- 118 Water Resources Development Plans for Municipal Water Supply to Major Cities
- 118.1 Metro Manila, Metro Cebu and Davao City

118.1.1 Shortage of Municipal and Industrial Water in Metro Manila, Metro Cebu and Davao City

()

Î

It was envisaged in the early stage of this study that the shortage of municipal and industrial water would become serious in the future at the three major cities in the Philippines, namely Metro Manila, Metro Cebu and Davao city.

The municipal and industrial water demand projection including examination on the availability of groundwater resources has clarified that the greater parts of the municipal and industrial water supply at the said three cities would have to depend on the surface water in order to meet the future water demand as shown below:

Future Water Demand and That to be Covered by Surface Water in Metro Manila, Metro Cebu and Davao City

Major City/	Item	1995	2000	2005	2010	2015	2020	2025
Metro Manila								
Total water demand	(MCM/year)	1,068	1,351	1,596	1,928	2,262	2,468	2,883
Groundwater	(MCM/year)	103	102	121	182	263	388	579
Surface water	(MCM/year)	964	1.249	1,475	1.746	1,998	2,079	2,304
	$(10^3 \text{ m}^3/\text{day})$	2,641	3,422	4,041	4,784	5,474	5,696	6,313
	(m ³ /sec)	30.6	39.6	46.8	55.4	63.4	65.9	73.1
Metro Cebu								
Total water demand	(MCM/year)	59	77	115	175	222	279	342
Groundwater	(MCM/year)	46	58	63	64	68	73	82
Surface water	(MCM/year)	-	19	53	111	155	205	261
	(10 ³ m ³ /day)	-	52	144	304	424	562	714
	(m ³ /sec)	-	0.6	1.7	3.5	4.9	6.5	8.3
Davao City	··· ··· ··· ··· ··· ··· ····							
Total water demand	(MCM/year)	48	54	58	73	90	114	146
Groundwater	(MCM/year)	48	-	**	-	6	30	62
Surface water	(MCM/year)	-	54	58	73	84	84	84
	$(10^{3} \text{ m}^{3}/\text{day})$	-	148	159	200	230	230	230
	(m ³ /sec)	-	1.7	1.8	2.3	2.7	2.7	2.7

H8.1.2 Surface Water Sources for Metro Manila

In the service area of MWSS, the present groundwater production has exceeded the exploitable ground amount so that the saline water intrusion into groundwater tables is taking place, especially in some areas such as Cavite, Rizal and Pasig.

A large part of municipal and industrial water consumed in the Metro Maniła district is now supplied from the surface water resources, mainly from the Angat dam/reservoir. Its amount has reached to 30 m³/sec. It is estimated that, according to the previous study results, the maximum water supply capacity of the Angat dam/reservoir to Metro Manila would be about 35 m^3 /sec. Hence, the water demand of Metro Manila would exceed the supply capacity of the Angat dam/reservoir before the year 2000 although even now the habitual interruption of water supply has taken place in the urban area due to the extraordinary lowering of water level of the Angat reservoir. At present, the Umiray-Angat Transbasin project, which is to divert the streamflow of the Umiray river into the Angat reservoir, is under construction with finance of ADB. The project will be completed in 1999/2000. The project will develop additional water of about 12 m³/sec for municipal water supply to Metro Manila. The Angat dam and reservoir together with the Umiray Angat Transbasin project could meet the water demand of Metro Manila up to the year 2005.

The total municipal and industrial water demand in the Metro Manila district, which is to be supplied from the surface water, is estimated to reach about 73 m³/sec in 2025. Thus it is needed to newly develop the surface water resources of about 26 m³/sec in the vicinity of Metro Manila in succession to the Umiray Angat Transbasin project.

The Manila Water Supply III Project was studied and formulated in 1979 in the course of the re-study of the Marikina River Project. The report identified and pre-qualified several alternative development schemes in the vicinity of Metro Manila as listed below:

- (i) Marikina river basin (Wawa dam)
- (ii) Kaliwa river basin (Laiban dam)
- (iii) Kanan river basin (Kanan dam)
- (iv) Umiray river basin (Umiray-Angat Transbasin, now under construction as aforesaid)
- (v) Pampanga river basin (Ring dike around Candaba swamp)
- (vi) Laguna de Bay
- (vii) Others

The report recommended that the Laiban rockfill dam on the Kaliwa river be developed as the source of water supply for Metro Manila prior to the Umiray-Angat Transbasin project. The Kaliwa scheme, involves the Laiban rockfill dam with a height of 143 m. In the reservoir area, however, limestone formation is dominant. Thus, the Laiban dam seems to have the geological problem, although the technical viability needs to be verified through the detailed geological investigation. The location of the Laiban dam is schematically shown in Figure H-67 together with the existing and proposed water supply facilities for Metro Manila.

The report also suggested that the Kanan Dam should be developed as the second stage to the Kaliwa scheme and to be linked to the Laiban reservoir. However, since the Umiray-Angat Transbasin project has already been implemented, it is considered to be a promising alternative plan that the water exploited by the Kanan dam be diverted to the Angat reservoir through the Umiray river basin. Since the Umiray transbasin tunnel has a capacity to discharge about 30 m³/sec, it is anticipated that about 18 m³/sec could be augmented for water supply to Metro Manila through provision of the Kanan dam. Otherwise, the water released from the Kanan dam is planned to be conveyed to Metro Manila through a small concrete weir to be constructed on the Kaliwa river instead of the Laiban dam.

In the WRDP, four (4) dam schemes were identified on the small tributaries of the Pampanga river as shown in Figure H-68. Their sites are all located on the western hilly region of the watershed of the Angat dam. Out of the four small dams, two dams are recommended to be promising ones as a result of the prefeasibility study thereon in the WRDP. These two dams aim to supply irrigation water to Angat Maasim Rivers Irrigation System (AMRIS) in order to reallocate the water of the Angat reservoir to Metro Manila. The amount of available water from these dams is preliminarily estimated at about 5 m^3 /sec. When these dams are realized, it is estimated that a mean discharge of about 5 m^3 /sec can be additionally reallocated to municipal water supply for metro Manila out of the total discharge released from the Angat reservoir.

Further, it is conceivable to tap the discharge of the Pampanga river after the Casecnan Transbasin project be realized. The Casecnan Transbasin project was formulated to enhance the water supply capacity of the existing Pantabangan dam and reservoir by diverting the discharge of about 35 m³/sec from the Cagayan river basin.

ľ

From the aforesaid examination, the following projects are taken up as the promising water supply projects to meet the future water demand in Metro Manila:

(i) Construction of two small dams in the tributary basins adjacent to the Angat basin, namely Massim dam and Bayabas dam, which are formulated through the previous WRDP study at a level of prefeasibility. The project is referred to as "the Massim and Bayabas Dam Project" in this study by combining these two dams into one project.

٩

- (ii) The Kanan-Umiray Transbasin Project (KUTP)
- (iii) The Kanan-Cogeo Water Supply Project
- (iv) The Pampanga Water Conveyance Project (PWCP)

Out of the aforesaid four water supply projects, the latter three (3) water supply projects are newly contemplated through the present master plan study.

In the latter part of the second stage home office work, on the other hand, it is informed that MWSS is planning to develop the Laguna Lake for municipal water supply to Metro Manila, although it was cancelled in the "Study on Water Supply and Sewerage Master Plan of Metro Manila, February 1996" because of the water quality problem. This Study takes up the two different development plans, namely the latest MWSS's development plan and the one formulated in the said JICA's master plan, as the development scenario-1 as illustrated in Figure H-69. The latest MWSS's development plan is tabulated below:

Latest MWSS's Development Plan of Water Supply Projects after Unilat-Angat

Name of Project	Discharge to be (Conveyed
	(m3/sec)	(mld)
- Rizal Province Water Supply Project(RPWSP)*	0.56	48
- Laguna Lake – BOT*	3.47	300
- MWSP III (Laiban Dam)	21.0	1,900
- Kanan-Kaliwa Transbain Project	38.0	3,283

Note : * ; The water conveyed to the service area of MWSS is planned to be tapped from Laguna Lake.

The three development scenarios are worked out by combining the four water supply projects to meet the water demand in the year 2025 through incorporation of the latest MWSS's development plan as well as the one formulated under the JICA's master plan as shown in Figures H-69 to H-71.

Out of the three development scenarios for water supply to Metro Manila, the Scenario-1 comprises the two development plans, namely the development plan formulated under the JICA's master plan study and the latest MWSS's development plan, as shown in Figure H-69. While, the other two development scenarios are established in combination of the above new four projects preliminarily formulated in this study. It is common to these three development scenarios that the Agos river basin inclusive of the Kaliwa and Kanan tributaries of the Agos river is planned to be developed after the completion of the Angat-Umiray transbasin project.

H8.1.3 Surface Water Source for Metro Cebu

As clarified in the foregoing Subsection H7.1.1, municipal and industrial water consumed in the Metro Cebu district is now almost all supplied from the groundwater sources. Its amount is about 1.7 m³/sec. Although there is one surface water resource developed, namely Buhisan dam, its supply capacity is as negligible small as 0.05 m^3 /s or $4,000 \text{ m}^3$ /day. Exploitation of the groundwater in Metro Cebu district has been already beyond its limit.

The Mananga project phase I is now under construction on the Mananga river. The project aims to pump up the river-bed water in the aquifer through 15 deep wells. The project comprises a 7.5 m high underground dam, infiltration fields in the upstream river bed of the dam and 15 deep wells. A catchment area at the dam site is 80 km^2 . According to the original development plan, water supply capacity of the project is estimated at $33,000 \text{ m}^3/\text{day}$ or 0.38 m³/sec. Supply capacity of the Mananga project phase I could meet the water demand by around the year 2000. Water demand of the district depending on the surface water will sharply increase after 2000.

For the time being, the Metro Cebu Water District (MWCD) is planning to develop the aforesaid water supply projects and desalination plants as listed below:

- i) Mananga Phase II dam
- ii) Lusaran Danı

9

1

- iii) Bohol-Cebu Water Supply Project
- iv) Installation of Desalination Plants

In the field investigation, a group of small dams on the southeastern hilly region along the watershed of the Mananga and Cotcot river basins were formulated at a map study level. However, the total supply capacity of the small dams is roughly estimated at $80,000 \text{ m}^3/\text{day}$ or $0.9 \text{ m}^3/\text{sec}$ as shown in Table H-28. It appears that they are not so attractive schemes in consideration of their small water supply capacities.

In order to meet the water demand after the year 2000, several schemes with supply capacity of more than 100,000 m^3 /day or 1.2 m^3 /sec each are needed to be developed. There are three prospective candidates for the purpose:

- Mananga Phase II dam
- Lusaran Dam
- Heightening of existing Malubog dam

The Mananga phase II project is contemplated to be developed at a location of about 4 km upstream of the weir site of the Mananga project phase I on the Mananga river. The main component of the project is 90 m high roller compacted concrete gravity type dam. However, a catchment area at the dam site is as small as 68 km² in comparison with the large-scale dam. The WRC of the University of San Carlos installed several rain gages in and around the Mananga and Lusaran river basins in 1977. The hydrological analysis for the project was performed utilizing these records. According to the analysis results, the mean annual basin rainfall of project area is 1,770 mm and the annual mean river discharge at the dam site was estimated at 1.40 m³/sec. The mean annual discharge is equivalent to the specific discharge of 2.06 m³/sec/100 km², corresponding to a runoff coefficient of 36%. The sedimentation rate of 3,700 m³/km²/year was adopted for the Mananga Phase II reservoir with reference to the sediment measurement performed for the existing Malubog dam and reservoir located adjacent thereto. However, the dead storage capacity of the reservoir is only 7.4 million m³, which corresponds to the sediment transport volume for about 30 years, assuming tentatively the horizontal deposition of sediment in the reservoir and a trap efficiency of 100%. The total water supply capacity of the Mananga Phase I and II projects are evaluated to be 123,000 m^{3}/day or 1.42 m^{3}/sec .

The Lusaran dam has been studied and proposed for further augmentation of water supply to the Metro Cebu. The initial study on the dam project was carried out in 1997, before the installation of rain gages in the basin. The updating of the hydrological analysis of the scheme needs to be performed in the future. The dam is planned to be of rockfill type dam with a height of 100 m. A catchment area at the dam site is 67 km^2 . According to the rainfall record in the basin, the mean annual rainfall is 1,400 mm to 1,500 mm, which is slightly smaller than that of the Mananga basin. According to the principal features of the current study report, the mean annual runoff is 2.05 m³/sec which is equivalent to 3.06 m³/sec/100 km². The water supply capacity of the Lusaran dam is estimated at 160,000 m³/day or 1.85 m³/sec.

0

The Malubog dam is a privately owned dam located on the Sapan Daku river. At present, the dam is being operated by the mining company, Atlas Consolidated Mining & Development Corporation, for its own use. The dam is of concrete gravity type with a height of 32 m. It covers a catchment area of 69 km^2 . The Study Team got the information during the field reconnaissance that the mining company has an intention to supply municipal and industrial water to the Metro Cebu through MCWD in case the dam be heightened with a fund of MCWD. Since the catchment area of Malubog dam is almost same with that of the Mananga phase II dam, it appears that the dam heightening plan is one of the promising water resources development plans to augment the water supply to the Metro Cebu. But there are some problems to heighten the existing Malubog dam, that is, the left abutment ridge of the dam is not so massive and the geological formation of the ridge is the Cebu Formation consisting of limestone. Even if the problems were resolved, possible height of the dam would be more or less 60 m. About 100,000 m³/day or 1.16 m³/sec would be expected from the heightening of the existing Malubog dam. Besides, it is needed to clarify the water quality of the Sapan Daku river, since the river water might be adversely affected by the mining activities.

Even though the above three projects would be realized, the total water supply capacity would be 383,000 m3/day or 4.43 m3/sec. The water supply capacity would meet the water demand by the year 2015.

In addition to the aforesaid schemes, the Bohol-Cebu water supply project has been proposed. According to the original plan, about 130,000 m³/day or 1.5 m³/sec would be diverted from the Inabanga/Waig river basin on the Bohol island without any dam construction. There is one favorable dam site on the Inabanga/Waig river. That is the Tipolo dam, which is listed up in the Survey/Inventory on Water Impounding Reservoirs. A catchment area at the Tipolo dam site is about 500 km² and annual basin rainfall is approximated to be around 1,400 mm. Thus, the annual mean runoff at the dam site is roughly estimated at about 8.9 m³/sec. Though the geological formations at the dam site and reservoir area are not clarified at present, construction of about 60 m high concrete gravity dam or rockfill dam would be possible from the topographic configurations based on 1 to 50,000 scaled topographic maps. The vast reservoir area would be realized in the upstream area. The location of the project is shown in Figure II-72. Within a reasonable range, an active storage capacity of about 120 million m³ could be usable. Firm discharge of about 4 m³/sec would be available. If this firm discharge could be conveyed to Metro Cebu, municipal and industrial water demand of the Metro Cebu district would be secured until the year 2025.

In case that the Bohol-Cebu water supply project will become impossible due to some reasons, the possible measure is to build the desalination plants along the coastal line of Metro Cebu. It is reported that the production cost of drinking water from saline water with the plants has lowered to about 1 to 2 USS/ m^3 at present through development of new technology.

From the aforesaid examination, the following water resources projects are taken up for the further study in order to meet the future water demand in Metro Cebu:

(i) Mananga Phase II Dam Project

(ii) Lusaran Dam Project

1

- (iii) Heightening of existing Malubog Dam
- (iv) Bohol-Cebu Water Supply Project including Tipolo Dam Project

It is considered that installation of the desalination plan is an alternative to other three surface water development projects. In addition to the above water supply projects, the master plan study contemplates the following ones as the alternatives of those projects:

- v) Malubog-Mananga Transbasin Project (MMTP)
- vi) Lusaran-Pulanbato Transbasin Project (LPTP)

The location and main features of the above water supply projects are discussed in Section D 7.2 "New Water Supply Projects for Metro Cebu" of Part-D of Supporting Report and their locations are illustrated in the corresponding figures in the Part-C. These transbasin projects aim at the augmentation of the originally proposed Mananga Phase II dam and Lusaran dam projects. The three (3) development scenarios are worked out by combining the aforesaid projects as shown in Figures H-73 to H-75. Out of those three development scenarios for the Metro Cebu water supply, the Scenario-1 shown in Figure H-73 is similar to that originally contemplated by the MWCD.

H8.1.4 Surface Water Source for Davao City

Municipal and industrial water of Davao city is now supplied from the groundwater sources. Main sources of the groundwater for the Davao city are the aquifer of the skirts of the Mt. Apo and Mt. Talomo, where more than 30 deep wells have been provided. Only small amount of surface water, 36 litters/sec, is now withdrawn from the Malagos creek, which is a small right tributary of the Davao river. Its intake site is located about 36 km distant from the city.

The Davao City Water District (DCWD) now intends to alter the water resources from groundwater to surface water owing to the fear of contamination of groundwater by pesticide used in the extensive banana and coconut plantations on the skirts of Mt. Talomo and along the Davao river. The sites proposed for the surface water sources are Talomo river and Tamugan river. The Talomo river originates from Mt. Talomo and running in parallel with the Davao river. The Tamugan river is a large right-side tributary of the Davao river. The intake site on the Tamugan river is far from the Davao city, more than 40 km apart. Both the Talomo and Tamugan rivers run on the steep slope of the skirts of Mt. Talomo. DCWD made up their minds to lay a long waterway for water supply to the city. The minimum discharge of the Davao river upstream of the confluence with the Tamugan river is estimated to be over the water demand of Davao city in 2025, which is estimated to be more or less 3 m³/sec. The water supply project is going to be implemented in a form of BOT.

Main stream of the Davao river from the downstream of the junction of the Tamugan meanders on the plains, where the vast plantations are developed. The lower Davao river itself could not be the sources for the municipal and industrial water supply to the city.

Municipal and industrial water demand of Davao city is not so big, that is, more or less 3 m^{3} /sec in the year 2025 as aforesaid, though it is a serious problem for DCWD to secure it.

The Davao river is a big river and categorized into one of the major rivers of the Philippines. The Davao river should be developed not only for the water supply for Davao city, but for multi-purpose schemes including flood control, power generation, municipal water supply and irrigation water supply. In the Davao river basin, on the other hand, there are some dam sites suitable for large dam construction. The Survey/Inventory on Water Impounding Reservoirs lists two dam schemes on the Davao river, namely Calinan #1 and #2, as shown in Figure H-76. In the Davao river basin, however, there are some other sites suitable for large dam construction. Although the geological conditions of the dam foundation and reservoir area should be scrutinized in the successive study stages, Davao I, II and IIIR (Calinan #2) dam schemes were formulated as shown in Table H-28. Out of the three dams, it is expected that the Davao II dam project is developed as a multi-purpose dam.

From the aforesaid consideration, the following two scenarios were contemplated in relation to municipal water supply to Davao city:

- i) Water Supply Project in a form of BOT
- ii) Development of Davao II Dam Project

The above two development scenarios are depicted in Figures II-77 and II-78.

H8.2 Other Major Citics Selected in Constraint of Water Supply and Demand Balance

H8.2.1 General

As mentioned above, the surface water development plans for municipal water supply to Metro Manila, Metro Cebu and Davao City were preliminarily examined.

In the second stage field investigation, a total of nine (9) major cities including the aforesaid three (3) cities are selected as the water-constraint cities which may require the urgent expansion of the water supply capacities. As a result, the following six (6) cities, were additionally selected as the major cities where the constraint in water supply and demand balance is likely to take place in the future and/or even at present:

- i) Baguio City
- ii) Zamboanga City
- iii) Cagayan De Oro City
- iv) Angeles City
- v) Iloilo City
- vi) Bacolod City

The above six major cities are additionally examined in this study with respect to the water supply and demand balance and necessity of new surface water development to meet the water demand until the year 2025.

In principle, the surface water resources development plans are examined and formulated for the cities where the water demand in the year 2025 is forecasted to exceed the exploitable groundwater amount in and around the city area. The new surface water development plans are worked out in the present study even in case that the exploitable groundwater amount is by far over the total demand in the year 2025, on the other hand, provided that the promising potentials of surface water resources are identified in the past study.

The water resources development plans for the selected 6 major cities are discussed in the succeeding Subsections.

H8.2.2 Baguio City

(B)

T

(1) Present Situation

Baguio city is located in the province of Benguet in the Cordillera Region, constituting the mountainous resort area situated north of Metro Manila. It is surrounded by the municipalities of the province. The Baguio Water District (BWD), that is a Government-owned corporation, is responsible for the municipal and industrial water supply to the people residing in its service area. The BWD has made the continuous efforts to expand the water supply capacity through implementation of water supply development programs. However, it has not been able to cope with the rapidly expanding population in the service area. It is reported that of the total 21,500 service connection about 80 % are provided with potable water only for four (4) hours thrice a week.

At present, population of Baguio city is projected to reach about 240 thousand people, increasing at an annual average rate of 4.4 %. Although the city and its surrounding areas suffered from severe damage in 1990 due to the large-scale earthquake, which hit the northern part of the Philippines, the rehabilitation program has been steadily progressed up to date. As a result, it is said that the present number of tourists has restored to the original level recorded before the occurrence of the earthquake. However, some of existing water supply facilities damaged by the earthquake have been left as they were. Based on the present situation of the tourism, it is foreseen that the water demand in the city would increase steadily from now on with the tourism, commercial and industrial development. Therefore, it is considered necessary to formulate the long-term water resources rehabilitation and development plan to cope with the future water demand in Baguio City.

Since no detailed data required to design dams and other facilities were available, the new surface water development plans to meet the future water demand was preliminarily worked out primarily based on the 1 to 50,000 scaled topographic maps.

(2) Existing Rehabilitation and Development Plans of Surface Water Resources

In connection with municipal and industrial water supply to Baguio City, a lot of studies were carried out so far. Out of the water supply projects formulated through those studies, the following rehabilitation and development plans are on-going or intended to be implemented at earlier stage by the BWD in order to increase the water supply capacity for Baguio City:

- i) Rehabilitation and expansion of existing water supply facilities including Stage I, Amliang and KM8 reservoir as well as St. Thomas rain basin
- ii) Australian Aid Project including rehabilitation of distribution network in the city
- iii) Bulk Water Supply Project in a form of BOT

In addition to the on-going and urgent projects above-mentioned, the following water resources development plans were formulated in relation to the municipal and industrial water supply to Baguio City:

- iv) Wangal Dam Project
- v) Water Conveyance Project from existing Ambuklao Reservoir

The aforesaid projects were explained hereunder and their locations are illustrated in the respective Figures in the Par-D of the Supporting Report.

(3) Rehabilitation and Expansion of Existing Water Supply Facilities

The damaged water supply facilities have hampered the operation of the water supply

facilities owned by BWD and brought about the present serious situation. The BWD has a strong intention to rehabilitate existing water supply facilities in order to improve the present water supply condition in its service area. Thus, these plans are regarded as the urgent measures and the fundamental conditions to expand the water supply capacity, including rchabilitation of the following facilities:

٢

a. Rehabilitation of Stage I, Amliang and Km8 Reservoir

At present, potable water for residential areas of Baguio city is supplied from Stage I intake and Amliang spring through KM8 reservoir. These two water intake sites lie on a tributary of the Bued river. The surface water off-taken at the Stage I weir site is being conveyed to KM 8 reservoir by gravity, while that taken from the Amliang spring is pumped up to the same. Owing to the earthquake in 1990, these intake facilities had been much deteriorated. Under the present condition, it is approximated that the Stage I and Amliang yield 5,400 m³/day. It is expected that the maximum water production capacity of Stage I and Amliang would increase to 14,600 m³/day after the completion of the rehabilitation works. The locations of the Stage I, Amilong and KM 8 are shown in Figure H-79.

b. Rehabilitation of St. Thomas Rain Basin

The rain basin is located in elevated area of Mount Kabuyao, north of the aforesaid Stage I and Amliang reservoir. The rain basin is covered by vinyl sheet to avoid seepage loss. At present, the vinyl sheet in the bottom portion is torn by uplift pressure of groundwater acting thereon. As long as the 1 to 50,000 scaled topographic map shows, a catchment area covered by the rain basin is as small as less than 1 km^2 . According to the BWD office, however, the rain basin contributed to supply of portable water for the residential area not only in the wet season, but also in the dry season. Usually, the rain basin was easily filled up with rainwater in the wet season, enabling to supply portable water for the initial three months of the dry season. The location of the St. Thomas Rain Basin is shown in Figure H-79.

c. Australian Aid Project (Exploitation of Groundwater)

The Australian aid project comprises construction of 22 wells and rehabilitation of existing 10 wells as well as installation of new distribution pipelines to reduce water loss in the service area of the BWD. It is expected that the water supply capacity with groundwater will increase from 25,000 m³/day to 68,000 m³/day after the completion of the project. The project is scheduled to be completed in 2000 according to the original plan.

(4) Bulk Water Supply Project

The bulk water supply project is now on-going under the BWD as of the middle of December 1997. It is going to be implemented in a form of BOT and the BWD is to participate in the consortium. The BWD imposes the basic condition of the BOT as follows:

- Supply capacity	: 50,000 m ³ /day
- Water charge for initial 5 years	: 22 pesos/m ³

In principle, the water exploited by the bulk water supply project is going to be supplied to the existing and planned industrial and commercial areas.

(5) Wangal Dam Project

There exists a small-scale dam on the Wangal river, which was identified in the previous

JICA's study. The dam site covers a small catchment area of about 5.5 km². The small-scale dam aims to supply irrigation water and domestic water for the La Trinidad City. The Wangal river originates from a watershed extending west of the La Trinidad City located adjacent to Baguio City northward.

