11. SUMMARY OF PRESENT NATRON AND THE PROPOSED DEVELOPMENT PROGRAM

•)

1

1

11. SUMMARY OF THE PRESENT NATRON AND THE PROPOSED DEVELOPMENT PROGRAM

11.1 Outline of the Present NATRON

11.1.1 Name of Company: "NATRON" Maglaj d.d.

11.1.2 Address: Bosnia and Herzegovina, Maglaj City

11.1.3 Establishment: 1968

(-)

1

1

11.1.4 Business: Production of Pulp, Kraft Paper and Paper Packing

11.1.5 Number of Employees: 1,638 (February 1998; 4,491 at end of 1991)

11.1.6 Capital: DM160,371 thousand (Shareholders: Government 37.7%, Employees of NATRON 62.3% at the end of 1997. Share of Government is planned at 70%)

11.1.7 Production (in ton)

Products	1991	1997	1997/1991
Pulp	120,000		
Paper	150,000	4,674	3.1%
(Corrugated board)	(32,000)	(2,274)	(7.1%)
(Sacks and bags)	(35,000)	(2,400)	(6.9%)
(Sack paper)	(83,000)	(0)	(0%)

11.1.8 Sales (in DM1,000)

					
Products	19	91	19	97	
(Domestie)	Quantity	Amount	Quantity	Amount	97/91
NATRON paper (ton)	31,145	82,358	317	336	0.4%
Tape, sheet (ton)	3,541	14,659	150	2,718	18.5%
NATRON sack (thou.	142,780	148,707	9,193	4,419	3.0%
Pieces)					
Paper bag (thou. Pieces)	18,324	5,584	2,326	417	7.5%
Corrugated board, and wrapping (ton)	30,079	114,975	2,605	4,504	3.9%
Sub total	-	366,283	-	12,394	3.4%
(Export)	Quantity	Amount	Quantity	Amount	
Paper (ton)	14,699	12,281	2,292	1,703	13.9%
Sack, box etc.	-	5,517	-	194	3.5%
Sub total	-	17,798	-	1,897	10.7%
Grand total	-	384,081		14,291	3.7%

Note: Sales for former Yugoslavia is included in (Domestic) in 1991, (Export) in 1997.

11.1.9 Machines in operation at the end of 1997 and their capacities

(1) Pulpers

Pulper	Capacity	Material	Attachment
Pulper using Waste Paper	150 ton/day	Waste Paper	Coarse Screen
Pulper using Purchased Pulp	150 ton/day	Purchased Pulp	Conveyer
Pulper using Broke	100 ton/day	Broke	Conveyer

(2) Paper Machines (PM)

PM	Capacity	Products	Specification	Material
PM-1	50,000	Testliner	140~200g/m²	Waste Paper Pulp
(65% of total	~60,000	Top Testliner	50g/m²	Purchased Pulp
yield in 1991)	ton/annual	Fluting	112~150g/m²	Waste Paper Pulp
		Schrenz	127g/m²	Waste Paper Pulp
		OPN Sack	$80\sim 100 \text{g/m}^2$	Purchased Pulp 50%,
	<u> </u>	Paper		Waste Paper Pulp 50%

(3) Corrugated Board Production Machines

Machines	No.	Width	Speed	Capacity	Raw Paper	Energy
Corrugator	1	1,600mm	100m/min	119,750	71,850 t/a	depends on
Corrugator (will be completed in June '98)	1	2,100mm	300m/min	thousand m²/a		Paper Machines' operation (when PM stops, corrugators
Glue (set)	1	Warm Glue	Method			must stop)

(4) Corrugated Box Production Machines

Machine	No	Width	Speed	Colors	Property	Capacity	Raw Paper
Printer,	1	3,600mm	90 r.p.m	2	Oily	11,405	6,843 t/a
Plotter	1	2, 700mm	120 r.p.m	2	Water	12,773	7,664 1/a
Gluer	1	2,200mm	150 r.p.m	2	Water	19,958	11,975 t/a
		te	otal			44,136	26,482 t/a

Note: Capacity is in thousand m²/a

(5) Sacks Production Machines

•

Ma	chines	Speed	Capacity	Raw Paper	Material
Large sized Sacks	Overlay 5 Bottomlay 7 BottomSew 6	100r.p.m	133,056 thousand pieces/a	36,590 t/a	Kraft paper (import from Hungary)
Small sized	3	70r.p.m	55,883thou p/a	1,956 1/a	

11.1.10 Capacity of Paper Machines

PM	Products	Capacity	Present Operation
PM-1	Corrugated board, OPN Sack paper	50~60thou. ton/a	10days per 2 months
PM-3	MG Paper	10 thousand ton/a	Halt
PM-4	Kraft Paper(NATRON Paper) etc.	60 thousand ton/a	Halt

11.1.11 Financial Statements (1997, in DM1,000)

Balance Sheet

Assets		Debts & Owners	equity
Current Assets	16,097	Current Debts	3,312
A/C Receivable	5,391	A/C Payable	2,376
Raw Materials	4,509	Others	936
Products	5,304	Long-term Debts	46,115
Others	893	Long-term Loan	41,132
Fixed Assets	195,314	Others	4,983
Fixed Assets	193,145	Owners' Equity	161,984
Land	30,584	Capital	160,371
Buildings	133,203	Retained Earnings	1,613
Machinery	29,358		
Intangible Assets	2,169		
Total	211,411	Total	211,411

Income Statement

Sales	17,164
Cost of Sales	31,781
(Depreciation)	(5,871)
Ordinary Income	-14,617
Other Income	1,400
Net Income	-13,217

11.2 Summary of the Proposed Development Program

11.2.1 Market

Products	Market
Sack paper	Clupak sack Krast paper produced on PM4 is quality-wise competitive in export market. Italy, Middle East & North Africa might be the most promising markets.
MG(MachineGlazed) paper for bag	Can compete in quality & costs. Export mainly to Slovenia & Italy.
SC (Semi-chemical) Fluting	Can compete in quality & costs. Best quality for corrugating medium. Market should be in Italy & South Europe etc.
Corrugated board	Typical home-market product. The political, economical recovery in ex-Yugoslavia region is an essential condition. NATRON's high-quality SC fluting could improve cost-competitiveness of corrugated board.

Possibility to use transport systems (rail, harbor) is a prerequisite for this development program.

11.2.2 Production Principles

To get the highest benefit of existing facilities without excessive investments, the following 4 production principles are targeted;

- (1) Simple, streamlined production lines
- (2) Full capacity utilization
- (3) Minimum grade changes
- (4) Stable exportable quality

11.2.3 Production Policy

(1) Two Pulping Lines to be Started Simultaneously

Both pulping processes can be combined to common chemical recovery with only minor process modifications. Green liquor from the Krast pulping is used as cooking liquor in hardwood pulping (cross-recovery).

(2) Advantage of SC Fluting

SC fluting has superior quality competitiveness in export markets, compared with waste paper based fluting.

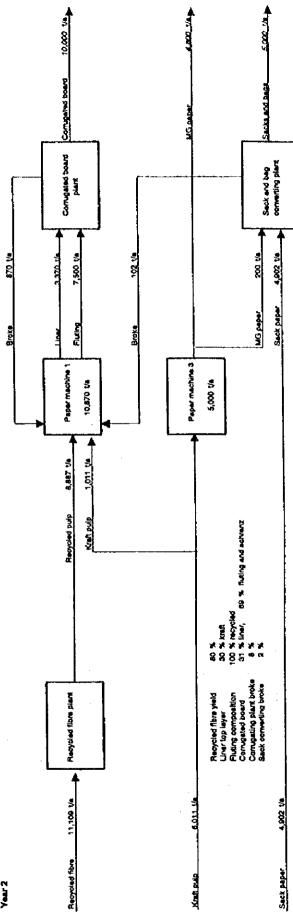
(3) Attribute of Paper Machines (PM), and Advantage of Single Production

- 1) PM1 is suitable for fluting, corresponding to the output of SC hardwood pulp from the Kamyr pulping line.
- 2) PM3 can be used in production of special MG paper.

1

- 3) PM4 is suitable for sack paper production, using unbleached softwood Kraft pulp, because it is equipped with high consistency refining and Clupak unit.
- 4) These paper machines produce only one paper grade at full capacity, resulting in maximizing the efficiency and minimizing the costs.
- (4) Converting plant to be developed so that product mix meets market requirements.
- (5) Start-up of PM2 to produce schrenz from waste paper was considered, but the plan has not been found feasible for the following reasons:
- 1) Products produced by PM2 are low in quality, and make a deficit in gross margin level, so causing a decline in the IRR of NATRON.
- 2) Width of paper products produced by PM2 mismatches new corrugated machine installed in June 1998. On the other hand, PM1 matches the new machine.
- 3) Much investment is required for restarting PM2. Such investment can be in vain due to future suspension.
- 4) Pulp plant with recovery boiler and Kamyr digester is utilized for PM1, 3 and 4. PM2 does not contribute to pulp plant operation.
- (6) No waste paper will be used after mid-2000 (Long-term program). Because:
- 1) Efficient collection of domestic waste paper in the future is not necessarily possible.
- 2) After starting the pulp plant, recovery boiler and Kamyr digester need to be utilized to over

50% of capacity. After extension of the dryer section, capacity of PM1 will correspond with the minimum capacity of the recovery boiler and Kamyr digester.


If waste paper is used on PM1, the 50% capacity usage of the recovery boiler and Kamyr digester will not be achieved..

11.2.4 Development Program

400	Immediate Program	Short-term Program (Jan.1999~June2000)	Long-term Program (July2000-Dec.2009)
rpase	1 Tomore woodner on the R	1 Increase production of PM1 &	1. Normal, continuous production with full capacity
Target	1. Amplove product quanty & marketing	converting plant.	2. Both pulping lines start at the same time.
	2. Reduce production cost.	2. PM3 starts producing MG paper	
	3. Rehabilitation & start-up of	using market Kraft pulp.	
	effluent treatment & ash dumping	3. Prepare long-term program.	
Pulning Line	אינינוני סייטיר פוריים	A	Operates with maximum production of 66,000 ADt/a.
(Batch)			Supply softwood Krait pulp to P.M.3 & F.M.
Pulning Line	1	•	Has to be operated with minimum production of
(Kamyr Continuous)			60,000 ADVa. Supply haldwood So purp to 1141:
Waste Paper Plant	Supply waste paper pulp to PM1	Supply waste paper pulp to PM1	Ceases operations but to be preserved for the future possible restart.
		The state of the s	Produces Fluting 73,000 t/a by hardwood SC pulp.
PM1	Fluting, Schrenz, Testliner,	Do. Froduction is increased:	The fluting property meets demands from export
	INTINCIA PAPEL		markets.
		MG paper for paper bag mainly for	MG paper 9,000 Ua. Pulp supply changes from Market
FM3	•	export market	pulp to NATRON Kraft pulp, and costs are reduced.
			Sack paper 57,000 t/a by NATRON Kraft pulp.
FM4	0 O O	Description is increased	Do, Testliner is to be purchased.
Converting Plant	Corrugated board & box, Sacks, Dags	DO. FIGURATION IS INCIDENCE.	
		The state and the second state of	1 Concentration on only one grade improves the
Remarks	1. Paper qualities are acceptable for	2 Comprehensive training program	paper properties & paper machine efficiency.
•	domestic customeris:	for all employees to raise technical	2. Operation with full capacity reduces costs, and
	of limitations in raw material &	knowledge has to be realized.	increases competitiveness.
	Of Hillingtons in tare material co		3. PM4 needs thorough repair before restart.
	market.		

()

market.

Appendix 7-4

J

(1)

8.400 Us 50,000 Va 50 SACKT ADD DAGS NSSC fluing MG-paper Solvenz Compated board plant Sack and bag conventing plant 9/10 21,660 % 9.706 Ve NSSC Fullo 23,946 Va 20,408 1/4 % 000 19,608 Va Schrenz Broke Paper machine 1 Paper mechine 2 Paper machine 3 Paper machine 4 50 9,000 Va 73,046 Va 55,808 Va 9h 0 a), 000.0 0 1/2 \$ 56,808 1/8 65 932 1/A O % BCMBNZ Recycled pulp Kreft purp Kraft Pulp NSSC pulp NSSC pulp plant Kraft pulp plant 65,932 VA 65,808 Va Recycled fibre yield NSSC pulp wod consumption Kraft pulb wood consumption Futne composition PMZ Corrugated beaut Corrugated beaut Sack converting boxe Recycled fibre plant HW chips Wood SW.chips 151,643 m3sob/k 156.304 m3sph/ \$ Recycled fibre HATOWOOD Softwood Š

()

Fibre balance, Long Term Programme, excl. PM2 Own kraft pulp and NSSC pulp production Year 8 and onwards

Appendix 7-1

1

Ţ

11.2.5 Start-up Costs for Development Program

		Start-up and Investment Costs	Market	Raw Material
Phase	l echnical Target	michigan Cose		1 Democratic services
ram	1. Grade-up quality, marketing, and reduce costs.		1. Domestic market mainly. 2. Annual GDP growth rate	2. Sack paper imported from
(July~Dec.1993) 2.	2. Implicy culture and proceeding (20 cm) for a community of the community of box sacks & bass.		is expected 21% from 1996	Hungary.
i ei	3. PM1 for Fluting, Schrenz, Testliner & NATRON paper by		to 2000.	3. Market pulp imported from
Sn	using waste paper & market pulp.			Kussia, Swaziiand, Sweden.
-i	4. Immediate environment protection: Waste water, Shift coal			
28	ashes from into river to dump.			
<u>vi</u>	5. Compact oil boiler to improve energy efficiency and			
ri.	increase corrugated board & box plant.			
9	6, Prepare to start Short-term program.	DM3 million		
Short-term Program 1.	1. Improve paper properties of PM1.		(MG paper)	Market pulp imported from
	2. Start PM3 for MG paper of 5,000 1/a for Paper bags &		Domestic1,000, Slovenia &	Russia, Swaziland, Sweden.
	Carrier baes by using market pulp.		Italy3,000, Others 1,000,	
	2. Prepare to start I one-ferm program.	DM41 million	Total 5,000 tons/year.	
T Charles Decompany	1 Start fill production of softwood Kraft pulp & hardwood SC		Domestic market & Export	1. Domestic pulp wood:
	1. Many handling againment to debate and make this		(ex Yugoslavian countries,	Softwood for Kraft pulp &
(July2000~Dec. 2003) pu	PMA for MG pager by using NATRON's kraft pulo.		Southern & Central Europe,	Hardwood for SC pulp.
ien	3 Start PM4 for sack paper using NATRON's kraft pulp.		Middle East, Southeast Asia,	2. 22 thousand tons of
22	20 thousand tons for NATRON's own sack plant, 37 thousand		North Africa etc.)	Testliner is to be purchased.
3	tons for export.		Total 153,000 tons/year.	
गं	4. PM1 for Fluting by using NATRON's SC pulp.			
<u>'</u>	5. Waste water treatment for European standard.	DM95 million		
	Start-up costs	DM55 million		
	Investment costs	DM84		
	Grand Total	DM139 million		

11.2.6 Alternative Plan (Survival Plan)

Plant & Machinery	Pulp Plant	PM 1	. PM 3	PM 4	Converting Plant
Basic Plan	0	0	0	0	0
Alternative Plan	×	0	0	×	0

- (1) If no investor shows up, the immediate program should be continued as a survival plan.
- (2) Pulp mills will not operate. All paper material should be purchased from outside.
- (3) Sales and profit will be smaller.
- (4) Only small number of employees are needed.

(5) Development Program for Alternative Plan (Survival Plan)

Phase	Immediate Program (July~Dec.1998)	Survival Program (Jan.1999~)				
Target	1. Improve product quality & marketing. 2. Reduce production cost. 3. Rehabilitation & start-up of effluent treatment & ash dumping system before start-up of PM3	 Increase production of PM1 & converting plant. PM3 starts producing MG paper using market kraft pulp. Prepare long-term program. 				
Waste Paper Plant	Supply waste paper pulp to PM1	Supply waste paper pulp to PM1				
PM1	Fluting, Schrenz, Testliner, NATRON paper	Do. Production is increased.				
PM3	•	MG paper for paper bag mainly for export market				
Converting Plant	Corrugated board & box, Sacks, Bags	Do. Production is increased.				
Remarks	 Paper qualities are acceptable for domestic customers. Production is intermittent because of limitations in raw material & market. 	 Production is still intermittent. Comprehensive training program for all employees to raise technical knowledge has to be realized. 				

