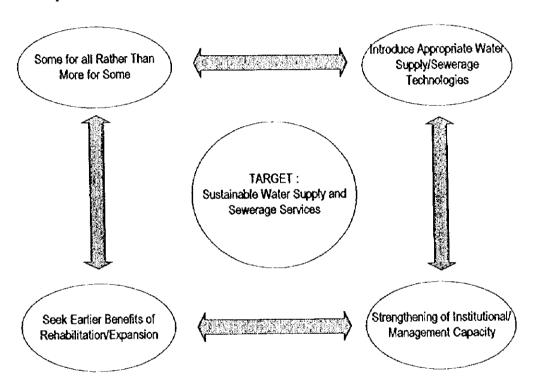
CHAPTER 5


PLANNING POLICIES AND ASSUMPTIONS

5. PLANNING POLICIES AND ASSUMPTIONS

5.1 PLANNING POLICIES

5.1.1 Basic Concept

The basic concept adopted in this Study for the development of a water supply and sewerage master plan is shown below.

5.1.2 Logistics and Phasing

Phasing the construction of a project is desirable for many reasons. Investments can keep pace with demand, local construction capacity can be maximised, and risk associated with uncertainties in future projections can be minimised by rescheduling construction either forward and backward.

It is recommended that Master plan be implemented in two phases. It should comprise components for medium-term improvements and for long-term improvements. Medium-term improvements will be included in Phase I. Target year for Phase I of the project will be the year 2005 considering the following:

()

- variation of demand and available water sources for medium-term improvements
- time required for design and construction
- investment efficiency
- · time required for strengthening of organisation

To cope with the urgent need of potable water, rehabilitation/augmentation of the existing works should be included in Phase I.

Phasing of the water supply service area will not be considered in order to deliver safe water to as much population as possible. However, it is not desirable to lay all distribution mains at one time due to the time required for construction and considering investment efficiency. Under these conditions, communal taps, along with individual house connections, will be provided over an expanded service area to deliver water to as much population as possible.

Implementation of the Master Plan will require a series of institutional and management improvements. It is clear that the residents in Kisumu will not be able to enjoy the benefit of improved services without a major breakthrough in this area.

5.2 LAND USE AND MUNICIPAL POPULATION

5.2.1 Land Use

IICA Study Team in consultation with the Kisumu Municipal Council reviewed the "Kisumu Structure Plan 1983-2013" and made modifications to the land use envisaged by the plan, with a view to reflecting the latest conditions. The modified land use plan for the year 2015 is shown in Figure 5-1. Major modifications made to the plan are as follows:

- Ojolla and Korando Sub-locations are categorised as agricultural areas instead of residential area as envisaged in the plan.
- Areas in Kasule and Nyalunya Sub-locations which are envisaged as agricultural areas in the plan will be developed as residential areas.
- Existing slum areas on the eastern fringe of the town will further develop towards the east.

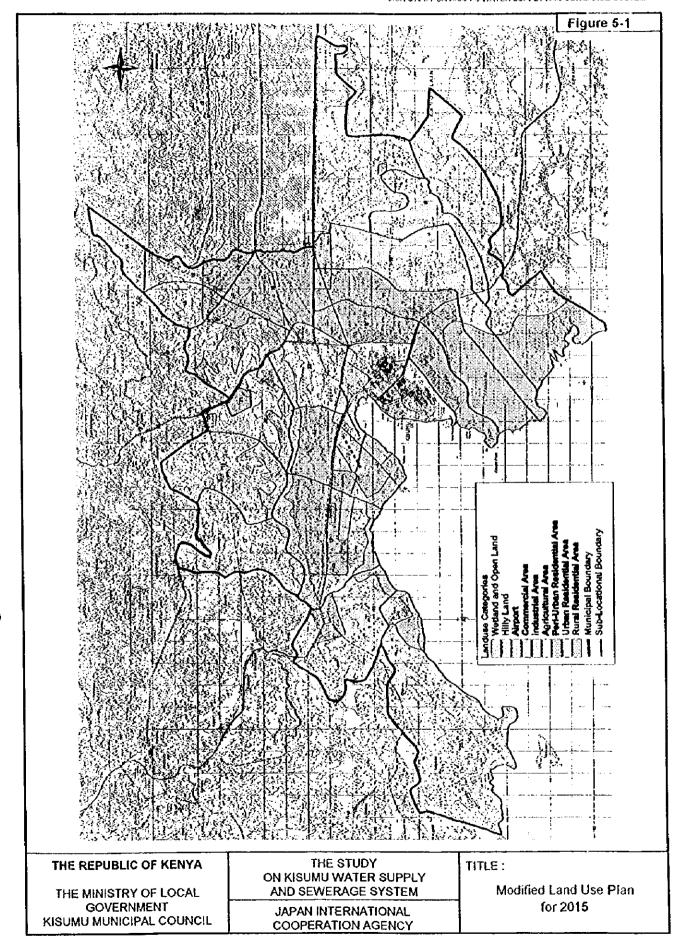


Table 5-1 presents the extents of areas allocated for each fand use category after the modifications

Table 5-1 Summary of Land Use in 2015

Land Use Category	Residential	Agricultural	Industrial	Commercia I	Airport	Hilly Land	Wetland and Open Land	Total
Area (km²)	73.8	164.0	9.1	5.1	3.2	18.0	23.3	296,5

Apart from the land use, the JICA Study Team in collaboration with the KMC classified each of the 25 Sub-locations which comprise the municipal area into one of the following three area categories.

- Urban Areas: old town area which constitutes the core of the Kisumu municipality
- Peri-urban Areas: areas around the periphery of the Urban Areas, where a high population growth is expected in the future.
- Rural Areas: outside Urban and Peri-urban areas where the future population growth is
 expected to be slow or even negative

5.2.2 Municipal Population

The municipal population in Kisumu was projected up to the year 2015, taking the past trend of the population growth in each Sub-location into consideration. Three population databases, each compiled from the 1969, 1979 and 1989 census were analysed and the future population growth rates were estimated for each Sub-location. Where necessary, adjustments were made to the projected growth rates, taking, among others, the following into account:

- Kisumu Water Supply and Sanitation Study
- Kisumu Structure Plan 1983-2013
- National Water Master Plan
- Classification of Sub-locations into Urban, Peri-urban and Rural areas
- Sub-location-wise population densities
- Government policies on population

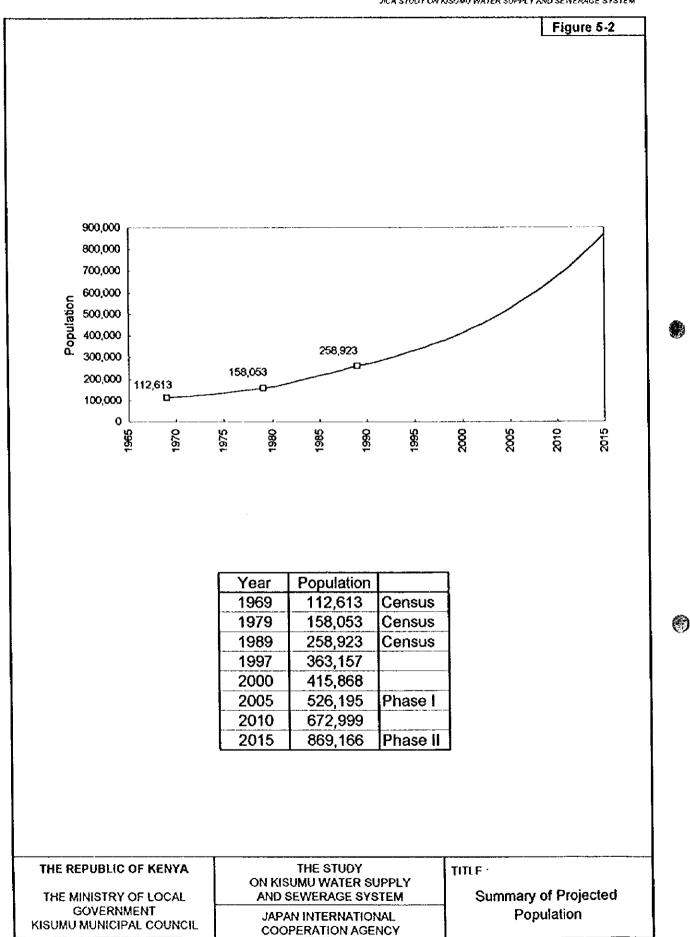

Tables 5-2 and 5-3 present the final estimates of the growth rates and populations for each Sub-location up to the year 2015. It was estimated in this exercise that the total municipal population in 1997 was 363,157, and that it will increase to 526,195 by 2005 and to 869,166 by 2015, the target year of this Master Plan at an overall average annual population growth rate of 4.77 % between 1989 and 2015. The projected populations and their distribution over the municipal area are graphically presented in Figures 5-2 and 5-3.

Table 5-2 Past Trend of Population Growth

			1969		1979		1989	Estimated
				Population		Population		population
su	BLOCATION	Category	CENSUS	growth rate	CENSUS	growth rate	CENSUS	growth rate
			population	%	population	%	population	%
1	Kibuye	Urban					30,074	1.34
2	Milimani	Urban	32,431	2.17	40,188	1.34	15,856	1.34
3	Nyatenda B	Peri-urban					17,276	4.66
4	Nyalenda A	Peri-urban	12,046	6.11	21,788	5.83	21,109	4.66
5	Manyatta A	Peri-urban					37,913	6.80
6	Manyatta B	Peri-urban	7,942	11.22	23,008	8.52	14,225	6.80
7	Chiga	Rural	6,680	-1.78	5,582	1.64	6,571	1.64
8	Mayenya	Rural					4,168	4.78
9	Buoye	Rural	3,949	2.56	5,084	4.78	3,942	4.78
10	Nyalunya	Rural	4,070	0.21	4,155	6.30	7,656	6.30
11	Kasule	Rural	3,949	0.89	4,317	1.94	5,230	2.28
12	Kadero	Rural					2,951	-1.06
13	Okok	Rural					2,719	-1.06
14	Got Nyabondo	Rural	3,393	4.75	5,397	-6.60	2,726	-6.60
15	Wathorego	Peri-urban	7,676	1.38	8,800	1.68	4,951	2.00
16	Konya	Rural	2,637	5.03	4,309	5.04	7,045	5.03
17	8ar	Rural	-		-		6,075	2.00
18	Nyahera	Rural			-		7,717	2.00
19	Korando	Peri-urban	7,934	-1.66	6,708	7.15	13,382	5.00
20	Dago	Peri-urban	1,677	4.92	2,711	2.76	3,558	2.74
21	Mkendwa	Rural	317	3.00	426	3.33	591	3.32
22	Kogony	Peri-urban	3,913	5.83	6,897	4.66	10,879	6.00
23	Kanyakwar	Urban	5,014	3.61	7,147	7 9.19	17,215	7.35
24	Ojolla	Rural	3,27	2.10	4,03	2.62	5,221	2.61
25	Kanyagwegi	Rural	5,71	2.77	7,505	2.78	9,873	2.78
	Total popu	ılation	112,61	3 3.45	158,05	5.06	258,923	

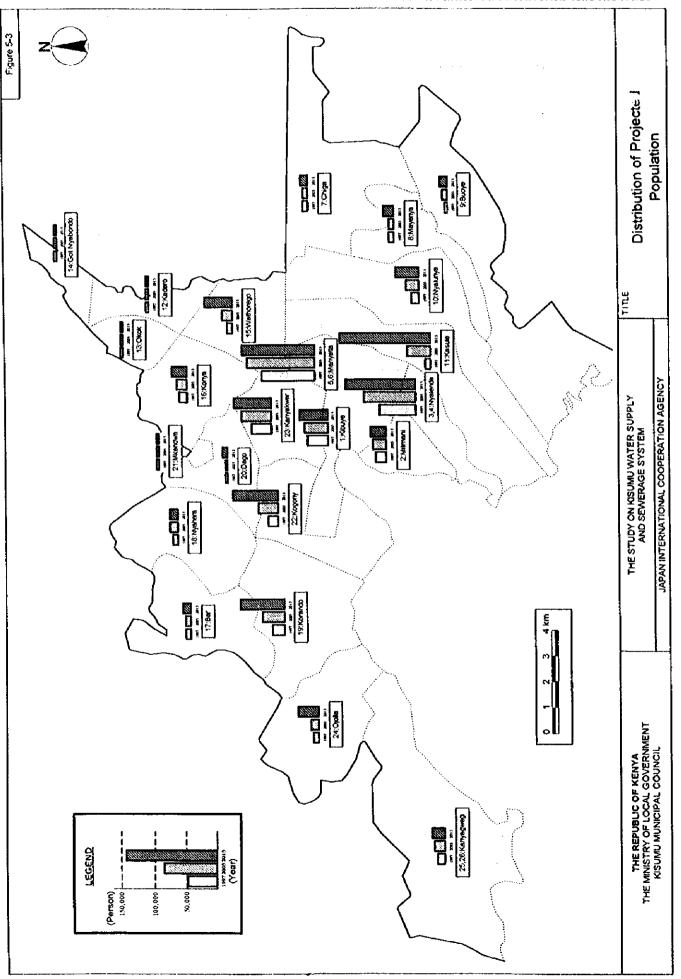
Table 5-3 Projected Population Growth Rates

0 2015					98,604 108,800	114,154 116,800	9,248 10,032	11,113 14,035	10,510 13,274	27,621 37,489	7	2,359 2,237	2,173 2,060	650 462	24,745 43,919	19,747 25,239	9,209 10,167	11,696 12,913			1,172 1,380	48,234 72,747	56,089 59,500	20,127 33,267	17,560 20,141	672,999 869,166
2005 2010			37,211 39	19,617 20	79,552 98,	106,354 114	8,526 9	8,798 11	8,321 10	20,350 27	34,409 71	2,488 2	2,292 2	914	14,135 24	15,451 19	8,340 9	10,594 11	34,352 49	5,484 6	996	32,423 48	47,645 56	12,633 20	15,310 17	526,195 672
2000			34,814	18,354	63,350	93,604	7,860	996'9	6,588	14,993	14,738	2,625	2,418	1,286	8,347	12,088	7,554	9,594	24,424	4,791	846	22,080	36,850	8,349	13,349	415.868
1997			33,452	17,636	55,259	83.665	7,485	950'9	5,726	12,482	8,788	2,710			6,489	10,433	7,119	9,041	20,255	4,418	768	17,787	30,360	6,859	12,295	"
1989	(by Census)		30,074	15,856	38,385	52.138	6.571	4,168	3,942	7,656	5.230	2.951	2.719	2,726	4,951	7.045	6.075	7,717	13,382	3,558	591	10,879	17,215	5,221	9,873	258 923
Estimated	Frowth Rate	(%)	1.34	1.34		1	_	4.78	4.78	6.30			-1.06	9-	_		2.00	2.00	-	_	3.32	00'9	7.35	2.61	2.78	
Category			Urban	Urban	Peri-urban	Deriman	121.2	Rural	Rural	Rural	Peri-urban	N I S	1000	Т		Rural	Rural	Rural	Peri-urban	Rural	Rural	Peri-urban	Urban	Riral	Rural	
Sub location			Kihnye	Milimani	Nicologia	Months	Chiga	Mayenva	Ruove	Nyalunva	Kasule	Kaden	Okok	Got Nyabondo	Wathorego	Konva	Rar	Nvahera	Korando	ı	•	•	t	ì	Kanyaowedi	Total
ľ			-	- -	4 0	2 4	7	- a	σ	, 5	=	- 5	4 6	2 4	ر. بر	4	1	: 0	9	2	2	18	3	3 2	7,	3