The previous report estimates that the domestic water of about 1.824 million m^3 /year or 13,000 m^3 /day will be exploitable by means of constructing the small-scale dam. The main features of the Wangal dam are as follows:

-	Catchment area at damsite	: 5.5 (km²)
-	Mean inflow discharge	: 0.483 (m³/sec)
-	Dam height	: 37 (m)
	Full supply level of reservoir	: 1,244 (El. m)
-	Minimum operating level of reservoir	: 1,222 (El. m)
~	Effective storage volume	: 2.52 (million m ³)

It appears that the Wangal dam project is very promising for the purpose of the domestic water supply to Baguio City from the geographic position as well as lower water head to pump up for water supply. It is located comparatively near to the service area and the required length of water transmission pipeline is about 8 km in total. The water head to be lifted from the reservoir for water supply to Baguio City is as comparatively small as about 300 m. However, the Wangal dam project is associated with the social and technical issues:

- Resettlement of residents in the proposed reservoir area
- Geological issue such as limestone in the reservoir area.

(6) Water Conveyance Project from Existing Ambuklao Reservoir (Tapping of Water from Ambuklao Dam for the Baguio City Water District)

The feasibility study for the Tapping of Water From Ambuklao Dam for the Baguio City Water District was completed by BECOM, a French Consultant, in July 1995. This project aims to supply the municipal and industrial water by pumping up water stored in existing Ambuklao reservoir to the Baguio City area. The Ambuklao dam was originally developed for the purpose of hydroelectric power generation. It was commissioned in 1957. The main features of the existing dam are as follows:

-	Catchment area at damsite	: 686 (km²)
-	Mean inflow discharge	: 30.0 (m³/sec)
+	Dam height	: 129 (m)
-	Full supply level of reservoir	: 752.2 (m)
-	Minimum operating level of reservoir	: 694.0 (m)
-	Installed capacity	: 75 (MW)

I

In the project, it is contemplated that the raw water of the Ambuklao reservoir normally operated between 752.2 m (FSL) and 694 m (MOL) in the surface water level is pumped up to impounding reservoir planned to be provided at an elevation of 1,575 m in the Baguio city area. The potable water of 36.51 million m³ or 100,000 m³/day is planned to be produced by the project. The main facilities involved in the water conveyance project are as follows:

- Intake structure with three pumps, each having a capacity of 1,800 kW, on right bank of the Ambuklao reservoir
- Water treatment plant on the "Dynamite Hill", located about 300 m distant from the Ambuklao reservoir: Capacity; 1.00 m³/sec

- Three booster-pumping stations along pipeline, each of which accommodates five identical pumps. Capacity of one unit for the first and second booster stations is 1,030 kW and 980 kW, respectively. The third station has the similar capacity to the second one.
- Two (2) balancing tanks, each with a capacity of 500 m³, and impounding reservor in Baguio city with a capacity of 5,000 m³
- Transmission pipeline of 27,960 m in total, having a diameter of pipe of 700 and 800 mm

In the feasibility study, the present-day initial investment cost of the project is estimated at 1,270 million Pesos including cost for power facilities including power lines and sub-stations as well as land acquisition cost. Besides, the project requires the considerably high operation and maintenance cost attributed to high water head to be lifted, which amounts to about 900 m. The present-day annual O&M cost in 2020 when the project is projected to reach the full stage in terms of the sold water is estimated to be 384.22 million Pesos, which is equivalent to 30.0 % of the initial investment cost. As a result, the feasibility study reveals that the project does not meet the financial criteria of full recovery cost.

(7) Surface Water Development Plan

It is judged through the examination on the aforesaid water supply projects that the following projects are considered to be realized sooner or later.

- i) Australian Aid Project
- ii) Rehabilitation of Amilang Spring, Stage I and St. Thomas Reservoir
- iii) Bulk Water Supply Project in a form of BOT

In the course of the study, it is informed that the contract of the Bulk Water Supply Project is awarded to the bidder who proposes to supply water of the Laboy river to Baguio City. Furthermore, the intake site is planned to be located adjacent to the existing Laboy bridge. The Study Team was also planning to develop the Laboy river for the purpose of municipal water supply to Baguio City. Since there are no promising surface water resources in and around the Baguio City except for the Laboy river basin, the BWD's decision is considered to be reasonable.

After the aforesaid contents of the successful bidder for the BOT schemes was notified, the Study Team contemplated the intensive development of the Laboy river to suffice the water demand of Bagui City in the year 2025. Consequently, it is proposed that the Aboy river water will be utilized effectively for the Bulk Water supply Project and the following two new projects identified in this study:

- i) Laboy Dam Project
- ii) Laboy Weir and Ponds Project

In case of i) above, however, it is estimated as a result of the water balance study that it could not suffice the water demand of Baguio City until the year 2025. Therefore, the water of existing Ambuklao would need to be pumped up to the Laboy weir site. The two development scenarios for the water supply to Baguio City taking the hydrologic condition into account as shown in Figures H-80 and H-81.

H8.2.3 Zamboanga City

The municipal water for Zamboanga City is now supplied from the Tumaga river by utilizing

existing intake weir thereon without any seasonal regulation. The maximum intake discharge is as small as about 1.0 m³/scc. On the other hand, the exploitable groundwater is estimated to be about 58.8 MCM/year, which is insufficient for meeting the water demand in the year 2025. The Zamboanga Water District is planning to collect the additional surface water from the nearby small streams, but it is considered that the surface water thereon would not meet the water demand until the year 2025. Therefore, the reservoir type dam project on the Tumaga river has been formulated to meet the water demand of Zamboanga City. It is estimated that the municipal water of about 3.0 m³/sec could be supplied to the City by means of providing the reservoir type dam. The development scenario for the municipal water supply to Zamboanga City is depicted in Figure H-82.

H8.2.4 Cagayan De Oro City

9

1

The Cagayan De Oro Water District is planning to develop the Cagayan De Oro river in a form of BOT for the purpose of municipal water supply. It is informed that the Bulanog-Batang hydroelectric project situated on the upstream reach of the Cagayan De Oro river is to be implemented by NPC. The water source of the BOT project relies on the Cagayan de Oro river whose streamflow is to be seasonally regulated by the upstream reservoir type dam project. The development scenario for the municipal water supply to Cagayan De Oro City is depicted in Figure H-83.

H8.2.5 Angeles, Iloilo and Bacolod Cities

Concerning the cities of Angeles, Iloilo and Bacolod, it is forecasted that the municipal water demand could be sufficed by groundwater resources until the year 2025 as shown in Figures H-84 to H-86. Thus, any necessity of surface water development in these cities would not take place until the year 2025.

On the other hand, in case of the Bacolod City, another alternative would be to develop the Bago dam as the multi-purpose project. In the past, the storage type dam project was formulated as a single-purpose dam project for hydropower generation. It is considered that the project needs to be reformulated as the multi-purpose dam project for hydropower and municipal and irrigation water supply. The alternative development scenario for the municipal water supply to Bacolod City is shown in Figure H-87.

119 Priority Projects to be Implemented at Earlier Stage

119.1 Some Consideration Taken in Selection of Priority Projects

As discussed in the foregoing Chapters H6 and H7, a lot of water resources development projects are picked out to meet the water demand of the major river basins as well as the selected major cities. In general, a huge investment cost is required to implement those projects. Hence, the promising water resources development projects will be realized in a long term to cope with the financial capability of the country. It is recommended that the water supply projects for Metro Manila, Metro Cebu and Baguio City are selected as the priority projects taking into consideration the following aspects therein:

6

ALC: NO

- i) The municipal water supply is given a first priority among the various water use sectors in view of the human basic need. During the study period of this master plan, Metro Manila and Baguio City suffer from the severe shortage of municipal water supply. Also in case of Metro Cebu, there is a possibility that a chronic water shortage will take place in near future.
- ii) If the water supply capacity for these cities were not augmented in harmony with the water demand, the economic activity in this country would be stagnated and slow down to a considerable extent. Also in view of water supply, these cities need to keep the qualification as the international cities, since these cities are famous worldwide. Furthermore, it is recommended that the water supply in these economic centers of the country be augmented to have some allowance for the future water demand.

H9.2 Proposed Action Plans

l

It is proposed that the following studies are to be performed in relation to the municipal water supply to Metro Manila, Metro Cebu and Baguio City:

H9.2.1 Municipal Water Supply for Metro Manila

The following studies are recommended to be carried out in the successive stage with respect to the water supply to metro Manila:

- Master plan study on the Agos river basin
- Feasibility study on the priority project(s) selected through the master plan study
- Feasibility study on the Maasim and Bayabas Dam Project

It is generally accepted that the additional municipal water would have to rely on the supply from the Agos river basin consisting two main tributaries, namely the Kanan and Kaliwa basins, after the completion of the Umiray-Angat transbasin project.

Until now, several reservoir type dam projects were identified in the Kanan and Kaliwa river basins and examined at different study levels. However, no reliable streamflow data are available on the Kaliwa and Kanan rivers, while there exists a stream gauging station on the Agos river. It is strongly recommended to install a stream gauging station on each of these tributaries as soon as possible so as to enable the accurate estimate of their hydrological condition in the proposed master plan stage. In addition, the detailed geological investigation including core drilling at the proposed dam sites on those tributaries needs to be performed in the master plan stage of the next study in order to select the most favorable dam site from the technical aspect. Especially, limestone zone spreads over the reservoir area of the Laiban dam on the Kaliwa dam, which are prioritized for the purpose water supply to Metro Manila in the past study. This implies that the significant seepage might occur after completion of the Laiban dam. Hence, its technical viability needs to be verified through the geological investigation.

It is expected that the Maasim and Bayabas dams, which are originally identified and examined at a level of prefeasibility study for the purpose of irrigation water supply to the downstream paddy fields of the Angat dam, contribute to the augmentation of the municipal water supply capacity of the Angat dam. Therefore, it is recommended that a feasibility study on those dams be carried out in one package.

H9.2.2 Municipal Water Supply for Metro Cebu

In the field investigation, it was attempted to identify the reservoir type dams on the rivers that drain the comparatively large areas in and around the Metro Cebu area. Consequently, it was found that there are no reservoir type dams with a catchment area of more than 100 km^2 and that most of those identified occupy small catchment areas. In addition, the annual rainfall in these catchments is not in general over 2,000 mm. Thus, the surface water resources in and around the Metro Cebu area are very limited because of its topographic condition as well as climatic condition.

As aforesaid, the present groundwater production exceeded its exploitable capacity. Accordingly, the new water source to meet the rapidly increasing water demand would have to be dependent on surface water sources in the neighboring small river basins. In this respect, it is recommended to carry out the following studies in the successive stage:

- Master plan study on municipal water supply to Metro Cebu, which includes carrying out the prefeasibility study on the specific water supply projects taken up in this master plan. These include:
 - a) Lusaran dam project (Update the previous feasibility study)
 - b) Malubog-Mananga transbasin project (MMTP)
 - c) Lusaran-Pulanbato Transbasin project (LPTP)
 - d) Bohol-Cebu Water Supply
- Feasibility study on the priority project(s) selected through the master plan study

H9.2.3 Municipal Water Supply for Baguio City

It is considered that at present Baguio City suffers from the most aggravated situation in terms of water supply as explained in Section H8.2. The Baguio City area spreads over a western divide of the Agno river basin with an altitude of 1,000 m to 1,500 m. Although some rivers originate from the city area, they flow down with steep river bed slopes. Due to the topographic condition, the pumping facilities are unexceptionally required to be installed to covey water from downstream intake site on those rivers to the city area, in case that the river water is intended to be utilized for the municipal water supply purpose. Owing to the topographic condition, it is foreseen that the unit water production cost comes to considerably high.

Taking into consideration the high cost required for exploitation of surface water, it might be preferred that the groundwater in the Baguio Water District be developed to the maximum extent and/or the surplus groundwater in the other neighboring Water Districts be supplied to

1

Baguio City, if any. According to the latest information, on the other hand, the groundwater production in wells dug under the on-going project dose not reach the initially expected level. Judging from the present circumstance, it is recommended to carry out the comprehensive study covering the neighboring municipalities such as La Trinidad City where the comparatively large groundwater resources are considered to be still exploitable. In the comprehensive master plan, it is recommended to perform the field investigation and survey on the rehabilitation projects such as Amliang spring, Stage I and St. Thomas Rain Basin so as to examine the necessity of urgent implementation thereof.

()

۲

It is recommended to carry out the following studies:

- Master plan study on water supply to Baguio City
- Feasibility study on priority project(s) selected through the master plan study
- Examination of urgent rehabilitation projects

Part – H

3

1

Tables

·

δ.	NUMBER AMOUNT OF GRANTED GRANTEE (LPS)	£033 4486.022	20 16125.450	486 6025,840	1102 252149.767	205 1044 225	1283 600757.850	S42 11190.212	674 500400210	1585 12746,146	1345 701083,734	241 7007.915	840 106012.820	341 5839,857	902 332106.560	1127.311	470 1057B6.400	114 1414.738	419 80018.540	148 851.630	100 50316.470	232 2697 209	292 176406.580	166 4543.700	394 75250.870	307 4278,170	494 1467353.580	5998 70444.975	BA34 4003666.601
	AMOUNT N GRANTED (LPS) GI		2 000	0.080	6.550		295.560	149.720	171,290	77.140	861.130	4,540	191220	+62,430	4108.280	485.920	3153 820		55.570	1.000	3757.140		235,330	262,840	859.590	17.580	726 100	1430.930	14545,270
H.	NUMBER OF RANTEE		٣	٣	4		s	a	R	10	R	-	Ð	ጽ	140	2	8		7	••	28		ţ	9	ĸ	64	÷	8	359
	AMOUNT GRANTED (LPS)		126.200	0.750		2.500	6.00 00.3	11,700	24.000	230.580	1519.440	000.860	1254.050	2.000		106.000	1141.000	5.000		0.500		26.890	2000.2			13.500	ļ	1300,280	4075,690
9	NUMBER OF GRANTEE		-	rì		۲-	F	ŝ		24	ę	n	5	•		n	-	•		r		Ŧ	÷			•		14	ß
OCK	AMOUNT GRANTED (LPS) G	1.000		0,130		2500	0.940	8,060		81,300	41.600			7.000		2.340				66.010		0.060		4,630		3.700		156.750	42.540
5	NUMBER OF GRANTEE	•		-		F	4	ନ୍ଧ		8	2			11		'n				ŝ		-		F		•		62	Ŷ
	AMOUNT CRANTED C	22,893		6,660				1.010	31.740	127,988		0.167	15 000	64.410		24.160		14.670				946.000				0.010		12:17.866	46.740
븾	NUMBER OF GRAMTEE	ş		•		1		લ	F	\$		-	-	a	ŝ	*		N				e				N		SS	"
TRIAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1054.750		050.722	1775.300		1108.900	1377.560	18772.600	2534.250	9765.730	52,340	588.840	1228.050	16458.760	1439,030	2462.820	667.370	363,300	41,280	134.850	150,450	2396.800	256.830	6244 040	115.850	4146.500	9174,660	646318 A70
INDUSTRUAL	NUMBER OF GRANTEE	119	2	ţ;	21		10	I	15	130	42	7	4	5	27	ਡ	15	ę	20	01	4	6t	2	ů	14	44	14	496	076
/ER	AMOUNT GRANTED (LPS) (15,000,000		146881.000		583726.240		191243.000	579.000	506296.940		18257.800		22350.680		38615.150		2913.000	113.000	4512.000		103087,700		46700,000		223041.000	592.000	0001607 660
A04	NUMBER OF GRANTER		·	:	58		28		5	ş	28		4		10		t		v	•-	3		~		11		23 13		
	UNT TED	1001.57		1968.330	102325.627	596.110	15554,990	6423,390	366369.530	2492.320	101262.700	2722,740	65616.960	2059,570	269033.050	2162,750	59665.730	410.750	85660.960	164.220	36289,290	963.960	70451.310	1961,530	18070, 140	2819,180	237990.100	24817,050	7445 1550948 747
IRRIGATION	NUMBER OF GRANTEE	5		161	586	111	1221	1	· 614	186	1198	8	3	2	766	125	384	ส	375	4	158	ន	243	ห	326	8	437 2	1372	21 FAAT
STIC		3326.279	· · ·	4722.840	1160.200	456.115	67.220	3216.732	13917.060	6643.590	80326.134	3417.668	87.350	2016.397	65.650	2007.061	749.060	206.948	25.680	465.620	3623.190	769.849	226.440	2067.870	1377 100	1298.870	445.880	31624.639	104086 184
DOMESTIC	NUMBER OF GRANTEE	785	.~	ĝ	3	8	13	306	11	022	5	- 150	2	186	10	489	~	8	12 .	126	5	187	SI.	116	15	ð	0	сж	+ + + + +
	SOURCE OF WATER SUPPLY	ß	SW	Š	SW	ş	SW	MD	SW	CW	ŝw	Ň	ws	W)	SW	сw	\$W	Š	NU2	CW.	MS	Š	SW	MO	SW	NO CM	SW	Š	-
	NO C	ğ		^		2		•		4		50		8		7		80		0		õ		÷		ŭ		SUB.	TOTAL

Table H-1 WATER RIGHTS GRANTS BY NATIONAL WATER RESOURCES BOARD (NWRB)

H - 53

Ţ

ଇ
3
ES
AS THE CANDIDATES FOR WATER RESOURCES DEVELOPMENT SCHEMES (1/2)
CHE
ΤS
N S
Md
iLO.
EVE
S D
CE
UR
RESOURCES DEVELOPM
K RI
ATER
ΜA
N.
S F(
TE
IDA
<u>R</u>
CA
S THE CANDIDA'
LS I
PTE
DO DO
SA
DAMS ADOPTED
Q
H-2
Table H-2
T_{2}

Dam Dam 1 1 Curren-Garges Indexj 2 1 Function Screens Indexj 3 1 Bunorgen/Trierty Area 6 1 Sypto Area 6 1 Sypto Area 7 1 Benaly Area 7 1 Benaly Cagayan 9 1 Cagayan Area 10 1 Benaly Cagayan 11 Benaly Cagayan Area 12 1 Area Cagayan 11 Benaly Cagayan Area 12 1 Area Cagayan 13 1 Area Cagayan 14 1 Cagayan Cagayan 15 1 Area Cagayan 16 1 Area Cagayan 16 1 Area Cagayan 16 1 M	(km) 2000 1 1 2000 1 1 2001 1 1 2001 1 1 2001 1		(m) 85.0 870 (43.5	(m) (1 254 480		e	mi (EL.m) 178 140 335 275 380 350	(EL (EL (EL (EL))	(W)		11		49 V T			8.600	140 Asiatic 716 //JICA 468 ShowinizavADB	FrS FrS Master Plan FrS Master Plan CvD
1 CurreTrans-Gragges 1 Philogram/Meers 1 Philogram/Meers 1 Skytow/Meers 1 Skytow/Meers 1 Skytow/Meers 1 Skytow/Meers 1 Skytow/Meers 1 Skytow 1 Skytow 1 Checki 1 Maken 1 Didagen 1 Mount Caes 11 Mount Caes 11 Mont Caes 11 Maken 11 Mont Caes 11 Maken 11 Maken 11 Maken 11 Maken 11 Abonit 11 Abonit 11 Ab	200 2200 201 201 201			254	516				ļ	526						2,400	716 IJICA AAR Showinican/ADB	FrS FrS FrS DVD Measer Plan
1 Pairs guerof/livered 1 Binorgan/Triegy 1 Binorgan/Triegy 1 Binorgan/Triegy 1 Againa 1 Cenedi 1 Maling II 1 Magin 1 Colubrin A 1 Colubrin A 1 Coloryten 1 Coloryten 1 Coloryten 1 Coloryten 1 Coloryten 1 Maloryten 1 Maloryten 1 Coloryten 1 Maloryten 1 Maloryten 1 Maloryten 1 Maloryten 1 Maloryten 1	920 1920 1921 1921 1921 1922			480	9,1			•	ŀ		2	14		2	ł		AKR Showinitan/AD8	Frick Masser Plan Fric DND Masser Plan DND
1 Binorgent/Tring, 1 Supo 1 Supo 1 Supo 1 Bunloy 1 Bunloy 1 Bunloy 1 Bunloy 1 Bunloy 1 Abus 1 Abus 1 Abus 1 Abus 1 Abus 1 Bunloy 1 Ballon 1 Ballon 1 Ballon 1 Ballon 1 Ambunyan 1 Ambunyan 1 Ambunyan 1 Ambunyan 1 Ambunyan 1 Ambunyan 1 Tabbos 1 Ambunyan 1 Ambunyan 1 Ambunyan 1 Ambunyan 1 Ambunyan 1 Ambunkan <tr tr=""> 1</tr>	уло 200 100 100 100 100 100 100 100 100 100		l								2	9		Į,	218		The prime manual sector of the	Master Plan F/S D/D Master Plan D/D
1 Suppo 1 Suppo 1 Christ 1 Sumpy 1 Christ 1 Malue 1 Magei 1 Magei 1 Maturo 1 Recents 1 Labore 1 Anthono 1 Colorytion 1 Mathemation 1 Colorytion 1 Colorytion <td>200 200 201 201 201 201 201 201 201 201</td> <td></td> <td></td> <td>375</td> <td>4.6</td> <td>C NE</td> <td></td> <td></td> <td>ŗ</td> <td></td> <td>Ē</td> <td>8</td> <td>8</td> <td>20</td> <td>9</td> <td> .</td> <td>368 NKUICA</td> <td>F/S DVD Mexer Plan</td>	200 200 201 201 201 201 201 201 201 201			375	4.6	C NE			ŗ		Ē	8	8	20	9	.	368 NKUICA	F/S DVD Mexer Plan
I Aghulu 1 Aghulu 1 Cheect 1 Check 1 Mathem 1 Mathem 1 Mathem 1 Mathem 1 Check 1 Check 1 Mathem 1 Check 1 Check 1 Check 1 Check 1 Check 1 Check 1<	200 201 201 201 201 201		138.0	440	0		ł			10	2	92	ę	8	1.479		904 ELC	D/D Mauer Plan D/D
II General II Denory II Churon II Churon II Abuan II Churan II Abuan II Mature II Mature II Mature II Mature II Colorythm III Colorythm III Mature III Colorythm III Mature	900 1984 1984 1984 1984		222.0	010	177					280	800	8	3	8	1,632		R92 New JEC	Master Plan D/D
II Виллу II Слисо (V II Алчая II Солчая II Солчая III Алчая III Вилая III Вилая III Вилая III Алчая III Алчая	902+ 901 101 101		0.07	412		ļ			3	- 646	8/2.1	368	50-	8	8	•	188 NKUICA	g
II Cheo IV II Abuan II Abuan II Abuan II Maling II II Magai II Magai II Magai II Magai II Madaine II Lingues B II Anthonym III Anthonym III Anthonym III Boloc II III Anthonym III Anthonym III Anthonym III Anthonym III Anthonym III Tabboy II III Mahoni III Mahoni III Mahoni III Aboni III Anthonym	302-			201	3					740	0.4	01E	P	8	555		758 LAUMEYET	
II Abuan II Abuan II Abuan II Sifful II Masure II Abuan II Masure II Dispension II Dispension II Dispension III Masureyen III Mount Caas III Mount	302- 1984 1984 1984		0.001	PM9	ł				.	ล	124	<u>8</u>		3	ц.	610	159 LahmeyenNK	55
I Malig II I Malig II I Malig II I Mage II Mage II Matuno III Matuno	902-0-1 1921 4 66 bitm Conn		2.01	SOF.		Ì		•	112	1.037	55		Ę				90 NICHCA	Master Plan
II Sifful I II Мацеон II Асклыте А II Пренер Б II Пренер Б II Пренер Б III Солчоно III Асклыте А III Венес II III Асклыте А III Венес II III Асклыте А III Венес II	gat Digitan Duran Duran		54.0	8	1		ł		ľ	415	8		<u>6</u>	24	4		67 NKJICA	Maxier Plan
II Мара I Мара I Колытус I Перет В I Перет В I Перет В I Солучин I Солучин I Солучин II Солучин II Алтынтул II Алтынтул II Воюс II II Алтынтул II Алтынтул II Алтынтул II Поли Сраз II Текко II Текко II Текко II Марли II Марли II Марли II Алтын Сала II Алтын Сала	1814 4		28,0	240	1	ł	L			2	658	210	5	Š	L	104,600	- Bu,Recla US	Existing(1983)
If Manues 1 Acalance 1 10, goals 11 Mailcorg 11 Mailcorg 11 Mount Case 11 Mount Case 11 Mount Case 11 Tableo 11 Tableo 11 Mount Case 11 Tableo 11 Mailcorg 11 Mailcorg 11 Mailcorg 11 Mailcorg 11 Mailcorg 11 Mailcorg 11 Abanc 11 Abanc	jeoi Gostarm Precin		0.61	0767		ž	Ľ			5	5	٩		160		13.600	668 NK/IICA	55
II Addulon A II Regun B II Regun B III Majkong III Amburyan III Amburyan III Amburyan III Amburyan III Luboy I III Janga III Luboy I III Mathin III Mathin III Aban Camoonal	(delum Denn			Ast	ł		1				22	1		Ş	ğ			S5
11 Прево В. 11 Склумен 11 Склумен 11 Аллынтура 11 Венос II 11 Венос II 11 Аллынтура 11 Венос II 11 Аллынтура 11 Аллынтура 11 Аллынтура 11 Аллынтура 11 Аллынтура 11 Аллынтура 11 Валы Корев 11 Малын 11 Аллынтура 11 Аллын Корев 11 Аллын Корев 11 Аллын Корев	use		0.00								a			3	8			F.5
II Globyton III Misliceng III Ambiliceng III Beloci III Beloci III Ambiliceng III Beloci III Ambiliceng III Ambiliceng III Ambiliceng III Ambiliceng III Tabby II III Tabby III Mabril III Mabril III Ambiliceng III Aubong Eastore III Aubong Eastore					:		004 24	101	.	520	P.4	ž	.	152	55		654 New JEC	F/S
Majkorg 11 Andurayan 11 Andurayan 11 Andurayan 11 Mount Class 11 Mount Class 11 Mount Class 11 Mount Class 11 Luboy 11 11 Tabbo 11 Tabbo 11 Tabbo 11 Tabbo 11 Tabbo 11 Babrg 11 Babrg 11 Ababal		Ì		5	1	·				Ē	×	2	•				400 JICA	Map Study
III Amburryten III Alouci II III Alouci Class III Amburlac III Lubbylitic III Lubbylitic III Lubbylitic III Lubbylitic III Lubbylitic III San Kogles III Mathin III Lubbylitic III Lubbylitic III Lubbylitic			147.0	8	56	•	1				2		-	.	.	.	400 JICA	Map Study
10 Boloce (1) 11 Boloce (1) 11 Armbuildo 11 Armbuildo 11 Tabby (1) 11 Strong (1) 11 Baby (1) 11 Baby (2) 11 Baby (2) 11 Baby (2) 11 Abbas (2)	02 A		137.0	Ş	80		1		•	5	12	216	44	8	8		E.	Map Study
III Mount Class II Ambuildo III Lubby II III Tubby II III Tubby II III Tubby II III Mont III Mont III Mont III Mont III Mont III Mont III About III About	96 1-9		0.771	045	500		٦				s a	46	80	9	5			Map Study
(II) Алмбыліцо III Віліра. III Віліра. III Теркоо III Ялебона. III Мабляі. III Віліра.	19		142.0	4 <u>0</u>	8	•	880 804	2	·	3	348	2		Ķ	00			Exising(1956)
III Birtes III - Laboy II III - Tehbo III - Son Koque III - Madoni III - Labor			129.0	452	3			ł			2	5		8	9		· H972A	Existing(1960)
III Laboy II III Tebbo III Son Koque III Mabini III Pador Sator III Pathon San	4X8		107.4	215	<u>.</u>	•							12				JICA	Map Study
III Tebbo III San Koque III Mabini III Babog Sano III Faalaangan III Aboon cur			75.0	8	2			1				361		130	510	.	287 JICA	Map Study
III Son Koque III Mabini III Balogrebangan III Fautabangan	1,072		142.0	320	2.0					2020	2		1	34	8 010	87.000	LON ELC	On-Coing
III Mabini III Balog-Balog III Pantabangan III Abuan (Cananas)	1,23.	5 Reckfill	900 2002	0(1)	3 <u>5</u>				ŝ		5	ž	ž			11.500		FrS
111 Balog-Balog 111 - Pentabangan 111 - Aboon - Maseronal	225	•	88	5			101		Y.	iš	12	8	82	5		(150	m elc	F/S
111 - Pentabangan 111 - Abron 117 approxim			C 511	00a'i	e 1		ļ	. 128		2310	576.1	102	.	8	Ľ	102,000	USAIDABRD	Ex set ing(1977
11 Above 10 member		•	107.0		077	7 007 N77	114 007	}		8	2	Ę		270	564		452 ELC/IBRO	Omgoing
	:		0.70	2						LOX 1	Ā	828		.		66,500	591 ELCIBRD	On-Foing
III Conwap (Catechan)									•	- 01	88	R	ឝ	215		0000'0	- Herza/IBRD	Existing(1967
III Angel			<u> </u>						.	•							 C.LottiADB 	On-going
III Umimy-Angol	1991			404	¥ ¥					655	C(94	8	14	8	132	18,800		- [
Ilf Batintingon	umaction	:	1 I I I	0.7				•	4	•	14F		4.8	•			 ELC/Asiatio/World Bank 	
III Boyabos		NU ROOMIN	0.10	007			Ŀ		2	•	8		9.0				 ELC/Asiatio/World Bank 	٦
III Musuim		ŀ	0.50	and a	1	278 272	L	ž			42		8	21			1,104 Electrowatt	e Q
		to Rockfill	6451	64	2.0		316 267		.	1.576	1,137	68C	Ş				245 BCA	Map Study
			42.0						•		•			ğ				
Amnau			01.0	1,400	14.0			8	8		8	۲ ا	-					
V Sinces	7447 YA	1.	0,40	- 009	2.3	99		•	2	012 1	870	ş	8	8	L.	200	L	tine in
V - Taliaou			58.0	00#	. 1.2				8	1	គ	3	٩	ų V		2007		Enc.
Panav			52.4	091				·		8	ñ		•					ŝ
VI Japur	0			405			221 156.7			370	1	2	2	3	8 14		767 ThewiniwadADB	. 94
VI Sago	402	22 Rockfill	125.0	509	3		1		•		8		• ,	3		2000	217 /IICA	ES
0,1	ongon - 1 389		0.18	. 36	- 2.0	8	74		8	000			9 ·				-	Existing(1910
46 VII Buhian Buhitan	5,5	9 Conc Arch -	26.0	:				•	·	· i			-				248 1ICA	Man Nuch
Vil Malubog			65.0	520					•	=	į	- -	. <u>.</u>	•			1¢	Fis
Vii Mewanga li			0.00	97	S.	19				ł	1	-			 		R3 Camp Dressen/Mckee	80
19 Vit Lussian Balamban	67		000		3.2		Ľ		-		ŕ	-	50			,	82 JICA	Map Study
Cobu Fo (Pulambato)	21		0%	8	·	Į			•	010	2	8	2				159 JICA	Map Study
VII Tipolo	⊗ •		8			- 	ŀ			•	117	E.OF	2		.		1	Map Study
Precentica		1	80.0		•						28.3			132	8	.		D/D
X · Bulance-Botane ·	e Olo	D KCC	0.021	55				412	2	2	83.0	₫	95	R	36		262 JICA	Man Shudy
X Tagokan			0/11	3					2	8	720.0	8	8	9	8			Map Soudy
5 XI Bubonec Tegum-Libugeron	bugunon 666	56 Rockfill	0.0%	BU#	e	ļ	I	l										