(6) Start-up Costs for Alternative Plan (Survival Plan)

Ţ

Phase	Technical Target	Start-up Costs	Market	Raw Material
Immediate	1. Grade-up quality, marketing, & reduce costs.		1. Domestic market	1. Domestic & imported
Program	2. Improve current PM1 production (10 days per 2		mainly.	waste paper.
(July~Dec.1998)	months) for corrugated boxboard, sacks & bags.		2. GDP growth rate is	2. Sack paper imported
	3. PM1 for Fluting, Schrenz, Testliner & NATRON		expected 21% from 1996	from Hungary.
	paper by using waste paper & market pulp.		to 2000.	3. Market pulp imported
	4. Immediate environment protection: Waste water,			from Russia, Swaziland,
	Shift coal ashes from into river to dump.			Sweden.
	5. Compact oil boiler to improve energy efficiency			
	6. Prepare to start Short-term program,	DM3.2 million		
Survival	1. Improve PM1		(MG paper)	Market pulp imported from
Program	2. Electrical maintenance, Fiber & Heat recovery		Domestic 1,000	Russia, Swaziland,
(Jan.1999~)	3. Start PM3 for MG paper of 5,000 t/a for Paper		Slovenia & Italy 3,000	Sweden.
	bags & Carrier bags by using market pulp.		Others 1,000	
	4. Improve Converting Plant:	-	5,000 tons	
	(1) Corrugated board & box Maintenance, Die cutter			
	line			
	(2) Sacks: Maintenance, Automation	DM9.8 million		
	Grand total for start up costs (4.8million DM for Die			
	cutter should be invested after the first 3 years)	DM13 million		

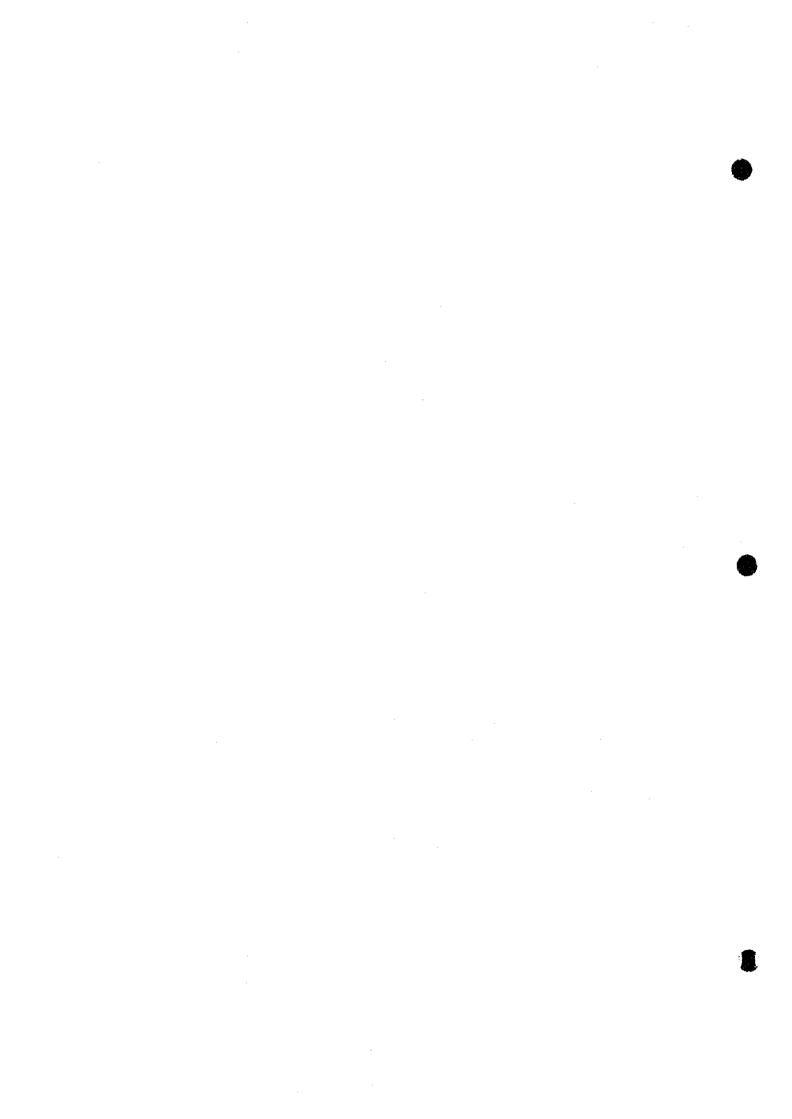
11.2.7 Financial Feasibility of the Program

(1) Internal Rate of Return (IRR)

	Ba	sic Plan	Survival Plan		
Types of IRR	IRR	Cost of Capital	IRR	Cost of Capital	
IRROI before tax	27.1%	13.9%	36.8%	14.5%	
IRROI after tax	22.9%	13.8%	33.6%	14.5%	
IRROE after tax	39.8%	15%	44.3%	15%	

IRROI before tax of 27.1% greatly exceeds the cost of capital (WACC) of 13.9%. IRROI after tax of 22.9% is closer to the WACC after tax of 13.8%, but it still is significantly over 13.8%. It also shows the importance of government's supporting policy for taxation. IRROE after tax of 39.8% also exceeds much the investors' expected return of 15%.

Therefore, the program can be appraised as satisfactorily feasible.


IRR of the survival plan is higher than the basic plan, but it achieves only a reduced equilibrium. Therefore it has less social significance.

- (2) Reasons for the Program's Good Results
- 1) Small investment required
- 2) Export-oriented marketing policy
- 3) Productivity improvement
- 4) Plentiful labor force
- (3) Essential Points to the Program
- 1) Financing first three years (1998 ~ 2000)

In order to compensate shortage of funds for first three years of DM59.1 million, and to cover total investments of DM139.1 million etc., the program needs to raise DM83 million (long-term loan DM68 million and equity DM15 million), of which DM72 million (87%) should be raised in the first three years.

2) Tie-up with strategic investors (international pulp and paper companies)

12. RECOMMENDATIONS

12. RECOMMENDATIONS

12.1 Self-help By NATRON

To cope with the post-war difficult situation, NATRON has taken some measures below:

(1) Reduction of Number of Employees and Payroll Cost

Years	1991	1997	1997/1991
a. Number of employees	4,500 persons	1,600 persons	1/3
b. Average net monthly salary	DM1,000	DM110	1/9
Annual payroll cost (a*b*12)	DM54 million	DM2 million	1/27

(2) Sales of Surplus Assets

NATRON plans to sell its surplus assets (farm, football stadium, hotel, restaurant, swimming pool etc.) with a book value of DM8 million, during the course of a small privatization this summer.

(3) Related Businesses

1

1

NATRON gained around DM1 million in 1997 by undertaking external jobs such as maintenance & construction works (cf. 6.5.14).

(4) Reduction of Administrative Costs and Adopting Conservative Accounting Methods NATRON saves many cost items such as insurance, maintenance costs, and adopts conservative accounting methods like write-down of DM50 million forest in RS region and resort hotel etc. (cf. 6.5.11).

(5) Recommendation for Further Self-help

At first NATRON should improve product quality and promote sales marketing by raising employees' morale. Current low profitability structure derives from the intermittent production which results in heavy burden of fixed costs. NATRON should raise operating rate of mill immediately in order to clear the hurdle of its financial break-even point.

12.2 Recommendations to the Bosnian Government

Bosnian business should transit to market economy as soon as possible. So Bosnian government should protect and support Bosnian industries with a postwar special reconstruction policy-mix.

It is recommended that key industries in Bosnia such as pulp and paper company should be given priority for government aid.

(1) Promoting Inter-state owned enterprises (SOE) Transactions

Bosnian government has a majority of shares in SOEs. So it is a good opportunity to reorganize domestic industries, and create an inter-SOE mutual aid system. For instance, government should instruct cement, sugar, flour companies and post offices to purchase NATRON's sack paper and corrugated board, and similarly instruct NATRON to purchase those companies' goods in exchange.

(2) Reconstruction of Domestic Banking System

The government should assist the recovery in the domestic banking system. For instance, by means of establishing public financial institution for key industries, promoting postal savings, and borrowing hard currency from foreign banks under government guaranty.

Concerning the public financial institution, a postwar 'Reconstruction Medium/Long-term Fund' is recommended. The fund should be independent from Bosnian government, and funded by European countries and EBRD etc. The fund can be managed by well-informed loan appraisers from advanced countries. Its existing period should be limited to about 10 years.

(3) Aid to Get Rid of Barter Transactions

Paying fines for insolvency is a severe burden on companies and it increases barter transactions. The repeal of such fines should be considered to recover sound eash settlement transactions among companies in order to gain business credit from superior foreign bankers (cf. 6.5.3).

The establishment of a 'Short-term Money Settlement Institution' contributed by Bosnian central bank and donor countries should be considered. The member of the institution is limited to Bosnian priority companies including NATRON, and trustworthy foreign banks and companies. The institution has computerized central settlement system, and funds for short-term loans and relief. Members' transactions are registered to the institution, and those are settled among members' accounts by netting balance clearing method. This system can reduce cash volume for settlement, credit risk, and troublesome barter transactions. As a result it will accelerate revival of key industries and Bosnian financial system.

(4) Exemption of Taxes or Deferment of Taxation

The government should exempt or defer corporate and other taxes (import duties etc.) for at least 5 years to rebuild SOEs quickly.

(5) Transfer of NATRON's Long-term Debt to Government

NATRON owes DM39 million debt from Paris and London Club under government guaranty. The debt is too much for NATRON to repay. It is recommended that it should be shouldered by government to lighten NATRON's burden and to facilitate foreign bankers/investors interest in NATRON (cf. 10.3.1 (6)).

(6) Reduction of Additional Burden on Payroll

Companies bear social insurance and income tax which amount to 86% on net salary. For instance, half of social insurance should be shouldered by employees and/or government.

(7) Increasing NATRON's Portion of Surplus Assets Sales

It is recommended that NATRON's portion of sales amount of surplus assets is increased to more than 50% in order to help its current financial difficulties (cf. 6.5.11).

(8) Transfer of Surplus Employees to the Government

SOEs keep many surplus employees. Central and local governments should transfer them to vocational training facilities, pay them some salary, and help them get jobs.

(9) Export Promotion

1

The government should arrange export promotion measures such as export bounty, export L/C (letter of cerdit), export financing, export insurance, and export promotion tax systems.

(10) Reduction of Domestic Pulp Wood Prices

Bosnian pulp wood prices are higher than European market prices. It weakens the international competitive power of domestic paper companies. The government should control pulp wood prices to promote forest and paper industries.

(11) Improvement in Waste Paper Recycle System

Waste paper recycle system is less than satisfactory in Bosnia. It makes it difficult for paper companies to utilize waste paper and weakens their competitiveness. The government should arrange appropriate recycle system also to conserve forests and improve urban environment.

12.3 Recommendations of Production Control

(1) Quality Improvement

The paper grades manufactured by NATRON following the restart of the mill will benefit from improved paper properties.

These improvements of paper quality in the long-term program will be achieved due to the following reasons, as recommended:

- 1) Each paper machine focusing on one paper grade only
- 2) Changing to semi-chemical hardwood pulp for fluting, instead of waste paper
- 3) Investments for improved product quality by installation of new equipment

(2) Cost Reduction

Cost reduction will primarily be done through reduction of the number employed, while keeping the production approximately at the same level as in 1991. The production of the mill will, with the proposed PROGRAM, be concentrated on three paper machines and one of the two chemical recovery section only. This will reduce the cost of operation substantially.

The operation will also be adjusted to available wood-resources within the Federation of Bosnia and Herzegovina. This will exclude the high transportation costs of imported raw material. Additionally there exists a great potential to reduce the cost of domestic pulp-wood.

In the short term the costs will be reduced when increasing the production, following market demand, and reducing shut-down time. This will reduce the variable and fixed costs per ton of sales product.

We recommend the cost control system be developed and to make the personnel aware of their ability to affect costs by their operation practices.

(3) Adjustment of the Number of Employees

The proposed future number of employees for NATRON has been proposed based on the experience from similar mills throughout the world. Compared with the present situation, the number of working people will increase by 50%, in reaching normal operation. The efficiency and motivation of the employees has to be raised drastically to reach these objectives and to compete on the world market.

Most of the machinery and equipment originates from the sixties and there does not exist any modern systems for production and maintenance planning. The technical level of the NATRON mill has been taken into consideration in the proposed manning.

(4) In-house Training and Educational Investment

The NATRON Mill is facing the new environment of a market economy after decades within the planned economy system. This together with the proposed new technology to be introduced will require substantial training of all staff of the mill.

The objective of the top management training is to develop the understanding on how an efficient organization works within the market economy with decentralized authority.

Middle management training will focus on developing the managerial skills as leaders of a team to continuously improve the performance of the department within their responsibility. The

modernization of the NATRON mill will result in new technologies as well as new methods on how the mill and equipment should be operated. The training PROGRAM of the middle management and operators will develop those skills.

The total cost of foreign experts of this PROGRAM is estimated to be DM800 thousand.

12.4 Recommendations on Managerial Control

(1) Raising a Sense of Market Economy

NATRON's pre-war prosperity depended on a closed socialist planned economy. After the war, NATRON should prepare plans for a competitive market, improve product quality, seek new markets, and raise funds all by itself. At first not only top management but also every staff must understand this. On the other hand, management team members should withdraw from labor union to manage NATRON autonomously and lead NATRON toward privatization.

(2) Business and Capital Tie-ups with Multinational Pulp and Paper Companies

It should be useful for NATRON to make tie-ups with some international pulp & paper companies which have excellent technical and management skills, seek a new products mix with synergy, and be interested in obtaining a foothold for the southeastern Europe and Middle East markets. NATRON can take those investments and skills, and give its products with hopeful return on investment (ROI). This cooperation should also facilitate to introduce some international financial institutions to NATRON.

(3) Participation in Management

I

Business plan should be drawn up with the participation of every employee. At least in summary form it should be not only circulated among department directors but also notified to every employee. It should contribute to rousing employees' sense of participation in management.

(4) Divisional Organization

It is recommended before starting pulp production, to reorganize NATRON into seven divisions which are profit centers. Each division makes its business plan and improves its operation on its own initiative. On the other hand, each division is responsible for its operations result. Such divisional (decentralized) organization is expected to make the organization more efficient and profitable, make each division's decision-making quick, and rouse employees' morale. The seven divisions are for example, pulp, PM1, PM3, PM4, converting plant, maintenance, and administrative (head quarter) divisions.

(5) How to Evaluate Each Division

In order to evaluate each division's financial performance, residual income (RI) should be used rather than division's ROI. RI is defined as follows:

(E)

RI = Divisional Income - K * Invested Capital in Division

Note: K is division's cost of capital or division's minimum ROI required

The reason why RI is preferred to ROI is that, if ROI is used, divisional managers tend to be reluctant to implement new investments which are lower than their current ROI even if it is higher than their K. The increase of an absolute amount of income is desirable for entire NATRON.

(6) Supervisory Board

Main function of the supervisory board is to control operational decisions made by management team, so at least one board member should join management meeting for pre-audit. At least one of board members should be a full-timer to make its function more effective (cf. 6.5.15).

(7) Number of Employees

Long-term schedule to adjust number of employees should be drawn up in conformity with the long-term business plan.

(8) Getting out of Barter Transactions

One of problems of barter transactions is that, the amounts of sales and purchases booked have less credibility. In addition to government's aid mentioned above (cf. 12.2 (3)), it is necessary as an accounting measure that NATRON properly arranges evidence and documents which can verify the amounts' fairness at any time (cf. 6.5.4).

(9) Accounting and Financial Issues

1) Format of linancial statements

- a. It is better to be stated in comparative style of two years (this year and the last year).
- b. On income statement, cost of sales is listed first, and sales is listed next. The order should be reversed.
- e. Selling, general and administrative expenses are included in cost of sales. Such accounting method will lead inventories and net income to be overstated. So those expenses should be separated from cost of sales, and charged on the year accrued as a period cost, not a product

cost (cf. 6.5.8).

2) Valuation

- a. Slow-moving and obsolete inventories should be properly measured, and valued by net realizable value at each year end. It is recommended that around 30% of the balance of 1997 is devaluated (cf. 10.3.1 (5)).
- b. Fixed assets should be defined as equipment utilized with capital cost of over e.g. DM1,500 to make accounting procedure conservative and efficient. Idle capacity should be accounted for by utilization value, and the adjustment amount should be charged as a period cost instead of deferred normal depreciation (cf. 6.5.6, 10.3.1 (5)).
- 3) Standard costing and break-even analysis

NATRON should adopt standard costing in the near future, to make a proper business plan and implement cost control systems. At the same time, break-even analysis should be utilized to grasp profitability by products, and prepare effective production and sales-mix strategies (cf. 6.5.8).

APPENDICES

1

Appendix 6-1

1

1

Main data of present plant and machinery of pulp plant

1. The purpose of our study and what we have done.

We have investigated the status, specifications, etc. for following facilities in order to check which machinery and equipment can be used for restarting plan or not.

- 1) Wood preparation
- 2) Batch Cooking Plant
- 3) Continuous Cooking Plant
- 4) Screening and washing for batch cooking plant
- 5) Screening and washing for continuous cooking plant
- 6) Recausticizing Plant for batch cooking plant
- 7) Lime reburning plant for batch cooking plant
- 8) Recausticizing Plant for continuous cooking plant
- 9) Lime reburning plant for continuous cooking plant
- 10) No.1 Black liquor evaporator for continuous cooking plant
- 11) No.2 Black liquor evaporator
- 12) No.3 Black liquor evaporator for batch cooking plant
- 13) Chemical recovery boiler for batch cooking plant
- 14) Chemical recovery boiler for continuous cooking plant
- 15) Waste Water Treatment
- 16) Water Intake(1966)
- 17) Water Intake(1955)
- 18) Boiler feedwater treatment

2. The result of the site visit and investigation

Parts of facilities are damaged by war and timeworn. Some parts must be replaced. However generally the status of machinery and equipment are better than we expected. Most of the machinery and equipment can be restarted by overhaul and maintenance.

Refer to the attached summery of main machinery and equipment.

3. Impression of the investigation

Basically the mill has a very small market and no plan to obtain raw material at this stage. Now the mill is operating at less than 10% of capacity using waste paper as the raw material. But the product is of low quality.

We think that at first what the mill must do is to import the law material for liner and to improve quality. The market will be grow. After that, the pulp mill shall be restarted.

Anyway the assistance of the government will be required to restart up the mill.

