

V. Calculation report (Input and Generalization table)

- 1. 1-PRE-L14-n4_1 (Input Data)
- 2. 1-PRE-L14-n4_1 (Input and Generalization table)
- 3. 1-PRE-L16-n4_1 (Input Data)
- 4. 1-PRE-L16-n4_1 (Input and Generalization table)
- 5. 1-PRE-L18-n4_1 (Input Data)
- 6. 1-PRE-L18-n4_1 (Input and Generalization table)
- 7. 1-PRE-L20-n4_1 (Input Data)
- 8. 1-PRE-L20-n4 1 (Input and Generalization table)
- 9. 1-PRE-L22-n4_1 (Input Data)
- 10. 1-PRE-L22-n4_1 (Input and Generalization table)
- 11. 1-PRE-L24-n4_1 (Input Data)
- 12. 1-PRE-L24-n4_1 (Input and Generalization table)
- 13. 1-PST-L24-n2_1 (Input Data)
- 14. 1-PST-L24-n2_1 (Input and Generalization table)
- 15. 1-PST-L26-n2_1 (Input Data)
- 16. 1-PST-L26-n2_1 (Input and Generalization table)
- 17. 1-PST-L28-n2_1 (Input Data)
- 18. 1-PST-L28-n2_1 (Input and Generalization table)
- 19. 1-PST-L30-n2_1 (Input Data)
- 20. 1-PST-L30-n2_1 (Input and Generalization table)
- 21. 1-PST-L32-n2_1 (Input Data)
- 22. 1-PST-L32-n2_1 (Input and Generalization table)
- 23. 1-PST-L34-n2_1 (Input Data)
- 24. 1-PST-L34-n2 1 (Input and Generalization table)
- 25. 1-PST-L36-n2 1 (Input Data)
- 26. 1-PST-L36-n2_1 (Input and Generalization table)

- 27. 2-PRE-L14-n6 1 (Input Data)
- 28. 2-PRE-L14-n6_1 (Input and Generalization table)
- 29. 2-PRE-L16-n6_1 (Input Data)
- 30. 2-PRE-L16-n6_1 (Input and Generalization table)
- 31. 2-PRE-L18-n6_1 (Input Data)
- 32. 2-PRE-L18-n6_1 (Input and Generalization table)
- 33. 2-PRE-L20-n6_1 (Input Data)
- 34. 2-PRE-L20-n6_1 (Input and Generalization table)
- 35. 2-PRE-L22-n6_1 (Input Data)
- 36. 2-PRE-L22-n6_1 (Input and Generalization table)
- 37. 2-PRE-L24-n6_1 (Input Data)
- 38. 2-PRE-L24-n6_1 (Input and Generalization table)
- 39. 2-PST-I.24-n4_1 (Input Data)
- 40. 2-PST-L24-n4_1 (Input and Generalization table)
- 41. 2-PST-L26-n4_1 (Input Data)
- 42. 2-PST-L26-n4_1 (Input and Generalization table)
- 43. 2-PST-L28-n4_1 (Input Data)
- 44. 2-PST-L28-n4_1 (Input and Generalization table)
- 45. 2-PST-L30-n4_1 (Input Data)
- 46. 2-PST-L30-n4_1 (Input and Generalization table)
- 47. 2-PST-L32-n4_1 (Input Data)
- 48. 2-PST-L32-n4_1 (Input and Generalization table)
- 49. 2-PST-L34-n4_1 (Input Data)
- 50. 2-PST-L34-n4_1 (Input and Generalization table)
- 51. 2-PST-L36-n4_1 (Input Data)
- 52. 2-PST-L36-n4_1 (Input and Generalization table)

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente : 1-PRE-L14_n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Luz(Longitud de cálculo) : $L_c = 14.000 \text{ m}$ Longitud del Puente : L = m,

Número de Pistas : 1

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente : 1.0

1.5 1.0 %

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

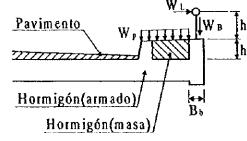
(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

 $: 7.85 \text{ t/m}^3$ Acero


Peatones : $W_o = 0.415 \text{ t/m}^2(\text{Losa})$

 $0.293 \text{ t/m}^2(\text{Viga})$

: HS20-44 Cargas de Tránsito

 $: W_v = 0.244 \text{ t/m}^2$ Cargas de Viento

Coeficientes sísmicos : $K_b = 0.15$, $K_c = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $W_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

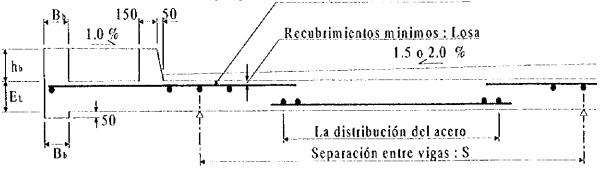
 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{p_1} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H f_y = 4200 kg/cm², f_y= 1690 kg/cm² Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

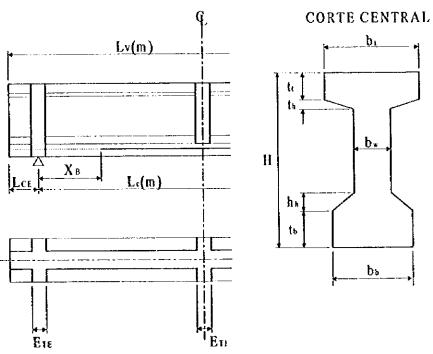

Acero (cable): Grado 270 K, ASTM416-80 Cable: 1-12.7 As* = 0.987 cm^2

Tensión de ruptura : $f_{pu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Py} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : φ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_1 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

Separación entre vigas : S = 1.500 m, 3@ 1.500 = 4.500 mNúmero de Vigas : $n_v = 4$,

Longitud de Viga: $L_v = 14.600 \text{ m}$, $L_{CE} = 0.300 \text{ m}$, $x_B = 2.100 \text{ m}$

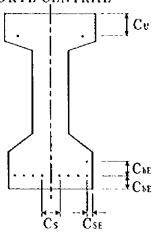
 $E_{TE} = 300 \text{ mm}, \quad E_{TI} = 250 \text{ mm}$

Altura de Viga : H = 0.700 m

 $b_1 = 400 \text{ mm}$, $t_2 = 150 \text{ mm}$,

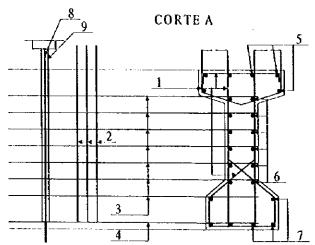
 $b_{w} = 180 \text{ mm}$ $t_h = 110 \, \text{mm}$

 $b_b = 550 \text{ mm}$ $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$,


Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 7.000 m

Ancho Mesa Mínimo: W_m= 5.050 m

0.000 m $x_B = 2.100 \text{ n}$	0.000	m	$X_{\rm B} =$	2.	100	m
---	-------	---	---------------	----	-----	---


				- 13		
No.	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N
1	64.5	2	0	2	0	2
2	33.0	0	0	0	0	0
3	27.5	0	0	0	0	0
4	22.0	0	0	0	0	0
5	16.5	0	0	0	0	0
6	11.0	2	6	4	4	8
7	5.5	4	3	4	3	7
r	`otal	8	9	10	7	17

CORTE CENTRAL

$$C_{U} = 55 \text{ mm}$$
, $C_{S} = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 15.0 \text{ cm}$
 $C_{E} = 55 \text{ mm}$, $C_{DE} = 55 \text{ mm}$, $C_{DE} = 21.6 \text{ cm}$, $C_{DX} = 19.5 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n3, 4: \phi 22$

5:φ12,

6: \phi 12 n 2, 7: \phi 12

8:φ22 n 2,

9: \$3"

Cuantificación del Pretensado

(5) Diseño de Losa

	E_{M} (cm) E_{L} (cm) d_{eq} (cm) d (cm)					A _{srea} (cm	²)	As (cm²)			
L	16.5 ≤	17.0	ок	9.7	≤	14.0	ок	6.617	≤ ¢12	2@125=9.048	ОК
	φM _a (tm/m) Mu (tm/m)					Distr	ibucio	Sn: As (cm²)			
	4.482	. ≥		2.962		ОК	67 ((%) 4.434	≤ φ	12@175=6.463	ок

(6) Diseño de Viga

 $(x = {}^{L}/_{2} = 7.000 \text{ m})$ Exterior

-				
	-	10	^-	
	11	11	 OΓ	
-			 	

	Transferencial		Servicio		Transferencial		Servicio	
Fatiga (kg/cm²)	Total f _a (kg/cm ²)		Total f.(kg/c	Total f _s (kg/cm ²) Total f _s (kg/cm		/cm²)	Total f _a (kg/cm ²)	
Viga Superior: f _{vs}	23 ≤ 168	ОК	101 ≤ 140	OK	23 ≤ 169	з ок	99 ≤ 140	ок
Viga Inferior : fvi	131 ≤ 168	OK	-8 ≥ -15	oĸ	131 ≤ 16	3 OK	3 ≤ 140	ок

(x = 2.100 m) Exterior

Bond Control: Ne = 10

	Transferencial Servicio Transferenci		Transferencial	Servicio
Fatiga (kg/cm²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	Total f _s (kg/cm ²)
Viga Superior: f _{vs}	0 ≥ -13 OK	41 ≤ 140 OK	27 ≤ 168 OK	65 ≤ 140 OK
Viga Inferior : fvi	151 ≤ 168 OK	67 ≤ 140 OK	64 ≤ 168 OK	56 ≤ 140 OK

	A _p (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)		$\phi M_{\rm o}(tm) 1.2 M_{\rm cr}(tm)$	
1	7×1-12.7 = 16.779	$4-\phi 12 = 4.524$	209.875 ≥ 157.571	OK	209.875 ≥ 130.736	ок

