Resultado del diseño

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 2-PRE-L18 n6

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L =

m,

Luz(Longitud de cálculo) : $L_c = 18.000 \text{ m}$

Número de Pistas : 2

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 103 mm

Ancho de Baranda : $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito

Cargas de Viento

Coeficientes sísmicos : $K_h = 0.15$, $K_v = 0.00$

: HS20-44 $: W_v = 0.244 \text{ t/m}^2$ Hormigón(armado), Hormigón(masa)/

(3) Material

Hormigón:

Losa y Travesaño grado: H-30

 $f_{cl} = 250 \text{ kg/cm}^2$,

Pavimento

 $f_{RC} = 100 \text{ kg/cm}^2$

 $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40

 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

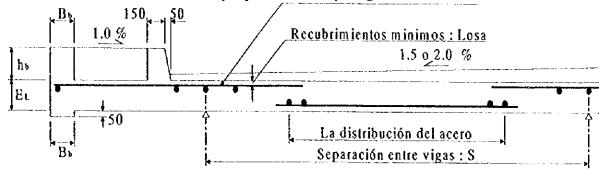
 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{Pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

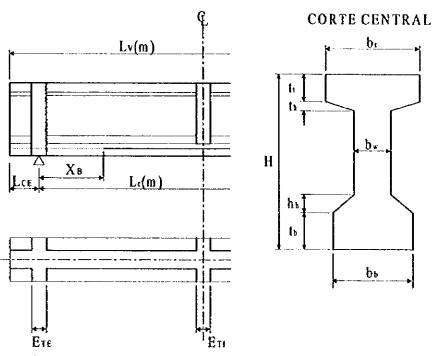

Acero (cable): Grado 270 K, ASTM416-80 Cable: 1-12.7 As* = 0.987 cm^2

Tensión de ruptura : $f_{mi} = 18980 \text{ kg/cm}^2$, Es = 1.97 ×10⁶ kg/cm²

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_1 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

Separación entre vigas : S = 1.500 m, 5@1.500 = 7.500 mNúmero de Vigas : $n_v = 6$,

Longitud de Viga: $L_v = 18.600 \text{ m}$, $L_{CE} = 0.300 \text{ m}$, $x_B = 4.100 \text{ m}$

 $E_{TF} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga : H = 0.900 m

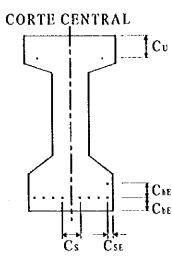
 $b_{r} = 400 \text{ mm}$ $t_{i} = 150 \, \text{mm}$

 $t_{h} = 110 \, \text{mm}$ $b_w = 180 \text{ mm}$

 $h_h = 185 \text{ mm}$, $t_h = 150 \text{ mm}$, $b_b = 550 \, \text{mm}$

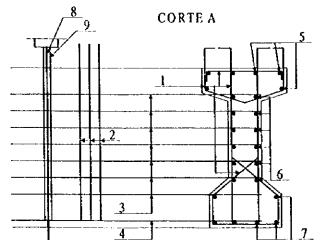
Número de Travesaños(Intermedio): 1

Separación entre Travesaño: 9.000 m


Ancho Mesa Mínimo: W_m= 8.050 m

No.	y _{ci} cm	N _B	N_{BC}	N _B	N_{BC}	N
1	84.5	2	0	2	0	2
2	33.0	0	0	0	0	0
3	27.5	0	0	0	0	0
4	22.0	0	0	0	0	0
<	16.6	0	1	2	1	1

5.5


Total

 $0.000 \,\mathrm{m}$ $x_{\rm B} = 4.100 \,\mathrm{m}$

$$C_U = 55 \text{ mm}$$
, $C_S = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 17.2 \text{ cm}$
 $C_{EE} = 55 \text{ mm}$, $C_{DE} = 26.6 \text{ cm}$, $C_{DX} = 22.3 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 16 n 4, 4: \phi 25$

5:φ12,

6: \phi 12 n 3, 7: \phi 12

8:φ22 n 2,

9: \$3"

à Diseño de Losa

(3)	Diseño de Los E _M (cm) E _I			d _{rea} (cm)	d (cm)		A _{sreo} (cm ²) As (cm ²)	
Ì	16.5 ≤ 1°	•-•T-	ок	11.1	. ≤	14.0	ок	$8.692 \le \phi 12@125 = 9.048$	ок
Ì	ϕM_n (tm/m)	(tm/m)							
	4.482	≥		3.566		ОК	67	$(\%) 5.824 \le \phi 12@175 = 6.463$	ок

Cuantificación del Pretensado

(6) Diseño de Viga

 $(x = ^{L}/_{2} = 9.000 \text{ m})$ Exterior Interior Transferencial Transferencial Servicio Servicio Total f_a(kg/cm²) Total f_a(kg/cm²) Total f₂(kg/cm²) Total f₂(kg/cm²) Fatiga (kg/cm²) $29 \le 168 | OK | 119 \le 140 | OK |$ $29 \le 168 | OK | 118 \le 140 | OK$ Viga Superior: fvs $139 \le 168 | OK | -11 \ge -15 | OK | 139 \le 168 | OK |$ -9 ≥ -15 OK Viga Inferior : f_{vt}

(x = 4.100 m) Exterior Bond Control: Ne = 12

	Transferencial		Servicio		Transferencial			Servicio		
Fatiga (kg/cm²)	atiga (kg/cm²) Total f _a (kg/cm²)		Total f ₃ (kg/c	Total f _a (kg/cm ²)			Total f (kg/cm²)			
Viga Superior: f _{vs}	12 ≤ 168	oĸ	76 ≤ 140	OK	39 ≤	168	ОK	100 ≤ 140	ОК	
Viga Inferior : f _{vi}	$153 \le 168$	OK	40 ≤ 140	ок	56 ≤	168	OK	49 ≤ 140	ОК	

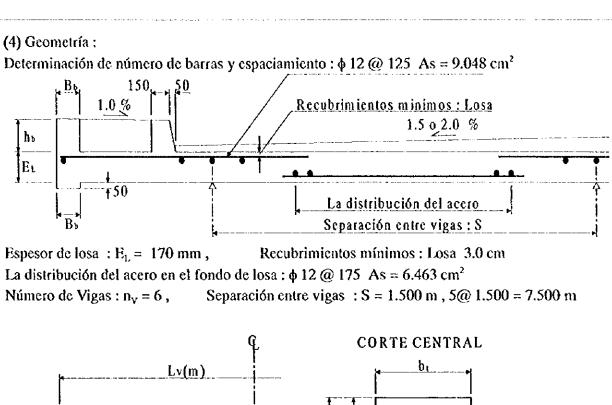
A_{n} (cm ²)	A _s (cm ²)	φM _o (tm) Mu (tm)	$\phi M_0(tm) 1.2 M_{cl}(tm)$
21×1-12.7 = 20.727	$4-\phi 12 = 4.524$	323.189 ≥ 244.389 OI	$K 323.189 \ge 202.549 OK$

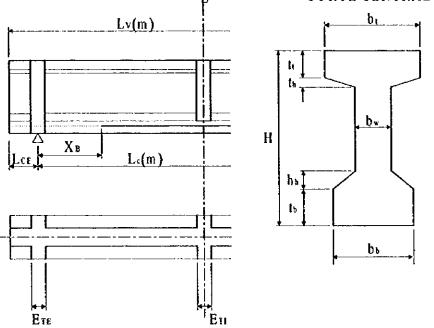
(7) Verificacion de Corte

h/2 =	0.450 m		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_p = 63.4 \text{ cm}$	
V _u =	53.126 t	≤	$\phi(V_c + V_s) = 0.9 \times (27.443 + 10.00)$	60.209) = 78.887 t	_	ок
Cálculo	de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_{u} = 53.126 \le \phi V$	$V_{\rm nh} = 276.420$	OK

(8) Deflexión de Transferencia

•					
	$\delta_{\rm D}$ (cm)	$\delta_{\rm L}$ (cm)		Lc/800	
	2.9	1.0	≤	2.3	ОК


(9) Cáluculo de Travesaño


A_{srea} (cm ²)		As (cm²)	
12.093	≤	13.840	oĸ

A _p (cm ²)	$R_{v}(t)$
$21.483 \le 5 \times 2 \times \phi 22 = 38.010$ OK	17.779

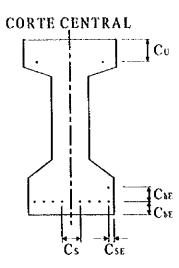
Resultado del diseño Tipo de Estructura : Viga de Pretensado Fecha: Número de Puente: (1) Datos Generales Nombre del Puente : 2-PRE-L20 n6 Rol Ruta: De la Ruta, Camino: En el Cauce: Región: Provincia: Longitud del Puente : L = Luz(Longitud de cálculo): L_c = 20.000 m m, Número de Pistas : 1.200 + 7.000 + 1.200 = 9.400 mAncho (Pasillos) (Calzada) (Pasillos) Pendiente: 1.0 1.5 Espesor máximo del Pavimento: 103 mm Espesor mínimo del Pavimento: 50 mm, Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$ (2) Cargas Baranda: $W_B = 0.050 \text{ t/m}$, $W_1 = 0.020 \text{ t/m}$, h = 1.100 mCargas de Pavimento : 2.30 t/m³ Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado) : 7.85 t/m³ Acero Peatones $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$ Pavimento 0.293 t/m2(Viga) Cargas de Tránsito : HS20-44 Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$ Hormigón(armado)/ Coeficientes sísmicos : $K_h = 0.15$, $K_v = 0.00$ Hormigón(masa), (3) Material Hormigón: Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{kg/cm}^2$ (AASHTO 8.7.1) $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$ Viga grado : H-40 $f_{cv} = 350 \text{ kg/cm}^2$, $f_{ci}' = 280 \text{ kg/cm}^2$ $E_{p_i} = 2.69 \times 10^5 \text{ kg/cm}^2$ Acero para Armadura de Losa y Viga: A63-42H f_s = 4200 kg/cm², f_s = 1690 kg/cm² Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$ Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$ Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$ Tensión de ruptura : $f_{pq} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

Longitud de Viga : L_{ν} = 20.700 m , $\qquad L_{CE}$ = 0.350 m , $\qquad x_{B}$ = 5.100 m

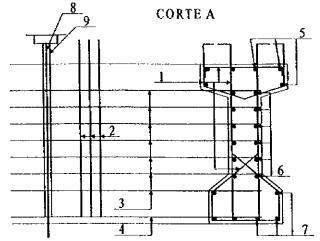
 $b_{\omega} = 180 \text{ mm}$

 $E_{TE} = 300 \text{ mm}, \quad E_{TI} = 250 \text{ mm}$


Altura de Viga : H = 1.000 m

 $b_t = 400 \text{ mm}, \qquad t_t = 150 \text{ mm}, \qquad t_b = 110 \text{ mm},$


 $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$, $b_b = 550 \text{ mm}$


Número de Travesaños (Intermedio): 1 Separación entre Travesaño: 10.000 m Ancho Mesa Mínimo: W_m= 8.050 m

		0.000) m	$x_B = 5.100 \text{ m}$				
No.	y _{si} cm	N _B	N _{BC}	N _B	N _{BC}	N		
1	94.5	2	0	2	0	2		
2	33.0	0	0	0	0	0		
3	27.5	0	0	0	0	0		
4	22.0	0	0	0	0	0		
5	16.5	2	4	2	4	6		
6	11.0	2	6	4	4	8		
F		T	i	I	i	1		

 $C_{\text{U}} = 55 \text{ mm}$, $C_{\text{S}} = 70 \text{ mm}$, $C_{\text{SE}} = 80 \text{ mm}$, $C_{\text{DC}} = 18.0 \text{ cm}$ $C_{\text{bE}} = 55 \text{ mm}$, $C_{\text{EE}} = 55 \text{ mm}$, $C_{\text{DE}} = 26.6 \text{ cm}$, $C_{\text{DX}} = 22.6 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12@200, 2: \phi 12@200, 3: \phi 16 n 4, 4: \phi 22

 $5: \phi 12$, $6: \phi 12 n 3$, $7: \phi 12$

8:φ22n2, 9:φ3ⁿ

Cuantificación del Pretensado

(5) Diseño de Losa

ĺ	E _M (cm) E _L (cm)			d _{reg} (cm) d (cm)			A _{sreq} (cm				
1	16.5 ≤ 1	7.0	OK 1	1.1	≤	14.0	ок	8.692	≤ φ12	2@125=9.048	ок
	φM _a (tm/m)	/m)			Distribución: As (cm²)						
	4.482	≥	3.5	56		ОК	67 ((%) 5.824	≤ ф1	2@175=6.463	ОК

(6) Diseño de Viga

. ,	$(x = {}^{L}/_{2} = 10.000)$	m)	Ext	erior	Interior					
		Transferen	cial	Servicio)	Transferen	cial	Servicio		
	Fatiga (kg/cm²)	Total f _a (kg/cm ²)		Total f _a (kg/c	m²)	Total f ₃ (kg/cm ²)		Total f _a (kg/cm ²		
	Viga Superior: f _{vs}	30 ≤ 168	OK	124 ≤ 140	ок	30 ≤ 168	OK	124 ≤ 1	40 O	
Ì	Viga Inferior : f _{VI}	142 ≤ 168	OK	-10 ≥ -15	OK	142 ≤ 168	OK	-8 ≥ -	15 O	
•	(~ 100) T					Dand Cant		AT. 12		

(x = 5.100 m) Exterior Bond Control: Ne = 13

	Transferencial Total f _a (kg/cm ²)		Servicio		Transference	cial	Servicio		
Fatiga (kg/cm²)			Total f _s (kg/c	m²)	Total f _a (kg/c	m²)	Total f _s (kg/cm ²)		
Viga Superior: f _{vs}	15 ≤ 168	OK	87 ≤ 140	OK	41 ≤ 168	OK	110 ≤ 140	OK	
Viga Inferior : f _{vi}	155 ≤ 168	OK	34 ≤ 140	OK	70 ≤ 168	oĸ	61 ≤ 140	ΟK	

A _o (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)		φM _c (tm)	1.2M _{cr} (tm)	
23×1-12.7 = 22.701	$4-\phi 12 = 4.524$	388.379 ≥ 292.399	OK	388.379	≥ 244.992	ок

(7) Verificacion de Corte

h/2 =	0.500 m		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_p = 73.4 \text{ cm}$	
V _u =	56.683 t	Š	$\phi(V_c + V_s) = 0.9 \times (32.280 +$	69.733) = 91.811 t		oĸ
Cálculo	o de Conectores		$A_v = 4-\phi 12 = 4.524 \text{ cm}^2$	$V_{u} = 56.683 \le \phi$	$V_{nb} = 320.145$	OK

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ_L (cm)		Lc/800	
3.4	1.2	≤	2.5	ОК

(9) Cáluculo de Travesaño

A _{sreq} (cm ²)		As (cm²)	
11.319	≤	11.624	ОК

A _p (cm²)				R, (t)
24.481	≤	5×2×φ22=38.010	ОК	20.259

Resultado del diseño

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 2-PRE-L22_n6

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L =

m,

Luz(Longitud de cálculo) : $L_c = 22.000 \text{ m}$

Número de Pistas : 2

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5 1.0 %

Espesor máximo del Pavimento: 103 mm Espesor mínimo del Pavimento: 50 mm,

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

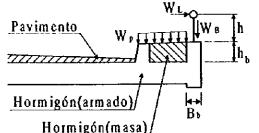
Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

Acero

 $: 7.85 \text{ t/m}^3$

Peatones

 $W_p = 0.415 \text{ t/m}^2(\text{Losa})$


0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento

 $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_b = 0.15$, $K_c = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{ct} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

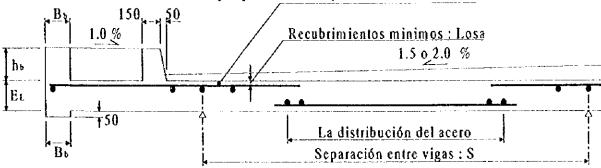
 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

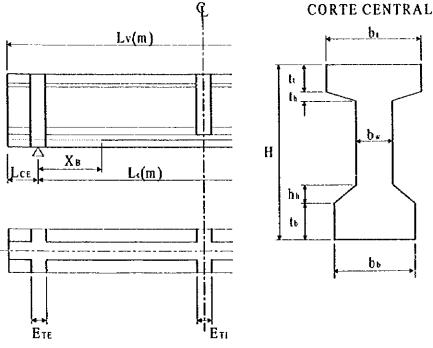

Acero (cable): Grado 270 K, ASTM416-80 Cable: 1-12.7 As* = 0.987 cm^2

Tensión de ruptura: $f_{pu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Py} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_0 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

Número de Vigas : $n_v = 6$, Separación entre vigas : S = 1.500 m, 5@ 1.500 = 7.500 m

Longitud de Viga : $L_v = 22.700 \text{ m}$, $L_{CE} = 0.350 \text{ m}$, $x_B = 5.600 \text{ m}$

 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

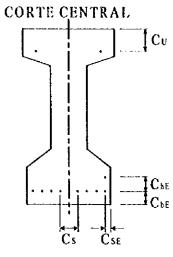
Altura de Viga: H = 1.100 m

 $b_t = 400 \text{ mm}$, $t_t = 150 \text{ mm}$, $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$,