The summery of main machinery and equipment

1) Wood Preparation (expansion in 1983)

Capacity Wood Storage capacity

100,000m3 as wood

(

250,000m3 as chip

Chip Storage capacity

80,000 m3

Constructed by, and in

1983

Constitution	a 0), and an			1700				
Item	Manufac- turer	Турс	Size	Capacity	Drive Power	Damage	Wear of roller	Wear of type
Drum barker	Warkaus	Wet type		30m3/h		Rust, to be overhauled	No.	No.
Ring	Valon-	Ring type		80m3/h		Rust, to be		
barker	Kone	for long log				overhauled		
Chipper	Black	116"HC12	700 mm	156m3/h	1200kW	Rust, to be		
	clawson	knives	dia	(100m3/h)		overhauled		
Chipper				60m3/h	420kW	Rust, to be		
				(30m3/h)		overhauted		
Chip				200m3/h		to be		
Screen				as chip		overhauled	•	
Conveyors						Burned, to		
_						be replaced		

2) Batch Cooking Plant

Capacity	Design (t/d)	1	50 ADt/d
	Actual operation (t/	'd) 1	50 - 172 Adt/d
Cooking cycle	Design	Actual o	peration
Chip & liquor supply	30 min.		
Steaming(heating)	130 min.		
Cooking	60 min.		
Relieving	25 min.		
Blowing	25 min.		
Total	270 min	Almost	same as design base
Operating Condition	Cooking yield		
	Kappa No.		
	Chemical charge		409.63kg/ADt pulp as A.A.
	Steam consumption	n	2.25t/ADt pulp
	Electric power con	sumption	1 44kWh/ADt pulp

Item	Manufac- turer	Nos.	Туре	Size	Capacity	Damage	Rebuild
Digesters	Hitachi Zosen	5	Vertical	3,350mm dia x 12,760mm H, 25mm t	80 m3	No.1,.2,.3,.4. No.5; under repairing and 2 pieces of top hell will be renewed	
Heater	Hitachi Zosen	5	Shell and tube	110 m2 cach			No.1-5; All tubes are changed to new stainless steel tubes

3) Continuous Cooking Plant (1983)

Capacity	Design (t/d)	200 ADt/d
Operating Condition	Cooking yield	48%
	Kappa No.	40 - 50
	Chemical charge	364.48kg/ADI pulp as A.A.
	Steam consumption	0.757t/ADt pulp
	Electric power consumption	212kWh/ADt pulp
	(including Screening, not inc	luding washing)
1.6		

Item	Manufac -turer	Nos `	Ту	ре	Size	Damage
Digester	Kamyr	1		_	3,8000/2,400mmdia x	to be overhauled

150ADt/h

4) Screening and washing for batch cooking plant

Design (t/d)

Capacity

		Ac	tual operat	ion (t/d)	150 - 172 AI	Dt/d		
		Electric power consumption			94kWh/ADt pulp(only for screening)			
Item	Manu- facture r	Nos.	Туре	Size	Capacity	Drive power	Damage	
Washers	Hitachi Zosen	3 drums	Vacuum foster	Drum Ø 3000x 4000₩	160ADt/d	11kW each	Rust, to be overhauled	
Primary Screen	Hitachi Zosen	2	Cowan screen	plate perforate ϕ 2.2 - 2.0	80ADt/d cach	85kW	Rust, to be overhauled	
Secondary. Screen	Hitachi Zosen	1	Cowan screen	plate perforate ϕ 2.0	40ADı/d	37kW	Rust, to be overhauled	
Cleaners No.1		65	Centri- cleaner				to be overhauled	
No.2		12	ditto			•	ditto	
No.3		4	ditto				ditto	
No.4		1	ditto				ditto	

5) Screening and washing for continuous cooking plant (1983)

Capacity		Desig	gn (t/d)	200			
Item	Manufac -turer	Nos.	Турс	Size	Capacity	Drive power	Damage
Vacuum	Dorr		Vacuum		2 x 100		
filter	Oliver		filter		AD/d		
Primary	Bird	1		plate		90kW x	to be overhauled
Screen				perforate		1500rpm	
				ϕ 1.6 - 1.8			
Secondary	Ahlstom	2		slit 0.45		90kW x	to be overhauled
Screen						1500rpm	
Reject	Bird	1		plate		45kW x	to be overhauled
Screen				perforate		1500rpm	
				Ø 2.0			
Washers	Rauma	1	Pressure			45kW	to be overhauled
(1988)	Repora		filter(PFW				
•	•		3040)				
Washers	Dorr	2	Pressure				to be overhauled
(1954)	Oliver	drums	filter &				
,			Balometric				
Reject	Sprout-		Single Disc	36"			
refiner	Waldron						
Cleaners							
for reject							
Nos. of F	rimary	10					
Nos. of S	Secondary	2					
No.s of T	Fretiary	1					
		Tota	al installed po-	wer for Screen	ing plant	1305.1kW	

6) Recausticizing Plant for batch cooking plant

Capacity

Green liquor feed rate

Design

30m3/h

Required white liquor

Design

22.9m3/h

Equipment specifications

Item	Manufac- turer	Nos.	Туре	Size	Capacity	Damage
Green liquor clarifier	Hitachi Zosen		Rake & Clarify	7300mm Ø.x 3700mmH		Rust, to be overhauled
Dregs washer	Hitachi Zosen		Rake & Clarify	4300mm Ø.x 2500mmH		Rust, to be overhauled
Lime slaking	Hitachi Zosen		Rake	30m3/h		Heavy rust, to be overhauld
Causticizers	Hitachi Zosen	3			12m3	Rust, to be overhauled
White liquor clarification	Hitachi Zosen		4 component sedimentation	6700mm ϕ x 7300mmH		Rust, to be overhauted
Lime mud filter			Vacuum drum filter		1101/d, 60%solid	Rust, to be overhauled

In this area, a lot of corrosion problems are observed in machinery, tanks, pipes, etc.

7) Lime reburning plant for batch cooking plant

Capacity

Production rate

Design(t/d)

50t/d as CaO

Moisture content in time mud

Design(%)

40%

Equipment specifications

Item	Manufac- turer	Туре	Size	Kind of fuel	Speed (rpm)	Driving power	Damage
Lime kitn	Hitachi Zosen	Long kiln	45mL x Ø 2.12m	Heavy oil	0.4-1.2rpm	22kW	Rust, to be overhauled. Tire and Roller are eroded.

8) Recausticizing Plant for continuous cooking plant

Capacity

Green liquor feed rate

Design

35m3/h

Required white liquor

Design

Equipment specifications

Item	Manufac- turer	Nos.	Туре	Size	Capacity	Damage
Green liquor clarifier	Dorr- Oliver		Rake & Clarify		249m3	
Dregs washer	Dorr- Oliver		Rake & Clarify		43.2m3	
Lime slaking	Dorr- Oliver		Rake		1-40m3/h, 1-30m3/h	
Causticizers	Dorr- Oliver	3+1			12m3	
White liquor clarification	Dorr- Oliver		2 component sedimentation		226m3 each	
Lime mud filter	ENSO				1001/d, 65%solid	

The piping and auxiliary equipment around causticizers are destroyed by bomb.

9) Lime reburning plant for continuous cooking plant

Capacity

Production rate Design(t/d) 65t/d as CaO

Moisture content in lime mud Design(%) 35%

* 3	•			A	
1471	111:	pment	SINCOL	icai	ione
-~	** *	}*****	Spreen.		1471163

Item	Manufac- turer	Nos.	Туре	Kind of fuel	Size	Speed (rpm)	Capacity	Damage
Lime mud feeder			Screw				1001/d, 65%sotid	
Lime kiln	F.L.Smith		Long kiln with satelitecooler	Heavy oil	50.85mL x Ø 2.4m	1.09rpm		Rust, to be overhauld

10) No.1 Black liquor evaporator for continuous cooking plant(1980)

Manufacturer	Hitachi Zo	sen		
Capacity				
Feed black fiquor				
Feed rate(t/h)	Design	63.2,	14.1,	20.0
Solid(%)	Design	15.0,	50.0,	45.0
Temperature(°C)	Design	75.0	00.0,	100.0
Product black liquor				
Product rate(t/h)		<u>.</u>	39.28,	
Solid(%)	Design		65.0	
` '	Actual		60	
Temperature(*C)	Design		108.0	
Evaporation (t/h)	Design		58.02	
Specification	3			
Item No.1 effect	Type Vertical forced Circulation	Heating surfact 440	e (m2)	Damage
No.2 effect	Vertical long tube	640		
No.3 effect	Vertical long tube	720		Shot by gun
No.4 effect	Vertical long tube	720		Small hole, shot by gun
High density concentrator	Vertical forced circ	100		
Surface condenser	Shell and tube vertical	635		Rust
Cooling tower	Cross flow	2000		Parts of fillings are lost

11) No.2 Black liquor evaporator(1955)

11) Tross Black inquot via	Peraler(1755)	
Manufacturer		Roca+Rosenblad
Capacity		
Feed black liquor		
Feed rate(t/h)	Design	
Solid(%)	Design	
Temperature(°C)	Design	

Product black liquor

Product rate(t/h)	Design
Solid(%)	Design
Temperature(°C)	Design
Evaporation (t/h)	Design

Specification

)

Ţ

Item	Type	Heating surface (m2)	Damage
No.1A/B effect	Vertical long tube	272+272	
No.2A/B effect	Vertical long tube	282+282	
No.3 effect	Vertical long tube	500	
No.4 effect	Vertical long tube	600	

The machinery and equipment in this area are decrepit.

12) No.3 Black liquor evaporator for batch cooking plant(1964)

Manufacturer	Hitachi Zosen	
Capacity		
Feed black liquor		
Feed rate(t/h)	Design	58.95t/h
Solid(%)	Design	18.0%
Temperature(℃)	Design	
Product black liquor		
Product rate(t/h)	Design	18.95t/h
Solid(%)	Design	58.0%
Temperature(*C)	Design	
Evaporation (t/h)	Design	40.0

Specification Item	Туре	Heating surface (m2)	Damage
No.1 effect	Vertical forced Circulation	430	
No.2 effect	Vertical long tube	485	
No.3 effect	Vertical long tube	485	
No.4 effect	Vertical long tube	525	
No.5 effect	Vertical long tube	525	
Surface condenser	Shell and tube vertical	2-120	

The auxiliary equipment such as pumps are rusted. To be overhauled.

64)

13) Chemical recovery boiler for	or batch cooking plant(196
Manufacturer	Kisha Scizo Kaisha
Capacity	
Black liquor solid	225t/d
Black liquor concentration	56%(cascade inlet)
Black liquor temperature	
Feed water temperature	105°C
Steam temperature	430°C
Steam pressure	42atg
Steam generation	32.41/h
Boiler outlet gas temp.	395°C
Economizer outlet gas temp.	245°C
Cascade outlet gas temp.	130℃
Specifications	
11 and the second second	Dailor propor

Heating surface

"	4044 0
Boiler proper	1041 m2
Water wall	614m2
Secondary superheater	211m2
Primary superheater	529m2
Primary screensuperheater	150m2
Economizer	906m2
.	

Damage

14) Chemical recovery boiler for continuous cooking plant(1983)

Manufacturer	Gotaverken	
Capacity		
Black liquor solid	600t/d	
Black liquor concentration	60%	
Black liquor temperature	95℃	
Feed water temperature	130℃	
Steam temperature	460°C	
Steam pressure	61atg	
Steam generation	86.4t/h	
Boiler outlet gas temp.	405 ° C	
Economizer outlet gas temp.	130°C	
Specifications		
Heating surface	Furnace excluding bottom	592m2
	Superheater enclosure	156m2
	Secondary superheater	660m2
	Primary superheater	740m2
	Primary screensuperheater	150m2
	Screen before boiler bank	90m2
	Boiler bank	1750m2

Economizer

Damage

5150m2

Outside surface of tubes are rusted and scaled.

15) Waste Water Treatment

Manufacturer

Ebara

Capacity

Design

White water 3000m3/h

Black water 1500m3/h

Inlet effluent quality

Outlet quality

Required discharge water quality

SS

80mg/l

TDS

1500mg/l

Dissolved oxygen 4mg/l

BOD₅

7mg/l

рH

6-9

Color & Smell

None

Item	Manufae- turer	Туре	Size	Driving power	Damage
No.1 Settling		Rake	$50 \text{m} \phi \text{x} 3 \text{mD}$	2-	
basin		clarification		1.5kW	
No.2 Settling		Rake	$38 \text{m} \phi x 3 \text{mD}$	1.5kW	
basin		clarification			

The rake and driver should be replaced.

16) Water Intake(1966)

Manufacturer

Ebara

Capacity

3200m3/h

17) Water Intake(1955)

Manufacturer

Wabag-Njemacka

Capacity

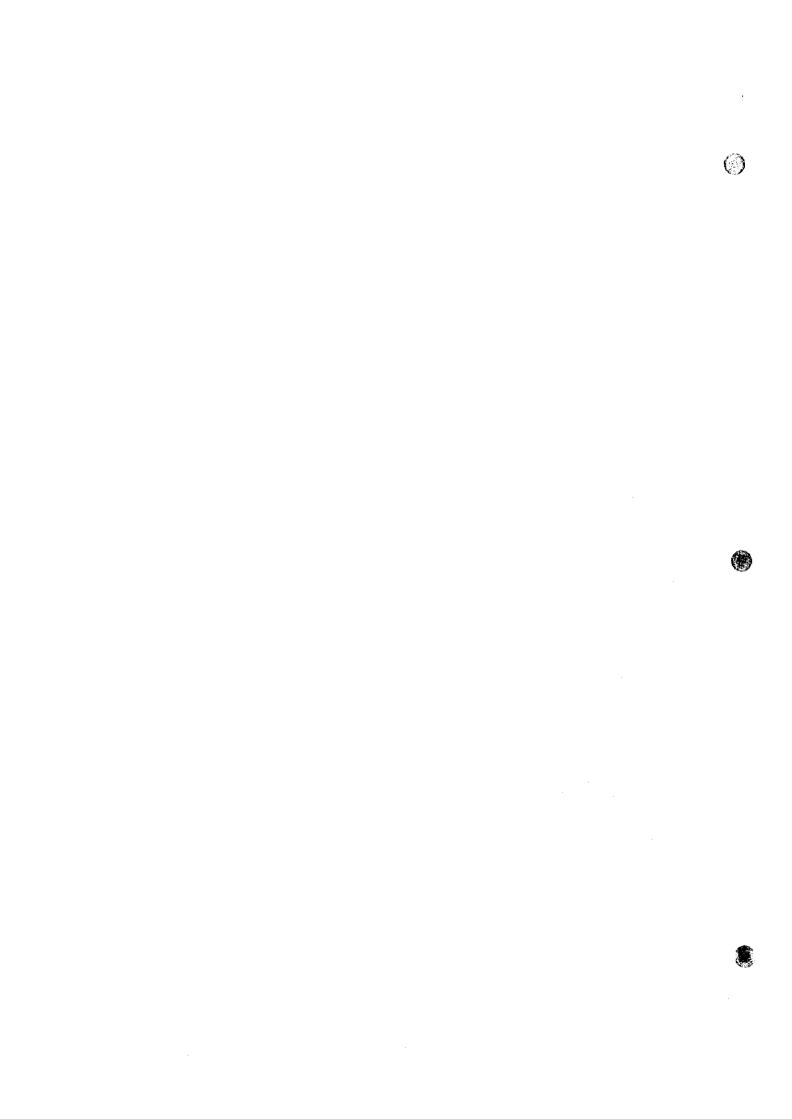
4000m3/h

Note

Working

18) Boiler feedwater(1986)

Manufacturer


VKA-Njemacka

Capacity

2-150m3/h

Note

Working

Ţ

)

1

Raw materials and production scenario, ecxl. PM2

Y Y Y Y
يت نه سه سه سه سه

10,000 01 Corrugated board Corrupated board plant Sack and bag convening plant 200 1/8 4,902 t/a 870 t/a 7,500 1/8 का वटर र Sack paper MG paper Flang Broke Broke Paper mechine 3 Paper machine 1 5,000 Va 10,870 VA Recycled pulp 8,887 Va 1,011 1/8 Kraft pulp 80 % 30 % kraft
30 % kraft
100 % recycled
31 % kinev, 69 % fluting and schrerz
8 % % Recycled their yield Liner top layer Turning composition Corrugated plent broke Sack correcting blent broke Recycled fibre plant Fibre balance, Short Term Programme Purchased Kraft pulp, own MG paper production Vaar 2 Recycled fore 11,109 1/a 4,902 1/8 Sack paper

Appendix 7-I

7- I -2

()

\$ 0 7,000 Va ₩ 2000 X NSSC fluing Schranz Corrupated board plant Sack and bag converting plant 163 (/a 12.392 J/a 3,932 44 8.163.4a 4,275 t/a 1,667 t/a 4.275 VA 300 1/4 3,932 VA ACK DADE Broke Juner Paper machine 2 Paper mechine 3 Paper machine 4 Paper machine 1 7,300 VA \$ 26,932 VB 36,392 Va 9 % 7,300 Va o Va 26,932 Va 22,831 1/8 4,731 VA 14 % schrenz Recycled pulp NSSC pulp Kraft pulp Kraft pulp NSSC pulp 13 % recycled 100 % recycled 29 % fluting NSSC pulp plant Kraft pulp plant 29,831 Va 28,232 Va 80 % 2.3 m3sob 5.4 m3sob 67 % NSSC 0 % NSSC 1 57 % inner. 10 % Fibre balance, Long Tarm Programme, excl. PM2
Purchased kraft pulp, own MG paper production1st half year
Own kraft pulp and NSSC pulp production 2nd half of year Recycled fibre yield
NSSC pulp wad consumption
Nat pulp wood consumption
Fluth goomposition PM1
Sorvenz composition PM2
Corrugated beaud
Corrugated plant broke
Sack converting bloke Recycled fibre plant HW Chips Wood SW chus 5,914 1/4 68,611 m3sot/a 152.451 m3sob/a 3,932 va AL 000.3 Recycled fibre Seck paper HAZOWOOD Sommood Year 3 **SECTION** 2