(7) Verificacion de Corte

h/2 =	0.350 m		$A_y = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_0 = 48.4 \text{ cm}$	
$V_u =$	45,456 t	<u> </u>	$\phi(V_c + V_s) = 0.9 \times (21.407 +$	45.958) = 60.629 t	•	oĸ
Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	V ₀ = 45.456 ≤ ΦV	$t_{\rm sh} = 210.995$	ок

(8) Deflexión de Transferencia

$\delta_{\rm p}$ (cm)	δ _L (cm)	 Lc/800	
1 0	n's	 1.8	OK

(9) Cáluculo de Travesaño

A _{srea} (cm ²)		As (cm²)	
8.208	≤	9.864	ок

	$R_{v}(t)$		
10.594 ≤	3×2×¢22=22.806	OK	13.150

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PRE-L16_n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L = Luz(Longitud de cálculo) : $L_c = 16.000 \text{ m}$ m,

Número de Pistas

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor máximo del Pavimento: 80 mm Espesor mínimo del Pavimento: 50 mm,

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$

: HS20-44

0.293 t/m2(Viga)

 $: W_V = 0.244 \text{ t/m}^2$ Cargas de Viento

Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$

Pavimento Hormigón(armado)/ Hormigón(masa)

(3) Material

Hormigón:

Cargas de Tránsito

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{ kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

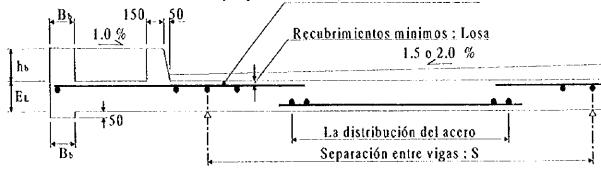
 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{Pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga : A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

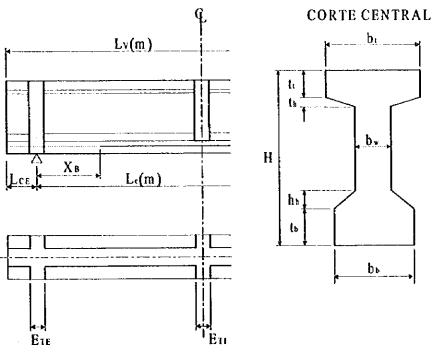

Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$

Tensión de ruptura : $f_{pq} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia: $f_{Py} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_L = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

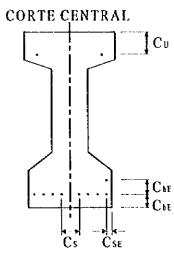
La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

Separación entre vigas : S = 1.500 m, 3(@ 1.500 = 4.500 m)Número de Vigas : $n_v = 4$,

Longitud de Viga: $L_v = 16.600 \text{ m}$, $L_{CE} = 0.300 \text{ m}$, $x_B = 2.800 \text{ m}$

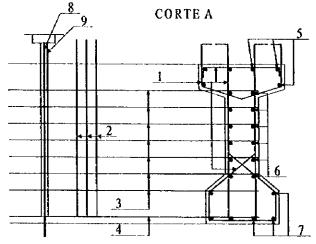
 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga: H = 0.800 m


 $b_0 = 400 \text{ mm}$, $t_0 = 150 \text{ mm}$,

 $t_{\rm s} = 110 \, \rm mm$ $b_w = 180 \text{ mm}$

 $b_{k} = 550 \text{ mm}$ $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$,


Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 8.000 m Ancho Mesa Mínimo: W_m= 5.050 m

			0.000) m	$x_B = 2$	1 008.S	n
No).	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N
1		74.5	2	0	2	0	2
2	,	33.0	0	0	0	0	0
3		27.5	0	0	0	0	0
_4		22.0	0	0	0	0	0
5		16.5	0	2	0	2	2
_6) 	11.0	2	6	4	4	8
7	!	5.5	4	3	5	2	7
	Ţ	otal	8	11	11	8	19

 $C_U = 55 \text{ mm}$, $C_S = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 16.2 \text{ cm}$ $C_{hE} = 55 \text{ mm}$, $C_{DE} = 55 \text{ mm}$, $C_{DE} = 24.1 \text{ cm}$, $C_{DX} = 20.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1:\phi 12 @ 200, 2:\phi 12 @ 200, 3:\phi 12 n3, 4:\phi 22$

5:φ12,

6: \phi 12 n 2, 7: \phi 12

8:φ22 n 2,

9: \$ 3 "

Cuantificación del Pretensado

(5) Diseño de Losa

E_{M} (cm) E_{L} (cm) d_{eq} (cm) d (cm)					1) d	(cm)		A _{seq} (cm ²)	As (cm²)		
16.5	s]	7.0	OK	9.7	≤ 1	4.0	ок	6.617 ≤ ¢1	2@125=9.048	ОК	
φM _n (t	φM _n (tm/m) Mu (tm/m)						Distribución: As (cm²)				
4.48	2	2		2.962		oĸ	67 ((%) 4.434 ≤ ¢	12@175=6.463	ок	

(6) Diseño de Viga

 $(x = \frac{L}{2} = 8.000 \text{ m})$ Exterior

Interior

	Transferencial		Servicio		Transference	cial	Servicio		
Fatiga (kg/cm²)	Total f _a (kg/cm ²)		Total f _a (kg/c	m²)	Total f _a (kg/c	m²)	Total f _s (kg/cm ²)		
Viga Superior: f _{vs}	27 ≤ 168	OK	110 ≤ 140	ОК	27 ≤ 168	ок	107 ≤ 140	OK	
Viga Inferior : f _{vi}	135 ≤ 168	OK	-9 ≥ -15	ОК	135 ≤ 168	ОК	2 ≤ 140	oĸ	

(x = 2.800 m) Exterior

Bond Control: Ne = 11

	Transferencial	Servicio	Transferencial	Servicio	
Fatiga (kg/cm²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	Total f ₄ (kg/cm ²)	
Viga Superior: f _{vs}	4 ≤ 168 OK	54 ≤ 140 OK	28 ≤ 168 OK	75 ≤ 140 OK	
Viga Inferior : f _{vi}	153 ≤ 168 OK	59 ≤ 140 OK	59 ≤ 168 OK	52 ≤ 140 OK	

A_p (cm ²)	A _s (cm ²)	φM _n (tm) Mu (tm)	$\phi M_n(tm) 1.2 M_{ct}(tm)$
$19 \times 1 - 12.7 = 18.753$	$4-\phi 12 = 4.524$	261.315 ≥ 198.243 O K	$261.315 \ge 164.472$ OK

(7) Verificacion de Corte

h/2 =	0.400 m		$A_y = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_{D} = 55.9 \text{ cm}$	
V _u =	49.120 t	_≤	$\phi(V_c + V_s) = 0.9 \times (24.507 +$	53.083) = 69.832 (1	ок
Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_u = 49.120 \le \phi$	$V_{\rm pb} = 243.707$	ок

(8) Deflexión de Transferencia

 $\delta_{\rm D}$ (cm) $\delta_{\rm L}$ (cm) Lc/800 2.3 1.0 \leq 2.0 OK (9) Cáluculo de Travesaño

 $\begin{array}{ccc} A_{\text{srep}} \text{ (cm}^2\text{)} & As \text{ (cm}^2\text{)} \\ \hline 7.471 & \leq & 9.864 & OK \end{array}$

		A_p (cm ²)	•	R _v (t)
12.355	S	3×2×¢22=22.806	ОК	15.337

1.0 %

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PRE-L18 n4

De la Ruta, Camino:

Rol Ruta:

En el Cauce :

Región:

Provincia:

Longitud del Puente : L =

Luz(Longitud de cálculo): L_c = 18.000 m m,

Número de Pistas : 1

Ancho

1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones

 $: W_n = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

 $: W_V = 0.244 \text{ t/m}^2$ Cargas de Viento

Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$

Hormigón(armado)/ Hormigón(masa),

(3) Material

Hormigón:

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30

 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

 $f_{cV} = 350 \text{ kg/cm}^2$, : H-40

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

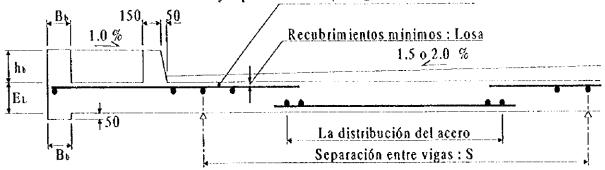
 f_{ci} = 280 kg/cm²,

 $E_{Pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

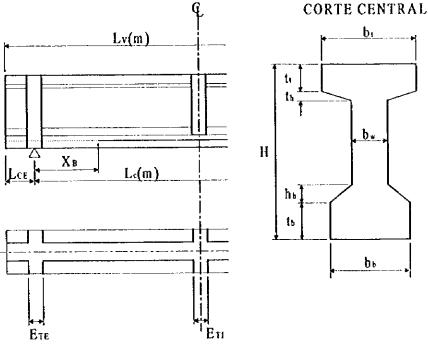

Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$

Tensión de ruptura : $f_{ou} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{p_y} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_L = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

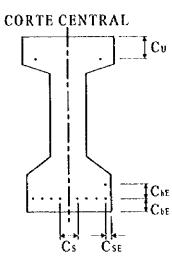
Separación entre vigas : S = 1.500 m, 3@ 1.500 = 4.500 mNúmero de Vigas : $n_v = 4$,

Longitud de Viga: $L_v = 18.600 \text{ m}$, $L_{CE} = 0.300 \text{ m}$, $x_B = 3.500 \text{ m}$

 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

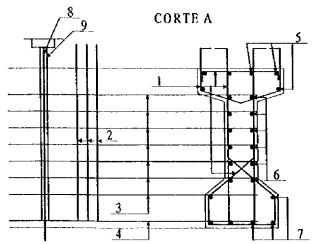
Altura de Viga : H = 0.900 m

 $b_1 = 400 \text{ mm}$, $t_1 = 150 \, \text{mm}$


 $b_{w} = 180 \, \text{mm}$ $t_h = 100 \text{ mm}$

 $b_{b} = 550 \text{ mm}$ $h_h = 185 \text{ mm}$, $t_{h} = 150 \, \text{mm}$

Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 9.000 m Ancho Mesa Mínimo: W_m= 5.050 m


