
JAPAN INTERNATIONAL COOPERATION AGENCY

DHAKA WATER SUPPLY AND SEWERAGE AUTHORITY THE PEOPLE'S REPUBLIC OF BANGLADESH

THE STUDY ON THE SEWERAGE SYSTEM IN NORTH DHAKA IN THE PEOPLE'S REPUBLIC OF BANGLADESH

FINAL REPORT

SUMMARY

NIPPON JOGESUIDO SEKKEI CO., LTD.

SSS
JR
98-070

EXCHANGE RATE

*

MASTER PLAN US\$ 1.0 = Tk 43.732 = Yen 115.5 (As of July 1997) FEASIBILITY STUDY US\$ 1.0 = Tk 43.333 = Yen 130.0 (As of January 1998) JAPAN INTERNATIONAL COOPERATION AGENCY

DHAKA WATER SUPPLY AND SEWERAGE AUTHORITY THE PEOPLE'S REPUBLIC OF BANGLADESH

÷

3

THE STUDY ON THE SEWERAGE SYSTEM IN NORTH DHAKA IN THE PEOPLE'S REPUBLIC OF BANGLADESH

FINAL REPORT

SUMMARY

JULY 1998

NIPPON JOGESUIDO SEKKEI CO., LTD.

1145000 (4)

PREFACE

In response to a request from the Government of the People's Republic of Bangladesh, the Government of Japan decided to conduct a study on the Sewerage System in North Dhaka and entrusted the study to the Japan International Cooperation Agency (JICA).

JICA sent to Bangladesh a study team composed of individuals from Nippon Jogesuido Sekkei Co., Ltd and headed by Mr. Ikuo Miwa. The team visited Bangladesh three times between May 1997 and June 1998.

The team held discussions with the officials concerned of the Government of Bangladesh and conducted field surveys in the study area. After the team returned to Japan, further studies were made and the present report was prepared.

I hope that the report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of Bangladesh for the close cooperation that they extended to the team.

July 1998

Kiii Auji

Kimio Fujita, President Japan International Cooperation Agency

3

ி)

)

July 1998

Mr. Kimio Fujita, President Japan International Cooperation Agency Japan

LETTER OF TRANSMITTAL

Dear Sir,

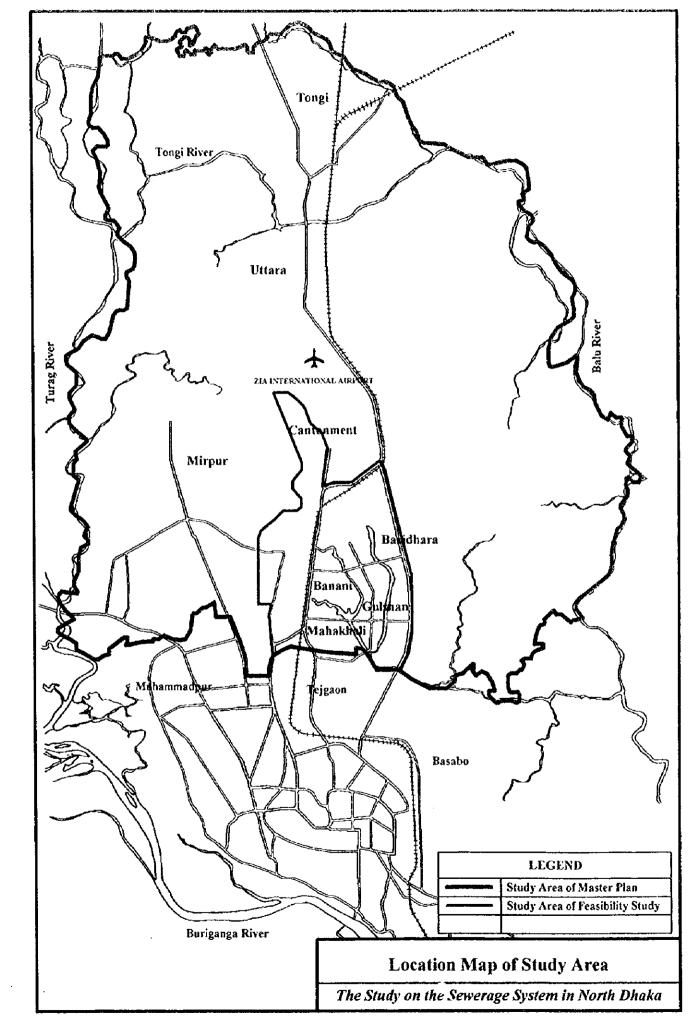
We are pleased to submit herewith the Final Report for the Study on the Sewerage System in North Dhaka.

The Study was completed through discussions with the officials of the Government of Bangladesh and field investigations during three visits from May 1997 and June 1998 and the homework thereafter.

The Final Report consists of three volumes: 1) the Summary Report, which succinctly describes the study and its recommendations; 2) the Main Report, which covers the findings of the Master Plan and the Feasibility Study, as well as the proposed Emergency Project; and 3) the Supporting Report, which contains data upon which the Master Plan and the Feasibility Study are based.

We wish to take this opportunity to express our sincere gratitude to your Agency, the Ministry of Foreign Affairs and the Ministry of Construction. We also would like to show our appreciation to the officials of the Dhaka Water Supply and Sewerage Authority, the JICA Bangladesh Office, and the Embassy of Japan in Bangladesh for their kind assistance throughout this Study.

Very truly yours,


美和藏男

Ikuo Miwa, Team Leader The Study on the Sewerage System in North Dhaka

()

۲

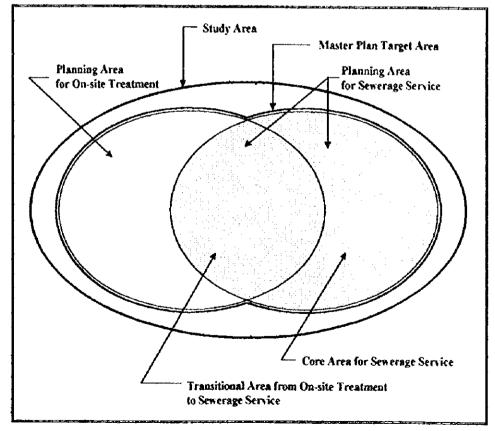
()

)

)

 \bigcirc

.


EXECUTIVE SUMMARY

This study comprises two (2) parts: (1) North Dhaka Sewerage Master Plan and (2) Feasibility Study for Priority Project.

PART-1 NORTH DHAKA SEWERAGE MASTER PLAN

- 1. Study Area: The Study Area covers North Dhaka including Tongi, Uttara, a part of Mirpur and Mohammadpur, Banani, Gulshan, Badda, Baridhara, the Cantonment, and adojoining areas.
- 2. Target Year: 2020
- 3. Classification of Study Area

The Study Area is classified into planning area for sewerage service, transitional area from on-site treatment to sewerage service, and on-site treatment area based on the RAJUK's Dhaka Metropolitan Development Plan (DMDP) as shown in the following figure.

)

4. Determination of Sewerage Zone

The planning area of sewerage mast	er plan is subdivided into four sewerage zones taking
into account the geographical and ad	Iministrative boundary in the Study Area as follows:
Tongi Sewerage Zone:	Tongi Poutashava
Uttara Sewerage Zone:	Uttara
North Dhaka East Sewerage Zone:	Badda, Banani, Baridhara, Gulshan and Cantonment
North Dhaka West Sewerage Zone:	Mirpur, Mohammadpur, Cantonment

۲

5. Per Capita Sewage Flow by Year

ltem	2000	F/S 2005	2010	2015	M/P 2020
Design Average Daily Flow	85	95	100	100	100
Design Maximum Daily Flow	105	115	125	125	125
Design Maximum Hourly Flow	135	145	160	160	160

6. Planned Population and Design Sewage Flow by Sewerage Service Area

Sewerage Service Area	Sewerage Zone	Item	Unit	Core Area	Transitiona) Area	Total	Cantonment Security	Toial
		Area	ha	[51	892	1,043	0	1,043
l l	Population	person	39,000	265,000	304,000	0	304,000	
Tongi	Tongi	QI	m3/day	3,900	26,500	30,400	0	30,400
		Q2	m3/day	4,875	33,125	38,000	0	38,000
	ľ	Q3	m3/day	6,240	42,400	48,640	0	48,640
		Area	ha	504	512	3,016	0	1,016
		Population	person	86,000	75,000	161,000	0	161,000
	Uttara	Ql	m3/day	8,600	7,500	16,100	0	16,100
		Q2	m3/day	10,750	9,375	20,125	0	20,125
		Q3	m3/day	13,760	12,000	25,760	0	25,760
		Area	ha	868	1,371	2,239	1,090	3,329
	N. 0. 70. 0	Population	person	487,000	314,000	801,000	83,000	884,000
North Dhaka East	North Dhaka East	QI	m3/day	48,700	31,400	80,100	8,300	88,400
DITAKA LASI	E-854	Q2	m3/day	60,875	39,250	100,125	10,375	110,500
		Q3	m3/day	77,920	50,240	128,160	13,280	141,440
		Area	ha	1,372	1,883	3,255	1,090	4,345
		Population	person	573,000	389,000	962,000	83,000	1,045,000
	Total	QI	m3/day	57,300	38,900	96,200	8,300	104,500
		Q2	in3/day	71,625	48,625	120,250	10,375	130,625
		Q3	m3/day	91,680	62,240	153,920	13,280	167,200
		Area	ha	789	3,677	2,466	130	2,596
	No at Dhates	Population	person	438,000	1,184,000	1,622,000	10,000	1,632,000
Norib Dhaka West	North Dhaka West	Q1	m3/day	43,800	118,400	162,200	1,000	163,200
UBANA TICS	TTC3L	Q2	m3/day	54,750	148,000	202,750	1,250	204,000
		Q3	m3/day	70,080	189,440	259,520		261,120
		Area	ha	2,312	4,452	6,764	1,220	7,984
		Population	person	1,050,000	1,838,000	2,888,000	93,000	2,981,000
T	Total		m3/day	105,000	183,800	288,800	9,300	298,100
1		Q2	m3/day	131,250	229,750	361,000		372,625
l		Q3	m3/day	168,000	294,080	462,080	14,880	476,960

Q1 - Design Average Daily Flow, Q2 - Design Maximum Deily Flow, Q3 - Design Maximum Hourly Daily Flow Note:

7. Project Cost and O&M Cost of Sewerage System

	110]t	CI CUSI DI DEM	cruge system	11.4. 11.200	A
		in an air an		the second s	0 and US\$'000
Facilities	Tongi	Uttara	North Dhaka	North Dhaka	Total
T activity 3	Tong	Ollara	East	West	10141
1.Construction Cost					
Branch Sewer	426,764	415,716	843,306	949,520	2,635,306
Trunk Main	141,357	149,553	539,120	519,893	1,349,923
Pumping Station	294,520	81,493	898,318	1,171,420	2,445,751
Sewage Treatment Plan	646,157	0	1,663,590	2,340,602	4,650,349
Sub-total	1,508,798	646,762	3,944,334	4,981,435	11,081,329
Sub-total					
(including overhead)	1,810,558	776,114	4,733,201	5,977,722	13,297,595
2.Land Acquisition					
Land Cost for PS	3,030	1,320	30,325	6,905	41,580
Land Cost for STP	733,740	0	1,440,780	2,391,110	4,565,630
Sub-totai	736,770	1,320	1,471,105	2,398,015	4,607,210
3.Engineering Service					
	54,317	23,283	141,996	179,332	398,928
4.Administration Cost					
	93,244	39,970	243,760	307,853	684,827
Total(1+2+3+4)	2,694,889	840,687	6,590,062	8,862,922	18,988,560
5.Physical Contingency					
	269,489	84,069	659,006	886,292	1,898,856
	2,964,378	924,756	7,249,068	9,749,214	20,887,416
Grand Total	(US\$67,785)				(US\$477,623)

Project Cost of Sewerage system

Note: Exchange Rate: US\$1.00 = 43.732Taka (as of July 1997) This project cost is not include the price contingency.

	Unit: Tk'000/year and US\$'000/yea						
Sewerage Facility	Tongi	Uttara	North Dhaka East	North Dhaka West	Total		
Power Consumption	Γ						
Pumping Station	3,965	861	14,645	21,770	41,241		
Sewage Treatment Plant	254	0	487	616	1,357		
Personnel Expense	922	127	1,462	1,844	4,355		
	5,141	988	16,594	24,230	46,953		
Total	(US\$117)	(US\$22)	(US \$ 379)	(US\$554)	(US\$1,073)		

Operation and Maintenance Cost of Sewerage System Unit: Tk*000/year and U

Note: Exchange rate: US\$1.00 = 43.73Taka (as of July 1997)

8. Sewage Treatment Plant

Location: North Dhaka East (120 ha), North Dhaka West (180 ha), Tongi (50 ha) Treatment Method: Stabilisation Pond

Design Sewage Quality:	Influent	BOD	200 mg/L	SS 200 mg/L	
	Effluent	BOD	40 mg/L	SS 100 mg/L	

3

)

PART-II FEASIBILITY STUDY OF PRIORITY PROJECT

 Study Area: North Dhaka East Sewerage Service Area covering North Dhaka East Sewerage Zone and Uttara Sewerage Zone ())

2. Target Year: 2005

3. Design Sewage Flow of North Dhaka East Sewerage Service Area

Phase	Target Year	Sewerag e Zone	ltem	Unit	Core Area	Cantonment	Sub-Total	Transitional Area	Total
			Area	ha	504	0	504	512	1,016
			Population	person	86,000	0	86,000	75,000	161,000
		Uttara	Q1	cu m/day	8,600	0	8,600	7,500	16,100
			Q2	cu m/day	10,750	0	10,750	9,375	20,125
				cu.m/day	13,760	0	13,760	12,000	25,760
			Area	ha	868	1,090	1,958	1,371	3,329
		North	Population	person	487,000	83,000	570,000	314,000	884,000
M/P	2020	Dhaka	Ql	cu.m/day	48,700	8,300	57,000	31,400	88,400
	ł	East	Q2	cu.m/day	60,875	10,375	71,250	39,250	110,500
			Q3	cu.m/day	77,920	13,280	91,200	50,240	141,440
	1		Агеа	ha	1,372	1,090	2,462	1,883	4,345
	ļ		Population	person	573,000	83,000	656,000	389,000	1,045,000
	1	Total	Q1	cu.m/day	57,300	8,300	65,600	38,900	104,500
		ł	Q2	cu.m/day	71,625	10,375	82,000	48,625	130,625
			Q3	cu.m/day	91,680	13,280	104,960	62,240	167,200
[T	1	Агеа	ha	504	0	504	512	1,016
Į			Population	person	80,000	0	80,000	65,000	145,000
		Uttara	QI	cu.m/day	7,600	0	7,600	6,175	13,775
			Q2	cu.m/day	9,200	0	9,200	7,475	16,675
			Q3	cu.m/day	11,600	0	11,600	9,425	21,025
	}		Area	ha	868			1,371	3,329
	1	North	Population	person	386,000	70,000	456,000	236,000	692,000
F/S	2005	Dhaka	Q1	cu m/day				22,420	65,740
Í		East	Q2	cu.m/day				27,140	79,580
			Q3	cu.m/day					100,340
i l		Area	ha	1,372				4,345	
		ļ	Population	- for some second	466,000				837,000
		Total	Ql	cu.m/day					79,515
j.			Q2	cu.m/day					96,255
			Q3	cu.m/day	67,570	10,150	77,720	43,645	121,365

Note: Q1 - Design Average Daily Flow, Q2 - Design Maximum Deily Flow, Q3 - Design Maximum Hourly Daily Flow

4. Sewer System

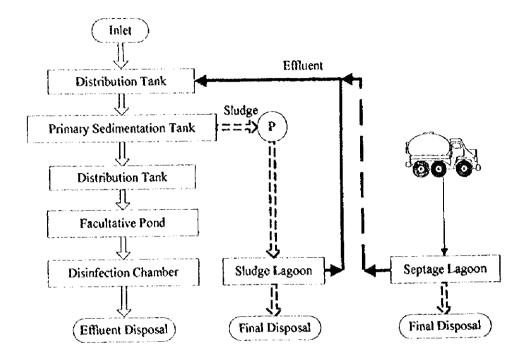
Separate sewer system is introduced for the whole study area. Supplementary pipe is considered where the existing sewer lines do not have enough hydraulic capacity in the target year.

