)	5
	() Kay up to Pano Sarday	Long.123° 48′ 00° to 123° 48′ 43°; Lat.12° 21° 25° to 12° 23′ 36°	Masbate	5
	Ocijan River in Bataan Bay	long.123° 45′ 28″ to 123° 46′ 43″; lat.12° 24′ 30″ to 12° 25′ 19″		
	Mangroves along the banks of Sta. Rosa River in San Jacinto town	Long.123° 41′ 49″ to 123° 43′ 14″; tat.42° 31′ 06″ to 12° 35′ 09″		
	Margrenes between Bo. Tamesa and Sogretion	tong.123° 40′ 00° to 123° 41′ 51°; tat.12° 37′ 53″ to 12° 38′ 39″	•	
	Magdanay Point up to Taguictic Point	long.123° 18′ 29″ to 123° 20′ 00″; tat.12° 28′ 21″ to 12° 25′ 16″	•	
	Bo Magdenay to Melobago, Port Buttera	tong.123° 20' 00" to 123° 21' 51"; Lat.12° 28 21" to 12° 33' 30"		
	Guroobatan River up to Banis	tong.123° 21′ 51″ to 123° 23′ 13″; tat.12° 28 39″ to 12° 31′ 08″	,	
	Regular Cove to Tinago Cove	Long.123° 24' 11° to 123° 25' 19°; Lat.12° 31 66° to 12° 31' 30°	,	
	Mangroves along the bards of Paril River, Magdalena	Long. 123° 31′ 44″ to 123° 32′ 32″; Lat. 12° 26 29″ to 12° 27′ 30″		

Table I-12 INITIAL COMPONENT OF THE NIPAS (5/15) (2) DISTRIBUTION OF SWAMP FOREST RESERVES

()

1

(Proclamation 2152, S. 1981)

		(1 100 tall and 1 2132, 5. 1961)		
BIO- GEOGRAP 18C ZONE		COORDINATES	LOCATION	REGION
	Bigipantio Point to Arnutig Point	Long. 123' 15' 34" to 123' 17' 58"; Lat. 12' 22' 24" to 12' 27' 52"		
	Mangove areas along the backs of Danga River			
	Mangrove irons from Ditting river to Lomocab River	Long. 124° 13' 31" to 121° 15' 16"; Lat. 11° 57' 18" to 11° 54' 59"		
	Island of Caroga			
14	Islands of Person, Pero, Pacitian		Cametes Sea, Behot	7
15	Islands of Pasaguan, Hordayan and Majanay		Cametes, Behol	7
	Islats of Bancon and Laping Chico			
	Mangaire areas east of Soom River to Pamping	tong.121° 25′ 84° to Eat.10° 65′ 35°; lat.10° 62′ 62° to 10° 36′ 09°		
16	Islands of Ambugan, Pangangan, Cabilton and Sandingan		Cebu Strait, Bohol	7
	Edets of Batas			
	Margrove areas east of Inshanga River to Bo. Pampung	long.125° 07′ 00° to lat.10° 02′ 02°		
17	Mangreve areas from Agio Point up to the municipality of Cambuyao		Mindmao Sea, Bohol	7
	Mangrove areas from Bo. Babas to Bo. Onded including Bo. Condray, and Jungdan except the Island of Tintimun which is a mangrove Wilderness area			
	Basian Point up to Kasng Point at Lapinig	Long. 124° 33° 66° and Lat. 10° 63° 24°; Long. 124° 36° 18° to 10° 05° 24°		
18	[stard of Pauglao		Mindanao Sea, bohol	7
	() from the west of Loboe River to the municipality of Laya	tong.123° 56′ 09″ and Lat.09° 40′ 40″		
19	Mangrove areas along the coastine of Dupon buy from Sacay Point up to the mouth of Dupon River	Long.124° 24' 20" to tat.10° 54' 42"; Long.124° 28' 02" to 10° 54' 42"; tong.124° 24' 20" to tat.10° 57' 21"; tong.124° 28' 02" to 10° 57' 21";	legte	8
	Apali Point to Calunangan Point	Long.124° 28' 24" to 124° 30' 54"; Lat.10' 52' 12" to 10' 52' 24"		
	Pourto Bello to Lao	long.124° 31° 20° to tat.10° 58′ 36°; Lone.124° 33′ 48° to 11° 01′ 30°		
	Mangrove areas from Bo. Tuban and Bo. Maopagui in Szota Cruz	long.124° 47′ 60″ to tat.124° 48′ 42″; tat.11° 21′ 47″ to 11° 23′ 36″		
20	Mangrove areas from Liangin River up to Lipatan River of the municipality of Lapayan		Lanas del Norte	10
21	Bo. Bagumbang to Malautan River	tong.123° 39′ 41″ to Lat.123° 49′ 19″; Lat.68° 01′ 53″ to 08° 08′ 14″	Ozanis City, Missunis Occidental	10
22	Mangrove areas from Baculan Point to Lakud Point	tong.126° 34′ 12″ to lat.17° 26′ 43″; lat.07° 26′ 43″ to 03° 34′ 39″	Davao	11
	Mangrove areas from Tamuip Point in Banao to Kinablangan Island	long.126° 32′ 16″ to 126° 34′ 49°; Lat.07° 41′ 49° to 07° 43′ 50″		
	Istand of Samai			
23	(slands of Siargao, Bucas Grande, Middle Bucas and East Bucas in Dinagat	tong. 126° 32' $16''$ to 126° 34' $49''$; Lat.07' 41' $49''$ to 07 ' $43'$ $50''$	Dinagut Sound, Surigao del Norte	13
24	felands of Dianagar, Hikdop, Sibale, Hanigad		Surigao Strait, Surigao del Norta	13
25	Mangrove areas along the municipalities of Laviger and Valencia up to tron River of the municipality of Bercelona	tong.126° 25′ 24″ to 126° 30′ 00″; lat.07° 10′ 00″ to 08° 85′ 00″	Sungao del Sur	. 13
	Islands of Masopolid, Mahaba, Condona, Bayagman, Blabid and Caye			
26	Mangrove areas in Tornalong Boy, Baong River and Pongao Boy		Zumboanga del Star	ARAM

Table I-12 INITIAL COMPONENT OF THE NIPAS (6/15) (2) DISTRIBUTION OF SWAMP FOREST RESERVES (Proclamation 2152, S. 1981)

		(
RIO- GEOGRAP HIC ZONE			COORDINATES	LOCATION	REGION
26	Mangrove areas in Turnalong Play, Flaving River and Pongao Ray			Zambeanga del Sur	ARMM
	Mangrave areas from Milabog Point up to the manicipality of Sambalasan including the Island of Pisan	Long. 123° 21′ 36′ 10″ to 07° 33″ 1			
	Istands of Sagayapan, Tintanan and Sociel				
27	Margave areas from the municipality of Tagalisay to the mouth of Tighao River including east of Vitali island		" to tat.07° 25′ 00" ; " and tat.07° 18′ 00"	Sibuguay Pay, Zamboanga del Sur	ARSM
	REMARKS	Also enters in table(s) Site count	Area count	Region
	I Also proclaimed as Gione Refuge and Fird Sanctuary, covers other protected area sites	3	sşáil	•	4
	2 Covers Mt. Guiring-guiting Natural park	9	full	*	4
	Canara DAWB - Parandor 1000				

Table I-12 INITIAL COMPONENT OF THE NIPAS (3) (7/15)

	NAME	REGION	LOCATION	ESTABLISH- MENT LEGISLATION	ESTABLISH- MENT DATE	AREA (ha)	SPECIAL FEATURES	EXAMPLES OF FLORA AND FAUNA
National Park	Cossumata Hill	CAR	Biograd, Abra	Proc 1305	8/20/74	57	Panononic view of Pangued and its surrounding area	Mahogany (Swieteria sp.), teik (Techna gundis), Hawks, owls, finches
Resource Reserve	Mt Data	CAR	Along the Paguio-Dontoc National Road, Benguet, Higgs and Mr. Province	Proc 65, Froc 634	6336, <i>103</i> 40		Fine forests, initial scenary, deep ravines; temperate climate	Price forest Pinns insularis as dominant species, Swifts, swallows, stelling, myndi and deer
Resource Reserve	Mt Pulog	CAR	Baguias & Kabayan Benguet, Kiangan, Hugao and Kayapa Nieva Vizcaya	Piec 75	2/20/87	11,550	Pine forests; habited of unique species of cloud rats, mount in tide; dwarf bamboos; deep ravines temperate charate	Dwirf banboos (Arurobnaria nitakayumensia). Pirma insularia, Cloud nata (Cral-nomys schadenbergii)
Resource Reserve	Babaksang- Babakan	CAR	Balbalan, Kalinga Apayao	R.A. 6463, Proc. 1357	6/17/72, 12/9/74	1,338	Pine forests, spatiding streams and temperate clanate	Predominantly pine trees
Protected Landscape/ Seasoure	Papay Lake	1	Papay, Bocos Norte	R A. 5631, P D 1554	6/21/69; 6/11/78	(1741 <u>);</u> 340	Freshwater Like	Zebra dorre, painted quast
Natural Monument	Tirad Pass I	1	Cerviades, llocos Sur	Proc. 294, Proc. 433	7/20/38; 7/21/68	6,320	Historical outdoor recreation area under the National Shrine	Pine and mossy forest, bats, wild cats, monitor based, squired
Natural Montaneut	Bearing Pass	1	Cervantes, thoose Sur	Proc 55	8/10/54	304	Fornerly part of final pass' historical and superb natural scenery mountainous termin, cool clumate with landmark of World War II	Pine and mossy forests, Hawks, deves ducks, fricties and wild boar
Strict Natural Reserve	Payet Springs	2	निक्कृत्व डिक्टिश्च	Proc 327	10-8-33	819	Springs, cases, took formations	Lowland diptercoarp forest. Wild pig- deer, menkey, birds belanging to the families of Ralidae and Columbidae
National Monument	Northern Luzon Heroes Hill	1	Sta. Maria & Narvacan, Ilocos Sur	Proc. 132	7.9.63	1,316	Historical Panoramie	Molave (Vitex sp. forest, the rest are goastands under cultivation)
Protected Landscape/ Scascape	Agoo-Damonis	1	Agoo & Rosario, La Union	R.A. 4570	6 :19: 65	19,917	Extensive shoreline with sandy beaches ideal for swimming colorful fishes recreational resert	Resiculty distributed ecosystem, no signeficant record on diversity
Strict Natural Reserve	Manlehrag Spring	1	Managteren, Pangasinan	Proc 612	93/40	92	Medicinal hotsprings and health resort	Natural growth diptercoarp forest with portion cevered with grasslands wild pigs, wild chicken, hombils, coleto
Strict Natural Reserve	Handred Islands	t	Alonines, Pangerinan	Proc 1816	1/30/79	1,676	Bland groups, resort, Karst residue, administered by PTA	Limestone Forest, birds
Strict Natural Reserve	Callao Cave #2	2	Penablanea cagayan	Proc 827, (Proc 416)	7/16/35, 6/29/94		Multi-chambered caves: deep canyons, rock formations: beautifid stream, recreational resort	Rubiaceae, pataceae, motive (Vitex sp and nama (Piercearpus) 51 bints and 29 numerats
Strict Natural Reserve	Minalungao	3	Gapan & Gen Tinio, Nueva Ecija	R A 5100	6/11/67	2,018	Cathedral fike caves: exquisite rock forwation: natural swinering pool	Dipterocarps, molave, raitur, doer, monkey, reptiles, birds
Natural Monument	Capes Death March Monument	3	Capas, todoc	R A 826	8/14/52	Z	Erected in honor of the Worl War II death march participents	Disturbed very limited information on fama
Resource Reserve	Mt. Arayat	3	Arayat & Magdang Panipanya	Proc. 594, Proc. 203	627/33, 9:16/37	•) Resenant of natural forest, natural securic spots recreational resort	Teak, narra, fire tree ipd-ipil, deer, wild bear, snakes, wild ducks pigeons
Strict Natural Reserve	Aurora Memona	4	Bengabon Nueva Ecija and Bilor Quezon	Proc 229, Proc 744	11/11/37; 8/11/41		Ofenests streams and Osprings for swimming	Covered with diptercoarp forest, deer, monitor lexard, lemm, shrew birds
Natural Monument	Priak-na-bato	3	San Miguel and Dona Remedies Trinidad, Bulacan	Proc 223, Free 2204, Pree 84, Proc 401	11/16/37; 69/82; 3.9/87; 4/11/89	(330 62 <u>)</u> (21)7 65	(Historical where Pact of Balcina t Balo was signed), limestone of Romabon; caves, remarants of dipterocarp forest	Althoughoug (Bouhinia sp.), Deo (Discentismelon dass), Tidig (Flous not- and Lameg (Planchtoria spectabilis); Fhil doer (Cervus sp.) Reis (Tadurida spp.), Fhilippine monkey (Macaca fecicularis) and Fhilippine mallard
Natural Parl	k Quezon Memorial Ninoy Aquino parks and Wildlife Nature Center	NCR	Oliman, Quezon City; Oliman, Quezon City	Proc 42; proc 1402, MNR Adm Or No 4			Man-made lagoon, mini-200; playgrounds, pionic areas; notestional area	Manamade forest, Enclosed in the Mini- are are engles, crecordiles, liens, figers, snakes, etc.