 $t_s = 110 \text{ mm}$

 $b_{h} = 550 \, \text{mm}$

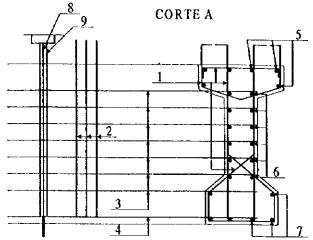
 $b_{sc} = 180 \, \text{mm}$


Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 11.000 m

Ancho Mesa Mínimo: W_m= 8.050 m

		0.000) m	$x_B = 5$	5.600 r	n
No.	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N
1_1_	104.5	2	0	2	0	2
2	33.0	0	0	0	0	0
3	27.5	0	0	0	0	0
4	22.0	0	0	0	0	0
5	16.5	4	4	4	4	8
6	11.0	2	6	4	4	8
7	5.5	4	3	4	3	7

12


Total

 $C_{\text{U}} = 55 \text{ mm}$, $C_{\text{S}} = 70 \text{ mm}$, $C_{\text{SE}} = 80 \text{ mm}$, $C_{\text{DC}} = 18.7 \text{ cm}$ $C_{\text{hE}} = 55 \text{ mm}$, $C_{\text{DE}} = 55 \text{ mm}$, $C_{\text{DE}} = 26.6 \text{ cm}$, $C_{\text{DX}} = 24.4 \text{ cm}$

13 14 11 25

Recubrimientos mínimos : Viga 2.5 cm

 $1:\phi 12@200, 2:\phi 12@200, 3:\phi 16n5, 4:\phi 22$

5:φ12,

6: \phi 12 n 4, 7: \phi 12

8:φ22n2,

9: \dog 3"

Cuantificación del Pretensado

(5) Diseño de Losa

E_{M} (cm) E_{L} (cm) d_{eq} (cm) d (cm)			A_{sreg} (cm ²) As (cm ²)	
$16.5 \le 17.0$	OK 11,1 ≤ 14	4.0 OK	8.692 ≤ \$12@125=9.048	oĸ
φM _n (tm/m)	Mu (tm/m)		Distribución: As (cm²)	
4,482 ≥	3.566	OK 67	$(\%) 5.824 \le \phi 12@175 = 6.463$	ок

(6) Diseño de Viga

 $(x = \frac{L}{2} = 11.000 \text{ m})$ Exterior

Interior

	Transferencial		Servicio		Transferencial			Servicio		
Fatiga (kg/cm²)	Total f (kg/c	m²)	Total f (kg/c	m²)	Total	f _a (kg/c	m²)	Total	f _a (kg/c	m²)_
Viga Superior: f _{vs}	31 ≤ 168	ок	129 ≤ 140	ок	31	≤ 168	ок	129	≤ 140	OK
Viga Inferior : f _{vi}	146 ≤ 168	ок	-9 ≥ -15	OK	146	≤ 168	ОК	-7 :	≥ -15	ок

(x = 5.600 m) Exterior

Transferencial

Bond Control: Ne = 14

Transferencial Servicio

Total f (kg/cm²) Total f (kg/cm²)

Fatiga (kg/cm²) Total f (kg/cm²) Viga Superior: f_{VS} 15 ≤ 168 OK 89 ≤ 140 OK 44 ≤ 168 OK 115 ≤ 140 OK Viga Inferior: f_{VI} 159 ≤ 168 OK 37 ≤ 140 OK

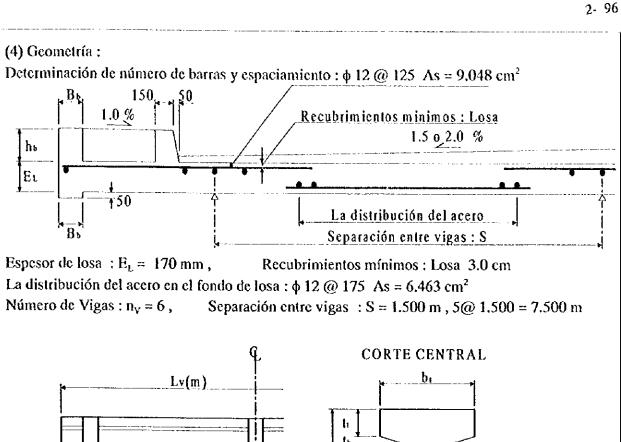
Servicio

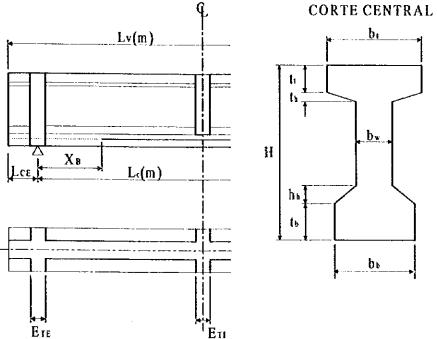
A_p (cm ²)	A _s (cm ²)	φM _n (tm) Mu (tm)		$\phi M_{o}(tm) 1.2 M_{cr}(tm)$	
25×1-12.7 = 24.675	$4-\phi 12 = 4.524$	460.124 ≥ 344.177	OK	460.124 ≥ 291.540 O	K

(7) Verificacion de Corte

h/2 =	0.550 m	$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_o = 83.4 \text{ cm}$	
V, =	60.243 t	$\leq \phi(V_c + V_s) = 0.9 \times (37.178 +$	79.249) = 104.784 t		ок
Cálcule	o de Conectores	$A_v = 4.\phi 12 = 4.524 \text{ cm}^2$	$V_n = 60.243 \le \phi V$	$_{\rm ob} = 363.835$	ок

(8) Deflexión de Transferencia


$\delta_{\rm D}$ (cm)	δ_L (cm)		Lc/800	
4.0	1.3	s	2.8	ок


(9) Cáluculo de Travesaño

A _{srea} (cm ²)		As (cm²)	
10.693	≤	11.624	ОК

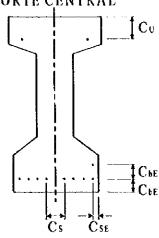
	-	$R_v(t)$	
27.475 ≤	5×2×φ22=38.010	ок	22.737

Resultado del diseño Tipo de Estructura : Viga de Pretensado Fecha: (1) Datos Generales Número de Puente: Nombre del Puente : 2-PRE-L24 n6 De la Ruta, Camino: Rol Ruta: En el Cauce: Región: Provincia: Longitud del Puente : L = Luz(Longitud de cálculo): L_c = 24.000 m m, Número de Pistas : 2 : 1.200 + 7.000 + 1.200 = 9.400 mAncho (Pasillos) (Calzada) (Pasillos) Pendiente: 1.0 1.5 1.0 % Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 103 mm Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$ (2) Cargas Baranda: $W_B = 0.050 \text{ t/m}$, $W_1 = 0.020 \text{ t/m}$, Cargas de Pavimento : 2.30 t/m³ Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado) $: 7.85 \text{ t/m}^3$ Acero $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$ Peatones **Pavimento** 0.293 t/m2(Viga) Cargas de Tránsito : HS20-44 Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$ Hormigón(armado)/ Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$ Hormigón(masa)/ (3) Material Hormigón: Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$ $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ (AASHTO 8.7.1) $f_{cV} = 350 \text{ kg/cm}^2$, Viga grado : H-40 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$ $f_{ci}' = 280 \text{ kg/cm}^2$, $E_{Pi} = 2.69 \times 10^5 \text{ kg/cm}^2$ Acero para Armadura de Losa y Viga : A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{ss} = 1690 \text{ kg/cm}^2$ Es = 29,000,000 psi = 2.1×10^6 kg/cm² Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$ Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$ Tensión de ruptura : $f_{pa} = 18980 \text{ kg/cm}^2$, Es = 1.97 ×10⁶ kg/cm² Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

Longitud de Viga: $L_v = 24.700 \text{ m}$, $L_{CE} = 0.350 \text{ m}$, $x_B = 6.300 \text{ m}$ $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

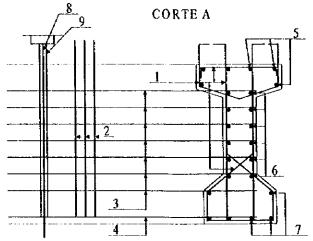
Altura de Viga: H = 1.200 m

 $b_i = 400 \text{ mm}$, $t_i = 150 \text{ mm}$, $t_{\rm h} = 110 \, \rm mm$, $b_{\rm m} = 180 \, \rm mm$


 $h_h = 185 \text{ mm}$, $t_b = 150 \, \text{mm}$ $b_b = 550 \text{ mm}$

Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 12.000 m Ancho Mesa Mínimo: W_m= 8.050 m

0.000 m	$x_8 = 6.300 \text{ m}$


No.	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N
1	114.5	2	0	2	0	2
2	33.0	0	0	0	0	0
3	27.5	0	0	0	0	0
4	22.0	0	2	0	2	2
5	16.5	4	4	4	4	8
6	11.0	2	6	4	4	8
7	5.5	4	3	5	2	7
	Total	12	15	15	12	27

CORTE CENTRAL

$$C_0 = 55 \text{ mm}$$
, $C_S = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 19.7 \text{ cm}$
 $C_{hE} = 55 \text{ mm}$, $C_{EE} = 55 \text{ mm}$, $C_{DE} = 28.3 \text{ cm}$, $C_{DX} = 24.4 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 16 n 5, 4: \phi 22

5:φ12, 6:φ12π4, 7:φ12

8:φ22n2, 9:φ3"

Cuantificación del Pretensado

(5) Diseño de Losa

E _M (cm) I	_L (cm)	d _{ssa} (cm)	d (cm)		A _{sreq} (cm	²)	As (cm²)	
16.5 ≤	17.0	ок	11.1	s	14.0	ок	8.692	.s (ф12@125=9.048	ОК
$\phi M_a \text{ (tm/m)}$)	Mu	(tm/m)				Distr	ribu	ición: As (cm²)	
4.482	2		3.566		ок	67 ((%) 5.824	≤	ф12@175=6.463	ОК

(6) Diseño de Viga

 $(x = {}^{1}/_{2} = 12.000 \text{ m})$

Exterior

Interior

	Transferenc	cial	Servicio		Transferen	cial	Servicio)
Fatiga (kg/cm²)	Total f (kg/c	m²)	Total f _a (kg/c	m²)	Total f _a (kg/c	m²)_	Total f ₃ (kg/c	m²)
Viga Superior: f _{vs}	34 ≤ 168	ок	135 ≤ 140	ок	34 ≤ 168	ок	135 ≤ 140	OK
Viga Inferior : f _{vi}	148 ≤ 168	ОК	-9 ≥ -15	OK	148 ≤ 168	ок	7 ≥ -15	ок

(x = 6.300 m) Exterior

Bond Control: Ne = 15

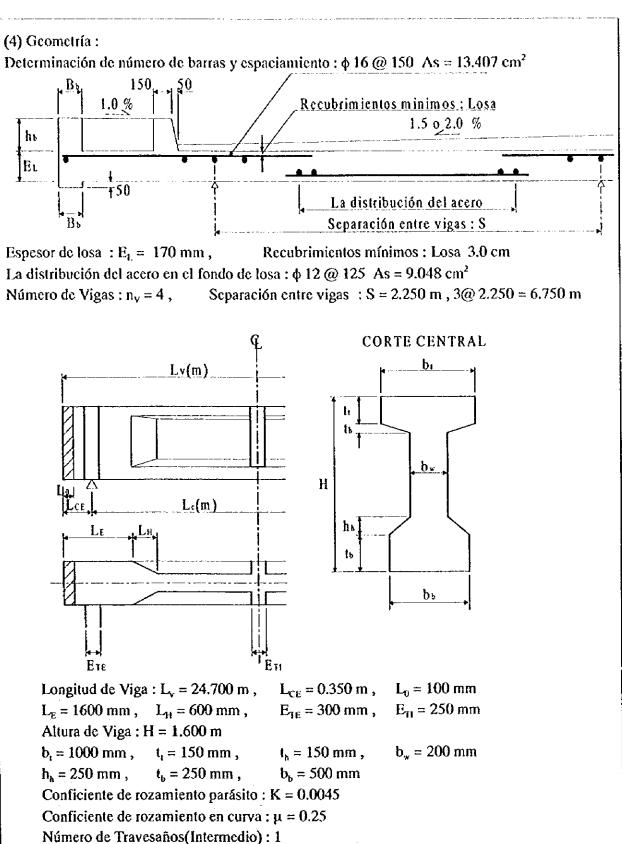
	Transferencial	Servicio	Transferencial	Servicio
Fatiga (kg/cm²)	Total f ₄ (kg/cm ²)	Total f _s (kg/cm ²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)
Viga Superior: f _{vs}	17 ≤ 168 OK	96 ≤ 140 OK	45 s 168 OK	120 ≤ 140 OK
Viga Inferior : f _{vi}	$162 \le 168$ OK	35 s 140 OK	80 ≤ 168 OK	70 ≤ 140 OK

A_{p} (cm ²)	A _s (cm ²)	φM _n (tm) Mu (tm)		φM _n (tm)	1.2M _a (tm)	
27×1-12.7 = 26.649	$4-\phi 12 = 4.524$	536.474 ≥ 399.919	OK	536.474	≥ 340.350	oĸ

(7) Verificacion de Corte

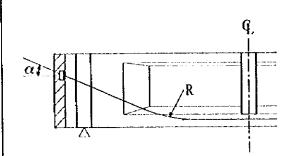
h/2 =	0.600 m		$A_y = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_{p} = 91.8 \text{ cm}$	
V _u =	63.837 t	<u>≤</u>	$\phi(V_c + V_s) = 0.9 \times (40.500 +$	87.166) = 114.899	t	ок
Cálcule	o de Conectores		$A_v = 4.44 = 4.524 \text{ cm}^2$	$V_y = 63.837 \le \phi V_y$	$V_{\rm nh} = 400.182$	ок

(8) Deflexión de Transferencia

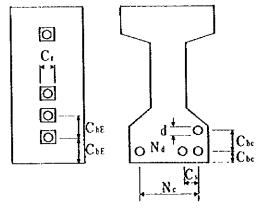

δ _D (cm)	δ _L (cm)		Lc/800	
4.6	1.4	≤	3.0	ОК

(9) Cáluculo de Travesaño

A _{srea} (cm²)		As (cm²)	
10.176	≾	11.624	ОК

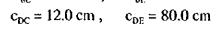

	$R_{v}(t)$		
30.578 ≤	5×2×φ22=38.010	OK	25.305

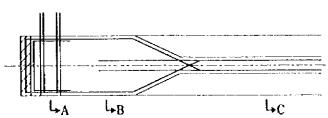
Resultado del diseño Tipo de Estructura: Viga de Postensado Fecha: Número de Puente: (1) Datos Generales Nombre del Puente: 2-PST-L24_n4 Rol Ruta: De la Ruta, Camino: En el Cauce: Región: Provincia: Luz(Longitud de cálculo): L_c = 24.000 m Longitud del Puente : L = m, Número de Pistas Ancho $: 1.200 + 7.000 + 1.200 = 9.400 \,\mathrm{m}$ (Pasillos) (Calzada) (Pasillos) Pendiente: 1.0 1.5 1.0 % Espesor máximo del Pavimento: 103 mm Espesor mínimo del Pavimento: 50 mm, Ancho de Baranda: $B_b = 200 \text{ mm}$, $b_b = 0.250 \text{ m}$ (2) Cargas Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 mCargas de Pavimento : 2.30 t/m³ Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado) $: 7.85 \text{ t/m}^3$ Acero $: W_n = 0.415 \text{ t/m}^2(\text{Losa})$ Peatones Pavimento $0.293 \text{ t/m}^2(\text{Viga})$ Cargas de Tránsito : HS20-44 Cargas de Viento $: W_V = 0.244 \text{ t/m}^2$ Hormigón(armado)/ Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$ Hormigón(masa)/ (3) Material Hormigón: $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$ (AASHTO 8.7.1) $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$: H-40 $f_{cv} = 350 \text{ kg/cm}^2$, $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$ Viga grado $f_{ci}' = 280 \text{ kg/cm}^2$ $E_{\rm pi} = 2.69 \times 10^5 \, \rm kg/cm^2$ Acero para Armadura de Losa y Viga: A63-42H f_x = 4200 kg/cm², f_{sa}= 1690 kg/cm² Es = 29,000,000 psi = 2.1×10^6 kg/cm² Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$ Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$ Tensión de ruptura : $f_{pq} = 18980 \text{ kg/cm}^2$, Es = 1.97 ×10⁶ kg/cm² Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

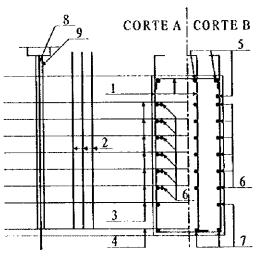


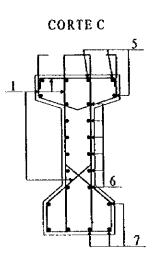
Separación entre Travesaño: 12.000 m

Ancho Mesa Mínimo : $W_m = 7.250 \text{ m}$


CORTE FINAL CORTE CENTRAL




No.	a(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	0.0	0.00
6	0.0	0.00
7	0.0	0.00


Número de ductos a descontar:

$N_d = 4$,	d = 80 mm
$N_c = 3$,	$C_s = 140 \text{ mm}$
$C_{bC} = 120 \text{ mm}$,	$C_{bC} = 90 \text{ mm}$
$C_r = 180 \text{ mm}$	
$C_{bE} = 3.0 \text{mm}$	$C_{bF} = 320 \text{ mm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1:\phi 12@200, 2:\phi 12@200, 3:\phi 12n6, 4:\phi 22$

 $5: \phi 12, \qquad 6: \phi 12 \text{ n } 5, \qquad 7: \phi 12$

 $8: \phi 25 n 3$, $9: \phi 3$

Cuantificación del Postensado

(5) Diseño de Losa

E _M (cm) E	(cm)	d _{rea} (cm)	d (cn	n)		A _{sreq} (cm ²)	As (cm²)	· • • · · · · · · · · · · · · · · · · ·
16.5 ≤ 1	7.0	OK	13.5	≤	14.	0	ок	12.802	≤ ф 16	@150=13.407	OK
φM _a (tm/m) Mu (tm/m)						Distri	ibució	n: As (cm²)			
6.424	≥		5.253			ок	67 ((%) 8.577	≤ ¢1	2@125=9.048	ОК

(6) Discño de Viga

(x = 9.076 m) Interior

	Transferen	cial	Servicio Total f _s (kg/cm²)			
Fatiga (kg/cm²)	Total f _a (kg/c	m²)				
Viga Superior: f _{vs}	-5 ≥ -13	ОК	50 ≤ 140	OK		
Viga Inferior : fyl	139 ≤ 168	OK	21 \(\text{140}	OK		

A_{p} (cm ²)	A_s (cm ²)	φM _o (tm) Mu (tm)		$\phi M_n(tm) 1.2 M_{cc}(tm)$	
4×6.910 = 27.640	$6 - \phi 12 = 6.786$	826.493 ≥ 615.784	ок	826.493 ≥ 598.412	ок

(7) Verificacion de Corte

h/2 =	0.800 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_p = 80.0 \text{ cm}$,
V _u =	96.814 t	≤	$\phi(V_c + V_s) = 0.9 \times (91.259 + 1)$	114.005) = 184.737	' t	ок
Cálculo	de Conectores		$A_v = 4-\phi 12 = 4.524 \text{ cm}^2$	$V_u = 96.814 \le \phi V$	$V_{\rm ph} = 382.628$	OK

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ_L (cm) δ_L (cm)		Lc/800	
2.3	0.9	 ≤	3.0	ОК

(9) Cáluculo de Travesaño

A _{sreo} (cm ²)		As (cm²)	
8.225	≤	9.864	OK

	A_{o} (cm ²)		R _v (t)
33.806 ≤	3×3×φ25=44.181	OK	41.964

Resultado del diseño

Tipo de Estructura : Viga de Postensado

(1) Datos Generales

Fecha: Número de Puente:

Nombre del Puente: 2-PST-L26 n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce :

Región:

Provincia:

Longitud del Puente : L =

Luz(Longitud de cálculo) : $L_s = 26.000 \text{ m}$

Número de Pistas : 2

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 103 mm

Ancho de Baranda : $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_1 = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones

 $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento

 $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_b = 0.15$, $K_c = 0.00$

Hormigón(armado)/ Hormigón(masa)

Pavimento .

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cl} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{15} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

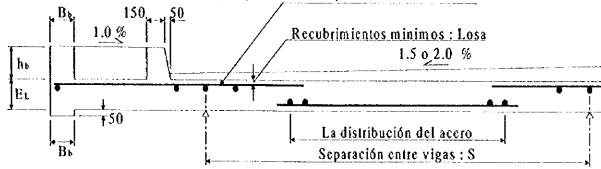
 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

 f_{ci} = 280 kg/cm²,

 $E_{\rm pi} = 2.69 \times 10^5 \, \rm kg/cm^2$

Acero para Armadura de Losa y Viga: A63-42H f_v = 4200 kg/cm², f_o= 1690 kg/cm² Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

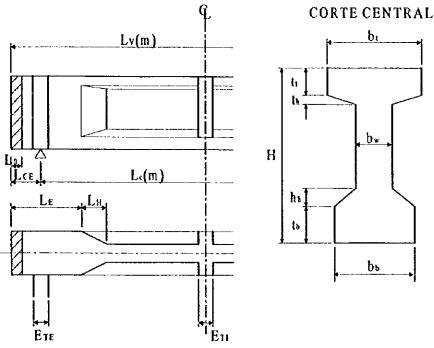

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{eq} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia: $f_{P_y} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : \(\phi \) 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_1 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

Número de Vigas : $n_v = 4$, Separación entre vigas : S = 2.250 m, 3@2.250 = 6.750 m

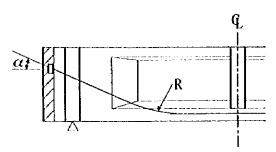
Longitud de Viga: $L_v = 26.700 \text{ m}$, $L_{CE} = 0.350 \text{ m}$, $L_0 = 100 \text{ mm}$

 $L_{\rm E} = 1600 \, \text{mm}$, $L_{\rm H} = 600 \, \text{mm}$,

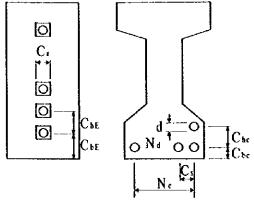
 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga : H = 1.700 m

 $b_i = 1000 \text{ mm}$, $t_i = 150 \text{ mm}$,


 $t_b = 150 \, \text{mm}$, $b_{w} = 200 \text{ mm}$

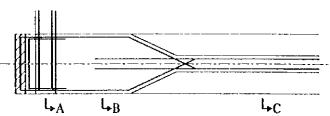
 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$, $b_{h} = 500 \text{ mm}$

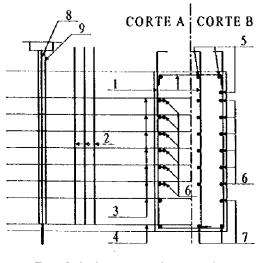

Conficiente de rozamiento parásito : K = 0.0045 Conficiente de rozamiento en curva : $\mu = 0.25$

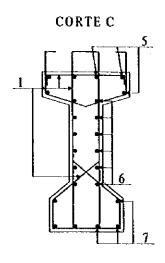
Número de Travesaños(Intermedio): 2

Separación entre Travesaño: 8.667 m Ancho Mesa Mínimo: W_m= 7.250 m

CORTE FINAL CORTE CENTRAL




No.	a(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	0.0	0.00
6	0.0	0.00
7	0.0	0.00


Número de ductos a descontar:

$N_d = 4$,	d = 80 mm
$N_c = 3$,	$C_s = 140 \text{ mm}$
$C_{hC} = 120 \text{ mm},$	$C_{bC} = 90 \text{ mm}$
C = 180 mm	

 $C_{bE} = 340 \text{ mm}$, $C_{bE} = 340 \text{ mm}$ $c_{DC} = 12.0 \text{ cm}$, $c_{DE} = 85.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n6, 4: \$ 22

5:φ12,

8:φ25n3, 9: \$3"

6: φ12 n 5, 7: φ12

Cuantificación del Postensado

(5) Diseño de Losa

E _M (cm)	E _L (cm) d _{req} (cm) d (cm)		Λ_{sreq} (cm ²) As (cm ²)			
16.5 ≤	17.0	OK 13.5	≤ 14.0	oĸ	12.802 ≤ \$\phi16@150=13.407	oĸ		
ϕM_s (tm/n	φM _n (tm/m) Mu (tm/m)				Distribución: As (cm²)			
6.424	≥	5.253	ОК	67 ($(\%) 8.577 \le \phi 12@125 = 9.048$	ОК		

(6) Diseño de Viga

 $(x = \frac{1}{2} = 13.000 \text{ m})$

Exterior

Interior

	Transferencial		Servicio		Transferen	cial	Servicio	
Fatiga (kg/cm²)	Total f _s (kg/cm ²)		Total f _s (kg/cm ²)		Total f _s (kg/c	m²)	Total f ₃ (kg/cm ²)	
Viga Superior: f _{vs}	3 ≤ 168	ОK	65 ≤ 140	OK	3 ≤ 168	ок	66 ≤ 140	ок
Viga Inferior : f _{vi}	122 ≤ 168	OK	-1 ≥ -15	ОК	122 ≤ 168	ок	-4 ≥ -15	ок

(x = 9.728 m) Interior

	Transference	cial	Servicio		
Fatiga (kg/cm²)	Total f (kg/c	m²)	Total f (kg/cm²		
Viga Superior: f _{vs}	-1 ≥ -13	oĸ	60 ≤ 140	oĸ	
Viga Inferior : f _{vi}	129 ≤ 168	ок	8 ≤ 140	OK	

A_{p} (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)		φM _a (tm)	1.2M _{ci} (tm)	
$4 \times 6.910 = 27.640$	$6-\phi 12 = 6.786$	878.978 ≥ 711.192	ок	878.978	≥ 638.890	ок

(7) Verificacion de Corte

h/2 =	0.850 m		$A_{\rm x} = 6 - \phi 12 = 6.786 \text{cm}^2$	s = 20.0 cm	$d_{o} = 85.0 \text{ cm}$			
V _u =	103.261 t	≤	$\phi(V_c + V_s) = 0.9 \times (95.036 +$	$(V_c + V_s) = 0.9 \times (95.036 + 121.130) = 194.550 t$				
Cálcul	o de Conectores		$A_v = 4-\phi 12 = 4.524 \text{ cm}^2$	$V_u = 103.261 \le \phi$	$V_{\rm ob} = 406.543$	ок		

(8) Deflexión de Transferencia

 $\delta_{\rm D}$ (cm) $\delta_{\rm L}$ (cm) Lc/800 ≤ 3.3 2.8 1.0 OK (9) Cáluculo de Travesaño

A _{sreq} (cm ²)		As (cm²)	
6.392	≤	9.864	ОК

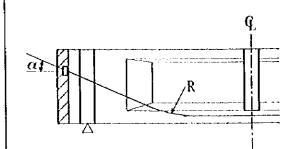
	$R_{v}(t)$		
37.584 ≤	3×3×φ25=44.181	ОК	46.654

Resultado del diseño Fecha: Tipo de Estructura: Viga de Postensado Número de Puente: (1) Datos Generales Nombre del Puente: 2-PST-L28_n4 Rol Ruta: De la Ruta, Camino: En el Cauce : Región: Provincia: Luz(Longitud de cálculo) : L_s = 28.000 m Longitud del Puente : L = m, Número de Pistas : 2 : 1.200 + 7.000 + 1.200 = 9.400 mAncho (Pasillos) (Calzada) (Pasillos) Pendiente : 1.0 1.5 1.0 % Espesor máximo del Pavimento: 103 mm Espesor mínimo del Pavimento: 50 mm, Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$ (2) Cargas h = 1.100 mBaranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, Cargas de Pavimento : 2.30 t/m³ Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado) $: 7.85 \text{ t/m}^3$ Acero $: W_0 = 0.415 \text{ t/m}^2(\text{Losa})$ Peatones Pavimento. 0.293 t/m²(Viga) Cargas de Tránsito : HS20-44 $: W_v = 0.244 \text{ t/m}^2$ Cargas de Viento Hormigón(armado)/ Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$ Hormigón(masa)/ (3) Material Hormigón: $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}}$ psi = $15800\sqrt{f_{RC}}$ kg/cm² = 2.50×10^5 kg/cm² (AASHTO 8.7.1) $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$: H-40 $f_{cv} = 350 \text{ kg/cm}^2$, Viga grado $E_{Pi} = 2.69 \times 10^5 \text{ kg/cm}^2$ $f_{ci}' = 280 \text{ kg/cm}^2$, Acero para Armadura de Losa y Viga : A63-42H $f_y = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$ Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$ Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$ Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$ Tensión de ruptura : $f_{ou} = 18980 \text{ kg/cm}^2$, Es = 1.97 ×10⁶ kg/cm²

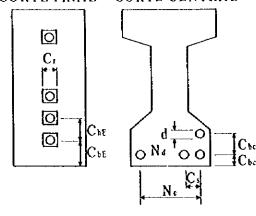
Tensión de fluencia: $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría: Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm² Recubrimientos minimos: Losa 1.0 % 1.5 o 2.0 % Eι ₹50 La distribución del acero Separación entre vigas: S Recubrimientos mínimos: Losa 3.0 cm Espesor de losa : $E_t = 170 \text{ mm}$, La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm² Separación entre vigas : S = 2.250 m, 3@ 2.250 = 6.750 mNúmero de Vigas : $n_V = 4$, **CORTE CENTRAL** Lv(m) L_c(m) tь bδ

Altura de Viga: H = 1.850 m

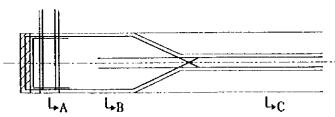

 $b_1 = 1000 \text{ mm}$, $t_1 = 150 \text{ mm}$, $t_2 = 150 \text{ mm}$, $t_3 = 150 \text{ mm}$

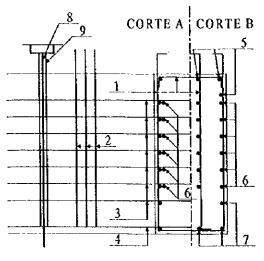
 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$, $b_b = 500 \text{ mm}$

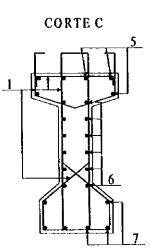

Conficiente de rozamiento parásito : K = 0.0045

Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños (Intermedio): 2 Separación entre Travesaño: 9.333 m Ancho Mesa Mínimo: W_m= 7.250 m


CORTE FINAL CORTE CENTRAL




No.	α(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	0.0	0.00
6	0.0	0.00
7	0.0	0.00

Número de ductos a descontar:

iumero de auctos a d	escomai.
$N_d = 4$,	d = 80 mm
$N_c = 3$,	$C_s = 140 \text{ mm}$
$C_{hC} = 120 \text{ mm},$	$C_{bC} = 90 \text{ mm}$
$C_r = 180 \text{ mm}$	
$C_{hE} = 350 \text{ mm},$	$C_{bE} = 400 \text{ mm}$
$c_{DC} = 12.0 \text{ cm},$	$c_{DE} = 92.5 \text{ cm}$

Recubrimientos mínimos : Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 7, 4: \phi 22$

5:φ12, 6: \phi 12 n 6, 7: \phi 12

8: \phi 25 n 3, 9: \phi 3 "

Cuantificación del Postensado

(5) Diseño de Losa

E_{M} (cm) E_{L} (cm) d_{reg} (cm) d (cm)				E_{M} (cm) E_{L} (cm) d_{rea} (cm) d (cm) A_{st}					
16.5 ≤ 1	7.0	OK	13.5	≤	14.0	ок	12.802 ≤ \$16@150=13.407	ОК	
φΜ _α (tm/m) Mu (tm/m)							Distribución: As (cm²)		
6.424	≥		5.253		ОК	67 ($(\%) 8.577 \le \phi 12@125 = 9.048$	ОК	

(6) Discño de Viga

 $(x = \frac{L}{2} = 14.000 \text{ m})$

$(x = {}^{L}/_{2} = 14.000)$	m)	Exte	erior					Into	crior		
	Transferenc	cial	Se	rvicio		Тга	nsferer	cial	S	ervicio)
Fatiga (kg/cm²)	Total f (kg/c	Total f _s (kg/cm²)		Total f _a (kg/cm ²)			Total f _a (kg/cm ²)			Total f _s (kg/cm ²)	
Viga Superior: f _{vs}	7 ≤ 168	OK	70 ≤	140	ОК	7	≤ 168	ок	71	≤ 140	ок
Viga Inferior : f _{VI}	110 ≤ 168	OK	-9 ≥	-15	ок	110	≤ 168	ОК	-12	≥ -15	ок

(x = 10.461 m) Interior

	Transferenc	cial	Servicio		
Fatiga (kg/cm²)	Total fa(kg/c	m²)	Total f (kg/cm²)		
Viga Superior: f _{vs}	3 ≤ 168	OK	64 ≤ 140	OK	
Viga Inferior : f _{vi}	117 ≤ 168	OK	0 ≥ -15	OK	

A_{p} (cm ²)	A _s (cm ²)	φM _o (tm) Mu (tm)		φM _n (tm)	1.2M _o (tm)	
$4 \times 6.910 = 27.640$	$6 - \phi 12 = 6.786$	957,717 ≥ 812.586	ОK	957.717	≥ 702.618	ок

(7) Verificacion de Corte

h/2 =	0.925 m	$A_v = 6-\phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_p = 92.5 \text{ cm}$	
V _a =	109.125 t	$\leq \phi(V_c + V_s) = 0.9 \times (99.607 + 1)$	131.818) = 208.282	2 t	OK'
Cálc	ulo de Conectores	$A_{x} = 4 - \phi 12 = 4.524 \text{ cm}^2$	V _u = 109.125 ≤ ф	$V_{nb} = 442.414$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm) $\delta_{\rm L}$ (cm)				
3.1	1.0	≤	3.5	ОК