Noic: Map Study in the column of Status means that the scheme was formulated in this study at a map study level,

.

 \bigcirc

H - 54

(2/2)
THE CANDIDATES FOR WATER RESOURCES DEVELOPMENT SCHEMES (2/2)
CES DEVELC
ER RESOUR
ES FOR WAT
E CANDIDAT
PTED AS TH
DAMS ADO
Table H-2

				- Mag						Reservoir	ł							
	River System	5	Type	Heigh Cres	(Length	Volume	FWL H	אאר ר	LWL TAUWL	YL FUCSDOC		Active	Dead	Area H)	Hydroclectric power	wer Irrigation	on Cost Consultant/Apency	cy Stalus
	• .	(km²)		ĵ,	Ĵ.	(I.J.m.) <	(EL.m) (E	(EL.m) (FL	(EL.m) (EL.m)	(ju _01) (u	0.00	10 m	(IO ⁿ m)	(لاسار)	(MM) (G	(CWh) (ha)	(.01 SSU)	
	Daviso	367	Rockfill	0.02	450	40	455	834 1	430 2		135 740	б. Ф	135	ž	Ŷ.	· %	189 JICA	Map Study
	Devico	820	Rockfill -	112.0	350	5 0	385	8		285	9Ů	5 224	212	1	8	: 60		MapSudy
	Daveo	163	Rockfill	132.0	0C¥	2. 2		\$94	<u>45</u>	•	Ĩ	9	\$	2.6	z	4	268 JICA	Map Study
	Buayan-Mahingun	66	Rockfill	120.0	057	6,0	384	380	350		£62 SP	161	8		•	•		Map Study
	Agus(Lake Lanuo)	1,645										212			80	456		Existing(1902)
	Agus		Farchfill	29.0											36	756		E.a.incing(1979)
	Agus	1,844	Rockfill	58,0				524	516			0.7			1 \$22	,065	FLC -> Lavalin	FA
	Agus		Rockfal	72.0								2			158	762		Existing(1985)
Xii Agus V	Ague .		Conc.gravity													265		Existing(1985)
	Agus(Maria Crittins)		Rockfill	12.5				202				1.2			200 Г.	1,016		Existing(1977)
	Agut		Concignation of the second sec													274		Eximing(1983)
XII Pulangi I	Mindanao/Pulangi	376	Kockfill	100.0				990	626			1,715				105	Solitelex	Pre-FiS
XII Pulangi II	Mintanso/Pulangi	737	Rockfill	10.0				15.	52			503			20	257	Sofrekex	Prevers
XII Pulangi III	Mindanao/Pulangi	1,339	Rockfill	90.0¢	632	2.6		417	380			1,156		16	8	362	477 MERALCO	F/S
XII Pulangi IV	Mindanao/Pulangi	3,633		115.0											255 [,	210		Existing(1985)
XII Pulangi V	Mindanuo/Poltangi	4.652	Gavity	125.0	228			3	123			1 190			148	310	Sofrelex	Pre-FIS
XII Pulanyi VI	Mindanao/Pulangi	5,216	Gravey	0.00	139										70	340	Sofreiter	Pre-F/S
XII Magahov	Mindanao/Cabilonan	540	Earthfilt	45.0	226			6.47	660	•	•	62		ē	\$	315 13,000	D 34 Atialic	ž

Note: Map Study in the poterno of Status means that the acheme was formulated in this study at a map study level,

•

J

- TADE 11-3 - 2007 I - LEGALAND MID-LEGAL COMER DEMARD FORECAST	Table H-3	SHORT-TERM AND MID-TERM POWER DEMAND FORECAST
---	-----------	---

0

Year	~~	ales by Grid (GWh/year)	•	Whole P	hilippines
	Luzon	Visayas	Mindanao	Total	Increase Ratio (%)
1995	3,877	585	837	5,299	
1996	4,239	657	959	5,855	10.5
1997	4,744	739	1,130	6,613	12.9
1998	5,397	832	1,359	7,588	14,7
1999	6,079	955	1,587	8,621	13.6
2000	6,779	1,080	1,822	9,681	12.3
2001	7,484	1,254	2,059	10,797	11.5
2002	8,266	1,405	2,321	11,992	11.1
2003	9,135	1,556	2,610	13,301	10.9
2004	10,102	1,676	2,930	14,708	10.6
2005	11,177	1,796	3,283	16,256	10.5
Average Annual Growth Ration (%)					
i) between 1996 and 2000	11.8	13.0	16.8	12.8	
ii) between 2001 and 2005	10.5	10.7	12.5	10.9	
iii) between 1996 and 2005	11.2	11.9	14.6	11.9	

Data Source : 1996 PDP by NPC

Table H-4 SHORT-TERM AND MID-TERM ENERGY DEMAND FORECAST

Year		Sales by Grie (GWh/year)	-	Whole P	hilippines
	Luzon	Visayas	Mindanao	Total	Increase Ratio (%)
1995	23,161	3,024	4,251	30,436	
1996	24,415	3,482	5,635	33,532	10.2
1997	27,331	3,918	6,641	37,890	13.0
1998	31,088	4,406	7,989	43,483	14.8
1999	35,019	5,062	9,330	49,411	13.6
2000	39,054	5,794	10,711	55,559	12.4
2001	43,111	6,727	12,102	61,940	11.5
2002	47,616	7,536	13,640	68,792	11.1
2003	52,623	8,348	15,339	76,310	10.9
2004	58,191	8,995	17,219	84,405	10.6
2005	64,383	9,636	19,294	93,313	10.6
Average Annual Growth Ration (%)					
i) between 1996 and 2000	11.0	13.9	20.3	12.8	
ii) between 2001 and 2005	10.5	10.7	12.5	10.9	
iii) between 1996 and 2005	10.8	12.3	16.3	11.9	

Data Source : 1996 PDP by NPC

Grid System	Status of Scheme	Installed	Capacity	Energy	Output
		(MW)	(Share)	(GWh)	(Share)
(1) Luzon	Existing	1,273	15 (%)	3,818	12 (%)
	Prefeasibility	3,444	40 (%)	14,895	47 (%)
	Feasibility	1,922	22 (%)	6,907	22 (%)
	Definite Design	1,950	23 (%)	6,185	19 (%)
_	Subtotal (1)	8,589	100 (%)	31,805	100 (%)
(2) Visayas	Existing	13	3 (%)	51	3 (%)
	Prefeasibility	95	22 (%)	403	27 (%)
	Feasibility	226	53 (%)	833	55 (%)
	Definite Design	96	22 (%)	229	15 (%)
	Subtotal (1)	430	100 (%)	1,516	100 (%)
(3) Mindanao	Existing	992	30 (%)	4,571	32 (%)
	Prefeasibility	1,193	36 (%)	4,799	34 (%)
	Feasibility	1,104	34 (%)	4,768	34 (%)
_	Definite Design		-	-	-
	Subtotal (1)	3,289	100 (%)	14,138	100 (%)
Whole Philippines	Existing	2,278	19 (%)	8,440	18 (%)
	Prefeasibility	4,732	38 (%)	20,097	42 (%)
	Feasibility	3,252	26 (%)	12,508	26 (%)
	Definite Design	2,046	17 (%)	6,414	14 (%)
	Subtotal (1)	12,308	100 (%)	47,459	100 (%)

Table II-5 HYDRO POWER POTENTIALS IN THE PHILIPPINES

Data source : 1996 Power Development Program by NPC

)

ľ

25
VD 20
¥.
661 N
VEE)
BETW
EDED TO BE ADDED BETWEEN 1996.
E AD
CO BE
ED 1
NEED
CITY
APA
ERC
POW
Table H-6 POWER CAPACITY NEI
r_{a}

Year			Indigenous	is Energy Resources	ources			п	Imported Enery Resources	ry Resources		Total
,	Hydoro (1)	NRE/SM.HY (2)	(1)+(2)	Geo- thermal	Coal	Natural Gas	Subtotal	Coal	IŐ	Other fuels	Subtotal	
1996	0	0	0	0	0	0	0	0	50	0	50	50
1997	0	0	0	220	0	0	220	0	001	0	100	320
1998	0	0	0	480	0	0	480	300	550	0	850	1330
6661	140	0	140	80	0	0	220	1550	0	0	1550	1770
Sub-total-1	(140)	(0)	(140)	(780)	(0)	(0)	(920)	(1,850)	(00)	(0)	(2,550)	(3,470)
2000	59	0	29	4	0	006	969	0	0	0	0	969
2001	32	0	32	0	0	900	932	300	0	150	450	1382
2002	68	0	68	0	250	600	918	0	0	950	950	1868
2003	0	0	0	0	250	600	850	0	0	450	450	1300
2004	750	0	750	0	100	0	850	0	0	950	950	1800
2005	569	0	569	120	0	0	689	0	0	1350	1350	2039
(Subtotal-2)	(1,448)	0)	(1,448)	(160)	(009)	(3,000)	(5.208)	(300)	(o)	(3.850)	(4,150)	(9.358)
2006-2010	473	579	1,052	720	600	1,500	3.872	0	0	9,701	101.6	13,573
2011-2015	984	860	1,844	230	610	0	2,684	0	0	16.549	16,549	19,233
2016-2020	427	548	975	4	0	2,000	3,015	0	0	19,485	19,485	22.500
2021-2025	261	460	721	08	0	0	801	0	0	23,199	23.199	24,000
(Subtotal-3)	(2,145)	(2,447)	(4.592)	(1,070)	(1,210)	(3.500)	(10.372)	0)	0)	(68,934)	(68,934)	(79.306)
Total (1996-2025)	3.733	2.447	6,180	2.010	1,810	6,500	16,500	2,150	700	72,784	75.634	92,134

Source : 1996 PDP by NPC Note : Short-term : 1996 - 1999, Medium term : 2000 - 2005, Long-term : 2006 - 2025

