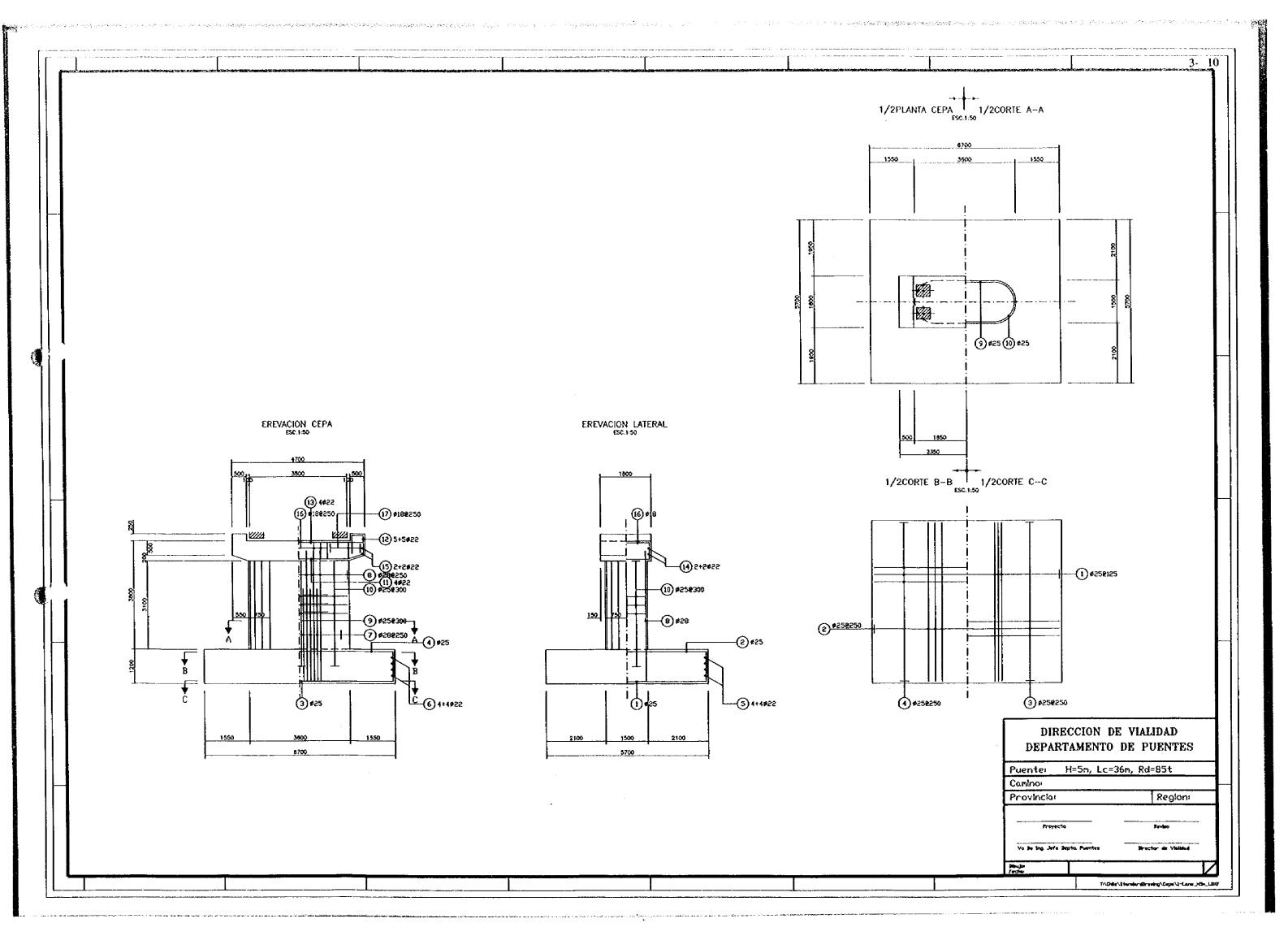
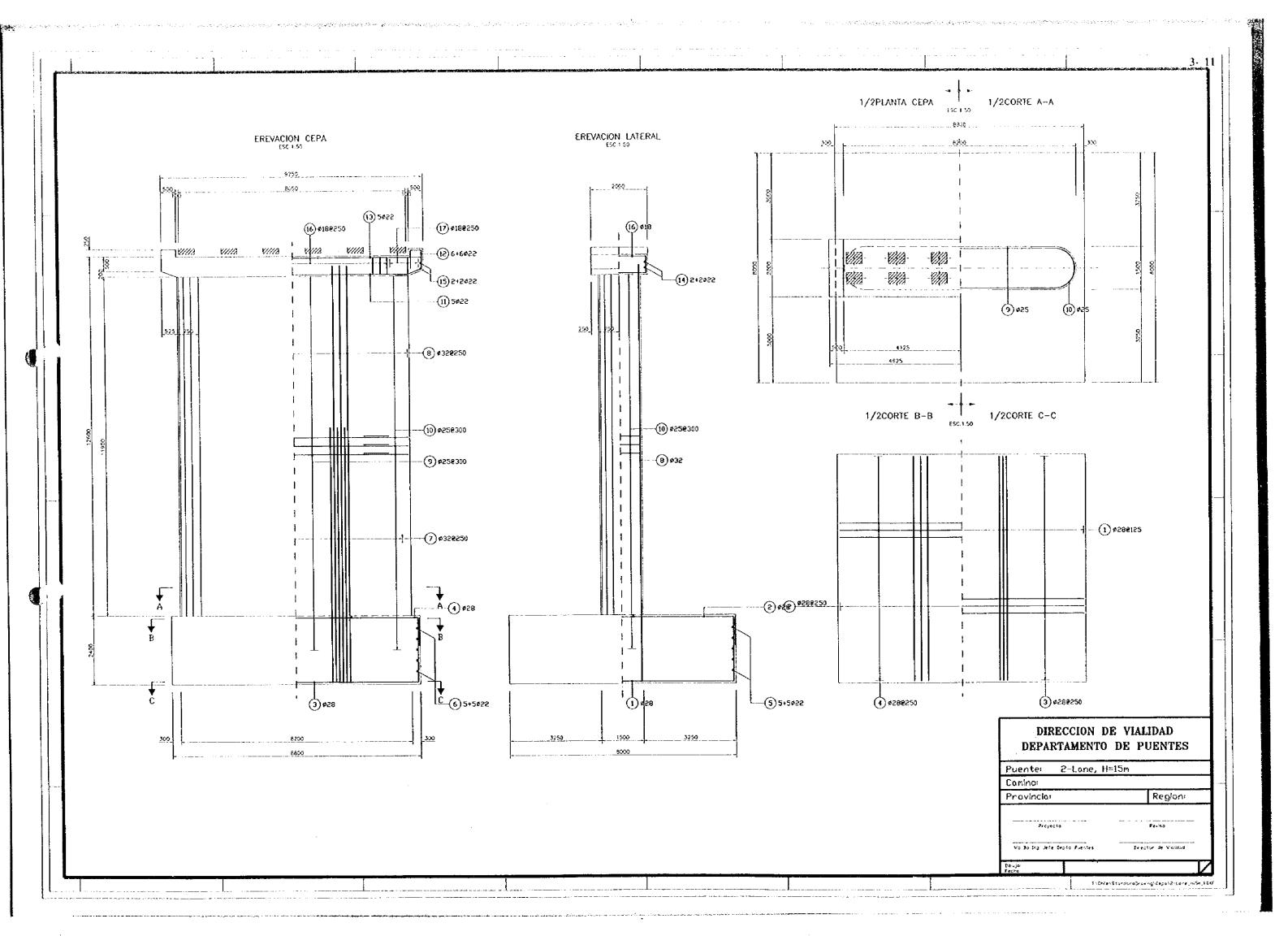