Table I-12 INITIAL COMPONENT OF THE NIPAS (3) (8/15)

	NAME	REGION	ECCATION	ESTABLISH- MENT LEGISLATION	ESTABLISH- MENT DATE	AREA (ha)	SPECIAL FEATURES	EXAMPLES OF FLORA AND FAUNA
Natural Park	l uneta	NCR	Errota, manda	Pive 234	12/19/35		Uitian Park, playgrounds, pionic areas Manila Sunset, administered by the National Parks Davelopment Committee adjacent to Manila Bay planetarium	Man-made Errest, cachid aium
Psotected Landscape* Seasogne	Manila Bay Beach Resort #1	NCR	Manda and Pasay Cities, Paranaque	Proc. 41, P. D. 1085	19547/5, 27477		Transferred under the administration to the Public Estates Authority	Manda Ray
Dotested Landscape	Tad Volcano Island #3	4	Butungas	Proc 235	7/22/67	(4537)	Famous & picturesque active volucino within a bite, a unique natural phenomenon	Orassland and patches of forest sportow, woodpocker, etc
	Mis-Palaypay- Mataus na Gulod	4	Ternate and Maragondon, Cavite	Proc 1591	10/26/76	4,000	Diptercoarp forest	Diptercoarps, komagong, etc. deer snakes, wild chicken, wild boar, birds
Resource Reserve	Mr Maloling #1	4	Los Baros and Calumba, Laguna, Sto Tornas, Batargas	Proc. 552; Proc. 692	2/23/33, 8/2/60	3,329	Diptercoarp Forest Natural Laboratory of UPLB outdoor recreation madepring, etc.	Dipterocap4, sn.des, birds, monkeys, rattan, vines, etc
Protected Landscape/ Seascape	Pagsanjan Gorge #1	4	Cavidi, Lumban, Laguna	Proc. 392, proc. 1551	3/28/39, 5/31/76	153	Outdoor secreation area	Waterfalls
Strict Nature Reserve	Mi Banahaw-San Cristobal #2	4	Majayiay, Laguna, Luchan Tayabas, Quezon	Prec 716; Proc 715; E.D. 224	5:21:41, 8:9:66, 3:16:87),	Twin-mountain natural scenery waterfalls diptercourp forest mystical carest springs rock formationly and invigorating climate.	Red Lauan, tangule, mayapis, rattar and vines: Giant rats, bats, wildcats, reptiles and ground lizards
Resource Reserve	Quezon	4	Atmonaa, Padre Burgos and Paghilao, Quezen	Proc. 740; Proc. 594	10/25/34, 8/5/40	(535 (%) 993	Virgin diptercourt forests, winding road, deep ravires, rock formations, superb scenery	Diptercorps, Diospyros sp. hombils, Plut deer, forest kingfisher, spotted wood kingfisher and Luxon little crow- philippine and nat
Natural Park	National Park Wildlife Sanctuary and Game Preserve #5	4	Provinces of Laguna, Que avn, Rizal and Bulscan	Proc. 1636, Exec. Or. 192; Proc. 196, Proc. 225	418/77; 610/87; 12/10/87; 3/1/88		Diptercoarp forest, invigorating climate	Dipterocarps, deer, repides, many species of common birds
Protected Landscape	Hindrigang Taktak	1	Antipolo, Rizal	R A 6964	9:18:90	i	Pionic area	
Resource Reserve	Picol	\$	Pasod and Duct, CAmannes Newle & Sipocot & Lupi Camannes	Proc 657, proc 655	21334, 122340		Digaerocarp forest, natural swimming pool, soutic spots, recreational area	g Hanging parakeet, cookstoo, cloud rst, palin and malay civet, dipterocarps
Strict Natur Reserve	e Librousan	5	Libraman, Camarines Sur	Proc 651	2.6/31	19	Scenes of cystal caverus and calaracts with stalagraites and stalactites	Coccout and other agricultural crops, monitor lixerds, osucal, swifts, bats civel cat
Protected Landscape/ Seascape	Сапилови	5	Caramoan, Camarines Sur	Proc. 291	7/20/38	347	Caves, panoranio hills, superb shordine roureational areas	Parrots, parakeets, galimates, pigeons and owis
Resource Reserve	Mr Island	5	Nega, Calabanga, Tinaniboc, Goa, Tingson and Più, camerines Sur	Proc 293	7/30/38	10,112	Home of Negritos, gorges; wonderful omyons, deep ravines, waterfuls approximately 40 meters, with natural swimming area; dipterocarp forest; endemic wildlife, invigorating climate, suparb scenery	
Stoot Natur Reserve	e Mayon Voloeso	5	Camalig, Guinobatan, Libon, Ligao, Maldipot & Tabaco, Albay	Proc. 292	7/20/38	5,459	Famous active volcano with almost perfect cone; hot springs; reck formations, superb natural somery	Dwarf trees, grasses and few dipterocarp trees, many birds, Wild pig, wild cat and monitor lizard
Strict Natur Reserve	e Bulusan Volcano	5	Casiguran, baroelona, Irosin & Johan, sorsogon	Proc. 811	6/7/35	3,673	Famous crater, mineral hot springs; peculiar rock formations	Kingfisher, woodpecker, hawira, zebra and groen imperial pigeons
Resource Resource	Tiwit	5	Tiwi, Albay	Proc. 47, Proc. 73	9 7/10/54, 8/14/70	17,611	Geothermal Reservation under NPC	Limited information on flora and fauna
Natural Biotic Area	Olongapo Naval Base Parimeter	3	Olongapo City, Zarabales	Proc 478	19/22/68	9	Open space with stream within the heart of Olongapo City	Disturbed highly insignificant as a reserve
Protected Landscape Seascape	Roosevelt	3	Hermosa & Dinabipitum, Battan	Proc 567; Proc. 508	3/30/33, 12/17/65		 Dipterocarp forest, natural spring, recreational resort 	Dipterocapts, mahogany, narra, heron, qualls, orioles

Table I-12 INITIAL COMPONENT OF THE NIPAS (3) (9/15)