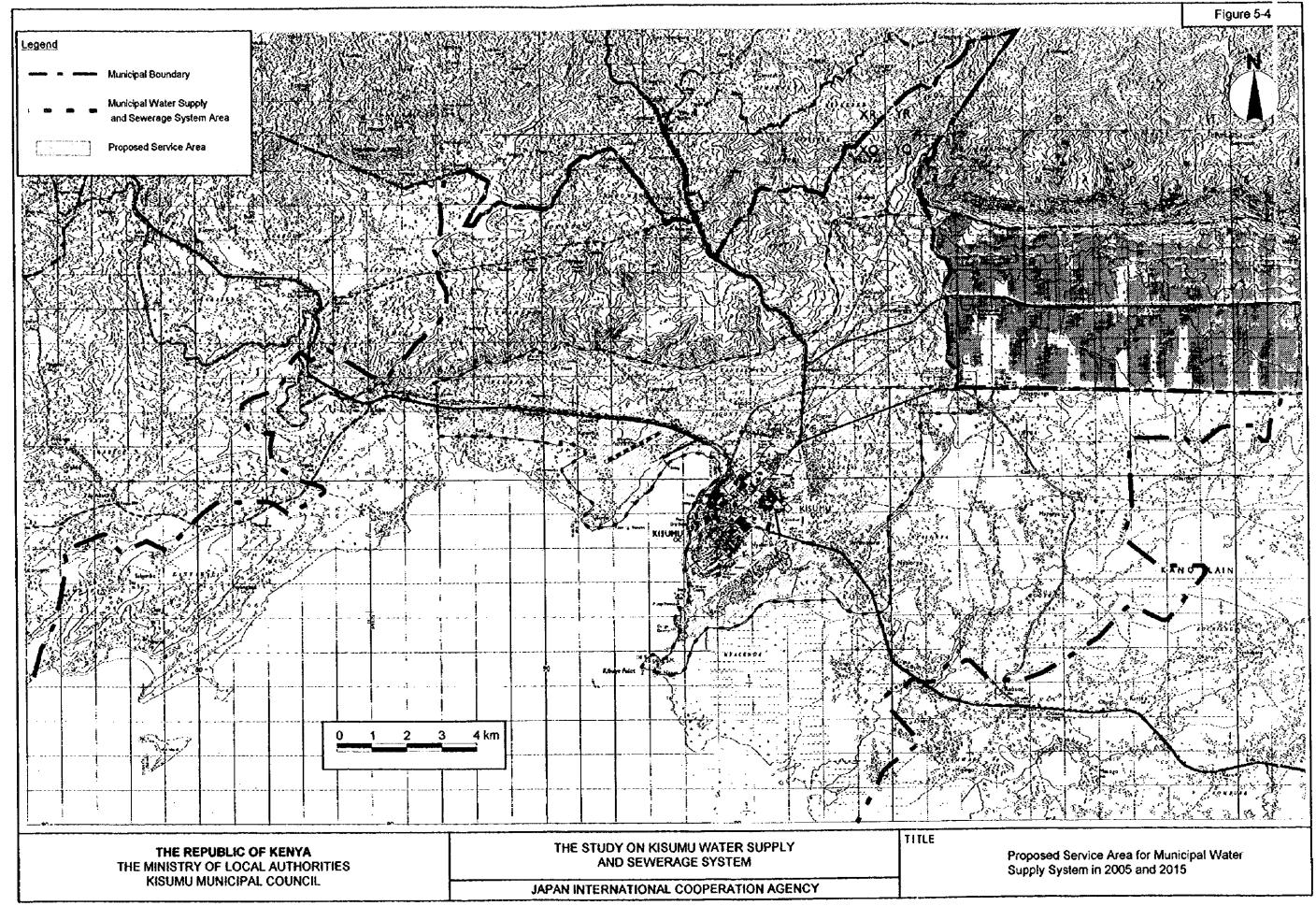
5,3 WATER SUPPLY

5.3.1 Service Area

(1) Municipal Water Supply Area


The municipal water supply is planned to supply areas where population density is higher than 40 persons/ha in 2015. With this definition, the municipal water supply system will cover virtually all the sub-locations classified as urban and peri-urban as shown in Figure 5-4. It will also cover part of the adjacent rural sub-locations, such as Konya, Chiga, Nyalunya, Kadero and Okok. Each sub-location is categorised into seven land use types: residential, commercial, industrial, agricultural, wet, hilly and airport areas. It is assumed that wet, hilly and airport areas will be uninhabited. Table 5-4 shows the extent of the proposed service area and coverages by sub-location and by land use category. As shown in the table, the total extent of the proposed service area is estimated to be 87.7 km².

(2) Sub-urban Water Supply Area


Sub-urban water supply area is defined as it is basically "the sub-locations which remain outside the propose service area of the municipal water supply". As shown in Table 5-4, following sub-locations will remain outside the municipal water supply system in the future.

- Mayenya
- Buoye

- Got Nyabondo
- Bar
- Nyahera
- Dago
- Mkendwa
- Ojolla
- Kanyagwegi
- Korando (in part)
- Chiga (in part)
- Nyalunya (in part)

()

0

Table 5-4	Proposed Service Area of Municipal Water Supply	Υ
*****		_

Table 5-4	<u> </u>	oposeu	Service P	rea of ivit	merpar v	rater Sup	1713			
Sub-location	Cate-	Area			Servic	e Area (km	2)			
	gory	(kın²)	Resi-	Com-	Indust-	Agri-	Wet	Hil-	Λir-	Tot-
			dential	mercial	rial	culture	ļ <u> </u>	ly	port	al
Kibuye	Urban	11.5	4.7	1.3	4.1		<u> </u>	ļ <u>.</u>	1.4	11.5
Milimani	Urban	5.5	3.8	1.7				<u> </u>		5.5
Kanyakwar	Urban	10.4	8.1	0.4	<u></u>		<u> </u>	<u> </u>		8.5
Nyalenda	Peri- urban	6.8	6.8							6.8
Manyatta	Peri- urban	7.3	7.3							7.3
Kasule	Peri- urban	17.5	8.9		0.7					9.6
Wathorego	Peri- urban	7.6	7.2	0.4						7.6
Korando	Peri- urban	20.2	10.2	0.4	1.5					12.1
Kogony	Peri- urban	12.8	7.2		1.3				1.8	10.3
Konya	Rural	13.3	2.6	0.2		<u> </u>				2.8
Chiga	Rural	24.5		0.2	0.2	<u> </u>			<u> </u>	0.4
Mayenya	Rural	11.6				<u> </u>			<u> </u>	0.0
Buoye	Rural	23.6		<u> </u>				<u> </u>	 	0.0
Nyalunya	Rural	17.4			1.3		<u> </u>	<u> </u>		1.3
Kadero	Rural	6.9	3.3			ļ	-	ļ		3.3
Okok	Rural	4.0	0.7					_	 	0.7
Got Nyabondo	Rural	4.5								0.0
Bar	Rural	12.1				<u> </u>		 		0.0
Nyahera	Rural	16.7							<u> </u>	0.0
Dago	Rural	11.0								0.0
Mkendwa	Rural	1.1					\perp	1	\bot	0.0
Ojolla	Rural	17.5			<u> </u>		1			0.0
Kanyagwegi	Rural	32.7							_	0.0
TOTAL		296.5	70.8	4.6	9.1	0.0	0.0	0.0	3.2	87.7

)

5.3.2 Service Population

Future populations who are estimated to live within the proposed municipal water supply system area is shown on Table 5-5. These populations are estimated from the projected total populations in each sub-location shown in Table 5-3 and the coverages by the proposed service area shown in Table 5-4.

"Some for All rather than More for Some" is the basic policy underlying the JICA Study.

It was therefore assumed in this Study that all the population within the proposed service area will be somehow granted an access to the municipal water supply system, even if such an access is an indirect access through a water kiosk, a communal tap or a water vendor. In this context, a broad assumption was made that the number of service population will be equal to the number of the total population in the proposed service area.

Table 5-5 Service Population in Municipal Water Supply System

Category	Sub-Location	1997	2000	2005	2010	2015
Urban	Kibuye	33,452	34,814	37,211	39,772	42,509
	Milimani	17,636	18,354	19,617	20,967	22,410
	Kanyakwar	30,360	36,850	47,645	56,089	59,500
	Sub-Total	81,448	90,018	104,473	116,828	124,419
Peri-urban	Nyalenda	55,259	63,350	79,552	98,604	108,800
	Manyatta	83,665	93,604	106,354	114,154	116,800
	Kasule	8,788	14,738	34,409	71,615	140,063
	Wathorego	6,489	8,347	14,135	24,735	43,919
İ	Korando	18,230	21,982	30,917	44,421	65,282
	Kogony	17,787	22,080	32,423	48,234	72,747
	Sub-Total	190,218	224,101	297,790	401,763	547,611
Rural	Chiga	252	265	287	311	338
	Nyalunya	1,104	1,326	1,800	2,443	3,315
	Kadero	1,754	1,699	1,610	1,526	1,447
	Okok	743	720	683	647	614
	Konya	5,326	6,171	7,888	10,081	12,884
	Sub-Total	9,179	10,181	12,268	15,008	
	Total	280,845	324,300	414,531	533,599	690,628

As a result, it is estimated that the municipal water supply area will accommodate a total population of 414, 530 in 2005, or approximately 79 % of the total municipal population 526,195 in that year, and that the coverage will slightly increase to 80 % in 2015.

5.3.3 Water Demand

(1) Domestic Water Demand

In order to estimate the future domestic water demand, a survey on the existing water use was conducted by the Study Team. For this survey, the Study Team selected the Milimani area where supply from the municipal water supply system is currently available on a continuous basis, and hence the results of the survey might well represent the potential domestic water demands in other areas of the municipal water supply system as well.

The survey indicated that the level of the existing per-capita water use in Milimani is more or less compatible to that recommended in the guidelines prepared by the MLRRWD for design of water supply facilities for various domestic consumption levels. Table 5-6 shows the per-capita consumption rates recommended for use by the ministry for different levels of income both in urban and peri-urban areas.

Table 5-6 Per Capita Consumption Rates by User Category and Area Classification

User Category	Urban Area (kd)	Peri-Urban Area (lcd)
Individual House Connections		
High-income	200	120
Medium-income	120	60
Low- income	60	50
Communal taps	20	15

Source: Design Manual by MURRWD, 1990.

The results of the survey in Milimani indicated that the level of water consumption through a house connection varies to a considerable extent depending on the level of income, and that, even in the urban area, there is a significant number of people who still do not have a direct access to the municipal water supply system but depend their domestic water on a communal tap.

JICA Study Team made minor modifications to the MLRRWD guidelines and developed the future per-capita domestic consumption rates. They are summarized in Table 5-7.

Table 5-7 Modified Per Capita Domestic Consumption Rates by Level of Income and Area Classification (lcd)

User Category	Urban Area	Peri-urban Area	Rural Area
Individual House Connections:			
High-income	200	120	120
Medium-income	120	60	60
Low- income	60	50	50
Communal taps:			
High Income	20	20	20
Medium Income	20	20	20
Low Income	20	20	15

Source: JICA Study Team

The year 2005 and 2015 service populations estimated for each Sub-location shown in Table 5-5 were then distributed into one of the three income level groups, i.e. high, medium and low, taking the current situations of the Sub-locations and the future land use envisaged by the Kisumu Structure Plan into account. The numbers of population distributed into each income group and service level are shown in Tables 5-8 and 5-9 for the years 2005 and 2015 respectively.

As can be seen in Table 5-8, it is estimated that in 2005 approximately 70 % (289,728) of the total population (414,351) in the municipal water supply area will be supplied through an individual house connection with an average consumption rate ranging from 50 to 200 lcd while the remaining 30 % through a communal tap with an average consumption rate of 15 to 20 lcd. The ratio of individual house connection supply is estimated to be 92 % in urban areas and 63 % in peri-urban and rural areas in 2005.

Table 5-9 indicates that the ratio of individual house connection will increase from 70 % in 2005 to 77 % in 2015, comprising 100 % in urban areas and 72 % in peri-urban and rural areas.

The domestic water demand for each Sub-location in the years 2005 and 2015 were then calculated as the products of the numbers of population shown in Tables 5-8 And 5-9 and the per-capita domestic consumption rates shown in Table 5-7. Tables 5-10 and 5-11 presents the domestic water demands estimated for the years 2005 and 2015. The total domestic water demands in the municipal water supply area is estimated to be 24,873 m3/day in 2005 and 41,952 m3/day in 2015.

	c					Pop	Population Served	/ed				
		Total				Distr	Distribution per Service Level	Service L	evel			
					House Co	Connection				Communal Tap	nal Tap	
				Urban		Peri-i	Peri-urban & Rural	ıral	Urban	Peri-	Peri-Urban & Rural	ıral
	-		High	Medium	NO.	High	Medium	Low	High	High	Medium	Low
			200 lcd	120 lcd	60 lcd	120 lcd	60 lcd	50 lcd	20 lcd	20 lcd	20 lcd	15 lcd
Urban Kibuve	Š	37,211	6.409	12,197	15,505	0	0	0	3,101	0	0	0
	nan	19,617	3.378	6,430	8,174	0	0	0	1,635	0	0	0
kanyakwar	dewar	47,645	8,206	15,618	19,852	0	0	0	3,970	0	0	0
Sub-total	otal	104,473	17,993	34,245	43.531	0	0	0	8,706	0	0	0
Peri-urban Nvalenda	nda	79.552	0	0	0	7,513	20,153	22,098	0	442	5.038	24,308
	atta	106,354	0	0	0	10,045	26,943	29.543	0	591	6,736	32,497
Kasule	<u>6</u>	34.409	0	0	0	3,250	8,717	9,558	0	161	2.179	10,514
Wath	Wathorego	14 135	0	0	0	1,335	3,581	3,926	0	78	895	4,319
Korando	o opi	30.917	0	0	0	2,920	7,832	8,588	0	172	1.958	9,447
Kogony	nV	32,423	0	0	0	3,062	8,214	9,006	0	180	2,054	9,908
Sub-total	oral	297 790	0	0	0	28,125	75.440	82,719	0	1,654	18.860	90,993
Rural Chiga	1	287	0	0	0	27	73	80	0	2	18	88
	ınva	1.800	0	0	0	170	456	200	0	10	114	550
Kadero	ဥ	1,610	0	0	0	152	408	447	0	6	102	492
Ö		683	0	0	0	65	173	190	0	4	43	209
Konva	d	7.888	0	0	0	745	1,998	2,191	0	44	200	2,410
Sub-total	otal	12,268	0	0	0	1.159	3,108	3.408	0	69	777	3.749
			17,993	34,245	43,531	29,284	78,548	86,127	8,706	1,723	19,637	94,742
Total		414.531		95.769			193,959		8,706		116,102	
					789 778	728				124.808	808	

(

Sub-location	rributio n	Distribution of Service ropulation	e r opulation	n rei Seivice Level in Long			Population Served	p _a /				
		Total				Distr	Distribution per Service Level	Service L	evel			
					House Connection	nnection				Communal Tap	nal Tap	
				Urban		Peri-	Peri-urban & Rural	ıral	Urban	Peri-	Peri-Urban & Rural	ural
			High	Medium	ş	High	Medium	Low	High	High	Medium	ž Š
			200 lcd	120 lcd	60 lcd	120 lcd	60 lcd	50 lcd	20 lcd	20 lcd	20 lcd	15 ld
Urban Kibuye	Ş	42,509	8,502	12,753	21,254	0	0	0	0	0	0	0
	mani	22,410	4,482	6,723	11,205	0	0	0	0	0	0	ा
kanva	kanvakwar	59,500	11,900	17,850	29,750	0	0	0	0	0	0	0
Sub-total	otal	124,419	24,884	37,326	62,209	0	0	0	0	0	0	0
Peri-urban Nvalenda	enda	108.800		0	0	10,880	34,816	32.640	0	0	8,704	21,760
Manyatta	vatta	116.800	0	0	0	11,680	37.376	35,040	0	0	9,344	23,360
Kasule	je je	140.063	0	0	0	14,006	44,820	42,019	0	0	11,205	28,013
Wath	Wathorego	43.919	0	0	0	4,392	14,054	13,175	0	0	3,514	8,784
Korando	opu	65.282	0	0	0	6,528	20,890	19,585	0	0	5,223	13,056
Kogony) N	72,747	0	0	0	7,275	23,279	21.824	0	0	5.820	14,549
Sub-total	otal	547.611	0	0	0	191,45	175.235	164,283	0	0	43,810	109,522
Rural Chiga	-	338	0	0	0	34	108	101	0	0	27	89
	unva	3.315	0	0	0	332	1,061	994	0	0	265	663
Kadero	, o	1 447	0	0	0	145	463	434	0	0	116	289
Okok		614	0	0	0	61	196	185	0	0	49	123
Konva	6	12.884	0	0	0	1.288	4,123	3.865	0	0	1,031	2,577
Sub-total	otal	18.598	0	0	0	1.860	5,951	5.579	0	0	1,488	3.720
		690,628	24,884	37,326	62,209	56,621	181,186	169,862	0	0	45,298	113,242
Total		690.628		124,419			407,669		0		158,540	
					532,088	880				158,540	540	