IV. Drawings


- 1. Abutment: Height = 5m, 1-Lane, Rv=20t, Pre-tentioned Beam L=20m
- 2. Abutment Wing: Height = 5m, 1-Lane
- 3. Abutment: Height = 12m, 2-Lane, Rv=70t, Post-tentioned Beam L=36m
- 4. Abutment Wing: Height = 12m, 2-Lane
- 5. Pier: Height = 5m, 1-Lane, Rv=81t, Post-tentioned Beam L=36m
- 6. Pier: Height = 15m, 2-Lane, Rv=30t, Pre-tentioned Beam L=24m



V. Calculation report (Input and Generalization table)

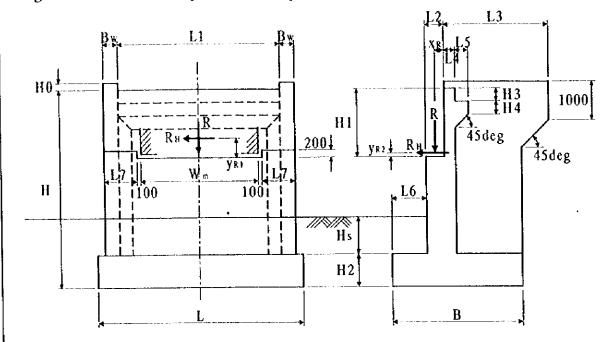
- 1. Abutment: Height = 5m, 1-Lane, Rv=20t, Pre-tentioned Beam L=20m
- 2. Abutment: Height = 12m, 2-Lane, Rv=70t, Post-tentioned Beam L=36m
- 3. Pier: Height = 5m, 1-Lane, Rv=81t, Post-tentioned Beam L=36m
- 4. Pier: Height = 15m, 2-Lane, Rv=81t, Post-tentioned Beam L=24m

Resultado del diseño Tipo de Estructura: Estribo Fecha: (1) Datos Generales Número de Puente: Nombre del Puente: H=5m, Rv=20t, Ph=1.35m De la Ruta, Camino: Rol Ruta: En el Cauce Región Provincia: Longitud del Puente : L = Número de Pistas : 1 Ancho : 1.000 + 4.000 + 1.000 = 6.000 m(Pasillos) (Calzada) (Pasillos) : 1.0, 1.5, 1.0% Pendiente (2) Cargas $: \gamma_s = 1.80 \text{ t/m}^3$ Peso específico suelo $w_c = 2.50 \text{ t/m}^3$ Carga de Hormigón Coeficiente de Aceleración de Diseño: A = 0.15 Longitud de Viga : $L_y = 20.700 \text{ m}$, Luz : $L_c = 20.000 \text{ m}$ (Longitud de cálculo) Número de Vigas $: n_v = 4$ Separación entre vigas : S = 1.500 m, 3 @ 1.500 = 4.500 mAltura de Viga $: h = 0.900 \, m$, Ancho de Viga $: b_b = 55.0 \text{ cm}$ Carga de Tránsito : HS20 - 44 Carga de Superestructura : $R_v = 20.50 t$, (para 1 apoyo) : $Q_w = 1.00 \text{ t/m}^2$, Carga de Pavimento : $\gamma_c = 2.30 \text{ t/m}^3$ Carga de superficie (3) Material Hormigón: grado: H-30 $f_c' = 250 \text{ kg/cm}^2$, $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ (AASHTO 8.7.1) $E_c = w_c^{1.5}33(f_c')^{1/2} = 57000(f_c')^{1/2}$ = $W_c^{1.5}(0.0428)(f_c')^{1/2}$ = 4729.77 $(f_c')^{1/2}$ = 2.5 × 10⁵ kg/cm² Acero : A63-42H $f_y = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$, $E_s = 2.1 \times 10^6 \text{ kg/cm}^2$

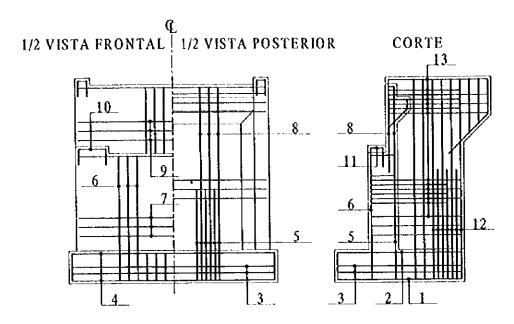
 $: \phi = 35 \text{ deg}$ $: c_B = 0.00 \text{ t/m}^2$

 $: \phi_B = 42 \deg$

Ángulo de fricción interna relleno


Adhesión entre dado y suelo de fundación Ángulo de fricción interna suelo de fundación

Ángulo de fricción entre dado y suelo de fundación : $\delta_B = 30 \text{ deg}$


Longitud de Acceso

: $L_0 = 4.000 \text{ m}$, Espesor de Acceso: $h_A = 0.250 \text{ m}$

(5) Arriostramiento de Refuerzo

Recubrimientos mínimos : Fundación 5.0 cm Elevación 4.0 cm

1: \$\phi\$ 22 @ 250 2: \$\phi\$ 22 @ 125 3: \$\phi\$ 18 n3 4: \$\phi\$ 18 @ 250 5: \$\phi\$ 18 @ 125 6: \$\phi\$ 18 @ 250 7: \$\phi\$ 16 @ 250 8: \$\phi\$ 18 @ 250 9: \$\phi\$ 12 @ 250 10: \$\phi\$ 18 n3 11: \$\phi\$ 18 n4 12: \$\phi\$ 18 @ 125 13: \$\phi\$ 18 @ 200

Suma del Diseño del Estribo

(7) Fuerzas

Caso	· · · · · · · · · · · · · · · · · · ·	e (m)	
Estático	0.179	≤ B/6 =0.667	ок
Sísmico	1.267	≤ B/3 =1.333	OK

(8) Análisis de Estabilidad

Caso	ES.(S)	$q_{max}(t/m^2)$ $q_{ADM}(t/m^2)$	F.S.(O)	
Estático	5.717 ≥ 1.5	17.67 ≤ 302.53	10.915 ≥ 2.0	OK
Sísmico	1.357 ≥ 1.2	43.77 ≤ 162.72	1.564 ≥ 1.5	OK

(9) Diseño del Muro de Retención

Diseño del refuerzo anterior (Caso estático)

٨ (cm²/m)	M(tm/m) M _u (tm/m)	
9.194 ≤ \phi18@250=10.180	4.97 ≤ 13.47 OK	

Diseño del refuerzo posterior (Caso sísmico)

A _s (cm²/m)	M(tm/m)	M _u (tm/m)	v(kg/cm²) v _c (l	kg/cm²)	
0.502 ≤ \$\phi18@250=10.180	0.36	≤ 13.47	0.2 ≤	20.0	ОК