Oldoo m Ag Choo u	-0.000	m	$x_n =$	3.500	m
-------------------	--------	---	---------	-------	---

	No.	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N
ĺ	_1	70.0	2	0	2	0	2
l	2_	33.0	0	0	0	0	0
l	3	27.5	0	0	0	0	0
I	4	22.0	0	0	0	0	0
	5	16.5	0	4	2	2	4
	6	11.0	2	6	4	4	8
	7	5.5	4	3	4	3	7
	Γ	otal	8	13	12	9	21

 $C_{\rm U} = 200 \, \rm mm$, $C_{\rm S} = 70 \, \rm mm$, $C_{\rm SE} = 80 \, \rm mm$, $C_{DC} = 15.8 \text{ cm}$ $C_{hE} = 55 \text{ mm}$, $C_{\rm bE} = 55 \text{ mm}$, $C_{\rm DE} = 23.0 \text{ cm}$, $C_{\rm DX} = 19.9 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1:\phi 12@200, 2:\phi 12@200, 3:\phi 12n4, 4:\phi 22$

5: φ12,

 $6: \phi 12 n 3$, $7: \phi 12$

 $8: \varphi 22 n 2$,

9: \$3"

Cuantificación del Pretensado

(5) Diseño de Losa

E _M (cm)	d _{eq} (cm) d (cm)			A_{sreq} (cm ²) As (cm ²)							
16.5 ≤	17.0	ок	9.7	≤	14.0	OK	6.617	≤ \$1 2	2@125=9.048	ок	
φM _a (tm/n	φM _a (tm/m) Mu (tm/m)						Distribución: As (cm²)				
4.482	2		2.962		ок	67 ((%) 4.434	≤ φ.	12@175=6.463	ок	

(6) Diseño de Viga

 $(x = {}^{L}/_{2} = 9.000 \text{ m})$

Exterior

Interior

	Transferenc	Servicio Total f _s (kg/cm²)			Transferencial Total f _s (kg/cm ²)			Servicio Total f _a (kg/cm²)			
Fatiga (kg/cm²)	Total f _a (kg/c									m²)	
Viga Superior: f _{vs}	22 ≤ 168	ок	111 ≤	140	OK	22 ≤	168	ок	108	s 140	ок
Viga Inferior : f _{vi}	144 ≤ 168	ок	-4 ≥	-15	ок	144 ≤	168	ок	6 :	s 140	ок
(x = 3.500 m) F	Exterior					Bond	Cont	rol : I	Ne = 12	2.	

	Transferencial	Servicio	Transferencial	Servicio		
Fatiga (kg/cm²)	Total f _a (kg/cm²)	Total f _s (kg/cm ²)	Total f _a (kg/cm ²)	Total f _s (kg/cm ²)		
Viga Superior: f _{vs}	1 ≤ 168 Ol	$658 \le 140$ OI	X 28 ≤ 168 OK	82 ≤ 140 OK		
Viga Inferior : f _{vi}	$162 \le 168$ Ol	$K 57 \le 140 OI$	K 61 ≤ 168 OK	54 ≤ 140 OK		

$A_p (cm^2)$ $A_s (cm^2)$		φM _n (tm) Mu (tm)			$\phi M_a(tm) 1.2 M_o(tm)$			
$21 \times 1 - 12.7 = 20.727$	$4-\phi 12 = 4.524$	324.372	≥ 242.086	ок	324.372	≥ 207.659	ок	

(7) Verificacion de Corte

h/2 =	0.450 m		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_p = 67.0 \text{ cm}$	
V _u =	52.639 t	≾	$\phi(V_c + V_s) = 0.9 \times (28.027 + 0.000)$	63.653) = 82.512	t	ок
Cálculo	de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_{u} = 52.639 \le \phi$	$V_{nh} = 292.231$	ОК

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ_{L} (cm)		Lc/800	
2.8	1.1	≤	2.3	OK

(9) Cáluculo de Travesaño

A _{scea} (cm²)		As (cm²)	
6.910	≤	9.864	ок

	$R_{v}(t)$		
14.169 ≤	3×2×φ22=22.806	ОК	17.588

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PRE-L20_n4

Rol Ruta:

De la Ruta, Camino: En el Cauce :

Región:

Provincia:

Luz(Longitud de cálculo) : $L_c = 20.000 \text{ m}$ Longitud del Puente : L = m,

Número de Pistas

Ancho

1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

h = 1.100 mBaranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$,

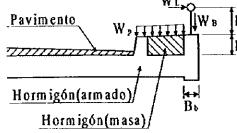
Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones : $W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m²(Viga)


Cargas de Tránsito

: HS20-44

Cargas de Viento

: $W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos: $K_b = 0.15$, $K_v = 0.00$

(3) Material

Hormigón:

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

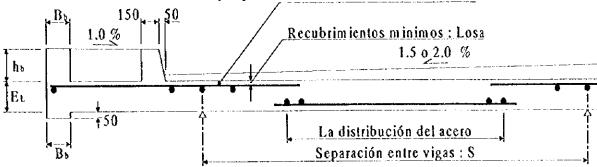
 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{p_1} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

 $E_S = 29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

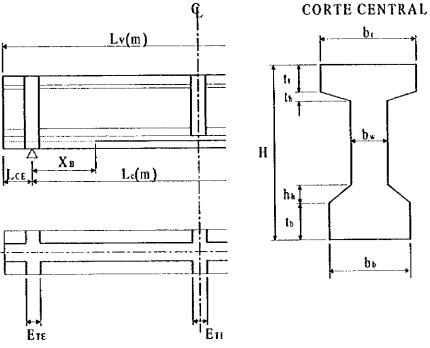

Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$

Tensión de ruptura : $f_{eq} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Py} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa: $E_L = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

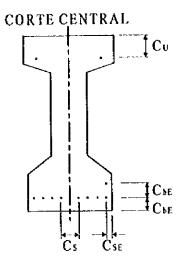
La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

Separación entre vigas : S = 1.500 m, 3@ 1.500 = 4.500 mNúmero de Vigas : $n_v = 4$,

Longitud de Viga : $L_v = 20.700 \text{ m}$, $L_{CE} = 0.350 \text{ m}$, $x_B = 4.100 \text{ m}$

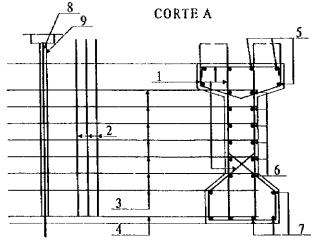
 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga: H = 1.000 m


 $b_{i} = 400 \text{ mm}$ $t_{i} = 150 \, \text{mm}$

 $b_{x} = 180 \, \text{mm}$ $t_{h} = 100 \text{ mm}$,

 $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$, $b_6 = 550 \text{ mm}$


Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 10.000 m Ancho Mesa Mínimo: W_m= 5.050 m

		0.000) m	$x_B = 4$	1,100 r	n
No.	y _{ci} cm	N _β	N _{BC}	N _B	N _{BC}	N
1_1_	80.0	2	0	2	0	2
2	33.0	0	0	0	0	0
3	27.5	0	0	0	0	0
4	22.0	0	0	0	0	0
5	16.5	2	4	2	4	6
6	11.0	2	6	4	4	8
7	5.5	4	3	5	2	7
ำ	otal	10	13	13	10	23

 $C_{11} = 200 \text{ mm}$, $C_S = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$ $C_{DC} = 16.8 \text{ cm}$ $C_{bE} = 55 \text{ mm}$, $C_{DE} = 23.7 \text{ cm}$, $C_{DX} = 20.3 \text{ cm}$ $C_{LE} = 55 \text{ mm}$,

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 4, 4: φ22

 $6: \phi 12 n 3$, $7: \phi 12$ 5:φ12,

8:φ22 n 2, 9: \$3" Cuantificación del Pretensado

(5) Diseño de Losa

E _M (cm) E _L (cm)			d _{eq} (cm) d (cm)				A _{sreq} (cm ²) As (cm ²)		
16.5 ≤	17.0	OK	9.7	≾	14.0	ок	6.617	≤ \$12@125=9.048	ОК
φM _a (tm/m) Mu (tm/m)			Distribución: As (cm²)						
4.482	≥		2.962		ОК	67 ((%) 4.434	≤ \$12@175=6.463	OK

(6) Diseño de Viga

Viga Inferior : fvi

 $(x = {}^{L}/_{2} = 10.000 \text{ m})$ Interior Exterior Transferencial Transferencial Servicio Servicio Total f_a(kg/cm²) Total f_a(kg/cm²) Total f_a(kg/cm²) Total f_a(kg/cm²) Fatiga (kg/cm²) $25 \le 168$ OK $117 \le 140$ OK $25 \le 168$ OK $115 \le 140$ OK Viga Superior: f_{vs_}

 $147 \le 168 | OK | -4 \ge -15 | OK | 147 \le 168 | OK |$

(x = 4.100 m) E	Exterior	Bond Control: Ne = 13						
	Transferencial	Servicio	Transferencial	Servicio				
Fatiga (kg/cm²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	Total f _a (kg/cm²)	Total f _a (kg/cm ²)				
Viga Superior: f _{vs}	3 ≤ 168 OK	65 ≤ 140 OK	29 ≤ 168 OK	88 ≤ 140 OK				
Viga Inferior : f _{VI}	165 ≤ 168 OK	56 ≤ 140 OK	75 ≤ 168 OK	65 ≤ 140 OK				

A_{D} (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)	$\phi M_n(tm) 1.2 M_{cr}(tm)$
23×1-12.7 = 22.701	$4-\phi 12 = 4.524$	$388.778 \ge 289.555$ OK	$388.778 \ge 249.708$ OK