Area	Type of Flow	Material	Dismeter (mm)	Length (m)		
	n dan di Kawa da dingga kang dan pangan kang dan sang dan pangan pangan pangan pangan pangan pangan pangan pan	8VC	200	34,500		
		eve.	250	445		
			900	1,095		
	Gravity Flow		1,000	1,185		
New Service	Gravity clow	RC	1,100	1,750		
Area			1,200	290		
			1,500	1,660		
		Sub-	40,925			
	Pressurised Flow	Steel Pipe	1,100	4,400		
		45,325				
		PVC	300	725		
			350	1,110		
			400	1,455		
Existing	Gravity Flow		700	710		
Service Area		RC	800	2,010		
Structure			1,100	800		
		Sub	-Total	6,810		
	Pressurised Flow	Steel Pipe	900	1,340		
	Total					
	Grand T	otal		53,475		

Configuration of Sewer System

5. Pump Station

Name of Pump Station	Sewage Flow	M/P	F/S
	Q	104,500	43,320
Merul Pump Station	Q2	130,625	52,440
	Qj	167,200	66,120
	Q	43,699	33,242
Guishan Pump Station	Q2	54,624	40,240
	Q3	69,918	50,738


Note:

Q1 - Design Average Daily Flow, Q2 - Design Maximum Deily Flow, Q3 - Design Maximum Hourly Daily Flow

In the Seasibility Study period, the Merul Pump Station and the Gulshan Pump Station will have about 40% and 73% of the design maximum hourly sewage flow of the Master Plan, respectively. In this regard, the civil and architectural facilities of the Merul Pump Station were designed to handle half of the whole capacity, while the Gulshan Pump Station was designed to handle whole scale of the Master Plan.

6. Sewage Treatment Plant

Preliminary engineering design of the sewage treatment plant was prepared with the following flow sheet which includes sludge treatment for septage collected from septic tanks.

7. Construction Cost and O&M Cost

Construction Cost of Sewerage System

Unit: Tk '000

例

Item	Currency Mode	Ratio (%)	Sewer	Pump Station	Sewage Treatment Plant	Total
······	Local	- 1	142,699	712	954,829	1,098,240
Civil Work	Foreign		541,003	91,122	835,893	1,468,018
CIVILITIER	Sub-Total		683,702	91,834	1,790,722	2,566,258
	Local	- 1	0	0	0	0
Mechanical &	Foreign		0	294,143	187,041	481,184
Electrical Work	Sub-Total		0	294,143	187,041	481,184
	Local		142,699	712	954,829	1,098,240
Direct	Foreigu		541,003	385,265	1,022,934	1,949,202
Construction Cost	Total		683,702	385,977	1,977,763	3,047,442
Indirect	Local	15.0	21,404	106	143,224	164,734
Construction Cost		20.0	108,200	77,053	204,586	389,839
(Overhead & Tax)			129,604	77,159	347,810	554,573
	Local		164,103	818	1,098,053	1,262,974
Construction Cost	Foreign	+	649,203	462,318	1,227,520	2,339,041
		j	813,306	463,136		3,602,015
	Grand Tota	{ - '		(US\$10,687,836)	(US\$53,667,482)	(US\$83,124,062

Note: Exchange Rate US\$ 1.00 = 43.333 Tk (as of January 1998)

Item	Sewer	Pump Station	Sewage Treatment Plant	Total
Personnel Espense	1,200	1,855	1,659	4,714
Water Charges	0	7	3	10
Power Consumption	0	10,194	760	10,954
Fuel	2,640	688	54	3,382
Chemical	0	0	6,640	6,640
Repair Expanse	0	6,909	3,455	10,364
Tetal	3,840	19,653	12,571	36,064
Total	(US\$88,616)	(US\$453,534)		(US\$832,252

Operation and Maintenance Cost of Sewerage System

Note: Exchange Rate US\$ 1.00 = 43.333 Tk (as of January 1998)

8. Project Cost

Currency Ratio Sewage Item **Pump Station** Total Sewer Mode (%) **Treatment Plant** Local 164,103 818 1,098,053 1,262,974 -649,203 462,318 2,339,041 **Construction** Cost 1,227,520 Foreign -2,325,573 813,306 3,602,015 Sub-Total 463,136 • Local 18,636 511,078 529,714 • 0 Land Acquisition Foreign 0 0 0 Ô • Sub-Total Õ 18,636 511,078 529,714 • Local 0 0 0 0 • **Engineering Service** 3.0 19,476 13,869 36,825 70,170 Foreign 70,170 Total 19,476 13,869 36,825 • 5.0 8,205 54,902 63,147 Local 40 5.0 33,433 23,809 63,217 120,459 Administration Cost Foreign 183,606 Tota) 41,638 23,849 118,119 100 23,315 23,315 Local Ő ٥ 100 **Custom Duty VAT** Foreign 145,211 294,143 244,856 684,210 Total 168,526 294,143 244,856 707,525 -10.0 1,949 166,403 185,582 Local 17,230 **Physical Contingency** 10.0 70,211 49,999 132,756 252,966 Foreign 438,548 87,441 51,948 299,159 Total -2,064,732 1,830,436 Local 212,853 21,443 -844,138 917,534 1,705,174 3,466,846 Foreign Grand Total 3,535,610 5,531,578 1,130,387 865,581 Grand Total (U\$\$127,652,780) (US\$26,086,054) (US\$19,975,099) (US**S**81,591,627) 43,333 Tk (as of January 1998)

Note: Exchange Rate: US\$ 1.00 =

Unit: Tk'000

Unit: Tk '000

)

)

SUMMARY REPORT

TABLE OF CONTENTS

	PAGE
Location Map	
Table of Contents	i
List of Tables	vi

List of Figures......x

CHAPT	ER 1 PROGRESS OF THE STUDY	
СНАРТ	ER 2 EXISTING CONDITIONS IN THE STUDY AREA	2-1
2.1	Physical Conditions	2-1
2.2	Water Supply	
2.3	Sewerage Service	
2.4	Water Pollution	

СНАРІ	TER 3	EXISTING SEWERAGE SYSTEM IN SOUTH DHAKA	
3.1	Over	all Sewerage System	
3.2	Sewe	er System	
	3.2.1	Physical Conditions	
	3.2.2	Practice of Operation and Maintenance	
3.3	Lift	and Pump Stations	
	3.3.1	Physical Condition	
	3.3.2	Practice of Operation and Maintenance	
	3.3.3	Incoming Sewage Flow	
3.4	Sewa	age Treatment Plant	
	3.4.1	Physical Conditions	
	3.4.2	Practice of Operation and Maintenance	
	3.4.3	Incoming Sewage Flow	
	3.4.4	Treatment Performance	
3.5	Cent	ral Store	
3.6	Wor	k Shop	

9

覅

CHAPTER 4 PAST AND ON-GOING PROJECTS RELATED TO

.

	SANITATION/SEWERAGE FACILITIES
4.1	"Basic Design Study Report on the Sewerage Construction and Rehabilitation
	Project for Dhaka City", Japan International Cooperation Agency, February 1998
4.2	"Water Treatment Plant at Demra and Other Works-Interim Report (Water Supply)",
·	Camp Dresser & McKee International Inc. USA, et al., November 1989
4.3	"Water Treatment Plant at Demra and Other Works-Interim Report (Sewerage)",
	Camp Dresser & McKee International Inc. USA, et al., February 1990
4.4	"Updating Study on Storm Water Drainage System Improvement in Dhaka City",
	Japan International Co-operation Agency, February 1990
4.5	"Dhaka WASA IV Project-Saidabad Site Feasibility Study (Final Report)",
	Camp Dresser & McKee International Inc. USA, et al., February 1992
4.6	"Dhaka City Emergency Water Supply Project-Feasibility Study (Final Report) Main
	Report", BCEOM & Engineering and Planning Consultants Ltd. Bangladesh, May 1992.4-5
4.7	Staff Appraisal Report (Report No. 13969-BD), "Bangladesh Fourth Dhaka
	Water Supply Project", The World Bank, November 1996 4-10
CHAPI	ER 5 SEWERAGE MASTER PLAN 5-1
5.}	Planning Strategy
	5.1.1 Dhaka Metropolitan Development Plan as Supreme Urban Development Plan
	5.1.2 Strategy for Sanitation/Sewerage Provision
5.2	Target Year
5.3	Identification of Target Area for Master Plan Preparation
5.4	Design Population
	5.4.1 Methodology to Set-up Future Population in DMDP
	5.4.2 Design Population
	 5.4.3 Defineation of Planned Sewerage Service Area
5.5	5 10
5.6	
5.7	
5.8	5 15
0.0	5.8.1 Design Sewerage Flow
	5.8.2 Design Criteria
5.9	510
	5.9.1 Alternatives of Sewerage System

 \bigcirc

5.9	0.2 Sower System	5-22
5.10 S	Sewage Treatment Plant	5-24
5.11 P	Pre-treatment Facility for Wastewater with High Pollution Load	5-31
5.12 (Operation and Maintenance Plan	5-32
5,1	2.1 Identification of Operation and Maintenance Activities	5-32
	2.2 Organisational Set-up and Relevant Activities for Operation and Maintenance	
CHAPTE	R 6 PROJECT COST AND IMPLEMENTATION SCHEDULE	6-1
6.1 H	Project Cost	6-1
6.1	1.1 Composition of Project Cost	6-1
6.1	1.2 Availability of Materials and Equipment	6-2
6.1	1.3 Unit Cost	6-2
6.1	1.4 Project Cost	6-3
6.2 I	Implementation Plan	6-5
CHAPTE	R 7 INSTITUTIONAL ASPECTS	7-1
7.1 \$	Sector Institutions Involved in Sanitation/Sewerage Provision	7-1
7.1	1.1 Central-Level Institutions	
7.1	1.2 City-Level Institutions	7-2
7.2	Key Legislation ad Sector Policy Statements	
7.3	Dhaka Water Supply and Sewerage Authority (DWASA)	
	3.1 Organisational Structure	
7.:	3.2 Staffing and Human Resources	
СНАРТЕ	R 8 FINAL ASPECTS	8-1
8.1	Past and Current Financial Conditions	8-1
8.	1.1 Past Financial Conditions	8-1
8.	1.2 Current Financial Situation	8-1
8.	1.3 Improvement Programs	8-2
8.2	Balance Sheet and Assets	8-3
8.3	Tariff Rate	8-6
8.4	Financial Analysis	8-6
8.	4.1 Cash Flow	8-6
8.	4.2 FIRR	8-7
8.5	Economic Evaluation	
8.	5.1 Economic Benefits	8-9
8.	.5.2 Public Revenue Benefits	
8.	.5.3 Economic Analysis	8-10

Ð

CHAPTER 9 SELECTION OF PRIORITY PROJECT	
9.1 Selection Criteria of Priority Project	
9.2 Selection of Priority Project(s)	9-2
CHAPTER 10 FEASIBILITY STUDY OF PRIORITY PROJECT	10-1
10.1 Present Conditions of Existing Sewerage Facilities	10-1
10.2 Facility Planning	10-3
10.2.1 Design Fundamentals	10-3
10.2.2 Design Criteria	10-8
10.2.3 Selection of Receiving Water Body for Effluent	10-10
10.2.4 Preliminary Design of Sewerage System	10-12
10.2.5 Operation and Maintenance Plan	
10.3 Environmental Impact Assessment (EIA)	10-25
CHAPTER 11 PROJECT COST OF PRIORITY PROJECT	11-1
11.1 Composition of Project Cost	11-1
11.2 Selection of Resource Country for Procurement of Equipment and Materials	11-1
11.3 Classification of Project Cost by Funding Source	
11.4 Construction Cost and O&M Cost	11-2
11.5 Project Cost	11-3
CHAPTER 12 FINANCIAL ASPECTS	12-1
12.1 FIRR	12-1
12.2 Economic Analysis	12-4
CHAPTER 13 PROJECT EVALUATION, CONCLUSIONS AND	
RECOMMENDATIONS	13-1
13.1 Project Evaluation	13-1
13.1.1 Benefits and Feasibility/Appropriateness of Priority Project	13-1
13.1.2 Project Evaluation	13-2
13.2 Conclusions and Recommendations	13-4
CHAPTER 14 EMERGENCY PROJECT FOR NORTH DHAKA	14-1
14.1 Proposal of Emergency Project	
14.2 Present Conditions of Existing Sewerage Facilities	14-2
14.2.1 North Dhaka Area	
14.2.2 South Dhaka Area	14-2

14.3 Sewerage Facility Plan	14-6
14.3.1 Selection of New Service Area in the Core Area and its Facility Plan	
14.3.2 Necessity to Improve Existing Sewer Network in Core Area	14-9
14.3.3 Relocation of Existing Trunk Main in South Dhaka Area	14-10
14.4 Project Cost	
14.5 Project Evaluation	
14.5.1 Design Population	14-16
14.5.2 Design Sewerage Flow	

LIST OF TABLES

PAGE

()

CHAPTER 2 EXISTING CONDITIONS IN THE STUDY AREA Analysis Results of Public Water Bodies (1)......2-3 2.12.2 CHAPTER 3 EXISTING SEWERAGE SYSTEM IN SOUTH DHAKA 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Monthly Expenditure Breakdown for Pagla STP and Narinda P/S and L/S(1996)........... 3-15 3.9 Water Quality and Removal Rate of BODs and SS 3-16 3.12 3.19 O&M Budget for the Workshop (1996~1997) 3-20 CHAPTER 4 PAST AND ON-GOING PROJECTS RELATED TO 4.1 5.1 5.2