(10) Diseño del guarda rueda

A _s (cm ²)	M(tm)	1	M _u (tm)	v(kg/cm²)	v _c (kg/cm²)	
1.952 ≤ \$\phi18n3=7.635	1.31	≤	9.40	0.6	≤	20.0	OK

(11) Diseño del Cuerpo del Estribo

Caso	A _s (cı	m²/m)	f _c (kg/cm ²)	f _{ca} (kg/cm ²)	f _s (kg/cm ²)	f _{sa} (kg/cm²)
Estático	3.815 ≤	φ18@125	1.0	≤ 100	8.9	≤ 1690
Sísmico	3.631 ≤	20.360	1.3	≤ 133	19.6	≤ 2248

Caso	v(kg/cm²) v _c (l	kg/cm²)	
Estático	0.4	s	15.0	ок
Sísmico	0.4		20.0	ок

(12) Diseño de Fundaciones

Diseño del dado frontal

Caso	Ą(ci	m²/m)	M(tm/m)	M	(tm/m)	v(kg/cm) v _s (l	cg/cm²)	
Estático	5.094 ≤	ф22@250	7.27	s	53.73	0.8	≤	15.0	ок
Sísmico	9.118 ≤	15,204	17.31	≤	53.73	1.9	<u> </u>	20.0	ок

Diseño del dado trasero

Caso	A _s (cı	m²/m)	M(tm/m)	M	(tm/m)	v(kg/cm²) v _c (1	(g/cm²)	
Estático	2.627 ≤	ф22@125	3.75	≤	105.74	0.3	≤	15.0	OK
Sísmico	9.513 ≤	30.408	18.06	≤	105.74	1.5	≤	20.0	OK

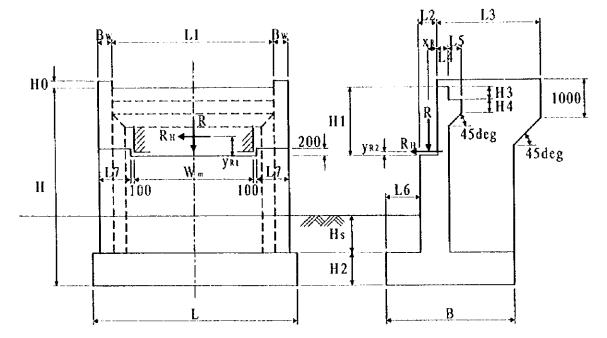
(13) Diseño del Muro Ala

	Caso	A_(c 1	n²/m)	M(tm/m)	M.	(tm/m)	v(kg/cm²)	۷ _c (ا	cg/cm²)	
a	Estático	6.773 ≤	φ18@200	3.66	≤	16.71	0.9	≤	15.0	ок
;	Sísmico	3.485 ≤	12.725	2.51	S	16.71	0.6	≤	20.0	ок
b	Estático	7.425 ≤	ф18@200	4.02	≤	16.71	1.2	≤	15.0	ок
	Sísmico	4.626 ≤	12.725	3.33	≤	16.71	1.0	≤	20.0	ок
b'	Estático	2.463 ≤	φ18@400	1.33	s	8.51	0.8	≤	15.0	ок
	Sísmico	1.612 ≤	6.363	1.16	≤	8.51	0.7	<u> </u>	20.0	ок
c	Estático	9.042 ≤	ф18@125	4.89	≤	26.16	1.6	<u> </u>	15.0	ок
	Sísmico	5.842 ≤	20.360	4.20	≤	26.16	1.4	≤	20.0	ок
c'	Estático	2.665 ≤	ф18@250	1.44	S	13.47	0.9	≤	15.0	ок
	Sísmico	1.764 ≤	10.180	1.27	≤	13.47	0.8	≤	20.0	OK
d	Estático	0.451 ≤	ф18@400	0.24	<u> </u>	8.51	0.2	S	15.0	ок
	Sísmico	0.206 ≤	6.363	0.15	≤	8.51	0.1	≤	20.0	ок

Resultado del diseño Tipo de Estructura: Estribo Fecha: Número de Puente: (1) Datos Generales Nombre del Puente : 2-Lane, Rv=70t, Lc=36m Rol Ruta: De la Ruta, Camino: En el Cauce Región Provincia: Longitud del Puente: L= Número de Pistas : 2 Ancho : 1.200 + 7.000 + 1.200 = 9.400 m(Pasillos) (Calzada) (Pasillos) : 1.0, 1.5, 1.0% Pendiente (2) Cargas $: \gamma_s = 1.80 \text{ t/m}^3$ Peso específico suelo $: w_c = 2.50 \text{ t/m}^3$ Carga de Hormigón Coeficiente de Aceleración de Diseño: A = 0.15 : $L_v = 36.800 \text{ m}$, Luz : $L_c = 36.000 \text{ m}$ (Longitud de cálculo) Longitud de Viga $: n_v = 4$ Número de Vigas : S = 2.250 m, 3 @ 2.250 = 6.750 mSeparación entre vigas $b_b = 50.0 \text{ cm}$ $: h = 2.400 \, \text{m}$ Ancho de Viga Altura de Viga Carga de Tránsito : HS20 - 44 Carga de Superestructura: R_v = 70.00 t, (para 1 apoyo) : $Q_w = 1.00 \text{ t/m}^2$, Carga de Pavimento : $\gamma_c = 2.30 \text{ t/m}^3$ Carga de superficie (3) Material Hormigón: grado: H-30 $f_c' = 250 \text{ kg/cm}^2$, $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ (AASHTO 8.7.1) $E_c = w_c^{1.5}33(f_c)^{1/2} = 57000(f_c)^{1/2}$ = $W_c^{1.5}(0.0428)(f_c^3)^{1/2}$ = 4729.77 $(f_c^3)^{1/2}$ = 2.5 × 10⁵ kg/cm² Acero : A63-42H $f_s = 4200 \text{ kg/cm}^2$, $f_{sa} = 1870 \text{ kg/cm}^2$, $E_s = 2.1 \times 10^6 \text{ kg/cm}^2$ $: \phi = 35 \deg$ Ángulo de fricción interna relleno

Adhesión entre dado y suelo de fundación

Ángulo de fricción interna suelo de fundación


Ángulo de fricción entre dado y suelo de fundación : $\delta_B = 30 \text{ deg}$

 $c_{\rm B} = 0.00 \text{ t/m}^2$

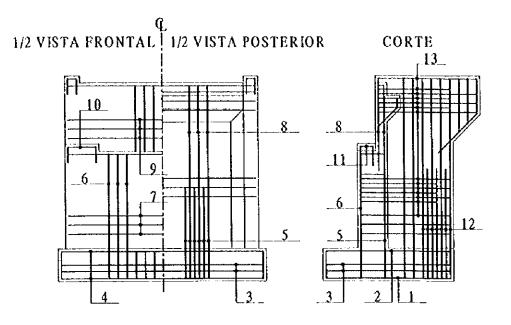
 $: \phi_B = 42 \deg$

(4) Geometría

Longitud de Acceso : $I_0 = 4.000 \text{ m}$, Espesor de Acceso: $h_A = 0.250 \text{ m}$

B = 7500 mm, L = 10000 mm, H = 12000 mm, $H_S = 2000 \text{ mm}$, $W_m = 7250 \text{ mm}$