H - 58

0

i) Case 1 : High Economic Growth Scenario Based on NEDA's Projection

I

Table H-7 BALANCE OF WATER RESOURCES POTENTIALS AND WATER DEMAND IN YEAR 2025

Water Ground- Surface Water Total Micl Warer Demand Total Surface Water Sur	Water Ground- cound- Resources Surface Water behand Total Moli Water Demand Aproclitant Water Demand Total Surface Water sciences Resources Mair 50%				Water Kesol	urces Potent	Water Resources Potentials (MCM/year)	÷			Water	Water Demand (MCM/year)*	M/vear)*				Ratio of Poter	Ratio of Potential to Demand	Water Balance (MCMycar	- (MCMVcar
Natr 50% 80% Number Natr 50% 80% Number Natr 50% 80% 50%	Numers Solution Solution Submetal 2 Protecty Submetal 2 Solution	ő Z	Water	Cround-	Surface	Water	Tot	tał		Water Demi	and		Agricultural	Water Deman	Ţ	Total	Surfac	e Water	Surface	Water
gin Depend Depend <thdepend< th=""> <thdepend< th=""></thdepend<></thdepend<>	gion Depend. Depend. Defend. Defend. <thdefend.< th=""> <thdefend.< th=""> <thdefe< th=""><th></th><th>Resources</th><th>Water</th><th>50%</th><th>20% 80%</th><th>Surface</th><th>Water</th><th>Municipal In</th><th>dustrial S</th><th>ubtota!- [</th><th>Irrigation</th><th>Livestock/</th><th></th><th>Subtotal-2</th><th></th><th>\$0%</th><th>80%</th><th>50%</th><th>80%</th></thdefe<></thdefend.<></thdefend.<>		Resources	Water	50%	20% 80%	Surface	Water	Municipal In	dustrial S	ubtota!- [Irrigation	Livestock/		Subtotal-2		\$0%	80%	50%	80%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1) (2) (3) (4)-(1)-(2) (5)-(1)-(3) (4)-(1)-(2) (5)-(1)-(3) (4)-(1)-(3)		Region		Depend.	Depend.	50 % Depend.	80 % Depend.	(<u>)</u>	6	* *		Poultry	-	たの1(2)	(13) -	Depend.	Depend.	Depend.	Depend.
1 1.24% 10,100 3.250 11,348 4,408 170 120 2653 16 82 2.752 3,041 3.73 1.48 8,307 11 2,825 16800 8,510 19,652 11,335 140 27 168 12,170 31 98 12,299 12,466 157 0,91 7,159 111 1,721 10,800 7.890 12,510 35,61 170 5,022 10,692 2,667 6,673 1,567 0,91 7,159 111 1,721 10,800 7.890 12,020 4,145 2,61 11 302 3,401 7,13 1,48 6,49 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 0,91 7,19 1,108 7,19 1,108 7,19 7,19 7,19 7,19 <th>1 1.24% 10,100 3.250 11,348 4.408 170 120 296 2.553 16 8.2 2.752 3.041 3.73 111 2.825 16.800 8.510 19,625 11.335 140 27 168 12.170 31 98 12.299 12.466 1.57 111 1.721 10,800 7.800 12.521 9.611 955 758 1.713 12.546 72 3.837 16.455 18.168 0.69 11V 1,410 19.700 6.370 21,110 7.780 3.101 1973 5.630 4.184 68 770 5.022 10.052 2.10 11 1.44 19.500 9.350 14.46 2.302 1.10 3.73 3.492 3.16 5.625 6.486 7.595 2.10 11 1.44 9.550 4.1847 11.907 2.37 1.402 2.655 6.486 7.595 2.165 1.70</th> <th>ļ</th> <th>•</th> <th>(1)</th> <th>છ</th> <th>3</th> <th>(4)-(1)+(2)</th> <th>(5) - (1) - (3)</th> <th></th> <th></th> <th>(6)+(7)</th> <th>(6)</th> <th>(10)</th> <th>(11)</th> <th>(10)+(11)</th> <th>(8)+(13)</th> <th>(4)(13)</th> <th>(57(13)</th> <th>(5) - (13)</th> <th>$(5) \cdot (13)$</th>	1 1.24% 10,100 3.250 11,348 4.408 170 120 296 2.553 16 8.2 2.752 3.041 3.73 111 2.825 16.800 8.510 19,625 11.335 140 27 168 12.170 31 98 12.299 12.466 1.57 111 1.721 10,800 7.800 12.521 9.611 955 758 1.713 12.546 72 3.837 16.455 18.168 0.69 11V 1,410 19.700 6.370 21,110 7.780 3.101 1973 5.630 4.184 68 770 5.022 10.052 2.10 11 1.44 19.500 9.350 14.46 2.302 1.10 3.73 3.492 3.16 5.625 6.486 7.595 2.10 11 1.44 9.550 4.1847 11.907 2.37 1.402 2.655 6.486 7.595 2.165 1.70	ļ	•	(1)	છ	3	(4)-(1)+(2)	(5) - (1) - (3)			(6)+(7)	(6)	(10)	(11)	(10)+(11)	(8)+(13)	(4)(13)	(57(13)	(5) - (13)	$(5) \cdot (13)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(1) 2.825 16.800 8.510 19,625 11.335 140 27 168 12.170 31 98 12.299 12.466 1.57 111 1,721 10,800 7.800 12.521 9,611 955 738 1,713 12.546 72 3.837 16.455 18.168 0.69 11V 1,410 19,700 6.370 21,110 7.780 3.101 1973 3.254 72 3.837 16.455 18.168 0.69 1V 1,144 19,500 6.370 21,110 7.780 3.101 1973 3.492 2.43 6.485 7.355 1.6167 2.65 1V1 11,144 19,500 9,500 4.145 5.334 500 5.374 36 2.665 6.486 7.395 2.16 VI1 879 3,770 2.060 9,350 1.100 3.75 2.15 1.165 2.759 1.76 2.165 1.16 2.655 6.486 <td>-</td> <td>WRR J</td> <td>1,248</td> <td>10,100</td> <td>3,250</td> <td>11,348</td> <td>4,498</td> <td>170</td> <td>120</td> <td>262</td> <td>2,653</td> <td>91</td> <td>82</td> <td>2.752</td> <td>3,041</td> <td>3.73</td> <td>1.48</td> <td>8,307</td> <td>1.457</td>	-	WRR J	1,248	10,100	3,250	11,348	4,498	170	120	262	2,653	91	82	2.752	3,041	3.73	1.48	8,307	1.457
III 1,721 10,800 7.890 12.521 9,611 955 738 1,713 12.546 72 3.837 16,435 18,168 0.69 0.53 -5.647 IV 1,410 9,700 6,370 21,110 7.780 3,101 1,829 5.030 4,184 68 770 5.022 10.052 2.10 0.77 11.058 IV 1,440 19,700 6,370 21,110 7.780 3,101 1829 5.030 4,184 68 770 5.022 10.052 2.10 0.77 11.058 IVI 1,144 19,700 2,064 15,344 500 1,110 7.780 3,11 3.72 1,107 2.65 0,99 6,486 7.70 1,002 2.07 1,058 1,309 1,309 1,309 1,309 1,504 1,309 1,504 1,309 1,504 1,309 1,504 1,309 1,504 1,309 1,504 1,309 1,508 1,309	III 1,721 10,800 7.890 1.2.51 9,611 955 753 1,713 12.546 72 3.837 (6,455 18,168 0.69 IV 1,410 19,700 6,370 21,110 7.780 3,101 1,829 5.030 4,144 68 770 5.022 10.052 2.10 IV 1,440 19,700 6,370 21,110 7.780 3,101 1,829 5.030 4,144 68 770 5.022 10.052 2.10 IV 1,144 19,700 2,064 15,344 500 1,110 3.784 3,65 666 4,167 2.65 IVII 2,55 15,900 9,350 14,307 2,374 166 4.32 1,445 1,595 9,44 4,167 2.65 IVII 2,557 15,900 9,350 1,1907 2.37 16,455 1,866 3.56 9,44 4,167 2.65 1,70 2.65 2,16 2.729 </td <td>4</td> <td>WRR II</td> <td>2.825</td> <td>16.800</td> <td>8,510</td> <td>19,625</td> <td>11.335</td> <td>140</td> <td>53</td> <td>168</td> <td>12.170</td> <td>31</td> <td>86</td> <td>12,299</td> <td>12,466</td> <td>1.57</td> <td>0.91</td> <td>7,159</td> <td>-1.131</td>	4	WRR II	2.825	16.800	8,510	19,625	11.335	140	53	168	12.170	31	86	12,299	12,466	1.57	0.91	7,159	-1.131
IV 1,410 19,700 6.370 21,110 7,780 3,101 1,929 5,030 4,184 68 770 5,022 10,052 2,10 0.77 11,058 IV 1,108 9,960 3,000 11,045 4,145 261 41 302 3,422 24 3,48 3,564 4,167 2.65 0,599 6,578 0,599 6,578 0,599 6,578 0,599 6,578 1,309 1,309 1,309 1,309 1,309 1,301 1,302 1,309 1,309 1,309 1,301 1,301 1,301 1,301 1,301 1,301 1,301 1,302 1,304 4,169 1,309 1,309 1,309 1,309 1,309 1,309 1,309 1,309 1,301 1,302 1,304 1,309 1,309 1,309 1,309 1,309 1,309 1,309 1,309 1,309 1,509 1,509 1,509 1,509 1,509 1,509 1,509 1,509	IV 1,410 19,700 6.370 21,110 7,780 3,101 1,929 5,030 4,184 68 770 5,022 10,052 2,10 IV 1,144 19,500 10,045 4,145 261 41 302 3,492 2,48 3,864 4,167 2,65 IVI 1,144 19,500 14,000 2,064 15,344 500 609 1,110 3,784 3,655 6,486 7,595 2,65 VIII 2,557 15,900 9,3500 13,457 11,907 2,37 196 432 1,491 2,565 6,486 7,595 2,77 VIII 2,557 15,900 9,350 14,401 2,65 6,486 7,595 2,77 VIII 2,557 15,900 9,356 1,4301 2,65 1,70 2,05 1,70 XI 2,157 16,200 11,007 389 323 714 2,671 20 2,101 2,170	ŝ	WRR III	1.7.1	10,800	7,890	12,521	9,611	955	758	1,713	12.546	72	3,837	16,455	18,168	0.69	0.53	-5.647	-8.557
IV 1.085 9,960 3,060 11,045 4,145 261 41 302 3,492 24 348 3,864 4,167 2.65 0.99 6,878 IVI 1,144 19,500 14,300 2,064 15,344 500 609 1,110 3,784 36 2,665 6,486 7,595 2,772 2,022 15,009 VIII 2,557 16,200 2,060 4,649 2,793 16,100 3,784 36 6,416 7,595 2,772 1,202 1,509 VIII 2,557 16,200 17,300 17,907 2,793 11,807 281 1,910 2,759 1,70 1,020 1,920 VIII 2,557 16,300 17,300 18,477 11,907 2,81 1,491 2,671 2,050 4,49 3,76 2,67 1,649 1,509 1,6,69 1,6,69 1,6,69 1,6,69 1,6,69 1,6,69 1,6,69 2,67 1,6,69 2,67	IV 1,085 9,960 3,060 11,045 4,145 261 41 302 3,492 24 348 3,864 4,167 2.65 IVI 1,144 19,500 14,200 20.644 15,344 500 609 1,110 3,784 36 2,665 6,486 7,595 2.72 IVII 879 3,770 2,000 9,350 18,457 11,907 2.37 15,403 36 2,665 6,486 7,595 2.72 1.70 VIII 2,557 15,900 9,330 18,457 11,907 2.37 196 432 1,491 22 1,595 9,44 I/X 2,317 196 432 1,491 2671 20 2,665 6,486 7,595 3,76 XI 2,375 13,116 389 3,25 714 2,671 20 2,969 3,601 4,101 2,65 4,414 4,51 3,76 2,11 3,85 2,35	4	WRR IV	1,410	19,700	6,370	21,110	7,780	3,101	1,929	5.030	4,184	68	770	5.022	10,052	2.10	0.71	11.058	2.277
(VI 1,144 19,500 14,200 2.0644 15,344 500 609 1,110 3.784 36 2,665 6,486 7.395 2.72 2.02 13,049 (VII 879 3,770 2,066 4,649 2,939 564 541 1,105 945 38 641 1,624 2.72 2.02 1,309 (VII 2,557 15,900 9,330 18,457 11,907 237 196 432 1,345 28 1,524 1,956 9,44 6.09 1,501 (VII 2,557 15,900 9,330 13,182 381 73 1,345 28 1,524 1,956 9,44 6.09 16,501 (XI 1,087 16,200 13,116 339 325 714 2,671 20 2,729 1,70 1,656 2,47 1,564 (XI 2,375 16,300 13,16 389 325 714 2,671 2,669 3,44 <td>(VI 1,144 19,500 14,200 20,644 15,344 500 609 1,110 3,784 36 2,665 6,486 7,595 2,729 1,70 VII 879 3,770 2,060 4,649 2,939 564 541 1,105 3,78 641 (,624 2,729 1,70 VIII 2,557 15,900 9,330 18,457 11,907 2,71 154 1,524 1,556 9,44 XI 2,5710 2,060 44,216 31,116 389 325 714 2,671 20 2,620 4,140 4,598 3,76 XI 2,317 386 714 2,671 20 2,699 3,620 1,706 3,601 2,601 2,603 3,620 4,140 4,51 XI 2,377 16,300 18,675 2,347 38 3,76 2,701 2,601 2,011 2,601 2,002 4,141 4,51 3,52 2,414 <t< td=""><td>ŝ</td><td>WRR V</td><td>1,085</td><td>096'6</td><td>3,060</td><td>11,045</td><td>4,145</td><td>261</td><td>41</td><td>305</td><td>3,492</td><td>24</td><td>348</td><td>3,864</td><td>4,167</td><td>2.65</td><td>0.99</td><td>6,878</td><td>ġ</td></t<></td>	(VI 1,144 19,500 14,200 20,644 15,344 500 609 1,110 3,784 36 2,665 6,486 7,595 2,729 1,70 VII 879 3,770 2,060 4,649 2,939 564 541 1,105 3,78 641 (,624 2,729 1,70 VIII 2,557 15,900 9,330 18,457 11,907 2,71 154 1,524 1,556 9,44 XI 2,5710 2,060 44,216 31,116 389 325 714 2,671 20 2,620 4,140 4,598 3,76 XI 2,317 386 714 2,671 20 2,699 3,620 1,706 3,601 2,601 2,603 3,620 4,140 4,51 XI 2,377 16,300 18,675 2,347 38 3,76 2,701 2,601 2,011 2,601 2,002 4,141 4,51 3,52 2,414 <t< td=""><td>ŝ</td><td>WRR V</td><td>1,085</td><td>096'6</td><td>3,060</td><td>11,045</td><td>4,145</td><td>261</td><td>41</td><td>305</td><td>3,492</td><td>24</td><td>348</td><td>3,864</td><td>4,167</td><td>2.65</td><td>0.99</td><td>6,878</td><td>ġ</td></t<>	ŝ	WRR V	1,085	096'6	3,060	11,045	4,145	261	41	305	3,492	24	348	3,864	4,167	2.65	0.99	6,878	ġ
VII 879 3,770 2,060 4,649 2,939 564 541 1,105 945 38 641 1,624 2,729 1,70 1,02 1,920 VIII 2,557 15,000 9,330 18,457 11,907 2,37 196 4,32 1,345 28 1524 1,956 9,44 6.09 16,501 XY 1,062 15,000 17,382 13,182 381 78 458 1,491 29 2,620 4,140 4,598 3,76 2,871 12,684 XY 2,116 42,100 29,000 44,216 31,116 389 3,25 714 2,671 20 2,140 4,51 3,30 14,534 XY 2,375 16,300 11,300 18,675 13,667 33,650 4,140 4,51 3,30 14,534 XY 2,375 26,305 11,300 18,670 33,650 7,14 4,51 3,30 14,534 4,534	VII 879 3,770 2,060 4,649 2,939 564 541 1,105 945 38 641 1,624 2,729 1,70 VIII 2,557 15,900 9,330 18,457 11,907 237 196 432 1,345 28 1524 1,956 9,44 XI 2,116 42,100 12,000 44,216 31,116 389 325 714 2,671 20 4,420 4,988 3,76 XI 2,375 16,300 11,300 18,675 13,416 389 325 714 2,671 20 4,420 4,51 XI 1,300 18,675 13,475 258 2,451 2,603 3,682 1,401 45,90 3,682 16,001 2,600 3,682 1,41 4,51 XI 1,778 2561 13,675 258 2,444 2,671 20 2,605 2,163 2,163 2,163 2,163 2,163 2,163	Ŷ	WRR VI	441,1	19,500	14,200	20,644	15,344	<u>8</u>	Ş	1.110	3,784	36	2,665	6.486	265.7	2.72	2.02	13.049	7,749
VIII 2,557 15,000 9,350 18,457 11,907 237 196 432 1,345 28 152 1,524 1,956 9,44 6.09 16,501 1/2 1/2 1,567 12,000 17,282 13,182 381 78 458 1,491 29 2,620 4,140 4,598 3.76 2.87 12,684 1/2 1,568 1/2 1,578 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	VIII 2,557 15,000 9,350 18,457 11,907 2,37 196 432 1,445 28 152 1,524 1,956 9,44 IX 1,082 16,200 17,100 17,282 13,182 361 73 458 1,491 29 2,620 4,140 4,988 3.76 X 2,116 42,100 29,000 44,216 31,116 389 3.35 714 2,671 20 278 2,969 3,662 12,01 XI 2,375 16,300 11,300 18,675 13,475 258 3,511 20 265 3,441 4,51 XI 1,758 25,100 18,675 13,457 258 2,451 2,605 3,462 2,451 2,61 2,65 2,45 2,61 2,61 2,65 2,451 2,61 2,65 2,451 2,61 2,61 2,65 2,451 2,61 2,65 2,451 2,61 2,61 2,61	5	WRR VII	879	3,770	2,060	4.649	2,939	564	541	1.105	945	38	<u>Š</u>	1,624	2,729	1.70	1.08	1.920	012
IX 1.0x2 16.200 12.100 17.3x2 13.182 381 73 458 1.491 29 2.620 4,140 4.598 3.76 2.87 12.684 X 2.116 42.100 29.000 44.216 31,116 389 325 714 2.671 20 278 2.969 3.682 12.01 8.45 40.534 XI 2.375 16.300 11,300 18.675 13.675 258 263 3.620 4.441 4.51 3.30 14.534 XII 1.758 25.100 18.700 26.838 20.458 20.13 500 12.200 12.806 1.405 4.534 XII 1.758 25.100 18.700 26.6430 145.990 7.40 4.50 2.506 1.40 4.51 3.30 14.534 XII 1.778 58.00 12.650 7.14 12.656 2.10 14.052 14.052 XII 1.778 59.00 12	IX 1.0k2 16.200 12.100 17.2k2 13.182 381 73 458 1.491 29 2.620 4,140 4.598 3.76 XX 2.116 42.100 29,000 44.216 31.116 339 3.35 714 2.671 20 278 2.969 3.622 1.601 2.671 20 2.78 2.969 3.652 1.01 3.01 3.65 1.01 3.05 3.65 1.01 3.05 3.65 1.01 3.65 1.01 2.661 3.620 4.141 4.61 4.61 XII 1.758 2.55.100 18.670 2.658.8 2.0458 4.75 1.11 5.86 11.691 29 500 12.220 12.806 2.10 20.200 205.27.00 18.700 2.65.88 2.1691 29 500 12.205 12.910 2.65 20.202 2.05.43.00 1.45.900 7.430 4.998 12.428 59.285 4.14 12.655	so	WRR VIII	2,557	15,900	9,350	18,457	11,907	237	8	432	545.1	28	152	1,524	1,956	9.44	6.09	16,501	9,951
X 2,116 42,100 29,000 44,216 31,116 389 325 714 2,671 20 278 2,969 3,682 12,01 8,45 40,534 XI 2,375 16,300 11,300 18,675 13,675 258 263 5,000 4,141 4,51 3,30 14,534 XII 1,758 25,100 18,700 26,858 475 111 586 11,691 29 500 12,200 12,806 1,600 14,052 20,200 18,700 26,430 145,990 7,430 498 16,991 29 500 12,220 1,60 1,605 1,652 20,200 22,6430 145,990 7,430 4,98 12,428 59,885 414 12,655 7,2973 85,401 2,65 1,710 141,029	X 2.116 42,100 29,000 44,216 31,116 389 3.25 714 2.671 20 278 2.969 3.682 12.01 XI 2,375 16,300 11,300 18,675 13,675 258 26.3 521 2.913 42 665 3,620 4,141 4.51 XII 1,758 2.5.100 18,700 26,858 20,458 475 111 586 11.691 29 500 12.206 2.10 20,200 205,230 125,790 2.6,858 20,458 12,428 59,885 4,4 12.655 72,973 85,401 2.65 20,200 205,230 125,790 226,430 145,990 7,428 59,885 4,4 12.655 72,973 85,401 2.65 30,520 20,3530 11,87 500 12,655 72,973 85,401 2.65 30,520 15,790 226,430 145,900 7,428 59,8855 4,4 <t< td=""><td>0</td><td>WRR IX</td><td>1,0K2</td><td>16,200</td><td>12,100</td><td>17,282</td><td>13,182</td><td>18E</td><td>78</td><td>458</td><td>1.491</td><td>29</td><td>2,620</td><td>4,340</td><td>4,598</td><td>3.76</td><td>2.87</td><td>12.684</td><td>8,534</td></t<>	0	WRR IX	1,0K2	16,200	12,100	17,282	13,182	18E	78	458	1.491	29	2,620	4,340	4,598	3.76	2.87	12.684	8,534
XI 2.375 16,300 11,300 18,675 13,675 258 26.1 511 29,13 42 665 3,620 4,141 4.51 3.30 14,534 XII 1,758 25,100 18,700 26,858 20,458 475 111 586 11,691 29 500 12,220 12,806 2.10 1,602 14,052 20,200 226,430 145,990 7,430 4,998 12,428 59,885 414 12,655 72,973 85,401 2.65 1.71 141,029	XI 2.375 16,300 11,300 18,675 13,675 258 26,3 521 2.913 42 665 3,620 4,141 4.51 XII 1,758 25.100 18,700 26,858 20,458 475 1/1 536 11.691 29 500 12.206 2.10 20,200 206,23:0 125,790 226,430 145,990 7,430 4.998 12,428 59,885 4.14 12.655 72,973 85,401 2.65 stores: 1.*; The water demand in high economic growth scenario which is estimated based on the NEDA's projection is applied. 2.65 72,973 85,401 2.65	2	WRR X	2,116	42,100	29,000	44,216	31,116	389	325	714	2,671	20	278	2.969	3,682	12.01	8.45	40,534	27,434
XII 1.758 25.100 18.700 26.858 20.458 475 111 586 11.691 29 500 12.220 12.806 2.10 1.60 14.052 20.200 206,230 125,790 226,430 145,998 12.428 59,885 414 12.655 72,973 85,401 2.65 1.71 141.029	XII 1.758 25.100 18.700 26.858 20.458 475 111 586 11.691 29 500 12.220 12.806 2.10 20,200 206,230 125.790 226,430 145,990 7,430 4.998 12,428 59,885 414 12,655 72,973 85,401 2.65 soc:s: 1.*; The water demand in high economic growth scenario which is estimated based on the NEDA's projection is applied.	Ξ	WRR XI	2.375	16,300	11,300	18,675	13.675	258	263	521	2.913	Å	665	3,620	4,141	4.51	3.30	14.534	9,534
20,200 206,230 125,790 226,430 145,990 7,430 4,998 12,428 59,885 434 12,655 72,973 85,401 2.65 1.71 141.029	20,200 200,230 125,790 226,430 145,990 7,430 4,998 12,428 59,885 434 12,655 72,973 85,401 2.65 occs: 1.*; The water demand in high economic growth scenario which is estimated based on the NEDA's projection is applied.	2	WRR XII	1,758	25,100	18,700	26,858	20,458	475	11	586	169711	52	500	12.220	12.806	2.10	1.60	14.052	7.652
	Notes: 1.*, The water demand in high economic growth scenario which is estimated based on the NEDA's projection is applied.		Total	20,200	206,230	125,790	226,430	145,990	7,430	4,998	12.428	59,885	414	12,655	212,973	85,401	2.65	1.71	141.029	60,589

1,304 9,138 715 9,565 9,566 9,566 11,285 11,285 Water Balance (MCM/vear) Surface Water 3,217 1,624 061758 14 Depend. (5) (1) Ś 12.007 -2.097 13.742 8.204 16.813 13,666 41,963 814.418 65.830 8.474 16,285 19,912 2,423 Drpend. (F)-(F) 50% Ratio of Potential to Demand 2.47 1.32 7.24 3.65 3.65 3.81 3.81 5.72 2.95 2.95 5 \$ 5.4 Depend (SVC3) ŝ Surface Water 3,95 3.74 Depend (4)(13 50% 7,368 2,841 6,206 2,226 2,874 7,618 14,618 1,644 3,616 2.253 5.990 6.946 60.600 SFC23 μų. l'otal 2,611 7,457 3,113 3,113 2,151 2,551 2,551 1,359 1,359 1,359 1,620 1,902 6,373 49,860 (12)=(6)+ (10)+(11) Water Demand Subtotal-2 10.806 $\langle 0 \rangle$ Fishery Agricultural ۵%%%¤₹₹₹₹\$ 218 Livestock/ Water Demand (MCM/year)" Poulay ŝ 38,837 Irrigation 2.532 ê 10,740 Municipal Industrial Subtotal-1 (6) (7) (8)-(6)-(7) M&I Water Demand 3.310 170 140 955 3,101 7,430 50 % Depend. 80 % Depend. 145,990 4,498 11.335 9,611 4,145 15,344 13.182 31.116 7,780 2,939 11,907 13,675 20,458 (C)+(C)+(C) Surface Water (ota) (MCM/vear) 226,430 11.348 19.625 12.521 21,110 11.045 11.045 20,644 18,457 17,282 44,216 18,675 26,858 4,649 (7) (7) (7) als 3,250 8,510 6,370 6,370 6,370 9,550 9,550 9,550 9,550 11,300 11,300 11,300 125,790 Depend. ş Surface Wate Water Resources 10,100 16,800 10,800 19,700 9,960 19,500 3,770 15,900 42.100 16.300 25.100 206,230 Depend. ŝ ć 2,825 157,1 20,200 1,085 1,144 879 2,557 1,082 2,116 2,375 1,758 ?? Ground-Water Э Resources WRR VI Water WRR VIII WRR IX WRR X WRR XI WRR XII WRR VII Region WRR 11 WRR 111 WRR IV WRR V WRR I Total 4 2 금업 ŝ 20 90 \$ ź ___ **C**1

9

H - 59

ii) Case 2 : Low Economic Growth Scenario

Table H-8 SURFACE WATER DEMAND FOR LOAG RIVER BASIN (WRR I

6)

Case 1: High Economic Growth

1

	Actional Crown					(Unit : mill	lion m ³ /yea	ar)	
Sector	of Water Use			and analog — K ta (an ann ch ch	Year				Ratio in 2025
	•	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.1	0.2	0.3	0.4	0.6	0.8	1.0	0.1
	Industry	3.4	6.1	8.4	11.8	16.6	23.5	33.4	2.1
ii)Agricuture	Irrigation	1,329.8	1,341.1	1,514.1	1,515.8	1,515.8	1,533.0	1,551.5	97.5
· ·	Livestock	1.4	1.8	2.1	2.6	3.2	4,0	5.2	0.3
	(Fishery)	(10.2)	(17.2)	(18.4)	(19.2)	(19.9)	(20.2)	(22.2)	-
Gr	and Total	1,344.9	1,366.4	1,543.3	1,549.8	1,556.1	1,581.4	1,613.3	
	Total								
(Excluding wa	ter demand for fishery	1,334.7	1,349.2	1,524.9	1,530.5	1,536.1	1,561.3	1,591.1	100.0

Case 2: Low Economic Growth

					((Unit : mill	ion m ³ /yea	1)	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.1	0.2	0.3	0.4	0.6	0.8	1.0	0.1
	Industry	3.4	5.4	7.6	9.7	11.9	14.2	16.2	1.9
ii)Agricuture	Inigation	1,329.8	1,306.8	1,364.5	1,230.5	1,108.8	981.8	843.6	97.7
	Livestock	1.4	1.7	1.8	2.0	2.1	2.2	2.3	0.3
	(Fishery)	(10.2)	(16.5)	(17.3)	(17.9)	(18.4)	(18.7)	(18.9)	-
Gr	and Total	1,344.9	1,330.6	1,391.5	1,260.5	1,141.8	1,017.7	882,0	
	Total								
(Excluding wa	ter demand for fishery	1,334.7	1,314.1	1,374.2	1,242.6	1,123.4	999.0	863.1	100.0

Table H-9 SURFACE WATER DEMAND FOR ABULOG RIVER BASIN : WRR 1

Case 1: High Economic Growth

					i	(Unit : mili	lion m ³ /yea	ar)	
Sector	of Water Use				Year				Ratio in 2025
		1995	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	5.1	17.0	23.9	33.0	45.2	62.4	87.2	8.1
ii)Agricuture	Irrigation	427.7	616.2	661.5	672.0	672.0	805.2	984.7	91.7
	Livestock	0.7	0.7	0.8	1.1	1.3	1.7	2.2	0.2
	(Fishery)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Gr	and Total	433.4	633.9	686.2	706.1	718.5	869.3	1,074.1	
	Total		•··· ···- · • •						
(Excluding wa	ter demand for fishery	433.4	633.9	686.2	706.1	718.5	869.3	1,074.1	100.0

Case 2: Low Economic Growth

					(Unit : mill	ion m /yea	t)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	5.1	13.4	21.6	27.0	32.4	37.7	42.3	7.3
ii)Agricuture	Irrigation	427.7	600,4	596.1	545.5	491.6	515.7	535.4	92.5
, C	Livestock	0.7	0.7	0.7	0.8	0.9	0.9	1.0	0.2
	(Fishery)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	(0.0)	-
Gr	and Total	433.4	614.5	618.4	573.4	524.8	554.3	578.7	
	Total								
(Excluding wa	ter demand for fishery	433.4	614.5	618.4	573.4	524.8	554.3	578.7	100.0

H - 60

						(Unit : mi	llion m ³ /ye	ar)	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	1.1	1.1	1.1	1.1	1.1	1.1	18.0	0.1
ii)Agricuture	freigation	4,312.0	6,654.0	7,703.0	8,995.0	10,904.0	12,523.0	14,141.0	99.7
	Livestock	8.0	10.4	11.0	13.6	16.9	21.5	28.5	0.2
	Fishery	(54.6)	(74.9)	(80.2)	(83.8)	(86.8)	(87.8)	(96.7)	· -
Gi	rand Total	4,375.7	6,740.4	7,795.3	9,093.5	11,008.8	12,633.4	14,284.2	
	Total								-
(Excluding wa	ter demand for fishery	4,321.1	6,665.5	7,715.1	9,009.7	10,922.0	12,545.6	14,187.5	100.0

Case 1: High Economic Growth

Ţ

Case 2: Low Economic Growth

						(Unit : mil	lion m ³ /yea	31)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	1.1	1.1	1.1	1.1	1.1	1.1	1.1	0.0
ii)Agricuture	Irrigation	4,312.0	6,654.0	7,703.0	7,996.0	8,286.0	8,286.0	8,286.0	99.8
	Livestock	8,0	10.4	10.8	11.0	12.3	13.6	14.9	0.2
	Fishery	(54.6)	(71.9)	(75.3)	(78.1)	(80.2)	(81.7)	(82.6)	
Gr	and Total	4,375.7	6,737.4	7,790.2	8,086.2	8,379.6	8,382.4	8,384.6	
	Total								-
(Excluding way	ter demand for fishery	4,321.1	6,665.5	7,714.9	8,008.1	8,299.4	8,300.7	8,302.0	100.0

Table H-11 SURFACE WATER DEMAND FOR ABRA RIVER BASIN : WRR II

					(Unit : mill	lion m ³ /yea	н)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	19.4	19.4	19.4	19.4	19.4	19.4	19.4	5.8
ii)Agricuture	Inigation	215.0	248.0	284.0	295.0	306.0	308.0	311.0	93.5
	Livestock	0.7	0.9	0.9	1.1	1.4	1.7	2.3	0.7
	Fishery	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)	(0.4)	(0.4)	-
Gr	and Total	235.3	268.6	304.6	315.8	327.1	329.5	333.1	
	Total								-
(Excluding wat	ter demand for fishery	235.1	268.3	304.3	315.5	326.8	329.1	332.7	100.0

Case 1: High Economic Growth

	·				((Unit : mill	ion m ³ /yea	ar)	
Sector	of Water Use			· · · ·	Year				Ratio in 2029
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&l	Municipal	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
	Industry	19.4	19.4	19.4	19.4	19.4	19.4	19.4	6.0
ii)Agricuture	Irrigation	215.0	248.0	284.0	293.0	302.0	302,0	302.0	93.6
	Livestock	0.7	0.9	0.9	1.0	1.0	1.1	1.2	0.4
	Fishery	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	(0.3)	-
Gr	rand Total	235.3	268.6	304.6	313.7	322.7	322.8	322.9	
	Total								
(Excluding wat	ter demand for fishery	235.1	268.3	304.3	313.4	322.4	322.5	322.6	100.0

Table II-12 SURFACE WATER DEMAND FOR AGNO RIVER BASIN : WRR III

Case 1: High Economic Growth

c	Monoral Artesta					(Unit : mil	lion m ³ /yea	ห)	
Sector	of Water Use		<u></u>		Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	· (%)
i) M&I	Municipal	1.0	18.2	40.3	75.1	129.4	225.5	336.9	5.9
	Industry	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.0
ii)Agricuture	Irrigation	1,281.0	2,314.0	3,270.0	3,677.0	4,329.0	4,833.0	5,377.0	93.8
	Livestock	4.3	6.0	6.5	7.9	9.6	12.1	15.8	0.3
	Fishery	(249.8)	(330.7)	(353.9)	(369.7)	(383.2)	(387.7)	(426.8)	-
Gi	and Total	1,536.8	2,669.6	3,671.4	4,130.4	4,851.9	5,459.0	6,157.2	
• ·· ···	Total								-
(Excluding wa	ter demand for fishery	1,287.0	2,338.9	3,317.5	3,760.7	4,468.7	5,071.3	5,730.4	100.0

Case 2: Low Economic Growth

					((Unit : mill	tion m ³ /yea	ut)	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	1.0	18.3	40.6	71.9	122.2	211.1	307.4	9.5
	Industry	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.0
ii)Agricuture	Irrigation	1,281.0	2,254.7	2,946.9	2,985.0	3,166.6	3,095.1	2,923.7	90.3
	Livestock	4.3	5.8	5.7	6.1	6.4	6.7	7.0	0.2
	Fishery	(249.8)	(317.5)	(332.4)	(344.6)	(353.8)	(360.6)	(364.5)	-
Gı	and Total	1,536.8	2,597.0	3,326.3	3,408.3	3,649.7	3,674.2	3,603.2	
	Total		· · · · · · · · · · · · · · · · · · ·						-
(Excluding wa	ter demand for fishery	1,287.0	2,279.5	2,993.9	3,063.7	3,295.9	3,313.6	3,238.7	100.0

Table H-13 SURFACE WATER DEMAND FOR PAMPANGA RIVER BASIN :WRR III

Case 1: High Economic Growth

C						(Unit : mil	tion m ³ /ye	ar)	
Sector	of Water Use				Year				Ratio in 2025
	r	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&1	Municipal	0.0	4.2	10.8	64.0	123.1	177.3	266.2	4.2
	Industry	14.1	14.1	14.1	14.1	14.1	14.1	14.1	0.2
ii)Agricuture	Infgation	2,205.0	3,859.0	4,973.0	5,234.0	5,634.0	5,803.0	5,972.0	94.7
	Livestock	10.0	14.7	16.0	21.0	27.5	36.7	50.8	0.8
	Fishery	1,559.8	2,234.7	2,391.5	2,498.3	2,589.1	2,619.6	2,884.1	-
GI	rand Total	3,788.9	6,126.7	7,405.4	7,831.4	8,387.8	8,650.7	9,187.2	
	Total	*****							_
(Excluding wa	ter demand for fishery	2,229.1	3,892.0	5,013.9	5,333.1	5,798.7	6,031.1	6,303.1	100.0

Case 2: Low F	conomic Growth					(Unit : mil	llion m ³ /ye	ar)	. *
Sector	of Water Use		•		Year	<u> </u>			Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	4.9	12.3	48.4	88.1	107.0	122.8	2.2
	Industry	14.1	14.1	14.1	14.1	14.1	14.1	4.1	0.3
ii)Agricuture	Irrigation	2,205.0	3,859.0	4,973.0	5,121.0	5,352.0	5,352.0	5,352.0	97.1
-	Livestock	10.0		15.4	16.1	18.6	21.1	23.5	0.4
	Fishery	(1,559.8)	(2,145.2)	(2,246.0)	(2,328.4)	(2,390.3)	(2,436.2)	(2,462.6)	· –
Gi	rand Total	3,788.9	6,037.8	7,260.8	7,528.0	7,863.1	7,930.4	7,975.0	•
	Total								
(Excluding wa	ter demand for fishery	2,229.1	3,892.6	5,014.8	5,199.6	5,472.8	5,494.2	5,512.4	100.0

Table II-14 SURFACE WATER DEMAND FOR PASIG-LAGUNA BAY BASIN ; WRR IV

Case 1: High Economic Growth

0

.