ľ
l
l
ı
ı
ļ
ı
l
I
I
١
1
ļ
1
,
į
,
,
١
í
١
•
ļ
,

Laure					Octobal strong	Percent			-			Per Capit	A Consump	ntion		
i qn	Sub-tocation				ic to the stoop	Distribution as ner Service eve	Co Level				SiQ	Distribution as	s per Servi	ce Levei		
		-l_	House	House Connecti	500		Water Kiosk	iosk		House	e Connection			Water	Water Kiosk	
	_	J	Ξ.		Low	Urban High	H. Peri-	Peri-Urban & Rural	Low		Medium		- Figh	Į Portina Portina	ત્રો ⊏	No.
			- 007	10101	15 505	3.101	c	ō	°	200	120	09	50	,	ŀ	,
Urban	Kibuye	37,211	975.0	6.430	9.174	1635	ō	Īō	0	200	120	09	8	1		•
	Milliman	13,017	90° a	15,618	19.852	3,970	0	0	0	200	120	09	Ŕ	,	ı	1
	Kanyakwar	40,74	17 003	34 245	43.531	8 706	ō	ō	0	-	•	-	,	•	ı	,
	Sub-total	20562	7.543	20152	22,098	ā	14	5.038	24,308	120	9	20	-	2		3
reniurban	Nyalenda	106.354	10.045	26 943	29.543	0		6,736	32,497	120	09	20	ι	8	2	£ .
	Manyarie	24 409	3.250	8 717	9.558	0		2,179	10,514	120	3	ଛ	•	200		5
	Nes und	14135	1 335	3,581	1	ō	İ	895	4,319	120	09	ଛ	,	2		2
	Wathorogo	30.017	0000	7837	1	0		1,958	9,447	120	90:	ŝ	,	2		£ .
	Norando	30,317	2,069	9.214		ō	8	2,054	806'6	120	09	20		20		2
	Nogony Cult	297 790	28 1 25	75.440	"	ō	-	18.860	90,993	1	'			,	1	4
7-11-0	Sub-total	287	22, 23	73	1	ō		18	88	120	ပ္တ	25	-	2	02	2
is Loc	Alveline.	000	0/	456		ō		114	550	120	8	<u>Ş</u>	•	2 2		Č V
	Kodeno	1,610	1521	408		ō	6	102	492	120	9	Ŝ	-	3 3		C A
	Okor	683	59	173	Ì	0		43	509	120	9	g) 	•	2/2		<u> </u>
	CAGA	7 998	745	1 998	ļ	ō		88	2,410	120	9	S	-	20		2
	Conya	10 0681	1.50	3 108	3.408	0		111	3,749	_	1	•	- 	,	<u>'</u>	,
<u></u>	Sub-total	414 531	47.277	112 793	129,658	8,706	-	19,637	94,742	-	_	,	•	۱,	<u>'</u>	-
															C	
-qnS	Sub-location						Oay	Average D	Demand		707			10.00	Maximum	
		100 0 22	A 4 4 104 1	ŏ	omostic Water	۳,	ii E	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		CôN No.		arer Lomb	20	<u> </u>	Demond	
		Hous	House Connection	ion		Water Klosk	Nook		- TOTO	Institutional	Commercial	TO COOL	3			
		fg I	Medium	, non	Urban High	High Feri-	Peri-Urban & Rural	Low						707/24	m3/day	
		m3/day	m3/day	m3/day	m3/day	m3/day 1	m3/day	m3/day	m3/day	m3/day	m3/day	100/0E	7,000	11 152 0		17.345
13rban	Kibuve	1.282	1,464	930	(29		ō	0	3,738	545	1,3/1	0.00	034	0.000 0		7 630
	Milimen	676	772	490	33		Ö	Ö	1,970	287	723	5		C.000,2		1 248
	kanvakwar	1 641	1,874	1,191	79		0	0	4,786	869	1/36		7 2 2	0.603.7		23.004
	Sub-total	3.599	4 109	2.612	174		Ö	ō	10,494	1,530	3,850	5,510	2000	10013		2003
Peri-urban		902	1,209	1,105	Ō		101	365	3,690	341	470	0	500	4,000		0 240
•		1,205	1,617	1,477	0		135	487	4,933	456	979	2 34	3	9 259 0		3.671
	Kasule	390	523	478			4	128	1.3%	148	500	5	27	2007		1243
	Wathorego	160	215	196			80	3	9	0	Car	991	1 206	2 640.0		4.102
	Korando	320	470	429			88	75	\$ 5	130	3 6	122	1 102	2,605.9		4,049
	Kogony	367	493	450			41	149	200	010	1 757	2079	5114	18 926 7		29.406
	Sub-total	3,375	4,526	4,136	6	8	1/2	1302	15,013	0 7	-6	119	122	135.3		210
Rural	Chiga	n	4	4	ö		ۍ ا		2 6	. 0	2 -	772	791	8745		1.359
	Nyalunya	20	27.	25	ō		7	201	38	0 1	Ç	į		6		142
	Kadero	18	24	22	0		~		0 8	~ 6	5 5	5 0	1	38.8		9
	Okok	80	Ç.	ē	ō			3	35	2 6	1 97		100	444 9		169
	Konya	68	120	110			ڊ ڊ ا	8	300	200	2	891	1016	1.585.1		2.463
	Sub-total	139	136	170	o		100	30	37.0 %	0860	5 6801	8 480	17,020	41,895.8		65,092
	Total	7,1131	8.822	6,918		34	585	1.421	In/0'47	700'3	. 226.0					

Substocation	Cahon				Population	station Served					1	Per C	Per Capita Consumption	nondi		
		Total			Distribution	bution as per Service Level	ICO Level					Distributio	Distribution as per Service	/ICO Leve!		
	-	1	Î	House Connection			Water Krosk	Kiesk		TOL	House Connection	CC		Water Klosk	Kiosk	
		. i _	2		-	Crban	Pen	Pen-Urban & Rura	eJr.			-	Urban	Per	Peri-Urban & Rural	12
			Ę	Medium	.i	H o	Ę	Medium	% 07	Ę	Medium	Low	Hg.	Ę	Medium	(OW
netal	Kibiwa	42 509	8 502	12.753	21.254	0	0	0	P	82	120	09	20:			
	Miliman	22 410	4.482		11,205	0	0	o		200	120	8	20,	1	•	
1 =	Kanvakwar	58.500	11 900	Ľ	29,750	0	0	0		200	120	8	2	,		
12	Sub-total	124.419	24.884	37,326	62,2091	Ö	0	ō	3	•	•	•	•	•	,	
cedan	Porturban Nyalenda	108 800	10,880	34,816	32,640	0	Ö	8,704	21,760	120	9	S	•	8	8	
	Manyatta	116.800	1,680	L	35,040	0	0	45,6	23,360	120	8	S		2	2	,-[
	Kasılı	140.063	14 006		42,019	0	0	11,205		120	8	ଝ	•	20	2	, - (
47.	Wathornso	43.919	4 392	14.054	13.175	0	0	3,514	8.784	120	8	ୟ	•	8	20	
	Korando	65.282	6 528		19,585	ة 	0	5,223	13,056	120	8	ያ	•	20	20	1
	Kodony	72.747	7.275	ĺ	21,824	o	0	5,820	14,549	120	8	ଝ	•	20	20	
	Suprota	547,611	54.761		164,283	0	0	43,810	8	•	•	•	•	•	•	
Rural	Chiga	338	3	8	101	0	0	27	99	120	3	ଝି	•	8	- 50 -	
1	Nyalunya	3.315	332	1.961	984	0	o	265		120	8	ชิ	•	2	20	
	Kadero	1447	145	463	45	0	0	116	289	120	9	ଝ	•	8	20	
15	ğğ	614	61	8.	185	o	ō	49		120	9	ଝ	,	8	Ş S	
	Konva	12.884	1 288	4,123	3,865	o	o	1,031	2,577	120	09	S S	,	2	20	•
	Sub-total	18 598	1,860	5,951	5,5791	Ó	Ö	1,488	3,720	•	•	•	•	,	•	
		073 773	91 505	218615	225 074	Ċ		1600 27	CYC 211	-	•	•	•	•	•	,

4	Citt Combon						Ś		Dues					=	60)
					Domestic W	c Water Demand				2	n-domestic V	Non-domestic Water Demand	ņ	Total	Maximum
		Î	House Connection			Wate	Water Kiosk		Sub-tota	Institutional Commercial	Commercial	Industrial	Sub-total		Demand
					Urban	ď	Peri-Urban & Rura	Rural							
		Ę	Medium	Low	Ę	£ de	Medium	row.			:	;	;	;	i
		m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day	m3/day
Urban	Kibuve	1 780	1,530	1,276	li .		0	0	4,506	1,196	1,879	8,500	11,575	16,081	23,585
	Milman	896				0	o G	ō	2,375	8	991	Ö	1,621	3,996	5,861
	teanvalewar	2380	2	-		ō	O	0	6,307	1,674	2,630	ō	4,304	10.611	15,563
	Sub-total	4 976		ľ		0		0	13,188	3,500	5,500	8,500	17,500	30,638	45,009
Definition Nyslands	Nyalenda	1 306		L		_	174		5,527	576	538	Ō	1,114	6,641	9,740
	Manyatta	1 402					0 187	350	5,934		578	ō	1,197	7,131	10,459
	Kasula	1681			0		0 224			742	693	980	2,415	9,530	13,977
	Mathoreco	105				0	2	132	2,231		217:	ō	3 2	2,681	3,932
-	Korando	783				0	104	961	3,316		323	2,100	2,769	6,085	8,925
	2000	878					116		3,696		360	1,820	2,565	6,261	9,183
	200	6572	ľ	ľ					27,819	2.901	2,709	4,900	10,510	38,329	56,216
107120	5045	4	ļ			°		[-	17	2	7	280	787	301	441
	Nyalunya	\$	9	96		0	5	10	169	18	15	1,820	1,854	2,023	2,967
	Kadero	1	28	22	0	0	2	4	73	8	7	0	15	88	129
	Skok O		12	0	0	0		2	31	3	3.	0	9	37	3
	Konva	155		193	P	 	21		655	88	8	0	131	786	1,153
	Sub-total	223				0	8		945		91	2,100	2,290	3.235	4,745
T S	3	177	15	12.227		0	905	1,696	41,952	6,500	8,300	15,500	30,300	72,252	105,970

0

(2) Non-domestic Water Demands

()

Non-domestic water demand comprises institutional, commercial and industrial water demands.

The future institutional water demand in each sub-location was projected up to the year 2015 at a rate almost equivalent to the future population growth projected for the sub-location.

At present, most of the commercial activities in Kisumu are centered around Milimani and its surroundings areas where many banks, supermarkets, hotels and restaurants are located. The future growth is expected to continue towards the north of this central core area. It is expected that Manyatta, Kibuye and Kanyakwar Sub-locations will remain as the center of commercial activities in Kisumu. Although a high population density is expected to take place in Manyatta and Nyalenda Sub-locations, no significant commercial growth is foreseen in the future.

There has been little expansion in industrial activity in Kisumu in recent years. Currently, industrial activity is dominated by beverages and agro-processing based on tee, coffee, pyrethrum, sugercane and cotton. At present, most of the major industries in Kisumu are located in the Kibuye Sub-location. The Kenyan Brewery Limited is one of those industries and is a large user of water from the municipal water supply system. It is expected that the future expansion in industrial activity will be slow and mostly accommodated in the Kibuye Sub-location. A relatively large growth is expected to take place in the north of the Kasule Sub-location, however, as the future land use plan envisages the development of a new industrial estate in this area.

Tables 5-10 and 5-11 present the non-domestic water demands estimated for each Sub-location in the years 2005 and 2015 respectively. The same tables also present the total water demands estimated for the municipal water supply system. Table 5-12 provides a summary of the estimated total water demands. The total water demands in the municipal water supply system are estimated to be 41,893 m3/day in the year 2005 and 72,252 m3/day in 2015.

Table 5-12 Total Water Demands in Municipal Water Supply System (m3/day)

Year	Domestic Water	N	on-domestic W	ater Demand		Total Water
	Demand	 Institutional	Commercial	Industrial	Sub-total	Demand
2005	24,873	2,860	5,680	8,480	17,020	41,893
2015	41,952	6,500	8,300	15,500	30,300	72,252

(3) Water Demands for Planning of Water Supply Infrastructure

It is envisaged that the leakage in the distribution system will gradually decrease from 30 % in 1997 to 29.2 % in 2005 and 25 % in 2015, and that this reduction will be achieved by the unaccounted for water reduction programme proposed in Chapter 6 and by exercising utmost cautions during construction of pipelines in the forthcoming rehabilitation and expansion works.

It is also envisaged that the peak day and peak hour factors in Kisumu will be as low as 1.1 times and 2.0 times of the average day demand respectively, given the relatively large share of non-domestic water demand (approximately 40 %) among the total water demand as shown in Table 5-12.

Based on the above assumptions, water demands for planning of water supply infrastructure are determined as follows:

Day Average Water Demand

Year 2005 : 41,893/0.708 = 59,171 m3/day

= 2,465 m3/hour = 0.685 m3/sec

Year 2015 : 72,252/0.75 = 96,336 m3/day

= 4,014 m3/hour = 1.115 m3/sec

Day Maximum Water Demand

Year 2005: 59,171 x 1.1= 65,088 m3/day

= 2,712 m3/hour = 0.753 m3/sec

Year 2015: 96,336 x 1.1= 105,970 m3/day

= 4,416 m3/hour = 1.227 m3/sec

Peak Hourly Flow

Year 2005: 59,171 x 2.0= 118,342 m3/day

= 4,931 m3/hour = 3.370 m3/sec

JICA STUDY ON KISUMU WATER SUPPLY AND SEWERAGE SYSTEM

year 2015:

 $96,336 \times 2.0 = 192,672 \text{ m}3/\text{day}$

= 4.931 m3/hour

= 1.370 m3/sec

Peak hourly flow will be used for the planning of distribution pumps and pipelines while day maximum demand will be used for planning of distribution reservoirs and clear water transmission pumps and pipelines. For the planning of water treatment works, an allowance of 5 % will be added to the day maximum water demand to compensate water losses at the works. For water intake and raw water transmission facilities, another 3 to 5 % allowance for water losses will be added to the treatment capacity required.

5,3.4 Water Quality

Kenyan standards for drinking water quality is presented in Table 5-13 in comparison with the WHO guidelines and Japanese standards. Although several parameters set in the Kenyan standards exceed the recommended values in the WHO guidelines, it is generally compatible to other international standards for drinking water quality. A few areas of concern however are as follows:

- "Total Colonies" which is generally a good parameter for the assessment of impacts on the human health is not specified. As it can easily be tested simultaneously with "Total Coliform Bacteria" which is specified, it is recommended that the parameter be also tested.
- The standards does not include "Trihalomethanes". Since Kisumu uses water from the
 Lake Victoria which is eutrophic, the chance of formulating trihalomethanes during the
 water treatment process is relatively high. Thus the inclusion of this parameter in the
 testing is recommended.
- There is no definite limits for "Turbidity" specified in the standards. It says that turbidity should be preferably one NTU. It is known that turbidity is a parameter which well reflects the effectiveness of water purification process applied, and that the reduction of turbidity leads to the reduction of other undesirable substances. Although the WHO guidelines suggest five NTU, it is recommended that turbidity be maintained at less than two NTU, as is practiced in many countries.

The lack of many water quality testing equipment and apparatus makes it difficult to immediately improve the present water quality management system and the water treatment process. It is

recommended that all the necessary water quality testing equipment and apparatus be provided, manuals be prepared and technical training of operators be completed before new facilities proposed in this Study start commissioning.