 $B_W = 800 \text{ mm}$, $y_{R1} = 1950 \text{ mm}$, $y_{R2} = 160 \text{ mm}$, $x_R = 400 \text{ mm}$


L1 = 7600 mm, L2 = 1000 mm, L3 = 5200 mm, L4 = 400 mm, L5 = 250 mm

 $L6 = 2000 \, \text{mm}$, $L7 = 875 \, \text{mm}$

H0 = 250 mm, H1 = 2850 mm, H2 = 2500 mm, H3 = 250 mm, H4 = 250 mm

(5) Arriostramiento de Refuerzo

Recubrimientos mínimos : Fundación 5.0 cm Elevación 4.0 cm

1: φ28 @ 250 2: φ28 @ 125 3: φ22 n3 4: φ22 @ 250 5: φ25 @ 125 6: φ25 @ 250 7: φ22 @ 250 8: φ18 @ 250 9: φ12 @ 250 10: φ18 n 4 11: φ18 n 4 12: φ28 @ 125 13: φ28 @ 125

Suma del Diseño del Estribo

(7) Fuerzas

`[Caso	e (m)	
	Estático	$0.378 \le B/6 = 1.250$	ОК
	Sísmico	$2.368 \le B/3 = 2.500$	ОК

(8) Análisis de Estabilidad

Caso	F.S.(S)	$q_{GGA}(t/m^2)$ $q_{ADM}(t/m^2)$	F.S.(O)	
Estático	3.836 ≥ 1.5	33.41 ≤ 449.74	6.374 ≥ 2.0	ОК
Sísmico	1.402 ≥ 1.2	86.87 ≤ 267.47	1.522 ≥ 1.5	ок

(9) Diseño del Muro de Retención

Diseño del refuerzo anterior (Caso estático)

	,(cm²/m)	M(tm/m)	M,	(tm/m)		
8.241	≤	φ18@250=10.180	4.97	≤	13.47	OK

Diseño del refuerzo posterior (Caso sísmico)

A _s (cm ² /m)	M(tm/m)	M _u ((tm/m)	v(kg/cm²)	v.(kg/cm²)	
$3.043 \leq \phi 18@250=10.18$	0 2.44	S	13.47	0.6	≤	20.0	OK

(10) Diseño del guarda rueda

۸٫(cm²)	M(tm)	1	M _u (tm)	v(kg/cm²)	v _c (1	kg/cm²)	
5.498 ≤ \$\phi18n4=10.180\$	10.24	≤	31.74	0.6	≤	20.0	ОК

(11) Diseño del Cuerpo del Estribo

Caso	A _s (cı	m²/m)	f _c (kg/cm²)	f _{ca} (kg/cm²)	f _s (kg/cm ²)	f _{sa} (kg/cm²)
Estático	32.423 ≤	ф25@125	5.3 :	≤ 100	139.6	≤ 1870
Sísmico	32,316 ≤	39.272	7.0	≤ 133	201.8	≤ 2487

Caso	v(kg/cm²) v	/¿(kg/cm²)	
Estático	1.6 ≤	15.0	OK
Sísmico	1.9 ≤	20.0	ок

(12) Diseño de Fundaciones

Diseño del dado frontal

Caso	A _s (c)	m²/m)	M(tm/m)	M	$I_{u}(tm/m)$	v(kg/cm²) v _s (l	(g/cm²)	
Estático	12.553 ≤	φ28@250	51.57	≤	225.85	0.8	s	15.0	ок
Sísmico	24.395 ≤	24.632	133,29	≤	225.85	2.2	≤	20.0	ок

Diseño del dado trasero

Caso	A _s (cm²/m)		M(tm/m) M _u (tm/m)			v(kg/cm²			
Estático	20.893 ≤	φ28@125	85.83	s	447.17	1.2	≤	15.0	ОК
Sísmico	41.299 ≤	49.264	225.65	≤	447.17	3.1	≤	20.0	ОК

(13) Diseño del Muro Ala

2-2	Dische de	1 Mulo A	ıa		, 			,			
	Caso	А	s(cr	n²/m)	M(tm/m)	M,	(tm/m)	v(kg/cm²)	$v_{c}(l)$	kg/cm²)	
a	Estático	20.003	≤	ф28@125	25.49	≤	132.46	1.6	S	15.0	oĸ
	Sísmico	13.144		49.264	22.28	<u>≤</u>	132.46	1.4	≤	20.0	ок
b	Estático	35.352	≤	φ28@125	45.05	\$	132.46	2.9	<u> </u>	15.0	ок
İ	Sísmico	24.845	≤	49.264	42.11	≤	132.46	2.7	\$	20.0	ок
b'	Estático	11.880		φ28@250	15.14	s	68.50	1.9	S	15.0	ок
	Sísmico	8.498	≤	24.632	14.40	≾	68.50	1.8	≤	20.0	ок
c	Estático	43.464	≤	ф28@125	55.39	≤	132.46	3.9	<u>≤</u> _	15.0	ок
	Sísmico	30.944	≤	49.264	52.45	≤	132.46	3.7	≤	20.0	ок
c'	Estático	12.894	≤	φ28@250	16.43	.≤	68.50	2.2	≤	15.0	ок
	Sísmico	9.261	≤	24.632	15.70	≤	68.50	2.1	≤	20,0	ок
d	Estático	0.149	\$	φ28@250	0.19	\$	68.50	0.1	≤	15.0	ок
	Sísmico	0.075	≤	24.632	0.13	s	68.50	0.1	≤	20.0	ок

Resultado del diseño

Tipo de Estructura: Cepa

Fecha:

(1) Datos Generales

Número de Puente :

Nombre del Puente : H=5m, Lc=36m, Rd=85t

De la Ruta, Camino:

Rol Ruta

En el Cauce

Región:

Provincia:

Longitud del Puente: L=

Número de Pistas : 1

Ancho

1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente

: 1.0, 1.5, 1.0%

(2) Cargas

Peso específico suelo : $\gamma_s = 1.80 \text{ t/m}^3$

Cargas de Hormigón : $w_c = 2.50 \text{ t/m}^3$

Coeficiente de Aceleración de Diseño: A = 0.15

 $: L_x = 36.800 \text{ m}, \quad \text{Luz} : L_x = 36.000 \text{ m} \text{ (Longitud de cálculo)}$ Longitud de Viga

Número de Vigas

Separación entre vigas : S = 3.000 m, 1 @ 3.000 = 3.000 m

 $: n_v = 2$

Ancho de Viga $b_b = 50.0 \text{ cm}$

Carga de Superestructura: R_v = 81.00 t (para 1 apoyo)

: HS20 - 44 Cargas de Tránsito

Altura de la Superestructe

 $: H_v = 2.450 \text{ m}$

Carga de viento sobre Superestructura : $W_v = 0.244 \text{ t/m}^2$

Carga de viento sobre infraestructura : $W_F = 0.244 \text{ t/m}^2$

Velocidad del cauce : V = 2.000 m/s

(3) Material

Hormigón: H-30

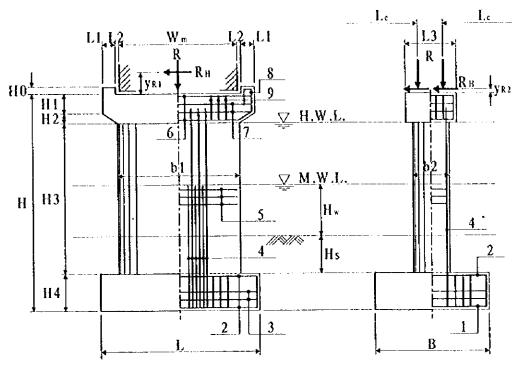
 $f_c' = 250 \text{ kg/cm}^2$, $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3 \text{ (AASHTO 8.7.1)}$