(7) Verificacion de Corte

ĺ	h/2 =	0.500 m		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_p = 76.3 \text{ cm}$	
	V, =	56.142 t	$\leq \phi(V_c + V_s) = 0.9 \times (32.813 + 72.488) = 94.771 \text{ t}$			ок	
	Cálculo	de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_{u} = 56.142 \le \phi$	$V_{\rm nh} = 332.794$	ок

(8) Deflexión de Transferencia

٠,	,		 	
	$\delta_{\rm p}$ (cm)	δ_{i} (cm)	Lc/800	
	3.3	1.2	 2.5	ОК

(9) Cáluculo de Travesaño

A _{srea} (cm ²)		As (cm²)	
6.468	≤	9.864	OK

	/	·	
1	A_{p} (cm ²)		R, (t)_
	$16.150 \le 3 \times 2 \times \phi 22 = 22.806$	OK	20.047

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

De la Ruta, Camino:

Nombre del Puente: 1-PRE-L22 n4

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L =

m, Luz(Longitud de cálculo): L. = 22.000 m

Número de Pistas

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente : 1.0

1.5

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones : $W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos: $K_b = 0.15$, $K_v = 0.00$

Pavimento Hormigón(armado)/ Hormigón(masa),

(3) Material

Hormigón:

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

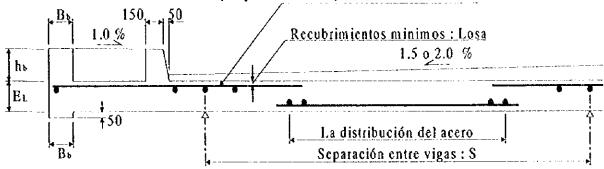
 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{\rm p} = 2.69 \times 10^5 \, \text{kg/cm}^2$

Acero para Armadura de Losa y Viga : A63-42H $f_x = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

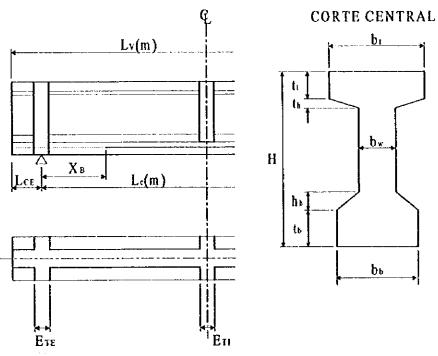

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$ Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$

Tensión de ruptura : $f_{en} = 18980 \text{ kg/cm}^2$, Es = 1.97 ×10⁶ kg/cm²

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento: ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_L = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

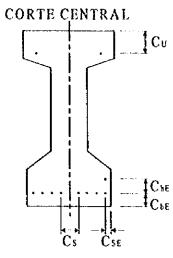
La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

Separación entre vigas : S = 1.500 m, 3@ 1.500 = 4.500 mNúmero de Vigas : $n_v = 4$,

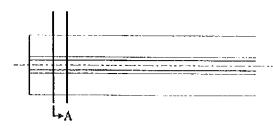
Longitud de Viga: $L_v = 22.700 \text{ m}$, $L_{CE} = 0.350 \text{ m}$, $x_B = 4.600 \text{ m}$

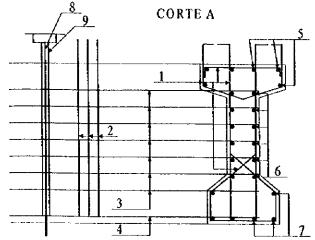
 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga : H = 1.100 m


 $b_1 = 400 \text{ mm}$, $t_2 = 150 \text{ mm}$,

 $t_h = 100 \, \text{mm}$ $b_{w} = 180 \text{ mm}$


 $b_{h} = 550 \text{ mm}$ $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$,


Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 11.000 m Ancho Mesa Mínimo: W_m= 5.050 m

		0.000) m	$X_B = 4$	= 4.600 m			
No.	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N		
1	90.0	2	0	2	0	2		
2	33.0	0	0	0	0	0		
3	27.5	0	0	0	0	0		
4	22,0	0	0	0	0	0		
5	16.5	0	6	2	4	6		
6	11.0	4	4	4	4	8		
7	5,5	4	3_	5_	2	7		
Т	otal	10	13	13	10	23		

 $C_{U} = 200 \text{ mm}$, $C_{S} = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 17.6 \text{ cm}$ $C_{bE} = 55 \text{ mm}$, $C_{DE} = 24.6 \text{ cm}$, $C_{DX} = 21.9 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 5, 4: \phi 22$

 $5: \phi 12, \qquad 6: \phi 12 n 4, \qquad 7: \phi 12$

8: φ22 n 2, 9: φ3"

Cuantificación del Pretensado

(5) Diseño de Losa

	E _M (cm)	d _{reg} (cn	1)	d (cm)		A_{sreg} (cm ²) As (cm ²)			
	16.5 ≤	17.0	OK	9.7	≤	14.0	OK	$6.617 \le \phi 12@125 = 9.048$	ок
	ϕM_n (tm/m) Mu (tm/m)							Distribución: As (cm²)	
l	4.482	≥		2.962		ок	67 ($(\%) 4.434 \le \phi 12@175 = 6.463$	ОК

(6) Diseño de Viga

$(\mathbf{x} = 1)$	·/, =	11.000 m)	Exterior
A -	,, -	F1.000 III)	DAUGHOL

Interior

	Transferencial		Se	rvicio	·	Transferencial		Servicio		
Fatiga (kg/cm²)	Total f (kg/c	l'otal f _a (kg/cm²) T		(kg/c	m²)	Total	Total f _a (kg/cm ²) Total f _a (kg/cm ²			m²)
Viga Superior: fys	30 ≤ 168	<u>ok</u>	126 ≤	140	ок	30	≤ 168	ок	123 ≤ 140	ОК
Viga Inferior : f _{vi}	134 ≤ 168	ОK	-15 ≥	-15	ок	134	≤ 168	ок	-5 ≥ -15	ок

(x = 4.600 m) Exterior

Bond Control: Ne = 13

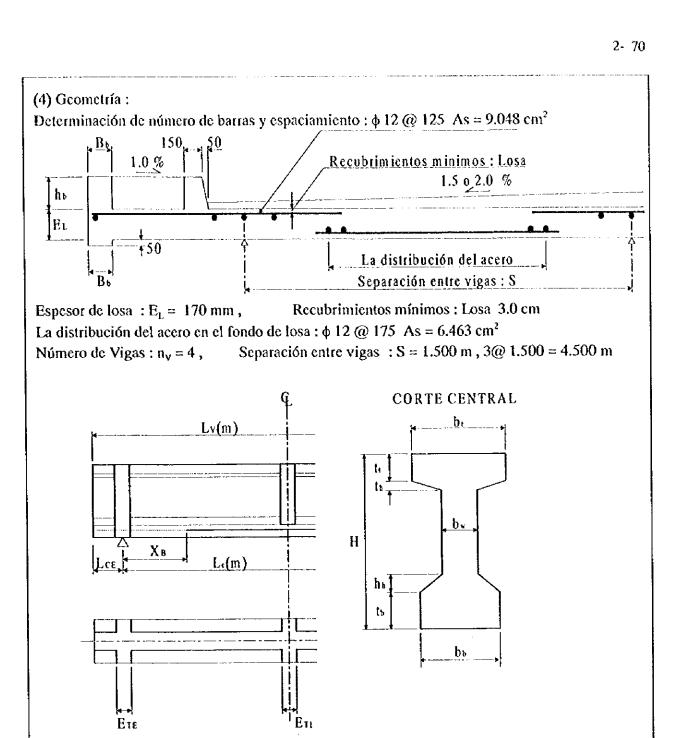
	Transferencial	Servicio	Transferencial	Servicio	
Fatiga (kg/cm²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²) Total f _a (kg/cm ²)		
Viga Superior: f _{vs}	7 ≤ 168 OK	72 ≤ 140 OK	33 ≤ 168 OK	95 ≤ 140 OK	
Viga Inferior : f _{vi}	153 ≤ 168 OK	$46 \le 140 \text{ OK}$	73 ≤ 168 OK	64 ≤ 140 OK	

A _p (cm ²)	A_s (cm ²)	φM _n (tm) Mu (tm)	$\phi M_a(tm) 1.2 M_{ct}(tm)$
23×1-12.7 = 22.701	$4-\phi 12 = 4.524$	427.777 ≥ 340.735	OK 427.777 ≥ 277.045 OK

(7) Verificacion de Corte

h/2 =	0.550 m	$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_{o} = 85.4 \text{ cm}$	
V ₀ =	59.649 t	\$ $\phi(V_c + V_s) = 0.9 \times (36.354 + 36.354)$	81.133) = <u>105.7</u> 3	9 t	ок
Cálculo	de Conectores	$A_v = 4-\phi 12 = 4.524 \text{ cm}^2$	$V_u = 59.649 \le 6$	$\phi V_{\rm ph} = 372.485$	ок