Table 5-13 Comparison of Drinking Water Quality Standards

(1/6)

Parameter / Constituent	unit	WHO	1	• • •	Kenya
		1993			1985
Bacteriological Quality			Maximum	Desilable	
•	per100 mL	ND	0		0
Total coliform bacteria	per100 mL	ND	0		0
Total colonies (hetotrophic bacteria)	per 1 mL		100		
, ,	 Quality 				
Алtimony	mg/L	0.005 (P)			
Arsenic			0.01		0.05
Barium		0.7			1 (tentative)
Beryllium	mg/L	NAD			
Boron	mg/L	0.3			
Cadmium	mg/L	0.003	0.01	·	0.005
Chromium	mg/L	0.05 (P)	.05 (hexavalent)		0.05
Copper	mg/L	2 (P)			İ
Cyanide	mg/L	0.07	0.01		0.01
Flouride	mg/L	1.5	0.8		1.5
Lead	mg/L	0.01	0.05		0.05
Manganese	mg/L	0.5 (P)			
Mercury (total)	mg/L	0.001	0.0005		0.001
Molybdenum	mg/L	0.07			
Nickel	mg/L	0.02			
Nitrate (as no3-)	mg/L	50	10 (and nitrite)		10
Nitrite (as no2-)	mg/L	3 (P)			
Selenium	mg/L	0.01			0.01
Ųranium	mg/L	NAD	0.01		
	Bacteriological Quality E. Coli (or thermotolerant coliform b Total coliform bacteria Total colonies (hetotrophic bacteria) Chemical (of health significance) Inorganic constituents Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Copper Cyanide Flouride Lead Manganese Mercury (total) Molybdenum Nickel Nitrate (as no3-) Nitrite (as no2-) Selenium	Bacteriological Quality E. Coli (or thermotolerant coliform b per 100 mL per 100 mL per 100 mL per 100 mL per 1 mL Total colonies (hetotrophic bacteria) per 1 mL Chemical (of health significance) Quality Inorganic constituents Antimony mg/L Barium mg/L Beryllium mg/L Beryllium mg/L Cadmium mg/L Chromium mg/L Chromium mg/L Chromium mg/L Chyanide mg/L Lead mg/L Manganese mg/L Mercury (total) mg/L Mitrate (as no2-) mg/L Nitrite (as no2-) mg/L Selenium mg/L	Bacteriological Quality F. Coli (or thermotolerant coliform b per 100 mL ND	1993 1995 Maximum	1993 1993 Maximum Desirable

ATO - affects appearance, taste and odour

NAD - no available data to specify guideline

(P) - Provisional guideline

Table 5-13 Comparison of Drinking Water Quality Standards

(2/6)