Appendix 7-I

45 O Act once 7,500 1/2 \$3000 We **★ 41 0000:** NSSC flama MC-paper Schrenz Conugated board plant Sack and bag converting plant \$ \$ 1.400 1/6 3,529 1/6 ... NSSC flusing ... 12,129 1/a 10.204 1/a 300 % 400°0 Schrenz Broke Broke Paper machine 3 Paper machine 1 Paper machine 2 Paper machine 4 7,800 t/a 65,129 Ua ٥ إ 37,904 Va A1.396.18 1 7,800 Va \$ 0 1/8 37,904 t/a 0 1/6 2 % schlenz NSSC pup Recycled pulp Kran pub Kraft pulp 80 % 2.3 m3seb 5.4 m3seb 100 % NSSC 0 % recycled 0 % NSSC 100 % recycled 57 % liner, 43 % liding 15 % s NSSC pulp plant Kraft pulp plant 61,396 Va 45,704 Va Recycled fibre yield NSSC pulp wed consumption Nath pulp wede consumption Fluing composition PM2 Contigued bear Contigued bear Contigued bear Contigued plant broke Sack converting broke Fibre balance, Long Term Programme, excl. PM2 Own kraft pulp and NSSC pulp production Year 4 Recycled fibre plant HW chips SW chas. Wood 141,211 m3sob/a 246,802 m3spb/a 0 Va Recycled fibre HArdwood Softwood dua desir Liber

Appendix 7-1

87. O 8,000 Us MC-paper Schanz Corrupated board plant Sack and bag converting plant 265 1/8 NSSC fluting 15.268 VA 14,820 Ua 300 % 12,965 Va Schrenz Paper machine 2 Paper machine 1 Paper machine 3 Paper machine 4 8,300 1/8 \$ \$ 65,768 1/8 40,965 Va 0 1/4 **4 47 516 09** 8,300 (/8 1 0 1/4 9,0 40,965 t/a 0 % schrenz Kraft pulp Recycled pulp Kreft pruto Kraft pulp 80 % \$2.5 m3sob \$3.4 m3sob \$4.4 m3sob \$4.4 m3sob \$4.8 mssc \$4.4 ms NSSC pulp plant Kraft pulp plant 50,915 Va 49.265 Va Fecycled they yield NSSC pulp wod consumption NSSC pulp wod consumption National Composition PM1 Scruerz composition PM2 Corrugated pulps and Corrugated plant broke Sack converting broke Fibre balance, Long Term Programme, excl. PM2 Own kraft pulp and NSSC pulp production Year 5 Recycled fibre plant HW chips Wood 0.10 140,104 m3sob/a 200,033 m3sobla Recycled fibre Softwood Stant Carls 1961

Appendix 7-I

4A 0 8,400 1/4 ₩ 000 0S sord boo sales NSSC ficing Screnz Conngeted board plant Sack and beg converting plant 16,327 1/8 19.407 t/a 0 (/a 327 1/0 18,240 1/6 5,647 1/0 NSSC Busing 400 47 15,927 VA Schrenz Broke Broke Paper machine 3 Paper mechine 1 Paper machine 2 Paper machine 4 69,407 Va \$ \$ 8,800 1/8 46,927 Va 8,800 1/a \$ 9/ 46,927 Va o Va 4) 55450 Recycled pulp Kraft pulp Kraft pulp Kraft pulp NSSC pud 80 % 2.0 m3seb 5.4 m3seb 100 % NSSC 0 % recycled 0 % NSSC 100 % recycled 57 % line; 43 % fluting 15 % NSSC pulp plant Kraft pulp plant 55,727 Va 63,433 Va Recycled three yield NASC pulp wad consumption Kraft pulp wood consumption Flung composition PM2 Schvarz composition PM2 Corrugated beat with the Section PM2 Corrugated beat Section PM2 Section PM2 Corrugated beat plant broke Section convering broke Fibre balance, Long Term Programme, excl. PM2 Own kraft pulp and NSSC pulp production Year 6 Recycled fibre plant HW Chips SW_Chips Wood **♣** 6) (0 145,897 m3sob/a 300 923 m3sab/a Recycled fibre Hardwood Kraft pulp Ž

()

O % schenz

7- I -6

Appendix 7-I

3 * E1 000 #1 50,000 t/a NSSC fluing MG-paper Scherz Corrupated board plant Sack and bag converting plant 367 1/8 5 18.367 Ua 19,950 1/4 21 225 1/a 6,175 VA 500 % 17,867 Va Sack paper Solvenz Sroke Paper machine 3 Paper machine 2 Paper machine 4 Paper machine 1 8,900 Va \$ \$ 52,867 Va 71,226 1/4 52,867 t/a 8,900 t/a 0 1/8 0 1/8 **₹**20 AL CRO DA 0 % schrenz Recycled pulp Kreft pulp Kraft Pulp Kraft pulp ANS C PURP 80 % 3880 2.3 m380b 5.4 m380b 100 % n8SC 0 % necycled 0 % NSSC 100 % recycled 57 % lines, 43 % fluding 15 % 12 % NSSC pulp plant Kraft pulp plant 61,767 Va 64,683 Va Recycled fibre yield
NSSC pulp wod consumption
Kraft pulp wood consumption
Fluing composition PWI
Scrverz composition PWZ Recycled fibre plant Fibre balance, Long Yern Programme, excl. PM2 Own kraft pulp and NSSC pulp production Year 7 Corrugated board Corrugating plant broke Sack converting broke SW Chibs HW chips Wood 148,770 m3sob's 0 Va 333 544 m3sob/a Harlowood die of the A Schwood 2

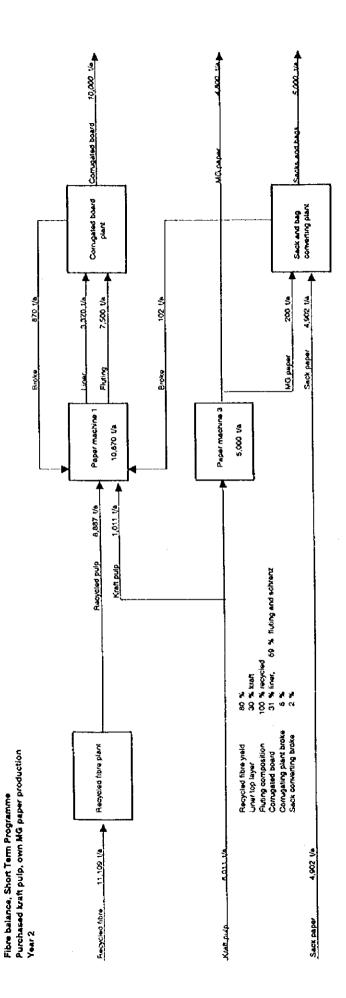
Appendix 7-1

8,400 Va 50 ₩ 0000 CS ₩ 000 cz Sacks and bags NSSC fluing MG-paper Schrenz Compated board plant Sack and bag converting plant 408 1/8 6.705 Va NSSC TURING 23.046 1/a 20.408 1/8 21,660 1/4 600 Va 19,808 VA Schenz Broke Broke è Paper machine 3 Paper machine 4 Paper machine 2 Paper machine 1 o t/a 9,000 Va 55,808 Va 73,046 1/8 8/1 000°6 56,808 1/8 \$ AV 500 20 0 t/e \$ \$ 0 % schrenz NSSC pulp Recycled pulp Kraft pulp Kraft pulp Kraft pulp NSSC purp 80 % 2.3 m3seb 5.4 m3seb 100 % NSSC 0 % recycled 0 % NSSC 100 % recycled 57 % liner, 43 % fidina 15 % % % NSSC pulp plant Kraft pwp plani 65,808 t/a 65,932 Va Recycled fibre yield NSSC pulp wad consumption Keth pulp wood consumption Furing composition PMI Schenz composition PMZ Corregated beard Corregated plant broke Sack conventing broke Fibre balance, Long Term Programme, excl. PM2 Own kraft pulp and NSSC pulp production Vear Band onwards Recycled fibre plant W Chos SW chips Wood Pandling 151,643 m3sot/a 67.0 355.364 m3sob/a Hardwood Softwood ACATE AND è

()

Appendix 7-1

Appendix 7-1

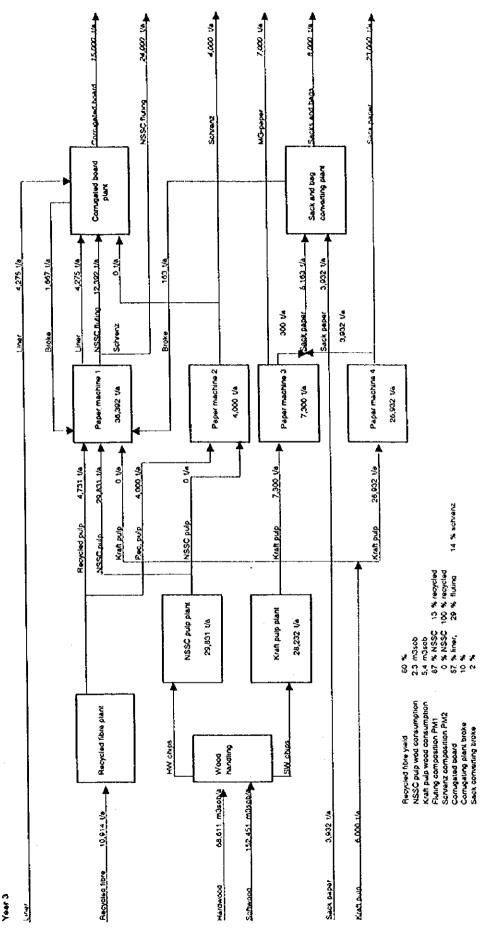

T

Ĵ

1

Raw materials and production scenario incl. PM2

11 12	27,050 27,050 149,895 149,895 355,364 355,364 11,780 11,780	65,172 65,172 65,808 65,808 72,286 72,286 21,640 21,640 9,000 9,000 56,808 56,808	38,000 50,000 11,000 11,000 8,400 20,000 27,000 37,000	164,400 164,400
6	27,050 149,895 355,364 11,780	65,172 65,808 72,286 21,640 9,000 56,808	38,000 50,000 11,000 8,400 20,000 37,000	164,400
თ	27,050 149,895 355,364 11,780	65,172 65,808 72,286 21,640 9,000 56,808	38,000 50,000 11,000 20,000 37,000	164,400
හ	27,050 149,895 355,364 11,780	65,172 65,808 72,286 21,640 9,000 56,808	38,000 50,000 11,000 20,000 37,000	164,400
7	26,000 147,160 333,544 10,850	63,983 61,767 70,526 20,800 8,900 52,867	35,000 50,000 11,000 18,000 35,000	157,400
ဖ	22,450 144,425 300,923 9,920	62,793 55,727 68,767 17,960 8,800 46,927	32,000 50,000 9,000 8,400 16,000 31,000	146,400
ις	16,600 138,908 266,033 8,060	60,395 49,265 65,248 13,280 8,300 40,965	26,000 50,000 6,000 13,000 28,000	131,000
4	13,250 140,291 246,802 6,200	60,996 45,704 64,729 10,600 7,800 37,904	20,000 53,000 5,000 7,500 10,000 28,000	123,500
ო	10,914 68,611 152,451 4,275 3,932 6,000	29,831 28,232 36,392 4,000 7,300 26,932	15,000 24,000 4,000 7,000 8,000 23,000	81,000
0	11,109	10,870	10,000 4,800 5,000	19,800
Year 1				
	m3sob m3sob t t t	ğğ++++	مو من مو مو سو من	
	Raw materials Recycled fibre Hardwood Softwood Testliner Sack paper Kraft pulp	Department production NSSC pulping Kraft pulping PM1 PM2 PM3	Sales production Corrugated board NSSC fluting Schrenz MG paper Sacs and bags Sack paper	Total sales



()

()

Appendix 7-1

Fibre balance, Long Yerm Programma, Incl. PM2
Purchased kraft pulp, own MG paper production1st half year
Own kraft pulp and NSSC pulp production 2nd half of year

5,000 Ua 7.500 Ua **★ 21. 000 01** \$ 0000 NSSC fluing MG-paper Conngated board plant Sack and bag converting plant 5,600 1/8 204 (% 10.204 Va 6,200 1/a NSSC fluing 11,722 Va 300 t/a 0,904 Va Schrenz Broke Broke Paper machine 2 Paper machine 3 Paper machine 1 Paper machine 4 7,800 1/8 37,904 Va 64,729 1/8 10,600 t/a 7,800 Va 37,904 t/a A), 099,00 **5** 0 0 % 10,600 t/a 28 % schrenz NSSC pulp Recycled pulp Kraft pulp Kraft pulp 80 % Sec. 2.5 m3sob 2.5 m3sob 100 % m3sob 100 % m3soc 0 % recycled 0 % nSSC 100 % recycled 0 % msc 110 % finding 15 % 2 % NSSC pulp plant Kraft pulp plant 45,704 1/4 00.996 Va Recycled thee visid NaSSC pulp wood consumption Knast pulp wood consumption Fluing composition PMI Sorverz composition PMZ Corregated beaut Corregated plant broke Sack converting broke Fibre balance, Long Term Programme, incl. PM2 Own kraft pulp and NSSC pulp production Year 4 Recycled fibre plant HW Chips Wood 19,250 1/a 140,291 m3sob/a 246.802 m3sob/a Fecycled fibre MAYOWOOD Kranana Softwood è

()

Appendix 7-I

8,000 Va 6,000 44 \$0,000 Us NSSC flam MCpaper Schorz Conngated board plant Sack and bag converting plant NSSC fluing 15.248 t/a 265 1/8 7.280 t/a 13.265 t/a 300 % 12,965 Va Schrenz Broke Paper machine 1 Paper machine 2 Paper mechine 3 Paper machine 4 8,300 Va 65.248 Va 13,280 Va 40,965 1/8 ₩ 80 385.00 0 Va 40,965 Va o Va \$ 0 13,280 t/s 8,300 1/8 28 % schrenz VSSC pulp Recycled pulp Kraft pulp Kraft pulp NSSC put 2.3 m3sob 5.4 m3sob 100 % N5SC 0 % recycled 0 % NSSC 100 % recycled 0.1 % liver, 4.1 % fluxing 15 % liver, 4.1 % fluxing NSSC pulp plant Kraft pulp plant 60,395 Va 49,265 Va Racycled flore yield NSSC pulp wad consumption Fluth pulp wood consumption Fluth acomposition PMI Schwarz composition PMI Corregated back Corregated plant poles Sack convening broke Fibre balance, Long Term Programme, incl. PM2 Own kraft pulp and NSSC pulp production Year 5 Recycled fibre plant HW chips Wood 16,600 VA 138,908 m3sob/s 266.033 m3sob/s Recycled fibre HANDWOOD Softwood Xcan park Š

Appendix 7-1

₩ 000°0 8,400 1/4 ₩h 000 05 41. DOD 31. Schenz Corrugated board plant Sack and beg conventing plant 327 1/6 8,960 t/a 61.000 400 V 15,927 Va Broke Paper machine 2 Paper machine 3 Paper mechine 1 Paper machine 4 8,800 Va 17,980 VA 46,927 VA 68,767 44 0 Va 8,600 1/8 0 1/2 **5** 46,927 1/8 a) 562 CD 17.980 1/8 28 % schrenz Recycled pulp Kraft pulp Kraft pulp ANSSC PLAN 80 % 330b 2.3 m3sob 5.4 m3sob 100 % recycled 100 % NSSC 100 % recycled 0 % NSSC 100 % recycled 31 % frains, 41 % fluting 15 % 2 % NSSC pulp plant Kraft pulp plant 62,793 Va 55,727 VA Recycled fibre yield
NSSC pulp wod consumption
Ket hulp wood consumption
Fluing composition PMZ
Schrenz composition PMZ
Corrugated board
Gorrugated plant broke
Sect convening broke Fibre balance, Long Term Programme, incl. PM2 Own kraft pulp and NSSC pulp production Year 6 Recycled fibre plant HW chaps Wood handling SW chos 22,450 1/a 144,425 m350b/a \$00 923 m3sob/a MAZGWOOD 3

()

Appendix 7-I

11,000 11 8.400 Va NSSC PLANO MC-paper Schonz Corrupated board plant Sack and bag converting plant 367 1/8 18.367 1/8 10,850 1/8 NSSC fluing 20 526 1/a 9,800 t/a 6,176 Va \$ 905 17,867 1/4 Schenz Broke Paper machine 2 Paper mechine 3 Paper machine 1 Paper machine 4 8,900 th 52,867 Va 20,800 Va 70,526 VA ₩ W C85 CV Kraft pulp 52,867 Va 0 1/8 8,900 1/8 0 1/8 0 1/4 20,800 1/a 28 % schrenz NSSC pulp Kraft pulp Recycled pulp Kraft pulp Rec. pulp 80 % 2.9 m3seb 5.4 m3seb 100 % NSSC 0 % recycled 0 % NSSC 100 % recycled 31 % liner, 41 % fluting 15 % NSSC pulp plant Kraft pulp plant 61,767 1/4 63,983 Va Recycled hore yaild NSSC pup wad consumption NSSC pup wood consumption Fluing composition PM1 Schreaz composition PM2 Corrugated board Corrugating plant broke Sack converting broke Recycled fibre plant Fibre balance, Long Term Programme, incl. PM2 Own kraft pulp and NSSC pulp production Year 7 HW chips Wood 26,000 Va 147,160 m3sob/a 333,544 m3sob/a Hardwood Softwood Kraft guid