(8) Deflexión de Transferencia


$\delta_{\rm D}$ (cm)	δ_L (cm)		Lc/800	
3.9	1.3	s	2.8	OK

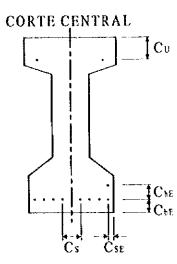
(9) Cáluculo de Travesaño

A _{see} (cm ²)		As (cm ²)	
6.110	≤	9.864	ок

	Λ_o (cm ²)		$R_{v}(t)$
18.128 ≤	3×2×φ22=22.806	ОК	22.503

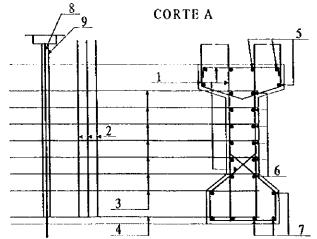
Resultado del diseño Fecha: Tipo de Estructura: Viga de Pretensado Número de Puente: (1) Datos Generales Nombre del Puente: 1-PRE-L24 n4 Rol Ruta: De la Ruta, Camino: En el Cauce : Región: Provincia: Luz(Longitud de cálculo) : $L_c = 24.000 \text{ m}$ Longitud del Puente : L = m, Número de Pistas : 1 $: 1.000 + 4.000 + 1.000 = 6.000 \,\mathrm{m}$ Ancho (Pasillos) (Calzada) (Pasillos) 1.0 % Pendiente: 1.0 1.5 Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 80 mm Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$ (2) Cargas h = 1.100 mBaranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, Cargas de Pavimento : 2.30 t/m³ Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado) Acero $: 7.85 \text{ t/m}^3$ $: W_n = 0.415 \text{ t/m}^2(\text{Losa})$ Peatones Pavimento $0.293 \text{ t/m}^2(\text{Viga})$ Cargas de Tránsito : HS20-44 $W_v = 0.244 \text{ t/m}^2$ Cargas de Viento Hormigón(armado)/ Coeficientes sísmicos : $K_h = 0.15$, $K_v = 0.00$ Hormigón(masa)/ (3) Material Hormigón: $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{kg/cm}^2$ (AASHTO 8.7.1) $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ $E_{pc} = 3.01 \times 10^5 \text{ kg/cm}^2$ $f_{cV} = 350 \text{ kg/cm}^2$, Viga grado : H-40 $E_{\rm p} = 2.69 \times 10^5 \, \text{kg/cm}^2$ $f_{ci}' = 280 \text{ kg/cm}^2$, Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$ Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$ Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$ Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$ Tensión de ruptura : $f_{pu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$ Tensión de fluencia : $f_{Py} = 16100 \text{ kg/cm}^2$

Longitud de Viga : L_v = 24.700 m , L_{CE} = 0.350 m , x_B = 5.100 m E_{TE} = 300 mm , E_{TI} = 250 mm


Altura de Viga: H = 1.200 m

 $b_i = 400 \text{ mm}$, $t_i = 150 \text{ mm}$, $t_b = 100 \text{ mm}$, $b_w = 180 \text{ mm}$

 $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$, $b_b = 550 \text{ mm}$


Número de Travesaños (Intermedio): 1 Separación entre Travesaño: 12.000 m Ancho Mesa Mínimo: W_m= 5.050 m

		0.000) m	$x_8 = 5$	5.100 r	m			
No.	y _{ci} cm	N _B	N _{BC}	N _B	N _{DC}	N			
11	100.0	2	0	2	0	2			
2	33.0	0	0	0	0	0			
3	27.5	0	0	0	0	0			
4	22.0	0	0	0	0	0			
5	16.5	4	4	4	4	8			
6	11.0	2	6	4	4	8			
7	5.5	4	3	4	3	7			
7	lotal .	12	13	14	11	25			

 $C_0 = 200 \text{ mm}$, $C_s = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 18.3 \text{ cm}$ $C_{bE} = 55 \text{ nm}$, $C_{DE} = 25.8 \text{ cm}$, $C_{DX} = 23.7 \text{ cm}$ $C_{hE} = 55 \text{ mm}$,

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 5, 4: \phi 22

6: \phi 12 n 4, 7: \phi 12 5: \phi 12,

9: \$3" 8:φ22 n 2,

Cuantificación del Pretensado

(5) Diseño de Losa

E _M (cm) E _L (cm)			d _{ssa} (cn	1)	d (cm)		A _{steq} (cm	²) As	(cm²)	
16.5 ≤	17.0	ок	9.7		14.0	ок	6.617	≤ ф12@12 5	=9.048	ок
φM _a (tm/m) Mu (tm/m)							Distr	ibución : As	s (cm²)	
4.482	≥		2.962		ок	67 ((%) 4.434	≤ ¢12@17	5=6.463	ок

(6) Diseño de Viga

 $(x = {}^{L}/_{2} = 12.000 \text{ m})$ Interior Exterior Transferencial Servicio Transferencial Servicio Total f_a(kg/cm²) Total f_a(kg/cm²) Total f_a(kg/cm²) Total f_a(kg/cm²) Fatiga (kg/cm²) Viga Superior: f_{VS} 32 \leq 168 OK 131 \leq 140 OK 32 \leq 168 OK 128 \leq 140 OK Viga Inferior : f_{y1} | 138 ≤ 168 | OK | -14 ≥ -15 | OK | 138 ≤ 168 | OK | -4 ≥ -15 | OK

(x = 5.100 m)	exterior				Bond Cont	rol : l	Ne = 14	
	Transferenc	ial	Servicio		Transference	cial	Servicio)
Fatiga (kg/cm²)	Total f (kg/cr	n²)	Total f ₄ (kg/c	m²)	Total f _s (kg/c	m²)	Total f _a (kg/c	m²)
Viga Superior: f _{vs}	8 ≤ 168	ΟK	76 ≤ 140	ОK	37 ≤ 168	oĸ	101 ≤ 140	OK
Viga Inferior : for	158 ≤ 168	OK	48 ≤ 140	ок	84 ≤ 168	oĸ	74 ≤ 140	oĸ

A _n (cm ²)	A _c (cm ²)	φM _n (tm) Mu (tm)		φM _o (tm)	1.2M _{cr} (tm)	
25×1-12.7 = 24.675	$4-\phi 12 = 4.524$	502.208 ≥ 395.823	ок	502.208	≥ 325.782	ок

(7) Verificacion de Corte

ſ	h/2 =	0.600 m		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_{p} = 94.2 \text{ cm}$	
I	V., =	63.188 t	≤	$\phi(V_c + V_s) = 0.9 \times (41.331 + 8)$	39.462) = 117.714 t		ок
Ţ	Cálculo	de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$			ОК

(8) Deflexión de Transferencia

$\delta_{\rm p}$ (cm)	δ_L (cm)	 Lc/800	
4.5	1.5	 3.0	OK

(9) Cáluculo de Travesaño

A _{sico} (cm ²)	A _{sreo} (cm ²)		
5.815	≤	9.864	ОК

		A _p (cm ²)		$R_{y}(t)$
20.180	≤	3×2×¢22=22.806	ОК	25.049

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PST-L24_n2

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L =

Luz(Longitud de cálculo) : $L_c = 24.000 \text{ m}$ m,

Número de Pistas

Ancho

 $: 1.000 + 4.000 + 1.000 = 6.000 \,\mathrm{m}$

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5 1.0 %

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones

 $: W_n = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito

: HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$

Pavimento Hormigón(armado)/ Hormigón(masa)/

(3) Material

Hormigón:

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{ kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

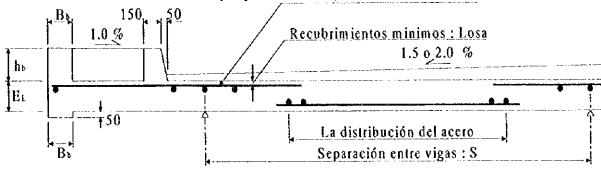
 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{Pi} = 2.69 \times 10^{5} \text{ kg/cm}^{2}$

Acero para Armadura de Losa y Viga: A63-42H f_v = 4200 kg/cm², f_{s3}= 1690 kg/cm²

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

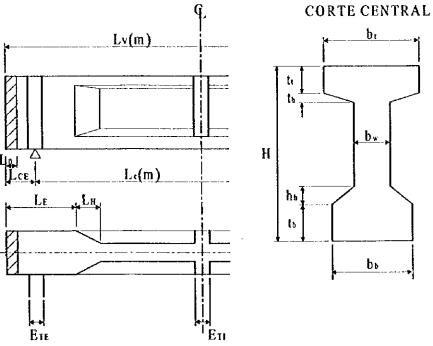

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{ou} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_1 = 200 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

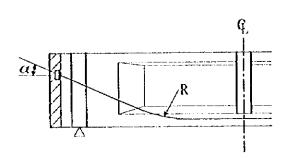
La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

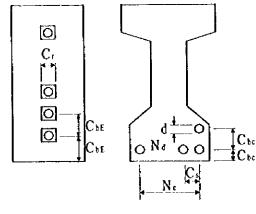
Separación entre vigas : S = 3.000 m, 1@ 3.000 = 3.000 m Número de Vigas : $n_v = 2$,

Longitud de Viga: $L_v = 24.700 \text{ m}$, $L_{CE} = 0.350 \text{ m}$, $L_0 = 100 \text{ mm}$

 $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$, $E_{16} = 300 \text{ mm}$, $E_{11} = 250 \text{ mm}$ Altura de Viga: H = 1.600 m

 $b_t = 1000 \text{ mm}$, $t_t = 150 \text{ mm}$, $t_{h} = 150 \text{ mm}$ $b_{m} = 200 \text{ mm}$

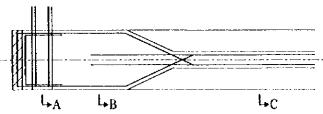

 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$,

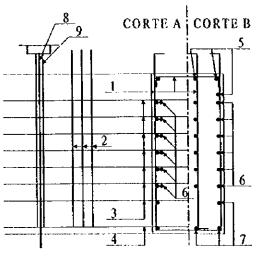

 $b_{h} = 500 \text{ mm}$

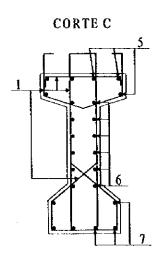
Conficiente de rozamiento parásito : K = 0.0045 Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 12.000 m

Ancho Mesa Mínimo: W_m= 3.500 m




No.	a(dcg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	0.0	0.00
6	0.0	0.00
7	0.0	0.00


Número de ductos a descontar:

$N_d = 4$,	d = 80 mm
$N_c = 3$,	$C_s = 140 \text{ mm}$
$C_{bC} = 120 \text{ mm},$	$C_{bC} = 90 \text{ mm}$
$C_{r} = 180 \text{ mm}$	
$C_{hE} = 320 \text{ mm},$	$C_{bE} = 320 \text{ mm}$