	Parameter / Constituent	unit	WHO		PAN	Kenya
			1993	Maximum	93 Desirable	1985
С	organic constituents			I FIGATIFICATIO	Destrable	· · · · · · · · · · · · · · · · · · ·
	chlorinated alkanes					
C1	Carbon tetra chloride	μg/L	2	2		3 (T)
C2	Dichloromethane	μg/L	20	20		<u> </u>
СЗ	1,1-dichloroethane	μg/L	NAD	20		10
	1,2-dichloroethane	μg/L	30	4		
C5	1,1,1-trichloroethane	μg/L	2,000 (P)			
	chlorinated ethenes	1	11000 (1)	<u>-</u>		
C6	Vinyl chloride	μg/L	5			
C 7	1,1-dichloroethene	μg/L	30			
	1,2-dichloroethene	μg/L	50			
-	Trichloroethene	μg/L	70 (P)			
	Tetrachioroethene	μg/L	40			·
	aromatic hydrocarbons					
C11		µg∕L	5	10		10
C12		μg/L	700 (ATO)			10
******	Xylenes	μg/L	500 (ATO)	-		
	Ethyl benzene	μg/L	300 (ATO)			
C15		μg/L	20 (ATO)		<u> </u>	
C16		µg/L	0.7			0.01
	chlorinated benzenes				<u> </u>	0.01
C17		μց∕∟	300 (ATO)			
	1,2-dichlorobenzene	µg/L	1,000 (ATO)	·		
C19	_ ``````	HO/F	NAD		····	
C20		μ <u>9</u> /L	300 (ATO)	·		-
C21		μg/L	20 (ATO)		ļ ————	
	Miscellaneous	<u> </u>	20 (110)		<u></u>	
C22	Di(2-ethylhexyl)adipate	μg/L	80		}	
C23	f — — — — — — — — — — — — — — — — — — —	µg/L	8			
C24		µg/L	0.5	· · ·		
	Epichlorohydrin	µg/L	0.4 (P)			
C26		μg/L	0.6			
C27		μg/L	200 (P)			
C28		μg/L	200	<u> </u>		
C29	· 	μg/L	NAD	<u> </u>		
1	Tributylin oxide	μg/L	2		 	
C31		μg/L	 	2	 	
C32		μ <u>αν</u> Σ		ļ 	<u> </u>	2
C33		μg/L	-	10	ł	0.3
C34		μg/L		30		10 (T)
C35		μg/L	· 	40		30 (T)
C36		μg/L	-}			
~~~	A TO COMMON CONTRACTOR	μg/L μg/L	}	6		
	Chiorophenois	H PG/L				
C37						
C38		_ μg/L μα/	<del></del>	ļ	<del> </del>	10
$\sim$	1 2,7,9,7400000pnenor	µg/L	l .	I	i l	10

ATO - affects appearance, taste and odour

NAD - no available data to specify guideline

(P) - Provisional guideline

Table 5-13 Comparison of Drinking Water Quality Standards

(3/6)

	Parameter / Constituent	unit	WHO 1993	JAP 19		Kenya 1985
}				Maximum	Desirable	
D	pesticides	-		-	1	
DI	Alachior	μg/L	20			
D2	Aldicarb	μg/L	10	<u> </u>		
D3	Aldrin / Dieldrin	μg/L	0.03		L	0.03
D4	Atrazine	μg/L	2			
D5	Bentazone	μg/L	30			
D6	Carbofuran	μg/L	5			
D7	Chlordane	μg/L	0.2			0.3
D8	Choiorotoluron	μg/L	30			
D9	DDT	μg/L	2			1
D10	1,2-dibromo-3-chloropropane	μց⁄L	1			
D11	2,4-D	μg/L	30			100
D12	1,2-dichloropropane	μg/L	20 (P)			
D13	1,3-dichloropropane	μg/L	NAD			
	1,3-dichloropropene(D-D)	μg/L		2	,	
D14	1,4-dichloropropene	μg/L	20			
D15	Ethylene dibromide	μg/L	NAD			
D16	Heptachlor and heptachlor epoxide	μg/L	0.03			0.1
D17	Hexachlorobenzene	μg/L	1			0.01
D18	Isoproturen	μg/L	9	1		
D19	Lindane	µg/∟	2			3
D20	MCPA	μg/L	2			
021	Methoxychlor	μg/L	20			30
D22	Metolachior	μg/L	10			
D23	Molinate	μg/L	6			
D24	Pendimethalin	μg/L	20		Ţ	
D25	Pentachiorophenol	µg√L	9 (P)			
D26	Permethrin	µg/L	20			
D27	Propanil	μg/L	20			
D28	Pyridate	μg/L	100			
D29	Simazine	μg/L	2	3		<u></u>
D30	Trifluralin	µց/L	20	_1		
	Chlorophenoxy herbicides other tha	n 2,4-D and	MCPA			
D31	2,4-DB	μg/L	90			
D32	Dichlorprop	μg/L	100			
D33	Fenoprop	μg/L	9			<u> </u>
D34	мсрв	μg/L	NAD			<u> </u>
D35	Mecoprop	μg/L	10			
D36		μg/L		6		
D37	Thiobencarb (benthiocarb)	μg/L	1	20		

ATO - affects appearance, taste and odour

NAD - no available data to specify guideline

(P) - Provisional guideline

(4/6)

Table 5-13 Comparison of Drinking Water Quality Standards

	Parameter / Constituent	unit	WHO 1993		PAN 93	Kenya 1985
		<u> </u>		Maximum	Desirable	
E	Disinfectants and disinfectant by	y-products				
	disinfectants	1				
Ei	Monochloramine	mg/L	3			
E2	Di- and trichloramine	mg/L	NAD			
E3	Chlorine	mg/L	5 (ATO)			
E4	Chlorine dioxide	mg/L				
E5	todine	mg/L	NAD			
	disinfectant by-products				_	
<b>E</b> 6	Bromate	μg/L	25			
E7	Chlorate	µg/L	NAD			
E8	Chlorite	µg/L	200			
	Chlorophenols					
E9	2-chlorophenol	μg/L	NAD			
E10	2,4-dichlorophenol	μg/L	NAD			
E11	2,4,6 -trichlorophenol	μg/L	200			10
E12	Formaldehyde	µg/L	900			
E13	MX	μg/L	NAD			
	Trihalomethanes	1		100		
E14	Bromoform	μg/L	100	90		
E15	Dibromochloromethane	μg/L	100	100		
€16	Bromodichloromethane	μg/L	60	30		
E17	Chloroform	μg/L	200	60	·	30
	Chlorinated acetic acids	- 1 · · <del>-</del> · ·				
E18	Monochtorpacetic acid	I µg/⊾	NAD		•	
E19	Dichloroacetic acid	μg/∟	50 (P)		1	
E20	Trichloroacetic acid	μg/L	100 (P)			
	Chloral hydrate	-		- <b> </b> -	\ <del></del>	
E21	(trichloroacetaldehyde)	µց∕∟	10 (P)	ľ		
E22	Chioroacetone	µg/L	NAD			
	Halogenated acelonitriles					
E23	Dichloroacetonitrile	μg/L	90 (P)			
E24	Dibromoacetonitrile	μg/L	100 (P)			
E25	Bromochloroacetonitrile	µg/L	NAD		·	
E26		µg/L	1 (P)	•		<del></del>
E27		μg/L	70		·	<del></del>
E28	<del></del>	μg/L	NAD		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	T			- <del> </del>		l

ATO - affects appearance, taste and odour

NAD - no available data to specify guideline

(P) - Provisional guideline

Table 5-13 Comparison of Drinking Water Quality Standards

(5/6)

	Parameter / Constituent	unit	WHO 1993	JAP 19:	93	Kenya 1985
		<u> </u>		Maximum	Desirable	
F	aesthetic quality			-		
	physical parameters	1				
F1	Colour	TCU	15	55		15
F2	Taste and odour	TON	acceptable		3	acceptable
F3	Temperature	. I	acceptable			
F4	Turbidity	NTU	5	2	11	(preferably 1
F5	Suspended matter					nil
	inorganic constituents		; 			
F6	Aluminium	mg/L	0.2	0.2	0.2	0.2
F7	Ammonia	mg/L	1.5			0.5
F8	Chloride	mg/L	250	200		250
F9	Copper	mg/L	1.0	1.0		1.0
F10	Hardness, as CaCO3	mg/L	<u> </u>	300	10 100	500
F11	Hydrogen sulfide	mg/L	0.05			
F12	Iron	mg/L	0.3	0.3		0.3
F13	Manganese	mg/L	0.1	0.05	0.01	0.1
F14	Dissolved oxygen	mg/L				
F15		mg/L	-	5.8 - 8.6	about 7.5	6.5 - 8.5
F16		mg/L	200	200		200
F17		mg/L	250		1	400
F18		mg/L	1,000	500 (TS)	30 - 200	1,000
F19		mg/L	3	1.0	<u> </u>	5.0
F20		mg/L				nil
F21		mg/L	ļ ————	<u> </u>		
F22	<del>                                     </del>	mg/L.	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·   ····	
F23					>-1 near 0	
	organic constituents			<b>†</b>		· <b> </b>
F24	•	μg/L	24 170			
F25		μg/L	20 - 1,800	·	- <b> </b>	·
F26		μg/L	2 - 200	<del> </del>	-	
F27	<del></del>	µg/∟	4 - 2,600	<del> </del>	-1	
	Monochlorobenzene	μg/L	10 - 120	· · · · · · · · · · · · · · · · · · ·	· <del> </del>	
F29	···	μg/L	1 - 10	1	<del></del>	1
F30	· · · · · · · · · · · · · · · · · · ·	μg/L	0.3 - 30	<b>.</b>	-	
F31		μg/L	5 - 50	·	<u> </u>	
F32	<del></del>	μg/L		200	<del></del>	
F33	· · · · · · · · · · · · · · · · · · ·	mg/L	<b></b>	10	3	
<u> ````</u>	disinfectants and disinfectant by-		-	-t <del></del>	-t <u>*</u>	
F34	1	<i>μ</i> g/L	600-1,000		1	200 ~ 500
F3:		μg/L	0.1 - 10	-		- 200 - 000
- I			0.1 - 10		<del>- </del>	
	2,4-dichlorophenol	<u>μg/L</u>	2 - 300		-}	
F3	7 2,4,6-dichlorophenol	µg/L	<u> </u>			1

ATO - affects appearance, taste and odour

(P) - Provisional guideline

NAD - no available data to specify guideline

Table 5-13 Comparison of Drinking Water Quality Standards

(6/6)

	Parameter / Constituent	unit	WHO 1993	JAF 19	PAN 93	Kenya 1985
				Maximum	Desirable	
G	radioactive constituents					
Gi	Gross alpha activity	Bq/L	0.1			0.1
G2	Gross beta activity	Bq/L	1			1
H	Chemicals not of health significa	nce at norm	al water conc	entrations		
H1	Asbestos					
H2	Silver					
Н3	Tin					

ATO - affects appearance, taste and odour

(P) - Provisional guideline

NAD - no available data to specify guideline

#### 5.4 WASTEWATER MANAGEMENT

#### 5.4.1 General

As discussed in Section 5.3.3, it is envisaged that Kisumu, in order to cater for its increasing population and commercial/industrial activities in the future, will require much more water than it currently consumes. And if this requirement is met, there will be a significant increase in wastewater as well.

Against this background, the ultimate objectives of wastewater management in Kisumu will be to maintain living environments and to protect Lake Victoria from degradation of its water quality.

# 5.4.2 Wastewater Management Methods

There are a variety of methods for disposal of wastewater. They are used either on a stand-alone basis or in combination, taking amongst others the following into consideration.

- Extent of water supply area and water distribution
- per capita water consumption rates
- Ability to pay
- groundwater conditions
- current wastewater practises

# (1) Sewerage System

Sewerage system is an ideal but most expensive way of managing wastewater. It consists of sewers, pump stations and a sewage treatment works. Generally, it is applied in areas where residents consume water at a rate of 100 lcd or more. This is because sewerage system requires a relatively large quantity of water to transport domestic sewage from households to the sewage treatment works.

# (2) Shallow Sewers

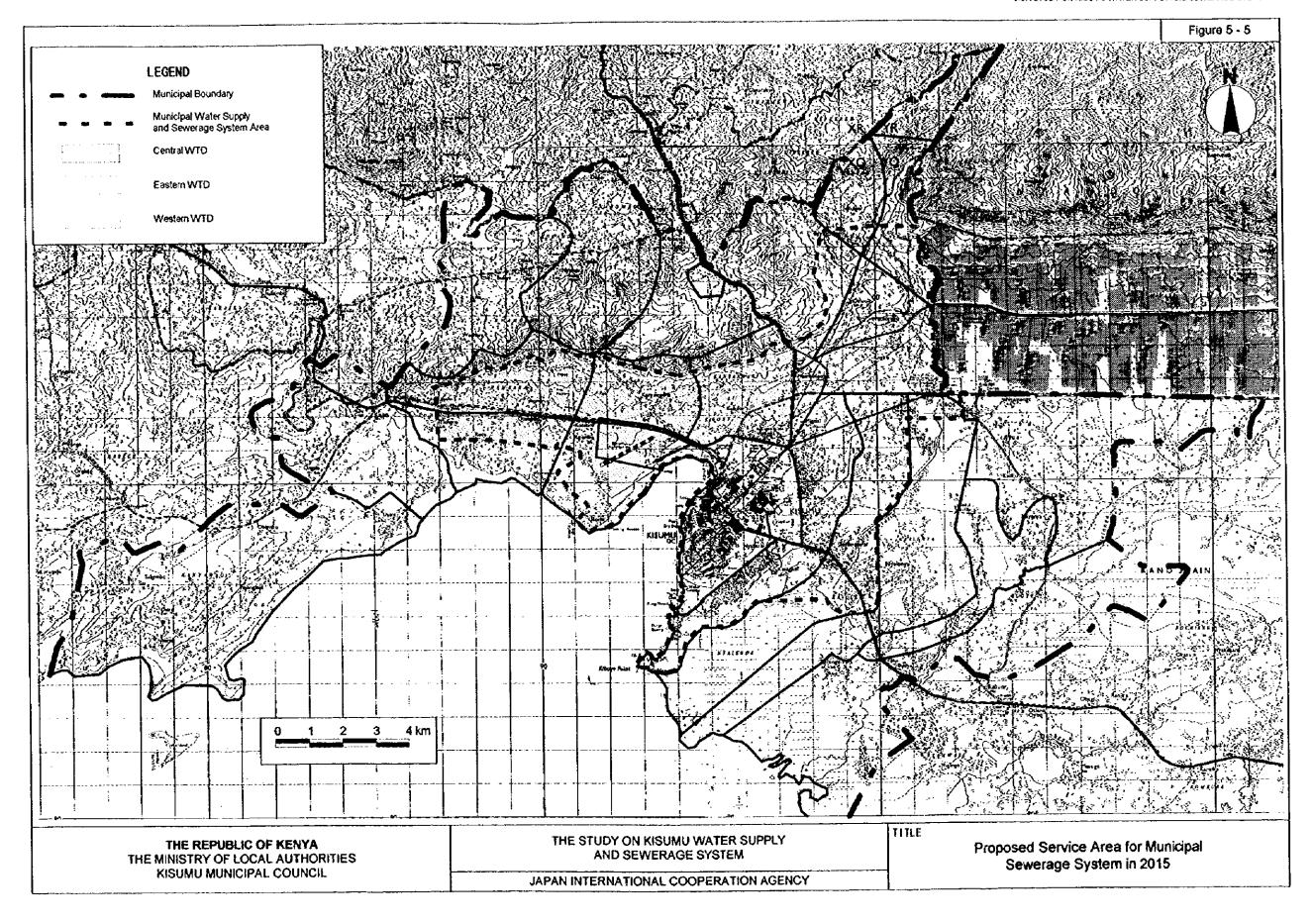
This method is similar to sewerage system but less expensive. The advantage of this method is that it can be applied in high population density areas where residents consume water even at a

smaller rate of 50 to 60 led. Compared with sewerage system, however, almost twice the number of households must be connected to a sewer to increase the flow. This requires part of sewer pipes to be installed within private properties, and thus community participation is essential for this method to work.

# (3) On-site Sanitation

On-site sanitation is generally applied in areas where residents use less than 20 lcd of water. In these areas, neither sewerage system nor shallow sewer can be used, since water available for disposing sewage is too small for either of these methods to work properly.

Ventilated Improved Pit (VIP) Latrines and septic tanks are most popular on-site sanitation facilities. Single-pit VIP latrines are recommended for low population density areas. Double-pit VIP latrines are recommended for areas of a relatively high population density. Where groundwater level is high, single-pit latrines should be raised above the ground or double-pit latrines should be provided. These modifications provide extra storage, prevents groundwater seepage into the pit and prolong the time between emptying or relocating the pit.


Septic tanks are convenient but more expensive than VIP latrines. Compared with a VIP latrine, a septic tank requires a wider extent of land for construction and maintenance. It requires regular emptying and hence the presence of suitable access for vacuum vehicles is necessary for a successful operation. It also requires suitable soils for disposal of effluent through soak pits and percolation trenches.

# 5.4.3 Service Area and Population

The area proposed to be covered by the municipal sewerage system in 2015 is shown in Figure 5-5. This area is delineated based on the assessment of the projected water demands in Section 5.3.3. It is estimated that with the combination of sewerage system and shallow sewers, the proposed service area will be able to collect more than 80 % of wastewater to be generated within the municipal water supply system in 2015.

The proposed service area is divided into three wastewater treatment districts, namely Central, Eastern and Western Wastewater Treatment Districts (WTDs), taking topographic conditions, locations of existing trunk sewers and sewage treatment works, future water supply service area and future land use plan.





• ~

Table 5-14 below presents a summary of the projected service area and population for each of the years 2005 and 2015.

Table 5-14 Sewerage Service Area and Service Population

WTD	Service Area		Service	e Population
	Year 2005	Year 2015	Year 2005	Year 2015
Central	4.4	4.4	23,992	29,896
Eastern	14.5	20.6	109,277	185,070
Western	0	26.4	0	158,880
Total	18.9	51.4	133,269	373,846

Source: JICA Study Team

## 5.4.4 Wastewater Generation

## (1) Domestic Wastewater Generation

Domestic wastewater generation volumes are estimated for different domestic water consumption rates as shown in Table 5-15. They are basically the same as the projected per capita consumption rates, except that wastewater generation from a household who consumes 200 lcd is assumed to generate 190 lcd or 95 % of water consumed.

Table 5-15 Domestic Wastewater Generation VS Water Consumption

Water Supply Methods	Urban/ Peri-urban/ Rural	Income Level	Water Consumption Rate (Icd)	Wastewater Generation Rate (lcd)
House	Urban	High	200	190
Connection	j	Medium	120	120
		Low	60	60
	Peri-urban	High	120	120
	and Rural	Medium	60	60
		Low	50	50
Communal	Peri-urban	High	20	20
tap	and Rural	Medium	20	20
-		Low	15	15

Source: JICA Study Team

Table 5-16 Domestic Wastewater Generation within Municipal Water Supply Area and That to be Collected by Sewerage System

17.4/	Wester	Tagama	Timit		2005	3			2015	5	
Den-urhan/	Supply	Level	DWWG	Populatiuon		DWWG	νG	Populatiuon	atiuon	DWWG	λG
Rural	Method	ļ !		Total	Sewerage	Total	Sewerage	Total	Sewerage	Total	Sewerage
1			(lpcd)		System		System		System		System
Urhan	House	High	<u>8</u>	17,993	9,787	3,419	1,860	24,884	24,884	4,728	4,728
	Connection	Medium	120	34,244	18,627	4,109	2,235	37,326	37,326	4,479	4,479
		Low	09	43,530	23,681	2,612	1,421	62,210	62,210	3,733	3,733
	Communal Taps	Low	20	8,706	0	174	0	0	0	0	0
	Sub-total			104,473	52,095	10,314	5.516	124,420	124,420	12,940	12,940
Dari.	House	High	120	28.125	22,143	3,375	2,657	54,761	54,761	6,571	6,571
I Irban	Connection	Medium	09	75,440	28,157	4,526	1,689	175,235	100,472	10,514	6,028
		Low	50	82,719	30,874	4.136	1.544	164,283	94.193	8,214	4,710
	Communal Taps	High	20	1,655	0	33	0	0	0	0	0
	•	Medium	20	18,859	0	377	0	43,810	0	876	0
		Low Tow	15	90,992	0	1,365	0	109,522	0	1,643	0
	Sub-total			297,790	81,174	13,812	5,890	547,611	249,426	27.818	17.309
Rural	House	High	120	1,158	0	139	0	1,857	0	223	0
	Connection	Medium	09	3,107	0	186	0	5,917	0	355	0
		۲ wo	20	3,408	0	170	0	5,568	0	278	0
	Communal	High	20	69	0	I	0	0		0	<u></u>
	Taps	Medium	20	777	0	91	0	1,482	0	30	0
	4	چې ا	15	3,748	0	26	0	3,773	0	57	0
	Sub-total			12,267	0	268	0	18,597	0	943	0
Total				414,530	133,269	24,694	11,406	690,628	373.846	41.701	30,249

Table 5-16 presents a summary of the estimated total domestic wastewater generation in the municipal water supply system and the wastewater to be collected by the municipal sewerage system. It is estimated that the municipal sewerage system will collect 46 % (11,406/24,694) of the total domestic wastewater to be generated within the municipal water supply system in 2005, and that the ratio will increase to 73 % (30,249/41,701) in 2015.

## (2) Non-domestic Wastewaters Generation

Non-domestic wastewaters comprise wastewaters to be generated from institutional, commercial and industrial activities. The first two are estimated from the projected water demands multiplied by ratios of 0.80 and 0.85 respectively. Wastewater from general industries is assumed to be 80 % of the projected water demand. Wastewater from large industrial users—is estimated through interviews with factories and from the results of previous studies. Table 5-17 below presents a summary of the estimated industrial wastewater generation within the municipal water supply system.