(9) Cáluculo de Travesaño

A _{srea} (cm ²)		As (cm²)	
5.998	≤	9.864	ок

	$R_{v}(t)$		
41.335 ≤	3×3×φ25=44.181	OK	51.311

Resultado del diseño

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 2-PST-L30 n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Luz(Longitud de cálculo) : $L_c = 30.000 \text{ m}$ Longitud del Puente : L = m,

Número de Pistas

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5 1.0 %

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 103 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

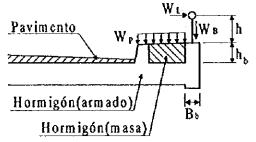
Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones


 $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$

 $0.293 \text{ t/m}^2(\text{Viga})$

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$

(3) Material

Hormigón:

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40 $f_{ev} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

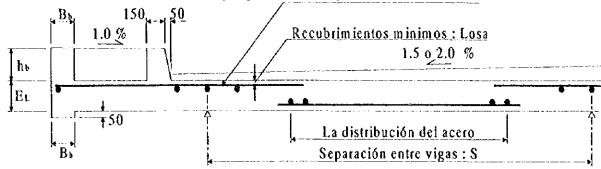
 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = 29,000,000 psi = 2.1×10^6 kg/cm²

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

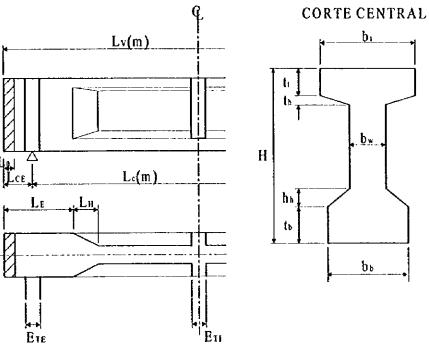

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{eu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Py} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_L = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

Número de Vigas : $n_v = 4$, Separación entre vigas : S = 2.250 m, 3@2.250 = 6.750 m

Longitud de Viga : $L_v = 30.800 \text{ m}$, $L_{CE} = 0.400 \text{ m}$, $L_0 = 100 \text{ mm}$

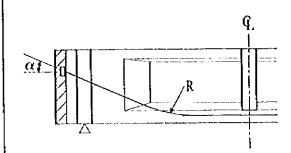
 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$ $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$,

Altura de Viga : H = 2.000 m

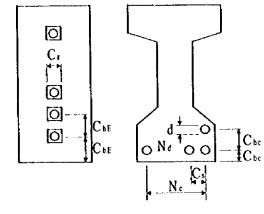
 $b_i = 1000 \text{ mm}$, $t_i = 150 \text{ mm}$,

 $b_{w} = 200 \text{ mm}$ $t_{\rm h} = 150 \, \rm mm$,

 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$,


 $b_{h} = 500 \text{ mm}$

Conficiente de rozamiento parásito : K = 0.0045

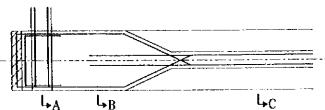

Conficiente de rozamiento en curva : $\mu = 0.25$

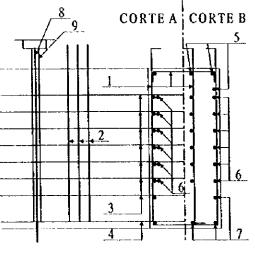
Número de Travesaños(Intermedio): 2 Separación entre Travesaño: 10.000 m

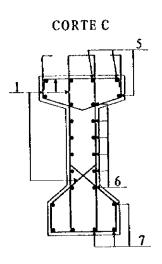
Ancho Mesa Mínimo: W_m= 7.250 m

CORTE FINAL CORTE CENTRAL

No.	a(deg)	R(m)
1	7.0	10,00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	0.0	0.00
7	0.0	0.00


Número de ductos a descontar:


$N_d = 5$,	d = 80 mm
$N_c = 3$,	$C_{\rm s} = 140 \; {\rm mm}$
$C_{hC} = 120 \text{ mm}$,	$C_{bC} = 90 \text{ mm}$


 $C_r = 180 \text{ mm}$

 $C_{bE} = 330 \text{ mm}$, $C_{bE} = 340 \text{ mm}$

 $c_{DC} = 13.8 \text{ cm}$, $c_{DE} = 100.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 8, 4: \phi 22$

5:φ12,

 $6: \phi 12 n 7, 7: \phi 12$

8:φ28 n 3,

9: \$3"

Cuantificación del Postensado

(5) Diseño de Losa

E_{M} (cm) E_{L} (cm) d_{eq} (cm) d (cm)					A _{sreq} (cm)	As (cm²)	· -		
16.5 ≤	17.0	ок	13.5	≤	14.0	ок	12.802	≤ φ ί(5@150=13.407	ОК
φM _n (tm/m) Mu (tm/m)					Distr	ibució	in: As (cm²)			
6.424	≥		5.253		OK	67 ((%) 8.577	≼ φ]	12@125=9.048	OK

(6) Diseño de Viga

 $(x = \frac{L}{2} = 15.000 \text{ m})$ Interior Exterior Transferencial Servicio Transferencial Servicio Total f_a(kg/cm²) Total f_a(kg/cm²) Total f_s(kg/cm²) Total f_s(kg/cm²) Fatiga (kg/cm²) $4 \le 168 | OK | 69 \le 140 | OK |$ 4 ≤ 168 OK $70 \le 140 |OK|$ Viga Superior: fvs $135 \le 168$ OK $10 \le 140$ OK $135 \le 168$ OK $8 \le 140$ OK Viga Inferior : f_{vi}

(x = 12.121 m) Interior

	Transferen	cial	Servicio Total f,(kg/cm²)		
Fatiga (kg/cm²)	Total f _a (kg/c	m²)			
Viga Superior: f _{vs}	1 ≤ 168	ОК	66 ≤ 140	ОK	
Viga Inferior : fvi	140 ≤ 168	OK	16 ≤ 140	OK	

A _n (cm ²)	A _s (cm ²)	φM _a (tm)	Mu (tm)		$\phi M_a(tm) 1.2 M_{cl}(tm)$	
$5 \times 6.910 = 34$.550 6-	$\phi 12 = 6.786$	1256.856	≥ 921.414	ОК	1256.856 ≥ 896.746	ок

(7) Verificacion de Corte

h/2 =	1.000 m		$A_x = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_p = 100.0 \text{ cm}$	1
V _a =	115.120 t	≤	$\phi(V_c + V_s) = 0.9 \times (117.357)$	+142.506) = 233.	877 t	ок
Cálcul	lo de Conectores		$A_v = 4-\phi 12 = 4.524 \text{ cm}^2$	V ₀ = 115.120 ≤	$\phi V_{ab} = 478.285$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ_L (cm)		Lc/800	
3.4	1.0	≤	3.8	ок

(9) Cáluculo de Travesaño

A _{sreq} (cm ²)		As (cm²)	
5.670	≤	9.864	ок

	$R_{v}(t)$		
45.345 ≤	3×3×φ28=55.422	ок	56.289

Resultado del diseño

Tipo de Estructura: Viga de Postensado

(1) Datos Generales

Fecha: Número de Puente:

Nombre del Puente: 2-PST-L32 n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L = m, Luz(Longitud de cálculo) : $L_c = 32.000 \text{ m}$

Número de Pistas :2

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5 1.0 %

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 103 mm

Ancho de Baranda : $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

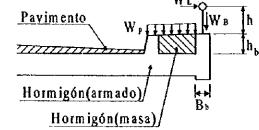
Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

Acero

 $: 7.85 \text{ t/m}^3$

Peatones


 $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos: $K_h = 0.15$, $K_c = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{ kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

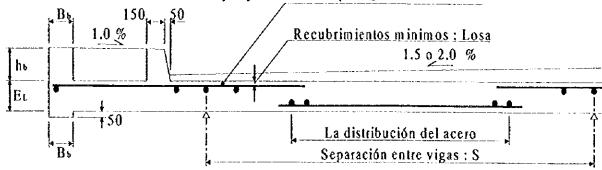
 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{ss} = 1690 \text{ kg/cm}^2$ Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

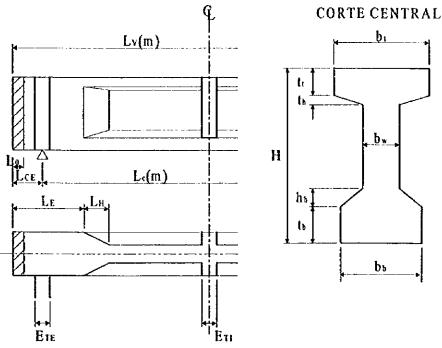

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{cu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : φ 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_1 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

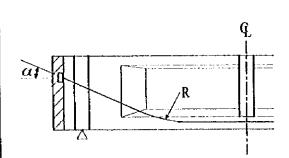
Separación entre vigas : S = 2.250 m, 3@ 2.250 = 6.750 mNúmero de Vigas : $n_v = 4$,

Longitud de Viga: $L_v = 32.800 \text{ m}$, $L_{cs} = 0.400 \text{ m}$, $L_0 = 100 \text{ mm}$

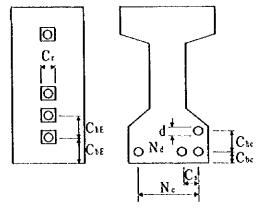
 $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$, $E_{TE} = 300 \text{ mm}$, $E_{TE} = 250 \text{ mm}$

Altura de Viga : H = 2.100 m

 $b_i = 1000 \text{ mm}$, $t_i = 150 \text{ mm}$, $t_b = 150 \, \text{mm}$ $b_{m} = 200 \text{ mm}$


 $h_h = 250 \text{ mm}$, $t_h = 250 \text{ mm}$,

 $b_{h} = 500 \text{ mm}$


Conficiente de rozamiento parásito : K = 0.0045

Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2 Separación entre Travesaño: 10.666 m Ancho Mesa Mínimo: W_m= 7.250 m

CORTE FINAL CORTE CENTRAL

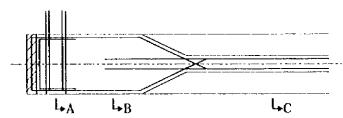
No.	α(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	0.0	0.00
7	0.0	0.00

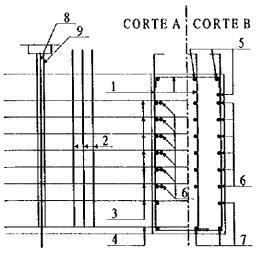
Número de ductos a descontar:

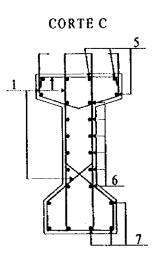
$N_d = 5$	ı
-----------	---

d = 80 mm

 $N_c = 3$


 $C_s = 140 \text{ mm}$


 $C_{bC} = 120 \text{ mm}$, $C_{bC} = 90 \text{ mm}$


 $C_c = 180 \text{ mm}$

 $C_{bE} = 350 \text{ mm}$, $C_{bE} = 350 \text{ mm}$

 $c_{DC} = 13.8 \text{ cm}$, $c_{DE} = 105.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 8, 4: \phi 22$

5:φ12,

6: \phi 12 n 7, 7: \phi 12

8: \phi 28 n 3, 9: \phi 3"

10,

Cuantificación del Postensado

(5) Diseño de Losa

	E _M (cm)	E _L (cm)	d _{eq} (cm)	d (cm)		A_{sreq} (cm ²) As (cm ²)	
L	16.5 ≤	17.0	oĸ	13.5	≤	14.0	ок	12.802 ≤ \$\phi16@150=13.407	ок
	φM _o (tm/m) Mu (tm/m)						Distribución: As (cm²)		
	6.424	≥		5.253		ок	67	$(\%) 8.577 \le \phi 12@125 = 9.048$	ок

(6) Diseño de Viga

 $(x = ^{L}/_{2} = 16.000 \text{ m})$

Exterior

Interior

	Transferenc	ial	Servicio)	Transference	cial	Servicio	
Fatiga (kg/cm²)	Total f _a (kg/c	m²)	Total f _s (kg/c	m²)	Total f _s (kg/c	m²)	Total f ₃ (kg/c	m²)
Viga Superior: fys	9 ≤ 168	oĸ	<i>77</i> ≤ 140	OK	9 ≤ 168	OK	78 ≤ 140	oĸ
Viga Inferior : f _{VI}	125 ≤ 168	OK	-1 ≥ -15	ок	125 ≤ 168	oĸ	-3 ≥ -15	ОК

(x = 12.854 m) Interior

	Transferen	cial	Servicio)
Fatiga (kg/cm²)	Total f ₂ (kg/c	m²)	Total f (kg/c	m²)
Viga Superior: f _{vs}	6 ≤ 168	OK	<i>7</i> 3 ≤ 140	OK
Viga Inferior : f _{vi}	130 ≤ 168	OK	6 ≤ 140	OK

A_o (cm ²)	A_s (cm ²)	φM _a (tm) Mu (tm)	·	$\phi M_{\rm o}(tm) 1.2 M_{\rm cc}(tm)$	
$5 \times 6.910 = 34.550$	$6 - \phi 12 = 6.786$	1321.781 ≥1032.940	ок	1321.781 ≥ 947.303	ок

(7) Verificacion de Corte

h/2 =	1.050 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_{p} = 105.0 \text{ cm}$	
V _u =	120.807 t	≤	$\phi(V_c + V_s) = 0.9 \times (120.995 + 120.995)$	+149.631) = 243.56	53 t	ОK
Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_u = 120.807 \le \phi$	$V_{\rm sh} = 502.200$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ _L (cm)		Lc/800	
3.9	1.1	≤	4.0	ок

(9) Cáluculo de Travesaño

A_{sreq} (cm ²)		As (cm ²)	
5.535	s	9.864	ок

		A_{v} (cm ²)		$R_{v}(t)$
48.926	<u> </u>	3×3×φ28=55.422	ОК	60.733

Resultado del diseño

Tipo de Estructura : Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 2-PST-L34 n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Region:

Provincia:

Longitud del Puente : L =

Luz(Longitud de cálculo) : $L_s = 34.000 \text{ m}$ m,

Número de Pistas : 2

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente : 1.0

1.5 1.0 %

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 103 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

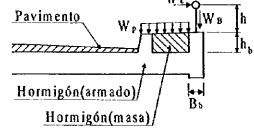
(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

 $: 7.85 \text{ t/m}^3$ Acero


Peatones $W_p = 0.415 \text{ t/m}^2(\text{Losa})$

 $0.293 \text{ t/m}^2\text{(Viga)}$

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_b = 0.15$, $K_v = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$

 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $W_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40

 $f_{cV} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

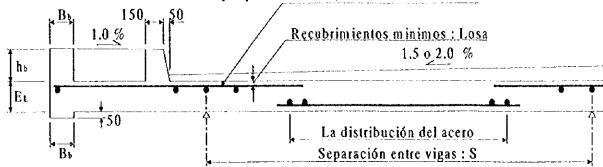
 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{\rm pi} = 2.69 \times 10^5 \, \rm kg/cm^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{si} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

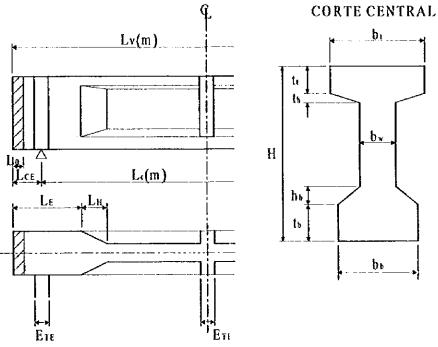

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{pu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_1 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

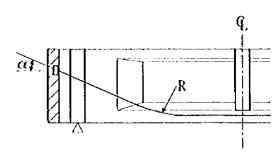
Número de Vigas : $n_v = 4$, Separación entre vigas : S = 2.250 m, 3@ 2.250 = 6.750 m

Longitud de Viga: $L_v = 34.800 \text{ m}$, $L_{CE} = 0.400 \text{ m}$, $L_0 = 100 \text{ mm}$ $L_{\rm r} = 1600 \, \text{mm}$, $L_{\rm H} = 600 \, \text{mm}$,

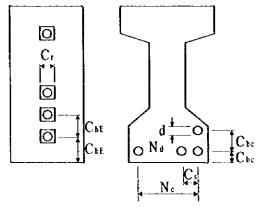
 $E_{TE} = 300 \text{ mm}$, $E_{T1} = 250 \text{ mm}$

Altura de Viga : H = 2.200 m

 $b_1 = 1000 \text{ mm}$, $t_1 = 150 \text{ mm}$, $t_h = 150 \, \text{mm}$ $b_{w} = 200 \text{ mm}$

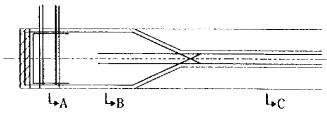

 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$, $b_b = 500 \text{ mm}$

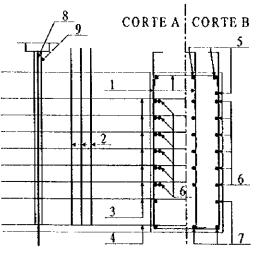
Conficiente de rozamiento parásito: K = 0.0045

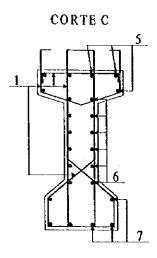

Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2

Separación entre Travesaño: 11.333 m Ancho Mesa Mínimo: W_m= 7.250 m


CORTE FINAL CORTE CENTRAL




No.	a(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
_3	7.0	10.00
4	7.0	10.00
_5	7.0	10.00
6	0.0	0.00
7	0.0	0.00