 $c_{DC} = 12.0 \text{ cm}$, $c_{DE} = 80.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n7, 4: \phi 22$

 $5: \phi 12, \qquad 6: \phi 12 n 6, \qquad 7: \phi 12$

8:φ25n5, 9:φ3"

Cuantificación del Postensado

(5) Diseño de Losa

E _M (cm) E	L (cm)	d _{ea} (cm)	d (cm)		A _{see} (cm ²) As (cm²)	
20.0 ≤ 2	0.0	OK	15.1	≤	17.0	ОК	13.218	≤ \$16@150=13.407	ок
φM _a (tm/m)		Mu	(tm/m)				Distri	bución: As (cm²)	
7.944	≥		6.823		ОК	67	(%) 8.856	≤ \$\phi12@125=9.048	ок

(6) Diseño de Viga

 $(x = {}^{L}/_{2} = 12.000 \text{ m})$ Exterior

Interior

	Transference	cial	Servicio)	Transferen	cial	Se	rvicio	<u>}</u>
Fatiga (kg/cm²)	Total f (kg/c	m²)	Total f ₃ (kg/c	m²)	Total f _a (kg/c	:m²)	Total f	kg/c	m²)
Viga Superior: f _{vs}	-3 ≥ -13	OK	66 ≤ 140	OK	30 ≤ 168	ок	123 ≤	140	ОК
Viga Inferior : fvi	134 ≤ 168	oĸ	-10 ≥ -15	OK	134 ≤ 168	ок	-5 ≥	-15	ОК

(x = 9.076 m) Exterior

	Transferencial		Servicio		
Fatiga (kg/cm²)	Total f ₄ (kg/	cm²)	Total f _a (kg/c	m²)	
Viga Superior: f _{vs}	-5 ≥ -13	ОК	59 ≤ 140	ОК	
Viga Inferior : f _{VI}	139 ≤ 168	ОК	2 × 140	OK	

A_{p} (cm ²)	A _s (cm ²)	φM _n (tm) Mu (tm)		$\phi M_o(tm) 1.2 M_{cr}(tm)$
$4 \times 6.910 = 27.640$	$6 - \phi 12 = 6.786$	848.080 ≥ 694.997	OK	848.080 ≥ 607.846 OK

(7) Verificacion de Corte

h/2 =	0.800 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_p = 80.0 \text{ cm}$	
V _u =	109.375 t	≤	$\phi(V_c + V_s) = 0.9 \times (92.328 + 1)$	(14.005) = 185.700) t	ок
Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_{u} = 109.375 \le \phi$	$V_{ab} = 382.628$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	$\delta_{\rm L}$ (cm)		Lc/800	
2.7	0.8	≤	3.0	OK

(9) Cáluculo de Travesaño

A _{sreq} (cm ²)		As (cm ²)	
4.601	≤	9.864	OK

		A_{p} (cm ²)		$R_{v}(t)$
20.194	≤	1×5×φ25=24.545	ОК	50.134

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PST-L26_n2

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L = m,

Luz(Longitud de cálculo) : $L_c = 26.000 \text{ m}$

Número de Pistas : 1

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente : 1.0

1.5 1.0 %

Espesor máximo del Pavimento: 80 mm Espesor mínimo del Pavimento: 50 mm,

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_1 = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

Pavimento

 $: 7.85 \text{ t/m}^3$ Acero

Peatones : $W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento

 $: W_v = 0.244 \text{ t/m}^2$ Hormigón(armado)/ Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$ Hormigón(masa)

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40 $f_{ev} = 350 \text{ kg/cm}^2$,

 $E_{pc} = 3.01 \times 10^5 \text{ kg/cm}^2$

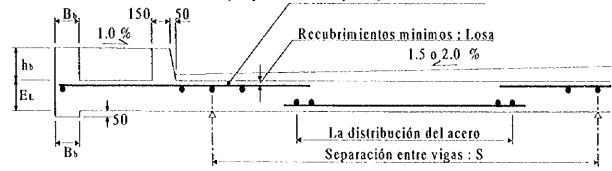
 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{\rm pi} = 2.69 \times 10^5 \, \rm kg/cm^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

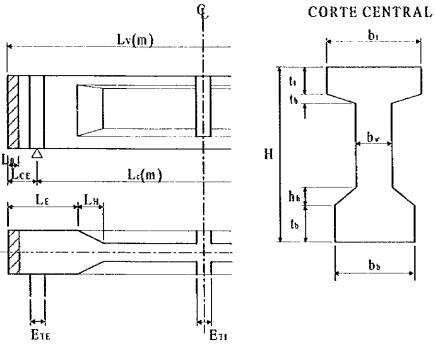

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{po} = 18980 \text{ kg/cm}^2$, Es = 1.97 ×10⁶ kg/cm²

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_1 = 200 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

Número de Vigas : $n_v = 2$, Separación entre vigas : S = 3.000 m, 1 @ 3.000 = 3.000 m

Longitud de Viga : $L_v = 26.700 \text{ m}$,

 $L_{CE} = 0.350 \text{ m}$, $L_0 = 100 \text{ mm}$

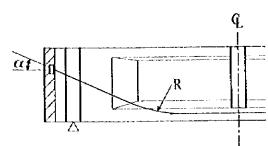
 $L_{\rm E} = 1600 \ \text{mm}$, $L_{\rm R} = 600 \ \text{mm}$, $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

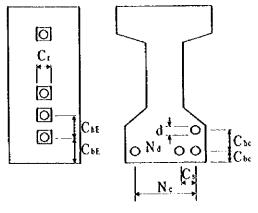
Altura de Viga : H = 1.700 m

 $b_i = 1000 \text{ mm}$, $t_i = 150 \text{ mm}$,

 $t_{\rm h} = 150 \, \rm mm$ $b_{w} = 200 \text{ mm}$

 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$,


 $b_{h} = 500 \text{ mm}$


Conficiente de rozamiento parásito : K = 0.0045 Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2

Separación entre Travesaño: 8.667 m

Ancho Mesa Mínimo: W_m= 3.500 m

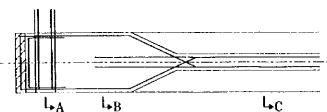
No.	a(deg)	R(m)
1_1_	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	0.0	0.00
7	0.0	0.00

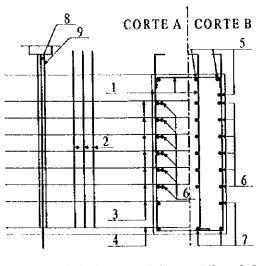
Número de ductos a descontar:

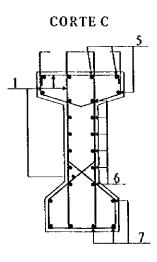
N_d	=	5	,	
-------	---	---	---	--

d = 80 mm

 $N_c = 3$,


 $C_s = 140 \text{ mm}$


 $C_{bC} = 120 \text{ mm}, \quad C_{bC} = 90 \text{ mm}$


 $C_r = 180 \, \text{mm}$

 $C_{bE} = 280 \text{ mm}$, $C_{bE} = 290 \text{ mm}$

 $c_{DC} = 13.8 \text{ cm}$, $c_{DE} = 85.0 \text{ cm}$

4: \$22

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n7,

5:φ12,

 $6: \phi 12 n 6, 7: \phi 12$

9: \$3" 8:φ25 n 5,

Cuantificación del Postensado

(5) Diseño de Losa

E_{M} (cm) E_{L} (cm) d_{reg} (cm) d (cm)				·	A_{sreq} (cm ²) As (cm ²)		
20.0 ≤ 20.0	ок	15.1	≾	17.0	oĸ	13.218≤ \$16@150=13.407	ОК
ϕM_p (tm/m)	φM _n (tm/m) Mu (tm/m)					Distribución: As (cm²)	
7.944 ≥	1	6.823		OK	67 ($(\%) 8.856 \le \phi 12@125 = 9.048$	ОК

(6) Diseño de Viga

 $(x = \frac{1}{2} = 13.000 \text{ m})$

Exterior

Interior

	Transferencial Total f (kg/cm²)				Transferencial Total f ₄ (kg/cm ²)		Servicio Total f _s (kg/cm²)	
Fatiga (kg/cm²)								
Viga Superior: f _{vs}	-5 ≥ -13	ок	71 ≤ 140	ок	$32 \le 168$	ОK	128 ≤ 140	ок
Viga Inferior : f _{VI}	161 ≤ 168	ОК	$4 \le 140$	OK	138 ≤ 168	ОK	-4 ≥ -15	ок

(x = 10.135 m) Exterior

	Transferenc	cial	Servicio			
Fatiga (kg/cm²)	Total f (kg/c	m²)	Total f _a (kg/cm ²)			
Viga Superior: f _{vs}	-8 ≥ -13	ок	65 ≤ 140	oĸ		
Viga Inferior : f _{VI}	167 ≤ 168	ок	16 ≤ 140	OK		

A_n (cm ²)	A_s (cm ²)	φM _a (tm) Mu (tm)	φM ₀ (tm) 1.2M _{cr} (tm)
5×6.910 = 34.550	$6 - \phi 12 = 6.786$	1090,624 ≥ 803,048 OK	$1090.624 \ge 758.275$ OK

(7) Verificacion de Corte

Γ_{i}	h/2 =	0.850 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_p = 85.0 \text{ cm}$	
T	V,, =	116.610 t	≤	$\phi(V_c + V_s) = 0.9 \times (108.750 + 10.9) \times (108.750 $	-121.130) = 206.8 9)2 t	OK
T	Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_u = 116.610 \le \phi$	$V_{\rm nb} = 406.543$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ_L (cm)		Lc/800_	
3.3	0.9	<u>.</u> ≤	3.3	ОК

(9) Cáluculo de Travesaño

A _{sreq} (cm ²)		As (cm ²)	
3.580	≤	9.864	OK.