5.4	Future Population Projected in the DMDP
5.5	Future population in the Study Area
5,6	Zoning for Sewerage System Planning in North Dhaka
5.7	Planned Area, Population Density and Population by Sewerage Zone
	in North Dhaka
5.8	Per Capita Design Sewage Flow by Year
5.9	Design Sewage Flow by Sewerage Zone (Year 2020)
5.10	Allowance for Sewer Capacity
5.11	Chart for Selection of Pumping Station Type by Design Flow
5.12	Outline of Alternative Sewerage System
5.13	Design Sewage Flow by Sewerage Service Area (Year 2020)
5.14	Comparison of Sewage Treatment Methods
5.15	Outline of Tongi Sewage Treatment Plant
5.16	Outline of North Dhaka East Sewage Treatment Plant
5.17	Outline of North Dhaka West Sewage Treatment Plant
5.18	Typical Pre-treatment Methods of Industrial Wastewater
5.19	Work Items by Type of O&M of Sewers
	Work Items of Lift Station by O&M Types
	Work Items of Sewage Treatment Plant by O&M Type
5.22	Proposed items and Frequency for Water Quality Analysis
СНАРТ	ER 6 PROJECT COST AND IMPLEMENTATION SCHEDULE
6.1	Procurement Plan for Construction Materials/Equipment
6.2	Cost estimation Formula for Sewage Pumping Station and Sewage Treatment Plant
6.3	Project Cost of Sewerage System
6.4	Operation and Maintenance Cost of Sewerage System
CHAPT	ER 7 INSTITUTIONAL ASPECTS
:	
CHAPI	ER 8 FINAL ASPECTS
8.1	DWASA Assets
8.2	Income Statement
8.3	MIR Report on DWASA Revenue Expenditure
8.4	Current DWASA Tariff Schedule
8.5	Loan Repayment/FIRR of Alternative Loan Interest Rates

8,6	Sensitivity Analysis for Recommended Project	
CHAPT	ER 9 SELECTION OF PRIORITY PROJECT	
9,1	Comparative Evaluation of Candidate Areas	9-2
CHAPT	TER 10 FEASIBILITY STUDY OF PRIORITY PROJECT	10-1
10.1	Land Use in North Dhaka East Sewerage Zone	10-5
10.2	Design Population of Feasibility Study	10-5
10.3	Per Capita Design Sewage Flow	10-5
10.4	Design Sewage Flow of Feasibility Study	10-7
10.5	Design Criteria for Sewerage Treatment Plant	10-9
10.6	Situation of Receiving Water Body by Alternatives	10-10
10.7	Construction Cost of Additional Facility for Sewage Effluent by Alternatives	10-12
10.8	Hydraulic Capacity of Existing Main Sewers to Accept Planned Sewage Flow	10-14
10.9	Configuration of Sewer System	10-16
10.10	0 Design Sewage Flow of Pump Stations	10-16
10.1	1 Outline of Major Facility of Pump Stations	10-17
10.12	2 Design Sewage Flow of North Dhaka East Sewage Treatment Plant	10-18
10.13	3 Design Condition of Sewage Treatment Plant	10-19
10.14	4 Configuration of North Dhaka East Sewage Treatment Plant	10-19
10.1	5 Outline of Water Quality Examination Equipment	10-22
10.1	60&M Equipment	10-23
10.1	7 Work Items by Type of O&M of Sewers	10-23
10.1	8 Work Items of Lift Station by O&M Type	10-23
	9 Work Items of Sewage Treatment Plant by O&M Type	
	20 Proposed Items and Frequency for Water Quality Analysis	
10.2	21 Required Staff for Sewage Treatment Plant	10-25
СНАРТ	TER 11 PROJECT COST OF PRIORITY PROJECT	11-1
11.1	Procurement Plan for Construction Materials/Equipment	
11.2	2 Cost Classification by Locat and Foreign Currency Portion	
	Construction Cost of Sewerage System	
	Operation and Maintenance Cost of Sewerage System	
11.5		

Ô

	ER 12 FINANCIAL ASPECTS 12-1
12.1	Loan Repayment Schedule
12.2	Project Debt Service Burden for Recommended Project
12.3	Sensitibity Anatysis
12.4	Affordability of North Dhaka East STP Sewerage Tariff 12-4
CHAPE	ER 13 PROJECT EVALUATION, CONCLUSIONS AND
	RECOMMENDATIONS13-1
CHAPT	ER 14 EMERGENCY PROJECT FOR NORTH DHAKA14-1
	ER 14 EMERGENCY PROJECT FOR NORTH DHAKA 14-1 Selection of New Sewerage Service Area
14.1	
14.1 14.2	Selection of New Sewerage Service Area
14.1 14.2 14.3	Selection of New Sewerage Service Area
14.1 14.2 14.3 14.4	Selection of New Sewerage Service Area 14-7 Present and Future Sewerage Service Coverage 14-10 Increase of Water Level in Sewer Lines with Insufficient Flow Capacity 14-10
14.1 14.2 14.3 14.4 14.5	Selection of New Sewerage Service Area 14-7 Present and Future Sewerage Service Coverage 14-10 Increase of Water Level in Sewer Lines with Insufficient Flow Capacity 14-10 Flow Capacity of Existing Trunk Main 14-12
14.1 14.2 14.3 14.4 14.5 14.6	Selection of New Sewerage Service Area14-7Present and Future Sewerage Service Coverage14-10Increase of Water Level in Sewer Lines with Insufficient Flow Capacity14-10Flow Capacity of Existing Trunk Main14-12Specifications of New Trunk Main14-12

•

)

- ix -

LIST OF FIGURES

PAGE

 \bigcirc

(R)

CHAPTE	R 2 EXISTING CONDITIONS IN THE STUDY AREA
CHAPTE	R 3-EXISTING SEWERAGE SYSTEM IN SOUTH DHAKA
3.1	Proposed Organization Chart of DWASA
3.2	Water Supply and Sewerage System Zoning
3.3	Location Map of Lift Stations and Pump Station
3.4	Schematic Plan for Lift Stations and Pump Station and Pagla STP
3,5	General Plan of Pagla STP
3.6	Hydraulic Profile of Pagla STP
3.7	Influent & Effluent Water Quality Fluctuation
СНАРГІ	ER 4 PAST AND ON-GOING PROJECTS RELATED TO
	SANITATION/SEWERAGE FACILITIES
4.1	Proposed Facilities for Storm Water Drainage System Improvement
4.2	Location Plan of Saidabad Water Treatment Plant
4.3	Study Area and Elementary Urban Zones
4.4	Potential Surface Water Intake Sites under EWSP
4.5	Proposed Long-Term Surface Water Development Plan under EWSP
СНАРТІ	ER 5 SEWERAGE MASTER PLAN
5.1	DMDP: Dhaka Structure Plan 1995-2015 Compossite Policies Map
5.2	Conceptual Diagram of Sanitation/Sewerage Provision
5.3	Schematic Diagram of the Composition of Master Plan Target Area
5.4	Area of North Dhaka Sewerage Master Plan
5.5	Comparison of Future Population of DMDP and Dhaka City Emergency
	Water supply Project
5.6	Design Sewage Flow by Sewerage Zone (Year 2020)
5.7	Location of Selected Sewage Treatment Plant Site
5.8	General Layout of Sewerage System
5.9	Layout Plan of Tongi STP 5-28
5.10	Layout Plan of North Dhaka East STP 5-29
5.11	Layout Plan of North Dhaka West STP
CHAPT	ER 6 PROJECT COST AND IMPLEMENTATION SCHDULE

	CHAPTER 7 INSTITUTIONAL ASPECTS	
9	CHAPTER 8 FINAL ASPECTS	8-1
	CHAPTER 9 SELECTION OF PRIORITY PROJECT	9-1
	CHAPTER 10 FEASIBILITY STUDY OF PRIORITY PROJECT	10-1
	10.1 Results of Existing Sewer Investigation	10-2
	10.2 Location Map of Feasibility Study Area	10-4
	10.3 Design Sewage Flow of Feasibility Study (Year 2005)	10-6
	10.4 Flow Sheet of Stabilisation Pond Treatment Method	10-10
	10.5 Location of Alternative Receiving Water Bodies	10-11
	10.6 Design Sewage Flow of Sewer System (Year 2005)	10-13
	10.7 General Layout of Sewerage System	10-15
	10.8 Flow Chart of Pump Station	10- 1 7
	10.9 Flow Diagram of North Dhaka East Sewage Treatment Plant	10-18
	10.10 General Layout of Sewage Treatment Plant	10-20
	10.11 Hydrautic Profile	10-21
0	CHAPTER 11 PROJECT COST OF PRIORITY PROJECT	\$1-1
	11.1 Composition of Project Cost	11-1
	CHAPTER 12 FINANCIAL ASPECTS	12-1
	12.1 O&M Costs vs. Project Income	12-2
	CHAPTER 13 PROJECT EVALUATION, CONCLUSIONS AND	
	RECOMMENDATIONS	13-1
	CHAPTER 14 EMERGENCY PROJECT FOR NORTH DHAKA	
	14.1 Schematic Diagram of Sewage Flow in South Dhaka	
	14.2 Present Conditions of Trunk Main	
	14.3 Facility Plan of Baridhara Area	14-8
	14.4 Vertical Cross-section of Existing Trunk Main	
	14.5 General Layout of New Trunk Main	
)	14.6 New Trunk Main Profile	
	14.7 Design Incoming Sewage Flow of Existing Lift Station (Year 2005)	14-18

. ...

 \bigcirc

CHAPTER 1 PROGRESS OF THE STUDY

Upon the arrival of the Study Team in Dhaka on May 7, 1997, a series of discussions was held with agencies/officials concerned pertaining to the study schedule, approach and methodology of the Study, appointment of counterpart personnel, and composition of the Study Team.

The Study Team, in close liaison and co-operation with DWASA, conducted a reconnaissance survey, data collection and preliminary engineering study to the establish planning fundamentals and prospective alternatives of the sewerage master plan for North Dhaka.

During the Stage I Field Work from May 7 up to August 2, 1997, various field investigations were carried out, such as:

- Questionnaire Survey for Residents' Awareness on Environmental Sanitation,
- Survey on the Quantity and Quality of Domestic and Industrial Wastewater,
- Examination of Septic and Sewerage Sludge,
- Initial Environmental Examination, and
- Topographic Survey.

As a preliminary step of the Study, a master plan target area for sanitation/sewerage service provision was identified and the boundary of planning area was defineated. The Dhaka Metropolitan Development Plan (hereinafter referred to as "DMDP"), developed and published by "Rajdhani Unnayan Kartripakkha" (Capital Development Authority, hereinafter referred to as "RAJUK") in May 1997, was thoroughly reviewed and reflected in the Study. Particularly, the policies and strategies taken up in the DMDP Structure Plan (1995-2015) were a major reference for further determining the target areas for on-site treatment and sewerage service.

Alternative configurations of the sewerage system were then prepared for further study to select the optimum plan. Some alternatives were added to include the domestic sewage to be generated in the Cantonment Security Zone (military installation) during the Stage 1 Domestic Work. In this respect, unit cost information was also collected from DWASA and local suppliers.

The findings and survey results obtained during the Stage 1 Field Work were incorporated in the Progress Report 1 and further developed to include the output of the subsequent domestic work.

1

韵

As a result, the North Dhaka Sewerage Master Plan was developed and compiled as the Interim Report of the Study.

€

i

Progress Report 2 presented the findings and outcome of the Stage 2 Field Work in Bangladesh, which mainly focused on the Feasibility Study on the Priority Project (Core Area of North Dhaka East Sewerage Zone) undertaken by the Study Team during a 3.5 month period from November 7, 1997 until February 17, 1998.

The finalisation of the Feasibility Study took place during the successive period of the Study up to the end of March 1998 and the overall outcome together with the master plan was incorporated in the Draft Final Report. This Draft Final Report was submitted to DWASA in the beginning of June 1998 and presented at the 2nd Technology Transfer Seminar on June 17, 1998.

The Final Report was completed in mid-July in Japan. The Final Report incorporated the corrections and additions resulting from the review of the Draft Final Report. The Final Report was submitted to JICA for their review and was subsequently provided to DWASA in late July/early August 1998.

1-2

CHAPTER 2 EXISTING CONDITIONS IN THE STUDY AREA

As a result of the recent economic development and population increase, the Study Area has become the urban growth centre of Dhaka City, not only as a residential area, but also for new commercial establishments. Urban development, especially land development through the reclamation of swampy areas, has also triggered an acceleration of urbanisation and population growth, while the urban infrastructure is insufficient to meet with the increasing needs.

2.1 Physical Conditions

Most months show a maximum temperature of higher than 30°C and relative humidity usually exceeds 70% throughout the year. Rainfall averages 2,135 mm annually. The influence of the monsoons in Dhaka is relatively mild compared to the coastal area. Although rainfall in the winter season is negligible, relative humidity is still as high as about 70%. In this respect, the Study Area is considered to have generally hot and humid climatic conditions. The Study Area lies on flat alluvial deposits with difference of ground elevation of less than 10 m.

2.2 Water Supply

Most households and business establishments are served by the DWASA water supply system. The DWASA Management Information Report (hereinafter referred to as "MIR) for the month of April 1997 shows that a total of about 60,800 connections in the Study Area (MODS -Maintenance Operation Distribution Service; Zones IV & V) are served by DWASA.

Within the Study Area, the water production from 75 deep tube-wells in that period was recorded at about 279,000 cu.m/day, equivalent to about 4.6 cu.m/day/connection. In this respect, a considerable amount of technical and administrative losses is deemed involved in the present water supply system.

Water supply services are currently extended up to Uttara Model Town, while Tongi Pourashava has its own piped water supply system, which has been implemented by the Public Health Engineering Department (hereinafter referred to as the "PHED") of the Ministry of Local Government, Rural Development and Co-operatives (hereinafter referred to as "MLGRDC"). In Tongi Industrial Estate, most factories have their own deep well water sources.

2.3 Sewerage Service

Only a part of the Study Area is currently served by the existing sewerage system, including the wards of Gulshan, Banani and Mohammadpur. The total number of sewered customers in MODS Zone V is 3,667 connections (Zone IV is unserved by the sewerage system). This means that only 14% out of the 25,734 water supply service connections in Zone V are presently served by the sewerage system. In other words, the majority of households or establishments being unserved by the sewerage system are using septie tanks. Grey water and effluent of septie tanks are discharged into nearby drainage or open channels, resulting in the deterioration of the aquatic and living environments.

Even in the served area of the sewerage system, the sewage flow in the sewer lines was observed to be inadequate due to the accumulation of sediments and scum as well as other solid wastes discharged or dumped into the sewer lines. In addition, many pipes were damaged and numerous leaks were observed.

2.4 Water Pollution

The water bodies in the Study Area have become increasingly polluted as urban/industrial development has intensified. The rivers that surround Dhaka and the numerous ponds and takes are the ultimate destination for all of the wastewater discharged in the city. The inadequate storm drainage system, weak environmental protection enforcement, poor solid waste management and the monsoon weather patterns have resulted a poor living environment.

The prevention of water pollution control in the Study Area is minimal, especially in the slum areas. Water is usually untreated at the pollution source and simply discharged into the various available watercourses such as the Tongi River, swampy areas, etc. It is then used by the lower income people without regard for health risk.

The Gulshan and Banani Lakes are presently receiving water bodies for untreated domestic and commercial wastewater due to the insufficient provision of sewerage and drainage facilities. The illegal dumping of solid wastes is another cause of water pollution and environmental degradation

()

Tongi Industrial Estate is a significant and complicated industrial pollution source. Factories of detergent, dry cell batteries, pharmaceuticals, chemical products, and textile dying are all discharging untreated wastewater into the Tongi River through nearby swamps. Tanneries, mostly small-scale, are another source of water pollution with wastewater containing chromium hexavalent. Under the DMDP, such tanneries are planned to be relocated outside of the Study Area.