	NAME	REGION	LOCATION	ESTABLISH- MENT LEGISLATION	ESTABLISH- MENT DATE		SPECIAL FEATURES	EXAMPLES OF FLORA AND FAUNA
Natural Monument	Batton	3	Hennesa Operi, Samit, Abucay pilar, Balanga, bagae and Morong, Patan	Prof. 24; Prof. 25, Prof. 1956; Prof. 192	12/1/45; 4/18/66; 3/25/80; 11/27/87	(29853);	Historical, troiped moist forest, waterfulls; with sundy benefics along the count dizone.	Leucaeus I., Psidium guigava, Chricidia sepim and bamboos; horbill, quait, woodpecker and spayow, squinel, doer bata
Protested Landscape/ Seascape	Naijan take	4	Nagan Pola and Victoria, Oriental Mindoro	Proc. 292, Proc. 335	4/27/56, 1/28/68	(21655), 21,655	Freshwater like; dipterocarp forest	Coconut, ranbular, coffee, least bittem calife eget, swimphen
Resource Reserve	Mis lght-Paco	4	Sablayan, Occidental Mindoro & Bongabon, Oriental mindoro	R A 6248	11/9/70	75,415	Habitat of Lamanay (Bubulus mindonasis), natural graeslands; diptercomp forest	Families of the nees are Legiuminosis, Eurphorbineese, Diptercompacese and Americancese, pigeons, bombils, swifts, swiftlets, kingfisher
Strict Nature Reserve	: Bidabog-Putius	6	Dingle & San Funique, Ilado	Proc. 760	6/11/61	854	Presence of "usek" a natural hole where rain water percolates; caverns springs	Ose, melave, antipolo, narra, tests, bats, swifts
Resource Reserve	Mt Carloon	6	Bugo La Cadota, la Castellana Maucia, Canlison, San Carlos Negros Occidental and Vallehermosa Negros Oriental	Dec 721	8.834	24,558	Picturesque cone of the active volcino; waterfalls, hotsprings, gorges, reck formations, virgin forest, ethodral-like cave, dipterocarp forest teeming with waldlife	Sanggumai (Dendrobush acosmym), pitcher plent (Nepenthes spp.) and atighom fera (Mayocrum steeth); Spetted dost, wild pigs, Philippine monkey, reptiles and lizards
Natural Prob	Schoton Natural Bridge	8	Passey, Somer	Proc 831	71935	840	Natural stone bridge, other rock formations, winding Scholom river, cathodical like cove, dipterocarp forest teoraing with wildlife	Diptercomps are the dominate species combined with the families Amacardiaceae, Mornecae, Sapindiaceae, deer, hombilt, giant scops owl, Hulippine eagle
Wildlife Sanctuary	Ku ipuit-Relinsayav	8	Baybay & Abuyon, Leyte	Proc 142	4/16/37	351	Home of bals and swifts, caves with guaro deposits	Patin civet, wild pig, philippine macaque, reptiles like monitor lizard (Varians salvator) and land turde (Cyclemysambionensis)
Natural Monument	MacArthur Landing (Imolda Park)	8	Palo, Leyte	L O. 1572	1/12/77	7	Historical, extensive shoreline recreational	Calachuchi, American toses, green yellow Japanese bushes and Macarthur
Strict Nature Reserve	в Марадино	8	Burauen & La Paz Leyte	Proc 281	8/21/37	635	Rock formaion, peaceful lakes, panonanic view, dipterocarp forest	Elipterocarps e g. Snorea negroseralis, S conterta nuchogany
Resource Reserve	() Spring	8	Onnee City, Leyte	Proc. 161, Proc. 1112	6/14/37, 2/21/73	272	Goothamal Reservation under NFC	
Wildbfe Sanctuary	Rajah Sikatuna	7	Carroen, Sierra, Bullones, Valencia, Garcia, Hernandez, Dinúao, Bilar, Batuan, Bohol	Proc 129	7/1087	9,023	Last remaining forested portion of Bohot Isalud, Home of Flying Lemma Philippine Tarsier, Mossy forest	Hying lemm, Philippine tasier, Diptercoap sp., mossy forest, philippine cockedos, Philippine tregon, wild pig, Malay civet, Philippine patn wict, monitor lezard, green imperiol pigom, black-backed coloto, Philippine grass owt, screech owt
Strict Mature Reserve	e Taldong Island	6	Guintaras, flodo	Proc 525	2890	1,143	White sandy beaches interesting coves and cord reefs, two najor islands surrounded with 46 islets	Rabbit fish (911 species), sea grass, invertebrates
Protected Landscape' Sessuape	Suellon	7	Cebs, Ceba	Prec 56	411/36	696	Caveros, waterhole, wenderful scenery, temperate elimate historical	Molave trees, pine, Dipterocarp species, Sun bird (Nectarina jugularis), swillet (Collocalia esculenta) Bulbut (Pyenonotus goiavier) and wagtail (Motacilla cincrea robusta)
Natural Menument	Central Cebu	7	Balamban, Teledo City, Cebu	Proc. 202, Proc 835-A	9:15:37; 3:27/11	(15393 5 8), 11,894	i Where President Magsaysay met his Bory death	Cinammonum cebucusis, Coleto, sunbird, block shama, starling, white eye, piod that, kingdisher

Table I-12 INITIAL COMPONENT OF THE NIPAS (3) (10/15)

	NAME	REGION	LOCATION	ESTABLISH- MENT LEGISLATION	ESTABLISH- MENT DATE	(ha)	SPECIAL FFATURES	EXAMPLES OF FLORA AND FAUNA
eere	Oualdage Mahagnao-Mahat Hot Springs	7		R A 6429, MNR Adın Or No. 32	6/17/72, 5/30/86	mined,	nsort, caves interconnected and characterized by stidugmites and	Midnogany, katoan bangkid and omamented troos; zet a dove, finit dove printed qual, gookn olive backed sumbiod, swallow, glossy swifilet
talet Nature leserve	: St. Paul Suffernmen River	4	Fuerto Princesa, Palawan	Proc 835	3/26/71	3,901	· ·	Oracontomelon dao, Diespyrus app and Pometia primata, Philippine morkey, mound builders (Jabon birds), pacific reef egrets, philippine oockstoo, talking
trict Nature teserve	: Tubbotaha Reef	4	Central Sulu Sea, P.dawan	Noc 306	8/11/88	33,200	diverse cond (46 cond genera, 379 fish species, 40 fish families), cond cover (70%-80%). Two stells	Brown boobies, Red footed boobies, tem, Common needly, Scoty ten, Crested tem, Euphorbia sp, macro algae and sengrasses, Tinturnid clans, helinet shells, black tip shark, manta- rays, eagle rays, marine turde
Sidund Comment	Mt Digo	ARMM	Patient and Talipan, sulu	Proc. 261	2/28/38	213	Historical only mountain in Jolo, sula	No data on flora and fama
Natural Monument	Rand (Dapitan)	9	Dapitan, Zuraboanga	Prec. 616	93.40	10	Where Dr. Jose Rizd was exiled: scenic seascape	Saluno (Mangifera caesia), Ipil, Philippine bulbul, coleto, morning dove
Protected Landscapel Seascape	Buden	9	Lamitan, R-sulan	Proc. 457, Proc. 1531	92533, 2276		Waterfalls: natural swintering pool, virgin dipterocorp forest moist forest, abundant wildlife invigorating climate.	Dipterceaps, Pedecarpus, Pandanus, wild beir, phyton, green parcets, hanging parakeets, weedpeckers, ewis, orioles, Philippine engle, tarsier, giant scops, ewis, rufeus hombill, Philippine
Notected Landscape Sciecape	Sta Cruz Islands#1	5 9	Zanaboanga City	Proc 654; Proc 1801	2/4/75, 11/10/78		Also covered by Proclamation 1801 declaring the area as Tourist Zone and Manne Reserve under PTA Beach areas, etc.	Beach forest, limited information on forma
Wildlife Sauctuary	Nt Kitonglad	10	Manele Fortich, Surudoe, Impastigong Malaybahy, Lantapan Talakag, Rangsa & dabona, Bakatasan	Proc 677	13-14-90	31,297	Habitat of Philippine Engle, vingin intercorp and mossy forest, composed of range of mountains/with features such as: waterfulls, small mountain lake, caves and rock formation.	Dipterocarps, Pedecarpus philippinensis, Klethovia hospita, Philippine eagle, serpent eagle/ Perhininy kite, hombill, finches, myna
Strict Nata Reserve	re Mt. Malinvleng NP & Watershed	10	Oroquicta, Ozamis City, Calanha, Bonifacio and Junenez in Misernis Occidental and Zemboorg.	RA 6266	619/71	53,262	Has many high peaks and intact forest cover ided for mountaincening and nature observation, climate good for relaxation, crade; lake in Lake Duminagat, Liboran Valley, many big rivers and beautiful sceneries. Opterocarp massy forest, pine rainforest	
Strict Nati Reserve	re Mainit Hotsprings	11	Compostela, Davao	Proc 416	12/1257	1,381	Medicinal hotsprings, dipterecarp forest, reck formation and cold	Diplerocarps: no record on fauna
Natural Pa	uk Mt Apo #8	н	Kidapawan, North Cotahato & Guianga & St. Cosz, Davao		35 \$9'36, \$8'6	(72813 9);	5 waterfalls, mountain lakes, medicina	s, Flying lemur, Philippine menkey, wild if pig, Philippine doer, Philippine exgle Diptercoarps (84 recorded spp. of bird
Resource Reserve	Sacred Mountain)	ARM!	M - Maraui City, Lanao del Se	ar R A.4190	\$/5/65	91	Panonanic mountain, forest rich wit interesting wildlife	th Pigeons, hawks, snakes, baards
Resource Reserve	Riangkuman #9	ARM	M - Ramain, Lonno del Sur	R A 4190	5/5/65		er Beautiful spækling stream, virgin d-forest, invigorating chante	Pigeons, hombills, hawks, crew, kingfishers, oneles, parrets, wild bear snakes, lizards, deer
Protected Landscap Sourcepe	e!	ARM	M - Pualas, Lanao del Sur	R A 4190	\$:5'65	1,50	Scenic Lake, recreational	Clast scops cwls, woodpediers, pigeous, herabill, parrets
Protected Landscap Seascape	×6,	ARM	M Dutig Lareso del Sur	R.A.4190	5/5/65	66	Recreational area, swimming resort invigorating climate	Dipterocarps, hombill, parots, woodpockers, Plahppine menkey, wi ducks
Protected Landscap Seascape	per	ARM	M. Launba Bayambao, Lana- del Sur	RA4190	5.5'65		ter Pasin of Gata river, peculiar rock of Armations, socnic landscape	Diptercearps, various ordids, wild chickens, hombill, does wild boar, snakes

Table I-12 INITIAL COMPONENT OF THE NIPAS (3) (11/15)

-	NAME	REGION	LOCATION	ESTABLISH- MENT LEGISLATION	ESTABLISH MENT DATE		SFECIAL FFATURES	EXAMELES OF FLORA AND FAUNA
Protected Landscape	Parituwaniya	ARMM	Signifren, Lanno del Sur	R A.4190	5/5/65	20	Reactional resort	Harons, wild docks, kingfishers
Strict Notice Made 11 Awarg, Celebrate R.A. 456 Reserve				9:25/39	48 Methoinal hotspring, natural swimming pool and health res		Southern side is organ and custom parts planted with ecceptul and other agricultural crops, owls, partels, wild ducks, Philippine door	
REMARKS.				Also entered in table(s)	Site	Area Count	Region	
#1 Under th	e jurisdiction of othe	त g ्रप्रशासकता	I agensies		n-vac	full	₽:U	
№2 Amendo June 1924		Landscape-S	ica scope by virtue of Prod	latintion 416 dated 29	9	tons fared	फन्नर्यसाख्यं	2
43 Newly P	reclaimed as Natural	Park			9	transferr	transered	4
•	ie initially defined sit 24 dated 16, July 198	-	loced under the jurisdiction	a of NPC by virtue	pote	full	undetermined	
#5 Park has	been proclimed as	Protected La	andscape		none	£щ	គរា	
	pe jurisdiction of oth no reserve under Pro	_	ent agencies also procháma 02 dided 1978	of as a tourist zone	7	sout	undefermined	9
#7 Proclaim	ed both as National	Park and Wa	dershed Reservoir		5	split	split	10
#8 part of the (), has been poleed under the jurisdiction of () of Proclamation 553 dated 30, January 1994			11	full	fon			
#9 Also pre	claimed as Natural P	ark						
#10 Under t	he jurisdiction of of	er governan	ontagencies area()		none	feil	full	ARMM