Número de ductos a descontar:

$N_d = 5$,	d = 80 mm
$N_c = 3$,	$C_s = 140 \text{ mm}$
$C_{hC} = 120 \text{mm} ,$	$C_{bC} = 90 \text{ mm}$
$C_r = 180 \text{mm}$	
$C_{hE} = 360 \text{ mm},$	$C_{bE} = 380 \text{ mm}$
$c_{DC} = 13.8 cm ,$	$c_{DE} = 110.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 10, 4: \phi 22$

 $5: \phi 12$, $6: \phi 12 n 9$, $7: \phi 12$

8:\psi 28 n 3, 9:\psi 3"

Cuantificación del Postensado

(5) Diseño de Losa

$E_{\rm M}$ (cm) $E_{\rm L}$ (cm) $d_{\rm req}$ (cm))	d (cm)		A _{sreq} (cm ²	2) As (cm²)	
16.5 ≤ 17.0	ок	13.5	<u> </u>	14.0	ок	12.802	≤ \$\phi16@150=13.407	ОК
φM _a (tm/m) Mu (tm/m)						Distr	ibución: As (cm²)	
6.424 ≥	-	5.253		ок	67 ((%) 8.577	≤ \$12@125=9.048	ОК

(6) Diseño de Viga

$(x = \frac{1}{2} = 17.000)$	m)	Ext	erior		Interior					
	Transference	Transferencial		Servicio		cial	Servicio			
Fatiga (kg/cm²)	Total f (kg/c	m²)	²) Total f _s (kg/cm ²)		Total f ₃ (kg/c	m²)	Total f ₂ (kg/cm ²)			
Viga Superior: f _{vs}	14 ≤ 168	ок	84 ≤ 140	ок	14 ≤ 168	ок	85 ≤ 140	ОК		
Viga Inferior : f _{vi}	114 ≤ 168	OK	-11 ≥ -15	OK	114 ≤ 168	ок	-14 ≥ -15	ок		

(x = 13.424 m) Interior

	Transferenc	cial	Servicio			
Fatiga (kg/cm²)	Total f _a (kg/c	m²)	Total f _a (kg/cm ²)			
Viga Superior: f _{vs}	11 ≤ 168	OK	<i>7</i> 9 ≤ 140	ок		
Viga Inferior : f _{vi}	120 ≤ 168	OK	-4 ≥ -15	OK		

A_{ν} (cm ²)	A _s (cm ²)	φM _n (tm) Mu (tm)		$\phi M_a(tm) 1.2 M_{cr}(tm)$	
$5 \times 6.910 = 34.550$	$6 - \phi 12 = 6.786$	1386.712 ≥1151.337	OK	1386.712 ≥ 997.871	OK

(7) Verificacion de Corte

h/2 =	1,100 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	$d_0 = 110.0 \text{ cm}$		
V _u =	126.587 t	<u>`</u>	$\phi(V_c + V_s) = 0.9 \times (124.635 + 12$	+156.757) = 253.25	52 i	OK
Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_0 = 126.587 \le \phi$	$V_{ob} = 526.114$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ_{L} (cm)		Lc/800	
4.5	1.2	s	4.3	ОК

(9) Cáluculo de Travesaño

A _{srea} (cm ²)		As (cm²)	
5.413	≤	9.864	OK

	A_p (cm ²)		$R_{v}(t)$
52.587 ≤	3×3×φ28=55.42	2 OK	65.278

Resultado del diseño

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 2-PST-L36 n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L =

m, Luz(Longitud de cálculo) : $L_c = 36.000 \text{ m}$

Número de Pistas

Ancho

1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente : 1.0

1.5 1.0 %

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 103 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_a = 0.250 \text{ m}$

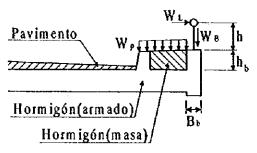
(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

 $: 7.85 \text{ t/m}^3$ Acero


Peatones

: $W_D = 0.415 \text{ t/m}^2(\text{Losa})$

0.281 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$ Coeficientes sísmicos: $K_b = 0.15$, $K_c = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$

 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{ kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ (AASHTO 8.7.1)

Viga grado : H-40 $f_{cv} = 350 \text{ kg/cm}^2$, $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

 f_{ci} = 280 kg/cm², $E_{\rm pi} = 2.69 \times 10^5 \, \rm kg/cm^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$ Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

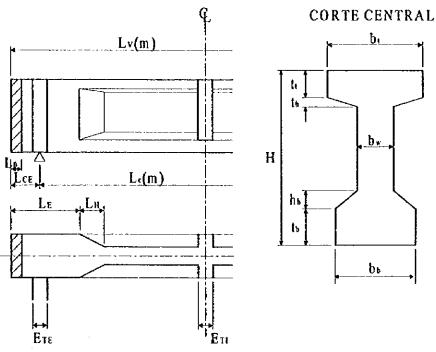
Acero (cable): Grado 270 K, ASTM416-80 Cable: 7-12.7 $As^* = 6.910 cm^2$

Tensión de ruptura : $f_{ou} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia: $f_{Py} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



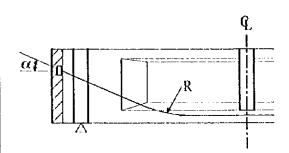
Espesor de losa : $E_1 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

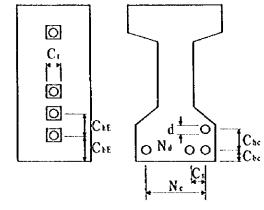
La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

Número de Vigas : $n_v = 4$, Separación entre vigas : S = 2.250 m, 3@ 2.250 = 6.750 m

Longitud de Viga : $L_v = 36.800 \text{ m}$, $L_{ce} = 0.400 \text{ m}$, $L_0 = 100 \text{ mm}$ $L_E = 1600 \text{ mm}$, $L_R = 600 \text{ mm}$, $E_{0F} = 300 \text{ mm}$, $E_{00} = 250 \text{ mm}$


Altura de Viga : H = 2.300 m

 $b_t = 1000 \text{ mm}$, $t_t = 150 \text{ mm}$, $b_{w} = 200 \text{ mm}$ $t_{h} = 150 \, \text{mm}$


 $b_h = 500 \text{ mm}$ $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$, Conficiente de rozamiento parásito: K = 0.0045 Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2 Separación entre Travesaño: 12.000 m

Ancho Mesa Mínimo: W_m= 7.250 m

CORTE FINAL CORTE CENTRAL

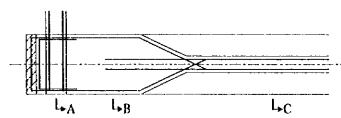
No.	a(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	7.0	10.00
7	0.0	0.00

Número de ductos a descontar:

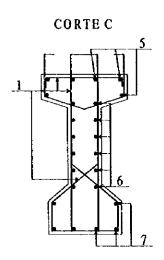
 $N_d = 6$,

d = 80 mm

 $N_c = 3$,


 $C_s = 140 \text{ mm}$

 $C_{bC} = 120 \text{ mm}$, $C_{bC} = 90 \text{ mm}$


 $C_r = 180 \text{ mm}$

 $C_{bE} = 320 \text{ mm}$, $C_{bE} = 350 \text{ mm}$

 $c_{DC} = 15.0 \text{ cm}$, $c_{DE} = 115.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 9,$

5:φ12,

6:φ12n8, 7:φ12

8:φ32n3,

9: \phi 3 "

Cuantificación del Postensado

(5) Diseño de Losa

	_ E _M (cm) E _l	(cm		d _{req} (cm)	d (cm)		A _{sea} (cm²)	As (cm²)	
	16.5 ≤ 1	7.0	OK	13.5	s	14.0	ок	12.802 ≤ ⟨	16@150=13.407	ок
	ϕM_a (tm/m)		Mu	(tm/m)				Distribu	ción: As (cm²)	
ļ	6.424	≥		5.253		ок	67 ((%) 8.577 ≤	φ12@125=9.048	ок

(6) Diseño de Viga

 $(x = \frac{L}{2} = 18.000 \text{ m})$

Exterior

Interior

Transferencial		Servicio		Transferen	cial	Servicio	
Total f (kg/c	m²)	Total f (kg/c	m²)	Total f ₃ (kg/c	m²)	Total f ₂ (kg/c	m²)
12 ≤ 168	OK	86 ≤ 140	ок	12 ≤ 168	ΟK	87 ≤ 140	ΟK
137 ≤ 168	OK	3 ≤ 140	oĸ	137 ≤ 168	ок	1 ≤ 140	ОK
	Total $f_1(kg/c)$ $12 \le 168$	Total $f_s(kg/cm^2)$ $12 \le 168$ OK	Total $f_4(kg/cm^2)$ Total $f_4(kg/cm^2)$ 12 ≤ 168 OK 86 ≤ 140	Total $f_a(kg/cm^2)$ Total $f_a(kg/cm^2)$ $12 \le 168$ OK $86 \le 140$ OK	Total $f_a(kg/cm^2)$ Total $f_a(kg/cm^2)$ Total $f_a(kg/cm^2)$ Total $f_a(kg/cm^2)$ 12 \(\infty\) 18 86 \(\infty\) 10	Total $f_a(kg/cm^2)$ Total $f_a(kg/cm^2)$ Total $f_a(kg/cm^2)$ 12 ≤ 168 OK 86 ≤ 140 OK 12 ≤ 168 OK	Total f ₃ (kg/cm ²) 12 ≤ 168 OK 87 ≤ 140

(x = 14.483 m) Interior

	Transference	cial	Servicio			
Fatiga (kg/cm²)	Total f (kg/c	m²)	Total f (kg/c	m²)		
Viga Superior: f _{vs}	9 ≤ 168	OK	82 ≤ 140	ОК		
Viga Inferior : f _{vi}	143 ≤ 168	OK	11 ≤ 140	ок		

A_{p} (cm ²)	A_s (cm ²)	φM _o (tm) Mu (tm)		$\phi M_{\alpha}(tm) 1.2 M_{cr}(tm)$	
6×6.910 = 41.460	$6 - \phi 12 = 6.786$	1704.223 ≥1274.809	OK	1704.223 ≥1194.030	OK

(7) Verificacion de Corte

h/2 =	1.150 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_p = 115.0 \text{ cm}$	
V _u =	133.378 t	≤	$\phi(V_c+V_s) = 0.9 \times (141.517 + 1.517)$	+163.882) = 274.85	69 t	oĸ
Cálcul	o de Conectores		$A_v = 4-\phi 12 = 4.524 \text{ cm}^2$	$V_u = 133.378 \le \phi$	$V_{\rm ch} = 550.028$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ _L (cm)			
5.1	1.3	≤	4.5	ОК

(9) Cáluculo de Travesaño

A _{sree} (cm ²)		As (cm ²)	
5.302	≾	9.864	ок

A _o (cm²)	$R_{v}(t)$	
56.329 ≤ 3×3×¢32=72.387	ок	69.923

VI. Material List

- 1. 1-PRE-L14-n4 and 1-PRE-L16-n4
- 2. 1-PRE-L18-n4 and 1-PRE-L20-n4
- 3. 1-PRE-L22-n4 and 1-PRE-L24-n4
- 4. 1-PST-L24-n2 and 1-PST-L26-n2
- 5. 1-PST-L28-n2 and 1-PST-L30-n2
- 6. 1-PST-L32-n2 and 1-PST-L34-n2
- 7. 1-PST-I.36-n2
- 8. 2-PRE-L14-n6 and 2-PRE-L16-n6
- 9. 2-PRE-L18-n6 and 2-PRE-L20-n6
- 10. 2-PRE-L22-n6 and 2-PRE-L24-n6
- 11. 2-PST-L24-n4 and 2-PST-L26-n4
- 12. 2-PST-L28-n4 and 2-PST-L30-n4
- 13. 2-PST-L32-n4 and 2-PST-L34-n4
- 14. 2-PST-L36-n4

Fecha:				Número de Puente :	
Nombre del Puente :	1-PRE-L1	4_n4			
De la Ruta, Camino:				Rol Ruta :	
En el Cauce :					
Región :			P.	rovincia :	
Longitud del Puente	:	L =	0 m		
Número de Pistas	:	<u></u>	1		
Ancho	:	1.00+4	.00+1.00=6.0	0 m	
Pendiente	:	1.0% (Pasille	os)	1.5% (Calzada)	
Tipo de Estructura	:	Pretensado			
Longitud de Viga	:	Lv =	14.60 m		
Luz	:	Lc =	14.00 m		
Número de Vigas	:	n _v =	4		
Separación entre Viga	s :	S =	1.50 m		
Ancho Mesa Mínima	•	Wm =	4 90 m		

Materia	Grado	Unidad	Cantidad			Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m ³			27.35	
Moldaje		m ²			101.35	
Acero	А63-42Н	kg			4,157.87	
Travesaño Inter	medio					
Hormigón	H-25	m ³			0.49	•
Moldaje		m ²			4.59	
Acero	А44-28Н	kg			67.03	
Travesaño Extr	emos		-			
Hormigón	Н-25	m ³			1.22	
Moldaje		m²		<u>. </u>	10.24	· · · · · · · · · · · · · · · · · ·
Acero	A63-42H	kg			219.43	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	3.81	3.81	15.23	
Moldaje		m ²	32.56	32.56	130.24	
Acero	A63-42H	kg	471.57	495.99	1,935.13	
PC Cable	ASTMA416-80	T	248.20	248.20	992.80	
Anclaje		grupo	34	34	136	

Fecha:	Nú	mero de Puente :
Nombre del Puente :	1-PRE-L16_n4	_
De la Ruta, Camino:		Rol Ruta :
En el Cauce :		
Región :	Provincia	:
Longitud del Puente	: $L = 0 \text{ m}$	
Número de Pistas	: 1	
Ancho	1.00+4.00+1.00=6.00 m	
Pendiente	: 1.0% (Pasillos) 1.59	% (Calzada)
Tipo de Estructura	: Pretensado	
Longitud de Viga	: $Lv = 16.60 \text{ m}$	
Luz	: $Lc = 16.00 \text{ m}$	
Número de Vigas	$: n_{v} = \underline{\qquad \qquad 4}$	
Separación entre Viga	as ; $S = 1.50 \text{ m}$	
Ancho Mesa Mínima	: Wm = 4.90_ m	

Materia	Grado	Unidad	Cantidad			Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	Н-25	m ³			30.91	
Moldaje		m ²		- c	114.97	
Acero	A63-42H	kg			4,693.77	
Travesaño Inter	medio					
Hormigón	H-25	m ³			0.58	
Moldaje		m ²			5,38	
Acero	A44-28H	kg			70.76	
Travesaño Extre	emos					
Hormigón	H-25	m ³	<u> </u>		1.46	
Moldaje		m ²	<u> </u>		11.82	
Acero	A63-42H	kg			230.47	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	4.63	4.63	18.51	
Moldaje		m ²	40.30	40.30	161.22	
Acero	A63-42H	kg	538.28	562.71	2,201.99	
PC Cable	ASTMA416-80	m	315.40	315.40	1,261.60	
Anclaje		grupo	38	38	152	

recha:	INUI	neio de ruente :
Nombre del Puente :	1-PRE-L18_n4	<u>-</u>
De la Ruta, Camino:		Rol Ruta :
En el Cauce :		•
Región :	Provincia:	
Longitud del Puente	: $L = _{\underline{0}} m$	
Número de Pistas	: 1	
Ancho	: $1.00+4.00+1.00 = 6.00 \text{ m}$	
Pendiente	: 1.0% (Pasillos) 1.5%	(Calzada)
Tipo de Estructura	: Pretensado	
Longitud de Viga	: Lv = 18.60 m	
Luz	: $Lc = 18.00 \text{ m}$	
Número de Vigas	$; n_v = \underline{\qquad \qquad 4}$	
Separación entre Viga	$s : S = \underline{1.50} m$	
Ancho Mesa Mínima	· Wm = 4.90 m	

Materia	Grado	Unidad	Cantidad		Observación	
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	Н-25	m³	-		34.46	
Moldaje		m²			128.59	
Acero	A63-42H	kg			5,229.67	
Fravesaño Inter	medio					
Hormigón	H-25	m ³			0.68	
Moldaje		m²			6.18	
Acero	A44-28H	kg			80.35	
Travesaño Extre	emos					
Hormigón	Н-25	m ³			1.70	
Moldaje		m²			13.41	
Acero	A63-4211	kg			253.23	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	5.52	5.52	22.08	
Moldaje		m²	48.85	48.85	195.40	
Acero	A63-42H	kg	644.08	671.39	2,630.95	
PC Cable	ASTMA416-80	m	390.60	390.60	1,562.40	
Anclaje		grupo	42	42	168	