During the Stage 2 Field Work of the Feasibility Study, the 2nd survey on sewage quality and quantity was carried out to obtain dry season data. The 1st survey was conducted in the Stage 1 Field Work in the rainy season (June to July, 1997). The 2nd survey focused on domestic sewage, influent and effluent of the Pagla Sewage Treatment Plant (hereinafter referred to as the Pagla STP"), and the rivers receiving treated effluent from the proposed STPs. The results of these analyses are shown below.

Sampling Point	Balu River			Lathua Diwar			Turag River						
Sampung Point	D			1.42	Lakhya River			Upstream			Downstream		
Sampling Date	Jan. 1, 1998		Dec. 29, 1997			Dec. 31, 1997			Dec. 30, 1997				
Time	10.00	14:00	18:00	10:00	14.00	18:00	10.00	14.00	18:00	10.00	14:00	18:00	
Atoms. Temp.	20.5	21	20	20	22	20	22	23	21	22	23	20.5	
Sample Temp.	20	21	20	21	22.5	20.5	23	24.5	23	21	24	21.5	
рН	8.2	8.3	8.0	8.2	8.3	8.3	8.2	8.3	8.2	8.1	8.1	8.8	
BOD	25.4	29.6	24.3	22.1	25.3	29.6	20.8	11.7	16.9	25.6	18.2	31.9	
COD	108	132	61	36	32	32	64	160	128	160	96	140	
DO	5.86	6.23	6.02	5.78	5.37	5.66	7.47	6.78	6.27	5.02	5.73	5.52	
SS ·	210	120	110	140	280	90	65	70	65	90	105	70	
Chloride	8.7	7.8	8.9	9.2	12.8	10.1	12.6	11.7	13.8	12.6	11.7	13.8	
T-N	6.44	5.51	7.02	7.71	8.20	6.70	8.50	8.65	5.16	6.18	7.90	7.33	
T-P	7.0	6.8	6.6	3.5	4.0	3.0	3.0	2.0	2.5	2.5	3.2	3.0	
Coliform Group	1.5x	1.7x	1.0x	8.0x	7.5x	6.0x	1.0x	1.5x	1.6x	2.0x	1.1x	2.3x	
Bacteria	10^{3}	104	105	103	10 ³	104	10 ⁵	104	10 ⁴	<u>}0</u> ⁴	10 ⁴	104	

Table 2.1 Analysis Results of Public Water Bodies (1)

Unit: mg/l, Temperature; °C Coliform Group Bacteria; No./100ml

 \bigcirc

)

TADIC 2.2 A	патулт						-,			Ur	nit: mg/	1	
Sampling Point	Balu River			Lakhya River			Turag River						
Samping Cont	17,	nu eriv	U 1	LAINIYA KIVÇI		Upstream			Downstream				
Time	10.00	14:00	18.00	10.00	14.00	18:00	10.00	14.00	18:00	10.00	14:00	18.00	
Cadmium (Cd)	0.08	0.07	0.08	0.08	0.03	0.08	0.05	0.04	0.05	0.03	0.05	0.07	
Mercury (Hg)	0.02	0.01	0.02	<.01	<.01	<.01	<.01	< 01	<.01	<.01	<.01	<.01	
Arsenic (As)	0.02	0.01	0.02	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	
Lcad (Pb)	0.25	0.34	0.23	0.12	0.18	0.23	0.30	0.25	0.30	0,28	0.31	0,30	
Chromium (Cr)	0.02	0.02	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	0.01	0.01	
Copper (Cu)	0.25	0.15	0.10	0.25	0.15	0.20	0.28	0.17	0.30	0.30	0.42	0.37	
Zinc (Zn)	0.30	0.60	0.90	0.80	0.40	0.30	0,30	0.40	0.60	0,60	0.70	0.50	
Nickel (Ni)	0.02	<.01	0.01	<.01	<.01	<.01	0.03	<.01	<.01	0.02	0.04	0.03	

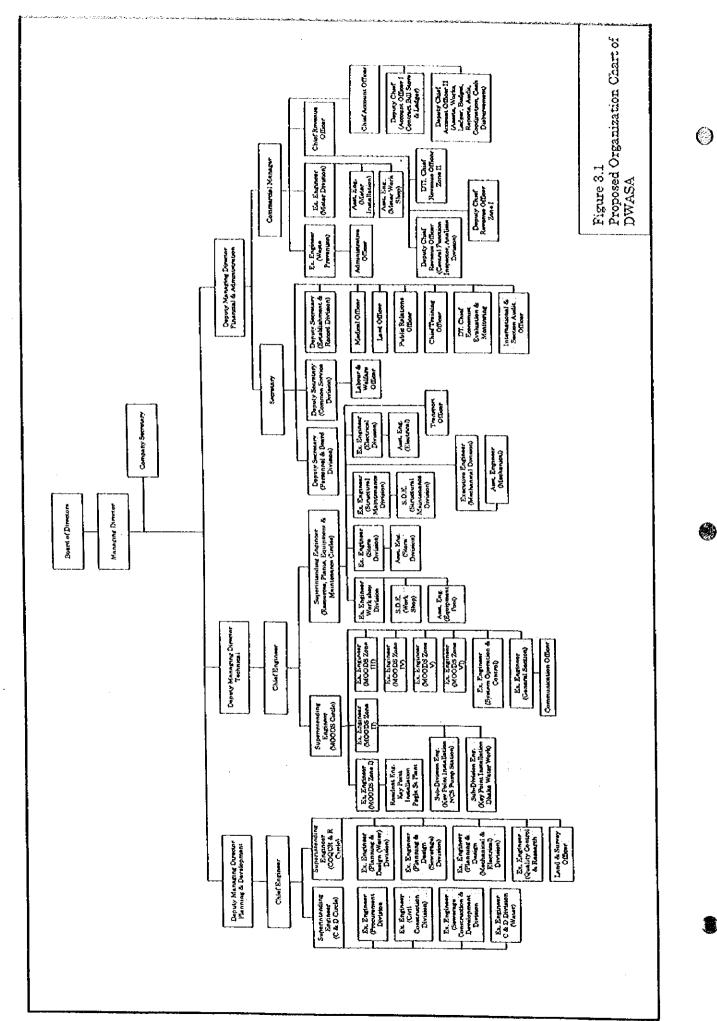
Table 2.2 Analysis Results of Public Water Bodies (2)

CHAPTER 3 EXISTING SEWERAGE SYSTEM IN SOUTH DHAKA

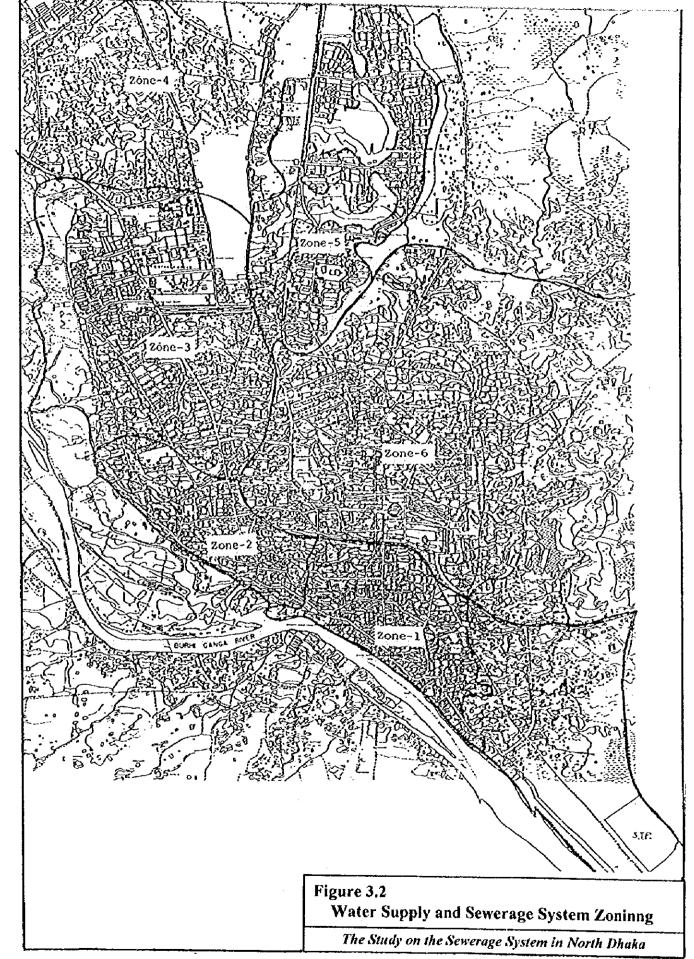
3.1 Overail Sewerage System

The present organisational set-up of DWASA is shown in Figure 3.1 and the administrative boundary of the MODS Zone Offices is shown in Figure 3.2. The major sewerage facilities in Dhaka City are summarised in Table 3.1.

Table 3.1 Outline of Existing Sewerage System


Item	Existing Quantity	Remarks					
Scwer Line	624 km (531 km)	(93 km) of scwer line in Zone IV for Small-Bore System in not yet operated since the discharge pump station is not yet completed					
Sewage Pump Station	I No.	Narinda					
Sewage Lift Station	19 Nos.	Bashaboo, Sayedabad, Faridabad, Azimpur, Nawabganj, Hazaribag, Asad Gate, New Mar- ket, Tejgaon, Banani, Mohakhali, Mogbazar, P & T, Medical College, Mothertek, Goran, and other three locations					
Sewage Treatment Plant	ł No.	Pagla					

3.2 Sewer System


3.2.1 Physical Conditions

The materials used for sewer lines are VC Pipe (Vitrified Clay Pipe), RC Pipe (Reinforced Concrete Pipe) and PVC Pipe (Polyvinyl Chloride Pipe) etc. Some sewer lines were constructed in early 1960's targeting a population of approximately 500,000 and are now experiencing capacity shortages due to the rapid population growth in the city, as shown in Table 3.2.

0

3 - 2

)

0

Zone	Total Length of Sewer	Present Status	Remarks
1	200 - 1,350mm L =150 km	Bad - 20 km	Needs repair
11	150 - 600mm L =110 km	Bad - 2.4 km	Needs repair
111	200 - 450mm L = 90 km	Bad - 3 km	Needs repair, Planned new sewer installation L = 15 km
١V	(L= 93 km)		Small-Bore System is not yet in operation
V	200 - 900mm L = 61 km	Good	
٧ſ	150 - 900mm L =120 km	Bad - 10 km	Needs repair
Total	L= 624 km *(531 km)	Bad - 35,4 km	

6

 Table 3.2
 Outline of Existing Sewers in Six Zones

Note: *excluding Zone IV

3.2.2 Practice of Operation and Maintenance

The sewers are mainly maintained by sewer inspectors, sewer mechanics and sewer cleaners. If citizens complain of any nuisance, for example flooding, sewage leakage, etc. to the complaint attendant of a Zone Office, a sewer inspector is dispatched to the problem site and, under his supervision, sewer mechanics and cleaners remove any sediments using hand-tools such as bamboo sticks. Sludge dewatering pumps and hydraulic jetting machines are also available. Aside from the above-mentioned emergency claims, an annual cleaning program is formulated every year and routine cleaning is also carried out by cleaning teams.

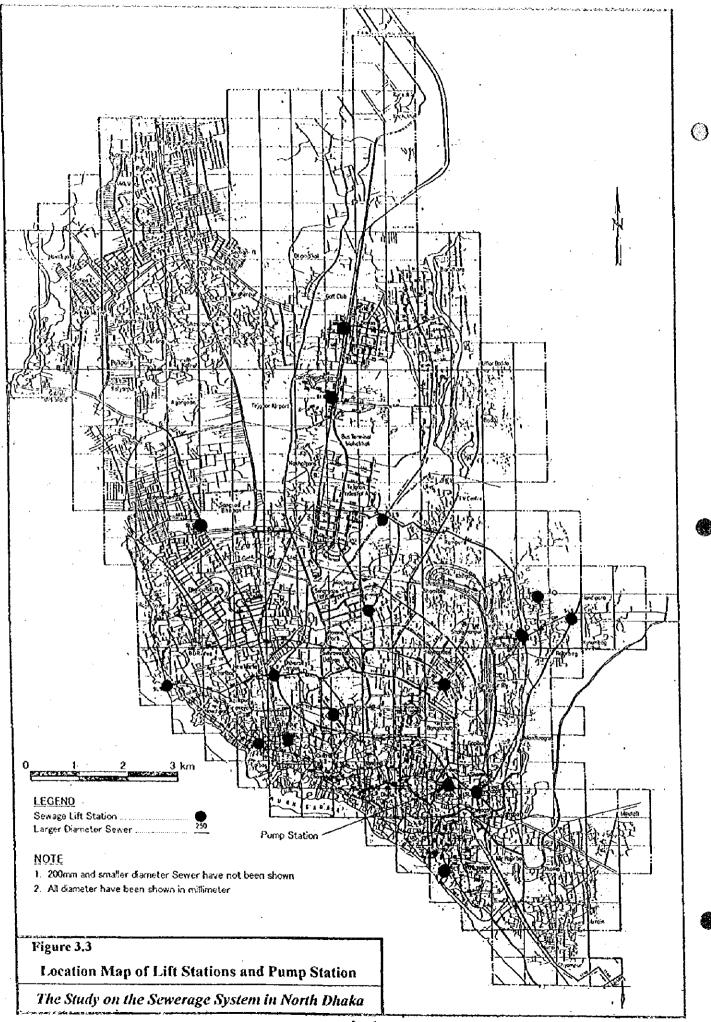
However, the public opinion regarding sewerage and dust is usually negative and some are disposing their waste into sewers through manholes, which consequently causes clogging and flooding. In addition, manhole covers, mainly made of cast iron, are lost to theft and waste piled beside the road flows into the open manholes on rainy days. Accordingly, public sanitation education is indispensable together with the replacement of the manhole covers.

Table 3.3 shows the number of O&M staff per one km of sewer in the six MODS Zones. O&M staff includes sewer inspectors, sewer cleaners and vacuum operators.

Zone	Total Length of Sewer	Number of O & M Staff	Staff per 1 km of Sewer
	150 km	47	0.31
11	110 km	43	0.39
111	90 km	25	0.28
١٧	(93 km)	(5)	(0.05)
v	61 km	25	0.41
VI	120 km	30	0.25
<u></u>		Average	0.32

 Table 3.3
 Number of O & M Staff per 1 km of Sewer

3.3 Lift and Pump Stations


3.3.1 Physical Condition

There are 19 lift stations (hereinafter referred to as L/Ss) and one pump station (P/S) in South Dhaka. Their locations are shown is Figure 3.3. Under the last "Construction and Rehabilitation Project for the Sewerage of Dhaka City/JICA," 12 L/Ss and one P/S were rehabilitated. Their present status is summarised in Table 3.4. Three small L/Ss out of 19 L/Ss are not referred herein.

The existing facilities are generally in operational condition, however, malfunctioning facilities should be repaired immediately especially the pumps, starters, generators and electricity supply.