 $E_c = W_c^{1.5}33(f_c')^{1/2} = 57000(f_c')^{1/2}$

= $W_c^{1.5}(0.0428)(f_c^2)^{1/2}$ = 4729.77 $(f_c^2)^{1/2}$ = 2.5 × 10⁵ kg/cm²

Acero : A63-42H $f_y = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$, $E_s = 2.1 \times 10^6 \text{ kg/cm}^2$

Adhesión entre dado y suelo de fundación


 $c_{\rm B} = 0.00 \, \text{t/m}^2$

Ángulo de fricción interna suelo de fundación

 $: \phi_8 = 42 \deg$

Ángulo de fricción entre dado y suelo de fundación : $\delta_B = 30 \text{ deg}$

(4) Geometría

B = 5700 mm, L = 6700 mm, H = 5000 mm, $H_S = 2000 \text{ mm}$, $H_W = 1000 \text{ mm}$ $y_{R1} = 1950 \text{ mm}$, $y_{R2} = 110 \text{ mm}$, L1 = 500 mm, L2 = 100 mm, L3 = 1800 mm

b1 = 3600 mm, b2 = 1500 mm, $W_m = 3500 \text{ mm}$, H0 = 250 mm

H1 = 500 mm, H2 = 200 mm, H3 = 3100 mm, H4 = 1200 mm

Arriostramiento de Refuerzo

Recubrimientos mínimos: Fundación 5.0 cm

4.0 cm Elevación

1: \phi 25@125, 2: \phi 25@250, 3: \phi 22 n 4, 4: \$28@125 8: \$22 n 5 7: \phi 22 n 2, $5: \phi \ 25 @ 300, \ 6: \phi \ 22 n 4,$

9: \phi 18@250

Suma del Diseño de la Cepa

(6) Fuerzas

Longitudinal:

Caso		e _B (m)	
Sísmico	1.853	≤ B/3 =1.900	OK

Transversal:

Caso		e _L (m)	
Estático	0.293	≤ L/6 =1.117	OK
Sísmico	2.176	≤ L/3 =2.233	ОК

(7) Análisis de Estabilidad

Longitudinal:

Caso	F.S.(S)	$q_{max}(t/m^2)$ $q_{all}(t/m^2)$	F.S.(O)	
Estático		26.97 \(\ \ 464.98		OK
Sísmico	1.605 ≥ 1.2	48.38 ≤ 219.66	1.538 ≥ 1.5	ок

Transversal:

Caso	F.S.(S)		$q_{max}(t/m^2)$ $q_{ali}(t/m^2)$		E.S.			
Estático	13.549	≥ 1.5	17.57	≤	432.39	11.430	≥ 2.0	OK
Sísmico	1.604	≥ 1.2	48.33	s	233.75	1.539	≥ 1.5	OK

(8) Diseño del guarda rueda

O) District act guarda racea				
A _s (cm ²)	M(tm)	M _u (tm)	$v(kg/cm^2) v_c(kg/cm^2)$	
$16.517 \le \phi 22 \text{ n } 5 = 19.005$	15.19	≤ 32.30	7.3 ≤ 20.0	ок

(9) Diseño de la cepa

Ì	$A_s(cm^2)$	f_(kg/cm²)	f _{cs} (kg/cm ²)	f _s (kg/cm ²)	f _{sa} (kg/cm²)
	109.613 ≤ \$\phi28@125=110.844		≤ 133	863.1	

v(kg/cm²)		v _c (kg/cm ²)	
2.7	≤	20.0	ок

(10) Diseño de Fundaciones

Caso	A _s (cm²/m)	M(tm/m) M _u (tm/m)	v(kg/cm²) v _c (kg/cn	3 ²)
Estático	30.585 ≤ \$\phi25@125=39.272	52.86 ≤ 164.95	3.1 ≤ 15.0) OK
Sísmico	$32.676 \le \phi25@125=39.272$	75.12 ≤ 164.95	4.3 ≤ 20.0	o ok

Resultado del diseño

Tipo de Estructura : Cepa

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente : 2-Lane, H=15m De la Ruta, Camino :

...., 11. 10.11

Rol Ruta

En el Cauce

Región:

Provincia:

Longitud del Puente: L = n

Número de Pistas : 2

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente

: 1.0, 2.0, 1.0%

(2) Cargas

Peso específico suelo : $\gamma_s = 1.80 \text{ t/m}^3$

Cargas de Hormigón : w_c= 2.50 t/m³

Coeficiente de Aceleración de Diseño: A = 0.15

Longitud de Viga : $L_v = 24.000 \text{ m}$, Luz: $L_c = 24.000 \text{ m}$ (Longitud de cálculo)

Número de Vigas : $n_V = 6$

Separación entre vigas : S = 1.500 m, 5 @ 1.500 = 7.500 m

Ancho de Viga : $b_b = 55.0 \text{ cm}$

Carga de Superestructura : $R_v = 25.50 t$ (para 1 apoyo)

Cargas de Tránsito : HS20 - 44

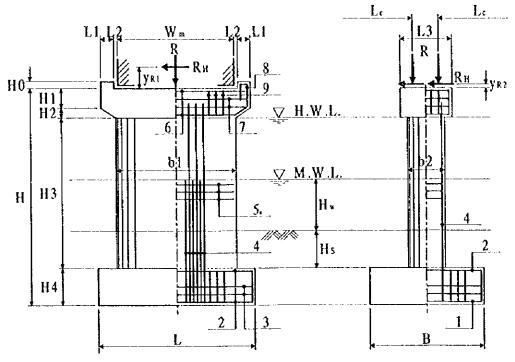
Altura de la Superestructe : $H_V = 1.200 \text{ m}$ Carga de viento sobre Superestructura : $W_V = 0.244 \text{ t/m}^2$ Carga de viento sobre infraestructura : $W_F = 0.244 \text{ t/m}^2$

Velocidad del cauce : V = 2.000 m/s

(3) Material

Hormigón: H-30 f_c '= 250 kg/cm², w_c = 145 pcf = 2.32 kg/m³ (AASHTO 8.7.1)

 $E_c = w_c^{1.5} 33(f_c')^{1/2} = 57000(f_c')^{1/2}$


= $w_c^{1.5}(0.0428)(f_c^2)^{1/2}$ = 4729.77 $(f_c^2)^{1/2}$ = 2.5 × 10⁵ kg/cm²

Acero: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$, $E_s = 2.1 \times 10^6 \text{ kg/cm}^2$

Adhesión entre dado y suelo de fundación : $c_B = 0.00 \text{ t/m}^2$ Ángulo de fricción interna suelo de fundación : $\phi_B = 42 \text{ deg}$