Fecha:				Número de Puente	, ,
Nombre del Puente :	1-PRE-L2	0_n4			
De la Ruta, Camino ;				Rof Ruta	
En el Cauce :				······································	
Región :			Pı	ovincia :	
Longitud del Puente	:	L =	<u>0</u> m		
Número de Pistas	;		1		
Ancho	;	1.00+	4.00+1.00 = 6.0	0 m	
Pendiente	:	1.0% (Pasil	los)	1.5% (Calzada)	
Tipo de Estructura	:	Pretensado			
Longitud de Viga	:	Lv =	20.70 m		
Luz	:	Lc =	20.00 m		
Número de Vigas	:	n _v =	4		
Separación entre Viga	s :	S =	1.50 m		
Ancho Mesa Mínima	:	Wm =	4.90 m		

Materia	Grado	Unidad		Cantidad		Observación
			(Para 1	Viga)	(Para Puente)	
Losa				·		
Hormigón	H-25	m ³			38.20	
Moldaje		m ²			142.89	
Acero	A63-42H	kg			5,797.19	
Travesaño Inter	medio					
Hormigón	H-25	m³			0.78	
Moldaje		m ²			6.97	
Acero	A44-28H	kg			84,08	
Travesaño Extr	emos					
Hormigón	H-25	m³			1.94	
Moldaje		m ²			14.99	
Acero	A63-42H	kg			264.27	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	6.52	6.52	26.07	
Moldaje		m ²	58.47	58.47	233.89	
Acero	A63-42H	kg	723.56	750.87	2,948.86	
PC Cable	ASTMA416-80	m	476.10	476.10	1,904.40	
Anclaje		grupo	46	46	184	

recna :			Numero de l'uente.
Nombre del Puente :	1-PRE-L22	_n4	
De la Ruta, Camino:			Rol Ruta :
En el Cauce :			<u></u>
Región :		Pı	rovincia :
Longitud del Puente	:	$I_{r} = 0 \text{ m}$	
Número de Pistas	:	1	
Ancho	:	1.00+4.00+1.00=6.0	0 m
Pendiente	:	1.0% (Pasillos)	1.5% (Calzada)
Tipo de Estructura	:	Pretensado	
Longitud de Viga	:	1.v = 22.70 m	
Luz	:	$Lc = \underline{22.00} \text{ m}$	
Número de Vigas	:	$n_v = \underline{\qquad \qquad 4}$	
Separación entre Viga	is :	S = 1.50 m	
Ancho Mesa Mínima	:	Wm = 4.90 m	

Materia	Grado	Unidad		Cantidad		Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	Н-25	m ³			41.76	
Moldaje		m²			156.51	
Acero	А63-42Н	kg			6,333.09	
Travesaño Inter	medio					
Hormigón	Н-25	m³			0.88	
Moldaje		m ²			7.76	
Асего	A44-28H	kg			93.67	
Travesaño Extre	emos					
Hormigón	H-25	m ³			2.17	
Moldaje		m²			16.57	
Acero	A63-42H	kg			287.04	
Viga			Exterior	Interior		
Hormigón	Н-35	m ³	7.56	7.56	30.22	
Moldaje		m ²	68.64	68.64	274.55	
Acero	A63-4211	kg	843.83	874.03	3,435.72	
PC Cable	ASTMA416-80	1	522.10	522.10	2,088.40	
Anclaje		grupo	46	46	184	

Fecha:		ı	Numero de Puente :
Nombre del Puente :	1-PRE-L24	_n4	
De la Ruta, Camino :			Rol Ruta :
En el Cauce :			-
Región :		Provinc	ia ;
Longitud del Puente	:	L = 0 m	
Número de Pistas	:	1	
Ancho	:	1.00+4.00+1.00 = 6.00 m	
Pendiente	:	1.0% (Pasillos) 1.	5% (Calzada)
Tipo de Estructura	:	Pretensado	
Longitud de Viga	:	Lv = 24.70 m	
Luz	:	Lc = 24.00 m	
Número de Vigas	:	$n_v = 4$	
Separación entre Viga	s :	S = <u>1.50</u> m	
Ancho Mesa Mínima	:	Wm = 4.90 m	

Materia	Grado	Unidad	Cantidad (Para 1 Viga)			Observación
					(Para Puente)	
Losa						
Hormigón	H-25	m ³			45.31	
Moldaje		m²			170.13	
Acero	A63-42H	kg			6,868.99	
Travesaño Inter	medio					
Hormigón	H-25	m ³			0.98	
Moldaje		m ²			8.55	
Acero	A44-28H	kg			97.40	
Travesaño Extre	emos			•		
Hormigón	H-25	m ³			2.41	
Moldaje		m ²			18.16	
Acero	A63-42H	kg			298.08	
Viga			Exterior	Interior		
Hormigón	Н-35	m ³	8.67	8.67	34.66	
Moldaje		m ²	79.60	79.60	318.41	
Acero	A63-42H	kg	924.84	955.04	3,759.76	
PC Cable	ASTMA416-80	m	617.50	617.50	2,470.00	
Anclaje		grupo	50	50	200	

Fecha:				Número de Puente :
Nombre del Puente :	1-PST-L2	4_n2		
De la Ruta, Camino:				Rol Ruta :
En el Cauce :				
Región :			P	rovincia:
Longitud del Puente	:	L =	0 m	
Número de Pistas	:		1	
Ancho	:	1.00+	4.00+1.00 = 6.0	m 00
Pendiente	:	1.0% (Pasil	los)	1.5% (Calzada)
Tipo de Estructura	:	Postensado		
Longitud de Viga	:	Lv =	24.70 m	
Luz	:	Lc =	24.00 m	
Número de Vigas	:	n _v =	2	
Separación entre Viga	s :	\$ =	3.00 m	
Anche Mass Minime	_		4.00	

Materia	Grado	Unidad	Cantidad (Para 1 Viga)			Observación
					(Para Puente)	
Losa						
Hormigón	Н-25	m ³			49.63	
Moldaje		m²			163.18	
Acero	A63-42H	kg			9,461.51	
Travesaño Inter	medio					
Hormigón	H-25	m³	·		0.89	<u>-</u>
Moldaje		m ²			7.75	
Acero	A44-28H	kg	**		81.50	
Travesaño Extr	emos					
Hormigón	H-25	m ³			2.22	
Moldaje		m²			16.31	
Acero	А63-42Н	kg			289.87	
Viga			Exterior	Interior		
Hormigón	H-35	m³	16.16	-	32.32	
Moldaje		m²	108.01	-	216.03	
Acero	A63-42H	kg	1,567.78	•	3,135.55	
PC Cable	ASTMA416-80	m	98.32	-	196.64	
Anclaje		grupo	8	0	16	

re	cha:				Núme	ro de Puente :	
No	ombre del Puente :	1-PST-L	26_n2				
De	la Ruta, Camino :					Rol Ruta:	
Er	el Cauce :						
Re	gión :				Provincia :		
	Longitud del Puente	:	L =	0 m			
	Número de Pistas	:		11			
	Ancho	:	1.0	0+4.00+1.00 = 6.	00 m		
	Pendiente	:	1.0% (Pa	isillos)	1.5% (Calzada)	
	Tipo de Estructura	:	Postensado)			
	Longitud de Viga	:	Lv =	26.70 m			
	Luz	:	Lc =	26.00 m			
	Número de Vigas	:	n _v =	2			
	Separación entre Viga	s :	S =	3.00 m			
	Ancho Mesa Mínima	;	Wm =	4.00 m			

Materia	Grado	Unidad		Cantidad		Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m³			53.54	
Moldaje		m ²			175.62	
Acero	A63-42H	kg			10,237.15	
Travesaño Inter	medio					
Hormigón	H-25	m³			1.92	
Moldaje		m ²			16.62	
Acero	A44-28H	kg			167.98	
Travesaño Extr	emos	"		· ,		
Hormigón	H-25	m ³			2.37	
Moldaje		m ²			17.31	
Acero	A63-42H	kg			298.70	
Viga			Exterior	Interior		
Hormigón	, н-35	m ³	18.03		36.05	
Moldaje		m ²	122.14	-	244.27	
Acero	A63-42H	kg	1,712.56	-	3,425.13	
PC Cable	ASTMA416-80		132.92	<u> </u>	265.84	
Anclaje	1	grupo	10	0	 	

recna :				numero de ruente :	
Nombre del Puente :	1-PST-L2	8_n2			
De la Ruta, Camino:				Rol Ruta :	
En el Cauce :					
Región :			Pr	ovincia:	
Longitud del Puente	:	L =	0 m		
Número de Pistas	:	1			
Ancho	:	1.00+4.00	0.6 = 0.1+0	0 m	
Pendiente	:	1.0% (Pasillos)		1.5% (Calzada)	
Tipo de Estructura	:	Postensado			
Longitud de Viga	:	I.v = 2	28.70 m		
Luz	:	I.c =2	28.00 m	4	
Número de Vigas	:	n _v =	2		
Separación entre Viga	s :	S =	3.00 m		
Ancho Mesa Mínima	•	Wm =	4.00 m		

Materia	Grado	Unidad	Cantidad (Para 1 Viga) (Para Puente)			Observación
					(Para Puente)	=
Losa						
Hormigón	H-25	m³			57.46	
Moldaje		m ²			188.56	
Асего	A63-4211	kg			10,961.21	
Travesaño Inter	medio					
Hormigón	H-25	m ³			2.06	7.0
Moldaje		m ²			17.74	
Acero	A44-28H	kg			181.83	
Travesaño Extre	emos					
Hormigón	Н-25	m ³	<u> </u>		2.52	
Moldaje		m ²			18.31	
Acero	A63-42H	kg			316.40	
Viga			Exterior	Interior		
Hormigón	Н-35	m³	19.97		39.94	
Moldaje		m²	137.06	-	274.12	
Acero	A63-42H	kg	1,913.25	-	3,826.50	
PC Cable	ASTMA416-80		142.95	-	285.90	
Anclaje		grupo	10	0	20	

Fecha:			Núme	ro de Puente :
Nombre del Puente :	1-PST-L30_n	2		
De la Ruta, Camino:			Anna Anna ann an Anna an Anna an Anna an Anna an A	Rol Ruta :
En el Cauce :				
Región :			Provincia :	
Longitud del Puente	;	L =	<u>0</u> m	
Número de Pistas	:	1		
Ancho	:	1.00+4.00+1.	00 = 6.00 m	
Pendiente	:	1.0% (Pasillos)	1.5% (Calzada)
Tipo de Estructura	: P	ostensado		
Longitud de Viga	; I	$v = \phantom{00000000000000000000000000000000000$	<u>0</u> m	
Luz	: I	$\mathcal{L} = \underline{\qquad \qquad 30.0}$	<u>0</u> m	
Número de Vigas	: 1	n _v =	2	
Separación entre Viga	s : \$	S = <u>3.0</u>	<u>0</u> m	
Ancho Mesa Mínima	: V	Vm = 4.0	0 m	

Materia	Grado	Unidad	Cantidad (Para 1 Viga) (Para			Observación
					(Para Puente)	
Losa						
Hormigón	H-25	m³			61.57	
Moldaje		m^2			202.15	
Acero	A63-42H	kg			11,735.81	
Travesaño Intere	medio					
Hormigón	H-25	m³			2.34	
Moldaje		m²			19.98	
Acero	A44-28H	kg			200.66	
Travesaño Extre	emos					
Hormigón	H-25	m³			2.82	
Moldaje		m ²			20.31	
Acero	А63-42Н	kg		•	378.18	
Viga			Exterior	Interior		
Hormigón	Н-35	m ³	22.79	-	45.58	
Moldaje		m ²	159.54	-	319.08	
Acero	A63-42H	kg	2,150.20	-	4,300.40	
PC Cable	ASTMA416-80	m	153.51	-	307.02	
Anclaje		grupo	10	0	20	

Fecha:				Núme	ro de Puente :
Nombre del Puente :	1-PST-L	32_n2			
De la Ruta, Camino :					Rol Ruta :
En el Cauce :					
Región :			P	rovincia:	
Longitud del Puente	:	L =	<u>0</u> m		
Número de Pistas	:		1		
Ancho	:	1.00+	4.00+1.00 = 6.0)0 m	
Pendiente	:	1.0% (Pasil	los)	1.5% (Calzada)
Tipo de Estructura	:	Postensado			
Longitud de Viga	:	Lv =	32.80 m		
Luz	:	Ic =	32.00 m		
Número de Vigas	:	n _v =	2		
Separación entre Viga	s :	S =	3.00 m		
Ancho Mesa Mínima	:	Wm =	4.00 m		

Materia	Grado	Unidad	Cantidad (Para 1 Viga)			Observación
					(Para Puente)	
Losa						
Hormigón	H-25	m ³			65.49	-
Moldaje		m²	· · · · · · · · · · · · · · · · · · ·		215.09	
Acero	А63-42Н	kg			12,500.82	
Travesaño Inter	medio					
Hormigón	Н-25	m ³			2.48	
Moldaje		m ²			21.10	
Acero	А44-28Н	kg			205.63	
Travesaño Extra	emos					
Hormigón	H-25	m ³			2.97	
Moldaje		m ²			21.31	
Acero	A63-42H	kg			387.98	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	24.94	-	49.88	
Moldaje		m ²	176.48	•	352.97	
Acero	A63-42H	kg	2,294.05	-	4,588.11	
PC Cable	ASTMA416-80	m	196.24	-	392.48	-
Anclaje		grupo	12	0	24	

Fecha:				Número de Puente :	
Nombre del Puente :	1-PST-1.3	4_n2			
De la Ruta, Camino:				Rol Ruta :	
En el Cauce :		· · · · · · · · · · · · · · · · · · ·			
Región :			P	rovincia;	
Longitud del Puente	:	L =	<u>0</u> m		
Número de Pistas	:		1		
Ancho	:	1.00	+4.00+1.00 = 6.0	0 m	
Pendiente	:	1.0% (Pas	illos)	1.5% (Calzada)	
Tipo de Estructura	;	Postensado			
Longitud de Viga	:	Lv =	34.80 m		
Luz	:	Lc =	34.00 m		
Número de Vigas	:	n _v =	2		
Separación entre Viga	s :	S =	3.00 m		
Ancho Mesa Mínima	:	Wm =	4.00 m		

Materia	Grado	Unidad	Cantidad			Observación
	<u></u>		(Para 1	Viga)	(Para Puente)	, , , , , , , , , , , , , , , , , , ,
Losa						
Hormigón	Н-25	m ³			69.41	``
Moldaje		m ²			228.02	
Acero	А63-42Н	kg			13,224.88	
Travesaño Inter	medio					
Hormigón	H-25	m³			2.62	
Moldaje		m ²			22.22	
Acero	А44-28Н	kg	<u>-</u>		219.48	
Travesaño Extre	emos					
Hormigón	H-25	m ³			3.12	
Moldaje		m²			22.31	
Acero	A63-42H	kg			406.67	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	. 27.17	-	54.34	
Moldaje		m²	194.23	_	388.45	
Acero	A63-42H	kg	2,518.89	-	5,037.78	
PC Cable	ASTMA416-80	m	208.28	-	416.56	
Anclaje		grupo	12	0	24	

Fecha:	Ní	imero de Puente :
Nombre del Puente :	1-PST-L36_n2	
De la Ruta, Camino:		Rol Ruta :
En el Cauce :		mar-a
Región :	Provincia	
Longitud del Puente	: $L = 0 \text{ m}$	
Número de Pistas	:1	
Ancho	: 1.00+4.00+1.00 = 6.00 m	
Pendiente	: 1.0% (Pasillos) 1.5	% (Calzada)
Tipo de Estructura	: Postensado	
Longitud de Viga	: $Lv = 36.80 \text{ m}$	
Luz	: $Lc = 36.00 \text{ m}$	
Número de Vigas	$: n_{\mathbf{v}} = \underline{2}$	
Separación entre Viga	as : S = <u>3.00</u> m	
Ancho Mesa Mínima	: $Wm = 4.00 m$	

Materia	Grado	Unidad		Cantidad		Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m³			73.32	
Moldaje		m ²			240.96	
Асего	A63-42H	kg			13,948.95	
Travesaño Inter	medio					
Hormigón	H-25	m³			2.90	
Moldaje		m ²			24.46	
Acero	А44-28Н	kg			238.31	
Travesaño Extr	emos					
Hormigón	H-25	m³			3.42	
Moldaje		m ²			24.31	
Асего	A63-42H	kg			496.95	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	30.32	-	60.64	
Moldaje		m ²	220.24	-	440.47	
Acero	A63-42H	kg	2,773.57	-	5,547.13	
PC Cable	ASTMA416-80		257.06	-	514.11	
Anclaje		grupo	14	0	28	

Fecha:				Número de Puente :
Nombre del Puente :	2-PRE-L	4_n6		
De la Ruta, Camino:				Rol Ruta :
En el Cauce :	·			
Región :			P	rovincia :
Longitud del Puente	•	L =	<u>0</u> m	
Número de Pistas	:		2	
Ancho	:	1.20	+7.00+1.20 = 9.4	40 m
Pendiente	:	1.0% (Pas	illos)	1.5% (Calzada)
Tipo de Estructura	:	Pretensado		
Longitud de Viga	:	Iv =	14.60 m	
Luz	:	Lc =	14.00 m	
Número de Vigas	:	n _v =	6	
Separación entre Viga	is :	S =	1.50 m	
Ancho Mesa Mínima	;	Wm =	7.90 m	