1

Appendix 7-1

Ž

I

NSSC fland MC-p-per Servera Corrugated board Sack and bag corwering plant plend 10,540 1/8 408 % 6,706 t/a NSSC fluing 22286 1/4 47 000 Va 19,808 1/8 SACK DAPPE. Schrenz Broke ě Broke Paper machine 3 Paper machine 2 Paper machine 4 Paper machine 1 72,286 1/8 9,000 (4 56,808 1/4 21,640 Va e/1 000 6 0 1/8 56,808 1/a 0 1/8 \$ 21,040 1/8 85.172.1/8 28 % schrenz NSSC pulp Kraft pulp Recycled pulp Kreft purp NSSC pudp 60 %
2.3 m3seb
5.4 m3seb
5.4 m3seb
100 % NSSC
0 % recycled
0 % NSSC 100 % recycled
51 % liner, 41 % fluxing
15 % NSSC pulp plant Kraft pulp plant 65,172 Va 65,808 Va Recycled fibre yield NSSC pulp woo consumption Kraft pulp wood consumption Fully composition PM? Schverz composition PM? Convasted beard? Fibre balance, Long Term Programme, incl. PM2 Own traft pulp and NSSC pulp production Year & and onwards Recycled fibre plant HW CNDS Wood SW chips Recycled flore 27,050 (/a 149,895 m3sob/a 355,364_m3sob/s Softwood Hardwood 2

11,000 Us

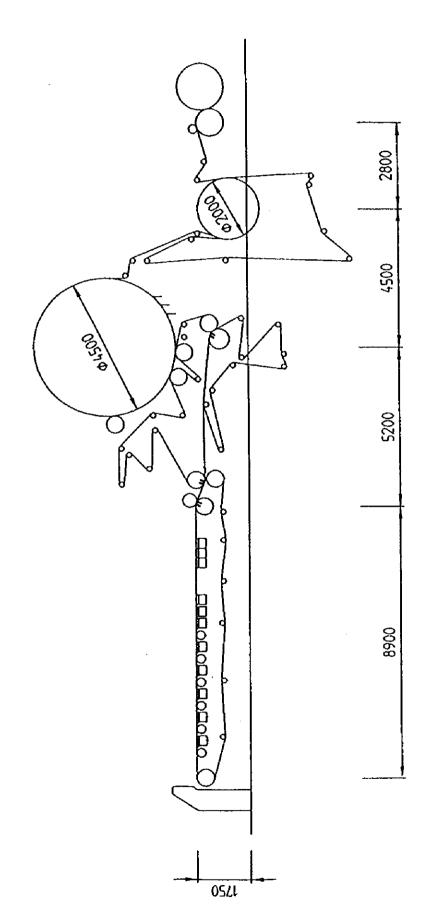
\$0.000 Va

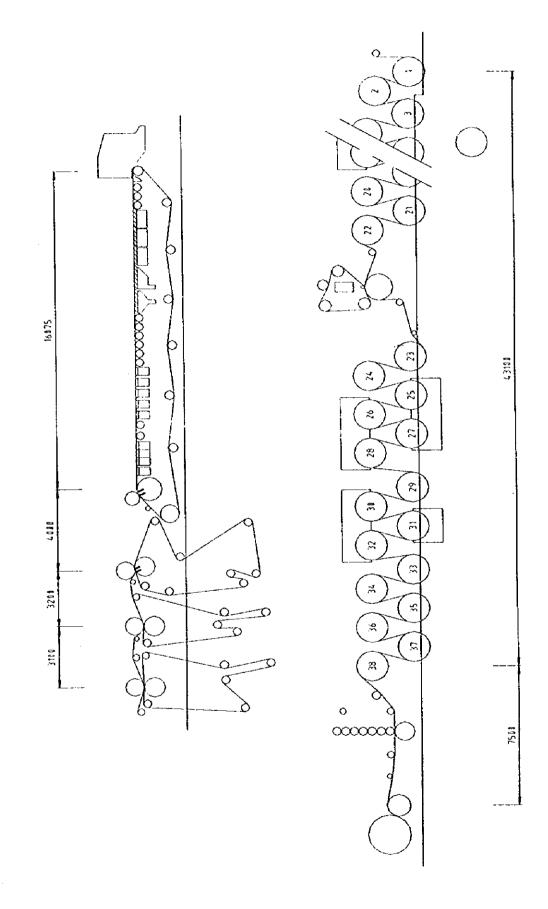
8,400 Vs

()

7- I -16

Appendix 7-I


Paper Machine 1 Trim Max 4258 mm Speed Max 358 m/min


)

ISBL

Appendix 7-II

Paper Machine 3 Trim Max 2860 mm Speed Max 250 m/min

Paper Machine 4 Trim Max 5450 mm Speed Max 400 m/min NATRON Magia)

Paper Mill

Design Criteria

				PVI	PVZ	PW3	PM4
				Fluting SCP	Schrenz	MG	Sack kraft
		····		1 200			M/Sil
APER PRODUCTION							
asis weights;							
paper at reeler			g/m2	120	140	5 C	90
ny contents:			%	1 4		94	93
paper at reeler			76 %	94 94	94 94	88	9:
after prednying group			ï•	9.1	37	~	
M Speeds:							
construction speed			സ്ത്വര	350	350	250	40
driv a speed			m/min	350	350	250	40
production speed	on the reel	max	m/min	335	120	175	29
	on the reel	ava	സ്തിര	330	115	170	23
	on the wire	avg	ന/ന റ	ì	1	ŧ	
4.6.00	csebit-à	avo					
Vidths:			በ ህዝ	4 500	3.800	3 150	6 00
wire web on wire			ന്ന	1 2 300	3 000	3 .50	500
				4 380	3 360		577
web to press web at PM reefer			mm mm	4 250	3 250	2 860	5 45
			തന തന	1 4250	2 5 20	2 000	J 40
web after winder, max				6 100	1.050	2 700	5 20
web after winder, average			mm 	1 6100	3 050	2 700	3 20
trim after sheeting, average			(DID)	1]		
Available time			d/a	350	350	350	34
Time efficiency					İ	<u>-</u>	
PM shut downs				İ	1 1	ł	
operational	of available time		*	3.0	3.0	3.0	3
maintenance, planned	of available time		*	1.0	1.0	20	2
maintenance, unplanned	of available time		*	1.0	1.0	1.0	1
PM web breaks	of running time		**	3.0	4.0	3.0	3
Other time losses	of running time		**	2.6	2.0	{0.1	
Total time efficiency			%	90.0	83.3	90.2	90
Material efficiency in roll production							
Trim loss on winder	of max, width after	r winder	%	3.1	5 6.4	5.8	
Other loss PM-shipping rolls	of paper on PM re		*	10	1		:
Total material efficiency in roll or			*	95.		1 1	9
Total efficiency in rolf production			%	85.	2 81.0	ar.a	8
			<u> </u>				
Total efficiency			7.	a6	2) 81.0	8.18	8
Paper machine and winder production					1		
Design production, an reeler with	n mast, operating speed		٧d	24	1	•	1
Momentary production on recier	with average speed		Vd	24	·2 7:		
Avg. production on reeler			٧d	21	1	•	
Avg. production of rolls after win	der		Vđ	20	9 6	1 34	
Sales production, average						1	
roffs			थव	20	9 6	1 34	1
sheets			Vd	1	0	0 0	·[
içtai			Vd	20	9 60	34	1
1						ł	
Sales production, and packing, ann	(id)						
Sales production, and packing, annual	()OI		٧s	731	13 21 43	18 12 024	t) 58
I .	i i a		Vs Va	731	13 24 43	0 12 024	58

)

NATRON Magtaj Paper Mill

Ossign Criteria

				PUI	PM2	eus l	244
			}	Flutag	Schrenz	NG NG	Sack
				SCP	Schenz	νu.	Wait
2							
RYING CAPACITY AND ENERG	BY CONSUMPTION FOR DR	YING				1	
kry contents:					Ī		
af re ci er			**	94	94	94	93
before afferdrying			* 1	94	94	68	93
paper after press part			%	37	37	36.5	31
Yater evaporation	- 10						
predryer section			g/m2	185	215	90.4	136
afterdryer section (from surface	e size or coating colour)		g/m2	0.0	0.0	4.1	
Nater evaporation, max, operating	speed					1	
prednyer section			kg/h	15 792	\$ 062	2715	12.9
afterdryer section or coater			kg/h	0	0	123	
Spec, drying rate:							
prednyer cytinders			kgH2O/m2/h	15	15	70	
after dryer or coater cylinders			kgH2O/m2/h			3	
Steam pressure for drying max.			bar(e)	3.0	1 I	4.0	12
Enthalphy difference (steam-kond))		G-Ns	2.36	2.36	2.36	2.4
Energy requirement in drying]		
cylinders			GIVHSO	3.3	3.3	3.5	4
Oryer cyfinders				 			
diameter, predryers			m	1.5	i] 1.5	4.5	
diameter, afterdryers			m		1	2.0	İ
required number	predryers		pcs	45	22	L	,
	alterdryers		pcs .			0,9	
actual number	predryers		pcs	4	5 23	1	
İ	afferdryers		pes			1.0	
Steam demand, max, operating s	peed			<u> </u>		 	
predrying cylinders			v 5	2	2 7	·	
afterdrying cylinders			٧'n		1	0	1
other steam consumption in a	paper mill		t/h	1	6 2		ļ
total continuous, max, operat	ing speed		٧h	2	8 9	5	}
Peak demand	(on top of avg	25 %)	የ ሴ	3	.5 11	7	
Steam demand, average operation	ng speed		۲h	2	8	5	1
Spec, steam consumption per ne	t ton of saleable paper		Vt paper net	3.	2 3.4	ɪ} 3.a	1
Spec, heat consumption per net t	on of caleable names		GJA paper net	1 2	.5 8,0	ol 90	ł

Natron Maglaj dd

Compairson Clupak paper properties Natron perwar quality level.	saper prope r level.	eries		Natron		Dunapac	pac	Scan.standard	ndard
Grammage Tensile Index Tensile Index	Gr/m2 Nm/g Nm/g	Q Q Q D	70 59 35	80 57 32	90 26 26	80 84 33 83	90 48 33	80 70 50	20 20
Stretch at break Stretch at break	% %	Q Q	ဖဖ	မ မ	တ်တ	6.5	6.5	5.5 8	5.5 7.5
Tensile Energy Abs. Tensile Energy Abs.	J/m2 J/m2	Q Q	150 120	170	180	168	190 160	200	225 250
Air resistance	Sek.		30	တ္တ	30	58	28	70	20

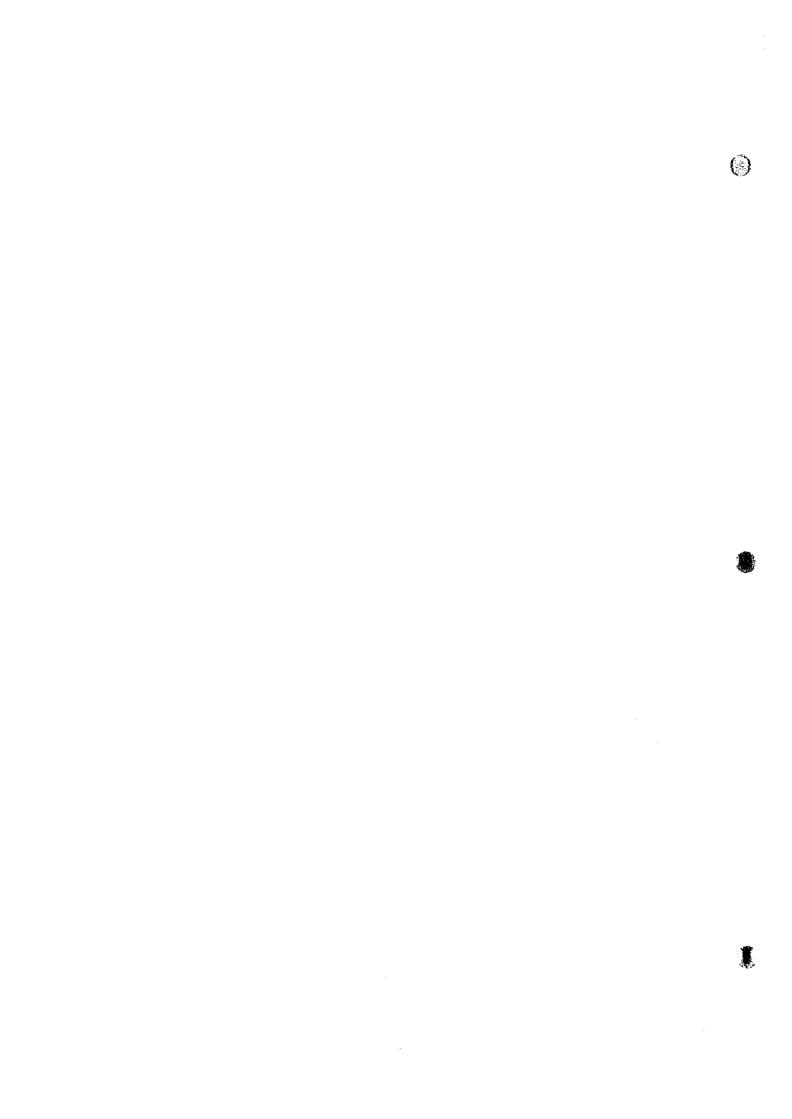
Appendix 7-III Laboratory report Paper properties

Paper properu	ics		PM1	PM3	PM4
					• • • • •
Grammage		gr/m2	*	*	*
Tensile MD		kN/m	*	*	*
Tensile CD		kn./m	*	*	*
Ratio MD/CD)	%	*	*	*
Stretch MD		%		*	*
Stretch MD		%		*	*
TEA MD		J/m2			*
TEA CD		J/m2			*
Tear index	MD	Nm/kg			*
Tear index	CD	Nm/kg			*
Gurley		s	*	*	*
Cobb 60		gr/m2	*	*	*
Wet strength		%			* -
RCT index	MD		*		
RCT index	CD		*		
CCT index	CD				
Burst index		MN/kg	*		
CMT		N	*		
Moisture		%	*	*	*

Each Paper machine need to have a separate Paper properties form.

Appendix 7-III

Paper machine targets and reports.


		PM1	PM 3	PM4
Paper grade		*	*	*
. •				
Kraft pulp	%	_	*	*
Semi chemical pulp	%	*		
Broke	%	*	*	*
HC Refining	KWl√t			*
Conc.	%			*
LC Refining	KWh/t	*	*	*
Cone.	%	*	*	*
Beating degree	SR	*	*	*
Size	kg/t		*	*
Starch	kg/t		*	*
Alum	kg/t		*	*
Wet strength	kg/t		*	*
-				+ 4
Stuff box conc.	%	*	*	· And Annual Control
Stuff box	SR	*	*	*
Stuff box	рĦ	*	*	♥
Grammage valve	%	*	*	*
Head box conc.	%	*	*	•
Head box slice	mm	*	*	*
Total head	mm	*	*	*
Jet/wire ratio	%	*	*	*
White water	pН	*	*	*
White water conc.	%	*	*	*
Speed wire	m/min	*	*	*
Speed rector	m/min	*	*	*
•				
Press 1	kN/m	*	*	*
Press 2	kN/m	*	*	*
Press 3	kN/m	*	*	*
Clupak steam pressure	kPa			*
Beam pressurek	N/m			*
Clupak speed difference	%			*
Dry content Clupak	%			*
Yankee steam kPa		*		
Hood steam	kPa		*	
Recirk. Hood			*	

Appendix 7-HI

9

Paper machine production report

Date Shift		Year month day Shift No.
Paper grade		artu?
Grammage		gr/m²
Production rate Actua	1	t/h
Production rate Targe	ŧ	t/h
Speed reeler		n/min
Lost production time / b	oreaks	
Grade change	min	Cause
Wire	min	Cause
Press	min	Cause
Dryer	min	Cause
Clupak	min	Cause
Reeler	min	Cause
Lost production / sub q	uality	
Paper Machine	ton	Cause
Winder	ton	Cause
Lab control	ton	Cause

1

7-IV Preliminary manning list

The manning list in the next few pages follows the new overall organsation structure proposed by Natron management. Because the purpose this list is only to estimate the total number of personnel needed for operating the mill, some common functions Production and Technical Division have been combined under same headings, and some other simplifications have been made.

All the existing facilities excluding PM2, and PM5 are expected to be in normal contir operation including wood handling, two pulping lines, chemicals recovery, four paper machines and the converting plants.