Ángulo de fricción entre dado y suelo de fundación : $\delta_B = 30 \text{ deg}$

(4) Geometría

B = 8000 mm, L = 8800 mm, H = 15000 mm, $H_s = 2000 \text{ mm}$, $H_w = 1000 \text{ mm}$

 $y_{R1} = 950 \text{ mm}$, $y_{R2} = 90 \text{ mm}$, L1 = 500 mm, L2 = 100 mm, L3 = 2000 mm

b1 = 8200 mm, b2 = 1500 mm, $W_m = 8050 \text{ mm}$, H0 = 250 mm

H1 = 500 mm, H2 = 200 mm, H3 = 11900 mm, H4 = 2400 mm

Arriostramiento de Refuerzo

Recubrimientos mínimos: Fundación 5.0 cm

Elevación 4.0 cm

 $1: \phi \ 28 @ 125, \ 2: \phi \ 28 @ 250, \ 3: \phi \ 22 n 5, \ 4: \phi 32 @ 125$

5: φ 25@300, 6: φ 22 n 5, 7: φ 22 n 2, 8: φ22 n 6

9: \$\phi\$ 18@250

Suma del Diseño de la Cepa

(6) Fuerzas

Longitudinal:

Caso			
Sísmico	2.657	≤ B/3 =2.667	ок

Transversal:

Caso			
Estático	0.145	≤ L/6 =1.467	OK
Sísmico	2.727	≤ L/3 =2.933	OK

(7) Análisis de Estabilidad

Longitudinal:

Caso	Caso F.S.(S) $q_{max}(t/m^2)$		q _{all} (t/m²)	F.S.(O)	
Estático		25.13 ≤	647.47		OK
Sísmico	2.540 ≥ 1.2	56.57 ≤	403.59	1.505 ≥ 1.5	OK

Transversal:

Caso	F.S.	(S)	$q_{max}(t/m^2)$		$q_{all}(t/m^2)$	F.S.	(O)	
Estático	58.224	≥ 1.5	15.10	S	637.33	30.258	≥ 2.0	ОК
Sísmico	2.538	≥ 1.2	49.94	s	438.80	1.614	≥ 1.5	OK

(8) Diseño del guarda rueda

١:	O) Discho del gadida racon						
A _s (cm ²)		M(tm)	ì	M _u (tm)	v(kg/cm²)	v _c (kg/cm ²)	
	$15.599 \le \phi 22 \text{ n } 6 = 22.806$	14.34	≤	38.68	6.2	≤ 20.0	ок

(9) Diseño de la cepa

٠,	7) 2 130110 20 14 00 14				
	A _s (cm ²)	f _c (kg/cm ²)	$f_{ca}(kg/cm^2)$	$f_s(kg/cm^2)$ $f_{sa}(kg/cm^2)$	
	407.959 ≤ \$\phi32@125=442.365	58.0	≤ 133	1335.5 ≤ 2248	

v(kg/cm²)		v _c (kg/cm²)	
1.1	≤	20.0	ок

(10) Diseño de Fundaciones

Caso	A _s (cm ² /m)	M(tm/m)	M _u (tm/m)	v(kg/cm²)	_v _c (kg/cm²)	
Estático	28.611 ≤ \$\phi28@125=49.264	101.05 ±	≤ 428.55	1.7	S	15.0	ок
Sísmico	$39.754 \le \phi 28@125 = 49.264$	186.75 ≤	≤ 428. <u>55</u>	3.2	≤	20.0	ок

VI, Material List

- 1. Abutment: Height = 5m, 1-Lane, Rv=20t, Pre-tentioned Beam L=20m
- 2. Abutment: Height = 12m, 2-Lane, Rv=70t, Post-tentioned Beam L=36m
- 3. Pier: Height = 5m, 1-Lane, Rv=81t, Post-tentioned Beam L=36m
- 4. Pier: Height = 15m, 2-Lane, Rv=81t, Post-tentioned Beam L=24m

Cubicaciones

Pecha:				Número de Puente :
Nombre del Puente : II	≃5m, R	v=20t, Ph=1.3	35m	
De la Ruta, Camino :				Rol Ruta :
En el Cauce :				
Región :			F	rovincia:
Longitud del Puente	:	L =	0.00 m	
Número de Pistas	:		11	
Ancho	:	1.0	00+4.00+1.00=6.	00 m
Pendiente	:	1.0% (Pa	asillos)	1.5% (Calzađa)
Tipo de Estructura	. :	Estribo		
Altura de Estribo	:	H =	5.00 m	
Longitud de Viga	:	Lv =	20.70 m	
Luz	:	Lc =	20.00 m	
Número de Vigas	:	n _v =	4.00	
Separación entre Vigas	:	S =	1.50 m	
Ancho Mesa Mínima	:	Wm =	5.05 m	

Materia	Grado	Unidad	Cantidad	Observación
Espaldar				
Iormigón	H-25	m ³	3.72	
Moldaje		m ²	16.47	
Acero	A63-42H	kg	362.58	
Миго				
Iormigón	H-25	m³	19.26	
Moldaje		m ²	35.51	
Acero	A63-42H	kg	939.18	
^r undación				
Tormigón	Н-25	m ³	26.00	
Moldaje		m²	21.00	
Acero	A63-42H	kg	1,999.02	
Muros				
Iormigón	H-25	m ³	7.31	
Moldaje		m ²	39.86	
Acero	A63-42H	kg	781.99	
Total				
Hormigón	H-25	m³	56.30	
Moldaje		m ²	112.83	
Acero	A63-42H	kg	4,082.78	1