Sactor	of Water Use	·	·			(Unit : mil	lion m'/yea	<u>11)</u>	
action	of water Use			= =	Year				Ratio in 2025
• ·· · · · · · · · · · · · · · · · · ·		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0
	Industry	223.3	200.0	150.0	100.0	50.0	25.0	0.0	0.0
ii)Agricuture	Irrigation	149.0	255.0	278.0	300.0	337.0	363.0	390.0	97.6
	Livestock	1.7	2.7	3.0	3.9	5.2	6.9	9.6	2.4
	Fishery	85.9	113.0	120.9	126.3	130.9	132.4	145.8	•
Gi	and Total	459.9	570.7	551.9	530.2	523.1	527.3	545.4	
	Total								
(Excluding wa	ter demand for fishery	374.0	457.7	431.0	403.9	392.2	394.9	399.6	0.001

Case 2: Low Economic Growth

					(Unit : mill	ion m ³ /yea	ır)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	0.0	200,0	150.0	100.0	50.0	25.0	0.0	0.0
ii)Agricuture	Irrigation	149.0	255.0	278.0	283.0	293.8	293.8	293.8	98.5
	Livestock	1.7	2.7	2.8	3.0	3.4	3.9	4.4	1.5
	Fishery	(85.9)	(108.4)	(113.5)	(117.7)	(120.8)	(123.2)	(124.5)	
Gr	and Total	236.6	566.1	544.3	503.7	468.0	445.9	422.7	••••••••••••••••••••••••••••••••••••••
	Total								-
(Excluding wat	ter demand for fishery	150.7	457.7	430.8	386.0	347.2	322.7	298.2	100.0

Table H-15 SURFACE WATER DEMAND FOR AMNAY-PATRICK : WRR IV

Case 1: High Economic Growth

	C 111 / 11					Unit : mill	ion m ⁻ /yea	()	
Sector	of Water Use				Year				Ratio in 202
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&1	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0,0
ii)Agricuture	Irrigation	53.0	116.0	134.0	238.0	397.0	549.0	702.0	92.6
	Livestock	0.8	1.1	1.1	1.3	1.6	2.0	2.6	0,4
	Fishery	(65.3)	(86.4)	(92.5)	(96.6)	(100.1)	(101.3)	(111.5)	-
Gr	and Total	119.2	203.6	227.7	336.0	498.8	652.4	816.2	
	Total								
(Excluding wat	ter demand for fishery	53.9	117.2	135.2	239.4	398.7	551.1	704.7	100.0

·					. (Unit : mill	ion m³/yea	r)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ií)Agricuture	Irrigation	53.0	116.0	134.0	137.0	144.0	144.0	144.0	99.0
	Livestock	0.8	1.1	1.1	1.4	1.2	1.3	1.4	1.0
	Fishery	(65.3)	(83.0)	(86.9)	(90.1)	(92.5)	(94.2)	(95.3)	
Gr	and Total	119.2	200.2	222.1	228.3	237.8	239.6	240.8	
	Total								
(Excluding wat	ter demand for fishery	53.9	117.2	135.2	138.2	145.3	145.4	145.5	100.0

Table II-16 SURFACE WATER DEMAND FOR BICOL RIVER BASIN ; WRR V

()

ę,

Case 1: High Economic Growth

					((Unit : mill	tion m ⁷ /yea	л)	
Sector	of Water Use				Year				Ratio in 2025
	•	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	2.1	2.1	2.1	2.1	2.1	2.1	2.1	0.1
ii)Agricuture	Irrigation	616.0	794.0	997.0	1,170.0	1,397.0	1,570.0	1,742.0	99.2
-	Livestock	3.5	4.5	4.7	5.8	7.3	9.3	12.4	0.7
	Fishery	(59.8)	(83.3)	(89.1)	(93.1)	(96.5)	(97.6)	(107.4)	-
Gı	and Total	681.4	\$83.9	1,092.9	1,271.0	1,502.9	1,679.0	1,863.9	
	Total							************	•
(Excluding wa	ter demand for fishery	621.6	800.6	1,003.8	1,177.9	1,406.4	1,581.4	1,756.5	100.0

Case 2: Low Economic Growth

						Unit : mill	lion m ³ /yea	ir)	
Sector	of Water Use				Year				Ratio in 2025
	···	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.2
	Industry	2.1	2.1	2.1	2.1	2.1	2.1	14.8	1.3
ii)Agricuture	Irrigation	616.0	794.0	997.0	1,099.0	1,155.0	1,155.0	1,155.0	98.0
	Livestock	3.5	4.5	4.6	4.7	5.3	5.8	6.4	0.5
	Fishery	(59.8)	(79.9)	(83.7)	(86.8)	(89.1)	(90.8)	(91.8)	-
Gī	rand Total	681.4	880.5	1,087.4	1,192.6	1,251.5	1,253.7	1,270.2	
	Total								
(Excluding wa	ter demand for fishery	621.6	800.6	1,003.7	1,105.8	1,162.4	1,162.9	1,178.4	100.0

Table H-17 SURFACE WATER DEMAND FOR PANAY RIVER BASIN :WRR VI

Case 1: High Economic Growth

Cust It Ingu I					(Unit : mill	ion m ³ /yea	r)	
Sector	of Water Use			••••	Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&1	Municipal	2.3	4.4	7.2	10.8	15.2	20.3	26.2	8.1
	Industry	1.9	1.9	1.9	1.9	1.9	1.9	1.9	0.6
ii)Agricuture	Irrigation	52.0	156.0	226.0	249.0	267.0	280.0	293.0	90.3
	Livestock	0.9	1.2	1.3	1.6	2.0	2.6	3.4	1.0
	Fishery	(203.2)	(275.7)	(295.2)	(308.4)	(319.6)	(323.4)	(356.0)	-
Gr	and Total	260.3	439.2	531.6	571.7	605.7	628.2	680.5	
	Total						· •		-
(Excluding wat	ter demand for fishery	57.1	163.5	236.4	263.3	286.1	304.8	324.5	100.0

					(Unit : mill	ion m'/yea	<u>r)</u>	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	2.3	4.4	7.2	10.8	15.2	20.3	26.2	9.5
	Industry	1.9	1.9	1.9	1.9	1.9	1.9	1.9	0.7
ii)Agricuture	Irrigation	52.0	156.0	226.0	241.0	246.0	246.0	246.0	89.2
	Livestock	0.9	1.2	1.3	1.3	1.4	1.6	1.8	0.7
	Fishery	(203.2)	(264.8)	(277.3)	(287.4)	(295.1)	(300.7)	(304.0)	-
Gi	rand Total	260.3	428.3	513.7	542.4	559.6	570.5	579.9	
	Total								
(Excluding wa	ter demand for fishery	57.1	163.5	236.4	255.0	264.5	269.8	275.9	100.0

Table H-18 SURFACE WATER DEMAND FOR JALAUR RIVER BASIN (WRR VI

			(Unit : million m ³ /year)									
Sector	of Water Use			,	Year				Rotio in 2025			
		1996	2000	2005	2010	2015	2020	2025	(%)			
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
	Industry	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.0			
ii)Agricuture	Infigation	216.0	319.0	456.0	593.0	746.0	878.0	1,010.0	98.6			
	Livestock	3.3	4.7	5.1	6.4	8.0	10.3	13.7	1.3			
	Fishery	(244.7)	(337.5)	(361.2)	(377.4)	(391.1)	(395.7)	(435.6)	-			
Gr	rand Total	464.2	661.4	822.5	977.0	1,145.3	1,284.2	1,459.5				
	Total											
(Excluding wa	ter demand for fishery	219.5	323.9	461.3	599.6	754.2	888.5	1,023.9	100.0			

Case 1: High Economic Growth

 \bigcirc

<u>.</u>

Case 2: Low Economic Growth

					(Unit : mili	ion m ³ /yea	1)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&1	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.0
ii)Agricuture	Irrigation	216.0	319.0	456,0	593.0	614.0	614.0	614.0	99.0
	Livestock	3.3	4.5	4.5	5.0	5.4	5.7	6.0	1.0
	Fishery	(244.7)	(324.0)	(339.3)	(351.7)	(361.1)	(368.0)	(372.0)	-
Gr	and Total	464.2	647.7	800.0	949.9	980.7	987.9	992.2	
	Total								
(Excluding wat	ter demand for fishery	219.5	323.7	460.7	598.2	619.6	619.9	620.2	100.0

Table H-19 SURFACE WATER DEMAND FOR ILOG-HILABANGAN : WRR VI

Case 1: High Economic Growth

Case y. englis					(Unit : mill	ion m³/yea	ir)	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	140.7	140.7	140.7	140.7	140.7	140.7	140.7	22.0
ii)Agricuture	Irrigation	2.0	2.0	73.0	193.0	294.0	396. 0	497.0	77.6
	Livestock	0.8	0.1	1.1	1.4	1.8	2.3	3.1	0.5
	Fishery	(173.4)	(254.3)	(272.1)	(284.3)	(294.6)	(298.1)	(328.2)	-
Gī	and Total	316.9	398.0	486.9	619.4	731.1	837.1	969.0	
	Total								•
(Excluding wat	ter demand for fishery	43.5	143.7	214.8	335.1	436.5	539.0	640.8	100.0

Case 2: Low Economic Growth

	Conomic Grown				(Unit : mill	ion m ³ /yea	t)	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	140.7	140.7	140.7	140.7	140.7	140.7	140.7	52.7
ii)Agricutore	Irrigation	2.0	2.0	73.0	125.0	125.0	125.0	125.0	46.8
	Livestock	0.8	1.0	1.0	1.1	1.2	1.3	1.4	0.5
	Fishery	(173.4)	(244.1)	(255.6)	(264.9)	(272.0)	(277.2)	(280.2)	-
Gi	and Total	316.9	387.8	470.3	531.7	538.9	544.2	547.3	·····
	Total								
(Excluding wat	ter demand for fishery.	143.5	143.7	214.7	266.8	266.9	267.0	267.1	100.0

.

Table H-20 SURFACE WATER DEMAND FOR AGUSAN RIVER BASIN : WRR X

Case 1: High Economic Growth

					•	(Unit : mill	lion m ³ /yea	n)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	1.8	1.8	1.8	1.8	1.8	1.8	1.8	0.1
ii)Agricuture	Inigation	310.0	495.0	859.0	1,099.0	1,421.0	1,730.0	2,040.0	99.6
	Livestock	1.8	2,4	2.5	3.2	4.1	5.4	7.3	0.4
	Fishery	(66.3)	(94.3)	(100.9)	(105.4)	(109.3)	(110.6)	(121.7)	-
Gi	rand Total	379.9	593.5	964.2	1,209.4	1,536.2	1,847.8	2,170.8	
	Total								-
(Excluding wa	ter demand for fishery	313.6	499.2	863.3	1,104.0	1,426.9	1,737.2	2,049.1	100.0

Case 2: Low Economic Growth

						Unit : mill	lion m ³ /yea	ar)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	1.8	1.8	1.8	1.8	1.8	1.8	1,8	0.2
ii)Agricuture	Inigation	310.0	495.0	859.0	893.0	906.0	906.0	906.0	99.4
	Livestock	1.8	2.3	2.2	2.5	2.7	3.0	3.2	0.4
	Fishery	(66.3)	(90.5)	(94.8)	(98.3)	(100.9)	(102.8)	(103.9)	-
Gr	rand Total	379.9	589.6	957.8	995.6	1,011.4	1,013.6	1,014.9	
	Total								-
(Excluding wa	ter demand for fishery	313.6	499.1	863.0	897.3	910.5	910.8	911.0	100.0

Table H-21 SURFACE WATER DEMAND FOR TAGOLOAN RIVER BASIN : WRR X

Case 1: High Economic Growth

					(Unit : milt	ion m ³ /yea	r)	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.8	4.7	8.2	12.9	17.2	22.0	33.9	19.4
	Industry	29.7	29.7	29.7	29.7	29.7	29.7	29.7	17.0
ii)Agricuture	Irrigation	7.0	40.0	58.0	70.0	82.0	94.0	105.0	60.1
-	Livestock	1.5	2.2	2.4	2.9	3.6	4.6	6.0	3.4
	Fishery	(27.0)	(39.8)	(42.6)	(44.5)	(46.1)	(46.7)	(51.4)) -
Gi	and Total	66.0	116.4	140.9	160.0	178.6	197.0	226.0	
	Total								-
(Excluding wa	ter demand for fishery	39.0	76.6	98.3	115.5	132.5	150.3	174.6	100.0

					(Unit : mill	ion m /yea	r)	1.
Sector	of Water Use				Year				Ratio in 202
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.8	4.7	8.2	12.9	17.2	21.8	29.8	23.5
	Industry	29.7	29.7	29.7	29.7	29.7	29.7	29.7	23.4
ii)Agricuture	Irrigation	7.0	40.0	58.0	62.0	64.0	64.0	64.0	50.5
	Livestock	1.5	2.2	2.3	2.4	2.7	2.9	3.2	2.5
	Fishery	(27.0)	(38.2)	(40.0)	(41.5)	(42.6)	(43.4)	(43.9)	-
G	rand Total	66.0	114.8	138.2	148.5	156.2	161.8	170.6	
	Total								
(Excluding wa	ter demand for fishery	39.0	76.6	98.2	107.0	113.6	118.4	126.7	100.0

Table II-22 SURFACE WATER DEMAND FOR CAGAYAN DE ORO RIVER BASIN : WRR X

• • • • • • • • • • • • • • • • • • •					(Unit : mitl	ion m ³ /yea	(I)	
Sector	of Water Use				Year		·····		Ratio in 2025
·····		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	1.8	10.4	18.1	28.4	37.7	47.9	71.1	24.7
	Industry	39.4	39,4	39.4	39.4	39.4	39.4	39.4	13.7
ii)Agricuture	litigation	3.0	39.0	73.0	95.0	121.0	148.0	174.0	60.3
	Livestock	3.1	1.5	1.6	1.9	2.4	3.0	3.9	1,4
	Fishery	(1.2)	(1.6)	(1.7)	(1.8)	(1.9)	(1.9)	(2.1)	-
Gr	and Total	46.5	91.9	133.8	166.5	202.4	240.2	290.5	
	Total					· - · · · · · · ·			
(Excluding wat	ter demand for fishery	45.3	90.3	132.1	164.7	200.5	238.3	288.4	100.0

Case 1: High Economic Growth

٩

1

Case 2: Low Economic Growth

						Unit : mill	ion m ³ /yea	r)	
Sector	of Water Use				Year				Ratio in 2025
<u></u>		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	1.8	10.4	18.1	28.4	37.7	47.7	65.3	35.5
	Industry	39.4	39.4	39.4	39.4	39.4	39.4	39.4	21.4
ii)Agricuture	Inigation	3.0	39.0	73.0	77.0	77.0	77.0	77.0	41.9
	Livestock	1.1	1.5	1.6	1.6	1.8	1.9	2.1	1.1
	Fishery	(1.2)	(1.5)	(1.6)	(1.7)	(1.7)	(1.7)	(1.8)	
Gr	rand Total	46.5	91.8	133.7	148.1	157.6	167.7	185.6	
	Total								
(Excluding wat	ter demand for fishery	45.3	90.3	132.1	146.4	155.9	166.0	183.8	100.0

Table H-23 SURFACE WATER DEMAND FOR DAVAO RIVER BASIN : WRR XI

Case 1: High Feonomic Growth

						Unit : mill	lion m ³ /yea	(1)	
Sector	of Water Use				Year				Ratio in 2025
 		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&l	Municipal	7.6	15.5	27.0	40.5	55.6	72.3	90.6	25.2
	Industry	10.6	10.6	10.6	10.6	10.6	10.6	10.6	3.0
ii)Agricuture	Irrigation	17.0	50.0	91.0	125.0	165.0	203.0	241.0	67.1
	Livestock	3.8	5.4	5.8	7.4	9.5	12.4	16.9	4.7
	Fishery	(74.2)	(105.7)	(113.1)	(118.2)	(122.5)	(123.9)	(136.4)	
Gr	and Total	113.2	187.2	247.5	301.7	363.2	422.2	495.5	
	Total						······································		-
(Excluding wat	ter demand for fishery	39.0	81.5	134.4	183.5	240.7	298.3	359.1	100.0

Case 2: Low Economic Growth

Castar	- C NUL - L L		<u> </u>			Unit : mill	ion m ³ /yea	<u>()</u>	
Sector	of Water Use				Year				Ratio in 20
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	7.6	15.5	27.0	40.5	55.6	72.3	90.6	43.1
	Industry	10.6	10.6	10.6	10.6	10.6	10.6	10.6	5.0
ii)Agricuture	Irrigation	17.0	50.0	91.0	99.0	101.0	101.0	101.0	48.0
	Livestock	3.8	5.3	5.6	5.8	6.6	7.4	8.2	3.9
	Fishery	(74.2)	(101.5)	(106.2)	(110.1)	(113.1)	(115.2)	(116.5)	
G	and Total	113.2	182.9	240.4	266.0	286.9	306.5	326.9	
	Total								-
(Excluding wa	ter demand for fishery	39.0	81.4	134.2	155.9	173.8	191.3	210.4	100.0

H - 67

Table 11-24 SURFACE WATER DEMAND FOR TAGUM-LIBUGANON RIVER BASIN : WRR XI

()

Case 1: High Economic Growth

	conomic Growin				(Unit : mill	ion m ³ /yea	ı r)	
Sector	of Water Use				Year				Ratio in 2025
Beeven		1996	2000	2005	2010	2015	2020	2025	(%)
j) M&I	Municipal	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
	Industry	39.1	39.1	39.1	39.1	39.1	39.1	39.1	4.1
ji)Agricuture	Inigation	224.0	230.0	238.0	359.0	543.0	725.0	906.0	94.9
	Livestock	2.1	2.9	3.1	4.0	5.1	6.7	9.1	1.0
	Fishery	(55.0)	(71.8)	(76.8)	(80.3)	(83,2)	(84.1)	(92.6)	-
Gr	rand Total	320.2	343.8	357.0	482.4	670.4	854.9	1,046.8	
(Excluding wa	Total ter demand for fishery	265.2	272.0	280.2	402.1	587.2	770.8	954,2	100.0

Case 2: Low Economic Growth

Case 2, 1700 17	Contract Circletter				(Unit : mill	ion m ³ /yea	r)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
.,	Industry	39.1	39.1	39.1	39.1	39.1	39.1	39.1	13.7
ii)Agricuture	Irrigation	224.0	230.0	238.0	239.0	241.0	241.0	241.0	84.7
	Livestock	2.1	2.9	3.0	3.1	3.5	4.0	4.4	1.5
	Fishery	(55.0)	(68.9)	(72.2)	(74.8)	(76.8)	(78.3)	(79.1)	•
Gr	and Total	320.2	340.9	352.3	356.0	360.4	362.4	363.6	
	Total				•				
(Excluding wat	ter demand for fishery	265.2	272.0	280.1	281.2	283.6	284.1	284.5	100.0

Table H-25 SURFACE WATER DEMAND FOR BUAYAN-MALUNGUN RIVER BASIN : WRR XI

Case 1: High Economic Growth

Case 1: High I	Economic Growth				(Unit : mill	ion m³/yea	r)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&1	Municipal	1.0	2.0	3.5	5.3	7.3	9.5	11.9	1.7
	Industry	129.1	129.1	129.1	129.1	129.1	129.1	129.1	18.4
ii)Agricuture	Irrigation	57.0	61.0	73.0	161.0	294.0	423.0	552.0	78.8
, <u>c</u> ,	Livestock	2.0	2.7	2.8	3.5	4.4	5.7	7.6	1.1
	Fishery	(3.4)	(4.4)	(4.8)	(5.0)	(5.2)	(5.2)	(5.7)	-
Gī	rand Total	192.5	199.2	213.2	303.9	440.0	572.5	706.3	
(Excluding wa	Total ter demand for fishery	189.1	194.8	208.4	298.9	434.8	567.3	700.6	100.0

Cusc 2, 1500 1.	conosine virow ni				(Unit : mil)	ion m'/yea	r)	
Sector	of Water Use				Year			R	atio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	1.0	2.0	3.5	5.3	7.3	9.5	11.9	5.3
	Industry	129.1	129.1	129.1	129.1	129.1	129.1	129.1	57.9
ii)Agricuture	Irrigation	57.0	61.0	73.0	74.0	78.0	78.0	78.0	35.0
	Livestock	2.0	2.7	2.7	2.8	3.2	3.5	3.9	1.7
	Fishery	(3.4)	(4.3)	(4.5)	(4.6)	(4.8)	(4.8)	(4.9)	-
Gi	and Total	192.5	199.1	212.8	215.8	222.4	224.9	227.8	
(Excluding wa	Total ter demand for fishery	189.1	194.8	208.3	211.2	217.6	220.1	222.9	100.0

Table H-26 SURFACE WATER DEMAND FOR AGUS RIVER BASIN : WRR XH

					((Unit : mil	lion m ³ /yea	ir)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	9,0	21.6	57.3	103.5	7.0
	Industry	72,2	72.2	72.2	72.2	72.2	72.2	72.2	4.9
ii)Agricuture	Irrigation	71.0	315.0	553.0	715.0	920.0	1,114.0	1,308.0	87.9
	Livestock	1.6	2.2	2.3	2.7	3.2	3.8	4.8	0.3
	Fishery	(228.2)	(333.0)	(356.3)	(372.2)	(385.8)	(390.3)	(429.7)	-
Gr	and Total	373.0	722,4	983.8	1,171.1	1,402.8	1,637.6	1,918.2	
	Total								-
(Excluding wat	ter demand for fishery	144.8	389.4	627.5	798,9	1.017.0	1,247.3	1,488.5	100.0

Case 1: High Economic Growth

3

B

I

Case 2: Low Economic Growth

						(Unit : mil	lion m ³ /yea))	
Sector	of Water Use				Year				Ratio in 2025
	-	1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	9.0	21.6	57.3	103.5	13.3
	Industry	72.2	72.2	72.2	72.2	72.2	72.2	72.2	9.3
ii)Agricuture	Irrigation	71.0	315.0	553.0	587.0	597.0	597.0	597.0	77.0
	Livestock	1.6	2.2	2.3	2.3	2.5	2.7	2.9	0.4
	Fishery	(228.2)	(319.6)	(334.6)	(346.9)	(356.1)	(363.0)	(366.9)	
Gī	and Total	373.0	709.0	962.1	1,017.4	1,049.4	1,092.2	1,142.5	
	Total							· ` · · · ·	
(Excluding wat	ter demand for fishery]	144.8	389.4	627.5	670.5	693.3	729.2	775,6	100.0