Table 5-17 Industrial Wastewater Generation

Table 5-17 Area	Type of Industry		2005	Yea	r 2015
Aica	Type of mausity	Water Demand (m3/day)	Wastewater Generation (m3/day)	Water Demand (m3/day)	Wastewater Generation (m3/day)
Urban	Large Industry	3,100	2,770	2,800	2,550
	General Industry	2,410	1,930	5,700	4,560
Peri-urban	Large Industry	0	0	800	640
and Rural	General Industry	2,970	2,380	6,200	4,960
	Total	8,480	7,080	15,500	12,710

Table 5-18 shows a summary of the estimated wastewater generation and the wastewater to be collected by the municipal sewerage system in each of years 2005 and 2015.

Table 5-18 Wastewater Generation and Wastewater to be Collected by Municipal Sewerage System

Category	Year	2005	Year 2	2015
of Wastewater	Wastewater Generation (m³/d)	Wastewater to be Collected by Sewerage (m³/d)	Wastewater Generation (m³/d)	Wastewater to be Collected by Sewerage (m³/d)
Domestic	24,690	11,410	41,700	30,250
Non-domestic				
Institutional	2,290	1,750	5,200	5,120
Commercial	4,830	3,920	7,055	6,990
Industrial	7,080	6,140	12,710	12,710
sub-total	14,200	11,810	24,965	24,820
Total	38,890	23,220	66,665	55,070

As can be seen in the above table, it is estimated that the municipal sewerage system will be able to collect approximately 60 % (23,220/38,890) of the total wastewater generation within the municipal water supply system in 2005, and that the percentage will increase to 83 % (55,070/66,665) in 2015.

## 5.4.5 Water Quality

## (1) Industrial Effluents

Industries discharging large volumes of wastewater and of high concentration compared with domestic sewage, will significantly increase the concentration of wastewater inflow to the sewage treatment works. Those industries can opt to discharge into public sewers. However, if they would like to discharge into public sewers, they need to pretreat their wastewater to an extent which will depend on the wastewater quality and quantity. This restriction arises from the need for the treatment plant to satisfy effluent standards.

Reduction of industrial wastewater loads into the sewerage system will reduce the pollutant loads discharged into the Lake Victoria and protect the sewage treatment works from harmful chemicals. Table 5-19 shows the standards for industrial effluents in Kisumu proposed by the Study Team.

The future industrial loads on treatment works have been calculated assuming that the present day discharges will comply with the proposed trade effluent standards. General industrial effluents have been estimated at having the following estimated qualities: BOD 500 mg/l; SS 600 mg/l; and the absence of substances which would adversely affect biological treatment processes, and thus they are reflected in the proposed effluent standards...

## (2) Sewage Treatment Works Effluents

The ultimate disposal location for the sewage treatment works effluent is Lake Victoria and the standards set out below for the effluents are drawn up to prevent pollution of the lake waters and to protect public waters.

Biological Oxygen Demand (BOD) Concentration -20 mg/l
 Suspended Solids (SS) concentration -30 mg/l

• Faccal Coilform concentration (pond effluents only) -5,000 CFU/100 ml

In the case of pond effluents, the BOD concentration shown above will be applied to filtered samples. Faecal Coliform standards are included in the pond effluent criteria because of existing and future pond discharge to watercourses which, due to their length, may be used by adjacent inhabitants as a potable water source during the periods of shortfall in the municipal water supply. It should be noted that higher standards can be achieved where the final effluents flows through papyrus swamps. This is due to the further "polishing" effected by the papyrus swamps, where there are significant reductions in nutrients, BOD and SS and also destruction of the remaining faecal coliforms.

Table 5-19 Proposed Trade Effluent Standards to Public Sewers

Parameter	Concentration (mg/l)
Total Suspended Solids	600
Total Non-volatile Dissolved Solids	3,000
BOD₅at 20°C	500
COD	1,000
Phenols (total at connection point)	10
Detergents	15
Soaping oils and fats	10
Hydrocarbons	20
Silver (Ag)	0.02
Arsenic (As)	0.02
Barium (Ba)	5
Cadmium (Cd)	0.01
Chloride (Cl ⁻ )	1,000
Cyanide (CN')	0.02
Total Cyanide (CN)	1
Cobalt (Co)	0.05
Hexavalent Chromium (Cr6+)	0.05
Total Chromium	3
Copper (Cu)	0,5
Mercury (Hg)	0.01
Ammonical Nitrogen	20
Nickel (Ni)	0.5
Free Ammonia	10
Total Kjeldahi Nitrogen	Nil
Nitrite	0.5
Lead (Pb)	2
Total Phosphate	30
Selenium (Se)	0.5
Tin (Sn)	0,5
Sulphite (SO ₃ ')	2
Sulphate (SO ₄ ²⁻ )	1,000

#### 5.5 ORGANISATION AND PRICING

#### 5.5.1 Organisation

Having examined in detail the overall strengths and weaknesses of the WSD in Kisumu, it is apparent that many of the fundamental requirements are not up to standard. The present WSD is incapable of handling the current situation effectively and efficiently, and would not be able to cope with Phase I, and the subsequent capital works requirements.

The legal framework appears to be in place nationally however, legislation at Local Authority level requires attention. The national institutional framework is generally satisfactory, and it is receiving attention under other intensive studies, which will strengthen the position at KMC.

A planning framework is in place for the organisation of the WSD, but this has to be examined against the findings of this study particularly in respect of an early move to autonomy. Whilst the structure of the WSD provides for most of the future requirements, there is a fundamental weakness which must be addressed with respect to human resources in both the technical and commercial sections.

The major personnel issue is clearly the large number of vacant posts within the organisation, and there must be a planning policy to strengthen the staff, in accordance with the phased development of the water supply and sewerage facilities. In addition, apart from the need to urgently develop an autonomous department within KMC, progression to a commercialised company must be embodied in the overall framework.

It is assumed that an autonomous WSD will be in place by mid 1999, and that it will be sufficiently strong enough for development under the Phase 1 Management/Institutional improvement programme to a commercial company.

#### 5.5.2 Tariffs

In Kenya where local authorities are water undertakers, tariffs are set by the local authorities with the approval of Ministry of Local Government. The central government policy is to encourage tariffs which are high enough to recover all costs. The reluctance comes from local officials who believe a tariff increase would be unpopular with the people. Given the choice between a service at a reasonable cost and a breakdown in service delivery, the local officials

have opted to let the service suffer.

Tariffs in most cities, including Kisumu, have been raised substantially for revenue generation. The present level of tariffs is comparable to those prevailing in Western Europe and North America. The tariffs are sufficient to raise all required revenue if the water departments operate efficiently and revenues are retained by this department and used for delivery of this service.

Further revenue can be raised by three modifications in the tariff structure. At present, the largest users of water pay 50% more per unit of water than those who consume little water. This differential can be increased to generate more revenue from high income households and other users.

The second possible adjustment is in non-domestic tariffs. Industry and institutions pay only 20% more for water than households for the same level of consumption. The tariffs for non-domestic users can be increased further. Industry's own estimates show that the cost of water supplied by the largest users themselves would be double the rates presently paid.

The third issue is the cost of sewerage and water services. At present, Kisumu residents pay 75% of their water bill for sewerage when they have a central sewerage connection. It is not clear if this is sufficient for financing an efficient sewerage system. Effective sewerage collection and treatment is highly desirable for health and environmental reasons. Some cities in Kenya charge more for sewerage than they do for water. Sewerage charges thus can be raised to generate more revenue. In any case, the Department should insure that all subscribers who have sewerage service are actually bilted for this service as well as water.

The Study Team has recommended that the present tariff for the minimum level of consumption should be reduced from 180 Shillings/month to 100 Shillings. This will improve affordability for the low income people and will have a small impact on overall revenue.

#### 5.6 PRIORITY PROJECT

Kisumu needs urgent improvements on both water supply and sewerage. The prevailing water crisis and water-related diseases in the town are described elsewhere in this report and newspaper cuttings demonstrating these problems are compiled in Appendix S.

The objective of the Priority Project is thus to address these problems at the earliest timing possible. Realistically speaking, however, this cannot be achieved overnight.

The Project is assumed that a large portion of the cost will be financed by a loan from an international lending agency. This financing arrangement can be initiated only from the beginning of 1999 and most probably takes one year before an agreement can be reached between the Kenyan government and the loan agency. This will be followed by the selection of consultants for detailed designs, which normally takes one year or so. Detailed designs will also takes 10 months or so to complete. Any water supply improvement contracts which involve construction of a new water treatment works and water distribution mains will require at least two years to complete.

All these lead to the conclusion that the physical construction of the Priority Project can be completed only at the end of 2002 at the earliest.

Upon completion, the water supply capacity created by the Priority Project must be able to meet the water demands projected over a few years ahead. This is necessary to leave an adequate time for implementation of the succeeding improvements.

It is thus recommended that the Priority Project be formulated with its target year 2005, and that it should be able to meet the projected water demand in 2005.

## CHAPTER 6

# WATER SUPPLY AND SEWERAGE MASTER PLAN

## 6 WATER SUPPLY AND SEWERAGE MASTER PLAN

#### 6.1 WATER SUPPLY SYSTEM

#### 6.1.1 Introduction

The improvement of water supply in the Kisumu Municipality will be achieved through two separate schemes: one being the municipal water supply scheme to be operated by the Kisumu Municipality and the other being rural water supply schemes to be operated by the communities. Rural water supply schemes are small in scale and will rely on local groundwater in the vicinity of communities. These schemes are discussed separately in this chapter.

## 6.1.2 Development Alternatives for Municipal Water Supply System

#### (1) Introduction

Analysis and comparison of alternatives for water supply development for Kisumu municipality up to the year 2015 are described in this section. Six technically possible alternatives, each comprising a complete set of facilities from water source to distribution, are developed. These six alternatives were compared in terms of both construction and O/M costs to select the least cost solution.

The method of the analysis used in this section is a comparative evaluation. This does not require the calculation of full costs, but allows the comparison even if costs that are common to all alternatives are disregarded.

## (2) Phasing Resource Development

The existing supply capacity in Kisumu is around 18,000 m³/d. It is planned to increase this by around 10,000 m³/d under rehabilitation works. This will be followed by creating an additional capacity of around 40,000 m³/d. The total supply capacity will thus increase to around 70,000 m³/d in Phase I. This capacity is planned to be completed by the year 2003.

To create the additional capacity of 40,000 m³/d at the end of Phase 1, possible water sources are Sondu, Kibos/Awach and Yala rivers in addition to Lake Victoria which is a possible source for any amount of capacity.

## (3) Alternative Water Sources

Evaluation of water sources with respect to available intake rate and water quality is discussed in Chapter 3. Table 6-1 shows a summary of the evaluation. Except for Kibos/Awach River with weir intake, all other water sources have sufficient flow rate for intake to meet the water demand in 2015.

Table 6-1 Available Water Sources

Water Source	Distance To Supply	i .	le Intake ate	Water Quality	h	iter nission	Location (Within Or
	Area	Phase I	Phase II		Distance	Method	Outside Drainage Basin)
Lake Victoria	Adjacent	Sufficient	Sufficient	Algae COD 7 Mg/L	5 km	Pumping: 80 m Head	Inside
Kibos/Awach River - Weir Intake	11 km	Sufficient	Not Sufficient	Good	11 km	Gravity	Inside
Kibos River - Dam	15 km	Sufficient	Sufficient	Good	12 km	Gravity	Inside
Yala River	34 km	Sufficient	Sufficient	Good	34 km	Gravity	Outside
Sondu River	54 km	Sufficient	Sufficient	Good	-54 km	Pomping: 150 m	luside
Nyando River	21 km	Sefficient	Spfficient	High Nitrogen	21 km	Pumping: 100 m	Jøside .

Among water sources listed above, Nyando River is excluded from this comparative study since its water quality is unsuitable for human consumption and is expected to worsen due to the presence of industries in its upstream.

Out of the two possible intakes on the Sondu River, one at the downstream at an elevation of 1205 m is considered. Topographical conditions require a three or four-staged pumping against a total head of 150 m. This multi-stage pumping from Sondu River will not be sustainable without assurance of payment for high energy costs and without skilled staff being deployed for complicated operation and maintenance of mechanical and electrical equipment. Since it is considered difficult for the Kisumu Municipality to meet these requirements, Sondu River is also excluded from this comparative study.

Remaining alternative water sources are therefore as follows.

- 1. Lake Victoria
- 2. Kibos/Awach River
- 3. Kibos Dam
- 4. Yala River

#### Lake Victoria

Available capacity from Lake Victoria is unlimited and this source can be used either as single source or as a combined source with others. Due to its proximity to supply area, combination of this source with other sources will increase the reliability of water supply system.