Further, the pumps are operated manually and the operating sewage level, the pump starting level, is inordinately high. This was observed at almost every L/S and P/S. This is because many of the water level indicators installed in wet wells were out-of-order and operators started the pumps only by their eye measurement of the sewage level in wet well. This might have hindered the smooth flow of sewage in upstream of the L/Ss and P/S. Thus, the water level indicator should be repaired immediately or some other measuring devices should be prepared.

镧

Table 3.4	 Present Status of Lift Stations and Pump Station
-----------	--

Zone	Name of Stations	Present Status
	Narinda P/S (Old)	All six pumps are operational Vacuum pump should be repaired Not Operated due to the small incoming flow
	Narinda P/S (New)	Among seven pumps, five are operational Two pumps are under repair (impeller worn out, bearing damage) Vacuum pump should be repaired
I	Bashaboo L/S	All five pumps are operational but one starter's magnetic contactor was burnt due to the voltage fluctuation Vacuum pump should be repaired Generator was burnt last July, 1993 due to short circuit
	Sayedabad L/S	All five pumps are operational Vacuum pump should be repaired
	Faridabad L/S	All two pumps are operational Battery for the generator should be recharged
	Azimpur L/S	All two pumps are operational
	Nawabganj L/S	Among two, one pump was burnt on April, 1997 Battery of generator was damaged
11	Hazaribag L/S	Last November, 1996, electricity was shut-down de to the damage of double fuse insulator and L/S is not operated The tannery's wastewater discharged into the pond nearby causing odour problems
	Asad Gate L/S	Among three, one pump is under repair Vacuum pump should be repaired
H	New Market L/S	Among four pumps, two are non-functioning due to shaft worn out Vacuum pump should be repaired
	Tejgaon L/S	All five pumps are operational Vacuum pump should be repaired Seldom operated, since by-pass gate is open to allow the incoming sewage flow through by gravity
V	Banani L/S	Running
	Mohakhati L/S	Among three pumps, No.2 pump is under repair (motor was burnt last 15 Jan., 1997)
	Mogbazar L/S	Among two sets of pump and starter, one set was burnt Battery of generator was damaged
VI	P & T L/S	All two pumps are operational
	Medical College L/S	All three pumps are operational but starter of No.1 pump is mal- functioning since the magnetic contactor was burnt
	Mothertek L/S	Running
	Goran L/S	Running

)

.

8

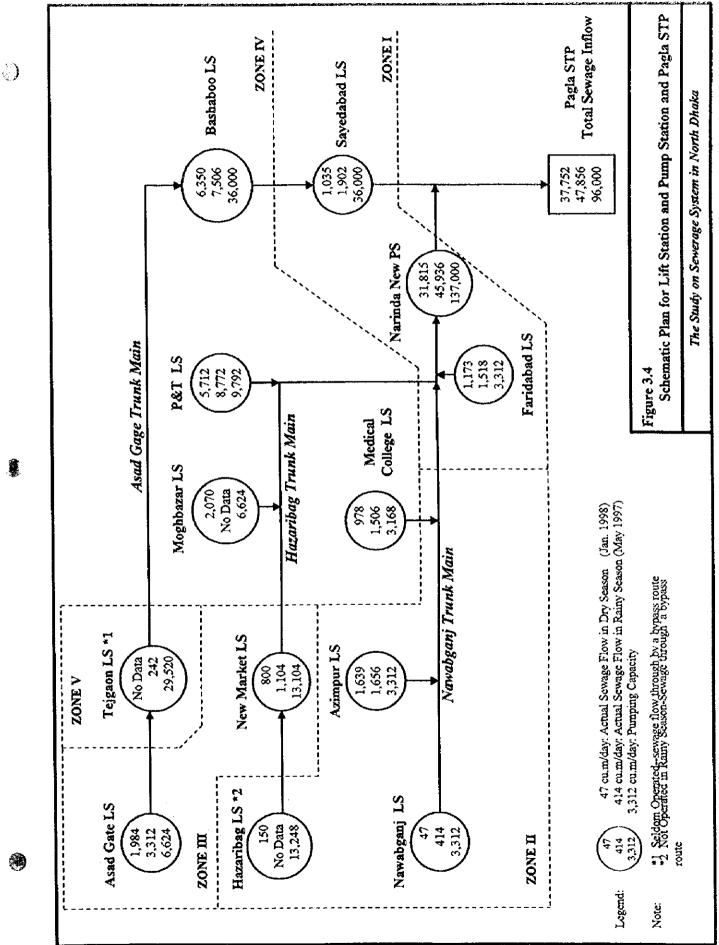
,

3.3.2 Practice of Operation and Maintenance

These L/Ss and P/S are operated by pump operators in three shifts. The duty time of each shift is as follows:

()

Shift 1 :	6:00 - 14:00
Shift 2 :	14:00 - 22:00
Shift 3 :	22:00 - 6:00


Operational activities are recorded in a logbook and it contains, pump operation duration, voltage, current and countermeasures taken in accidents, such as breakdown, malfunctioning, current shut down etc. Since L/Ss are not equipped with any telecommunication system, operators must inform an officer in Zone Office in case of an accident and that officer calls the maintenance team at the Narinda P/S.

3.3.3 Incoming Sewage Flow

The incoming sewage flow for each L/S and P/S was calculated by the pump operation time and the results are shown in Table 3.5 and Figure 3.4, respectively. These data were obtained through field surveys conducted in both the rainy season and dry season. It was clearly indicated that a considerable volume of sewage (about 5,600 cu.m/day) teaks from the trunk main between the Bashaboo L/S and theSaidabad L/S.

Zone	Name of Station	Sewage Flow (cu.m /day)	Remarks
	Narinda P/S (Old)	0	Not operated due to small incoming swage
	Narinda P/S (New)	45,936	Only No.1 pump is operated
I	Bashaboo L/S	7,506	No.1, 2, 4, 5 pumps are operated
	Sayedabad L/S	1,920	No.4, 5 pumps are operated
	Faridabad L/S	1,518	No.1, 2 pumps are operated
1	Azimpur L/S	1,656	No.1, 2 pumps are operated
11	Nawabganj L/S	414	No.2 pump is operated
	Hazaribag L/S	0	Not operated due to the electricity shut-down
	Asad Gate L/S	3,312	No.1, 2 pumps are operated
m	New Market L/S	1,104	No.3 pump is operated
V	Tejgaon L/S	0	By-pass gate is open and seldom operated
	Mogbazar L/S	Unknown	No record
VI	P&TL/S	8,772	No.1, 2 pumps are operated
	Medical College L/S	1,056	No.2, 3 pumps are operated

Table 3.5 Incoming Sewage Flow to Lift Stations and Pump Stations

3 - 9

These data were obtained through field investigations conducted in both the rainy season and dry season to grasp the operating conditions of the sewer network and pump stations. Comparing the discharged flow from Bashaboo (7,506 cu.m/day) and Sayedabad (1,920 cu.m/day), which are located along the Asad Gate Trunk Main, a large volume of sewage (5,586 cu.m/day) is believed to be leaked within the said section.

3.4 Sewerage Treatment Plant

3.4.1 Physical Condition

The Pagla STP was rehabilitated under a Japanese Grant Aid Project. The outline of the facilities are shown in Table 3.5 and the general plan and hydraulic plan of the STP are also shown in Figures 3.5 and 3.6, respectively.

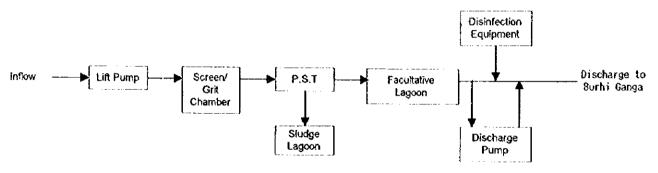
Table 3.5 Outline of Pagla Sewage Treatment Plant

1. General	
Name:	Pagla Sewage Treatment Plant
Location:	Dhaka City, Pagla District
Site Area:	110.5 ha (whole area) 87.7 ha (present site area)
Ground Level:	Present $GL = +1.8$ to $+6.9$
	Design $GL = +6.7$ to $+6.9$
Land Use:	East - farming, West - railroad and industrial area,
	North - marsh, South - farming
Sewerage System:	Separate system
Treatment Method:	Sewage Treatment = primary sedimentation tank + facultative
	łagoon
	Sludge Treatment = sludge lagoon (digestion and drying)
Receiving Water Body:	Buriganga River
	H.W.L. = +6.7

Design Sewage Flow Rate

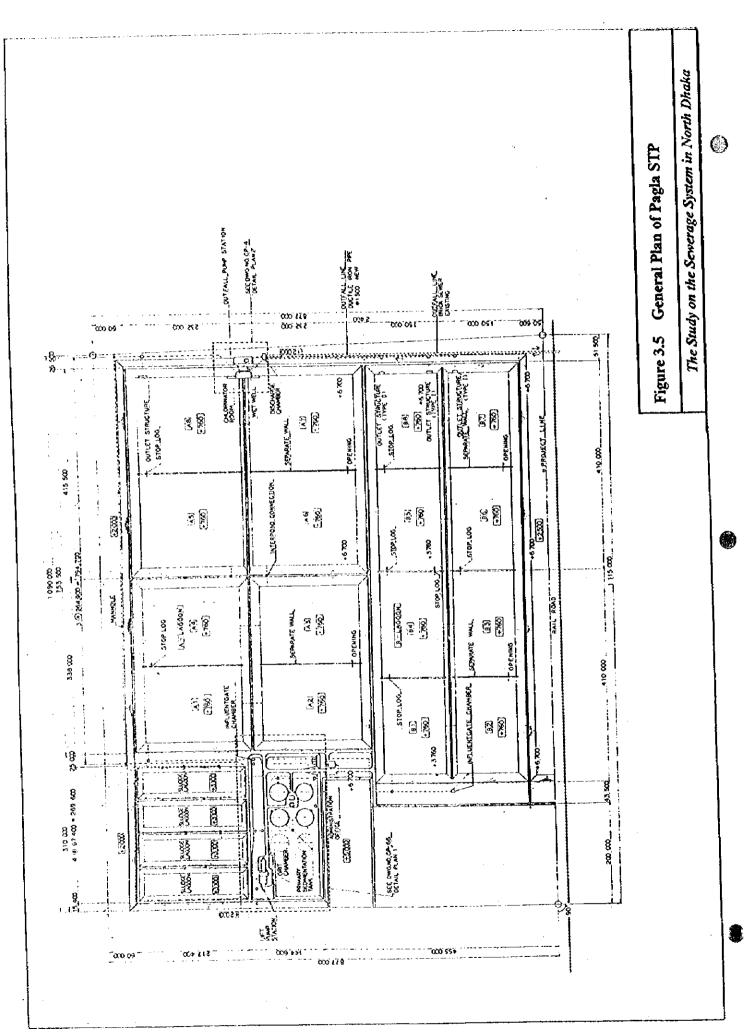
	_	Unit: cu.m/day
Sewage Flow	Whole Plan	Existing Facility
Daily Average	146,000	96,000
Daily Maximum	183,000	120,000
Hourly Maximum	232,000	120,000

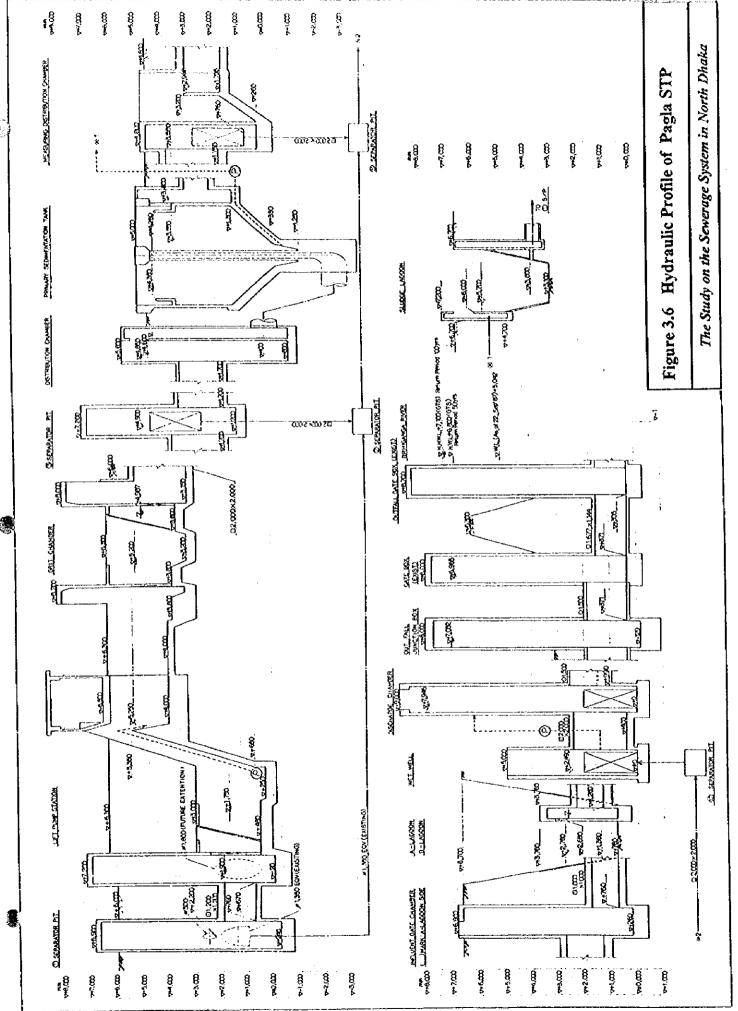
Table 3.5 Outline of Pagla Sewage Treatment Plant (Continued)


Water	Influent	Primary Sedimentation Tank		Facultative Lagoon		Total Removal
Quality Parameter	(mg/l)	Removal Ratio	Effluent	Removal Ratio	Effluent	Ratio
	(3.7	(%)	(mg/l)	(%)	(mg/l)	(%)
BOD	200	40	120	59	50	75
SS	200	60	80	25	60	70

Design Sewage Effluent Quality

2. Treatment Flow


)


籯

Facility	Dimension	No. of Facility		Consolity	
- ucinty	Dimension	Existing	Whole	Capacity	
Inflow	Brick Arch	ł	1		
	Sewer Dia. Ø54" (Equ.)				
	Slope 0.45%				
	Sewer Pipe	**	1		
	Invert Level +0.762				
	Sewer Dia. Ø1800				
	Slope 0.45%				
LOD	Invert Level +0.485				
Lift Pump	Screw Pump	3	5		
	Ø1,600 x 41 m ³ /min. x 3.8 m x 45 kW	(1)	(1)		
Grit Chamber	Horizontal Flow Type	2	2	Surface Load: 3,600 m ³ /m ² x day	
D.1	W 3.3 m x I. 10.2 m x D 1.42 m				
Primary Sedimentation	Centrifloc Sludge Scraper	4	6	Detention Time: 2.02 hr.	
Sedimentation Tank	ntation Ø33 m x D 3.0 m			Overflow Rate: 35.7 m ³ /m ² x day	
				Weir Loading: 293 m ³ /m x day	
Facultative Lagoon	Embanked Rectangular Pond	42 ha	64.1 ha	Retention Days: 7	
Discharge Deres	Effective Depth: 2.0 m			BOD Area Load: 343 kg BOD ha x day	
Discharge Pump	Horizontal Centrifugal Pump				
	Ø250mm x 4.55m ³ / min x 10.7 m	2	2		
	Ø250mm x 11.36m ³ / min x 10.7 m	2	2		
Divin Contine 12	Ø400min x 31.82m ³ / min x 10.7 m	3 .	3		
Disinfection Equip.	Liquid Chlorine	1	<u> </u>	Max. Dosing Rate: 3 mg/l	
Sludge Lagoon	Embanked Rectangular Pond	3	3	Solid Load 75 kg/m3 x year	
Discharge Pipe	Brick Arch				
	Inflow Ø1,350	1		Gravity flow only	
			_		
	Inflow Ø1,500	1	2		
	Length 1,240 m				

3. Outline of Major Facilities

The present status of the facilities are shown below:

Facility	Present Status			
Lift Pump	All operational			
Grit Chamber	Operational			
Primary Sedimentation Tank	All operational			
Facultative Lagoon	Operational			
Discharge Pump	All operational			
Disinfection	Chlorinator is now under repair			
Equipment	Maintenance of chlorinator is under the jurisdiction of the Structure Maintenance Division in DWASA			

Table 3.6 Present Status of Pagla STP

Minor breakdowns can be repaired by the Pagla maintenance team. In a case of major repair, the Pagla staff will prepare an estimate and call the contractors registered in DWASA for the tender. The successful tenderer will undertake the repair work.