Table H-27 SURFACE WATER DEMAND FOR MINDANAO RIVER BASIN : WRR XH

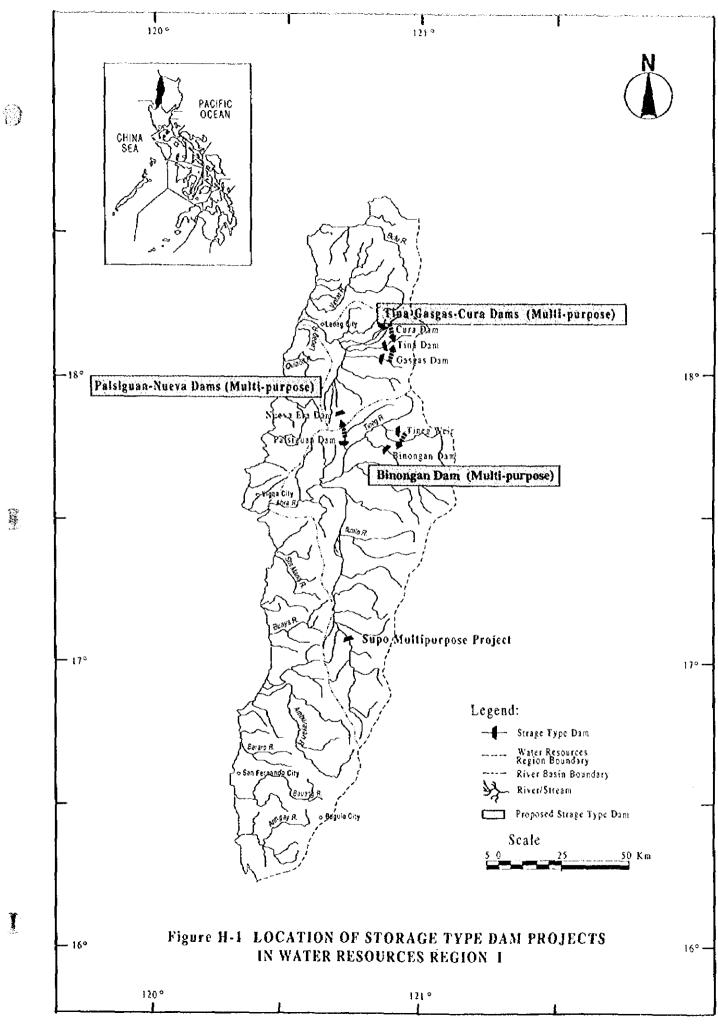
Case 1: High Economic Growth

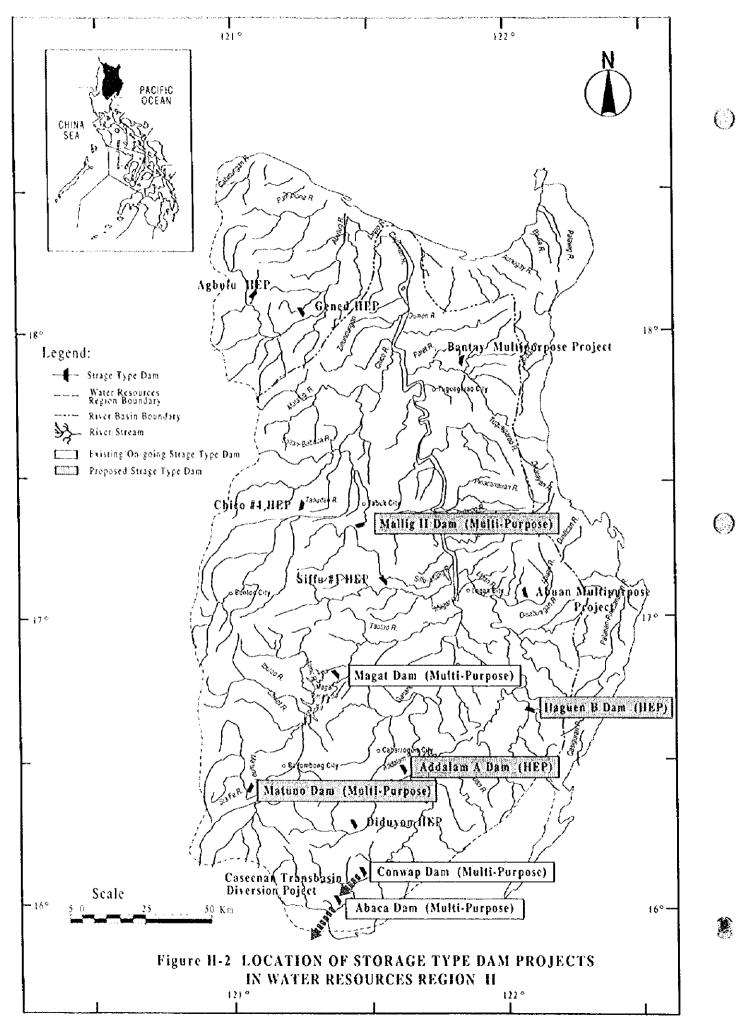
						(Unit : mil	ilion m ³ /ye	ar)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	(%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.9	1.2	0.0
	Industry	9.6	9.6	9.6	9.6	9.6	9.6	9.6	0.1
ii)Agricuture	Irrigation	2,387.0	4,082.0	6,203.0	7,613.0	9,558.0	11,557.0	13,456.0	99.8
	Livestock	6.1	7.7	8.0	9.8	12.1	15.3	20.2	0.1
	Fishery	(40.0)	(54.8)	(58.6)	(61.3)	(63.5)	(64.2)	(70.7)	-
Gr	rand Total	2,442.7	4,154.1	6,279.2	7.693.7	9,643.2	11,647.0	13,557.7	
	Total			`		···· · · <u>·····</u> ·····	· · · · · · · · · · · ·		-
(Excluding way	ter demand for fishery	2,402.7	4,099.3	6.220.6	7.632.4	9,579.7	11,582.8	13,487.0	100.0

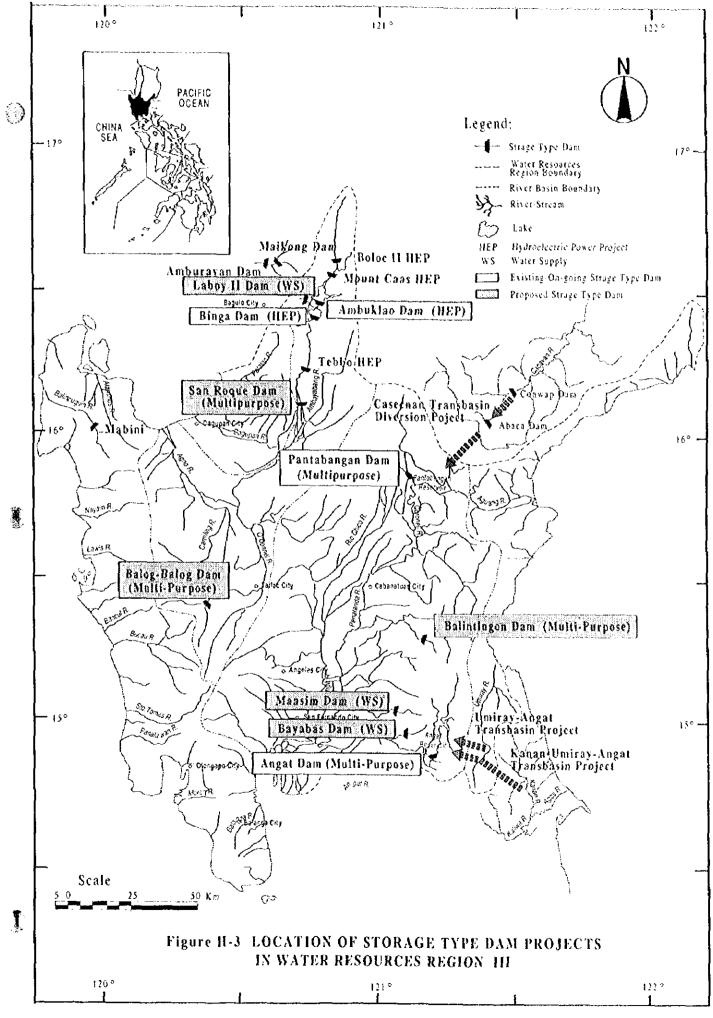
	:					(Unit : mil	tion m ³ /ye	ar)	
Sector	of Water Use				Year				Ratio in 2025
		1996	2000	2005	2010	2015	2020	2025	· (%)
i) M&I	Municipal	0.0	0.0	0.0	0.0	0.0	0.5	0.6	0.0
	Industry	9.6	9.6	9.6	9.6	9.6	9.6	9.6	0.1
ii)Agricuture	Inigation	2,387.0	4,082.0.	6,203.0	6,354.0	6,499.0	6,499.0	6.499.0	99.7
	Livestock	6.1	7.7	7.9	8.1	9.0	9.9	10.7	0.2
	Fishery	(40.0)	(52.6)	(55.1)	(57.1)	(58.6)	(59.7)	(60.4)	-
Gr	and Total	2,442.7	4,151.9	6,275.6	6,428.8	6,576.2	6,578.7	6,580.3	
	Total					·····	-		-
(Excluding wat	ter demand for fishery	2,402.7	4,099.3	6,220.5	6,371.7	6,517.6	6,519.0	6,519.9	100.0

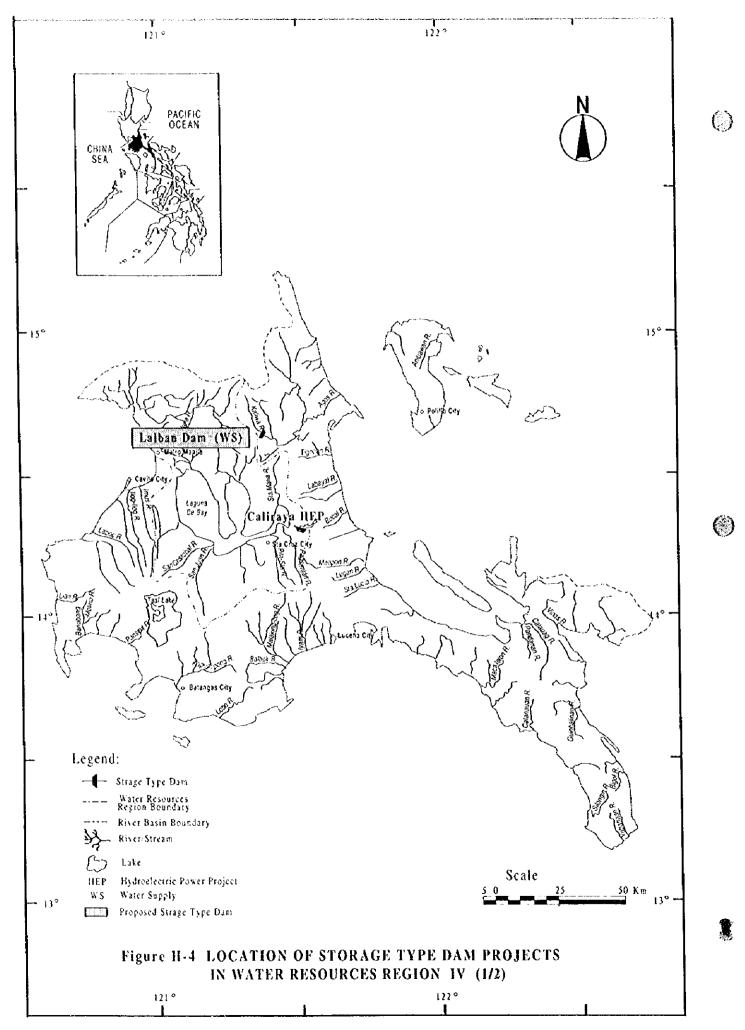
	Catchment Area	Catchment Area Proposed Dam Type Proposed Height Proposed Crest Length Effective Volume	Proposed Height	Proposed Crest Length	Effective Volume	Dead Voiume	Supply Capacity
Alternative Site	(km²)	(m)	(u)	, (#)	(x 10 ⁶ m ³)	(x 10°m ³)	(m ³ /day)
For CEBU							
Cebu B (Buhisan Dam) (Existing on 1910)	5.9	Concrete Double Arch	26		0.26		4,000
Malubog Dam	70.0	Rockfill	65	520	47.00	21.0	123.600
Mananga II Dam	68.0	Rockfill	8	240	41.0	7.0	120,400
Lusaran Dam	67.0	Rockfill	100	315	116.0	10.0	36,000
Cebu Fo (Pulambato Dam	21.0	Rockfill	55	300	2.0	1.0	177,400
Tipolo Dam	500.0	Rockfill	60	300	120.0	0.06	259,000
						Total	720,400
For DAVAO							
Davao I	367	Rockfill	75	400	150	180	
Davao II	820	Rockfill	112	350	264	172	
Davao IIIR	163	Rockfill	132	430	56	55	

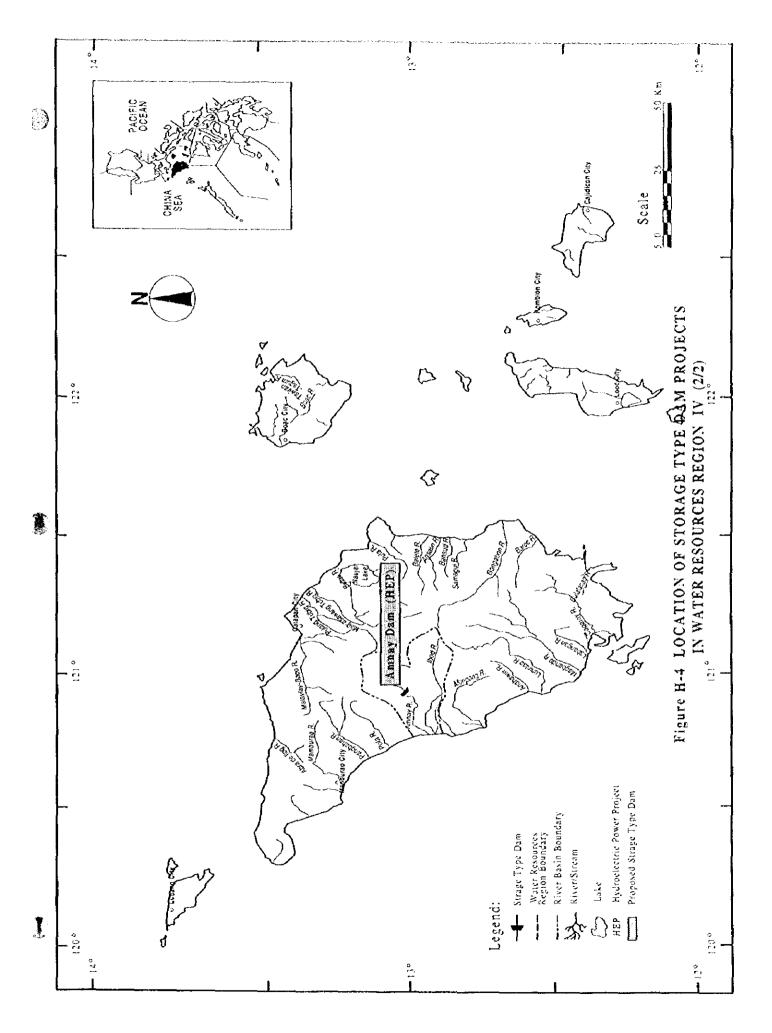
0

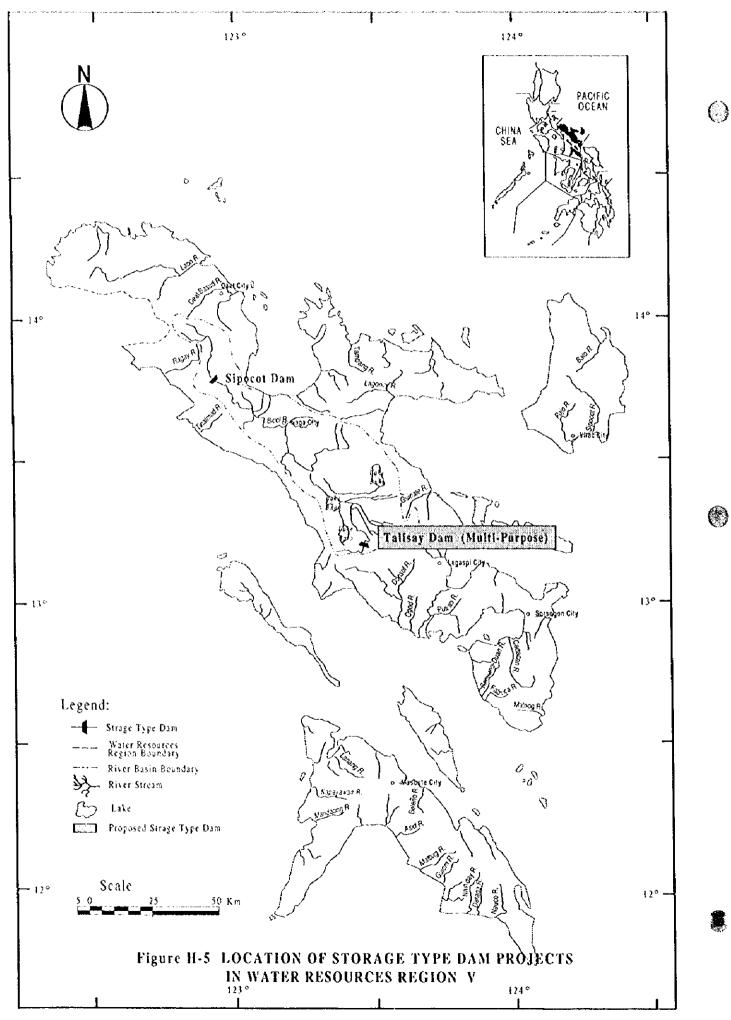

0

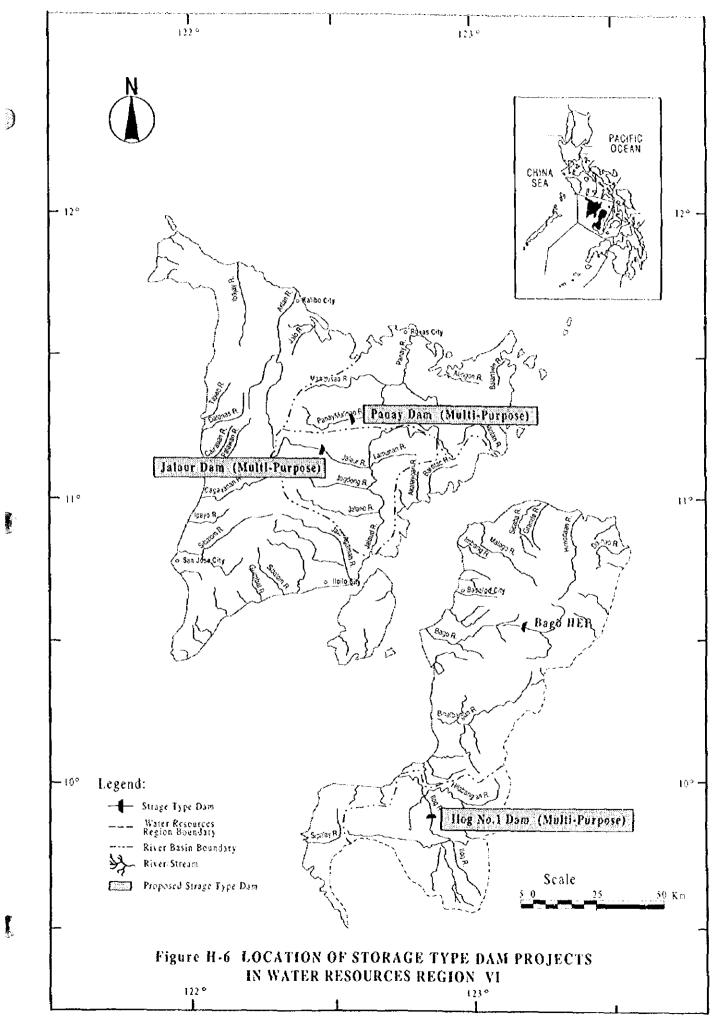

Table H-28 LIST OF THE ALTERNATIVE DAM SITE FOR WATER SUPPLY TO METRO CEBU AND DAVAO

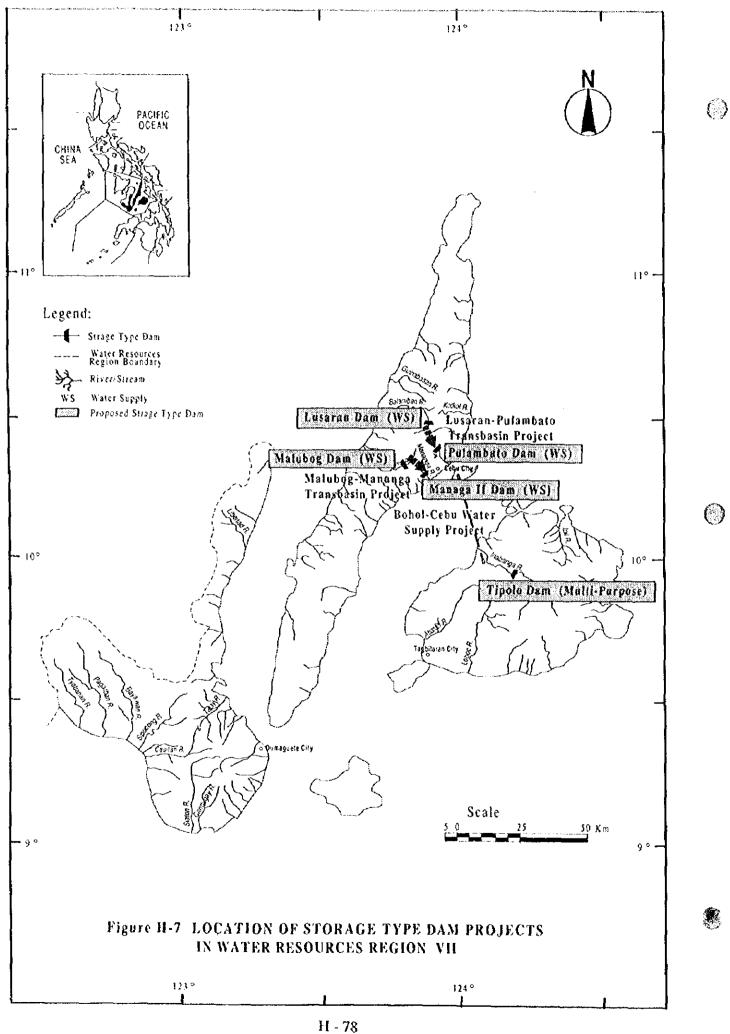

Part – H Figures

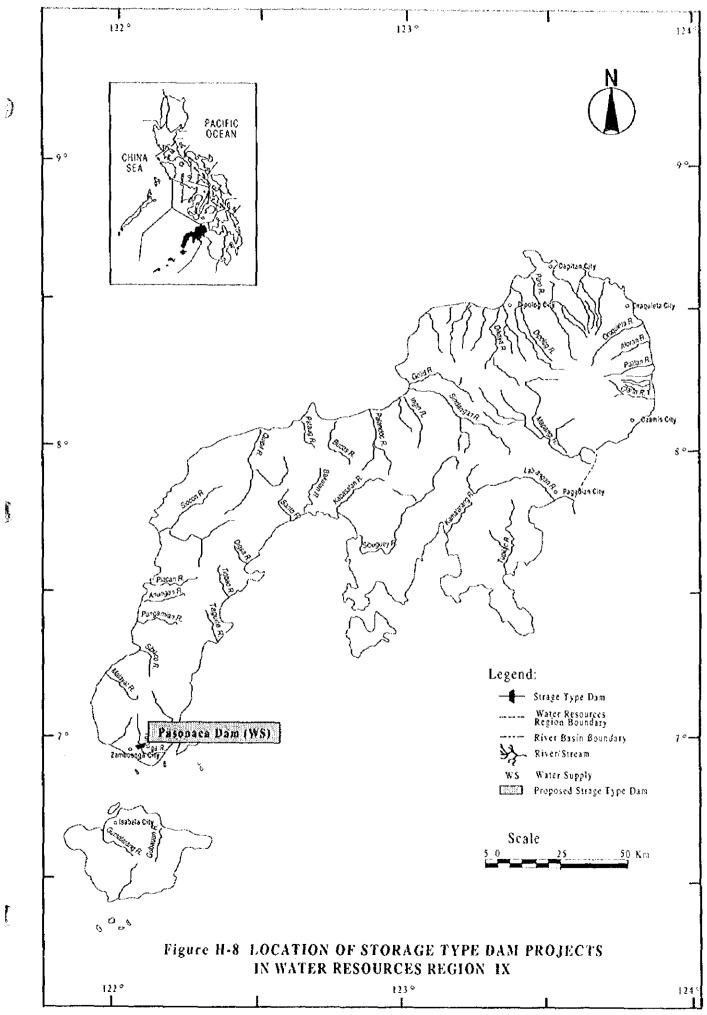

I

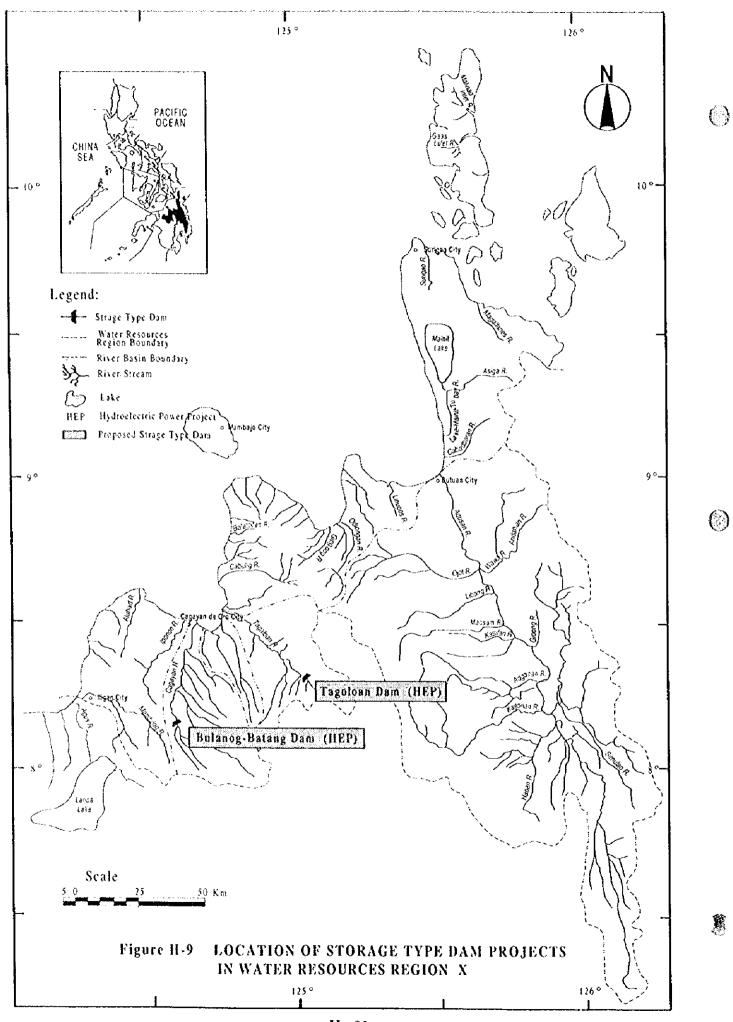

.