Source PAWB

Table 1-12 INITIAL COMPONENT OF THE NIPAS (12/15) (4) Distribution of Game Refuges and Bird Sanctuaries

BIOGEOGRAPHIC ZONE	NAME	REGION	LOCATION	AREA (ha) PROCLAMATION NO	DATE ESTABLISHED
D	1 Magapit (Natural Park)	2	Callao & Gattaran, Cagayan	4,551 Adm. Order No. 10, Proc. No. 839, Proc. No.	8/35/47;12/28/55 ; 4/20/76
	2 Salinas Deer Refuge (Natural Park)	2	Salinas, Bambang, N. Vizcaya	5,565 Proc. No. 53; Proc. 240	11/29/26; 12/28/55
E	3 Lake Malimanga (Strict Nature Reserve)	3	Candelaria, Zambates	12 Prec. No. 1949	3/14/80
F	4 Calavite & F. B. Harrison (Natural Park)	4	Sablayan and Mamburao Occidental Mindoro	140,000 Executive Order No. 9	1/28/20
I	5 Olango Island #1 (Resource Reserve)	7	Sta. Ross and Panganan, Lapu- lapu, Cebu	920 Prec. No. 903	5/14/92
J	6 Calauit (Wildlife Sanctuary)	4	Busuanga Island, palawan	3,400 Proc. No. 1578	8/31/76
К	7 Palawan #2 (Resource Reserve)	4	Palawan	763,399 Proc. No. 219, Proc. No. 530-B; Proc. No. 1232; Proc. No. 1440	, ,
N	8 Lake Buluan (Strict Nature Reserve)	12	Korondal, Buluan, Kidapawan, North Cotabato	6,300 Proc. No. 56	12/1/26; 12/1/26
REMARKS:			Also enterd in table(s)	Site count Area count	Region
	s Tourist zone and Marine Reserv 1801 dated 1979, RAMSAR Site	•	! 7	split split	7
2 Also proclaimed as covers other protes	s Mangrove Swamp Forest Reserv cted areas	re,	6	split split	4

Source: PAWB

Table I-12 INITIAL COMPONENT OF THE NIPAS (13/15) (5)PROTECTED LANDSCAPE / SEASCAPE

NAME	LOCATION	REGION	LEGISLATION	DATE	ARFA (ba)	SPECIAL FEATURES/REMARKS
 Penablanca Protected Landscape/Seascape¹ 	Penablanca, Cagayan	2	Proc. 827; Proc. 416	07-16-3 5 ; 06-29-94	4,136 car bea	ulti-chambored caves; deep nyons rock formations; autiful stream; and reational resort
2 Palaui Island Protected Landscape/Seascape	Sta. Ana, Cagayan	2	Proc. 447	08-16-94	•	rrestrial and Marine osystem
3 Batanes Protected Landscape/Seascape	Batanes gropu of islands	2	Proc. 335	02-28-94		rrestrial and Marine osystem
4 Masinloc-oyon Bay Marine reserves	Masinfoe and Oyon, Zambales	3	Proc. 231	08-18-93		astal and Marine Ecosystem ingrove, scagrass and coral fr
5 Pamitihan Protected		4	Proc. 901	10/10/96	600,000 Ca	ve Ecosystem
6 Taal Volcano Protected Landscape		4	Proc. 906	10.6.96	62,292.00 Lal	ke and volcanic ecosystem
7 Apo Reef		4	Proc. 868	9.6.96	1 5,7 92.00 Ma	rine Ecosystem
8 Mt. Guiting-guiting Natural Park ²	Cajiedocan, magdiwang and San Fernando in Sibuyan Is.	4	proc. 746	2/20/96	15,265 Ter	rrestrial Ecosystem
9 Sagay Protected Landscapes Seascape	Islands of Molacaboc, Diutay, Matabas & Suyag & surrounding reefs and reefs of Carbin and Maca	6	Proc. 592	06-1-95	eco	rrestrial and marine systems, mangroves, coral fs and seagrass bods.
10 Apo Island Protected Landscape/Seascape ³	Zamboanganita, Negros Oriental	7	Proc. 439	08-09-94		ral reef ecosystems, restrial and marine
11 Guivan Protected Landacape/Seascape ³	Guinan, Eastern Samar	8	Proc. 469	09-26-94	eco	restrial and amrine systems, mangroves, coral f and seagrass bods
12 Siargao Protected Landscape/Seascape		10	Proc. 902	10/10/96	278,914.00	
13 Pujada Bay Protected Landscape/Seascape	Mati, Davao Oriental	11	Proc. 431	07-13-94		astal and marine ecosystems grass, mangrove and coral fs
14 Mt. Apo Natural Park		11	Proc. 882	9/24/96	72,113.00	
15 Mt. Matutum Protected Landscape	Tupi, Tampakan and Polomonok, South Cotabato, Malungon, Sarangani	12	Prec. 552	03-20-95	15,600 Div	erse biological resources
16 Sarangani Bay Protected Seascape	Maituon, Kiamba and Maasin, Sarangani	12	Proc. 756	3/3/96	(215950) Ma	rine Ecosysteta
REMARKS:		Also enterd in table(s)	Site count	Area count	Region	
I Covers former Callao Cave N	ational Park	2	full	full	2	
2 Part of Sibuyan Island Mangro	ove Forest Swamp Reserve	6	full	full	4	
3 Originally covered by Proclan		7	full	full		

Source: PAWB 1996 December

Table I-12 INITIAL COMPONENT OF THE NIPAS (14/15) (6) WILDLIFE SANCTUARY AREAS

	NAME	LOCATION	REGION	PROCLAMA - TION NO.	PROCLAMATION DATE	AREA
	1 Isabela (Monte-Alto Timber Resource Corporation- parcel 1 and	Echague and San Mariano, isabela	2	120	June 19,1987	1095
Vildlife lanctuary	2 Palanan Wilderness Area	Isabela	2	LOI 917 and 917a	August 22,1979 and September 7, 1979	undetermined
Vildlife Sanctuary	3 Island of Alibijaban	Ragay gulf, bondee peninsula in quezon	4	2151	December 29,1981	430
Vildtife Sanctuary	4 Islands of Basot, Quinalaang and Malabungot	Camarines Sur	5	2151	December 29,1981	306
Vildlife Sanctuary	5 Islands of Guinauayan, Naso, Chico and Pober	Asid Gulf in Mashate	5	2151	1 December 29,1981	141
Wildlife Sanctuary	6 Islands of Majaba and Napayauan	Sibuyan Sca, Masbate	5	215	1 December 29,1981	18
Wildlife Sanctuary	7 Island of Dampalit	Samar Sea in Masbate	5	215	1 December 29,1981	undetermined
Wildlife Sanctuary	8 Island of bantayan	Visayan Sea in Cebu	7	215	1 December 29,1981	undetermined
Wildlife Sanctuary	9 Islands of Catiil, Colangaman, Lomislis, Tangangdio, Titiman and the Islat of Pamasuan	Caniagao Channel in Bohol	7	215	1 December 29,1981	210
Wildlife Sanctuary	10 Islands of Budlanan;/ Bugatusan,/ Pangan;/Cabgan, Canconstino, Tabaon, Maagpit and Islets of basilan of Bugatusan, hayan, Inanoran and Poom Point	Cebu Strait in Bohol	7	215	1 December 29,1981	19/6/19/ undetermined / undetermined /
Wildlife Sanctuary	11 islands of Nanaon;/ Basaan;/ Saac;/ Tambu;/ Bambanon	Camoles Sea, bohol	7	215	i.	599/ 148/ 45/ 194/ 67
Wildlife Sanctuary	12 Island of Pandasan	Davao Gulf, Davao del Sur	11	215	61 December 29,1981	undetermined
Wildlife Sanctuary	13 Islands of lamagon, Cepaya and Corbeto	Panag bay, Surigao del Norte	13	215	51 December 29,1981	undetermined
Wildlife Sanctuary	14 Islands of rasa	Hinatuan passage, surigao del norte	13	21:	51 December 29,1981	undetermined
Wildlife Sanctuary	15 Islands of Siargao, Poneas, Dahican, Tona, Iaonan, Abanay an	Dinagat Sound, Surigao d del Norte	13	21	51 December 29,1981	undetermined
Wildlife Sanctuary	16 Islands of Awasan, Cabilan Capaquian, Sugbuhan and	Awasan Bau, Surigao de Norte	el 13	21	51 December 29,1981	undetermined
TOTAL						3297+

Table I-12 INITIAL COMPONENT OF THE NIPAS (15/15) (7) Distribution of Protected Areas declared through Administrative and Memorandum Order

BIOGEO- GRAPHIC ZONE	NAME	CATEGORY	REGION	LOCATION	AREA(HA)	DATE LEGISLATION
	1 Minasawa Island	Game Refuge and Bird Sanctuary	4	Patnanongan, Quezon	4	9 15.61 P&W Adm Order No. 7
G	2 El Nido	Marine Reserve	4	El Nido, palawan	95,000	
	3 Sampunong Bolo	Game Refuge and Bird Sanctusty	6	Juaneza, Sara, Iloilo	52	1987 RFD's Adm. Order No. 25
	4 Lake Danao	Game Refuge and Bird Sanctuary	7	San Francisco, Pacijan, Island Camotes Group.	480	12/24/65 Adm. Order No.1
	5 Imelda Lake (Lake Danao)	Tourist Resert	8	Ormoc City, I eyte	2193	6/2/72 Memorandum to DANF from the
I	6 Panagatan	Marine Turtle Sanctuary	6	Antique		6:8:82 MNR Admin Order No
K	7 Ursula Island	Game Refuge and Bird Sanctuary	4	Bataraza, Palawan	20	4/30/60 Adm. Order No. 14
	8 Halog Island	Marine Turtle Sanctuary	4	Patawan		6/8/82 MNR Admin Order No.
	9 Tanobon Island	Marine Turtle Sanctuary	4	Palawan		6.8-82 MNR Admin Order No.
	10 Panata Cay	Marine Turtle Sanctuary	4	Palawan		6/8/82 MNR Admin Order No.
	11 Kota Island	Marine Turtle Sanctuary	4	Palawan		6 8 82 MNR Admin Order No.
o	12 Bancauan Island	Marine Turtle Sanctuary	9	Tawi-tawi		6 8/82 MNR Admin Order No.
	13 Baguan Island	Marine Turtle Sanetuary	9	Tawi-tawi		6 8/82 MNR Admin Order No
	14 Ligausan Marsh	Game Refuge and Bird Sanctuary	12	Dulawan, Liguasan, South Cotabato	30,000	12/1/26 FAO adm. Order No. 19
Total	14				127,749)	

Source: PAWB 1996 December

Table I-13 UNIT WATER CONSUMPTION (MWSS)

(Unit: Lpcd)

Year	Domestic	Commercial	Industrial	Sub-total	Revenued Water	Non- Revenued Water	Total
500	127	26	9	651	44%	56%	361
200	148	30	7	185	20%	20%	370
900	161	35	90	201	25%	45%	366
0.00	173	3.5	• •	217	%09	40%	362
7100	981	;	. 6	232	%5%	35%	357
000	861	68	01	245	70%	30%	350
2025	20 S	্ব	10	258	70%	30%	368

Dara Source: MWSS (For the year of 1995), Study on Supply and Sewerage Master Plan of Metro Manila in the Republic of the Philippines for the period from 2000 to 2015

Notes:
1. Unit water consumption for the period from 2000 to 2020 was projected on the basis of the trend described in the Master Plan.
2. Non-revenue water ratio was modified referring to the present condition.