A _p (cm ²)	-	$R_{v}(t)$
$22.214 \le 1 \times 5 \times 625 = 24.545$	ОК	55.150

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PST-L28 n2

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L =

Luz(Longitud de cálculo) : $L_s = 28.000 \text{ m}$ m,

Número de Pistas

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.0 % 1.5

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

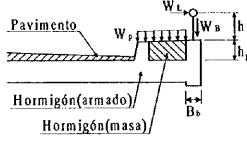
Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

Acero

 $: 7.85 \text{ t/m}^3$

Peatones

 $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$


0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento

 $: W_V = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_b = 0.15$, $K_c = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$

 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{ psi} = 15800\sqrt{f_{RC}} \text{ kg/cm}^2 = 2.50 \times 10^5 \text{ kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40

 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^{5} \text{ kg/cm}^{2}$

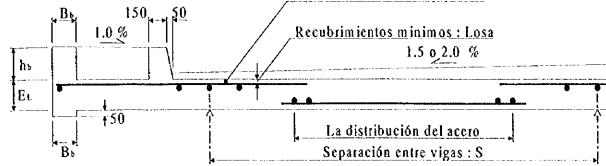
 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{p_i} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

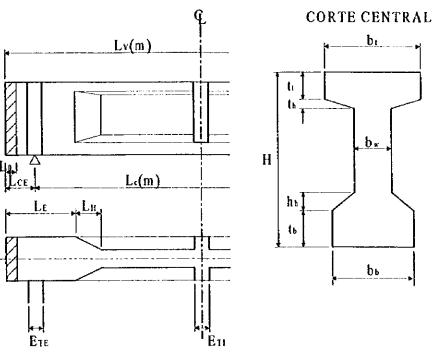

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{pu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²


Espesor de losa : $E_L = 200 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

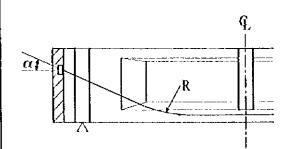
Número de Vigas : $n_v = 2$,

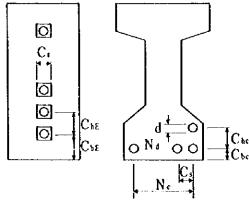
Separación entre vigas : S = 3.000 m, 1@3.000 = 3.000 m

Longitud de Viga: $L_v = 28.700 \text{ m}$, $L_{CE} = 0.350 \text{ m}$, $L_0 = 100 \text{ mm}$ $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$, $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga: H = 1.800 m

 $t_b = 150 \, \text{mm}$ $b_w = 200 \text{ mm}$ $b_1 = 1000 \text{ mm}$, $t_2 = 150 \text{ mm}$,


 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$,


 $b_b = 500 \text{ mm}$

Conficiente de rozamiento parásito : K = 0.0045 Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2 Separación entre Travesaño: 9.333 m

Ancho Mesa Mínimo: W_m= 3.500 m

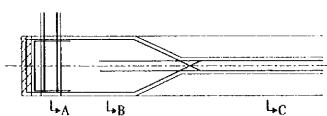
No.	a(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	0.0	0.00
7	0.0	0.00

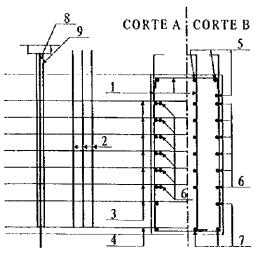
Número de ductos a descontar:

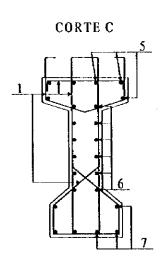
 $N_d = 5$,

d = 80 mm

 $N_c = 3$,


 $C_s = 140 \text{ mm}$


 $C_{bC} = 120 \text{ mm}$, $C_{bC} = 90 \text{ mm}$


 $C_{\rm r} = 180 \, {\rm mm}$

 $C_{bE} = 300 \text{ mm}$, $C_{bE} = 300 \text{ mm}$

 $c_{DC} = 13.8 \text{ cm}$, $c_{DE} = 90.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 8, 4: ¢22

5:φ12,

 $6: \phi 12 n7, 7: \phi 12$

8:φ25n5,

9: \phi 3 "

Cuantificación del Postensado

(5) Diseño de Losa

E _M (cm) E ₁ (cn	1)	d _{reg} (cm) d(c	m)	,	A _{sreq} (cm ²)	As (cm²)	
$20.0 \leq 20.0$	oĸ	15.1	≤ 17	0.	ок	13.218 ≤	φ16@150=13.407	oĸ
φM _n (tm/m)	Mu	(tm/m)				Distrib	oución: As (cm²)	
7.944 ≥		6.823		ок	67 (%) 8.856	≤ \$12@125=9.048	oĸ

(6) Diseño de Viga

 $(x = \frac{L}{2} = 14.000 \text{ m})$

Exterior

Interior

	Transferenc	cial	Sei	vicio)	Trar	sferen	cial	5	Servicio)
Fatiga (kg/cm²)	Total f ₃ (kg/c	m²)	Total f,	(kg/c	m²)	Total	f,(kg/c	m²)	Total	f _a (kg/c	m²)
Viga Superior: f _{vs}	1 < 168	ОК	80 ≤	140	OK	32	≤ 168	ок	128	≤ 140	ок
Viga Inferior : f _{vi}	149 s 168	ок	-9 ≥	-15	OK	138	≤ 168	ок	-4	≥ -15	ок

(x = 10.868 m) Exterior

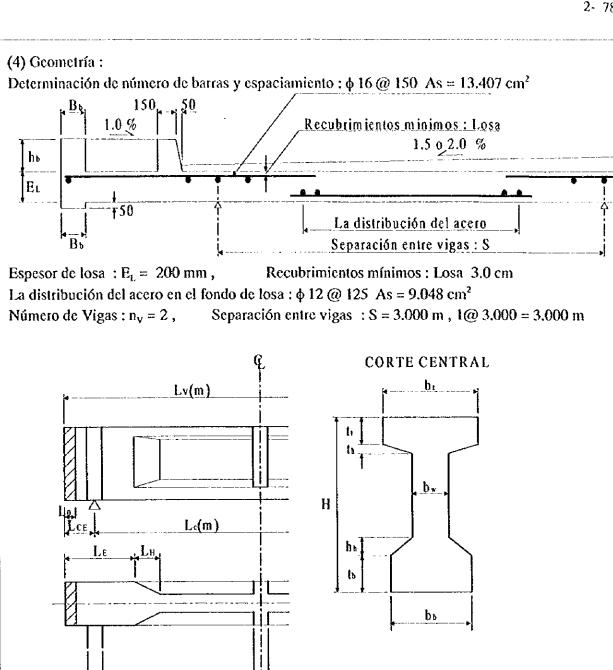
	Transferencial		Servicio		
Fatiga (kg/cm²)	Total f ₃ (kg/cm ²)		Total f _s (kg/cm ²)		
Viga Superior: f _{vs}	-3 ≥ -13	ОК	<i>7</i> 3 ≤ 140	OK	
Viga Inferior : f _{VI}	155 ≤ 168	ОК	3 ≤ 140	OK	

A_{p} (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)		$\phi M_a(tm) 1.2 M_{ci}(tm)$	
$5 \times 6.910 = 34.550$	$6 - \phi 12 = 6.786$	1155,551 ≥ 915,522	ок	1155.551 ≥ 806.886	oĸ

(7) Verificacion de Corte

h/2 =	0.900 m		$A_v = 6 \cdot \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_0 = 90.0 \text{ cm}$	
V _v =	123.181 t	≤	$\phi(V_c + V_s) = 0.9 \times (112.708 + 11.008)$	128.255) = 216.86	67 t	ок
Cálcul	o de Conectores		$A_v = 4 \cdot \phi 12 = 4.524 \text{ cm}^2$	$V_u = 123.181 \le \phi$	$V_{\rm ob} = 430.457$	ок

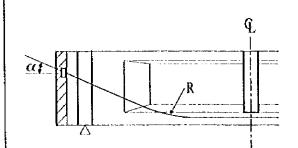
(8) Deflexión de Transferencia

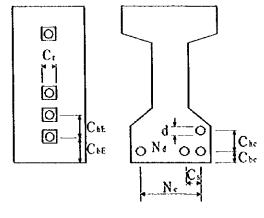

$\delta_{\scriptscriptstyle \Gamma}$	(cm)	δ_L (cm)		Lc/800	
	3.8	1.0	≤	3.5	ок

(9) Cáluculo de Travesaño

A _{sreq} (cm ²)		As (cm ²)	
3.470	≤	9.864	ок

	$R_{v}(t)$		
24.162 ≤	1×5×φ25=24.545	ОК	59.987


Resultado del diseño Tipo de Estructura : Viga de Postensado Fecha: (1) Datos Generales Número de Puente: Nombre del Puente: 1-PST-L30_n2 Rol Ruta: De la Ruta, Camino: En el Cauce: Región: Provincia: Longitud del Puente : L = Luz(Longitud de cálculo): L_a = 30.000 m m, Número de Pistas Ancho : 1.000 + 4.000 + 1.000 = 6.000 m(Pasillos) (Calzada) (Pasillos) Pendiente: 1.0 1.5 Espesor máximo del Pavimento: 80 mm Espesor mínimo del Pavimento: 50 mm, Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$ (2) Cargas Baranda: $W_B = 0.050 \text{ t/m}$, $W_1 = 0.020 \text{ t/m}$, h = 1.100 mCargas de Pavimento : 2.30 t/m³ Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado) $: 7.85 \text{ t/m}^3$ Acero Peatones : $W_p = 0.415 \text{ t/m}^2(\text{Losa})$ Pavimento 0.293 t/m2(Viga) Cargas de Tránsito : HS20-44 Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$ Hormigón(armado)/ Coeficientes sísmicos : $K_b = 0.15$, $K_c = 0.00$ Hormigón(masa)/ (3) Material Hormigón: Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$ (AASHTO 8.7.1) $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$ Viga grado : H-40 $f_{cv} = 350 \text{ kg/cm}^2$, $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$ $E_p = 2.69 \times 10^5 \text{ kg/cm}^2$ $f_{ci}' = 280 \text{ kg/cm}^2$, Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$ Es = 29,000,000 psi = 2.1×10^6 kg/cm² Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$ Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$ Tensión de ruptura : $f_{pq} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$ Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$