3.4.2 Practice of Operation and Maintenance

The plant is operated by three shifts and the staff composition is as follows:

Position	No.	Position	No.
Executive Engineer	1	Driver	2
Subdivision Engincer	1	Utility Man	2
Sub-assistant Engineer	2	Gardener	1
Microbiologist		Office Cleaner	1
Sample Collector	1	Wireless Operator	1
Foreman	1	Generator Operator	2
Electrician	1	Treatment Plant Assistant	6
Cashier	1	Pump Operator	8
Typist & Clerk	1	Helper	8
Store Keeper	1	Sewer Cleaner	13
		Total	55

 Table 3.7
 Staff Composition of Pagla STP

The monthly total expenditure and its breakdown as of the year 1996 is shown below. This includes that of the Narinda P/S and other L/Ss.

····					Unit: Tk		
Items	Jan.	Геђ.	Mar.	Apr,	May	Jun.	
Salary	295,938	223,380	212,340	287,512	220,135	207,223	
O&M Costs	284,788	270,558	275,435	280,530	285,631	283,780	
Spare Parts	5,700	6,000	7,000	3,000	8,000	9,000	
Electricity	196,354	195,394	195,394	408,042	408,042	408,042	
Others	20,000	20,000	20,000	20,000	20,000	20,000	
Total	802,780	715,232	710,169	999,084	941,807	928,028	

 Table 3.8
 Monthly Expenditure Breakdown for Pagla STP and Narinda P/S and L/S (1996)

Items	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Salary	209,180	219,310	217,916	224,309	227,988	217,894	2,763,125
O&M Costs	290,195	278,290	279,355	278,780	286,996	275,855	3,370,193
Spare Parts	9,500	7,000	8,000	7,500	9,000	6,000	85,700
Electricity	496,291	463,947	463,947	242,045	242,045	256,973	3,976,515
Others	20,000	20,000	20,000	20,000	20,000	20,000	240,000
Total	1,025,166	988,547	989,218	772,634	786,029	176,722	10,435,533

3.4.3 Incoming Sewage Flow

Incoming sewage flow is measured at the measuring chamber at the upstream of Lagoon A and B on an everyday basis. Recorders calibrate the overflow depth by the measuring scale attached to the vertical wall beside the weir and calculate the incoming flow to each lagoon by a calculation chart. The monthly average flow for the last one-year (1996) was as follows:

 Table 3.9
 Monthly Average Incoming Sewage Flow at Pagla STP (1996)

					Unit:	cu.m3/da
Month	Jan.	Feb.	Mar.	Apr.	May	Jun.
Average Flow	40,505	38,359	42,840	42,625	47,657	57,702
Month	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Average Flow	53,245	51,672	46,890	42,904	38,167	34,903
				Annual	Average	44,539

Considering the design capacity of the plant, 120,000 cu.m/day, the incoming sewage flow is only equivalent to 32.0% (minimum), 44.4% (maximum) and 37.1% (average). Thus, the existing facilities are in operation partially; they are: 1 No. of inlet screw pump (total 3 Nos.), 2 Nos. of primary sedimentation tank (total 4 Nos.), facultative lagoon (8 Nos.; all), discharge pump (operated depending on the water level of the receiving water body: the Buriganga River) and 1 No. of sludge lagoon (total 3 Nos.).

3.4.4 Treatment Performance

A laboratory room is located in the administration building. Samples are taken once a week at:

()

- Distribution Chamber
- Outlet Primary Sedimentation Tank
- Outlet of A and B Lagoon

A microbiologist analyses the SS and BOD₅ for each sample. However the BOD₅ meter was disabled last 20 October, 1995 and thus only SS is measured and recorded at present. Table 3.10 shows the existing water analysis equipment in the laboratory room in the Pagia STP.

TADIC J.10 EXISTING	Hatti marysis Equiprices in the La	<u><u></u></u> <u></u>	
Item	Type and Manufacturer	No.	Present Status
Digital DO/O Meter	Bionic Industry Co., Ltd. DO-715k	l unit	Non-functional
pH Meter	Horiba	1 unit	Functional
Drying Oven	Yamato	l unit	ditto
Incubator	Sanyo	l unit	ditto
Vacuum Pump	Yamato	l unit	ditto
Glassware	Yamato	l set	


Table 3.10 Existing Water Analysis Equipment in the Pagla Laboratory_

The monthly average BOD₅, SS and their removal rate in a one-year period, from November 1994 to October 1995, is shown below.

Item	BOD5							SS		
Month/	Inf.	P.S.T	. Eff	F.L.	Overall R.R.	Inf.	P.S.T	. Eff.	F.L.	Overall R.R.
Year			R.R.					R.R.		
	(mg/l)	(mg/l)	(%)	(mg/l)	(%)	(mg/l)	(mg/l)	(%)	(mg/l)	(%)
Nov. 96	213	116	45.5	53	75.1	211	106	49.8	51	75.8
Dec.	202	111	45.0	48	76.2	221	105	52.5	55	75.1
Jan. 97	238	128	46.2	51	78.5	243	111	54.3	58	76.1
Feb.	225	121	46.2	52	76.9	225	122	45.8	50	77.8
Mar.	222	122	45.0	60	73.0	243	126	48.1	58	76.1
Арг.	211	114	46.0	54	74.4	225	90	60.0	53	76.4
May	211	116	45.0	51	75.8	233	89	61.8	58	75.1
Jun.	222	121	45.5	52	76.6	226	92	59.3	56	75.2
Jul.	205	120	41.5	50	75.6	205	80	61.0	55	73.2
Aug.	216	124	42.6	55	74.5	215	84	60.9	58	73.0
Sep.	213	122	42.7	53	75.1	217	88	59.4	60	72.4
Oct.	218	120	45.0	53	75.7	219	85	61.2	57	74.0
Avg.	216	120	44.7	53	75.6	224	98	56.2	56	75.0

Table 3.11 Water Quality and Removal Rate of BODs and SS

Note: Inf. = Influent, P.S.T. = Primary Sedimentation Tank, Eff. = Effluent, R.R. = Removal Rate, F.L. = Facultative Lagoon. During the field survey of L/Ss in industrial areas, some industrial sewage was connected to the public sewerage system and other was discharged to the pond or channel nearby just as in the case of the Hazaribag L/S in MODS Zone II (please refer Appendix 3.3.1). Thus, incoming sewage to the Pagla STP was comprised of domestic/industrial sewage. Figure 3.7 shows the influent and effluent quality fluctuation through the year.

The treated sewage is discharged to the Buriganga River through a discharge trunk by gravity or by discharge pump, depending on the level of the river.

As shown in Table 3.11, the average overall removal rate is 75.6% for BOD₅ and 75.0% for SS. Although the present treatment performance complies with the design removal rate, which is 75.0% for BOD₅ and 70.0% for SS, the effluent quality (BOD₅) exceeds the existing DOE effluent standards shown below.

Table 3.12	DOE	Effluent	Standards
------------	-----	----------	-----------

Water Quality Index	Unit	Standard Value
BODs	mg/l	40
Nitrate	mg/l	250
Phosphate	mg/l	35
SS	mg/l	100
Temperature	°C	30
Coliform	number/100 ml	1,000

The equipment of the laboratory should be improved immediately. Given the location of the plant and the budget restrictions, the water quality analysis cannot be covered by a private or governmental laboratory. Thus, the laboratory should be properly equipped at least for stable SS and BOD₅ measurement.

(

3.5 Central Store

The Central Store, belonging to the Store Division, is located just beside the Pagla STP. All purchased equipment or materials are transported here, checked, registered and then distributed to Zone Offices. In an area of 16.0 ha, there are three warehouses and one office building. Electrical and mechanical equipment is stored in warehouses and pipes, bends and valves are kept in open spaces without roofing. The staff composition is as follows:

Position	No.	Position	No,
Executive Engineer	1	Generator Operator	1
Subdivision Engineer	1	Mechanic	
Assistant Engineer	1	Gardener	5
Sub-assistant Engineer	4	Additional Pump Operator	5
Upper Divisional Assistant	2	Warehouse Man	3
Typist	6	Helper	6
Revenue Inspector	1	Utility Man	2
Driver	1	Office Cleaner	4
		Total	44

Table 3.13 Staff Composition of Central Store

The monthly expenditure and its breakdown for the last year (1996) are shown below.

						Unit: Tk	
Items	Jan.	Feb.	Mar,	Apr.	May	Jun.	3
Salary	107,466	79,789	106,182	194,473	105,943	113,414	
O&M Costs	15,207	64,514	10,496	63,935	15,138	171,298	
Spare Parts	-	-	-	-	-		
Electricity	34,518	28,069	28,069	28,069	28,069	28,069	
Others	305	415	313	311	311	438	
Total	157,476	172,787	145,060	286,788	149,506	313,219	
Items	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
Salary	111,440	115,124	115,807	117,318	114,885	117,186	1,399,007
O&M Costs	16,533	15,510	15,470	84,647	11,446	16,357	500,616
Spare Parts	-	-	-				500,010
Electricity	31,683	31,683	31,683	35,021	35,021	37,246	377,200
Others	321	238	174	468	630	694	4,618
Total	159,997	162,555	163,134	237,454	161,982	171,483	2,281,441

 Table 3.14
 Monthly Expenditure and Breakdown for Central Store

O&M cost includes the cost for fuel and building expansion and repair.

The stores warehouse over 400 categories of goods. At present, they are recorded manually and there might be serious trouble related to miswriting or miscalculation. For efficient store management, DWASA is planning to introduce a computer system. The Physical Inventory Report was completed on 30 June, 1996 and it contains the following information:

10 digit Code No. (for instance 1120602121)

- Name of material/equipment (for instance, material corresponding to the above Code No. is: 4 inch x 11.25 inch PVC Bend, B-Class)
- Date of Inventory
- Quantity as per book balance as of the end of the fiscal year S/A: Serviceable, U/S: Unserviceable, Total)
- Quantity received thereafter up to the date of the inventory (S/A, U/S)
- Total quantity on the inventory date (S/A, U/S, Total)
- Quantity issued upon the date of the end of the financial year (S/A, U/S)
- Balance quantity after the issue as on the inventory date (S/A, U/S)
- Actual found on the inventory date (S/A, U/S, Total)
- Shortage/exceeded for the last year (S/A, U/S, Total)
- Shortage/exceeded for the previous year (S/A, U/S, Total)

3.6 Workshop

The workshop, belonging to the Workshop Division of DWASA, is located besides the MODS Zone IV Office in Mirpur. Within an area of 5,000 sq.m, there is one garage, two office buildings, one roofed working space and one repair shop. The staff composition, a list of existing equipment and the repair record are shown below.

Table 3.15 Staff Composition of Workshop

Position	No.	Position	No.
Subdivision Engineer	2	Assistant Mechanic	2
Sub-assistant Engineer	6	Electrical Worker	2
Cashier	2	Assistant Electrical Worker	2
Typist	3	Machinist	2
Electrician	1	Assistant Machinist	2
Foreman	2	Welder	1
Store Keeper	1	Winder	1
Store Assistant	1	Assistant Winder	1
Mechanic	2	Helper	9
		Utility Man	1
		Total	43

1.20

Items	No.	Items	No.
16 ft 0 in. Lathe	1	Grinder	2
6 ft 0 in. Lathe	1	Radial Drill	1
4 ft, - 0 in. Lathe	1	Hand Grinder	1
Power Hacksaw	1	Hand Drill	1
Metal Cutter	3	Welding Machine	3
Twist Drill	2	Air Compressor	1
Shaper	1	Hand Tool (set)	1

Table 3.16 List of Existing Equipment

Table 3.17Record of Repair Works (as of September, 1996)

Items	No.
Water Carrier	14
Generator	4
Machine Shop	25
Microbus	2
Pick-up	3
Car	17
Тетро	0

The workshop repairs vehicles, pumps, generators, etc. from the Zone Offices. The existing system is as follows: first, they check the condition of the machine and find out which part should be replaced; second, purchase the required spare parts in the parts shop in the city; third, repair the machine. However, this procedure takes a great deal of time and for more efficient repair work, they are requesting that DWASA construct a spare parts store. If the required part is available in that store, repair work can be finished in half the time as that required by the present system. The O&M budget for the last is shown below.

Table 3,18 O&M Budget for the Workshop (1996-1997)

Item	Cost (Tk)	Item	Cost (Tk)
Overtime	438,900	Office Maintenance	71,668
Transportation	11,400	Vehicle Maintenance	2,850,000
Labour	84,098	Fuel	617,000
Telephone	120,745	Other Expenses	900
Advertisement	-	Furniture	4,465
Printing and Stationary	219,451	Motor and Generator	4,090,000
		Total	8,509,127

CHAPTER 4 PAST AND ON-GOING PROJECTS RELATED TO SANITATION/SEWERAGE FACILITIES

The past and ongoing projects, which might be related in formulating the master plan for the North Dhaka Sewerage Development, are outlined below.

4.1 "Basic Design Study Report on the Sewerage Construction and Rehabilitation Project for Dhaka City", Japan International Cooperation Agency, February 1988

The study was conducted from September 1987 to February 1988. Consequently, the following lines were established to construct/rehabilitate/provide facilities/equipment (see Table 4.1) under the Japanese Grant-Aid Program which was commissioned to the Dhaka Water Supply and Sewerage Authority in March 1992.

4.2 "Water Treatment Plant at Demra and Other Works - Interim Report (Water Supply)", Camp Dresser & McKee International Inc. USA, et al., November 1989

Included as part of the DWASA IV Project was the design of a 450,000 cu.m/day Demra Water Treatment Plant. In addition to the initial works, the plant was to be arranged in a manner that would allow easy expansion to 910,000 cu.m/day at some future date.