## Kibos/Awach River

The Kibos/Awach system is the most promising source of river water. Without construction of a new dam, the maximum amount of water which can be extracted from the Kibos and Awach rivers is estimated to be 42,500 m3/day.

#### Kibos Dam

Construction of the Kibos Dam is discussed in the "Kisumu Water Supply and Sanitation Study, March 1988, Ministry of Local Authorities on behalf of Kisumu Municipal Council, conducted by H. P. Gauff Gmbh". This option proposed to build a dam across the Kibos River at one kilometer upstream of the existing Kajulu intake. After the 1988 Study, the JICA conducted the Study on the National Water Master Plan in July 1992. According to the Study, it was envisaged that 70,000 m3 of water could be abstracted per day by constructing the dam which has 40 m crest height and 7 million m3 of gross storage.

Construction cost was estimated in the 1992 JICA Study at US\$23.8 million in 1992 price. This corresponds to US\$27.6 million in 1997 price using 3% escalation rate per annum.

#### Yala River

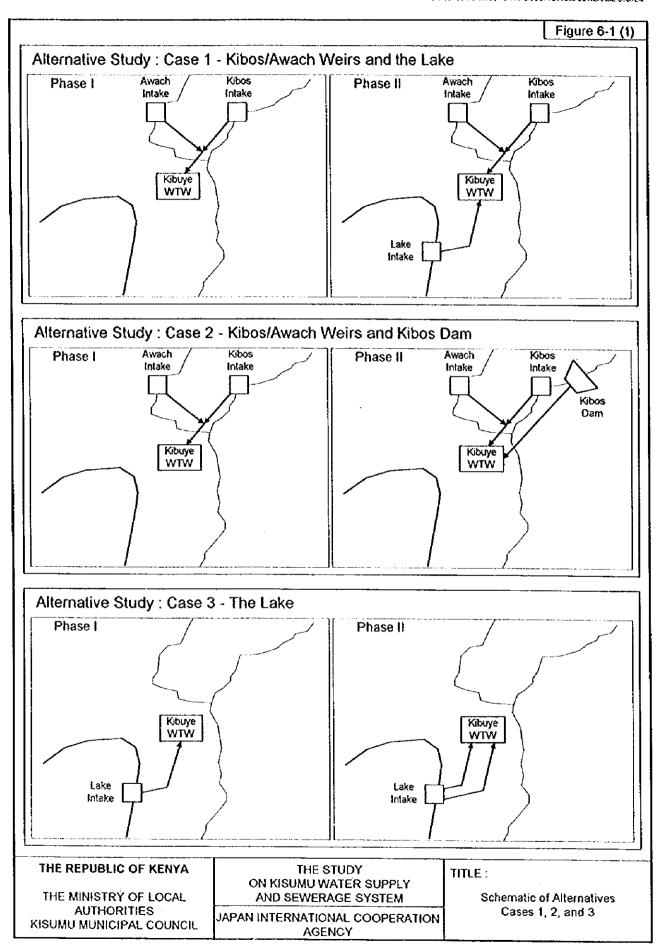
Yala River option is to augment the low flow during the dry season by a trans-basin diversion from Yala River to Kibos catchment, details are given in Appendix B. Diversion pipe will be 27 km in length and 950 mm in diameter. This pipeline will allow gravity diversion from the Yala River to Kibos catchment without tunnel construction. Total construction cost is estimated at US\$18.7 million.

()

## 6.1.3 Development of Alternative Cases

Six alternatives are developed using these available water sources. Water sources for each alternative case are as shown on Table 6-2 and the details of each alternative are shown on Table 6-3. Schematics illustrating each of these alternatives are shown in Figures 6-1.

Table 6-2 Water Sources for Each Alternative Case


	Ph	ase I	Pha	se Il
Cases	Water Source	Intake Capacity (m3/day)	Water Source	Intake Capacity (m3/day)
Case 1	Kibos (RC)	3,000	Kibos (RC)	3,000
	Lake (RC)	27,000	Lake (RC)	27,000
	Kibos	25,500	Kibos	25,500
	Awada	17,000	Awach	17,000
			Lake	42,500
Total		72,500		115,000
Case 2	Kibos (RC)	3,000	Kibos (RC)	3,000
	Lake (RC)	27,000	Lake (RC)	27,000
	Kilxis	25,500	Kibos	25,500
	Awach	17,000	Awach	17,000
			Kibas Dam	42,500
Total		72,500		115,000
Case 3	Kibos (RC)	3,000	Kibos (RC)	3,000
	Lake (RC)	27,000	Lake (RC)	27,000
	Lake	42,500	Lake	42,500
			Lake	42,500
Total		72,500		115,000
Case 4	Kibos (RC)	3,000	Kibos (RC)	3,000
	Lake (RC)	27,000	Lake (RC)	27,000
	Kibos	25,500	Kibos	25,500
	Awach	17,000	Awach	17,000
			Yala ->Kibos	42,500
Total		72,500		115,000
Case 5	Kibos (RC)	3,000	Kibos (RC)	3,000
	Lake (RC)	27,000	Lake (RC)	27,000
	Lake	42,500	Lake	42,500
			Kibos Dam	42,500
Total		72,500		115,000
Case 6	Kibos (RC)	3,000	Kibos (RC)	3,000
	Lake (RC)	27,000	Lake (RC)	27,000
	Lake	42,500	Lake	42,500
			Yala ->Kibos	42,500
Total		72,500		115,000

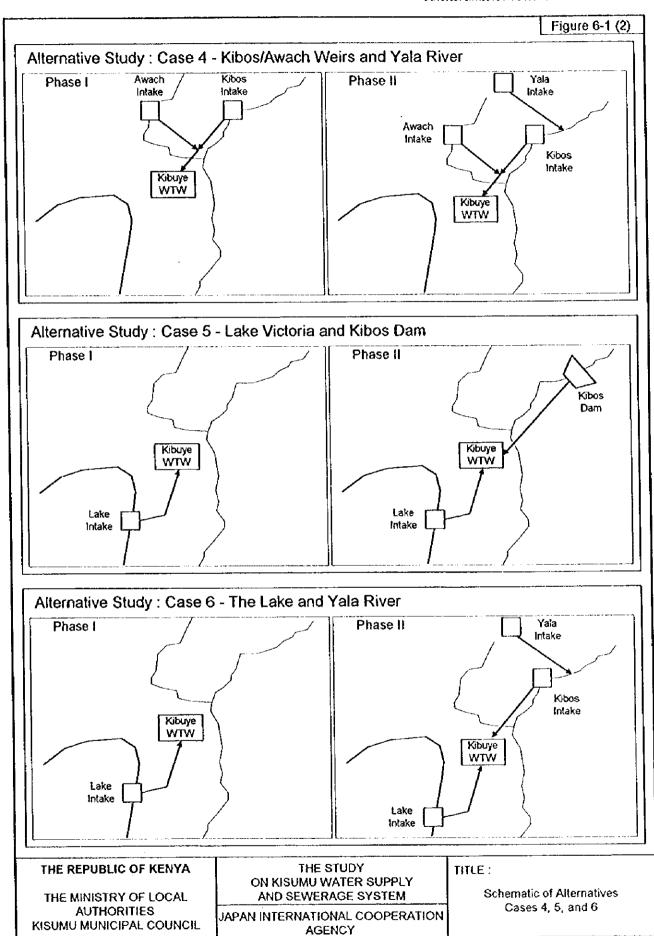

RC: Rehabilitation Works Component

Table 6-3 Detail of Each Alternative Case

Facilities	Location	Phase	Case 1	Case 2 (	Case 31	Case 4 (	ase 5	Case 6
Lacitates	Kajulu (rehabilitation) E.L.1273 m	I(REIL)	2,800	2,800	2,800	2,800	2,800	2,800
Freatment	Lake (rehabilitation) E.L. 1140 m	I(REH)				25,000		25,000
Works	Kibuye (Expansion ) E.L.1190 m	1	40,000			10,000		
(m³/d)	Kibuye (Expansion ) E.L. 1190 m	II	40,000			40,000		40,000
(m /a)	Total (2015 y)					07,800 i		
	10ai (2013 y)		107,800	107,800	07,600	07,0001	07,800	07,600.
					- 1	- 1		
	Kibos (Rehabili.) E.L.1273m	I(REIL)	3,000	3,000	3,000	3,000	3,000	3,000
latales	Kibos (Rehabili.) E.L.1273m Lake (Rehabili.) E.L. 1134m	I(REH)	27,000	27,000				27,000
Intake Facilities	Kibosu/Awach, Kibos E.L. 1300 m	1 (Kini)	25,500		21,000	25,500	27,000	27,000
1	· ·	<b>'</b>	l ' l	-	Ì			
(m³/d)	Awach E.L. 1300 m	ļ	17,000	17,000	13.600	17,000	42,500	13 600
	Lake E.L. 1134 m	1	13.500		42,500		42,300	42,300
	Lake E.L. 1134 m	II	42,500	13 500	42,500	}	42,500	
	Kibos Dam EL 1472 m  Yala River E. L 1777.5 m	11	<b> </b>	42,500		42,500	42,500	42,500
				12.500		42,500		42,500
	Kibos River E.L. 1273 m	II II		42,500		42,500		42,500
	Kibosu/Awach, Kibos E.L. 1273 m	1 31						
	Awach E.L. 1255 m	<b>}</b>						
	Walata Olas assessin	LOPPILA	2 600	2.000	2,800	2 800	2,800	2,800
  m=====::-::	Kajulu- Clear reservoir E2.6 km = E.L. 1273- 1220 m	I (REH.)	2,800	2,800	2,000	2,800	∠,600	∠,ა∪∪
	Lake-Kibuye E.L 1140- 1190 m	I (REH.)	25,000	25,000	25,000	25,000	25,000	25,000
or Conveyance		i (KEII.)	23,000	23,000	23,000	23,000	23,000	25,000
Pipe	L:5.0km Kibos/Awach- Kibuye 1300-1190 m	<del> </del>	42 SOO	42,500		42,500		
	•	I.	42,500	42,500		42,500		
(m³/d)	L: 5km+5.2+6 (25500+17000m3/d)	1 11	1.500		42,500		12.500	42,500
	Lake-Kibuye E.L.1140-1190 m	İI	42,500		42,500		42,500	42,300
	L: 5.0km Kibosu(Dam) E.L. 1300-1190 m	<del>                                     </del>	<del> </del> -	42,500			42,500	
	3 /	111	İ	42,500	ľ		42,500	
	L:11.4km Yala- Kibos E.L:1777.5-1710 m	<del>                                     </del>	<b></b>	-		42,500		42,500
	L: 22.7km	1 "				42,300		42,500
	Kibos-Kibuye E.L. 1300-1190 m	II	<del> </del>	-	<del> </del>	42,500		42,500
	L:11.4km	11				12,500		72,500
l.	Kibuye- Kanyakwar L=3.8 km	<del> </del>	5100	5100	5100	5100	5100	5100
1	E.L.:1190-1240 m (Pumping)	II	5900				5900	
	Kibuye - Kogony L=6.0	1 1	4500				4500	
ļ	E.L.:1190-1240 m (Pumping)	lí	5500	3			5500	
	13.17.17.12.10 th (1 th 1) 1.15	┨ ¨	""	550				
Clear Water	Kibuye E.L.1190, Cap.:6,000	existing	6,000	6,000	6,000	6,000	6,000	6,000
Reservoir	Kajulu Cap.:1,000	I(REH.)	1,000					
(m ³ )	Kibuye E.L. 1190 Cap.: 2,000	I	12,000		1	1		1
(m)	Kibuye E.L. 1190 Cap.: 10,000	II	10,000			-		
	Kanyakwar H.W.L 1240 2,500	I I	2.500					
1	Kanyakwar H.W.L 1240 m 2,000	11	2,000					
ŀ	Kogony H.W.L. 1240 m 2,000	1 "	2,000					
Į	Kogony H.W.L. 1240 m 2,500	ii	2,500					
	Total	<del></del>		38,000				
	Lake-Lake TW Q:27,000 L:0.6km	I(REIL)	27,000		27,000		27,000	
I.	EL:1134-1140 m	(10.11.)	27,000	1 - 7,000	],,,,,	1,,,,,,,	],	
Pumping	Lake-Kibuye, Q:25,000, L:6.0km	I (REH.)	25 000	25.000	25.000	25,000	25,000	25,000
Station	E.L.Difference: + 50 m	1 ()		1	1	1	<del>                                     </del>	<del>                                     </del>
Station	Lake-Kibuye, Q:42,500, L: 5.0km	1		1	42,500		42,500	42,500
(m³/d)	E.L.Difference :+ 50 m		<b></b>	<del>                                     </del>	1	1	<u> </u>	
(m /a)	Lake-Kibuye, Q:42,500, L: 5.0km	II	42,500	<b>. </b>	42,500	1	]	
1	E.L. Difference.:+15 m		72,50	+	12,500	+	<del> </del>	<del> </del>
	Kibuye-Kanyakwar Q:5100,	I	5,06	2 5,062	5,06	2 5,062	5,062	5,063
	E.L.D.:+50 m L:3.8 km	<del> </del>	3,00	7,00	2,00	2,002	7,00	3,00
1	Kibuye-Kanyakwar Q:5000,	H	5,27	5 5,27	5,27	5,275	5,27	5,27
	E.L.Difference: +50 m L:3.8 km		12,21	1 2,61.	3,27	<del></del>	1	7,44
1	Kibuye-Kogony Q:4500,	I I	4,18	6 4,48	4,48	6 4,486	4,486	4,48
1	E.L.Difference:+50 m L:6.0 km		4,10	7,70	7,70	1,700	1-7,78	· · · · · · · · · · · · · · · · · ·
	Kibuye-Kogony Q:5500	II	5,46	0 5,46	5,46	0 5,460	5,46	5,46
Note: PSH		111	7,40	·· [ -7,30	/,-10	-, -, 10	-, -,	-, -, 10

Note: REII - Rehabilitation Works Component





From the Table 6-2, proposed water sources for Phase I and Phase II are summarized in Table 6-4.

Table 6-4 Summary of Proposed Water Source for Each Alternative Case

Alternative	Proposed	Water Source
	Phase I	Phase II
Case 1	Kibos/Awach River	Lake Victoria
Case 2	Kibos/Awach River	Kibos Darn
Case 3	Lake Victoria	Lake Victoria
Case 4	Kibos/Awach River	Yala River
Case 5	Lake Victoria	Kibos Dam
Case 6	Lake Victoria	Yala River

## 6.1.4 Comparative Study among Alternative Cases

## (1) Comparative Study

For all of the alternative cases, the location of a new water treatment works is fixed at the site of existing Kibuye distribution reservoir. The reasons are:

- Vacant land is available in the premises and in the vicinity of existing Kibuye distribution reservoir. Land space required in the vicinity will be acquired by the municipality.
- The location of Kibuye, because of its high elevation, will enable to supply water by gravity to the most of the supply area.
- The location of Kibuye is in the middle of two major water sources, Kibos/Awach
  and Lake Victoria. The location, therefore, will have an advantage when an
  accident occurs at one of the water sources, in which theother source can still meet
  part of water demand in supply area.
- The location of Kibuye has an advantage in operation and maintenance of treatment works and central distribution reservoir because they will be in the same premises.

Therefore, location of water treatment works is fixed at Kibuye for all alternative cases, and so are the downstream facilities, such as clear water transmission and distribution facilities.

Comparison of alternative cases for the selection of the most preferable case is made by giving weighted points for various parameters. Points are awarded from a scale of 1 to 3 and weight of 1 or 2. Increased weight was given to the following parameters, namely:

Flexibility of facility design and expansion

- Investment cost
- Operation cost
- * Environmental Impacts

For assigning the point to "Investment Cost", preliminary comparison of investment cost is made and the results are shown on Table 6-5. In the comparison, costs that are common to all alternative cases are neglected and only costs of Intake Facilities, Raw Water Pumping Station and Raw Water Transmission Pipeline are compared.

Table 6-5 Preliminary Comparison of Investment Costs

Unit: 1,000 US\$

						nn . 1,0	
Water Source	Phase 1	Kibos/ Awach	Kibos/ Awach	Lake	Kibos/ Awach	Lake	Lake
	Phase II	Lake	Kibos	Lake	Yala	Kibos	Yala
			Dam			Dam	
Proposed Facilities for Comparison							
(not including all proposed facilities)		Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
1 Intake Facilities		<u>.                                    </u>					<b>.</b>
1-a Kibos/Awach River	Phase I	1,820	1,820		1,820		
1-b Lake Victoria	Phase I			3,600		3,600	3,600
1-c Lake Victoria	Phase II	3,600		3,600			
1-d Kibos Dam	Phase II	1	27,600			27,600	
1-e Yala River	Phase II				2,600		2,600
2 Raw Water Pump Stations		İ	1				<u></u>
2-a Lake Victoria Intake	Phase I		ļ	2,224		2,224	2,224
2-b Lake Victoria Intake	Phase II	2,224	ı	2,224		<u> </u>	
3 Raw Water Transmission Pipeline		1		<u> </u>			<u> </u>
3-a Kibos/Awach I Kibuye W.W	Phase I	7,44	7,444		7,444		
3-b Lake Victoria I Kibuye W.W	Phase I	-		2,69	<u> </u>	2,69	2,694
3-c Lake Victoria I Kibuye W.W	Phase II	2,69	1	2,69	\$	<u> </u>	<u> </u>
3-d Kibos Dam I - Kibuye W.W	Phase II			<u>l</u>		3,876	
3-e Yala River - Kibos River	Phase II				18,700	)	18,700
3-f Kibos I Kibuye W.W	Phase II						3,876
		1270	2 36,86	17,03	6 30,56	39,99	4 33,694
Total Cost	<b></b>	17,78		- <del></del>	-t··		
Phase I		9,26		+		- <del> </del>	
Phase fi	1	8,51	8 27,60	0 8,51	8 21,30	0 31,47	الريم ن

Results of comparison of alternative cases are shown on Table 6-6.

Table 6-6 Comparison of Alternative Cases

Parameters	Weight	Case	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Water Source		Phase 1	Kilbos/	Kibos/	Lake	Kibos/	Lake	Lake
			Awach	Awach		Awach		_
· · · · · · · · · · · · · · · · · · ·		Phase II	Lake	Kibos Dam	Lake	Yala	Kibos Dam	Yala
Flexibility of Facility	2	Phase I	6	6	4	6	4	4
Design and Expansion	2	Phase II	- 6	4	4	6	4	4
Reliability of Supply	1	Phase I	2	2	3	2	3	3
	1	Phase II	3	2	3	3	2	3
Control Over Source (Catchment)	1	Phase I	2	2	1	2	1	1
and Transmission	1	Phase II	10	2	1	2	2	2
Speed and Difficulty	1	Phase I	3	3	3	3	3	3
for Development	1	Phase II	3	1	3	1	1	1
Water Quality of Resources	1	Phase I	2	2	1	2	1	1
W	1	Phase II	2	3	1	3	3	3
Investment Cost	2	Phase I	6	6	4	6	4	4
	2	Phase II	- 6	2	6	4	2	4
O/M Cost	2	Phase I	- 6	6	2	6	2	2
	2	Phase II	4	6	2	6	6	6
Existing Water Rights	1	Phase I	2	2	3	2	3	3
	1	Phase II	3	2	3	3	2	3
Management Area	1	Phase I	3	3	3	3	3	3
	1	phase II	- 3	2	3	1	1	1
Environmental Impacts	2	Phase I	- 6	6	6	6	6	6
	2	Phase II	- 6	2	6	4	2	4
Total	point		75	64	62	71	55	63
R	ank		1	3	5	2	6	4

Note: Point system; Very good - 3 points; Good - 2 points; Moderate - 1 point.

Results of comparison of alternative cases are shown on Table 6-6.

**Table 6-6** Comparison of Alternative Cases

Parameters	Weight	Case	Case I	Case 2	Case 3	Case 4	Case 5	Case 6
Water Source		Phase I	KB69/ Awach	Kiboy Awadi	Lake	Kibos/ Awach	I ake	Lake
		Phase II	Lake	Kibos Dam	l ake	Yala	Kibos Dam	Yala
Hexibility of Facility	2	Phase I	6	6	4	6	4	4
Design and Expansion	2	Phase II	- 6	4	4	6	4	4
Reliability of Supply	1	Phase I	2	2	3	2	3	3
	l	Phase II	3	2	3	3	2	3
Control Over Source (Catchment)	l	Phase I	2	2	1	2	1	1
and Transmission	1	Phase II	1	2	1	2	2	2
Speed and Difficulty	1	Phase I	3	3	3	3	3	3
for Development	l	Phase II	3	ì	3	1	1	1
Water Quality of Resources	)	Phase I	2	2	1	2	1	1
	1	Phase II	2	3	1	3	3	3
bivestment Cost	2	Phase I	6	6	4	6	4	4
	2	Phase II	6	2	6	4	2	4
O.M Cost	2	Phase I	6	6	2	6	2	2
	2	Phase II	4	6	2	6	6	6
Existing Water Rights	1	Phase I	2	2	3	2	3	3
	3	Phase II	3	2	3	3	2	3
Management Area	1	Phase I	3	3	3	3	3	3
	l	phase II	3	2	3	1	1	1
Environmental Enpacts	2	Phase I	- 6	6	6	6	6	6
	2	Phase II	6	2	6	4	2	4
Tota	point		75	61	62	71	55	63
R	ank			3	5	2	6	4

Note: Point system; Very good - 3 points; Good - 2 points; Moderate - 1 point.

#### (2) Alternative Selection

As a result of the comparison in Table 6-6, Case 1, Case 2, Case 3, and Case 4 are selected for detailed evaluation considering present value of the alternatives. The calculation of the present values are carried out considering investment and operation costs. However, the costs that are common to all alternatives are disregarded.

#### **Investment Costs** (a)

The major components at works to be undertaken under each option and the investment schedule are presented in Table 6-7. All components which are common to all alternatives are excluded such as Water Treatment Works, Distribution and Transmission System of clean water. Investment costs of Intakes, Dam, Transmission Pipes Tunnel, and Pumping Station of raw water are regarded for detail evaluation considering the present value.

Table 6-7 Capital Investment Schedule

(I brite thousand LISD) CASE 1 : Kihos/Awach Intakes and the Lake

ASE 1 :Kibos/Awach intakes and the Lake							(Oliti, tilousaiti OSD)		
	Phase	2000	2001	2002	2003	2004	2005	Total	
Kibos/Awach	I	600	600	620				1,820	
Lake	n				1,200	1,200	1,200	3,600	
Lake Intake	11				700	750	774	2,224	
K/A to Kibuye	ī	2,400	2,400	2,644			,	7,444	
Lake to Kibuye	11				900	900	894	2,694	
	<del></del>	3,000	3,000	3,264	2,800	2,850	2,868	17,782	