Materia	Materia Grado		Unidad Cantidad			Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m ³			42.04	
Moldaje		m ²			140.34	
Acero	A63-4211	kg			6,148.00	
Travesaño Inter	medio					
Hormigón	H-25	m ³			0.81	
Moldaje		m ²			7.65	
Acero	A44-28H	kg			145.70	
Travesaño Extr	emos					
Hormigón	Н-25	m ³			2.04	
Moldaje		m²	-		17.06	
Acero	A63-42H	kg			458.10	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	3.81	3.81	22.85	
Moldaje		m ²	32.56	32.56	195.36	
Acero	A63-42H	kg	503.06	552.30	3,215.34	
PC Cable	ASTMA416-80	1	248.20	248.20	1,489.20	-
Anclaje		grupo	34	34	204	

Fecha:			Númer	ro de Puente :	···
Nombre del Puente :	2-PRE-L1	6_n6			
De la Ruta, Camino:				Rol Ruta :	
En el Cauce :					
Región :			Provincia:		
Longitud del Puente	:	L = 0 n	1		
Número de Pistas	:	2			
Ancho	:	1.20+7.00+1.20	= 9.40 m		
Pendiente	:	1.0% (Pasillos)	1.5% (0	Calzada)	
Tipo de Estructura	:	Pretensado			
Longitud de Viga	:	Lv = 16.60 r	n		
Luz	:	$Lc = \underline{16.00} r$	n		
Número de Vigas	:	$n_v = \underline{\qquad \qquad 6}$			
Separación entre Viga	s :	S = 1.50 r	n		
Ancho Mesa Mínima		Wm = 7.90 r	n		

Materia	Grado	Unidad	Cantidad			Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m ³	process and a second se		47.49	
Moldaje		m ²			159.14	
Acero	A63-4211	kg			6,938.45	
Travesaño Inter	medio					
Hormigón	H-25	m ³			0.97	
Moldaje		m ²			8.97	
Acero	A44-28H	kg			142.68	
Travesaño Extre	emos			·		
Hormigón	II-25	m ³			2.43	
Moldaje		m ²			19.70	
Acero	A63-42H	kg			448.78	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	4.63	4.63	27.77	
Moldaje		m²	40.30	40.30	241.83	
Acero	A63-42H	kg	560.59	602.61	3,531.63	
PC Cable	ASTMA416-80		315.40	315.40	1,892.40	
Anclaje		grupo	38	38	228	

Fecha:				Número de Puente :	All the second s
Nombre del Puente :	2-PRE-L1	8_n6	No. 10 10 10 10 10 10 10 10 10 10 10 10 10		
De la Ruta, Camino:	<u> </u>			Rol Ruta:	
En el Cauce :	Fed				
Región :			P	rovincia:	
Longitud del Puente	:	L =	<u>0</u> m		
Número de Pistas	:		2		
Ancho	:	1.	20+7.00+1.20 = 9.	40 m	
Pendiente	:	1.0% (F	Pasillos)	1.5% (Calzada)	
Tipo de Estructura	:	Pretensac	вo		
Longitud de Viga	:	Lv =	18.60 m		
Luz	:	I.c =	18.00 m		
Número de Vigas	:	n _v =	6		
Separación entre Viga	is :	S = _	1.50 m		
Ancho Mesa Mínima	:	Wm =	7.90 m		

Materia	Grado	Unidad	Cantidad			Observación
			(Para 1 Viga)		(Para Puente)	
Losa						
Hormigón	H-25	m ³			52.94	-
Moldaje		m ²			177.95	
Acero	A63-4211	kg	-		7,728.89	
Travesaño Inter	medio					
Hormigón	H-25	m³			1.14	
Moldaje		m ²			10.29	
Acero	A44-28H	kg			166.25	
Travesaño Extr	emos					
Hormigón	H-25	m^3			2.83	
Moldaje		m ²			22.34	
Acero	A63-42H	kg	and the same		501.89	
Viga			Exterior	Interior	·	
Hormigón	H-35	m³	5.52	5.52	33.13	
Moldaje		m ²	48.85	48.85	293.10	
Acero	A63-42H	kg	671.29	719.96	4,222.40	
PC Cable	ASTMA416-80		390.60	390.60	2,343.60	
Anclaje		grupo	42	42	252	

Fecha:				Numero de ruente:	
Nombre del Puente :	2-PRE-L2	0_n6	<u> </u>		
De la Ruta, Camino:				Rol Ruta :	
En el Cauce :				normal and the second	
Región :			Provi	ncia:	
Longitud del Puente	:	l, =	<u>0</u> m		
Número de Pistas	:	2			
Ancho	:	1.20+7.004	-1.20 = 9.40 n)	
Pendiente	:	1.0% (Pasillos)		1.5% (Calzada)	
Tipo de Estructura	:	Pretensado			
Longitud de Viga	:	$Lv = \underline{20}$	0.70 m		
Luz	:	Lc = 20	0.00_m		
Número de Vigas	:	n _v =	6		
Separación entre Viga	s :	S =1	.50_m		
A calle Mana Malaina		Wm -	100 m		

Materia	Grado	Uniđad		Cantidad		Observación
			(Para 1 Viga)		(Para Puente)	
Losa						
Hormigón	H-25	m ³			58.67	
Moldaje		m²			197.69	·
Acero	A63-42H	kg			8,565.99	
Travesaño Inter	medio					
Hormigón	Н-25	m^3			1.30	
Moldaje		m ²			11.61	
Acero	Л44-28Н	kg			162.91	
Travesaño Extr	emos					
Hormigón	H-25	m ³			3.23	
Moldaje		m ²			24.98	
Acero	A63-42H	kg		<u> </u>	501.18	
Viga			Exterior	Interior		
Hormigón	Н-35	m ³	6.52	6.52	39.10	
Moldaje		m²	58.47	58.47	350.84	
Acero	A63-42H	kg	741.64	782.62	4,613.77	
PC Cable	ASTMA416-80		476.10	476.10	2,856.60	
Anclaje		grupo	46	46	276	

Fecha:				Núm	ero de Puente :	
Nombre del Puente :	2-PRE-L2	2_n6				
De la Ruta, Camino:					Rol Ruta:	
En el Cauce :						
Región :				Provincia :		
Longitud del Puente		L =	<u>0</u> m			
Número de Pistas	:		2			
Ancho	:	-	1.20+7.00+1.20 = 9	.40 m		
Pendiente	:	1.0% ((Pasillos)	1.5%	(Calzada)	
Tipo de Estructura	:	Pretensa	ıdo			
Longitud de Viga	:	Lv = _	22.70 m			
Luz	;	Lc =	22,00 m			
Número de Vigas	:	n, = -	6			
Separación entre Viga	s :	S = _	1.50 m			
Ancho Mesa Minima	;	Wm = -	7.90 m			

Materia	Grado	Unidad	Cantidad			Observación
			(Para 1 Viga)		(Para Puente)	
Losa						
Hormigón	H-25	m ³			64.12	
Moldaje		m ²			216.49	
Acero	А63-42Н	kg			9,356.44	
Travesaño Inter	medio					
Hormigón	II-25	m ³			1.47	
Moldaje		m ²	···		12.93	
Acero	A44-28H	kg			186.48	
Travesaño Extre	emos					
Hormigón	H-25	m ³			3.62	
Moldaje		m ²			27.62	
Acero	A63-42H	kg	-		554.29	
Viga			Exterior	Interior		
Hormigón	Н-35	m ³	7.56	7.56	45.33	
Moldaje		m²	68.64	68.64	411.83	
Acero	A63-42H	kg	866.81	914.44	5,391.39	
PC Cable	ASTMA416-80	m	567.50	567.50	3,405.00	
Anclaje		grupo	50	50	300	

Fecha:	****		Número de Puente :
Nombre del Puente :	2-PRE-L24_1	16	
De la Ruta, Camino :			Rol Ruta :
En el Cauce :			
Región :			Provincia:
Longitud del Puente	:	L =0	m
Número de Pistas	:	2	
Ancho	:	1.20+7.00+1.20	= 9.40 m
Pendiente	:	1.0% (Pasillos)	1.5% (Calzada)
Tipo de Estructura	; P	retensado	
Longitud de Viga	;]	$v = \underline{\qquad \qquad 24.70}$	m
Luz	:]	$c = \underline{\qquad 24.00}$	m
Número de Vigas	;	$n_v = 6$	
Separación entre Vigas	: :	S = 1.50	m
Ancho Mesa Mínima	: 1	Wm = 7.90	m

Materia	Grado	Unidad	Cantidad (Para 1 Viga) (Observación
					(Para Puente)	
Losa						
Hormigón	Н-25	m ³		`	69.57	
Moldaje		m ²			235.30	
Acero	А63-42Н	kg			10,146.89	
ravesaño Inter	medio					
Hormigón	Н-25	m ³			1.63	
Moldaje		m ²			14.25	
Acero	A44-2811	kg			192.70	
Fravesaño Extre	emos					
Hormigón	H-25	m³		····	4.02	
Moldaje		m ²			30.26	
Acero	A63-42H	kg			572.69	
Viga			Exterior	Interior		
Hormigón	Н-35	m ³	8.67	8.67	51.99	
Moldaje		m ²	79.60	79.60	477.62	
Acero	A63-42H	kg	947.82	995.45	5,877.46	
PC Cable	ASTMA416-80	m	666.90	666.90	4,001.40	
Anclaje		grupo	54	54	324	

Fecha:			Número de Puente :
Nombre del Puente :	2-PST-L24_n4	4	
De la Ruta, Camino:			Rol Ruta :
En el Cauce :	<u></u>		<u></u>
Región :			Provincia:
Longitud del Puente	: L	L = 0 m	
Número de Pistas	;	2	
Ancho	:	1.20+7.00+1.20 =	9.40 m
Pendiente	;	1.0% (Pasillos)	1.5% (Calzada)
Tipo de Estructura	; Po	ostensado	
Longitud de Viga	; L	$v = _{24.70} m$	
Luz	; L	c = 24.00 m	
Número de Vigas	: n	$n_v = \underline{\qquad \qquad 4}$	
Separación entre Viga	as : S	S = 2.25 m	
Ancho Mesa Mínima	: W	Vm = <u>7.75</u> m	

Materia	Grado	Unidad	Cantidad (Para 1 Viga) (F			Observación
					(Para Puente)	
Losa						
Hormigón	H-25	m ³			69.04	
Moldaje		m ²			197.21	
Acero	A63-42H	kg			14,158.83	
Travesaño Inter	medio					
Hormigón	H-25	m ³			1.91	
Moldaje		m²			16.61	
Acero	A44-28H	kg			171.46	
Travesaño Extre	emos					
Hormigón	H-25	m ³			4.64	
Moldaje		m²			34.07	
Acero	A63-42H	kg			576.97	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	16.16	16.16	64.63	
Moldaje		m ²	108.01	108.01	432.05	
Acero	A63-42H	kg	1,557.73	1,591.41	6,298.29	
PC Cable	ASTMA416-80		98.32	98.32	393.28	
Anclaje		grupo	8	8	32	,

recha :			Numero de Puente :
Nombre del Puente :	2-PST-L2	6_n4	
De la Ruta, Camino :	<u> </u>		Rol Ruta :
En el Cauce :			
Región :			Provincia:
Longitud del Puente	:	$L = \underline{0}$	m
Número de Pistas	:	2	
Ancho	;	1,20+7.00+1.20) = 9.40 m
Pendiente	:	1.0% (Pasillos)	1.5% (Calzada)
Tipo de Estructura	:	Postensado	
Longitud de Viga	:	Lv = 26.70	m
Luz	:	$Lc = \underline{26.00}$	m
Número de Vigas	:	$n_v = \underline{\qquad \qquad 4}$	
Separación entre Viga	s :	S = <u>2.25</u>	m
Ancho Mesa Mínima	;	Wm = 7.75	m

Materia	Grado	Unidad	Unidad Cantidad			Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m ³			74.50	
Moldaje		m ²			211.88	
Acero	A63-42H	kg			15,327.53	
Travesaño Inter	medio					
Hormigón	H-25	m ³			4.13	
Moldaje		m ²			35.69	
Acero	A44-28H	kg			353.57	
Travesaño Extre	emos					
Hormigón	H-25	m ³			4.95	
Moldaje		m ²	<u> </u>		36.17	
Acero	A63-42H	kg			594.57	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	18.03	18.03	72.10	
Moldaje		m ²	122.14	122.14	488.54	
Acero	A63-42H	kg	1,701.72	1,747.51	6,898.46	
PC Cable	ASTMA416-80	1	106.35	106.35	425.38	
Anclaje		grupo	8	8	32	

Fecha:				Núm	ero de Puente :	
Nombre del Puente :	2-PST-L2	8_n4				
De la Ruta, Camino:			·		Rol Ruta :	
En el Cauce :						
Región :				Provincia:		·
Longitud del Puente	:	L = _	<u>0</u> n	n		
Número de Pistas	:	_	2			
Ancho	:		1.20+7.00+1.20	= 9.40 m		
Pendiente	:	1.0%	(Pasillos)	1.5%	(Calzada)	
Tipo de Estructura	:	Postens	ado			
Longitud de Viga	:	Lv =	28.70_r	n		
Luz	:	Lc =	28.00 r	n		
Número de Vigas	:	n _v =	4			
Separación entre Viga	is :	S = .	2.25 r	n		
Ancho Mesa Mínima	:	Wm =	7.75 r	n		

Materia	Grado	Unidad		Cantidad		Observación
	Į		(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m ³			79.95	
Moldaje		m²		oran errora	227.48	
Acero	А63-42Н	kg			16,414.57	
Travesaño Inter	međio					
Hormigón	H-25	m ³			4.59	
Moldaje		m ²			39.38	
Acero	A44-28H	kg			388.20	
Travesaño Extre	emos					
Hormigón	11-25	m ³			5.43	
Moldaje		m ²			39.32	
Acero	A63-4211	kg			639.60	
Viga			Exterior	Interior		
Hormigón	Н-35	m ³	20.31	20.31	81.25	
Moldaje		m ²	139.98	139.98	559.93	
Асего	A63-42H	kg	1,910.26	1,960.17	7,740.88	
PC Cable	ASTMA416-80	m	114.38	114.38	114.38 457.53	
Anclaje		grupo	8	8	32	

Fecha :	····			Número de Puente :	
Nombre del Puente :	2-PST-I.3	0_n4		name of the state	
De la Ruta, Camino:				Rol Ruta :	
En el Cauce :					
Región :	<u> </u>		Pi	rovincia ;	
Longitud del Puente	;	L =	<u>0</u> m		
Número de Pistas	;		2		
Ancho	:	1.20+7	1.00+1.20 = 9.4	0 m	
Pendiente	:	1.0% (Pasille	os)	1.5% (Calzada)	
Tipo de Estructura	:	Postensado			
Longitud de Viga	:	Lv =	30.80 m		
Luz	•	Lc =	30.00 m		
Número de Vigas	;	n _v =	4		
Separación entre Viga	s :	S =	2.25 m		
Ancho Mesa Mínima	:	Wm =	7.75 m		

Materia	Grado	Unidad		Cantidad		Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	Н-25	m ³			85.67	
Moldaje		m ²			243.86	
Acero	А63-42Н	kg			17,577.39	
Travesaño Inter	medio					
Hormigón	H-25	m ³			5.06	
Moldaje		m ²			43.07	
Acero	A44-28H	kg	.		422.84	
Travesaño Extr	ravesaño Extremos					
Hormigón	H-25	m ³			5.90	
Moldaje		m ²			42.47	
Acero	A63-42H	kg			747.54	
Viga			Exterior	Interior		
Hormigón	H-35	m ³	22.79	22.79	91.16	
Moldaje		m ²	159.54	159.54	638.17	
Acero	A63-42H	kg	2,137.68	2,191.71	8,658.77	
PC Cable	ASTMA416-80	m	153.52	153.52 153.52 614.09		
Anclaje		grupo	10	10	40	

Fecha:				Núme	ro de Puente :	
Nombre del Puente :	2-PST-1.3	2_n4				
De la Ruta, Camino :	<u> </u>				Rol Ruta :	
En el Cauce :						
Región :			P	rovincia:_		
Longitud del Puente	;	L =	<u>0</u> m			
Número de Pistas	:		2			
Ancho	:	1.20)+7.00+1.20 = 9.	40 m		
Pendiente	:	1.0% (Pas	sillos)	1.5% ((Calzada)	
Tipo de Estructura	:	Postensado				
Longitud de Viga	:	Lv =	32.80 m			
Luz	:	Le =	32.00 m			
Número de Vigas	:	n _v =	4			
Separación entre Viga	s :	S =	2.25 m			
		117	7.75			

Materia	Grado	Unidad		Cantidad		Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m ³			91.12	
Moldaje		m ²	man server remains and	···	259.47	
Acero	А63-42Н	kg			18,725.65	
Travesaño Inter	medio					
Hormigón	H-25	m ³			5.36	
Moldaje		m ²			45.53	
Acero	A44-28H	kg			433.49	
Travesaño Extr	emos					
Hormigón	11-25	m ³			6.21	
Moldaje		m ²			44.57	
Acero	Λ63-42Η	kg			766.90	
Viga			Exterior	Interior		
Hormigón	H-35	m³	24.94	24.94	99.76	
Moldaje		m ²	176.48	176.48	705.94	
Асего	A63-42H	kg	2,280.73	2,334.76	9,231.00	
PC Cable	ASTMA416-80	m	163.54	163.54	654.17	
Anclaje		grupo	10	10	40	