Proposed organisation structure

General Manager ans secretary	7
Production and Technical Division	
Common	81
Pulp and Paper Sector	
Wood handling and Pulp Mill	239
Paper Mill	172
Sack and Bag Production Sector	133
Corrugated Board Sector	117
Maintenance Sector	362
Independent Expertise Division	8
Common Administrative Division	
Common	12
Marketing Sector	15
Development Sector	18
Economy Sector	12
Personnel Administration Sector	28
All total	1,204

Preliminary manning list	Working she shifts/dayays,			nning otal
General Manager				1
Secretary and Administration Total			<u> </u>	<u>6</u> 7
Production and Technical Division				
Common				
Assistant for General Manager	1	5		1
Sector Manager	1	5		4
Quality control	1	5		30
Quality control	3	7	4	16
Marketing and sales	1	5		10
Accounting	1	5		8
Personnel	1	5		6
Secretary	1	5		3
Office	1	5		3
Total common				81
1 Pulp and Paper Production Sector				
Wood handling and pulp mill				
Superintendent	1	5		. 1
Foremen	_			
1 01011011	1	5		3
	1 3	5 7	3	3 12
Foremen Office	-		3	
Foremen	3	7	3	12
Foremen Office	3	7	3 15	12
Foremen Office Labour Wood yard	3 1	7 5		12 3
Foremen Office Labour	3 1 3	7 5 7	15	12 3 60
Foremen Office Labour Wood yard Digesting plant Evaporator	3 1 3 3	7 5 7 7	15 6	12 3 60 24
Foremen Office Labour Wood yard Digesting plant	3 1 3 3 3	7 5 7 7	15 6 3	12 3 60 24 12
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler	3 1 3 3 3 3	7 5 7 7 7	15 6 3 5	12 3 60 24 12 20
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler Recaustisising	3 1 3 3 3 3	7 5 7 7 7 7	15 6 3 5 4 4	12 3 60 24 12 20 16
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler Recaustisising Lime kiln	3 1 3 3 3 3 3	7 5 7 7 7 7 7	15 6 3 5 4 4 2 5	12 3 60 24 12 20 16 16
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler Recaustisising Lime kiln Crude oil production	3 1 3 3 3 3 3 3	7 5 7 7 7 7 7 7	15 6 3 5 4 4 2 5	12 3 60 24 12 20 16 16 8
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler Recaustisising Lime kiln Crude oil production Coal boiler plant	3 1 3 3 3 3 3 3 3	7 5 7 7 7 7 7 7	15 6 3 5 4 4 2 5 2	12 3 60 24 12 20 16 16 8 20 8
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler Recaustisising Lime kiln Crude oil production Coal boiler plant Turbine hall	3 3 3 3 3 3 3 3 3	7 5 7 7 7 7 7 7 7	15 6 3 5 4 4 2 5	12 3 60 24 12 20 16 16 8 20 8 8
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler Recaustisising Lime kiln Crude oil production Coal boiler plant Turbine hall Fresh water treatment	3 3 3 3 3 3 3 3 3	7 5 7 7 7 7 7 7 7 7 7	15 6 3 5 4 4 2 5 2	12 3 60 24 12 20 16 16 8 20 8 8 4 4
Foremen Office Labour Wood yard Digesting plant Evaporator Recovery boiler Recaustisising Lime kiln Crude oil production Coal boiler plant Turbine hall Fresh water treatment Effluent treatment	3 3 3 3 3 3 3 3 3	7 5 7 7 7 7 7 7 7 7	15 6 3 5 4 4 2 5 2	12 3 60 24 12 20 16 16 8 20 8 8

Total PM3

Preliminary manning list Working sheduleManningManning shifts/davays/wee in shift total Paper mill PM₁ Superintendent (PM1, PM3) Foremen Office Labour Broke handling 8. Stock preparation Paper machine Winder Packing Paper storing Dispatching Cleaners Reserve and dayworkers Total PM1 Core manufacturing РМ3 Superintendent Foremen Labour Stock preparation Paper machine Winder and packing Paper storing Dispatching Cleaners Reserve and dayworkers

Preliminary manning list	Working shifts/day	sheduleM ays/wee ii		anning total
PM4				
Superintendent	1	5		1
Foremen	3	7	1	4
Office	1	5		2
Labour				
Stock preparation	3	7	1	4
Paper machine	3	7	4	16
Winder	3	7	3	12
Packing	3	7	3	12
Paper storing	3	7	1	4
Dispatching	2	5	·	2
Cleaners	1	5		- 1
	1	5		5
Reserve and dayworkers Total PM4	•	J	•	63
Total paper mill				172
2 Sack and Bag Production Sector				
Sector Leader				
Superintendent	1	5		1
Foremen	2		1	
Office	1			2 2
Labour	•			
Operators	2	5	41	82
Material handling	2		2	4
Packaging	2		- 3	6
	2		8	16
Sorting Cleaners	2		2	4
	1		_	6
Storing and dispatch	· •			10
Dayworkers and reserve				133
Total sack and bag production	piani			100
3 Corrugated Board Production Se	ctor			
Sector Leader		1 5		1
Superintendent		1 5		1
Sales and customer service		1 5		10
Production planning		1 5		3
Accounting		1 5		2
Foremen		3 5		6
Office		1 5		2
Labour				_
Corrugators		3 5	10	30
Box making		3 5		
		3 5		
Materials handling		1 5		2
Cleaners			10	
Dayworkers and reserve			, ,	117
Total corrugated box plant				117

Preliminary manning list	Working shedulcManningMannin shifts/da!ays/wee in shift total				
4 Maintenance Sector	snins/dayay	s/wee in	211111	totea	
Sector Leader	1	5		1	
Secretary	1	5		1	
Procurement	1	5		1	
Sales	1	5		2	
Engineers	1	5		4	
Foremen	1	5		10	
Work planning	1	5		4	
Accounting	1	5		4	
Office	1	5		4	
Labour					
Mechanical maintenance	1	5		170	
Mechanical maintenance	3	7	8	32	
Electrical maintenance	1	5	8	40	
Electrical maintenance	3	7	2	8	
Instrument maintenance	1	5		30	
Instrument maintenance	3	7	2	8	
Civil works	1	5		30	
Civil works	3	7	2	8	
Road, garden maintenance	1	5	_	5	
Total maintenance sector				362	
Independent Expertise Division					
Common				_	
Assistant for General Manager	1	5		1	
Secretary	1	5		1	
Office	1	5		<u>6</u> 8	
Total common				8	

Preliminary manning list	Working she		-	-
Common Administrative Division	shifts/da/ays/	wee III Shii	i ioi	aı
Common				
Assistant for General Manager	1	5		1
Secretary	1	5		5
Office	1	5		6
Total common	·			12
1 Marketing Sector				
Sector Leader	i	5		1
Export marketing	1	5		6
Domestic marketing	1	5		4
Transport	1	5	,	4
Total marketing sector				15
2 Development Sector				
Sector Leader	1	5	. *	1
Product Development	1	5		4
Investment planning	1	5		4
Engineering	1	5		6
Information System Developmer	nt 1	5		3
Total development sector		. :		18
3 Economy Sector		•		
Sector Leader	1	5		4
Finance	1	5		2
Accounting	1	5	•	4
Budgeting	1	5		<u>2</u> 12
Toal economy sector				12
4 Personnel Administration Sector				
Sector Leader				1
Lawyer				1
Public relations				1
Human resource development,		_		3 1
Fire fighting	1	5		
Fire fighting	3	7	2	8 1
Security	1	5	^	-
Security	3	7 5	2	8 2
Safety	1	5		2
Recruiting				28
Total personnel administration sect	or			20
Total Common Administrative Division			-	<u>85</u>
All total			1	,204

Appendix 7-V IN-HOUSE TRAINING AND EDUCATIONAL INVESTMENT

The Natron Mill is facing the new environment of the market economy after decades within the planned economy system. This together with the proposed new technology to be introduced will require substantial training of all staff of the mill, top management included. The presentation below describes in general terms the areas to be covered by such a training programme. The training programme will have to be implemented with a top to bottom approach, meaning firstly engage the General Manager and the top management to fully accept and support the new management principles of the company.

Top Management Training

1

The objective of the top management training is to develop the understanding on how an efficient organisation works within a market economy with distributed authority. Areas to be covered within this programme are:

Modern organisation systems such as profit centre organisation where full authority is delegated profit centre managers.

- The role and function of the marketing and sales organisation of the different profit centres.
 Presentation on how the company representative out in the field works.
- Present modern financial accounting systems to be able to monitor the financial performance of each individual profit centre.
- Develop the principles of product costing systems to evaluate the profitability of each individual paper grade at each basis weight as well as the profitability of each individual corrugated box, paper sack, customer and sales representative.

Middle Management Organisation Training

The objective of middle management training is to both develop their managerial skills as leaders of team to continuously improve the performance of the department within their responsibility. These managers will also have to be developed to achieve the understanding on how to operate an organisation with distributed authority and how to work towards financial goals. Areas to be covered are:

- Principles and objectives of a decentralised profit centre organisation.
- Cost accounting principles with product costing as above.

Training on how to motivate subordinates to support the process of change within the organisation.

- Computer training to work with modern word processors and spread-sheet programmes.
- Training for modern computerised order administration and production planning programmes.
- Training for modern computerised maintenance planning programme.

Middle Management and Operators Technical Training

The modernisation of the Natron mill will result in new technologies as well as new methodology and principles on how the mill should be operated. This will primarily cover areas where "new" technology will be introduced:

- Kamyr Digester pulp line for the production of Semi-Chemical pulp.
- Training in the principles of operating a super concentrator.
- Training programme of modern papermaking applicable to the new production concept.
- Paper testing and quality control with reference to new paper qualities to be produced
- Training of corrugated board production in a modern market economy, particularly with respect to customer service and flexibility in operation.
- General operators training to be introduced to the new production concept.

Management programme should be planned and executed by professionals with a background from market economies and with experience from similar programmes in eastern Europe. Technical training programme will be related to the new technology to be introduced. The total cost of this programme is estimated to DEM 800,000.

Appendix 8-1 Investment and maintenance costs divided per area.

The wood yard restoration program will require DM 2,7 million before start up. This is primarily to execute maintenance work. Late on in year 7-9 additional investments in primarily a new wood handling system with a new bark drum will be required with a total cost of DM 40 million.

To prepare the Kanlyr line for semi-chemical pulp production an total investment of DM 3.2 million will be required. And DM 3.7 million for the Kamyr recovery section plus DM 6.2 million for Gotaverken recovery boiler. The batch digester line will be refurbished and expanded at a total cost of DM 2.1 million. And in year 6 - 7, a cold blow system is to be built.

The power plant needs maintenance work and overhaul of one generator at a cost of DM 3.9 million. The water treatment needs overhauling at a cost of DM 0.4 million.

Paper machine No.1 will have to be extended with an addition eight cylinders to increase capacity. The heat recovery and wire section will be refurbished. A new scanner will be installed. Including overall maintenance the total cost is estimated to DM 7.4 million

Paper machine No. 3 will only require minor maintenance and grinding of the Yankee cylinder at a total cost of DM 0.5 million.

Paper machine No. 4 will require a new winder to produce rolls of acceptable quality. The HC refining will have to be taken into operation. Together with overall maintenance to total cost for PM 4 will be DM 12.8 million.

The ware house of the corrugated box plant was destroyed during the war and have to be rebuild. The converting operation will be increased with new case-maker and die-cutter. Total cost DM 6.3 million.

The sack mill needs some maintenance and needs to improve the automation to a total cost of 1.6 mDM.

There is also a big need to restore the fleet of trucks and vehicles. This will be going on for year 2 - 5 to a total estimated cost of 5.0 mDM.

The common system in the mill are in a bad shape and they will need a big part of overhaul for a number of years to a total cost of 10.7 mDM.

The new wood yard line will introduce a need for a bark boiler in year 7 - 9 to a total cost of 20 mDM.

1

	b Mar Apr May Jun Jul Aug Sep Oct Nov Liec			New Woodyard system 40.0 mDM year 7.5,9,10						
Year 3	II Aug Sep Oct Nov Dec Jan Feb	ur of Conveyors (2)	Replacement of Chipper disk (3)	2.7 mDM		Mech O E ect	Total 48	1.50 mDM 1,00 mDM 0.20 mDM	2.70 mDM	es in year 7,8,9 necessary to raise the quality.
Vear	Jan Feb Mar Apr May Jun Jul	Φ.				(1) (2) Average working staff for 9 months is 48;		(1) Maintenance cost (2) Replacement of current conveyers (3) New Chipper disk		Additional investment of 40 mDM comes in year 7,8,9 when a new wood handling becomes necessary to rais
	Jul Aug Sep Oct Nov Dec			Investment	Schadule			8- I -	•	

()

Restart of NATRON Kamyr Pulp Line

9

			Year 2										_	rear 3								l		
The Indian Apr May Jun 19th I Mar Apr May Jun	Mov	200		la de	A 18h	Ž	av Jun	1	Aug	Sec	ğ	Š	3	Jul Rura Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Doct Nov Dec	b Ma	Apr	May	עזיך ,	Jul	Aug	Sep	는 전	<u>이</u> 살	ړ
יים לפכ להעל וחר		3		3															_					
								Mair	Maintenance (1)	5														
											_													
		-										(S) (G)	(2), (3), (4), (5), (6)	(<u>6</u>										
										•			1											
Investment schedulke								2.2 mDM	MOn				-	1.0 mDM					Inves	ment s	investment schedule			
								-		ļ							Ì							

86 51 0 8 F.	S 08 80 80
Mech Flec Instr Civil	Mech Civil Total
Average working staff for (1)	Average working staff for (2)

Kamyr line screens will not be used in future. They can be used for old batch line instead.

(1) Maintenance cost		Maintenance, Installation of new digester (1)	Year 3 Jan Feb Mar Apr May Jun Jul Aug Sep	Mech Electr Instr	Nov Dec	Sep investment sched
(2) Cost for installation of new digesters 1 mDM	Mech 28 10 Electr 10 Instr 7 CMI 12 5 Total 57 15	2.1 mDM (1) (2) Average working staff Mech 28 10		of new digesters	(2) Cost for inst	
(1) Mech 28			year	3	quie	Investment sched
Maintenance, Installation of new digester (1) 2.1 mDM (1) (2) Average working staff Mech 28 10	Maintenance, Installation of new digester (1)		Jan Feb Mar Apr Imay Jun 5u mg Job Ima	Jul Aug Sep Oct	Jan Feb Mar Apr	Ιì
Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct (Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep IOct Maintenance, Installation of new digester (1) Bettinent schedule (1) (2) Average working staff Average working staff Mech 28 10	Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep For Maintenance, Installation of new digester (1)	Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Jour	Year 3		Vasro	

Additional investment in cold blow system year 6 of 6 mDM

()

I

Restart of NATRON
Restoration Recovery Island
Kamyr Line

May Jun Jul Aug Sep

9

		į							Ì		ŗ		ŀ	ļ,	,			,,,,	2
CAS COLA LIVE	ő	Š	Dec	Lan Lan	78	Mar	Ş	May	C C	3	Aug	Jul Aug Sep Oct Nov Dec	3	ğ			8		₹
				Maintenance (1)	ance (E													
				Badly damaged building and instrumentation from War (2), (3)	amage	xd build	ing and	d instru	Imentat	ion froi	n War	(S) (Q)							
_															Ì				
investment schedule					 	14				3.7 mDM	ž	ļ]					Ì	ļ
													Ê	. 3		-			
						Avera	10 Work	Average working staff	₹.		Mech		ষ্	୯					
)			Esch	٠	-						
											Instr		ហ	6 0					
											Ξ Ö		4	7					
											Total		62	18					
						(E)	intena	(1) Maintenance cost	#				2.9	E C					
						8	st for v	var den	(2) Cost for war demade repair	o Šej			0.5	30					
) (1)	uor sto	(3) Liquor storage tanks	rks.				0.3	QE W					
					•	ļģ.					•		3.7	Ā					

>	Veer		
		1014 100 110 110	Occ. Ish Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jul Aug Sep Oct Nov Dec	Jan Feb Mar Apr May Jun	July Aug Sep Oct 100	ממון ז מכן ישים (אבי הייכן
1			
		Maintenance (1) (3) (4)	1) (3) (4)
		Erectic	Erection Super-concentrator (2)
Investment schedule		2,3 mDM	3.5 mDM
		(1),(3),(4)	(2)
	(1) (3) (4) Average workin	g staff: Mech 38	80.
			2
		Instr 19	2
		Civil 25	8
Ř.	Total		30
· I -	(1) Maintenance cost	3.7 mDM	
Ŕ	(2) Superconcentrator		
	(3) Extra cost building construction		
	(4) Extra cost material Electro-static precipitate	c precipitate	
	Total	6.2 mDM	

(2) The superconcentrator must be ordered in Jan. year-2 so thast it is complete before mill start up.