4.3 "Water Treatment Plant at Demra and Other Works - Interim Report (Sewerage)", Camp Dresser & McKee International Inc. USA, et al., February 1990

A feasibility study was undertaken by RMP/Montgomery on behalf of the DWASA for a long-term plan through the year 2010 on water supply and sewerage system within the Dhaka metropolitan area. The final report of the study produced in 1981, recommended that in order to ease the crisis of safe water supply and sanitation problem in Dhaka City and adjoining areas, a priority programme consisting of critical water and sewerage elements from Phase 1 of their Long Term Plan Development (LTP) be started immediately.

۳.

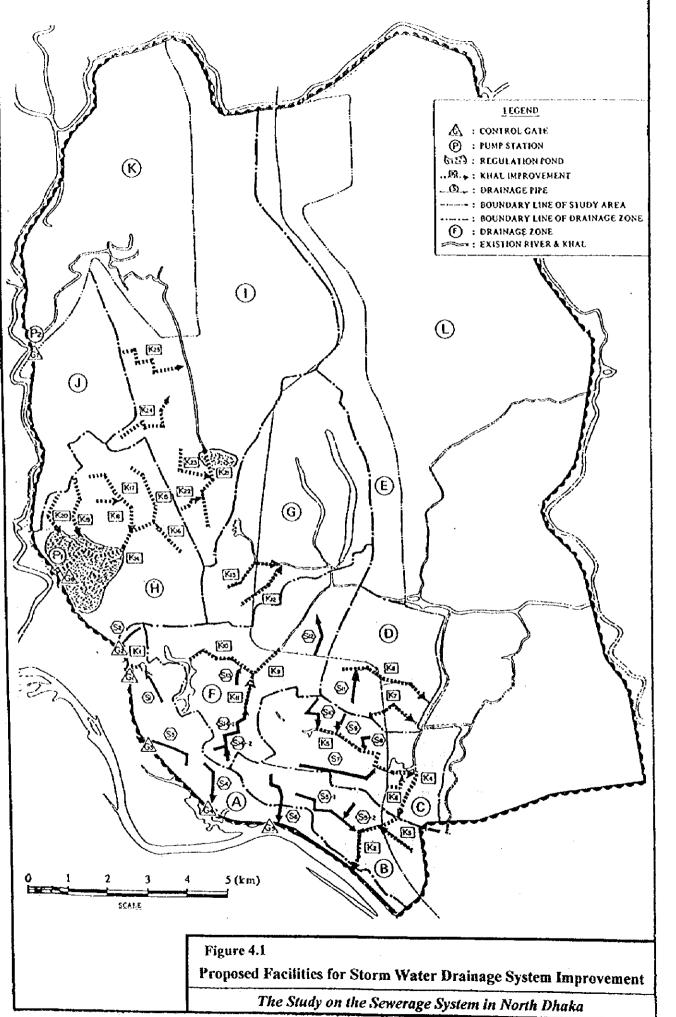
Item	Configurations/Specifications	<u>Qty</u>	Remarks
Pagla Sewage Treatment	Plant		· · · · · · · · · · · · · · · · · · ·
Lift Pump	Screw Pump		One for standby
	ø 1,600mm x 41m³/d x 3.8mH x 45kw	3	
Grit Chamber	Parallel Flow		
	3.3mW x 10.2mL x 1.42mD	2	
Primary Sedimentation	Center-Feed Circular w/ Sludge Scraper		
Tank	¢ 33m x 3.0mD	4	
Facultative Lagoon	Rectangular Embankment	14.8ha	
	Effective Water Depth : approx. 2.0m		
Disinfection Equipment	Chlorinator	1	
Sludge Lagoon	Rectangular Embankment		
	59.1mW x 169.1mL x 3.6mD	3	
Outfall Pipe	φ 1,500mm x approx. 1,240m	1	Existing one (54") is used, if the gravity drain- age is possible
Administration Bldg.	Office, Electrical Room	<u> </u>	Two-stories
Diesel Engine Generator	375KVA	2	Near admin. office and outfall pumping station, respectively
Lift and Pumping Station	n		
Hazaribag LS	Submergible Pump		Replacement of pumps
Ť	ϕ 200mm x 2.3m ³ /d x 17mH x 22kw	2	
	¢200mm x 4.6m ³ /d x 17mH x 30kw	2(1)	
Nawabganj LS	Submergible Pump		ditto
	ø 150mm x 2.3m³/ð x 9.2mH x 11kw	2(1)	
Faridabad LS	Submergible Pump		ditto
	ϕ 150mm x 2.3m ³ /d x 7mH x 7.5kw	2(1)	
Old Narinda PS	Submergible Pump		ditto
	Ø 300mm x 11.4m³/d x 12.2mH x 37kw	2(1)	
	\$\$\phi 400mm x 31.9m ³ /d x 12.2mH x 85kw	2(1)	
Screen Chamber			All stations
Grit Chamber			New Narinda PS
Overhead Traveling Crane	10 metric tons	1	Old Narinda PS
Diesel Engine Generator		10	8 units : fixed type 2 units : non-fixed type
Submerged Motor Pump	2.3 - 4.6 m3/min	6	<u></u>
Others			Vacuum pump, sump pump, control panel, lev gauge, etc.
Replacement of Sewers			
Faridabad LS	\$ 500mm x 1,500m		Discharge pipe
Faridabad LS	\$ 16" x 400m		Discharge pipe
Asad Gate To Tejgaon LS		1	
Gulshan to Tejgaon LS	φ24" x 100m	1	
Tejgaon to Swaminbag LS		1	
Old Narinda PS	¢ 42" x 85m	1	Discharge side head pipe
New Narinda PS	Intet Pipe, Sump Pit	-†	1.1.1.

 Table 4.1
 Facilities/Equipment Constructed/Rehabilitated/Provided

In compliance with this recommendation, the DWASA investigated the "Water Treatment at Demra and Other Works" project to meet the main objectives of the priority programme for sewerage, or to develop the sewage disposal system to meet the immediate need and to lay a firm foundation for future development.

4.4 "Updating Study on Storm Water Drainage System Improvement in Dhaka City", Japan International Co-operation Agency, February 1990

The Study on Storm Water Drainage System Improvement Project in Dhaka City was conducted in 1987 and consequently proposed a three-phased programme for drainage improvement for the City of Dhaka with a total area of 137.5 sq.km. The study urged the immediate implementation of the highest priority programme or Phase-1, which required Tk 2.61 billion and covered an area of 31.30 sq.km.


The ten drainage zones in the Phase-1 Programme as shown in Figure 4.1 were divided into categories with two different levels of priority. The zones with the highest priority were zones B, C, F and H that had a total area of 49.46 sq.km. Second priority zones are zones A, D, E, G, J and I with an area of 85.39 sq.km. In this new organization, Zone H was shifted to the highest priority from the second priority in the 1987 JICA study due to its rapid urbanization and the serious damage caused by the 1987 flood.

4.5 "Dhaka WASA IV Project - Saidabad Site Feasibility Study (Final Report)", Camp Dresser & Mckee International Inc. USA, et al., February 1992

Preparation of the detailed design of "the Water Treatment Plant at Demra and Other Works" for the DWASA IV Project commenced in April 1989. The work included 454,000 cu.m/day (100 IMGD) water treatment plant at Demra, increasing the capacity of the Pagla Sewage Treatment Plant by 90,000 cu.m/day (20 IMGD) and related pumping stations and pipelines. The project reached the Interim Report stage, including preliminary construction cost estimates.

The DWASA IV Project, as formulated, was considered unfeasible on financial grounds. The water supply and transmission (based on a 454,000 cu.m/day facility) were estimated to cost about US\$ 270 million, and the sewerage component US\$ 240 million, resulting in a total cost of about US\$ 510 million.

0

0

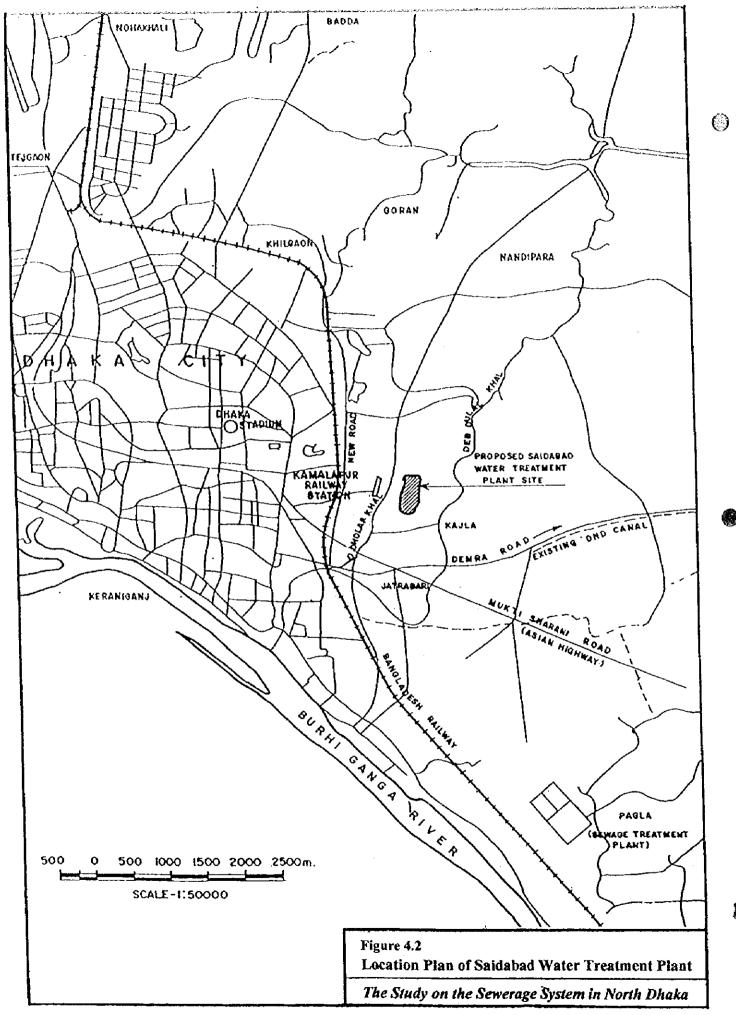
鸆

Accordingly, the physical dimensions of the project needed to be re-identified within an envelope of affordable costs. The Ministry of Local Government and other Government of Bangladesh officials decided to review whether the Saidabad site might be appropriate for a surface water treatment plant of a smaller size than the one planned at Derma.

The final engineering designs of the water supply and sewerage components were therefore suspended and an Addendum prepared to carry out a feasibility assessment of constructing a surface water treatment plant at Saidabad. If construction of a water treatment plant at Saidabad were found feasible then it would be assessed together with all other options.

As shown in Figure 4.2, the Saidabad site is located immediately adjacent to the castern boundary of Dhaka City on a 55 acre parcel of land owned by DWASA. The site is very near to the transmission corridor from Demra to Jatrabari and also near to a canal (DND Canal) developed earlier by Bangladesh Water Development Board for an irrigation project which is not being used now since the poldered area is transforming into a city suburb. This canal could carry the raw water from Demra.

4.6 "Dhaka City Emergency Water Supply Project - Feasibility Study (Final Report) Main Report", BCEOM & Engineering and Planning Consultants Ltd. Bangladesh, May 1992


This plan subdivided the water supply service area into 36 zones and prepared projection of future population and water demand in the target year of 2020, as shown in Figure 4.3.

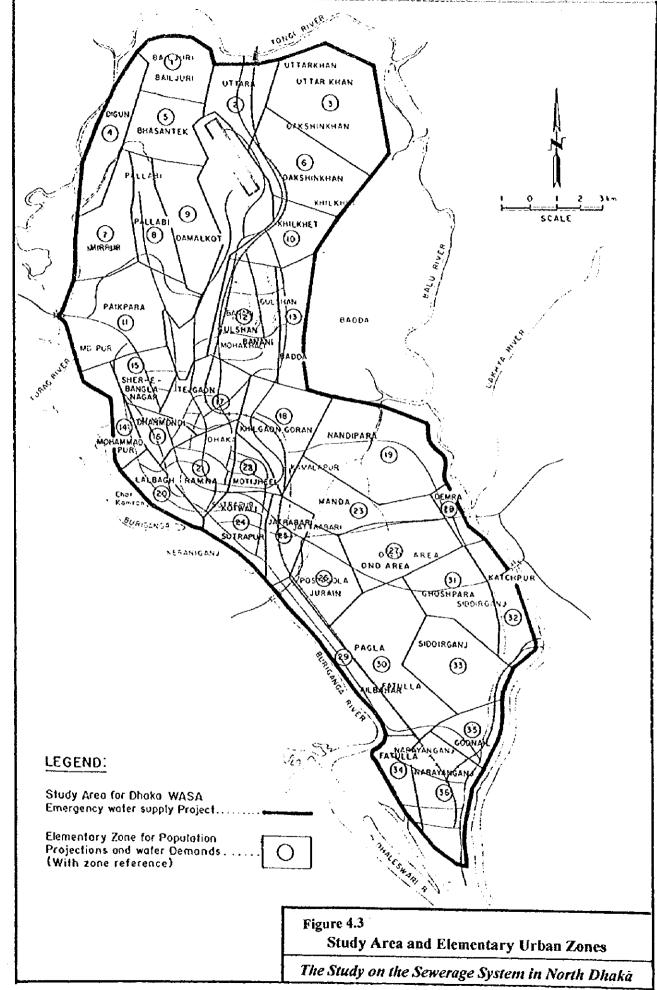
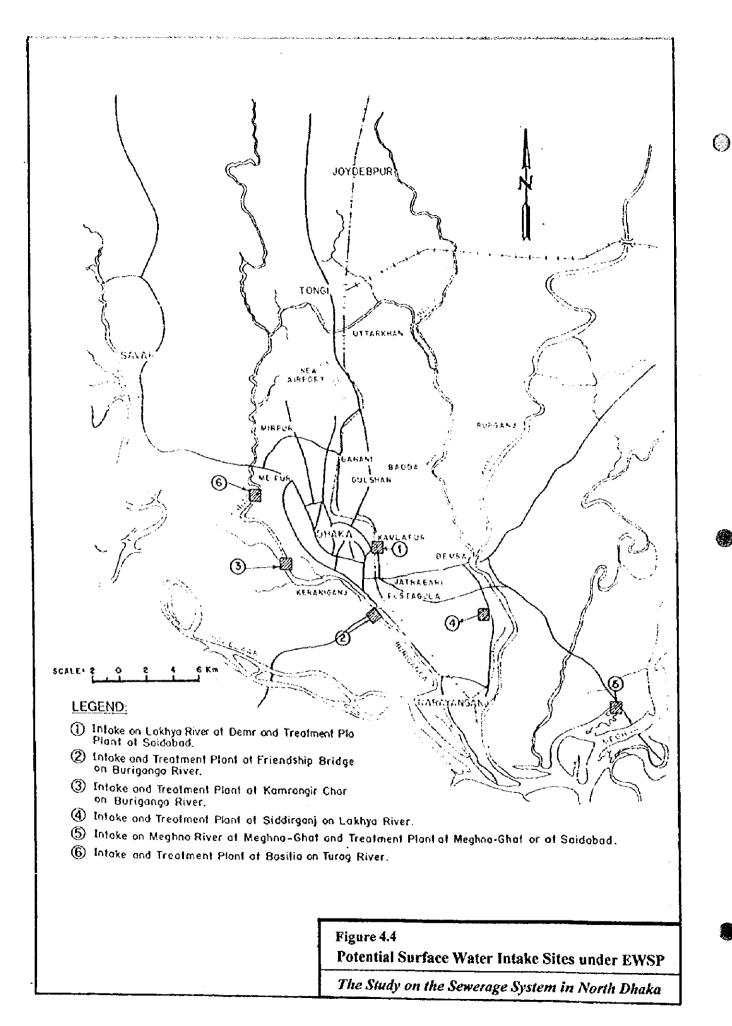
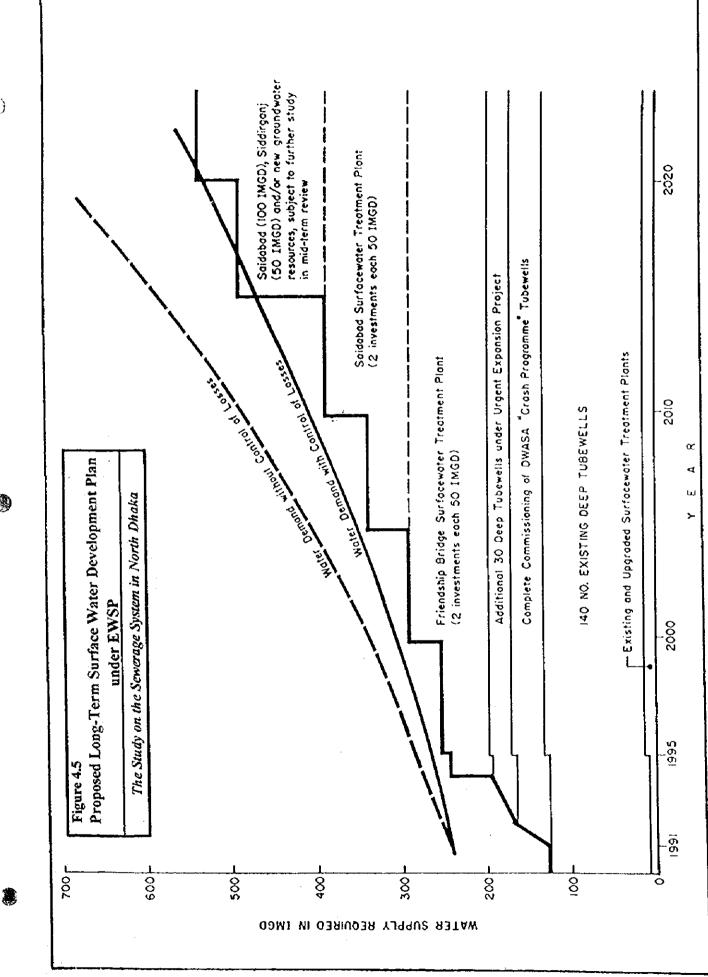