Fecha:				Núme	ero de Puente :	
Nombre del Puente :	2-PST-L3	34_n4				
De la Ruta, Camino :			·····	<u> </u>	Rol Ruta:	
En el Cauce :						
Región :				Provincia:		
Longitud del Puente	:	L =	<u>0</u> m			
Número de Pistas	:		2			
Ancho	:	1.20	0+7.00+1.20 = 9	9.40 m		
Pendiente	:	1.0% (Pa	sillos)	1.5%	(Calzada)	
Tipo de Estructura	:	Postensado	•			
Longitud de Viga	:	Lv =	34.80 m			
Luz	:	I.c =	34.00 m			
Número de Vigas	:	n _v =	4			
Separación entre Vigas	:	S =	2.25 m			
Anaka Masa Misima	_	Was -	775 m			

Materia	Grado	Unidad		Cantidad		Observación
		Ī	(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	H-25	m ³			96.58	
Moldaje		m ²			275.07	
Acero	A63-42H	kg	·		19,812.69	
Travesaño Inter	ravesaño Intermedio					
Hormigón	11-25	m³			5.67	
Moldaje		m ²			47.99	
Acero	A44-28H	kg			462.80	
Travesaño Extr	emos					
Hormigón	H-25	m³			6.53	
Moldaje		m ²			46.67	
Acero	A63-42H	kg			804.90	
Viga			Exterior	Interior		
Hormigón	H-35	m³	27.17	27.17	108.67	
Moldaje		m ²	194.23	194.23	776.91	
Acero	A63-42H	kg	2,504.77	2,562.92	10,135.39	
PC Cable	ASTMA416-80		173.57	173.57	173.57 694.29	
Anclaje		grupo	10	10	40	

ta :

Materia	Grado	Unidad		Cantidad		Observación
			(Para 1	Viga)	(Para Puente)	
Losa						
Hormigón	Н-25	m ³			102.03	
Moldaje		m ²			290.67	
Acero	A63-42H	kg			20,899.74	
Travesaño Inter	medio					
Hormigón	H-25	m ³			5.98	
Moldaje		m²			50.45	
Acero	А44-28Н	kg			473.45	
Travesaño Extr	emos					
Hormigón	H-25	m³			6.84	
Moldaje		m ²			48.77	
Acero	A63-42H	kg			932.01	
Viga			Exterior	Interior		
Hormigón	H-35	m³	29.48	29.48	117.91	
Moldaje		m ²	212.77	212.77	851.08	
Acero	A63-42H	kg	2,654.93	2,713.08	10,736.04	
PC Cable	ASTMA416-80	m	220.32	220.32	881.26	
Anclaje		grupo	12	12	48	

SUBSTRUCTURE

I. General

1. Outline

The "Drawings" may be used in the case that the budgeting for an implementation plan be required by the Ministry of Public Works in Chile, or as a kind of the data in preliminary design for engineers. So it must be recognized that they are not considered as a detailed design.

2. Specifications

The design is based on the following specifications.

- 1) "Standard Specifications for Highway Bridges" adopted 1992 and published by the American Association of State Highway and Transportation Officials 444 North Capitol Street, N. W., Suite 249 Washington, D.C. 20001.
- 2) "Specifications for Highway Bridges" adopted 1994 and published by Japan Road Association.

3. Contents


This set of the part for the Substructure constitutes of the following chapters.

- I. General
- II. Design Conditions
- III. Table of Reaction
- IV. Drawings
- V. Calculation report (Input and Generalization table)
- VI. Material List

4. Composition of the Drawings

Each set of drawings for a substructure consist of;

- 1. Bar arrangement of Abutment
- 2. Bar arrangement of Abutment wing
- 3. Bar arrangement of Pier

Instruction

- 1) The standard bridges dealt here are straight and right-angled only, hence some modifications and consideration should be added to the standard design, when applied to skewed or curved bridges.
- 2) All dimensions on the drawings are in "mm" unless otherwise stated.
- 3) The standard bridges are intended to be used for rural bridges.
- 4) The number of lanes are available for one or two, and the width for these lane numbers are shown at below-left.
- 5) Cross-fall on the road-way is 1.5 % and on the side-walk is 1.0 %.
- 6) Curb height and width are 250 mm and 200 mm respectively.
- 7) Railings are 1100 mm high.
- 8) The minimum thickness of pavement is 50 mm at both sides of the road-way, and it is thickest at the center according to the cross-fall.
- 9) All the drawings of the standard bridges are made by use of CADD System program separately worked out for the project.
- 10) Combinations of span lengths and number of lanes are shown below.

		P	'C	
	1	Lane	2	Lane
Beam Span (m)	PRE	POST	PRE	POST
14+14				
16+16				
18+18	Abutment H=5m		_	
20+20		-	-	
22+22				
24+24	_			
26+26		-	—	
28+28	_			
30+30		-		
32+32	_		_	
34+34	_	-		
36+36	_	Pier H=5m	Pier H=15m	Abutment H=12m

11) Structures of which applicable span length are not in the drawings can be designed using the CADD system program.

II. Design Condition

- 1. Design Method: Allowable Stress
- 2. Loading
- 1) Dead Loads

Plane Concrete : $W_c = 2.30 \text{ t/m}^3$

Reinforced Concrete: $\gamma_C = 2.50 \text{ t/m}^3$

Steel

 $: \gamma = 7.85 \text{ t/m}^3$

Pavement Soil : $\gamma = 2.30 \text{ t/m}^3$: $\gamma_S = 1.80 \text{ t/m}^3$

- 2) Horizontal Force of Railing: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m
- 3) Sidewalk Live Load

 $Lc \le 7.6 \text{ m}$

 \rightarrow W_P = 0.415 t/m²

Lc; Span Length

 $7.6 \text{ m} < \text{Lc} \le 30.5 \text{m}$

 \rightarrow W_P= 0.293 t/m²

30.5 m < Lc

$$Wp = \left(147 + \frac{4464}{1c}\right) \times \left(\frac{16.76 - (Sw - 0.25)}{15.24}\right) \times \frac{1}{1000}$$

% In case of W_p>0.293 → W_p = 0.293 t/m²

Sw; Sidewalk width

- 4) Live Load: HS20-44(100%)
- 5) Wind : $W_v = 0.244 \text{ t/m}^2$
- 6) Earthquake: A = 0.15, Category B
- 3. Materials

Concrete

: H-30, $f_c' = 250 \text{ kg/cm}^2$, $E_c = 2.50 \times 10^5 \text{ kg/cm}^2$

Reinforcing Bar: A63-42H, $f_y = 4200 \text{ kg/cm}^2$, $f_{ss} = 1690 \text{ kg/cm}^2$, $E_s = 2.10 \times 10^6 \text{ kg/cm}^2$

Concrete Cover : Clear cover 5cm (footing), 4cm(stem)

Filling soil

: $\gamma = 1.8 \text{ tf/m}^3$, $\phi = 35 \text{ degree}$

Foundation capacity

Soil : Specified as sandy or silty soil

Angle of internal friction : $\phi = 42$ degree

- 4. Design Concept
- 1) Configuration

Abutment

Inverted T type

Pier

Wall type

2) Foundation

Standardized foundation is direct foundation.

3) Footing is fixed at the place of more than 2m below from the river bed.

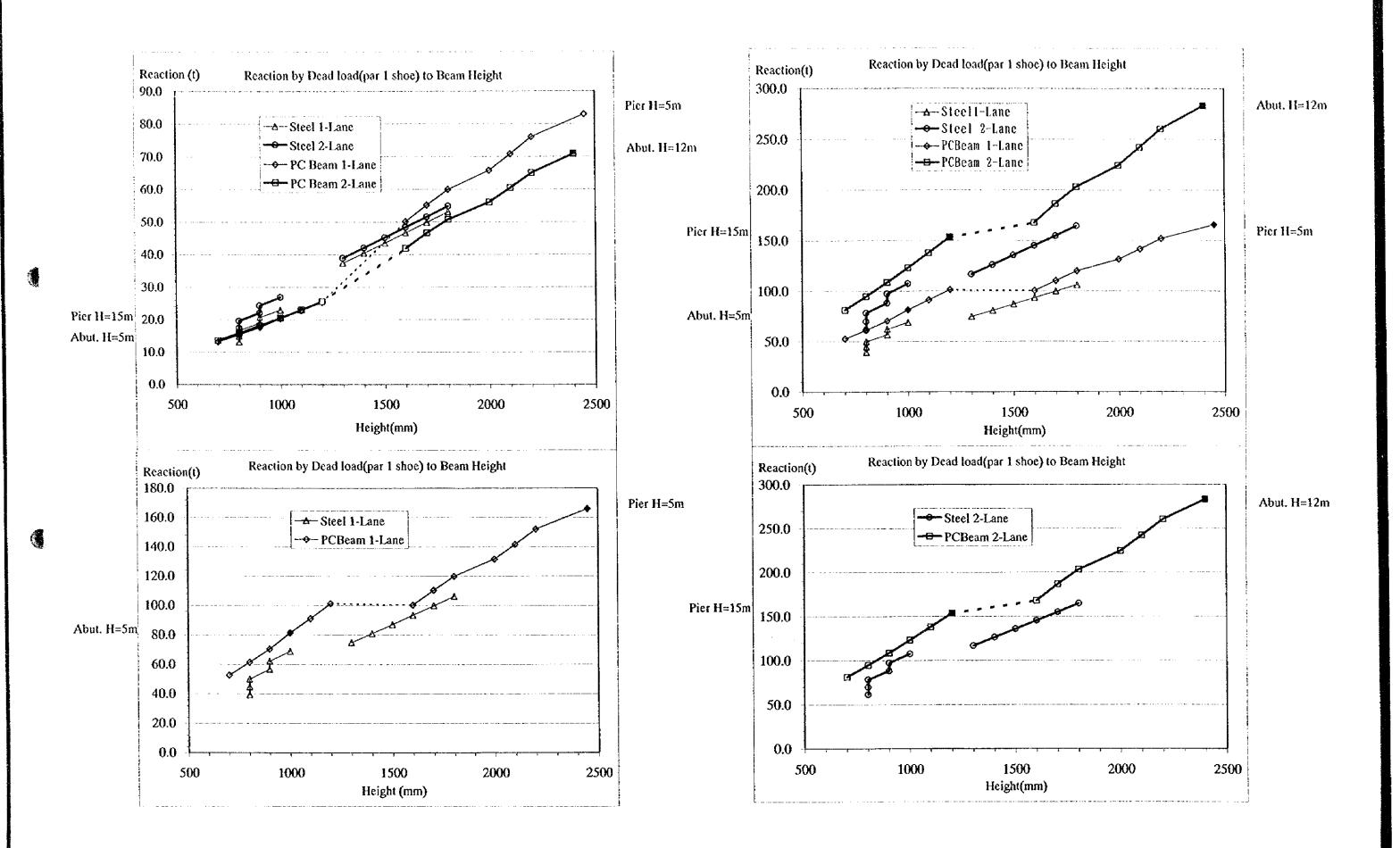
	III.	Tabl	e of	Reac	tion
--	------	------	------	------	------

m. Table of Kea													 -		·											
1						1-Lane												2	2-Lanés							<u> </u>
Road Width:		1,000 (s	idewalk]	4-	4.000	(Road)	4.	1.000	=	6.000	(m)	(Total)			1.200 (s	sidewalk]	+	7.000	(Road)	+	1.200	===	9.400	(m) ((Total)	
Pavement (Crossfall	2 (%)	Min.	50	(mm)	Max.	90 ((mm)	Ave, th	nicknes:	70 ((mm)	Crossfall	2 ((%)	Min.	50 ((mm)	Max.	120	(mm)	Ave. tl	nicknes:	85 ((mm)
	,		Roll	-11						Built-I						Roll	-H						Built-I			
Main Gird.	3	2	@	2.400	=	4.800	2		1	@	3.000	5.5	3,000	4	3	@	2.400	==	7.200	3		2	@	3.200	==	6.400
Span:Lc(m)	14.0	16.0	18.0	20.0	22.0	24.0		26.0	28.0	30.0	32.0	34.0	36.0	14.0	16.0	18.0	20.0	22.0	24.0		26.0	28.0	30.0	32.0	34.0	36.0
Width:B _b (mm)	300	300	300	350	350	350		360	360	360	360	360	360	300	300	300	350	350	350		380	400	400	360	360	360
:Wm(m)	5.100	5.100	5.100	5.150	5.150	5.150		3.360	3.360	3.360	3.360	3.360	3.360	7.500	7.500	7.500	7.550	7.550	7.550		6.780	6.800	6.800	6.760	6.760	6.760
Słab:E _L (mm)	190	190	190	190	190	190		200	200	200	200	200	200	190	190	190	190	190	190		200	200	200	200	200	200
Hunch: (mm)	100	100	100	100	100	100		100	100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100
Height:H1(mm)	800	800	800	900	900	1000		1300	1400	1500	1600	1700	1800	800	800	800	900	900	1000	ļ	1300	1400	1500	1600	1700	1800
Bottom Fig.:t _b								16	18	19	10	10	11								20	20	21	13	13	14
Shoe height	50	50	50	50	50	50	l	50	50	50	50	50	50	50	50	50	50	50	50		50	50	50	50	50	50
Arangement	70	70	70	70	70	70		44	42	41	50	50	49	40	40	40	40	40	40		60	60	59	67	67	66
Parapet	1300	1300	1300	1400	1400	1500		1800	1900	2000	2100	2200	2300	1300	1300	1300	1400	1400	1500		1850	1950	2050	2150	2250	2350
Dead Reaction(t)	13.09	14.90	16.62	18.88	20.70	22.95		37.38	40.45	43.51	46.68	49.88	53.09	15.36	17.46	19.56	22.04	24.29	26.86		38.90	42.04	45.20	48.36	51.56	54.84
yR1	850	850	850	900	900	1000		1200	1300	1350	1450	1500	1600	800	800	800	900	900	950		1250	1300	1400	1450	1550	1600
yR2	120	120	120	120	120	120		95	95	95	100	100	100	90	90	. 90	90	90	90		110	110	110	120	120	120
Dead Weight (t)	39.27	44.7	49.86	56.64	62.1	68.85		74.76	80.9	87.02	93.36	99.76	106.18	61.44	69.84	78.24	88.16	97.16	107.44		116.7	126.12	135.6	145.08	154.68	164.52
																							,			
			Pre-ten	sioned					Pos	t-tensior	ned					Pre-ten	sioned					Pos	t-tensior	ıed		
Main Gird,	4	3	@	1.500	=	4.500	2		1	@	3.000	= .	3.000	6	5	@	1.500	=	7.500	4		3	@	2.250	=	6.750
Span:Lc(m)	14.0	16.0	18.0	20.0	22.0	24.0	24.0	26.0	28.0	30.0	32.0	34.0	36.0	14.0	16.0	18.0	20.0	22.0	24.0	24.0	26.0	28.0	30.0	32.0	34.0	36.0
Width:B _e (mm)	550	550	550	550	550	550	500	500	500	500	500	500	500	550	550	550	550	550	550	500	500	500	500	500	500	500
;Wm(m)	5.050	5.050	5.050	5.050	5.050	5.050	3.500	3.500	3.500	3.500	3.500	3.500	3.500	8.050	8.050	8.050	8.050	8.050	8.050	7.250	7.250	7.250	7.250	7.250	7.250	7.250
Slab:E _L (mm)	170	170	170	170	170	170	200	200	200	200	200	200	200	170	170	170	170	170	170	170	170	170	170	170	170	170
Height:H1(mm)	700	800	900	1000	1100	1200	1600	1700	1800	2000	2100	2200	2450	700	800	900	1000	1100	1200	1600	1700	1800	2000	2100	2200	2400
Shoe height	40	40	40	40	40	40	50	50	50	50	50	50	50	40	40	40	40	40	40	50	50	50	50	50	50	50
Arangement	50	50	50	50	50	50	60	60	60	60	60	60	60	50	50	50	50	50	50	60	60	60	60	60	60	60
Parapet	1050	1150	1250	1350	1450	1550	2000	2100	2200	2400	2500	2600	2850	1080	1180	1280	1380	1480	1580	2000	2100	2200	2400	2500	2600	2800
Dead Reaction(t)	13.15	15.34	17.59	20.35	22.78	25.34	50.15	55.15	59.98	65.77	70.84	76.02	82.92	13.55	15.77	18.09	20.49	22.98	25.56	41.94	46.62	50.80	56.06	60.49	65.02	70.79
yR1	600	650	750	800	900	950	1300	1400	1450	1600	1700	1750	1950	600	650	750	800	900	950	1300	1350	1450	1600	1650	1750	1900
yR2	90	_90	90	90	90	90	110	110	110	110	110	110	110	90	90	90	90	90	90	110	110	110	110	110	110	110
Dead Weight (t)	52.6	61.348	70.352	81.4	91.12	101.36	100.3	110.3	119.96	131.54	141.68	152.04	165.85	81.3	94.62	108.54	122.94	137.88	153.36	167.76	186.48	203.2	224.24	241.96	260.08	283.16

Abutment H=5m

Pier H= 5m

Pier H=15m


Abutment H=12m

Rd=20.0t

Rd=85.0t

Rd=30.0t

Rd=80.0t