()

Appendix 8-1

1

Restart of NATRON Environment, Air and Water

	Jul			Investment				8	:- I	·7							
	Sep Oct Nov Dec	Maintenance (1) (2)	Maintenance (6)	١ .													
Year 2	Jan		<u>. </u>														
્	Feb A					~	ت.	•			_	ت.	ت ۔	ت.	ت.	ت .	1
	Mar Ap					7) (2) AV	3) (4) Av				1) Resto	2) Resto	3) Resto	4) Resto	5 000	GMDQ (9)	
	Feb Mar Apr May Jun					erage w	erage w	•			(1) Restoration of effluent	ration of	tation of	ration of	ision of a	(6) Dumping of industrial	
	ll					orking sta	(3) (4) Average working staff	,			effluent t	ash syste	treatmen	stripping	ffluent tre	tustrial w	
	Jul			0.5 mDM		#	Ħ				treatment	(2) Restoration of ash system for ash dumping	t of gase.	(4) Restoration of stripping column	reatment to fit EU standard	waste	
	deS Di					Mec		Instr	Š	Tota		ih dumpir			o fit EU s		
	Aug Sep Oct Nov Dec											ğ	•		tandard		
	Vov Dec				(1)(2)					R	0	•	J	J	.4	•	4
Year 3	Jan	Main		2.5 mDM	(6) (3)(4)	0	v)	4	t O	18 32	O.S mDM	0.2 mDN	0.5 mDM	0.5 mDN	2.0 mDN	0.5 mDM	42 mDM
3	Feb	Maintenance (3) (4)		MOC			m	-+	**	laı	5	~	5	~	~	5	· ~
	Mar Apr	(2)															
	Mey	ĺ	ł	;													
	וחר מחר		#														
	l Aug																
	Sep																
- 1																	
	Nov Jec																
7																	

O.
S
5
n
Æ.
·

		2.5 mDM		(Geor 3	Nov Dec Jan Feb Mer Apr May Jun Jul Aug Sep Oct Nov Dec Teb Mer Apr Mey Jun Jul Aug Sep Oct Nov Dec Teb Teb Mer Apr Mey Jun Jul Aug Sep Oct Nov Dec Teb	aintenance (1) Generator overt S mDM Blech Instr Clvii Total	Year 2 Jan Feb Mer Apr May Jun Average working staff	Jul Aug Sep Oct Nov Dec
	(1) Mach 39 Electr 7 Instr 5 Civil 9 Total 60	(1) Mech 39 Electr 7 Instr 5 Civil 9 Total 60	2.5 mDM (1) (2) Average working staff Mech 39 11 Electr 7 6 Instr 5 Clvii 9 5 Total 60 22	Det Uso Dec Jan Feb Mar Apr May Jun Jul Abr Jun Jul Abr Jun Jul Abr Jun Jul Abr Jun Jun <td></td> <td></td> <td></td> <td></td>				
(1) Miantenance 2.9 mDM	(1) Mach 39 Electr 7 Instr 5 Civil	(1) Mach 39 Electr 7 Instr 5 Clvii 9	(1) (2) Average working staff Electr 7 6 instr 5 clvi 9 5	Det Nov. Dec. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov. Dec. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Liverage working staff Mech 39 11 Average working staff Instr Sep Oct Nov. Dec. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Liverage Jul Jul Aug Sep Oct Liverage Jul Jul Jul Aug Sep Oct Liverage Jul J		Total		
Total	(1) Mech 39 Electr 7	(1) Mech 39 Electr 7	(1) (2) Average working staff Mech 39 11 Electr 7 6	Det Nov. Dec. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Feb May Jun Jul Aug Sep Oct Nov Dec. Jan Jul Aug Sep Oct Nov Dec. Jan Jul Aug Sep Oct Nov Dec. Jan Jul Aug Sep Oct Aug Oct Aug Sep Oct Aug Oct		Instr Civil		
Instr Chi Total	(1) Mech 39	(1) Mech 39	2.5 mDM (1) (2) (1) (2) Mech 39 11	Det Nov Dec Jen Her Apr May Jun Jul Abr May Jun Jul Abr Jun Jul Abr Jun Jul Jul Jun Jun <td></td> <td>Electr</td> <td>איני פון איני איני איני איני איני איני איני אינ</td> <td></td>		Electr	איני פון איני איני איני איני איני איני איני אינ	
Electr Instr Clvii Total			2.5 mDM	Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jen Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jen Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jen May Jun Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug Sep Oct Nov Jul Aug A		Mech	Average working staff	
(1) (2) Average working staff Average working staff Electr 7 6 Instr 5 Clvii 9 5 Total 60 22 Total 60 22	2.5 mDM			Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Jost Nov	wheul (2)	Generator overt		
Canarator overhaul (2) 2.5 mDM (1) (2) Average working staff Electr 7 6 Instr 5 Clivil 9 5 Total 60 22 Total 60 22 mDM (1) Miantenance 2.9 mDM (2) mDM (3) (4) Miantenance (4) Miantenance (5) mDM (5) mDM (5) mDM (6) mDM (6) mDM (6) mDM (7) material (6) mDM (7) material (7) mat	Generator overhaul (2) 2.5 mDM	Generator overhaul (2)	Generator overhaul (2)	Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Jost How		laintenance (1)	M	
Maintenance (1) Generator overhaul (2) 2.5 mDM	Maintenance (1) Generator overhaul (2) 2.5 mDM	nerator overhaul (2)	Maintenance (1) Generator overhaul (2)	Nav Char Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct 190				
Maintenance (1) Generator overhaul (2)	Maintenance (1) Generator overhaul (2) 2.5 mDM	Maintenance (1) Generator overhaul (2)	Maintenance		Jan Fab Mar Apr May Jun Jul Aug Sap Jun	I Aug Sep Oct N	Jan Feb Mer Apr May Jun	Nov Dec

(;

											1	ļ									
	Vage)	Year 3		į							ŀ
							•	-		֡֝֝֝֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		1	7	440	1 Admi	-	Ī	Can Det Nov Dec	8	<u>ک</u>	
Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun	E S	<u>8</u> ₹	₹	Z Z	2	ے ا	Aug	Seo	- 5	Jul Aug Sep Oct Nov Dec Jan Feb Mar Aug Sep	3	5	NA S	?	IVIG9	3	3	2	,		
Laning and Cal																					
Weinter Her Ice (1)																					
-																					
											ļ			ļ							
Investment Schedule	0.4 mDM											٠									

Mech Electr Instr Civil Average working staff

0.4 mDM

Maintenance cost

Restart of NATRON

۳.
ջ
2
ਨੌ
ŝ
ö
Sap
-

Year 2			1	ten Cab Mar May Jun Jul Aug Sep Oct Nov Dec
Jul Aug Sep Oct Nov Dec Jan	Feb Mar Apr May Jun	Jul Aug ISep loct	NOV LOSC	
				(L) and a control of the control of
				induite interes (1)
				Michael des dus electricists (%)
410				Last Decovier (4)
				Cowatering wife section +
				Level control infet box (3), (9)
Investment Schedule		3.4 mDM		4.2 mDM
			(1)(2)(4)(5)	<u> </u>
		doe.N		, n
	Average working start		O	
		13 th 15 th	, 5	
		<u> </u>	2 &	74
		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	77	100
			•	
8-	(4) Maintenance		0.5 mDM	
Ι -	(1) Mean Control (2)		4.5 mDM	
-14			MOM CO	
0	(3) Pibresaver for PMZ (n		7 C	
	(4) Heat Recovery			(Dewatering elements mist be ordered Jan. year 2)
	(5) Wire section & inlet bo		200	
	(6) Scanning frame Basis weight/Moisture control		1.4 mDM	
			7.6 mDM	
	(C) worth to make the control of the			
	Break down of litera (2)		<u></u>	
	Dryer part extention, Incl. 1	i. mechanicai unve, guide i die,		
	and hood		3.6 mDM	
	Relocation of reel and Winder	rinder	0.4 mDM	
	Flactrical drive		0.5 mDM	
	Total		4.5 mDM	
		:		

(

	Maintenance + Grinding of Yankee-cylinder (1)	der (1)	
Investment Schedule		0.5 mDM	

Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | Mey | Jun | Jul | Aug | Sep | Oct | Nov | Dec

Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun |

Year 2

Mech instr Civil Average working staff

0.5 mDM Costs of Miantenance + Grinding Grinding of Yankee cylinder order Jan, year 2

Appendix 8-1

I

	Voor						Ϋ́	Year 3	·		Ì	ŀ	-	į		12/2	8
And I want I have I have	lan Fah Mar Apr	May Jun	Jul Aug	des (Öct	Oct Nov Dec		Jan Feb	Mar	Š	Apr May	ร	ابار ا	Aug Ven	3	3	1
											} Maintenance (1)/	\d	}				. 4 4
							1_				Erection	New U	Erection new winder (2)	ภ			
							1.				Restor Date	TO TO	Restore HC refining + Heat recovery (3)	Head rea	Sovery (€ (§	<u>.</u>
							Ш				Restor E	Restore Accuray (5)	() () () ()	}			
		i					-					1			,	10 m O 10	Ī
Investment Schedule			3.2 mDM				æί	8.6 mDM							year 4	\$ 4	$\overline{\mathbb{A}}$
						(1)(4) (2)(5)	<u>ල</u>)(ව	ල									
	Average working staff	rking staff		Mech		8	o	ភ									
				Eect		4	ო	4									
				Instr		7	٧.	හ									
				Š		12	မ	φ									
				Total		27	25	88									
	(1) Mainten	Ance				1.6 mDM	MÖr										
	im well (C)	oder (has to be	ordered Jav	1. year 2		6.9 mDM	Б М С										
		(3) HC refining - Heat recovery	SV6ffy	•		2.5 mDM	MOF										
	(4) Dewate	ring elements	xdered year	2	٠	0.4 mDM	Q.										
	(5) Scannir	(5) Scanning frame Basis weight/Moisture control	waight/Mois	ture con	trol	4.1	1.4 mDM										
	Total					12.8 mDM	ΔČ	٠									

()

Restart of NATRON Corrugated Board Box Plant

1

8

1	နို		Λ.
	<u>ن</u> <u>ق</u>		year 4
	Z T		4.8 mDM year
	0		4.8
}	S S	ı	
	Feb Mar Apr May Jun Jul Aug Sep Oct Nov		
	3	_£	
	یا	Maintenance (1)	
	Me	X	
	₹		
	Mar		
3	3		
Year 3	Sa		
	Aug Sep Oct Nov Dec Jen		
	Š		
	ð		
	Sep		
	Aug		
	اعلا		
	Jun		
	May		
	Apr May		
	Mar		
	Feb Mar		
Year 2	LBJ.		
ŕ	88		
	š	•	
	Jul Aug Sep Oct Nov Dec Jan		
	90		adule
	S Gm		nt Sch
	1		investment Schedule
L	<u> </u>		<u> </u>

৬ গ্লাঙ Mech Civil Average working staff

(1) Building and warehouse 1.5 mDM New Die cutter and additional investment 4.8 mDM

8- I -13

()

Unit prices

lt prices				
	unit	used	coefficient	basic
.		DEM/unit		DEM/unit
Purchased raw materals			1	
OCC, domestic	t	135		135
OCC, imported	t	120		120
mixed wasre	t			
unbleached kraft pulp	ADt	750		750
roundwood, SW	m3smob	75		75
sawmill chips, SW	m3s			
roundwood, HW	m3smob	50		50
sawmill chips, HW	m3s			
testliner	ŧ	720		720
sack paper	t	1400		1400
Chemicals			1	
CaCO3	kg	0.10		0.1
NaOH	kg 100%	0.60		0.60
NA2SO4	kg 100%	0.73		0.73
H2SO4	kg 100%	0.44		0.44
HCL	kg	0.30		0.30
rosin s i ze	kg 100%	9.00		9,00
neutral size	kg	10.00		10.00
alum	kg	0.34		0.34
starch for paper machine	kg	1.80		1.8
wet strength agent	kg	6.00		6.00
colour for testliner	kg	9,00		9.00
silicon	kg	5.00		5.00
starch for corrugated board	kg	1.03		1.03
glue for corrugated board, box	kg	3.79		3.79
printing colour for boxes	kg	10.00		10.00
Energy			1	
coal, 10.5 GJ/t	t	43		43
oil, light	t	650		650
oil, heavy	t	370		370
heat in process steam (coal)	GJ	5.0		5.0
electricity	kWh	0.10		0.10
Water and effluent			1	
fresh water	m3	0.038	•	0,038
effluent and sludge dumping	m3	0.19		0.19
Personnel			1	
production	manyear	21600	•	2160
maintenance	manyear	21600		21600
administration	manyear	43200		4320
aummistration)	manyear	40200		4020

Sales product prices, mill net				
	unit	used	coefficient	basic
		DM/unit		DM/unit
			1	
schrenz	t	352		352
corrugated products, rec. fibr€	t	1320		1320
corrugated prod., NSSC+schr	t	1505		1505
corrugated products, NSSC	t	1620		1620
sacks	t	1720		1720
bags	t	3390		3390
MG paper	ŧ	1150		1150
sack paper	t	1090		1090
NSSC fluting	t	672		672
Sales prices, delivered and mill net				
values prices, delivered and min her		Mill net	Transport,	Delivered
		price	commission	price
		DM/t	DM/t	DM/t
schrenz		352	88	440
corrugated products, rec. fibre		1320	60	1380
corrugated prod., NSSC+schrei	nz	1505	60	1565
corrugated products, NSSC	•	1620	60	1680
sacks		1720	60	1780
MG paper		1150	100	1250
sack paper		1090	146	1236
NSSC fluting		672	117	789

1

Variable Production Costs

Desirated Albert message along plant

Recycled fibre processing plant				
	Unit	Unit price DM/unit	Unit consumpt. units/ADt	Unit cost DM/ADt
Raw materials total	t		1,25	169
OCC, domestic	ŧ	135	1,25	169
OCC, imported	t	120	0.00	0
Mixed waste	t	0		0
Chemicals total				
Heat total	GJ			
steam to process	GJ			
steam to bp power	GJ			
Electric power total	kWh			26
purchased or condensing pow	kWh	0.10	260	26
bp power generation	kWh			
Other costs total				27
fresh water	m3	0.038	100	4
effluent treatment	m3	0.19	100	19
operation materials				4
Variable costs total, recycled pulp				222

Appendix 9-1

Variable Production Costs

Unbleached kraft pulp	Unit	Unit price DM/unit	Unit consumpt. units/ADt	Unit cost DM/ADt
				403
Raw materials total		76	5.4	403
roundwood, SW	m3smob	75 0	5.4	0
sawmill chips, SW	m3s	U		U
Chemicals total				44
CaCO3	kg 100%	0.10	27.0	3
NaOH	kg 100%	0.60	8.0	5
NA2SO4	kg 100%	0.73	45.0	33
H2SO4	kg 100%	0.44	4.2	2
other chemicals	3			2
Heat total	GJ		-2.7	3
steam to process	GJ	5.0	10.0	50
steam to be power	GJ	5.0	1.7	8
fuel oil for lime kiln	GJ	15.5	1.6	25
steam from bark	GJ	5.0	-3.0	-15
steam from liquour	GJ	5.0	-13.0	-65
Electric power total	kWh		750	33
purchased or condensing pow	kWh	0.10	333	33
bp power generation	kWh		417	. 0
Other costs total				21
fresh water	m3	0.038	70	3
effluent treatment	m3	0.19	70	13
operation materials	•••			5
Variable costs total, unbleached k	craft pulp			504

Variable Production Costs

0 1 - 1 1 1	 f 1	. 411 4	

	Unit	Unit price OM/unit	Unit consumpt, units/ADt	Unit cost DM/ADt
Raw materials total				11
roundwood, HW	m3smob	50	2.3	11
sawmill chips, HW	m3s	0		
Chemicals total				3
CaCO3	kg 100%	0.10		
NaOH	kg 100%	0.60	5.5	
NA2SO4	kg 100%	0.73	33.0	2
H2SO4	kg 100%	0.44	2.8	
other chemicals				
Heat total	GJ		2.3	
steam to process	GJ	5.0	4.5	2
steam to bp power	GJ	5.0	8.0	
fuel for lime kiln	GJ			
steam from bark	GJ	5.0		
steam from liquour	GJ	5.0	-3.0	~
Electric power total	kWh		550	;
purchased or condensing pow	kWh	0.10	363	;
bp power generation	kWh		188	
Other costs total				
fresh water	m3	0.038	50	
effluent treatment operation materials	m3	0.19	50	

Appendix 9-I

Variable Production Costs

emichemical pulp, after installing	debarking			
• •	Unit	Unit price DM/unit	Unit consumpt, units/ADt	Unit cost DM/ADt
Raw materials total				115
roundwood, HW	m3smob	50	2.3	115
sawmill chips, HW	m3s	0	2.0	Ç
Chemicals total				28
CaCO3	kg 100%	0.1		0
NaOH	kg 100%	0.60	5,0	3
NA2SO4	kg 100%	0.73	30.0	22
H2SO4	kg 100%	0.44	2.5	1
other chemicals				2
Heat total	GJ		0.8	4
steam to process:	GJ	5.0	4.5	22
steam to bp power	GJ	5.0	0.8	4
fuel for lime kiln	GJ			(
steam from bark	GJ	5.0	-1.7	·.•1
steam from liquour	GJ	5.0	-2.8	-14
Electric power total	kWh		550	3
purchased or condensing pow	kWh	0.10	363	3
bp power generation	kWh		188	ı
Other costs total				1
fresh water	m3	0.038	5 0	
effluent treatment	m3	0.19	50	1
operation materials				
Variable costs total, semichem. p	ulp with deba	ırking		19

Variable Production Costs

Testliner

曾

esnidet	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t
Raw materials total	ADt		1.065	405
purchased unbleached pulp	ADt	750	0.320	240
own unbleached pulp	ADt	504		
processed recycled fibre	ADt	222	0.746	165
Chemicals total				87
rosin size	kg	9.00	5.0	45
neutral size	kg	10.00		0
alum	kg	0.34	15.0	5
starch	kg	1.80	5,0	9
colour	kg	9.00	3.0	27
other chemicals				1
Heat total	GJ			50
steam to process	GJ	5.0	8.5	42
steam to bp power	GJ	5.0	1.4	7
Electric power total	kWh		850	50
purchased or condensing pow	kWh	0.10	496	50
bp power generation	kWh		354	
Other costs total				28
fresh water	m3	0.038	50	2
effluent treatment	m3	0.19	50	10
operation materials				10
packaging materials				7
Variable costs total, testliner from p	ourchased l	kraft pulp		619