A plan for a new water treatment plant with 6 alternative locations was then prepared as shown in Figure 4.4; it was decided to take up the Saidabad site and the Friendship Bridge site.

Figure 4.5 shows the proposed long-term surface water development plan on the basis of least cost.

1


)



)

1

4 - 9

9

)

4.7 Staff Appraisal Report (Report No. 13969-BD), "Bangladesh Fourth Dhaka Water Supply Project", The World Bank, November 1996

The Fourth Dhaka Water Supply Project (DWASA IV) consists of the following major components: ()

- Institutional reform program,
- Capacity additions and service extension,
- Loss reduction, sanitation and efficiency improvement activities, and
- Institutional development technical assistance.

The third component includes a sanitation program consisting of a study and preparation of a sanitation master plan for Dhaka for the period 1995-2010, and first stage investments in low cost sanitation and rehabilitation of selected sewerage systems assets. The term "sanitation" is defined here as a service: (a) for the collection and disposal of excreta and wastewater from domestic, commercial and industrial sources and (b) for the abatement of environmental pollution from such waste. The provision of this service entails the construction, operation and maintenance of a range of physical infrastructures, such as conventional sewerage, intermediate sewerage and various types of on-site sanitation systems. Its scope of work for consulting services is almost the same as that of the JICA Study except for the difference in the study area and some of the items to be studied.

CHAPTER 5 SEWERAGE MASTER PLAN

5.1 Planning Strategy

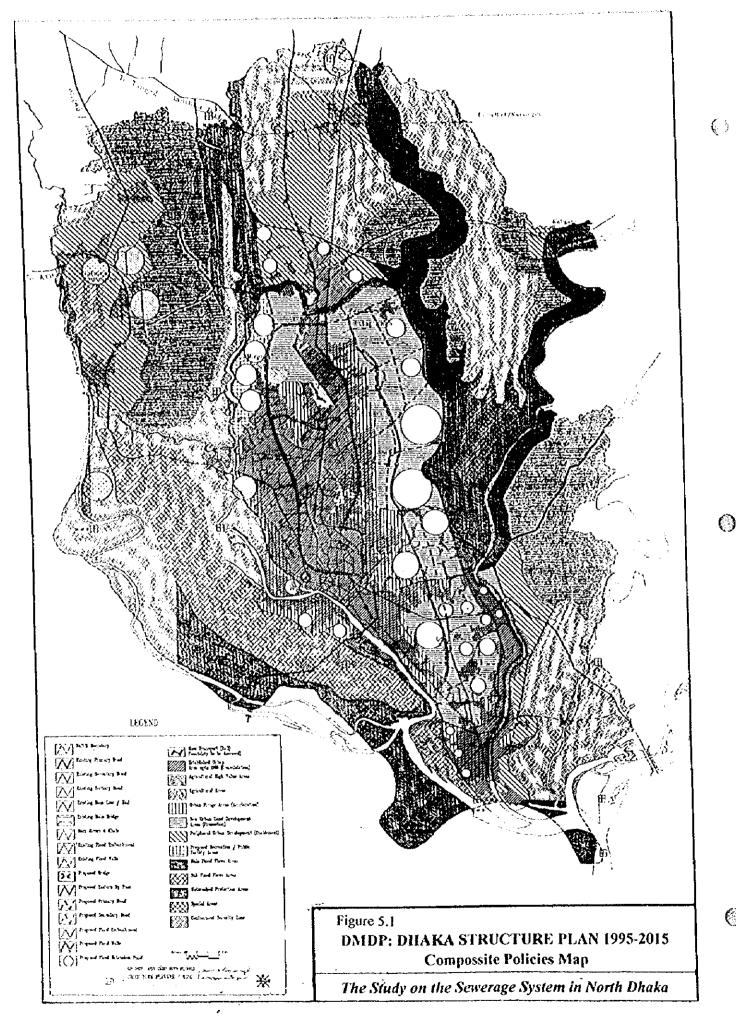
)

3

5.1.1 Dhaka Metropolitan Development Plan as Supreme Urban Development Plan

The RAJUK's DMDP Structure Plan (1995-2015) is primarily referred to, as the latest supreme plan for urban development of Dhaka City and its prospective suburban areas, in delineating the target area for the preparation of a master plan with a planning horizon of 2020 in this Study. The overview of the DMDP Structure Plan in its target year of 2015 is shown in Figure 5.1.

The DMDP Structure Plan provides policies of relevant sector developments, such as land use, economy, transportation and flood control, but no clear policy for provision of sanitation and sewerage service is included. Some policies relevant to sanitation/sewerage sector are picked up in the fields of pollution control and infrastructures from the DMDP Structure Plan. A list of policies adopted in the DMDP is shown in Table 5.1.


5.1.2 Strategy for Sanitation/Sewerage Provision

(1) Coverage of master plan

The master plan for sanitation/sewerage service provision will be focused on the domestic wastewater and stormwater disposal will be excluded from the master plan activities, as stipulated in the Scope of Work for the Study and in consideration of presence of plans for flood control and stormwater disposal.

Target area for master planning is considered to coincide with the urban area boundary in 2015 as adopted in the DMDP Structure Plan. This means that the proposed urban area for 2015 under the said Structure Plan will remain unchanged through the future until the target year 2020 of this Study.

This strategic decision is based on the uncertainty of the long-term framework as admitted in the course of DMDP preparation and on the importance to maintain consistency with the supreme plan, the DMDP Structure Plan, within the reasonable time frame.

Sector/Field		Policy (ID & Name)		
l. 1.1	Rural and Special Area Policies Areas of High Agricultural Value	RS/I	Areas of High Agricultural Value	
1.2		RS/2	Flood Control, Drainage and Irrigation (FCD) Project Areas	
1.3	Flood Plains, rivers and	RS/3	Flood-Flow Zones	
• . • /	Water Bodies	RS/4	River Pollution Control	
		RS/5	Flood Retention Ponds	
14	Special Areas	RS/6	Special Areas	
2.	Urban Area Policies	Roit		
2.1	Established pre-1983 Urban	UA/1	Land Resource Optimisation	
2.1	Area	UA/2	Infrastructure Consolidation	
	11141	UA/3	Community-Based Development Initiatives	
		UA/4	Urban Neighbourhood Action Programs	
2.2	Existing Near Urban Fringe	UA/5	Urban Fringe Development Acceleration	
2.2	New Urban Land	UA/6	New Urban Land Growth Promotion	
2.3	New Oldan Land	UA/7	Infrastructure Initiatives	
2.4	Dariuharal Urban	UA/8	Priority Peripheral Urban Development Ar	
2.4	Peripheral Urban Development Areas	UNO	cas (Tongi/Gazipur & Savar/Dhamsona)	
2	Economic Development	<u></u>	cus (Tongo Onelpin to outin 2000 any	
3. 3.1	Economic Development	SE/I	Incentive	
5.1	Manufacturing Industry	SE/2	Industrial Estates, Tejgaon and Tongi	
	manuacturing manady	SE/3	Foot-loose Industries	
		SE/4	Polluting Industries	
		SE/5	Informal Sector Activities	
27	Public Administration	SE/6	Institutions and Public Administration	
	Commerce	SE/7	Dispersal of commercial Activity	
3.3	Commeter	SE/8	Improved Access to and within the CBD	
		51.70	(Central Business District)	
3.4	Health and Hygiene	SE/9	Data Dissemination	
3.4		SE/10	Augmenting City Open Space	
3.3	Rectanon and Open Space	SE/11	Securing Future Open Space	
4.	Infrastructures	51411	beening received open open	
4. 4.1	Road Development	IN/I	Eastern Bypass	
7.1	Road Development	IN/2	Incremental Network Development	
4.2	Development of Public	IN/3	Bus Service	
7.2	Transport Service	IN/4	Commuter Rail Network	
5.	Flood Control and	+	Containing of Contraction of Contraction	
э.	Drainage			
5.1	-	IN/5	Incremental Flood Protection	
J. I	ects - Approach and Criteria		•••••	

Table 5.1 List of Policies Adopted in DMDP

0

)

Another reason underlying this decision is that an expansion of water supply service to the future urban area of the DMDP Structure Plan is not yet in a visible state at this moment.

It shall be noted that, in view of the above, the target area of this master plan will be subject to periodical review and should be updated corresponding to the implementation progress of relevant infrastructure projects and the DMDP Urban Area Plan.

(2) Application of different service levels by area

There are several implications for provision of public sewerage service:

1) Cost and time requirement

An implementation of a sewerage system to achieve the proposed service coverage of the master plan generally requires a considerable period and a large amount of capital investment.

2) Accountability of executing agency

The attainment of sound accountability of the executing agency is predicated on a thorough restructuring of its institutional and financial set-up from the viewpoint of financial cash flow, debt service ratio, cost recovery, and human resource development.

3) Affordability of beneficiaries

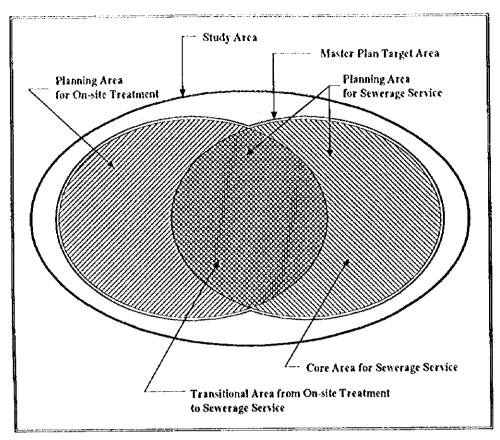
Beneficiaries are belong to different income groups and financial affordability in connection with per capita water consumption and payment to water/sewerage service charges and they may stay at more or less similar situation during the master plan period.

4) Different states of urbanization by area

Although the DMDP Structure Plan has been issued as an overall guideline of policy and strategy, the Detailed Area Plan by Strategic Planning Zone are still at the stage of commencement and various legislative arrangements are subject to inter-agency coordination and approval by the Government. Meanwhile, the private sector continues investments of different magnitudes and in different fields.

When the above-mentioned circumstances and the size of master plan target area are taken into account, there will appear different states of urbanization with different population densities. Although provision of sewerage service to the entire urban area is ideal, it is not realistic when the previously-mentioned implications are fully taken into account. An application of different service levels in different areas is therefore deemed as the most practical approach as an intermediate measure in terms of the realization and fulfillment of public sewerage service through the future.

(3) Exclusion of industrial wastewater from sewerage service


Within the master plan target area, there is the Tongi Industrial Estate, which is an integrated industrial complex mostly consisting of textile dying and poultry, followed by pharmaceuticals, dry battery cells, and synthetic detergents. None of these factories have wastewater treatment facilities and their untreated "colourful" wastewater is discharged into the Tongi River via swamp areas. This industrial estate is now subject to a thorough review of its management from the standpoint of operating procedures and cost effectiveness under Policy SE/2 of the DMDP Structure Plan.

Another typical polluting industry is the tannery industry, which discharges toxic wastewater containing chromium hexavalent. Most of tanneries are small-scale and area located in the Hazaribag area of Dhanmondhi in South Dhaka. These factories are subject to relocation to a site adjacent to the Dhaleswari River, south of Savar.

This master plan has introduced a categorization of target area as follows:

- Core area for sewerage service
- Transitional area from on-site treatment to sewerage service
- On-site treatment area

A conceptual diagram of sanitation/sewerage provision is drawn in Figure 5.2 and its itemized explanation of area categorization is provided in Table 5.2, respectively.

()

 \bigcirc

Figure 5.2 Conceptual Diagram of Sanitation/Sewerage Provision

Area	Description	
Study Area (North Dhaka)	 Dhaka City (Uttara, Mirpur, Mohammadpur, Cantonment, Banani, Badda, Gulshan, Baridhara) Tongi Pourashava (Municipality) 	
Outside the Target Area For Master Plan	Areas outside of the Target Area for Master Plan are rivers, canals, swamps, agricultural area and open space.	
Target Area for Master Plan	Master Plan area for sanitation/sewerage provision.	
Planning Area for Sewerage Service	Areas where sewerage services will be provided by the target year of 2020 under this Master Plan.	
Planning Area for On-site Treatment	Areas where the existing on-site treatment methods, i.e. septic tank, will be utilized through the future within this Master Plan framework.	
Transitional Area from On-site Treatment to Sewerage Service	Areas where the sewage will be treated by sewerage system by shifting from the existing septic tank during the Master Plan period to 2020.	
Core Area for Sewerage Service	Existing urbanized areas having relevant infrastructures (water supply and road network) for implementing sewerage project.	