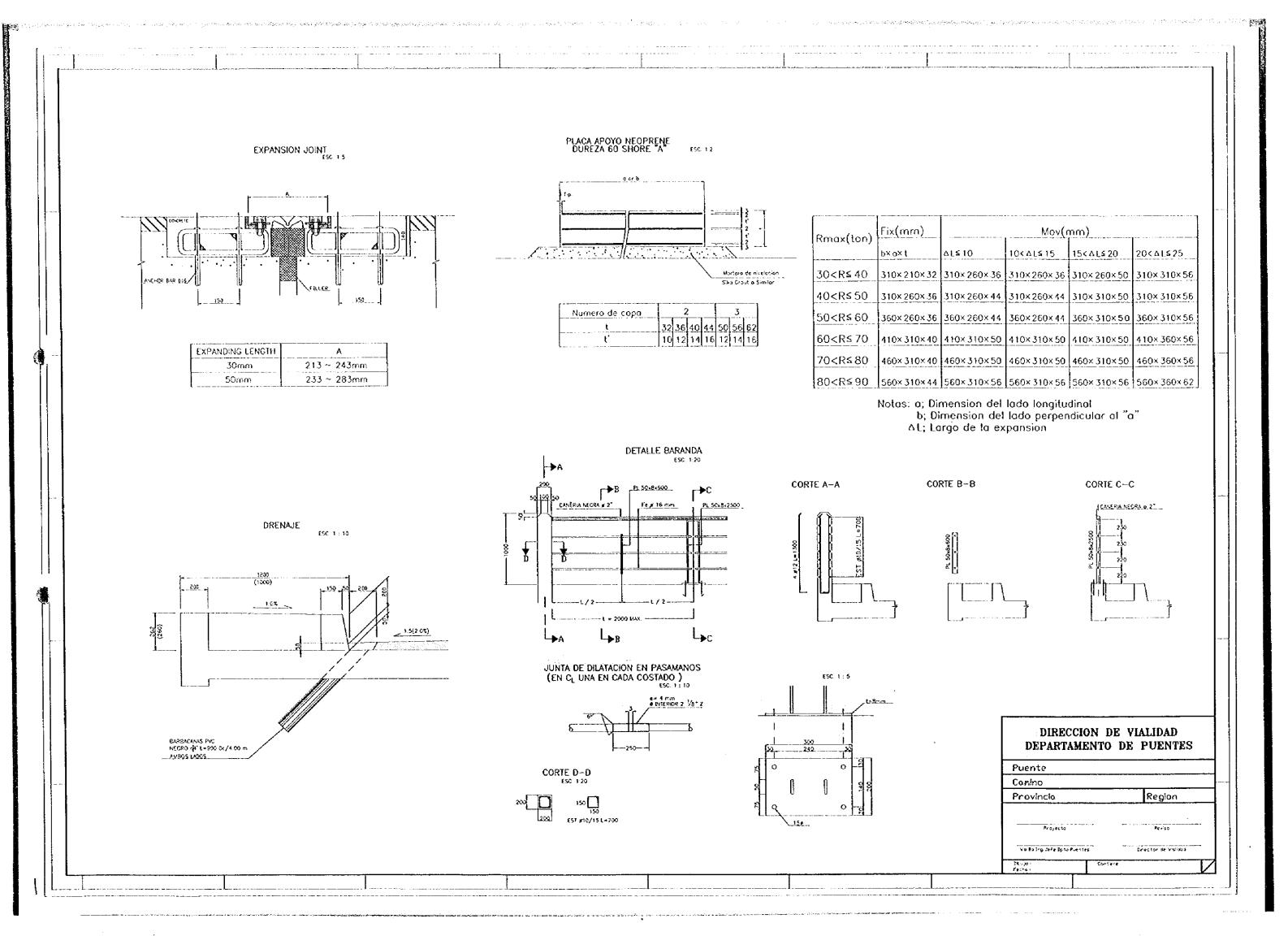
Cubicaciones

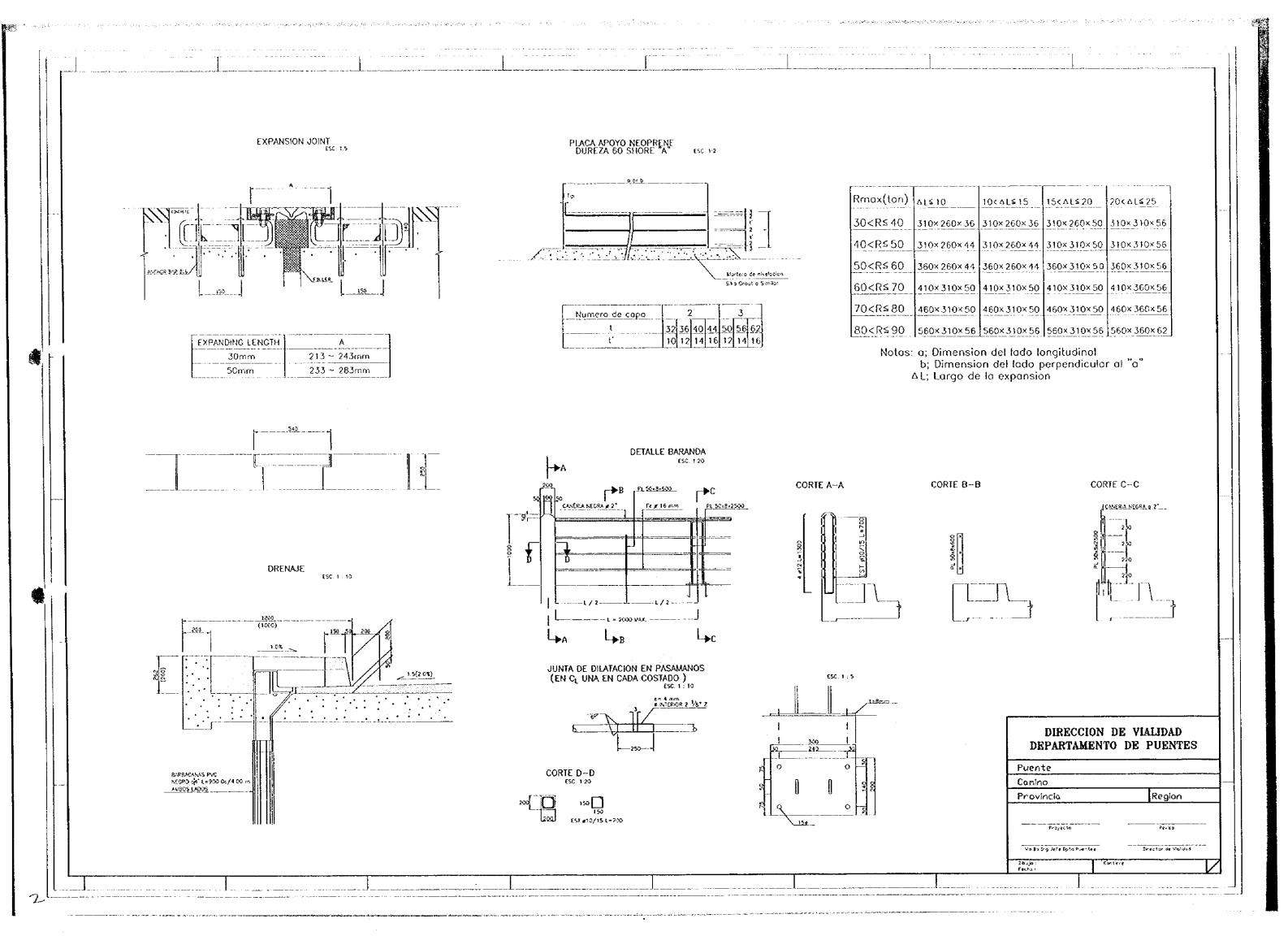
Fecha:				Núm	iero de Puente :	
Nombre del Puente : $\underline{2}$	-Lane, F	tv=70t, Lc	=36m			
De la Ruta, Camino :					Rol Ruta:	
En el Cauce : _						
Región : _		·		Provincia:		
Longitud del Puente	:	L =	0.00 m			
Número de Pistas	:	-	2			
Ancho	:		1.20+7.00+1.20 =	9,40 m		
Pendiente	:	1.0%	(Pasillos)	1.5%	(Calzada)	
Tipo de Estructura	:	Estribo				
Altura de Estribo	:	H =	12.00 m			
Longitud de Viga	:	Lv =	36.80 m			
Luz	:	Ic =	36.00 m			
Número de Vigas	:	n _v =	4.00			
Separación entre Vigas	:	S =	2.25 m			
A	_	111	7.05			