Variable Production Costs

Fluting of recycled fibre				
• • • • • • • • • • • • • • • • • • • •	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/î
Raw materials total	ADt		1.060	235
processed recycled fibre	ADt	222	1.060	235
Chemicals total				19
starch	kg	1.8	10	18
other	~			1
Heat total	GJ		9.3	47
steam to process	GJ	5.0	8.0	40
steam to bp power	GJ	5.0	1.3	7
Electric power total	kWh		800	47
purchased or condensing pow	kWh	0.10	467	47
bp power generation	kWh		333	•••
Other costs total				28
fresh water	m3	0.038	50	2
effluent treatment	m3	0.19	50	10
ongration materials			- -	10

10

375

Variable costs total, fluting from recycled fibre

effluent treatment operation materials packaging materials

Appendix 9-I

(1)

Variable Production Costs and Sales Margin

Schrenz	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t
Raw materials total processed recycled fibre	ADt ADt	222	1.065 1.065	236 236
Chemicals total				40
rosin size	kg	9.00	4.0	36
neutral size	kg	10.00	1.0	ő
alum	kg	0.34	10.0	3
starch	kg	1,80		ŏ
other	kg	1,00		1
Heat total	GJ		9.3	47
steam to process	GJ	5.0	8.0	40
steam to be power	GJ	5.0	1.3	7
Electric power total	kWh		800	47
purchased or condensing pow bp power generation	kWh kWh	0.10	467 333	47
Other costs total				28
fresh water	m3	0.038	50	1.9
effluent treatment	m3	0.19	50	9.5
operation materials				10
packaging materials				7
Variable costs total, schrenz			•	398
Sales price, mill net				352
Sales margin				-46

Variable Production Costs and Sales Margin

Semichemical fluting

	Unit .	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t
Raw materials total	ADt		1,065	212
Semichemical pulp excl.debar	ADt	209		
Semichemical pulp incl.debari	ADt	199	1.065	212
processed recycled fibre	ADt	222	0.000	0
Chemicals total				5
starch	kg			
other				5
Heat total	GJ	•	8.8	44
steam to process	GJ	5.0	7.5	37
steam to bp power	GJ	5.0	1.3	6
Electric power total	kWh		750	44
purchased or condensing pow	kWh	0.10	438	44
bp power generation	kWh		313	•
Other costs total				28
fresh water	m3	0.038	50	2
effluent treatment	m3	0.19	50	10
operation materials				10
packaging materials				7
Variable costs total, semichem, flut	ting excl. d	ebarking		121
Variable costs total, semichem. flu	ting incl. de	ebarking		333
Sales price, mill net				672
Sales margin, excl. debarking				551
Sales margin, incl. debarking				339

Variable Production Costs and Sales Margin

Sack paper

Sack paper				
	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t
Raw materials total	ADt		1,060	535
Own unbleached pulp	ADt	504	1.060	535
Chemicals total				66
rosin size	kg	9.00	4.0	36
neutral size	kg	10.00		0
alum	kg	0.34	15.0	5
starch	kg	1.80	4.0	7
silicon	kg	5.00	0.4	2
wet strength agent other	kg	6.00	2.5	15 1
Heat total	GJ		10.5	52
steam to process	GJ	5.0	9.0	45
steam to bp power	GJ	5.0	1.5	7
Electric power total	kWh		1200	83
purchased or condensing pow	kWh	0.10	825	83
bp power generation	kWh		375	
Other costs total				36
fresh water	m3	0.038	50	2
effluent treatment	m3	0.19	50	10
operation materials				10
packaging materials				15
Variable costs total, sack paper, ov	vn kraft pul	þ		772
Sales price, mill net				1090
Sales margin, sack paper				318

Appendix 9-I

Variable Production Costs and Sales Margin

MG paper				· · ·
	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t
Raw materials total	ADt		1 060	795
purchased kraft pulp	ADt	750	1.060	795
own kraft pulp	ADt	504		
Chemicals total				49
rosin size	kg	9.00	4.0	36
neutral size	kg	10.00		0
alum	kg	0,34	15	5
starch	kg	1.80	4.0	7
other				1
Heat total	GJ		10.5	52
steam to process	GJ	5.0	9.0	45
steam to bp power	GJ	5.0	1,5	7
Electric power total	kWh		900	53
purchased or condensing pow	kWh	0.10	525	 53 (%) (3 + 3 + 3)
bp power generation	kWh		375	11 - 11 MAG
Other costs total				1
fresh water	m3	0.038	50	. 2 5 5 5 5 6 5 6 5
effluent treatment	m3	0.19	50	10 10 11 11
operation materials				10
packaging materials				20
Variable costs total, MG paper, pur	rchased kr	aft pulp		991
Variable costs total, MG paper, ow				730
Sales price, mill net				1150
Sales margin, MG paper, purchase	ed kraft pu	l p		159
Sales margin, MG paper, own kraf	t pulp			420

Appendix 9-I

)

Variable Production Costs and Sales Margin

Corrugated board and boxes, recycled fibre, scrhenz, purch.testliner Year 2

real Z	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t
Raw materials total	t		1,060	478
testliner from purch, kraft pulp	t	619	0.329	203
fluting from recycled fibre	t	375	0.366	137
schrenz	t	398	0.366	145
testliner, purchased	t	720		0
semichem, fluting	t	333		0
credit for broke	t	135	-0.060	-8
Chemicals total				59
starch	kg	1.03	30	31
glue	kg	3.79	0.64	2
printing colour	kg	10	1.9	19
other chemicals				7
Heat, as steam, 11 bar	GJ	5.0	1.5	7
Electric power	kWh	0.10	182	18
Other costs total				40
operating materials				20
other				20
Variable costs of board and boxes	, rec. fibre	and purchased	kraft pulp total	603
Sales price				1320
Sales margin of corr. board and b	oxes, rec. f	ibre and purcha	sed kraft pulp	717

Variable Production Costs and Sales Margin

Corrugated board and boxes, semich fluting, purchased testilner, schrenz from PM2

VIII I INC.	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t	
Raw materials total	t		1.176	428	
testliner, purchased	t	720	0.365	262	
schrenz	t	398	0.329	131	
semichem, fluting, excl debarl	t	121	0.482	58	
semichem, fluting, incl debark	t	333		0	
credit for broke	t	135	-0.176	-24	
Chemicals total				59	
starch	kg	1.03	30.0	31	
glue	kg	3.79	0.64	2	
printing colour	kg	10.00	1.9	19	
other chemicals				7	
Heat, as steam, 11 bar	GJ	5.0	1.3	6	
Electric power	kWh	0.10	96	10	
Other costs total				40	
operating materials				20	
other				20	
Variable costs of board and boxes	, semich.flu	rting excl. debar	rking, testliner		
and schrenz	•	_		543	
Variable costs of board and boxes	, semich.flu	iting incl. debar	king, testliner		
and schrenz		•	_	646	
Sales price incl. schrenz from PM2					
Sales margin of board and boxes,	semich.flut	ting excl. debarl	king, testliner		
and schrenz		-	_	962	
Sales margin of board and boxes,	semich.flu	ting incl. debark	ing, testliner		
and schrenz				85 9	

Appendix 9-1

Variable Production Costs and Sales Margin

Corrugated board and boxes, semi-	chem, fluti	ng and purcha	sed testliner	
	Unit	Unit	Unit	Unit
		price	consumpt.	cost
		OM/unit	units/t	DM/t
Raw materials total	t		1.176	520
testliner, purchased	t	720	0.670	483
schrenz	t	398		0
semichem, fluting, excl debath	t	121	0.506	61
semichem, fluting, incl debark	t	333		0
credit for broke	t	135	-0.176	-24
Chemicals total				59
starch	kg	1.03	30	31
glue	kg	3.79	0.64	2
printing colour	kg	10.00	1.9	19
other chemicals				7
Heat, as steam, 11 bar	GJ	5.0	1.3	6
Electric power	kWh	0.10	96	10
Other costs total				40
operating materials				20
other				20
Variable costs of board and boxes,	, semich. fle	uting excl. deba	rking, testliner	
excl. schrenz				635
Variable costs of board and boxes	, semich. fl	uting incl. debar	king, testliner	
excl. schrenz				743
Sales price ext. schrenz				1620
Sales margin of board and boxes,	semich.flut	ing excl. debark	ding, testliner	
excl. schrenz				985
Sales margin of board and boxes,	semich.flut	ing incl. debarki	ing, testliner	
excl. schrenz				877

Appendix 9-1

Variable Production Costs and Sales Margin

operating materials other Variable costs, purchased paper total 1454 Variable costs, own pulp, own paper total 826 Sales price, mill net 1720	Sacks	Unit	Unit price DM/unit	Unit consumpt. units/t	Unit cost DM/t	
purchased paper t 1400 1.000 1400 own pulp, own paper t 772 credit for broke t 120 0.020 -2 Chemicals glue kg 1.03 27.5 28 printing colour kg 10.00 0.52 5 other chemicals Heat GJ 5.0 0.5 2 Electric power kWh 0.10 104 10 Other costs operating materials other Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720	Paner	t		1.020	1398	
own pulp, own paper t 772 credit for broke t 120 -0.020 -2 Chemicals glue kg 1.03 27.5 28 printing colour kg 10.00 0.52 5 other chemicals Heat GJ 5.0 0.5 2 Electric power kWh 0.10 104 10 Other costs operating materials other Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720			1400	1.000	1400	
Chemicals glue kg 1.03 27.5 28 printing colour kg 10.00 0.52 5 other chemicals Heat GJ 5.0 0.5 2 Electric power kWh 0.10 104 10 Other costs operating materials other Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720		t	772			
glue kg 1.03 27.5 28 printing colour kg 10.00 0.52 5 other chemicals Heat GJ 5.0 0.5 2 Electric power kWh 0.10 104 10 Other costs 10 10 104 10 Other costs 10 10 104 Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720		t	120	-0.020	-2	
glue kg 1.03 27.5 28 printing colour kg 10.00 0.52 5 other chemicals Heat GJ 5.0 0.5 2 Electric power kWh 0.10 104 10 Other costs operating materials other Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720	Chemicals				34	
printing colour other chemicals Heat GJ 5.0 0.5 2 Electric power kWh 0.10 104 10 Other costs operating materials other Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720		ka	1.03	27.5	28	
Electric power kWh 0.10 104 10 Other costs 10 10 104 10 Other costs 10 10 104 10 Variable costs, purchased paper total Variable costs, own pulp, own paper total 826 Sales price, mill net 1720	printing colour	~	10.00	0.52	5	
Other costs 10 operating materials 10 other Variable costs, purchased paper total Variable costs, own pulp, own paper total 826 Sales price, mill net 1720	Heat	GJ	5.0	0.5	2	
operating materials other Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 10 1454 826 1720	Electric power	kWh	0.10	104	10	
operating materials other Variable costs, purchased paper total 1454 Variable costs, own pulp, own paper total 826 Sales price, mill net 1720	Other costs				10	
Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720	operating materials				10	1 (1)
Variable costs, purchased paper total Variable costs, own pulp, own paper total Sales price, mill net 1720					- ;	* , ** **
Sales price, mill net	Variable costs, purchased page	per total				in the second
ould's price, trial rick	Variable costs, own pulp, owr	n paper total			826	. '
0.1	Sales price, mill net				1720	
Sales margin, sacks of durchased paper	Sales margin, sacks of purch	ased paper			266	1.47
Sales margin, sacks of own pulp, own paper 894					894	

1

TABLE 8-1 Variable costs of pulp

riable costs of pulp	Recycled fibre	Unbleached kraft pulp	Semi- chemical pulp, excl. debarking	Semi- chemical pulp, incl. debarking
	DM/ADt	DM/ADt	OM/ADt	DM/ADt
Raw materrials	169	403	115	115
Chemicals	0	44	31	28
Purchased fuels	0	3	11	4
Purchased power	26	33	36	36
Other variable costs	27	21	16	16
	222	504	209	199

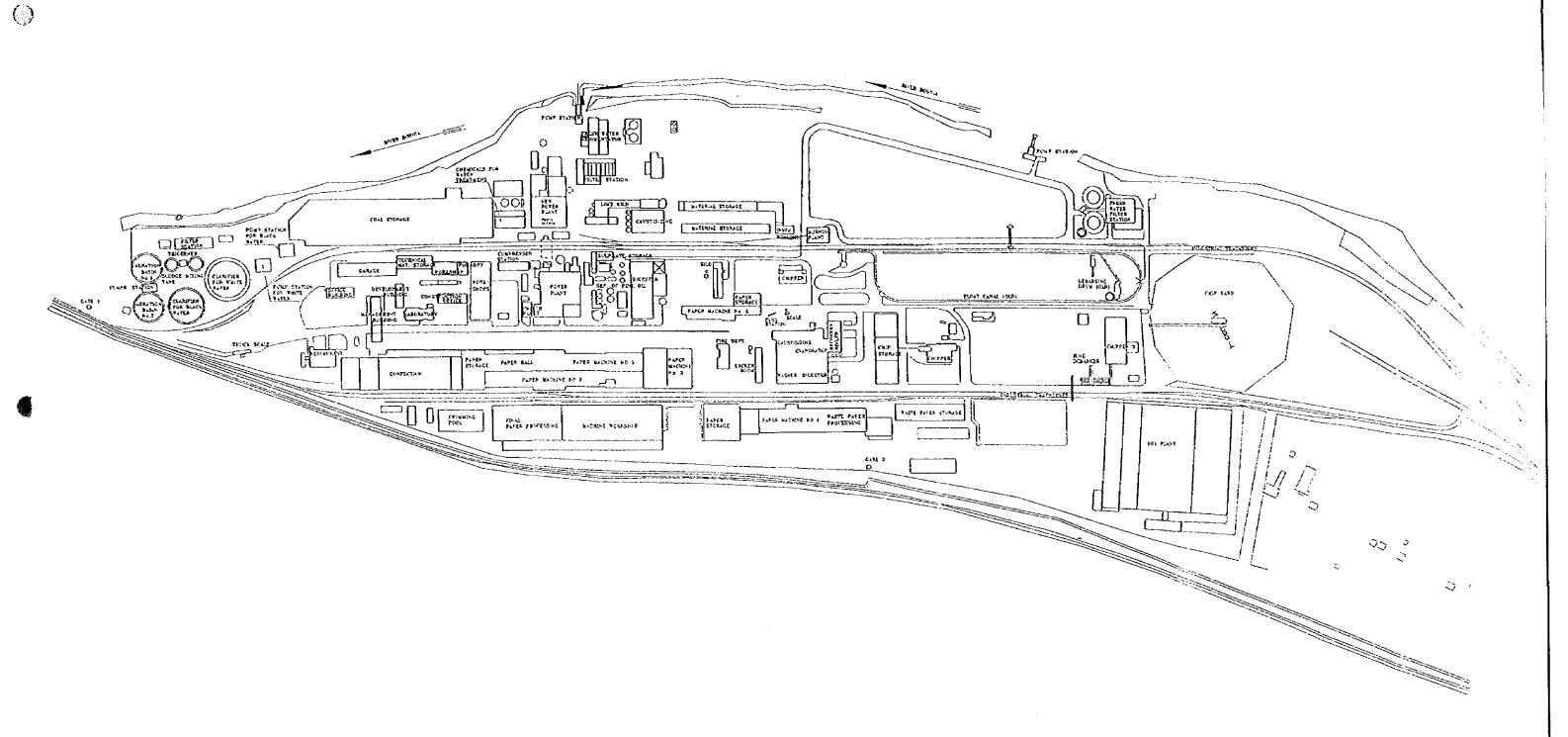
TABLE 8-2 Variable costs of corrugated board materials

	Testliner	Fluting of recycled fibre	Schrenz	Semichem. fluting, excl. debarking	Semichem. fluting, incl. debarking
	DM/t	DM/t	ĐM/t	DM/t	DM/t
Pulp (variable costs)	405	235	236	0	212 5
Chemicals Purchased fuels	87 50	19 47	40 47	5 44	5 44
Purchased power Other variable costs	50 28	47 28	47 26	44 28	44 28
Total	619	375	398	121	333

MG paper,

MG paper,

TABLE 8-3 Variable costs of sack paper and MG paper


paper	purch, pulp	own. pulp	
DM/t	DM/t	DM/t	
535	795	535	
66	49	49	
52	52	52	
83	53	53	
36	41	41	
772	991	730	
	DM/t 535 66 52 83 36	DM/t DM/t 535 795 66 49 52 52 83 53 36 41	

Sack

TABLE 8-4
Variable costs of converted products

ucts				
	Corr. board virgin fibre	Corr. board schrenz + virgin fibre	Sacks, purch. paper	Sacks, own paper
DM/t	DM/t	OM/t	DM/t	DM/t
478	520	428	1398	770
59	59	59	- 34	34
7	6	6	2	2
18	10	10	10	10
40	40	40	10	10
603	635	543	1454	826
	recovered fibre DM/t 478 59 7 18 40	Corr. board recovered ribre DM/t DM/t 478 520 59 59 7 6 18 10 40 40	Corr. board recovered fibre Corr. board virgin fibre virgin fibre Corr. board schrenz + virgin fibre DM/t DM/t DM/t 478 520 428 59 59 59 7 6 6 18 10 10 40 40 40	Corr. board recovered fibre Corr. board schrenz + purch. purch. paper DM/t DM/t

()

en pagitusta gentrukkan sapuak puka partin sabika pirma na para seletari gentrukti kan sasa sa sa a