Table I-14 WATER DEMAND FOR METRO CEBU WATER DISTRICT

	Popu	Population*		Service Coverage			Nater Demand*			Production	
Year	Cebu City, Lapu-Lapu, Mandaue,	Pop. Servd. (MCWD)	House connect.	Public faucet	Total*	Unit Consumption	Water Dernand	NRW	Groundwater	Surface Water*	Total
	Orners (*1 000)	(4) 000	(%)	(%)	(%)	1_	(MCM/year)	(%)	(MCM/year)	(MCM/year)	(MCM/year)
2001	(337)	315	` ∀	` \ ' Z	, 57 77		4.	38	53		53
0661	1,334	04.4		V V	3.7		59	30	Ŋ	12	65
2000	, 4V	4/4	Ċ	10 / 10 m	4 1		. ?		Ş	5	77
2005	1,738	788	Z.A.	Z.A.	4 2		?	2	÷ :	7 (3 \$
0100	2014	1.282	Ą,	ΑN	Z		151	90	53	77	ŝ
2010	2015	390	7	7	69		195	22	53	12	65
2020	27.00	1.867	\ Z	Ą	8	360	245	20	53	ద	65
2025	2.573	2,444	Z	Y Z	95		300	50	53	12	65

Notes: *; The data on population, Population served, water demand and NRW up to the year of 2010 were provided by MCWD, and the figures after 2015 were estimated in this study.

**; The surface water development is on-going on the Mananga River.

Table 1-15 DETAILS OF DISTRIBUTED WATER IN MWSS

	Revenued	Billed Water	the make a structure of the contribution of particles and the contribution of the cont	
	Water 42.57%			42.57%
			Under registration of Meter	8.24%
			Malfunction of Meters	
			Improper Meters	0.21%
			Improper Size	0.41%
Distributed	Non-Revenue	Non-Revenue Water (NRW),	Tampered Meters	3,49%
Water	Water (NRW)	but Effectively Used	Illegal Use	
100%	57.43%	22.34%	Illegal Connections	6.05%
			Illegal Drawings	1.76%
			Operational Use	
			Hushing and Disinfection	0.98%
			Fire Fighting	1.20%
		Lost	Leakage/Breakage	20.90%
		35.09%	Unspecified Losses	14.19%

Source: MWSS Operational Report, Oct.-Dec. 1993

Table 1-16 WATER SUPPLY CONDITIONS BY EACH SERVICE AREAS OF MWSS

City/Municipalit			Water Supply C	onditons		
	Condition (1)	Condition (2)	Condition (3)		Condition (5)	Scor
Manila	not experienced		prevailing	prevailing	few	
						3.5
Pasay		south area	north area			
		<u> </u>				2.5
~	_	south of Balara	south and north			
Quezon	few	and Bagbag	portion	central	central	
				*		4
Caloocan	few in the north		cast		west	
V (.)				·		4
Mandaluyong	center		rest			
	··	411 - 1				2
I an Diana		All along				
Las Pinas		Manila Bay				_
		······································				2
Makati		C 4		along main		
1914X813		found	predominant	roads	found	_
Malabon			-			3
retala (APE)	partly		partly			
Marikina		more k				2
taton (Weild		north		other	other	
Muntinlupa	by groundwater					3_
	oy groundwater		in the			
Navotas			municipality			
			monicipanty			3
Paranaque		mostly	some portion			
		*********	some bettien			2
			portions			
			adjacent to			
Pasig			Rizal province	center and rest	center and rest	
Ø			THE PLOYERS	*	*	4.5
Pateros		experienced	experienced	experienced	· · · · · · · · · · · · · · · · · ·	4.7
			*	ashariaman		3
			remaining			
San Juan		central portion	portion			
		•	*			2.5
Taguig	****	most area	some portion	some portion	some portion	
		*	,		are less non	2
			rest of	portions along	·	-
Valenzuela	partly		municipality	the main road		
	- +		*	*		3.5
Water Supply Co	nditons				· 	
(1) No water in d		(2) Intermittent	Low pressure			
(3) Low pressure	•	(4) Moderate pr	•			
.	more than 16 psi	, , pr.				

Sorce: Study on water supply and sewerage master plan of metro manifa in the republic of the Philippines, Final report volume III supporting report, JICA, Feb. 1996.