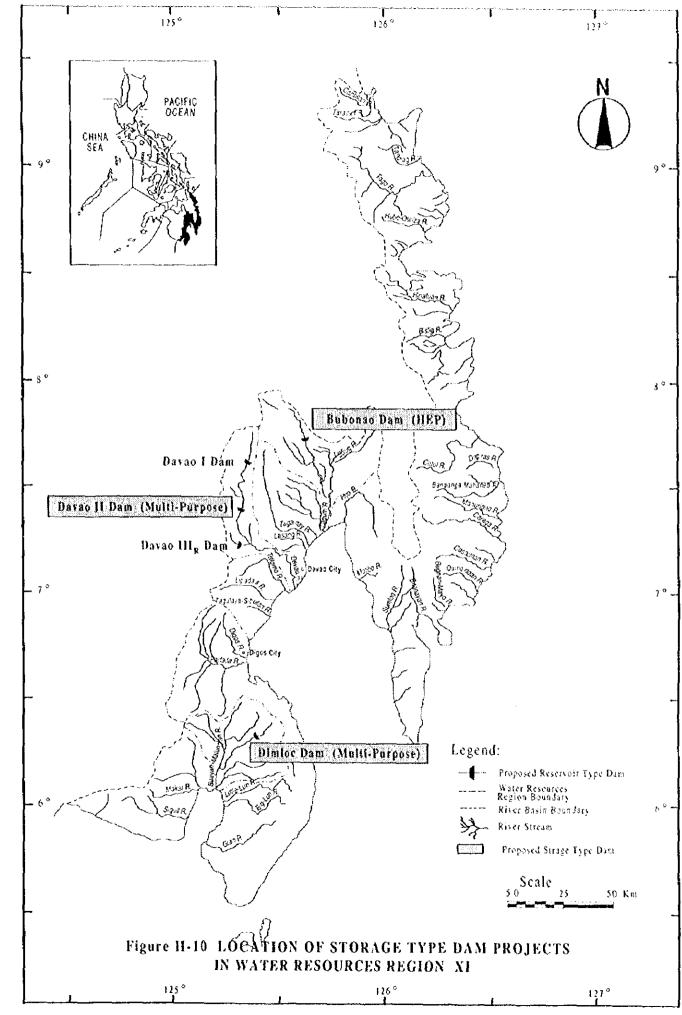


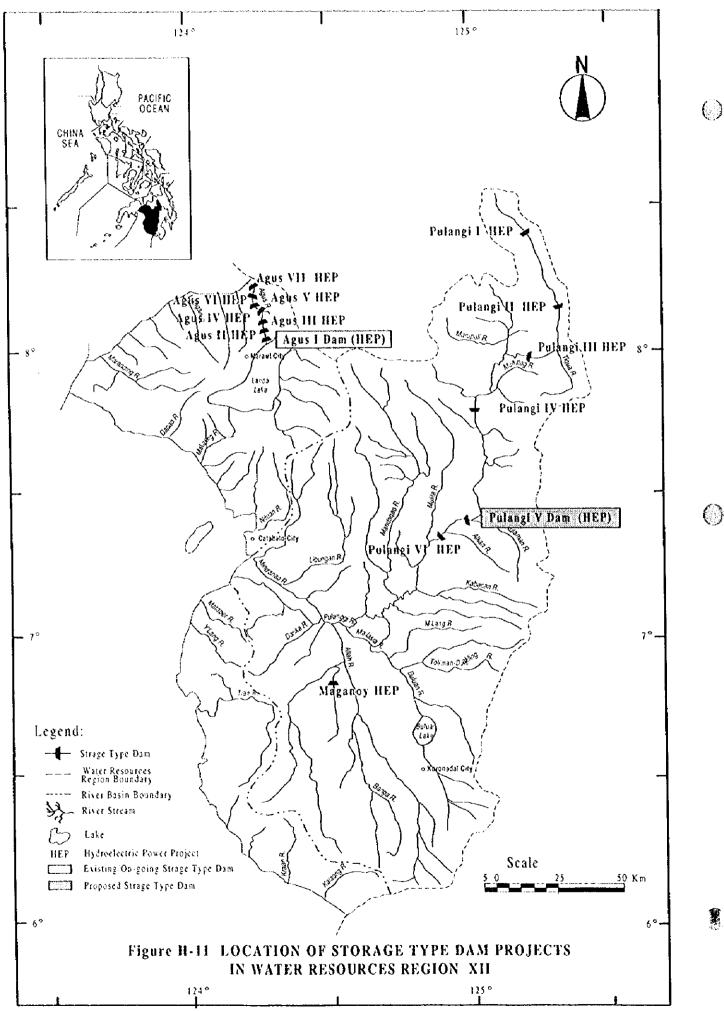


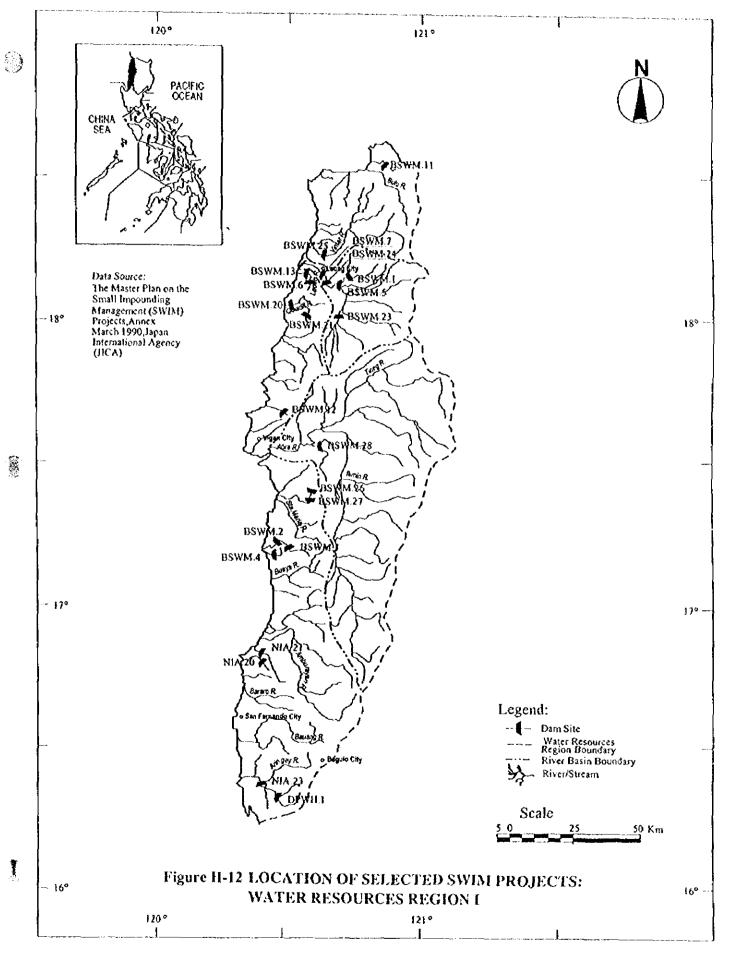


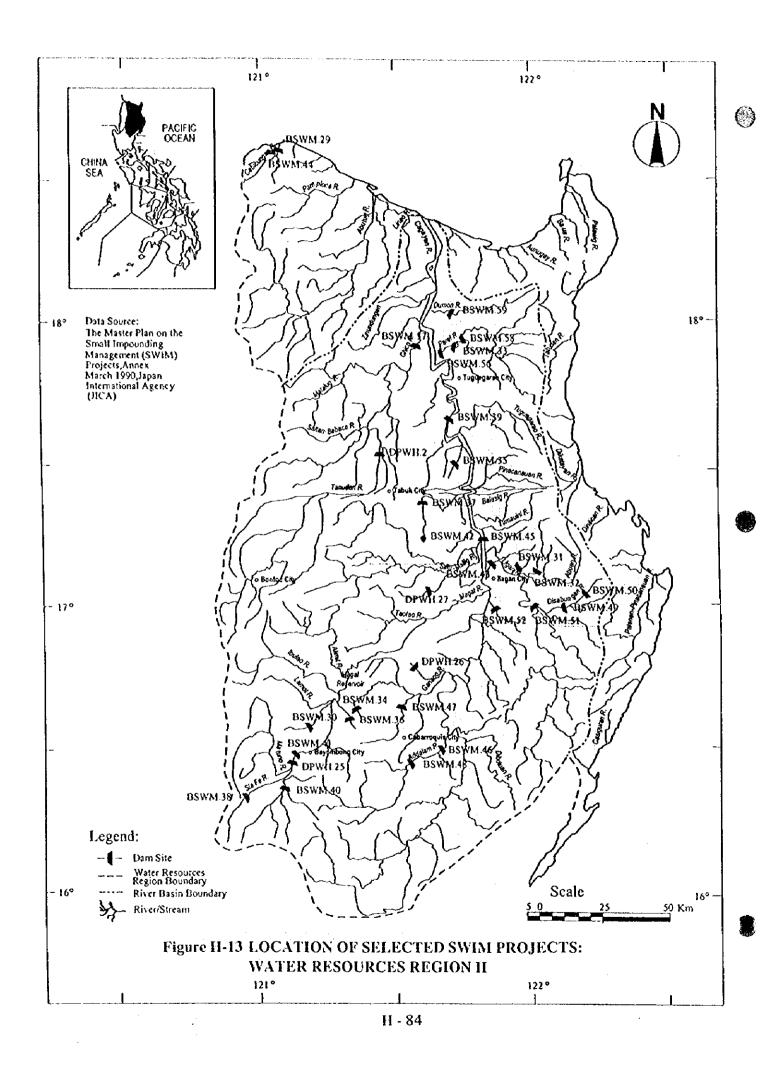


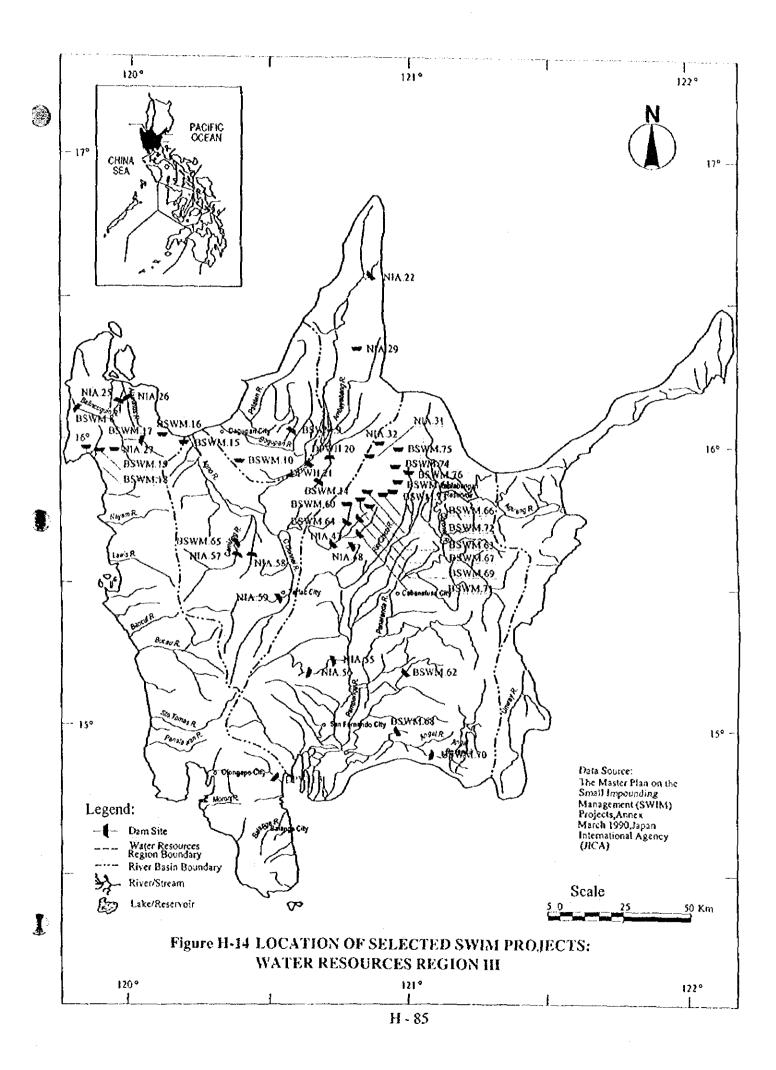


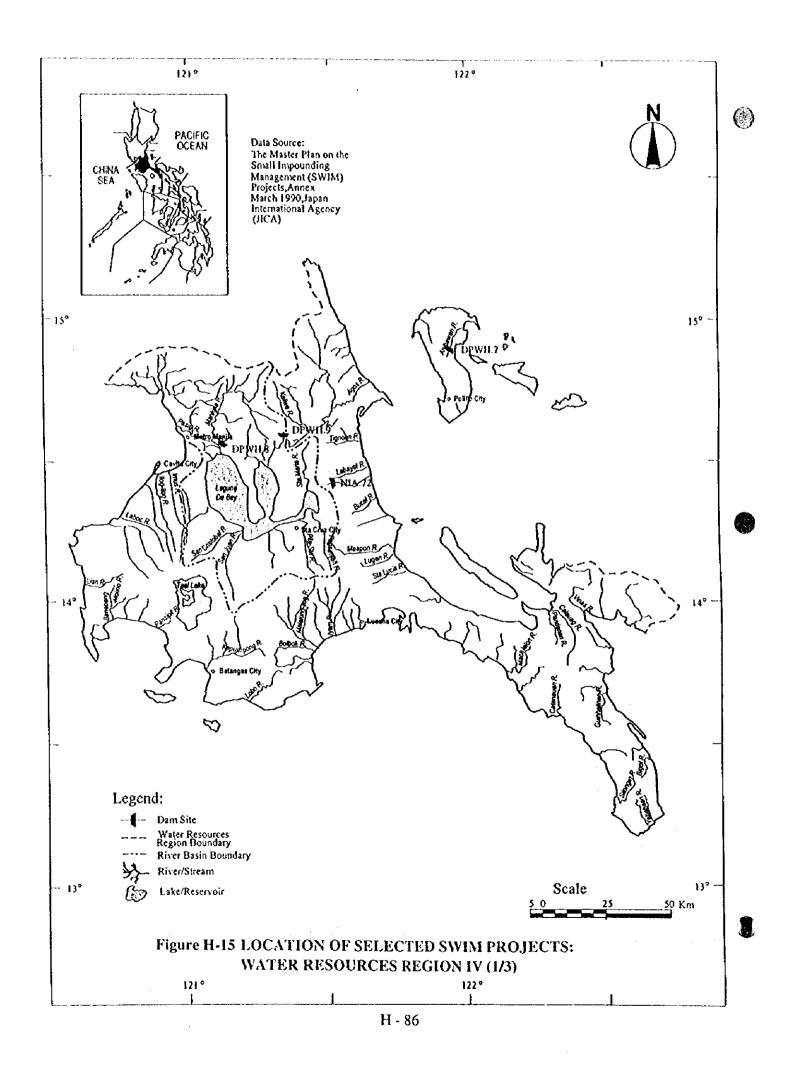


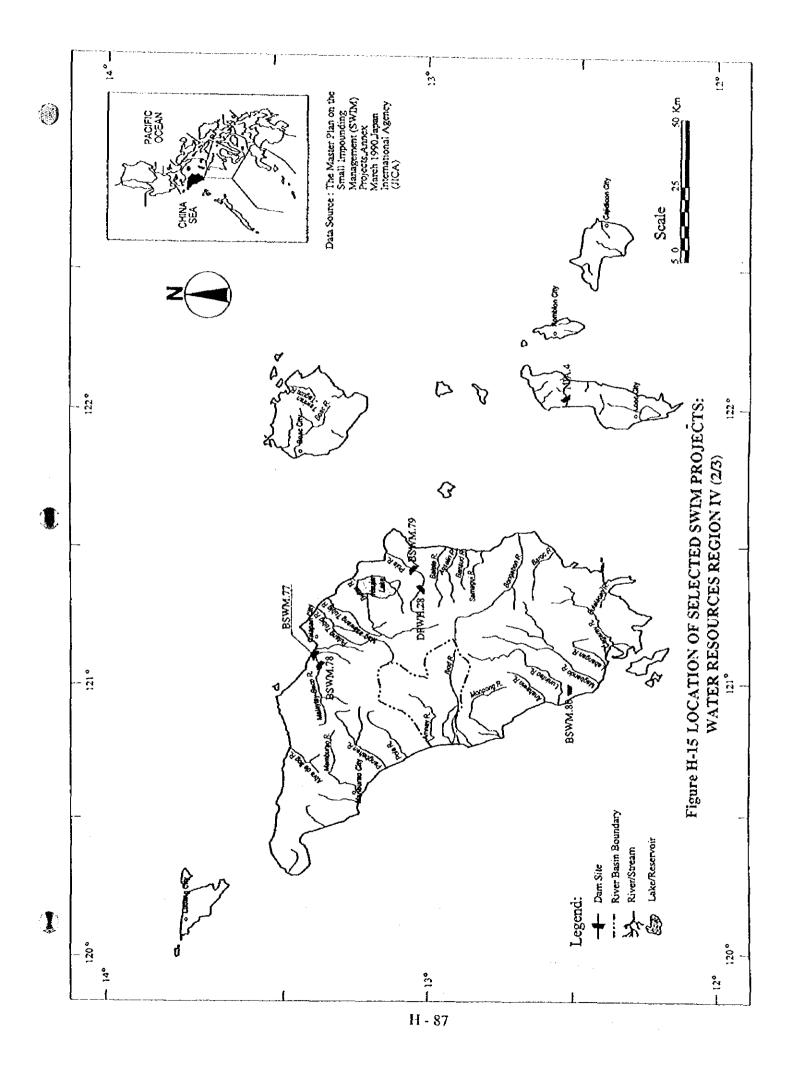


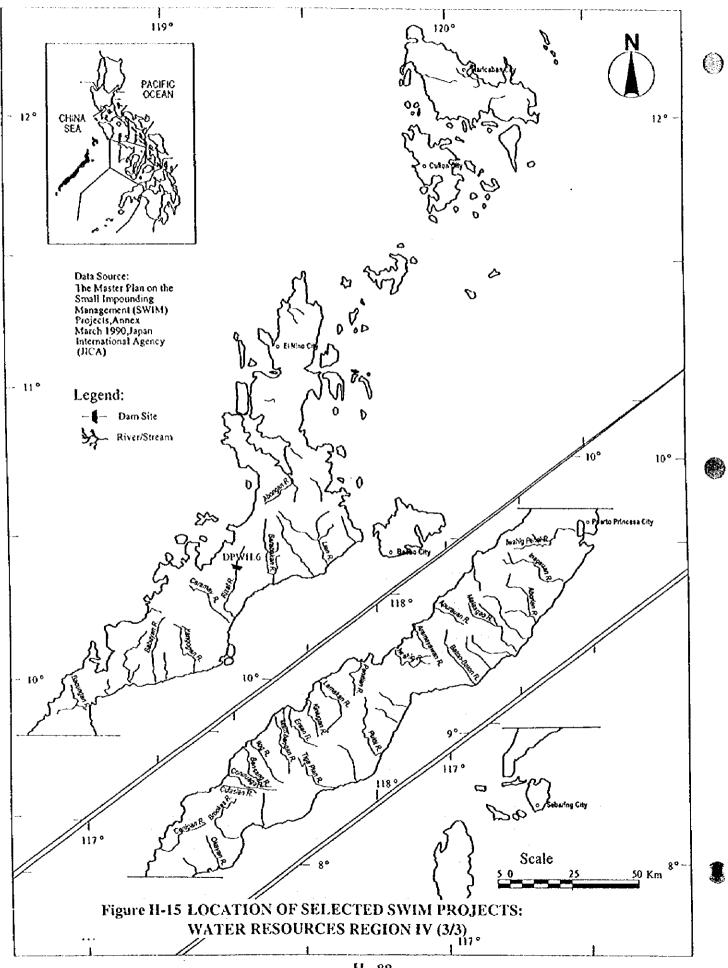


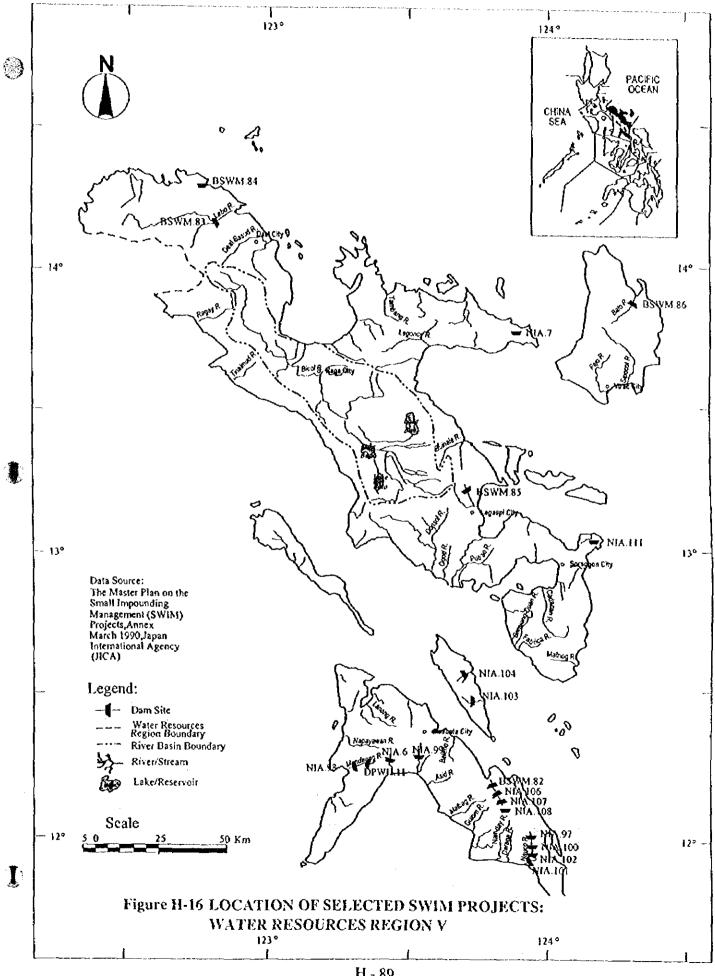


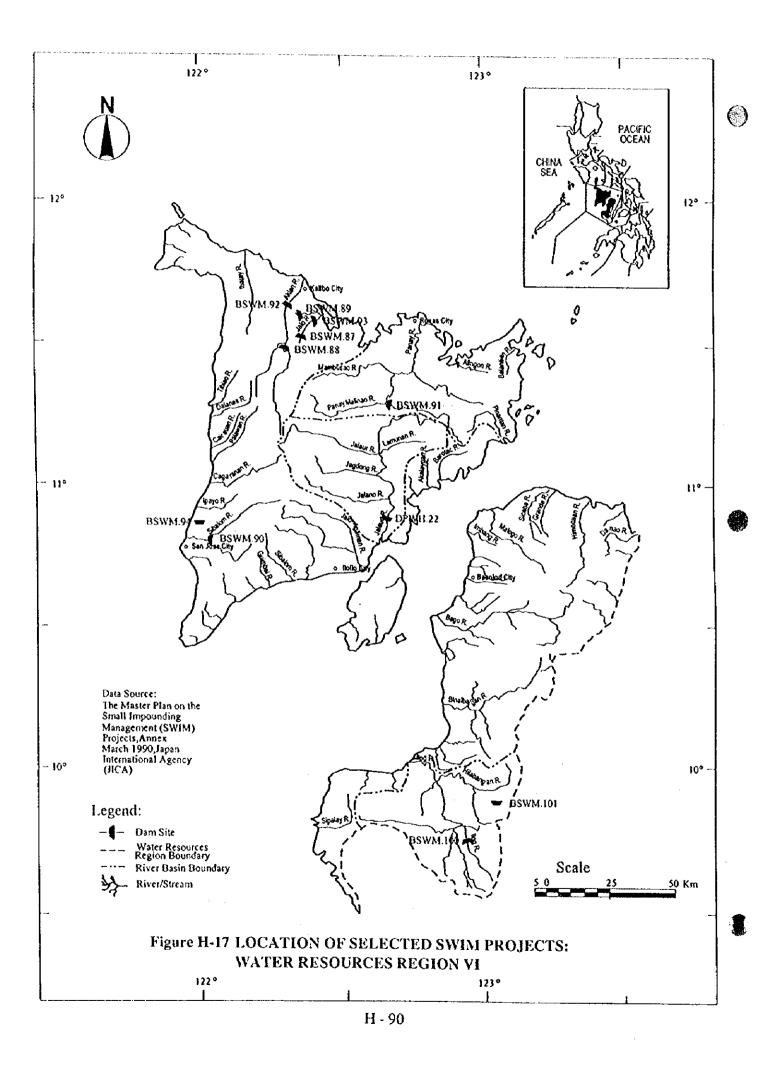

I

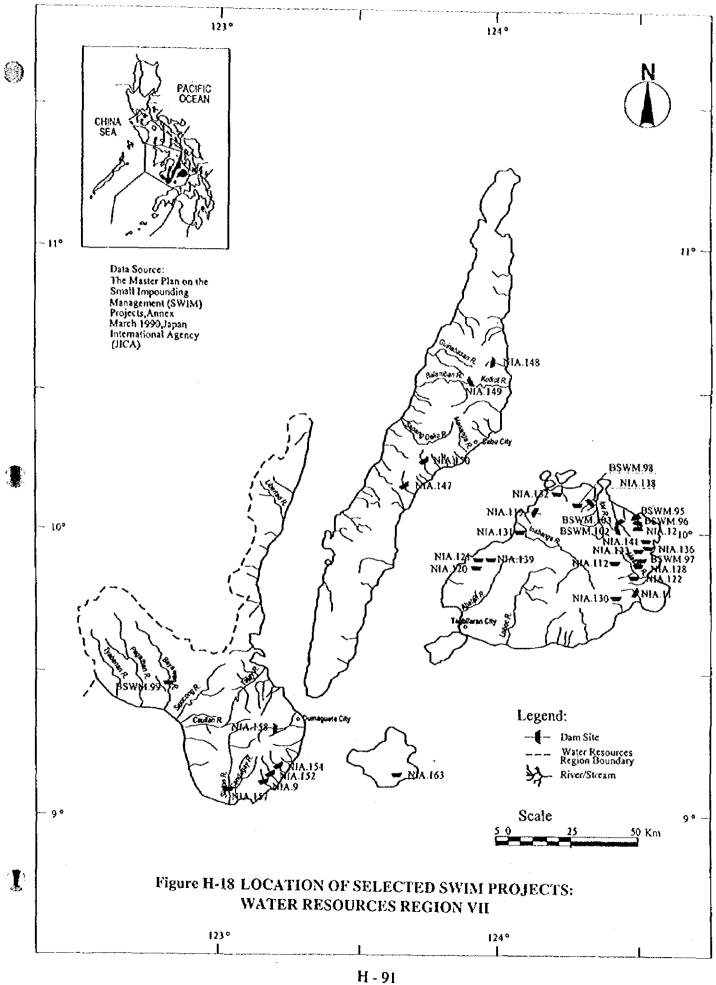


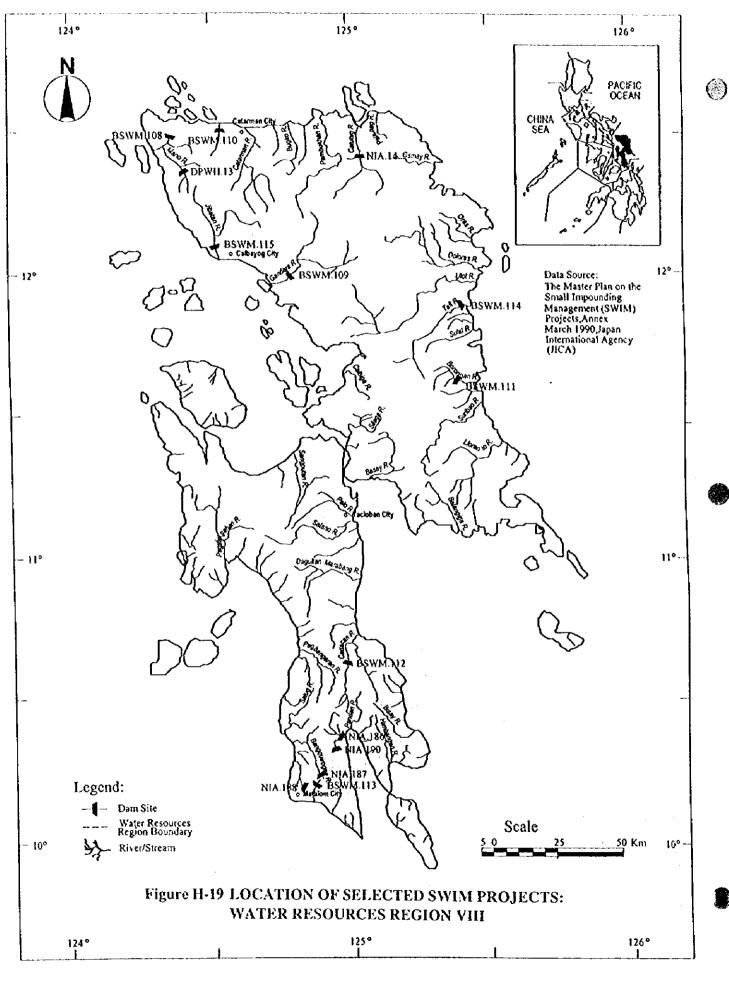

H - 82

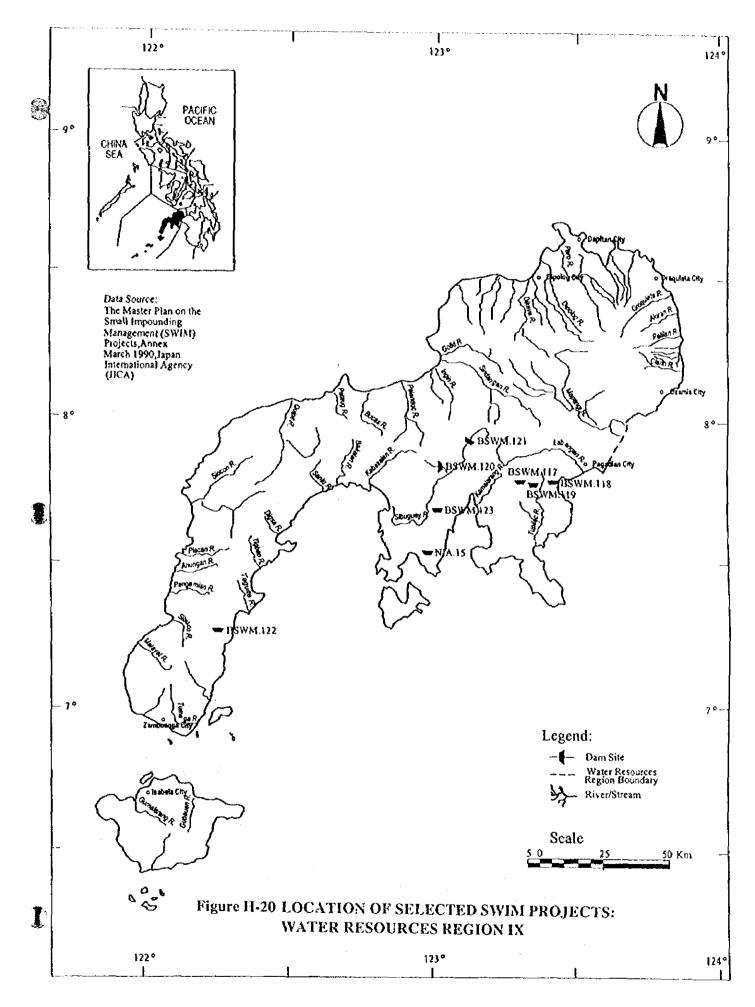