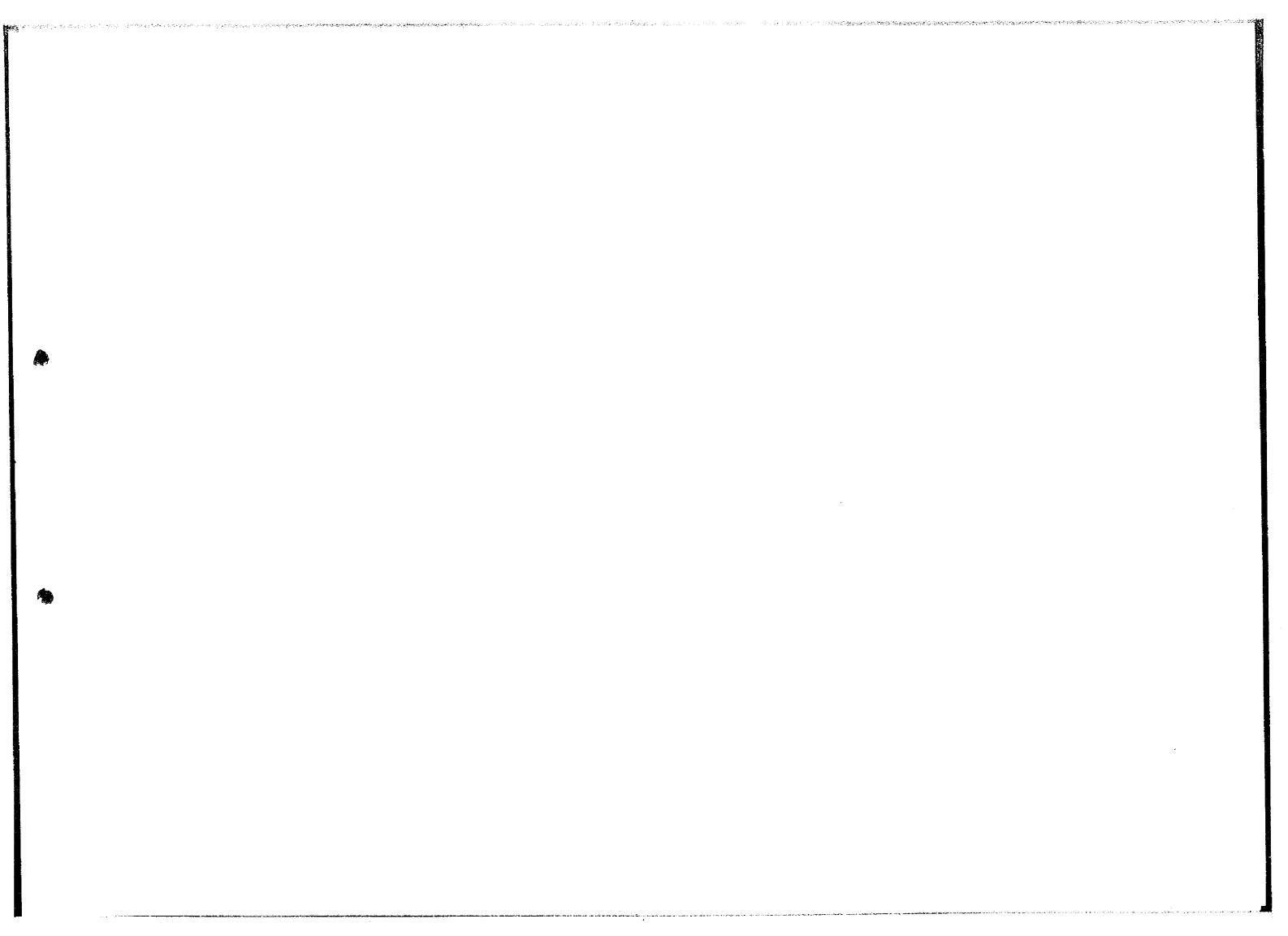
Materia	Grado	Unidad	Cantidad	Observación
Espaldar				
Hormigón	Н-25	m ³	11.18	
Moldaje		m²	50.04	
Acero	A63-4211	kg	875.39	
Миго				
Hormigón	H-25	m³	86.14	
Moldaje		m ²	128.17	
Acero	A63-42H	kg	5,956.78	
Fundación				
Hormigón	Н-25	m ³	187.50	
Moldaje		m²	87.50	
Acero	A63-42H	kg	10,231.78	
Muros				
Hormigón	H-25	m ³	66.19	
Moldaje		m²	182.19	
Acero	А63-42Н	kg	8,210.58	
Total				
Hormigón	Н-25	m³	351.01	
Moldaje		m²	447.90	
Acero	A63-42H	kg	25,274.54	

Cubicaciones

Fecha:				Número de Puente :
Nombre del Puente :	H=5m, Lc	=36m, Rd	=85t	
De la Ruta, Camino :				Rol Ruta :
En el Cauce :				
Región :				Provincia:
Longitud del Puente	:	L =	0.00 m	
Número de Pistas	:		11	
Ancho	:		1.00+4.00+1.00 =	6.00 m
Pendiente	:	1.0%	(Pasillos)	1.5% (Calzada)
Tipo de Estructura	:	Cepa		
Altura de Cepa	;	H =	5.00_m	
Longitud de Viga	:	Lv =	36.80 m	
Luz	:	Lc =	36.00 m	
Número de Vigas	:	$n_v =$	2.00	
Separación entre Viga	s :	S =	3.00 m	
Augha Masa Minimo		Wm _	2.50 m	


Materia	Grado	Unidad	Cantidad	Observación
Cabezal				
Hormigón	H-25	m ³	6.17	
Moldaje		m ²	13.68	
Acero	A63-42H	kg	438.46	
Columna				
Hormigón	H-25	m ³	15.24	
Moldaje		m ²	27.63	
Acero	A63-42H	kg	2165.89	
Fundación				
Hormigón	H-25	m³	45.83	
Moldaje		m ²	29.76	
Acero	A63-42H	kg	4334.98	
Total				
Hormigón	H-25	m ³	67.25	
Moldaje	,	m ²	71.07	
Acero	A63-4211	kg	6939.33	


Cubicaciones


echa :				Numero de Puente :	
Nombre del Puente :	2-Lane, H	=15m			
De la Ruta, Camino :		w. w	······································	Rol Ruta :	
En el Cauce :					
Región :				Provincia:	
Longitud del Puente	:	L = _	0.00	m	
Número de Pistas	:	_	2		
Ancho	:		1.20+7.00+1.20	0 = 9.40 m	
Pendiente	:	1.0%	(Pasillos)	1.5% (Całzada)	
Tipo de Estructura	:	Cepa			
Altura de Cepa	:	H = _	15.00	m.	
Longitud de Viga	:	Lv = _	24.00	m	
Luz	:	Lc =	24.00	m	
Número de Vigas	:	n _v = _	6.00		
Separación entre Viga	s :	S = _	1.50	m	
Ancho Mesa Mínima	:	Wm =	8.05	m	

Materia	Grado U	Inidad	Cantidad	Observación
Cabezal				
Hormigón	H-25	m³	13.24	
Moldaje		m ²	23.32	
Acero	A63-42H	kg	788.38	
Columna				
Hormigón	H-25	m³	140.62	
Moldaje		m ²	215.54	
Acero	A63-42H	kg	14880.40	
Fundación				
Hormigón	Н-25	m ³	168.96	
Moldaje		m ²	80.64	
Асего	A63-42H	kg	10376.06	
Total				
Hormigón	Н-25	m³	322.82	
Moldaje		m ²	319.50	
Acero	A63-42H	kg	26044.84	

DETAIL