Table I-17 WATER USAGE IN CEBU RESORT HOTELS

Simple S	Si, Hotel Milk Recort 15, 100.00 11,500 15, 100.00 12,000 10,							CD UASA	WF Hore	EGI Resort	Otal
130,000 1,	130,000 50,000 1,1500 50,000	Name of the Hotel		SJ, Hotel	MB Resort	CB Hotel	T.S. Hotel	1			
1550 1560	1520 2000 1.50	Ann (Ann)	I of Area	130,000				0x.x0			
Shooting Gallery, Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Minn-Cold Sports Center, Tool Basker Ball, Teenin Shooting Gallery, Ballery Ball	Pacing Research Research Research Research Research Research Research Research Research Research Research Research Research Research Research Court Figure Clearly Research Research Clearly Research Research Clearly Research Research Clearly Research Research Clearly Research Research Clearly Research Resea	Area (m. r.)	100 100				•	1			
Short Stock Stoc	Seatch Resort Heach Resort Each Resort Corp Hotel Cond Hotel Cond Resort		Floor Area					2	2	·	
Particle Particle	Showing Gallery, Basker Ball, Termic Shooting Callery, Mini-Galf, Sports Center, Pool, Baach Near Showing Gallery, Basker Ball, Termic Court,		Number of Storie	0	- 1	ľ	10.0	City Hotel	City Hotel	Condominium Hotel	
Shower Education	Shower Garden Carl Shower Court Shower Court Shower Court Shower Court Carabo Restaurant, Carl Shower Manuel Carl Shower Court Carabo Restaurant, Carl Shower Manuel Carl Shower	Type of Resort		Deach Resor.	Dearth Assort	The Contract	Chapter Callon	Mini-Calf Sports Center.	Pool Beach	Restaurant, Pool.	
Shower House, Cirist, Restaurant, Gazebo, Restaurant, Gazebo, Pool, Gelf Shop, Pool, Gart Gart Gart Gart Gart Gart Gart Gart	Shower House, Cirici, Restaurant, Gazebo, Rosaurant, Ciridi, Restaurant, Gazebo, Rosaurant, Carebo, Volleyeal Room, Pola, Carebo, Shower House, Plants, Gazebo, Volleyeal Room, Pola, Volleyeal Room, Polants Area, Shower House, Function Ball, Plants Navarentians	Resort Facilities in the	Hotel	Restaurant, Gift Shop, Pool.	Shooting Gallery, Tennis Court,	Cour, Function Hall,	Tennis Court.	Tennis Court, Function	Shower,	Shower House, Plants,	
Plumer, acr. Cardo Shower Card	Function Room, Caft Shop, Pool, Caft Shop, Shower Shop, Pool, Shop, Plants Plants, Aras, Shower Plants, Aras, Shower Plants, Aras, Shower Plants, Aras, Shower Plants Plant			Shower House.	Clinic, Restaurant	_	Restaurant, Gift	Hall, Restaurant, Grit	Kestauran.	runciden Acount	
Plante, ct. Cazabe, Volleyeal Room, Pool, Volley Plants Pl	Plante, etc. Gezorbo, Volley-ball Room, Pool, Volley-ball Room, Pool, Volley-ball Room, Plants Plants, Room, Plants Plant			Function Room,	Gift Shop, Pool,		Shop, Pool,	Shop, Plants	Function riall,		
Fourte Function Wavefunct Fourte Function Navefunct Fourte Function Navefunct Fourte Function Fourte Fun	Naverument Nav			Plants, etc.	Gazzebo, Volleybal		Shower House, Plants.		Fiance		
Source Protect Protect	Source, Function Jacuszi,				M. Co. Submer		Waveninger				
Suntex 3 12 66 0 0 0 0 0	Suites 3 12 66 91 14 Selliong Rooms 385 169 114 114 150 169 114 150 169 114 150 169 114 150 169 114 150 169 114 150 169 169 114 150 169				Room, Plants		Jacuzzi, Function				
Sulters Sult	Suites Sciling Rooms 385 169 114 169			226					•	4	
Sulfrest Sulfrest	Suites 3	Number of the	Single	210				•	•	16	
Sultas 3 Sultas 3	Suntex 3 0 1.14 5.20 1.69	Guest Rooms	Double	710				•	1		
114 115 114 115	196,456		Family	1				Sclling Rooms 38			
156,456 27,000 115 178 178 150 150 160 170	196,456 27,000 2,000 At Dec. 1997; 7,537 36,500 196,456 27,000 50,000 2,000 At Dec. 1997; 7,537 36,500 1,00 at full Estimated amusaly; 75,000 1,00 at full Estimated amusal; 70,000 1,00 at full Estimation		Spec Spec	c same							
170 173 173 173 175	196,456 173 173 18,500 2,000 At Dec. 1997; 7;377 36,500 196,456 100 at full 50,000 300 at full Estimated annually; 75,000 1,028 3,193 18,057 743 106,460 37,383 1,140 m/3/day at		Total	546							
196,456 27,000 30,000 2,000	196,456 100 at full 100	Number of the Emolyc	X2.	770				F - 7000	92		416,956 #/vr
100 at full Scimmade amunally 100 at full Scimmade amunally 100 at full Scimmade amunally 100 at full Scimmade amunally 100 at full Scimmade amunally 100 at full Scimmade amunally 100 at 100	100 at full Estimated amulally 7,7500 50 50 50 50 50 50 50	Number of the Guests	in CY 1997 (#/vr)	196,450				70 At Lett. 1997; 1,500			= 1.142 #/vr
1,928 3,193 18,057 743 106,460 37,383 18,778 18,778 19,000 28,263 0 from desa 1,140 m²3/day at 240	1,928 3,193 18,057 743 106,460 37,383 1,928 3,193 18,057 743 106,460 37,383 1,140 m²3/day at 240 m²3 m²3 m²3 m²3 m²3 m²3 m²3 m²3 m²3 m²3		•		100 at fu	=	300 at h	III Estimated annually: 75,00	2 4	The state of the s	
80 75 70 4 50 50 1,928 3,193 18,057 743 106,460 37,383 18,778 400,000 max 87,000 5,500 0 at Dec. 1997 8,974 28,263 0 from dessorable at December at December and Decemb	1,928 3,193 18,057 743 106,460 37,383 1,928							Including Functions 47,42	0	70,000	
1,928 3,193 18,057 743 106,460 37,383 18,778 400,000	1,928 3,193 18,057 743 106,460 37,383 400,000						Q.				
1,928 3,193 13,037 3rt Dec. 1997 8/974 28,263 0 from doss 1,140 m^23/day at 240 1,928 3,193 18,027 at Dec. 1997 8,974 1,140 m/3/day at 240 m/3 m/3 m/3 m/3 m/3 m/3 m/3 m/3 m/3 m/3	Yearly Average Occui	Sancy (%)								186,542	
1,140 m²3/day at 240 1,140 m ⁻³ /day at 240 ⁻³ /day at 2.1 m ⁻³ /day at 2.1 m ⁻³ /day at 2.1 m ⁻³ /day at 2.1 m ⁻³ /day at 2.1 m ⁻³ /day at 2.1 m ⁻³ /day at 2.1 m ⁻³ /day at 2.1 m ⁻³ /day at 2.2 m ⁻³ /day at 2.3	Water from MCWD ii	CY 1997 (m^3/yr									
1,140 m/3/day at 240 /3/day at 240 m/3/day at 240 m/3/day at 240 m/3/day at 240 m/3/day at 240 m/3/day at 240 m/sorbarge dispose to sea, 21	1,140 m/3/day at 240 m/3 m/3 m/3 m/3 m/3 m/3 m/3 m/3 m/3 m/3		7.00				Q				om desalmation;
Source of the Desalination of the Desalination Truck Transportation of the Source of the Desalination Truck Transportation of the Source of the Desalination of the Source of the Desalination of the Desalination of the Source of the Desalination of t	Source of the Desalination Water Desalination softener from Remote Reservoir Truck Transportation Truck Truck Transportation Truck Truck Transportation Truck Truck Transportation Truck Truck Transportation Truck Truck Transportation Truck Truck Truck Transportation Truck Truck Truck Transportation Truck Truck Truck Transportation Truck T	Water from Other Sor	o Quantity (m. 5/3)		240			at Dec. 1997 9,00	Q		428263
Source of the Desalination Geep Well or Source of the Desalination Geep Well or Source of the Desalination of the National Source of the Source of the Dexistent and Source of the Dexistent and Source of the Source of	Source of the Desalmation Geep well of 11 are 11 are 12 are 13 are Water Solutore of the Desalmation Solutore Structure Acration type STP. Acrivated Wo treatment, unkown unkown Scriptor Tank, Discharge Acration type STP. Acration, Sludge dispose to sea, Anaerobic DENR requesting DENR req			,		1.		from Deep Well	Desalination	•	rom private well
Activated Acti	Activated Wo treatment, unkown Unkown Scpite Tank Discharge Acration type STP, Acration, Sludge dispose to sea, Acration, Sludge dispose to sea, Acration, Sludge dispose to sea, Anaerobic DENR requesting Effluent discharged Effluent discharged DENR requesting DENR requesting DENR requesting DENR requesting Effluent discharged DENR requesting		Source of the Water	Desalmation	deep well & softener	from Remote Reservoir					192,500
Acration Acration Compact Co	Ararbiol. Sludge dispose to sea, Ararbiol. Sludge to sea, Anarbiol. Sludge to sea, Anarbiol. DENR requesting DENR requesting DENR requesting DENR requesting DENR requesting DENR requesting DENR requesting DENR requesting to install to install a control of the course Digestion, to install the control of the course Digestion, to install a course DENR requesting DE	T.03		Activisted	w/o treatment	unkown	unkown	Septic Tank, Discharge	Acration type ST	P. Septic Tank to Canal	
Acreation, Studge authors of State Source Acreation authors of State Source DENR requesting to sea Effluent discharged to sea from MCWD 0.0 0.1 0.4 0.4 1.2 1.0 ption Total Total from Other Source 2.1 2.4 0.1 0.0 2.4 1.8 ption Other Source 8.4 4.8 0.3 - 4.0 5.3 ption Other Source 8.4 4.8 0.3 - 4.0 5.3 ption Total 8.4 5.0 1.3 8.3 12.3	Arration, Sludge augnose of Sea	Effluent Ireament		- In I water	discount of the same			directly into ditch	Studge to disposa	녑	
prion MCWD to install 0.1 0.4 0.4 1.2 1.0 prion from Other Source 2.1 2.4 0.1 0.0 0.2 0.4 2.4 1.8 prion from MCWD 0.0 0.2 1.0 4.3 7.0 - prion from Other Source 8.4 4.8 0.3 - 4.0 5.3 - Total 8.4 5.0 1.3 8.3 12.3 - Total 8.4 5.0 1.3 8.3 12.3 -	ption MCWD to install 0.1 0.4 0.4 1.2 ption from MCWD 0.0 0.1 0.0 1.2 ption from MCWD 0.0 0.2 1.0 2.4 ption from McWD 0.0 0.2 1.0 4.3 ption from Other Source 8.4 4.8 0.3 - 4.0 Total 8.4 5.0 1.3 - 8.3 1.3			Aeration, Sludge Anacrobic	DENR requesting				Effluent discharg	pe	
from MCWD 0.0 0.1 0.4 0.4 1.2 1.0 prion from Other Source: 2.1 2.4 0.1 0.6 1.2 0.8 prion from MCWD 0.0 0.2 1.0 2.4 1.8 7.0 prion from McWD 0.0 0.2 1.0 4.3 7.0 prion from Other Source: 8.4 4.8 0.3 4.0 5.3 Total 8.4 5.0 1.3 8.3 12.3	from MCWD 0.0 0.1 0.4 0.4 0.4 1.2 ption from Other Source 2.1 2.4 0.1 0.0 1.2 ption from MCWD 0.0 0.2 1.0 4.3 ption from Other Source 8.4 4.8 0.3 4.0 Total 8.4 5.0 1.3 8.3 1			Digestion,	to metall				W 354		
ption from Other Source 2.1 2.4 0.1 0.0 1.2 0.8 ption from MCWD 2.1 2.5 0.5 0.4 2.4 1.8 ption from MCWD 0.0 0.2 1.0 4.3 7.0 ption from Other Source 8.4 4.8 0.3 4.0 5.3 Total 8.4 5.0 1.3 8.3 12.3	ption front MCWD 2.1 2.4 0.1 0.0 1.2 ption from MCWD 0.0 0.2 1.0 4.3 ption from MCWD 0.0 0.2 1.0 4.3 ption from Other Source 8.4 4.8 0.3 - 4.0 Total 8.4 5.0 1.3 - 8.3 1		Acres 140 WI	l							
prion District 2.1 2.5 0.5 0.4 2.4 1.8 Total 2.1 2.5 1.0 4.3 7.0 from MCWD 0.0 0.2 1.0 4.0 5.3 ption from Other Source 8.4 4.8 0.3 4.0 5.3 Total 8.4 5.0 1.3 8.3 12.3	ption Down Other Source 2.1 2.5 0.5 0.4 2.4 ption from McWD 0.0 0.2 1.0 4.3 4.3 ption from Other Source 8.4 4.8 0.3 4.0 1. ption Total 8.4 5.0 1.3 8.3 1	rer Guest	Tan Air Tillout								
Total Total 104 1.0 4.3 1.0 4.0 1.0 1.0 4.0 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1.3 1.0	Total 1041 4.3 4.3 1.0 4.0 4.0 1.3 4.0 1.3 4.0 1.3 4.0 1.3 1.0 4.0 1.3 1.0 4.0 1.3 1.0 4.0 1.3 1.0 4.0 1.3 1.0 1.3 1.0 1.3 1.0 1.3 1.0 1	Water Consumption	from Caner Sour								
from MCWD 0.0 0.2 6.3 4.0 tion Other Source 8.4 4.8 0.3 8.3 7.0 Total	from MCWD 0.0 0.2 4.0 tion Other Source 8.4 4.8 0.3 8.3 Total 8.4 5.0 1.3 8.3	(m^3/#)	Total	4.						0.	
ption from Other Source: 8.4 4.6 1.3 8.3 8.3 Total	ption from Other Sources 8.4 4.6 1.3 8.3 Total 8.4 5.0	Per Lot Area	from MCWD				,	4.		.3	
Total 8.4 5.0 4.3	Total 8.4 5.0 4.3	Water Consumption	from Other Sour					×		2.3	
		(liter/dav/m/2)	Total				٠				

(1)

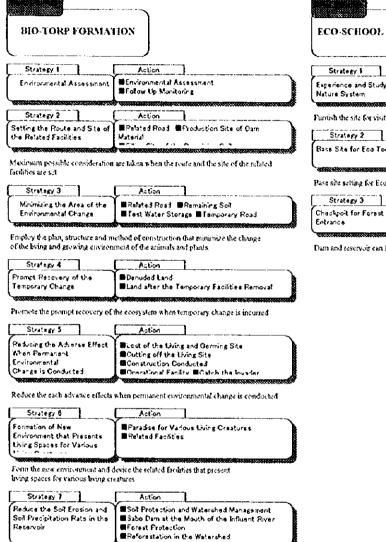
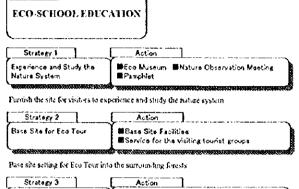