	Kibos/Awach Lake Lake Lake Intake K/A to Kibuye	Phase	Phase 2000  Kibos/Awach I 600  Lake II   Lake Intake II   K/A to Kibuye I 2,400  Lake to Kibuye II	Phase   2000   2001     Kibos/Awach   I   600   600     Lake   II             Lake Intake   II           K/A to Kibuye   I   2,400   2,400     Lake to Kibuye   II	Phase   2000   2001   2002     Kibos/Awach   I   600   600   620     Lake   II               Lake Intake   II             K/A to Kibuye   I   2,400   2,400   2,644     Lake to Kibuye   II	Phase   2000   2001   2002   2003	Phase   2000   2001   2002   2003   2004     Kibos/Awach   I   600   600   620       Lake   II	Phase   2000   2001   2002   2003   2004   2005     Kibos/Awach   I   600   600   620               Lake   II	

(Unit: thousand USD) CASE 2: Kibos/Awach Intakes and Kibos Dam

		Phase	2000	2001	2002	2003	2004	2005	Total
Intake	Kibos/Awach	l	600	600	620				1,820
Kibob Dam	Dam	П				9,200	9,200	9,200	27,600
Transmission Pipe	K/A to Kibuye	I	2,400	2,400	2,644				7,444
Total			3,000	3,000	3,264	9,200	9,200	9,200	36,864

CASE 3: Lake Only (Unit: thousand USD)

	Phase	2000	2001	2002	2003	2004	2005	Total
Lake Intake	1	1,200	1,200	1,200				3,600
	11				1,200	1,200	1,200	3,600
Pump Station	1	700	800	724	***************************************			2,224
	11				700	800	724	2,224
Lake to Kibuye	1	900	900	894				2,694
	11				900	900	894	2,694
-		2,800	2,900	2,818	2,800	2,900	2,818	17,036
	Pump Station	Lake Intake I  Pump Station I  Lake to Kibuye I	Lake Intake	Lake Intake	Lake Intake	Lake Intake   1   1,200   1,200   1,200	Lake Intake   I   1,200   1,200   1,200	Lake Intake   I   1,200   1,200

CASE 4: Kibos/Awach Intakes and Yala Diversion (Unit: thousand USD)

		Phase	2000	2001	2002	2003	2004	2005	Total
Intake	Kibos/Awach	I	600	600	620				1,820
	Yala Intake	ll ll	<u> </u>			850	850	900	2,600
Transmission Pipe	K/A to Kibuye	i	2,400	2,400	2,644				7,444
Yala Transmission Pipe	Yala-Kibos	n				6,000	6,000	6,700	18,700
Total		-	3,000	3,000	3,264	6,850	6,850	7,600	30,564

## (b) Operation Costs

Tentative operation plans are devised for each alternative to calculate the operation costs. The three major operation components are the "Costs of Energy for Pumping", "Water Treatment Chemicals", and "Staff Costs". "Costs of Energy for Pumping" are depending on location of water resource, and "Costs of Water Treatment Chemicals" are depending of water quality of water resource. Proportion of abstract water amount from Lake and Rivers affects both costs. Water abstract amount from Lake and Rivers are shown below.

(m³/day)

C	ase 1	Cons	Conn 2	Conn. A
Normal	Dry Season	Case 2		Case 4
88,000	45,500		0	88,000
27,000	69,500	27,000	115,000	27,000
	Normal 88,000	88,000 45,500	Normal Dry Season Case 2 88,000 45,500	Normal         Dry Season         Case 2         Case 3           88,000         45,500         0

In Case 1, Rive Water will be taken as much as possible, (as maximal 88,000 m³/d), and make up for a deficiency by using Lake Water during dry season. It is assumed for the calculation of annual operation costs that 69,500 m³/d of Lake water is taken 2 months a year and only 27,000 m³/d of Lake Water are taken 10 months a year.

#### Chemicals

The water treatment chemical dosage used depends on the quality of raw water. Sources of water supply need to identified for calculating the costs of chemicals. Study Team collected information on water quality and dosage in the existing treatment works. It is sufficient to provide a breakdown between lake and the rives, because the quality of water from all rivers can be assumed to be the same and therefore subject to same treatment.

The costs of treatment chemicals for 1000 m³ of ran water are derived from the following assumptions on dosage and prices:

Unit Price	Alum Input (0.58 US\$/kg)	Soda Ash Input (0.29 US\$/kg)	chlorine Input (291.0 US\$/kg)	Total Cost (US\$)
Lake Water 1,000 m ³	60 kg	0	6 kg	1780.8
River Water 1,000 m ³	30 kg	6 kg	3 kg	892.1

## Power Consumption

Energy for pumping in required when Lake Water is taken for supply water. The amount of electricity that will be consumed after rehabilitation is calculated relation to the pump head, and efficiency of pumps and motors. Power consumption required for pumping to Kibuya Water Treatment Works to feed a 1,000 m³/d is as follows:

Pump head, m	Water Production	Consumption, kWh/year	Cost, Ksh
80	1,000 m ³ /d	171,750	579,013

No pumping would be required for raw water transmission in Case 1 and case 2 when the water is taken from the Rivers.

#### Staff Costs

"Staff Costs" are considered to be common to all alternatives, and therefore be disregarded for the evaluation.

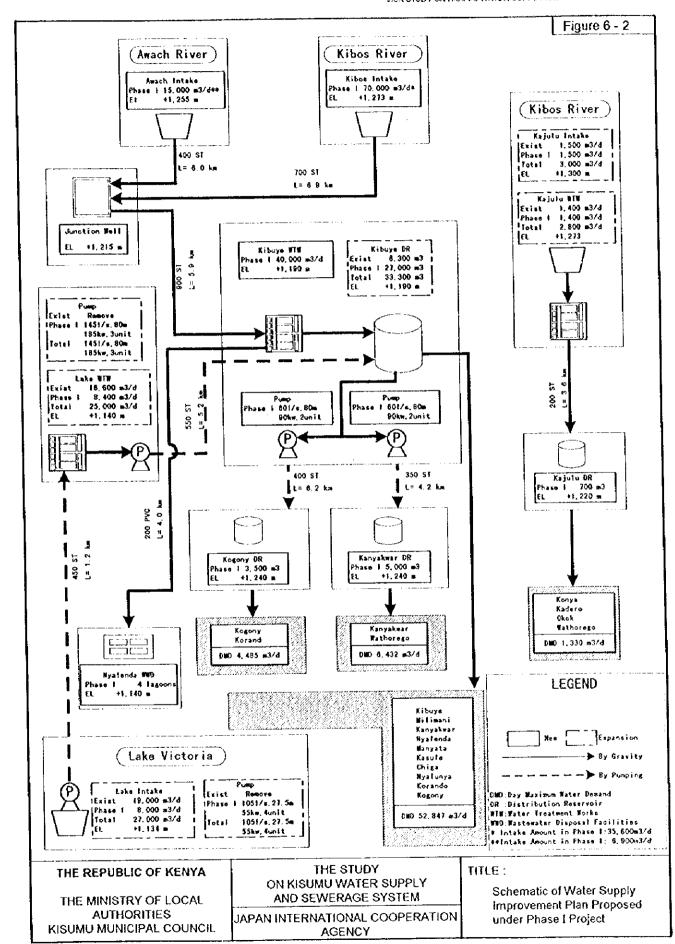
## (c) The least cost Solution

Present value is calculated for comparative purposes by using two discount rates. The least cost solution does not change with the discount rate adopted, but this rate is likely to be a key element in calculating cost of water at the feasibility analysis stage. The project costs under each alternative are presented in Appendix L. The present value of investment and O/M costs for each alternative is summarised below.

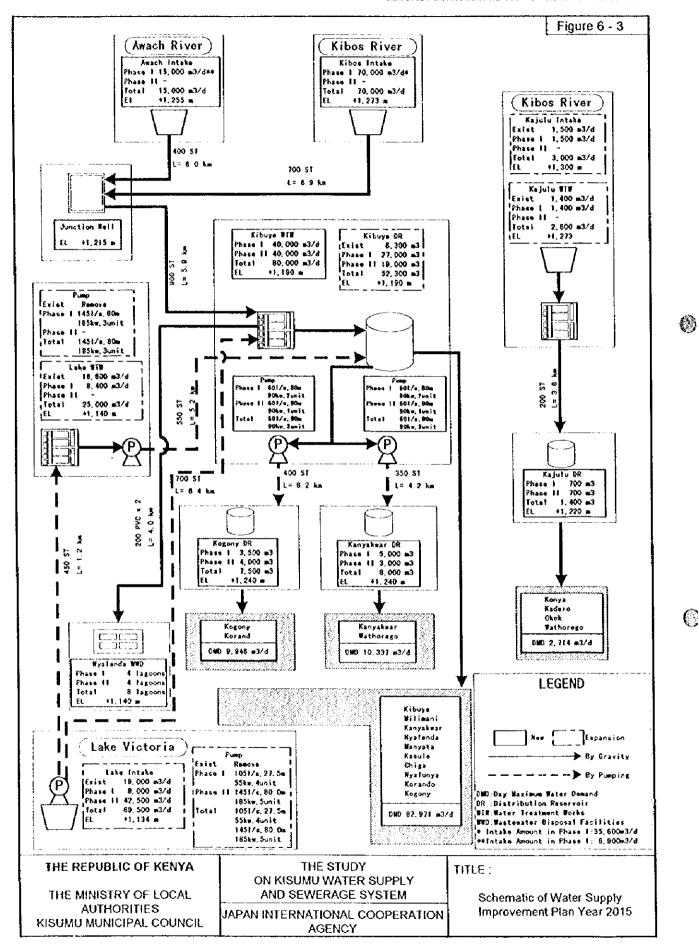
(Costs in 1000 US\$ in 1977 prices)

			<b>\</b>	
	Case1	Case2	Case3	Case4
Discount rate 3%	37,500	51,074	53,311	46,106
Discount rate 5%	46.691	61.220	68,984	55,765

Case 1 is the least cost option. This calls for water abstraction from Kibos/Awach without large investments. Future requirements are met from the lake when the capacity of weirs is used up. The alternative selected thus combines the low cost operating characteristics of river systems with limited investment requirements associated with the lake options.


As shown on the Table, the most preferable case is found to be the Alternative Case 1. This Alternative Case 1 is adopted for the future water supply development plan. Water sources for the Case 1 is as shown on Table 6-8.

Figures 6-2 and 6-3 show the flowchart for the selected alternative for Phase I and Phase II.


Table 6-8 Water Sources for Alternative Case 1

	Ph	ase I	Pha	se II
Cases	Water Source	Intake Capacity (m3/day)	Water Source	Intake Capacity (m3/day)
Case 1	Kibos (EM)	3,000	Kibos (EM)	3,000
	Lake (EM)	27,000	Lake (EM)	27,000
	Kibos	25,500	Kibos	25,500
	Awach	17,000	Awach	17,000
			Lake	42,500
Total		72,500		115,000





0



## 6.1.5 Proposed Municipal Water Supply System

## (1) Outline of the Proposed Plan

Table 6-8 below presents an outline of the proposed long-term water supply development plan. The locations of the major water supply facilities proposed under the plan are shown in Figure 6-4.

Table 6-8 Outline of Proposed Plan for Piped Water Supply System

Table 6-8 Outline of Prope	ITEM		1997	PHASEI	PHASE II
Target Year			-	2005	2015
Total Population in the Study Area	1990		363,157	526,195	869,166
	House Connection	Persons	13,018	272,346	531,784
<b>,</b>	Communal Tap	Persons	211,438	142,184	158,844
l.	roial .	Persons	224,456	414,530	690,628
Service Ratio		%	61.8	78.8	79.5
Service Area		km²	88.0	88.0	88.0
Water Demand	Day Average	m³/d	11,900*	59,174	96,336
	Day Maximum	m³/đ	N/A	65,091	105,970
Water Source	Kibos (for Kajulu WTW)	m³/d	1,500	3,000	3,000
	Lake Victoria	m³/d	19,000	27,000	69,500
	Kibos (for Kibuye WTW)	m³/d	-	35,600	35,600
	Awach	m³/d	-	6,900	6,900
	Total	m²/d	20,500	72,500	115,000
Water Treatment Works	Kajulu	m³/d	1,400	2,800	2,800
	Lake	m³/đ	16,600	25,000	25,000
	Kibuye	m³/đ	-	40,000	80,000
	Total	m²/d	18,000	67,800	107,800
Service Reservoirs	Kibuye	m³	6,300	33,300	52,300
	Kanyakwar	m³	-	5,000	8,000
	Kogony	m³	-	3,500	7,500
	Kajulu	m³	-	700	1,400
	Total	m³	6,300	42,500	69,200
Raw Water Trans. Mains	ø 200 mm - ø 900 mm	km	0.6	20.6	27.0
Treated Water Trans. Mains	ø 150 mm - ø 550 mm	km	16.0	35.2	35.2
Water Distribution Mains	ø 150 mm - ø 800 mm	km	63.0	112.4	139.9
Service Mains	ø 80 mm - ø 100 mm	knı	49.0	379	611

^{*} Water consumption (Not water demand)

N/A: Not Applicable

## 6.1.5 Proposed Municipal Water Supply System

## (1) Outline of the Proposed Plan

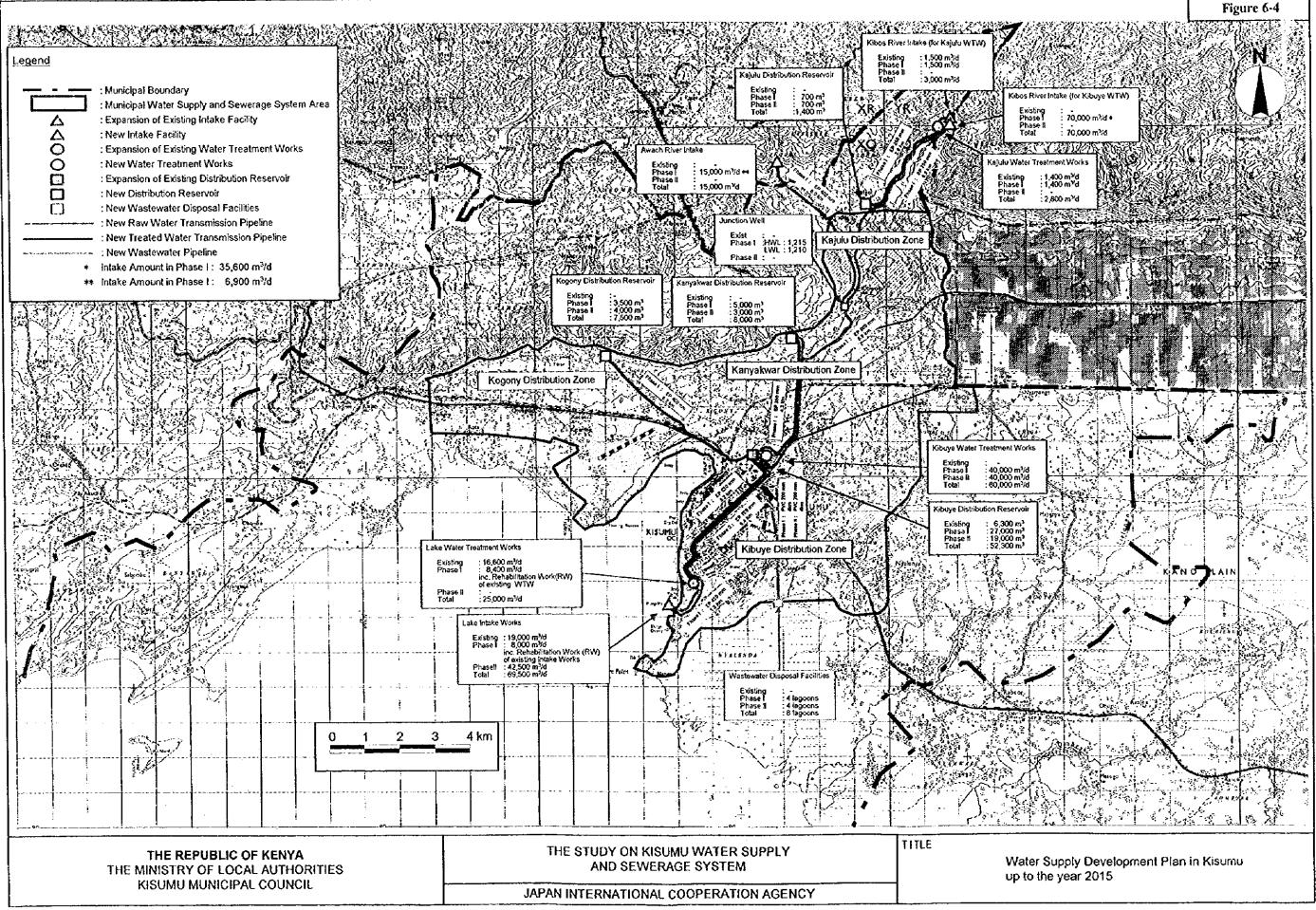

Table 6-8 below presents an outline of the proposed long-term water supply development plan. The locations of the major water supply facilities proposed under the plan are shown in Figure 6-4.

Table 6-8 Outline of Proposed Plan for Piped Water Supply System

	ITEM		1997	PHASET	PHASE II
Farget Year			- -	2005	2015
Fotal Population in the Study Area			363,157	526,195	869,166
Population Served	House Connection	Persons	13,018	272,346	531,784
	Communal Tap	Persons	211,438	142,184	158,844
	Tofal	Persons	224,456	414,530	690,628
Service Ratio		$c_{\ell}$	61.8	78.8	79.5
Service Area		km²	88.0	88.0	88.0
Water Demand	Day Average	m³,d	11,900*	59,174	96,336
	Day Maximum	$m^3/d$	N/A	65,091	105,970
Water Source	Kibos (for Kajulu WfW)	m³,d	1,500	3,000	3,000
	Lake Victoria	$m^3/d$	19,000	2005 526,195 272,346 142,184 414,530 78.8 88.0 59,174 65,091 3,000 27,000 35,600 6,900 72,500 2,800 25,000 40,000 67,800 33,300 5,000 33,300 700 42,500 20.6 35.2 112.4	69,500
	Kibos (for Kibuye WTW)	$m^3$ , d	-	35,600	35,600
	Awach	$m^3/d$	-	65,091 3,000 27,000 35,600 6,900 72,500 2,800 25,000 40,000	6,900
	Total	nr³/đ	20,500	72,500	115,000
Water Treatment Works	Kajulu	m³/d	1,400	2,800	2,800
	Lake	$m^3/d$	16,600	2005 526,195 272,346 142,184 414,530 78.8 88.0 59,174 65,091 3,000 27,000 35,600 6,900 2,800 25,000 40,000 67,800 33,300 5,000 3,500 700 412,500 20.6 35.2	25,000
	Kibuye	$m^3/d$	-	40,000	80,000
	Total	m³/d	18,000	67,800	107,809
Service Reservoirs	Kibuye	1)1	6,300	33,300	52,300
i	Kanyakwar	$\mathrm{m}^3$	-	5,000	8,000
	Kogony	$m^3$		3,500	7,500
	Kajulu	$\mathrm{m}^3$	ļ <i>-</i>	700	1,400
	Total	m³	6,300	42,500	69,200
Raw Water Trans. Mains	o 200 mm - o 900 mm	km	0.6	20.6	27.0
Treated Water Trans. Main	s = 0 150 mm - 0 550 mm	km	16.0	35.2	35.3
Water Distribution Mains	o 150 mm - o 800 mm	km	63,0	112.4	139.9
Service Mains	o 80 mm - o 100 mm	km	49.0	379	611

^{*} Water consumption (Not water demand)

N.A: Not Applicable





## (2) Major Works Planned for Phase I

Major works included in Phase I and Phase II are described as follows and their outline are shown in Figures 6-5 through 6-10:

#### a. Phase I

- Rehabilitation of the existing Kibos river intake for the Kajulu WTW which includes an
  expansion of the intake capacity from the existing 1,500 m³/d to 3,000 m³/d.
- Rehabilitation of the existing Kajulu water treatment works which includes an expansion of the treatment capacity from the existing 1,400 m³/d to 2,800 m³/d.
- Rehabilitation of the existing Lake intake works for the Lake WTW which includes an
  expansion of the intake capacity from the existing 19,000 m³/d to 27,000 m³/d.
- Rehabilitation of the existing Lake water treatment works which includes an expansion of the treatment capacity from the existing 16,600 m³/d to 25,000 m³/d.
- Construction of a new water intake on the Awach river with an intake capacity of 15,000 m³/d.
- Construction of a new water intake on the Kibos river with an intake capacity of 70,000 m³/d.
- Construction of a new water treatment works at Kibuye (Kibuye WTW) with a treatment capacity of 40,000 m³/d.
- Construction of new raw water transmission mains, 400 to 900 mm in diameter steel pipe and 18.8 km in total length from the new water intakes on the Awach and Kibos rivers to the Kibuye WTW.
- Construction of a new raw water transmission main 450 mm in diameter steel pipe and approximately 1.2 km in length from the Lake intake works to the Lake WFW.
- Construction of a 27,000 m³ distribution reservoir at Kibuye which will increase the total reservoir capacity at this location from the existing 6,300 m³/d to 33,300 m³/d.
- Construction of a 700 m³ distribution reservoir at Kajulu.
- Construction of a 5,000 m³ distribution reservoir at Kanyakwar.
- Construction of a 3,500 m³ distribution reservoir at Kogony.
- Construction of a treated water transmission main 200 mm in diameter steel pipe and approximately 3.6 km in length from the Kajulu WTW to the Kajulu Distribution Reservoir.
- Construction of a treated water transmission main 550 mm in diameter and steel pipe approximately 5.2 km in length from the Lake WTW to the Kibuye Distribution Reservoir.
- Construction of a treated water transmission main 400 mm in diameter steel pipe and approximately 6.2 km in total length from the Kibuye distribution reservoir to Kogony Distribution Reservoir.
- Construction of a treated water transmission main 350 mm in diameter steel pipe and



- approximately 4.2 km in total length from the Kibuye distribution reservoir to Kanyakwar Distribution Reservoir.
- Construction of wastewater disposal facilities in Nyalenda (Nyalenda WWD), which comprise 4 units of wastewater lagoons and a sludge drying bed.
- Construction of a wastewater disposal main 200 mm in diameter PVC pipe and approximately 4 km in total length from the Kibuye WTW to the Nyalenda WWD.
- Construction of trunk distribution mains, PVC pipes of 160 to 315 mm and steel pipes of 350 to 800 mm in diameter and approximately 49.4 km in total length.
- Construction of secondary distribution mains PVC pipes of 63 to 100 mm in diameter and approximately 330 km in total length.

#### b. Phase II

- Expansion of the intake capacity at the Lake intake works by 42,500 m³/d which increases
  the total intake capacity of the works from 27,000 m³/d upon completion of Phase 1 to
  69,500 m³/d.
- Expansion of the treatment capacity at the Kibuye WTW by 40,000 m³/d which increases
  the total treatment capacity of the works from 40,000 m³/d upon completion of Phase I to
  80,000 m³/d.
- Construction of a new raw water transmission main 700 mm in diameter steel pipe and approximately 6.4 km in total length from the Lake intake works to the Kibuye WTW.
- Construction of a 19,000 m³ distribution reservoir at Kibuye which increases the total reservoir capacity at this location from 33,300 m³ upon completion of Phase I to 52,300 m³.
- Construction of a 3,000 m³ distribution reservoir at Kanyakwar which increase the total reservoir capacity at this location from 5,000 m³ upon completion of Phase I to 8,000 m³.
- Construction of a 4,000 m³ distribution reservoir at Kogony which increase the total reservoir capacity at this location from 3,500 m³ upon completion of Phase I to 7,500 m³.
- Construction of wastewater disposal facilities in Nyalenda (Nyalenda WWD), which comprise 4 units of wastewater lagoons and a sludge drying bed.
- Construction of a wastewater disposal main 200 mm in diameter PVC pipe and approximately 4 km in total length from the Kibuye WTW to the Nyalenda WWD.
- Construction of trunk distribution mains, PVC pipes of 160 mm to 315 mm and steel pipes of 300 to 500 mm in diameter and approximately 27.5 km in total length.
- Installation of secondary distribution mains, PVC pipes of 63 and 110 mm in diameter and approximately 232 km in total length.