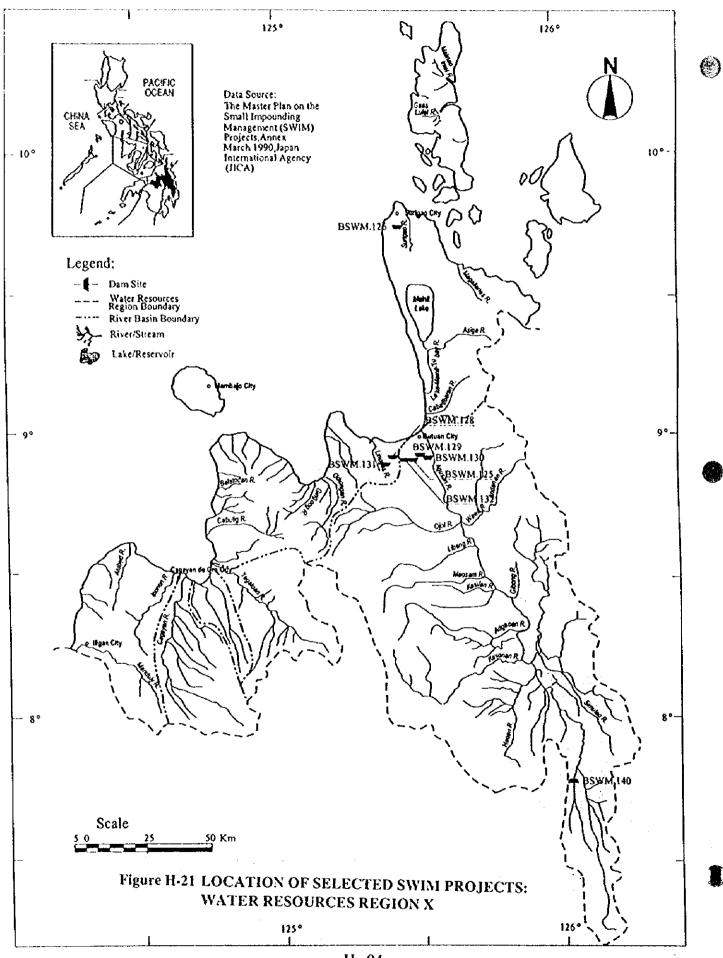


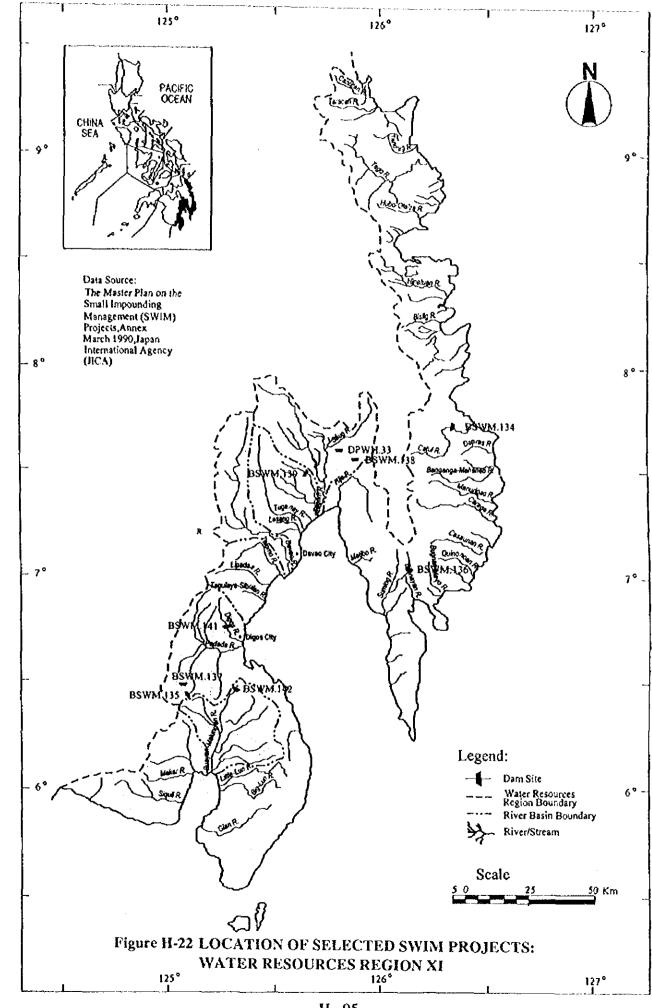


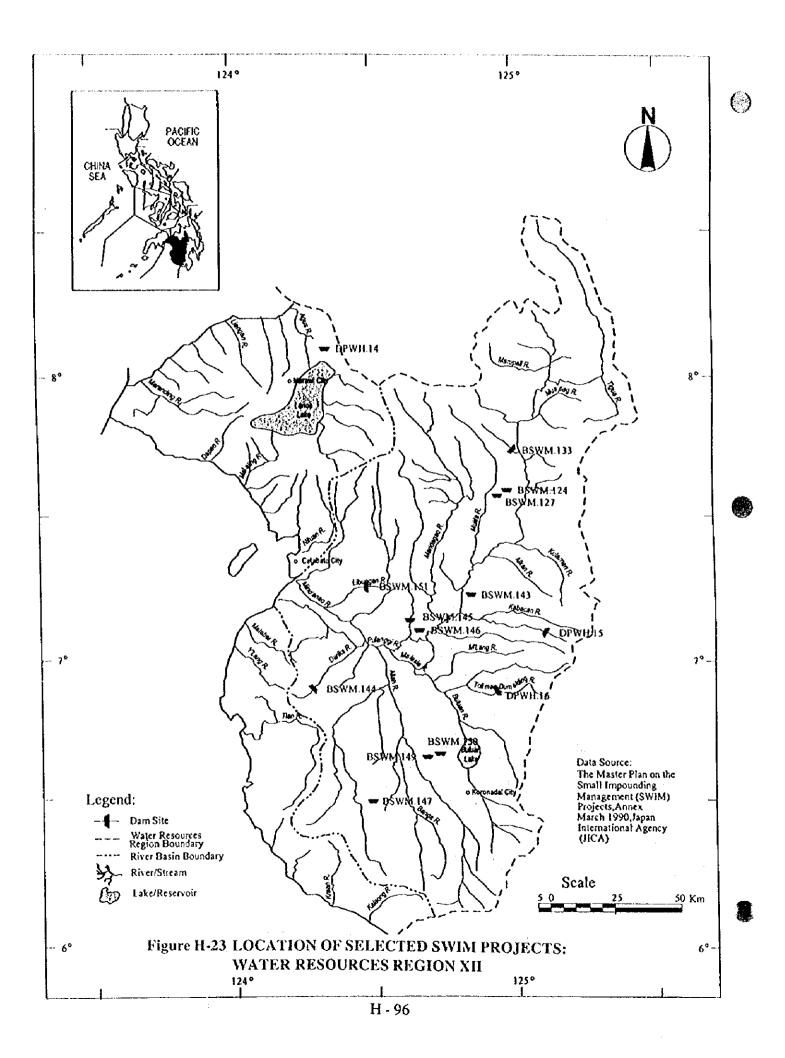


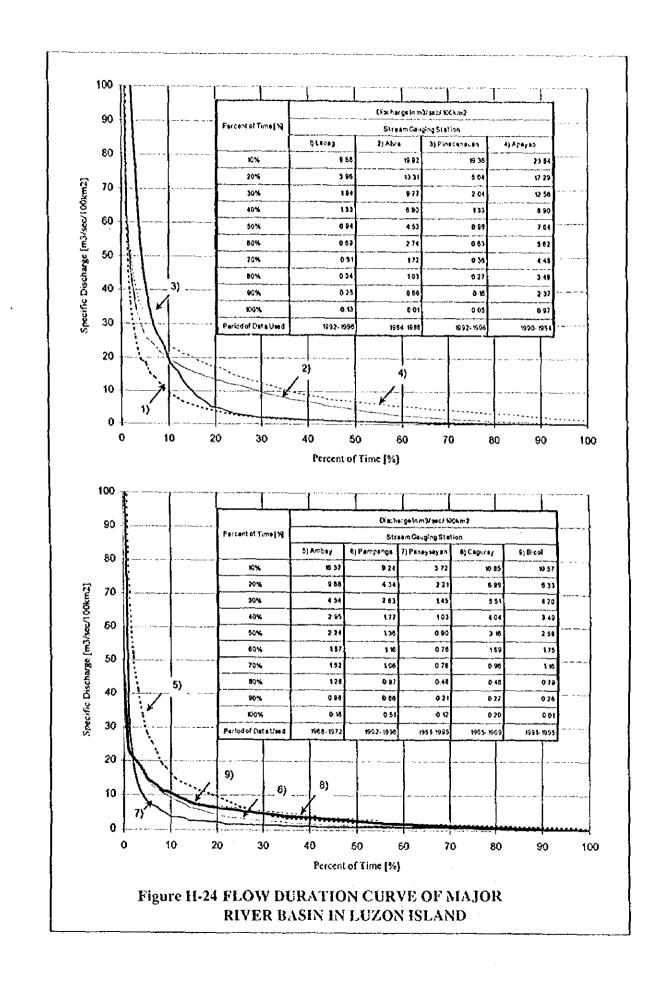


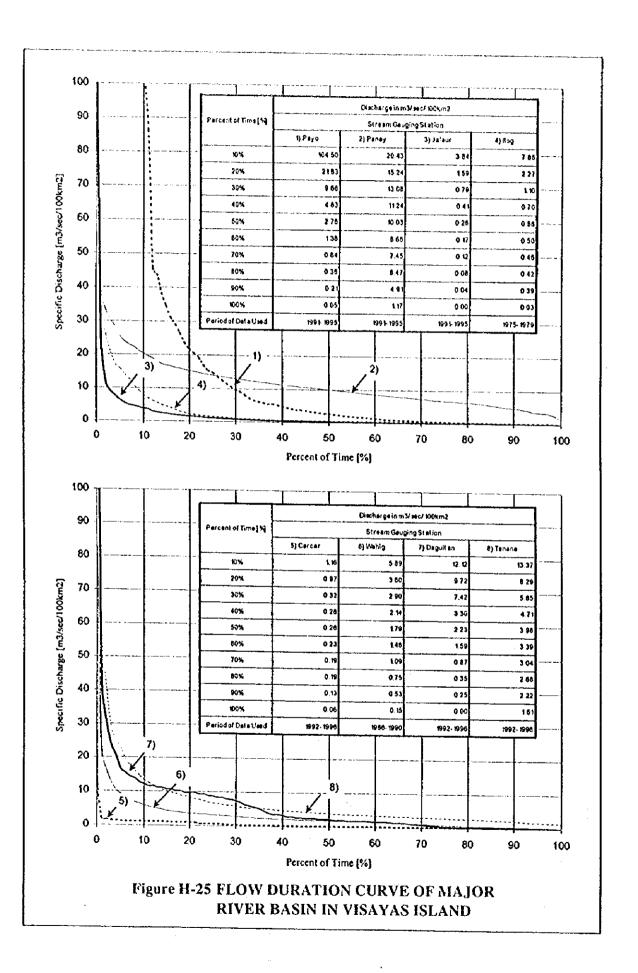


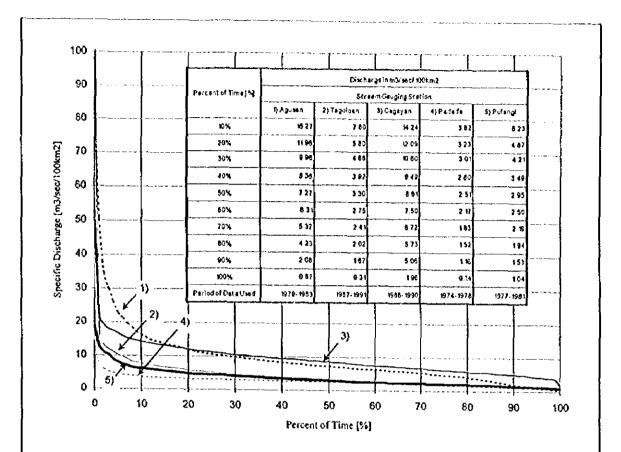

.



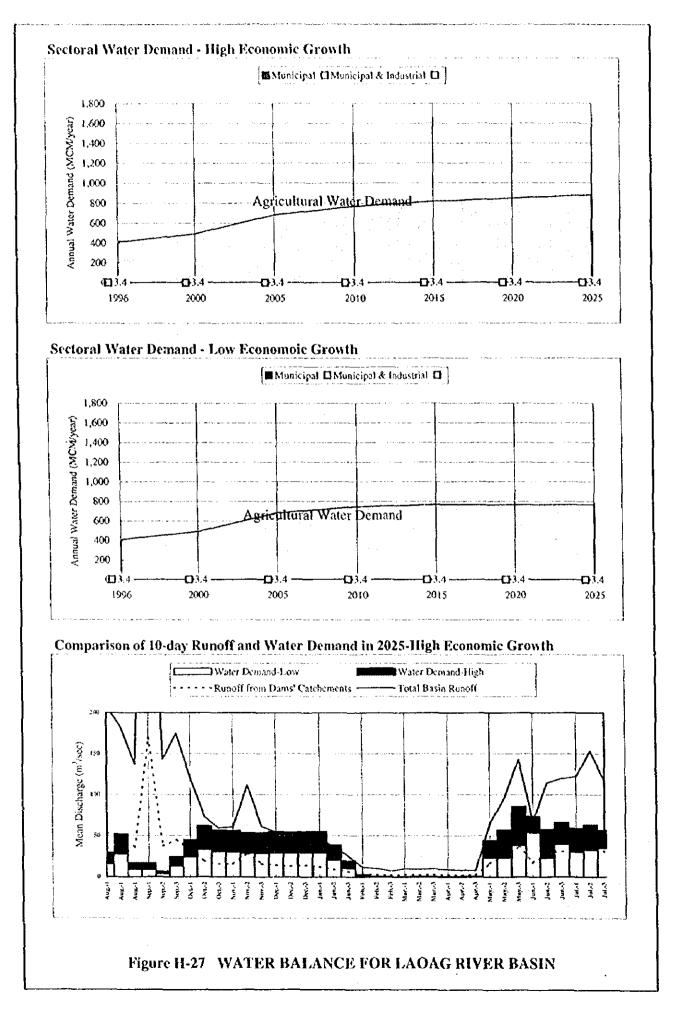


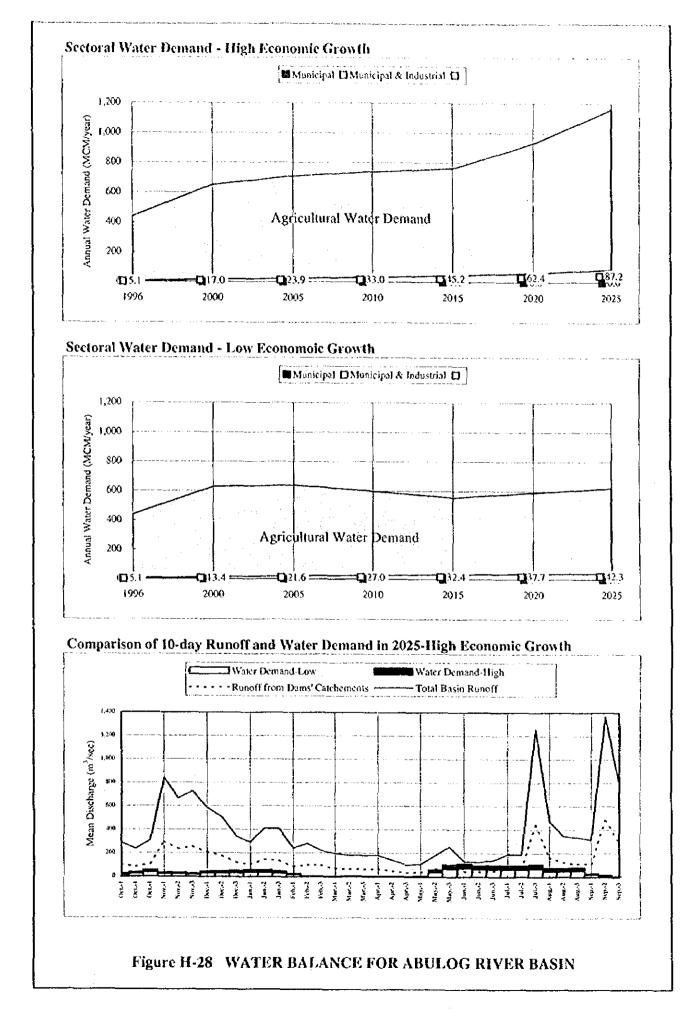




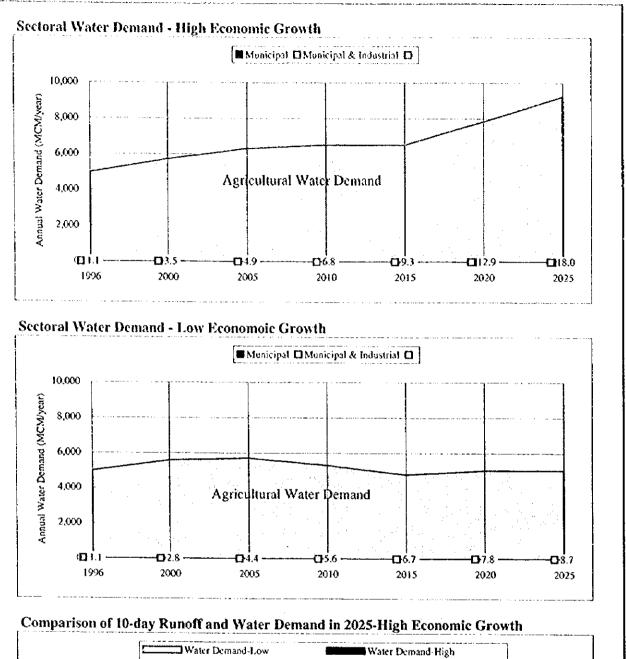


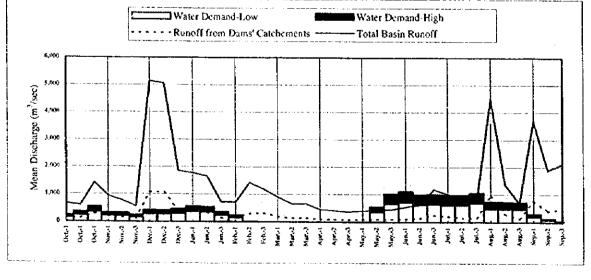
Ţ




Figure H-26 FLOW DURATION CURVE OF MAJOR RIVER BASIN IN MINDANAO ISLAND

I


٢



I

Figure H-29 WATER BALANCE FOR CAGAYAN RIVER BASIN

1

٢