Table I-18 LIST OF DAMS

			Table 1-18 IAS	21 OF 11	Anis		
Number	Name of Dams	& Protected Area	Latitude & Longitude	Region	Province	K	Ver
		#. Mining Deposite	·	•	*** ***	River System	Tributary
1-1	Сша		N18 0910', E120-50'57'	WRRI	Hogos Norte, Lapag City	Lanag	
1-2	Tina		N18-06'45", E120-50'23"	WRRI	Bocos Norte, Laong City	Lacag	
1-3	Gasgas		N18-0455", E120-4204"	WRRI	Hocos Norte, Lang City	Lacag	
2-1	Palsiguan		N17-4945", E120-43'47"	WRRI	Abra	Tineg	Palsiguan
2-2	Nueva Era	#	*	WRR I	llocos Norte	Lanag	
3-1	Binongan	#	N17-45'00', E120-52'00'	WRR I	Abra	Abra	Binongan
3-2	Tirieg Weir	Ħ	•	WRR I	Alva	Abra	
4	Supo		N17-17, E120-47	WRRI	Hocos Sur/ Abra	Abra	Abra
5	Agbolu	₽	N18-03', E121-07	WRRII	Kalinga-Apayao	Abulug	Apayao
6	Gined	#	N18-0518', E121-15'36'	WRRII	Kalinga-Apayao	Abulug	Apayao
7	Bantay		N17-5452", E121-4939"	WRRII	Cagayan	Cagayan	Paret
- 8	Chico IV	&, #	N17-2318", E121-1337"	WRR II	Katinga-Apayao	Chico-Cagayan	Chico
9	Abuan	#	N17-05'05", E122-03'03"	WRR II	Kalinga-Apayao	Cagayan	Uagan
10	Mallig #2	&		WRRII	Kalinga Apayao Mountain	Cagoyan	Mallig
11	Siffu#1	<u>&</u>		WRR II	Mountain	Cagayan	Siffu
13	Matuno	&,#	N16-24'40", E121-03'20"	WRR I!	Nucva Visceya	Cagayan/ Magat	Matuno
14	Didu Yon	H	N16-15'57', E121-26'47'	WRR II	Quirino	Cagayan	Didu Yen
15	Maikong Dam	ě .	N16-37, E120-43	WRR DI	Benguet	Amburayan	Maikong
16	Amburayan Dam	#	N16-36, E120-40	WRR III	Benguet	Amburayan	Amburayan
17	Boloc Dam II	&,#	N16-34', E120-43'	WRR III	Benguet	Адао	Agno
18	Mount Coas Dam	H .	N16-32, E120-47	WRR III	Benguet	Agno	Agno
21	Tebbo Dam	&.#	N16-15'20', E120-43'	WRR III	Benguet	Agno	Agno
55	San Roque	&:,#	N16-0754", E120-4100"	WRR III	Pangasinan	Agno	Адпо
23	Balog-Balog	#	N15-2551", E120-2118"	WRR III	Tarlac	Agno	Tartac/ Bulsa
25	Abaca	Sc. #	<u> </u>	WRR III	Nueva Viscaya	Cagayan	Casecnan-Abaca
26	Conwap	#	<u> </u>	WRR III	Quirino	Cngayan	Caseenan
28	Umiray	#		WRR III	Quezon	Umiray	
29	Bayabas	#	N14-57, E121-07	WRR III	Bulacan	Pampanga	Bayabas
30	Maasim	#	N15-00021, E121-02	WRR III	Bulacan	Pampanga	Maasim
31	Laiban	#		WRRIII	Rizal/Quezon	Agos	Kaliwa
32	Kanan	&c, #	N14-48'40", E121-30'42"	WRRIV	Quezon	Agos	Kanan
34	Sipocot	&, #	N13-47", E122-57"	WRR V	Camarines Sur	Bicol	Sipcot
35	Talisay	#	N13-13', E123-28'	WRR Y	Albay	Bicol	Talisəy
36	Panai	&	N11-12'58', E122-27'09"	WRR VI	Capiz	Panay	Panay
37	Bago	&	N10-33'05', E123-09'18'	WRR VI	Negros Occ.	Bago	Bago
38	Ilog No. I	&	N9-52', E122-51'		Negros Occ	Ilog -Hilabangun	Hog
40	Maludog	- A		WRR VII	Cebu	<u> </u>	
41	Mananga (I	&, #	N10-0939", E123-4757"	WRR VII		Mananga	Mananga
42	Lusaran	#		WRR VII		Balambio	Balamban
43	Cebu Fo	#		WRR VII			
	Tipolo Dara Project		<u> </u>	WRR VII		Inabanga	Waig
45	Tumaga Bulanog-Batang	&_	· · · · · · · · · · · · · · · · · · ·		Zamboanga Der Sur	Tumaga	Tumaga
47			317 45150 5145 -1155	WRR X	Bukindon	Cagayan	Cagayan
43	Davao I Davao II		N7-35'30", E125-21'00"	WRR XI		Davao	
49	Davao IIIR		N7 10000 E112 10000	WRR XI	Davao der Sur	Davao	Daveo
50	Directice		N7-1630",E125-1850"	WRR XI	Davao der Sur	Davao	Suwawan
51	Pulangi III	#	N6-20/20', E125-24'	WRR XI	Davao der Sur	Besyan-Malungun	
52	Maganoy Multi	····	N7-5700", E125-1600"		Bukidaaa	Pulangi	Pulangi
34	trialistich Minici		N6-30, E124-30	WKKXII	Sultan Kudarat	Cabilanan	Cabilanan

Table I-19 STRATEGY OF ECO-DAM



Reduce the soil erosion in the watershed of the reservoir, and also reduce

the soil precipitation rate in the reservoir

■Eco Museum ■Sighteseing Route

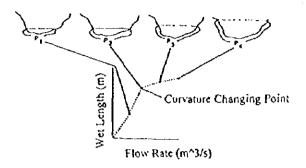
Entrance Reservoir

Dam and reservoir can function as the check point for forest entrance of visitors

.

Table I-20 PRIORITY ORDER FOR EACH MENU

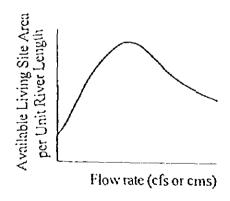
9


			F	Redemption	Expected	Cost-	Environmental	Connection
Fronty	Menu	Its Possibility	Lotal	Amount Per	Amount Per Developmental Benefit	Benefit	and Social	Secondary
Order			COST	Year	Water Volume Analysis Restriction	Analysis	Restriction	Delletti
	Change the						Social	
_	Irrigation Water to						Restriction	·
	Domestic Water							
	Improve the							Sanitation
7	Existing							Improvement
	Distribution Line							
,,	XX Dam Project						In the NIPAS	
,							Protected Area	
	Usage of the					i		Water
4	Reclaimed Water							Quality
								Improvement
	QQ Dam Project						Existence of the	
							Minority Group,	
S							and the	
							Endangered	
							Species	
8	Recharge of the	Limited Water						
	Groundwater	Source						

State Street

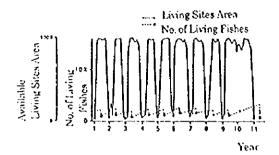
· • • • • • • • • • • • • • • • • • • •	# 1/4 p = 1 1			
		g v	- 3 0	
		\$ %		
		* !		

Part – I


Figures

Riverfront Information No.16 (1997-1)

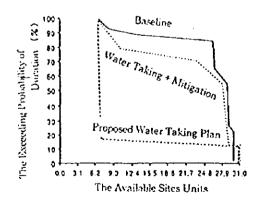
Figure I-1 WET LENGTH METHOD


(in a river, at a site, for a species of fish, on a living step)

Riverfront Information No.17 (1997-2)

Figure 1-2 AN EXAMPLE OF THE FLOW-LIVING SITES QUANTITY RELATIONSHIP OBTAINED BY PHABSIM

Solid Line: Time Series of the Living Sites Area (Calculated)


Circle: Each Minimum Flow

Square: Observed Number of Living Fishes

Interrupted Line: Estimation of the Trend of the Living Fishes

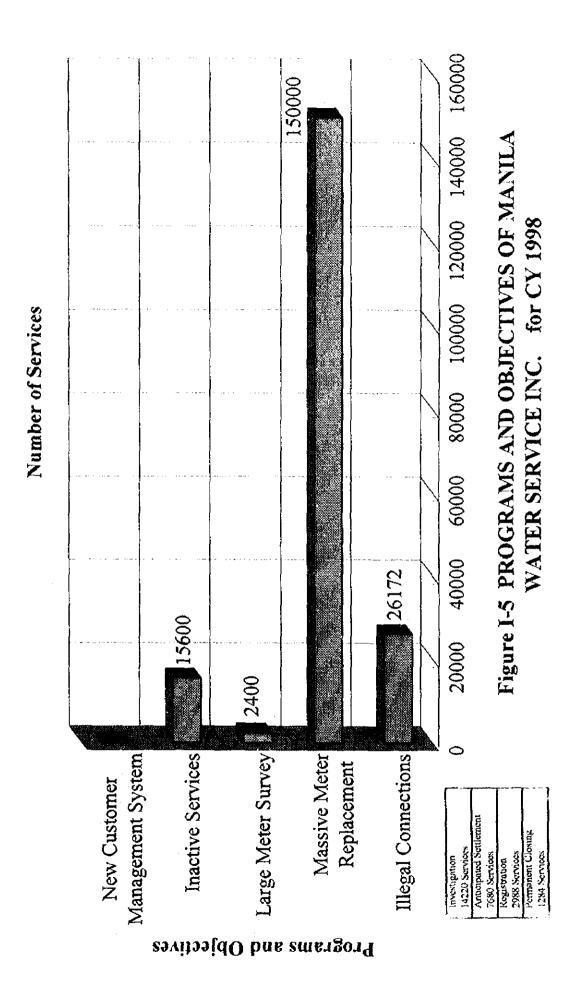

Riverfront Information No.18 (1997-3)

Figure I-3 AN EXAMPLE OF A TIME SERIES OF THE AVAILABLE LIVING SITES AREA OBTAINED WITH IFIM METHOD

Riverfront Information No.18 (1997-3)

Figure I-4 THE EXCEEDING PROBABILITY OF DURATION FOR THE AVAILABLE LIVING SITES UNITS (AN EXAMPLE)

()

I

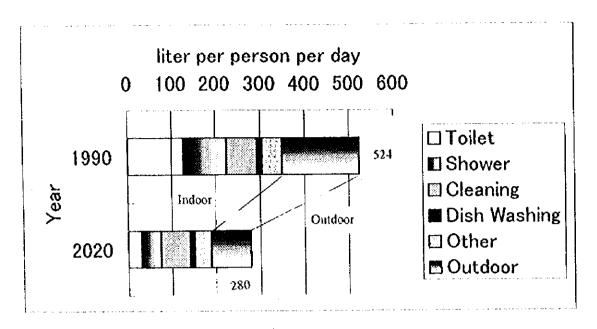


Figure I-6 WATER USAGE FOR EACH PURPOSE
(CALIFORNIA WATER 2020)
CY1990(RESULTS) AND CY2020 (WATER ENVIRONMENTAL VISION)

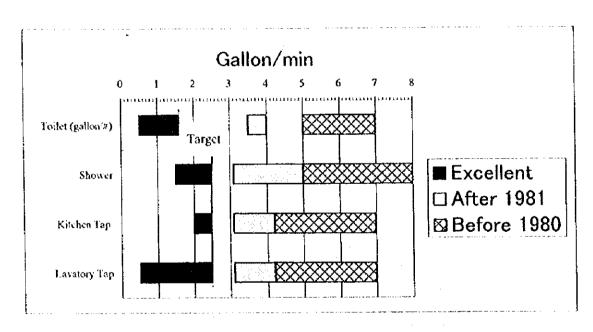


Figure I-7 SAVE WATER EXTENT OF EACH EQUIPMENT COMPARISON BETWEEN OLD AND EXCELLENT ONE

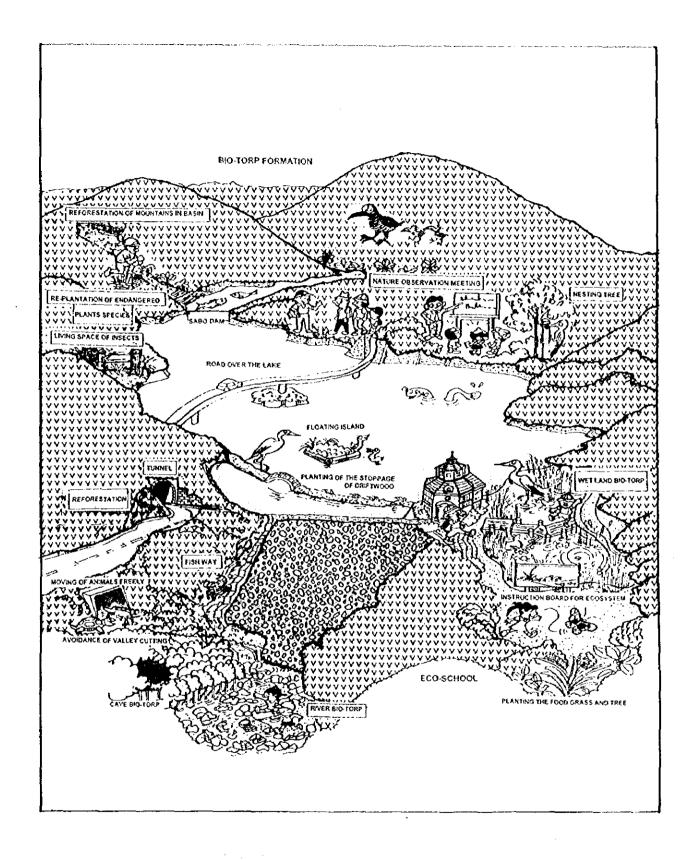


Figure I-8 IMAGE OF ECO-DAM

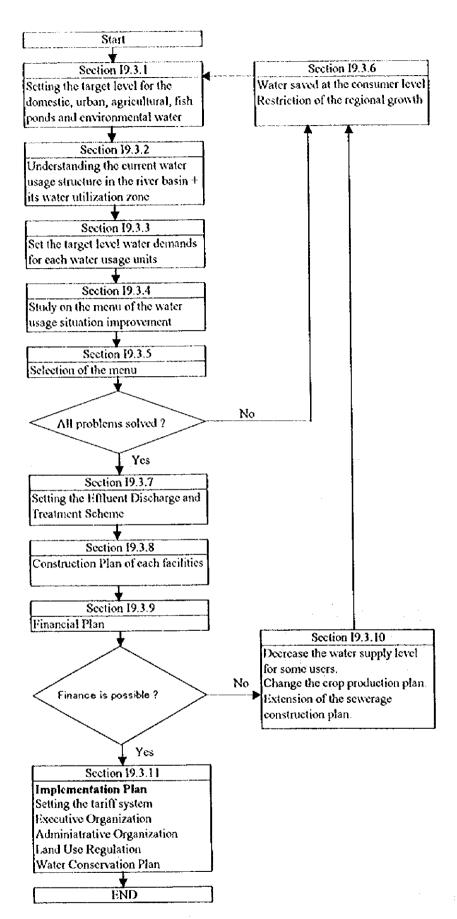
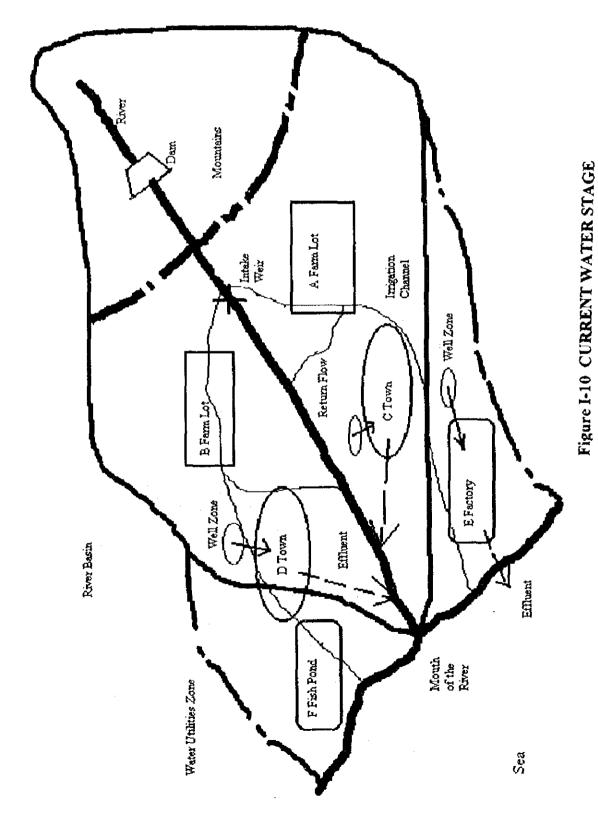
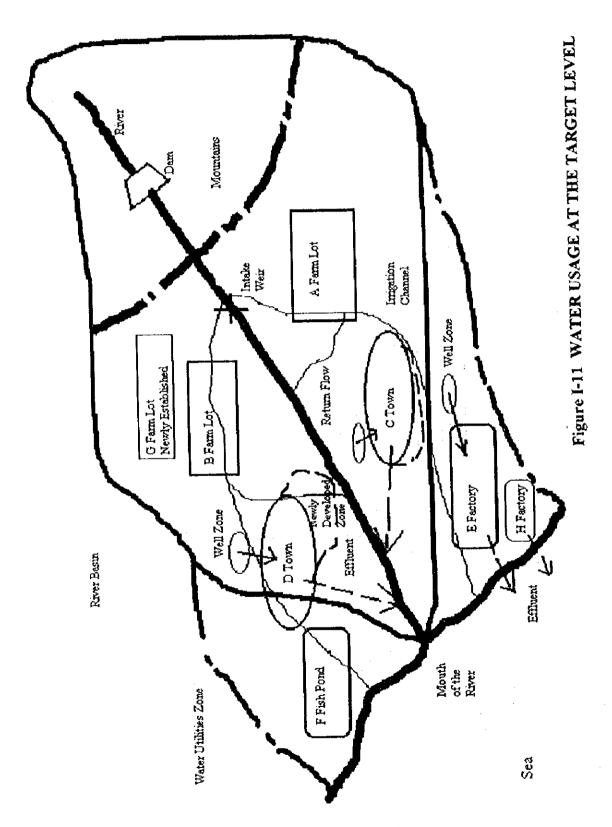
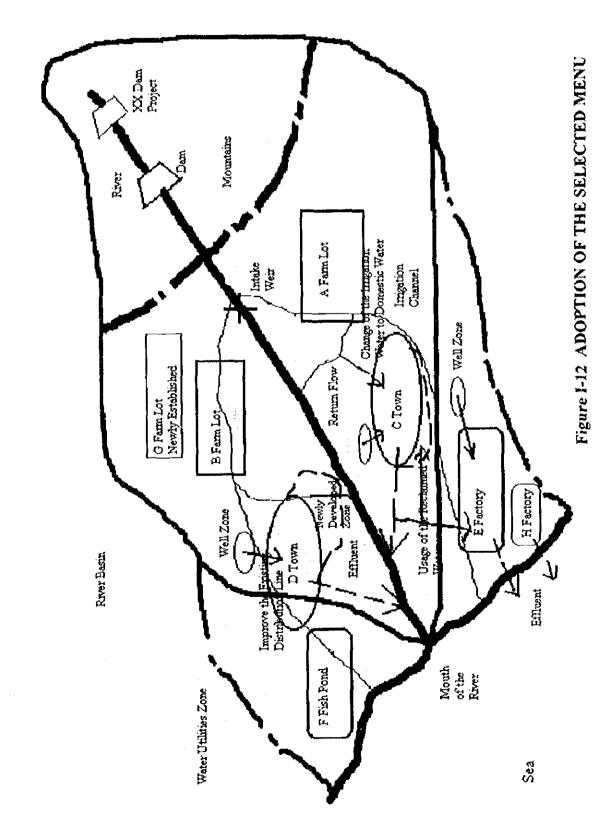
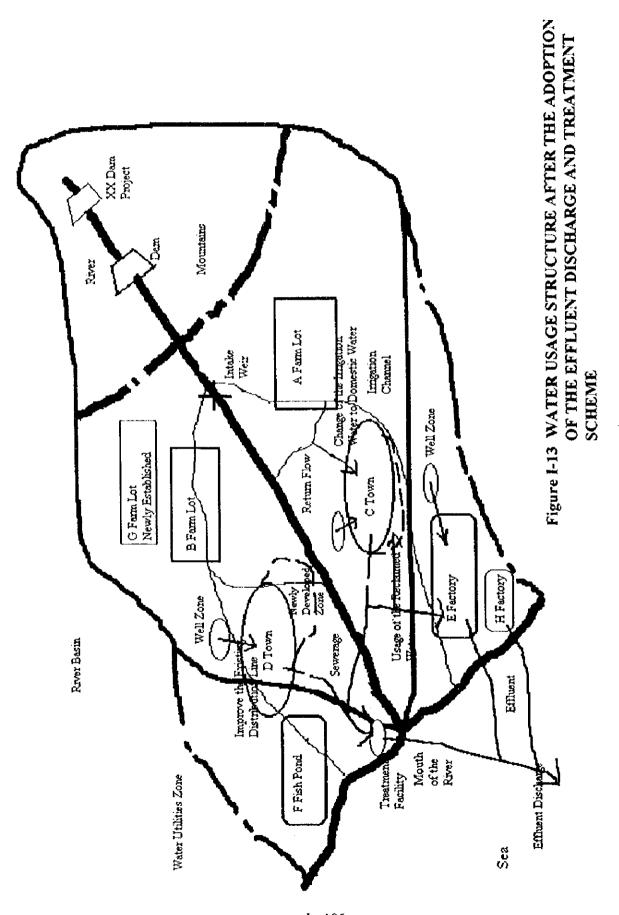



Figure 1-9 WATER RESOURCES MANAGEMENT - MAIN PLAN, FLOWCHART



Ţ


J - 102



1

T

()