Longitud de Viga: $L_v = 30.800 \text{ m}$, $L_{CE} = 0.400 \text{ m}$, $I_{DI} = 100 \text{ mm}$ $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$ $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$, Altura de Viga : H = 2.000 m $b_i = 1000 \text{ mm}$, $t_i = 150 \text{ mm}$, $t_{s} = 150 \, \text{mm}$ $b_{w} = 200 \text{ mm}$ $b_{h} = 500 \text{ mm}$ $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$, Conficiente de rozamiento parásito : K = 0.0045

Conficiente de rozamiento en curva : $\mu = 0.25$ Número de Travesaños(Intermedio): 2

Separación entre Travesaño: 10.000 m Ancho Mesa Mínimo: W_m= 3.500 m

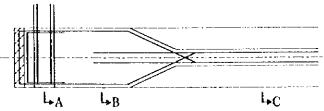
No.	a(deg)	R(m)
1	7.0	10.00
2	7.0	10,00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	0.0	0.00
7	0.0	0,00

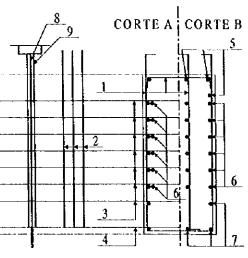
Número de ductos a descontar:

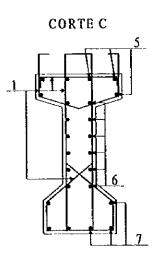
 $N_a = 5$,

d = 80 mm

 $N_c = 3$,


 $C_s = 140 \text{ mm}$


 $C_{bC} = 120 \text{ mm}$, $C_{bC} = 90 \text{ mm}$


 $C_r = 180 \text{ mm}$

 $C_{bE} = 330 \text{ mm}$, $C_{bE} = 340 \text{ mm}$

 $c_{DC} = 13.8 \text{ cm}$, $c_{DE} = 100.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 9,$ 4: φ22

 $5: \phi 12$,

 $6: \phi 12 n 8, 7: \phi 12$

8:φ28n5,

9: \$3"

Cuantificación del Postensado

(5) Discño de Losa

E _M (cm) E _L (cm)	d _{eq} (cm) d (c	m)	A _{sreq} (cm ²) As (cm ²)	
20.0 ≤ 20.0 O I	$K 15.1 \leq 17.$.0 OK	13.218 ≤ \$16@150=13.407	ок
ϕM_a (tm/m) N	Au (tm/m)		Distribución: As (cm²)	
7.944 ≥	6.823	OK 67	$(\%) 8.856 \le \phi 12@125 = 9.048$	ок

(6) Discño de Viga

 $(x = \frac{L}{2} = 15.000 \text{ m})$ Interior Exterior Transferencial Transferencial Servicio Servicio Total f₃(kg/cm²) Total f₃(kg/cm²) Total f_a(kg/cm²) Total f_a(kg/cm²) Fatiga (kg/cm²) $4 \le 168 | OK | 81 \le 140 | OK | 32 \le 168 | OK | 128 \le 140 | OK |$ Viga Superior: fvs Viga Inferior : $f_{VI} = 135 \le 168 | OK | -13 \ge -15 | OK | 138 \le 168 | OK | -4 \ge -15 | OK |$

(x = 12.121 m) Exterior

	Transferencial Total f _a (kg/cm²)		Servicio Total f _a (kg/cm²)				
Fatiga (kg/cm²)							
Viga Superior: f _{vs}	1	≤	168	ок	77 :	140	ок
Viga Inferior : f _{vi}	140	≤	168	ок	-4 =	-15	ок

A_{o} (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)	$\phi M_{e}(tm) 1.2 M_{e}(tm)$
5×6.910 = 34.550	$6 - \phi 12 = 6.786$	1285.426 ≥1043.978 C	OK 1285.426 \geq 909.574 OK

(7) Verificacion de Corte

h/2 =	1.000 m		$A_y = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_0 = 100.0 \text{ cm}$	
V _u =	130.558 t	≤	$\phi(V_c + V_s) = 0.9 \times (118.864 + 11$	-142.506) = 235.2°	33 t	ок
Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_{u} = 130.558 \le 0$	$V_{\rm ph} = 478.285$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ_{L} (cm)		Lc/800	
4.0	1.0	≤	3.8	ОК

(9) Cáluculo de Travesaño

A _{sreq} (cm ²)	As (cm ²)	
3.187 ≤	9.864	ок

A _p (cm²)			$R_{v}(t)$
26.583 ≤	1×5×φ28=30.790	OK	65.996

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PST-L32 n2

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Longitud del Puente : L = Luz(Longitud de cálculo) : $L_s = 32.000 \text{ m}$ m,

Número de Pistas

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

1.5

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.0 %

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 80 mm

Ancho de Baranda : $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

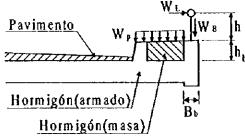
(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

 $: 7.85 \text{ t/m}^3$ Acero


Peatones $: W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_h = 0.15$, $K_v = 0.00$

(3) Material

Hormigón:

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = w_s^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40

 $f_{eV} = 350 \text{ kg/cm}^2$,

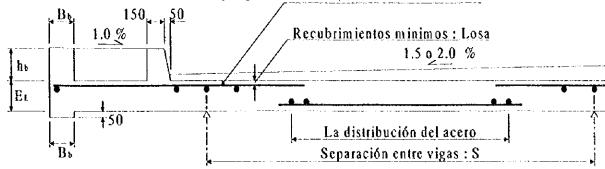
 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{Pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_c = 4200 \text{ kg/cm}^2$, $f_{ss} = 1690 \text{ kg/cm}^2$ Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

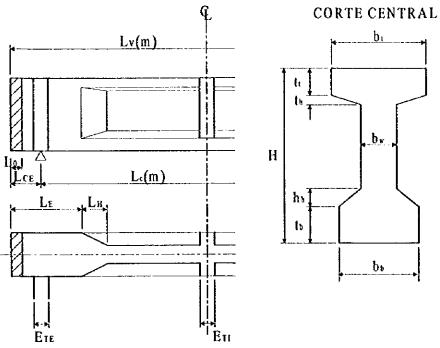

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{pq} = 18980 \text{ kg/cm}^2$, Es = 1.97 ×10⁶ kg/cm²

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



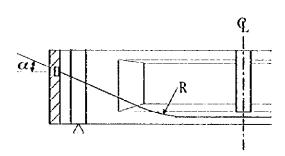
Espesor de losa : $E_1 = 200 \text{ mm}$,

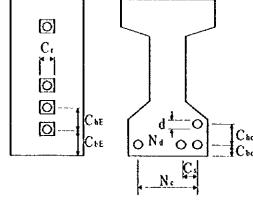
Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

Número de Vigas : $n_v = 2$, Separación entre vigas : S = 3.000 m, 1@ 3.000 = 3.000 m

Longitud de Viga: $L_v = 32.800 \text{ m}$, $L_{ce} = 0.400 \text{ m}$, $L_n = 100 \text{ mm}$ $E_{TE} = 300 \text{ mm}$, $E_{TE} = 250 \text{ mm}$ $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$,


Altura de Viga : H = 2.100 m


 $t_{\rm h} = 150 \, {\rm mm}$ $b_w = 200 \text{ mm}$ $b_i = 1000 \text{ mm}$, $t_i = 150 \text{ mm}$,

 $b_b = 500 \text{ mm}$ $h_b = 210 \text{ mm}$, $t_b = 250 \text{ mm}$, Conficiente de rozamiento parásito : K = 0.0045

Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2 Separación entre Travesaño: 10.666 m Ancho Mesa Mínimo: W_m= 3.500 m

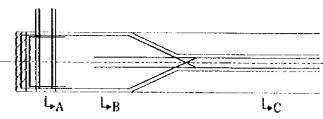
No.	a(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	7.0	10.00
7	0.0	0.00

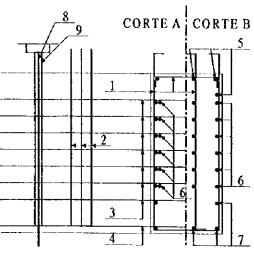
Número de ductos a descontar:

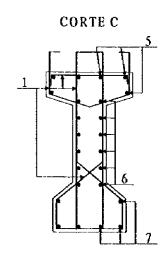
 $N_d = 6$,

d = 80 mm

 $N_c = 3$,


 $C_s = 140 \text{ mm}$


 $C_{bC} = 120 \text{ mm}, \quad C_{bC} = 90 \text{ mm}$


 $C_c = 180 \text{ mm}$

 $C_{bE} = 300 \text{ mm}$, $C_{bE} = 300 \text{ mm}$

 $c_{DC} = 15.0 \text{ cm}$, $c_{DE} = 105.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 9,

5:φ12,

6: \phi 12 n 8, 7: \phi 12

8:φ28n5,

9: \$3"

Cuantificación del Postensado

(5) Diseño de Losa

E _M (cm) E _L (cm)	d _{req} (cm) d (c	m)	A_{seq} (cm ²) As (cm ²)	
20.0 ≤ 20.0	OK 15.1 ≤ 17	.0 ОК	13.218 ≤ \$\phi16@150=13.407	ок
φM _a (tm/m)	Mu (tm/m)		Distribución: As (cm²)	
7.944 ≥	6.823	OK 67	$(\%) 8.856 \le \phi 12@125 = 9.048$	ок

(6) Diseño de Viga

 $(x = \frac{1}{2} = 16.000 \text{ m})$ Exterior

Interior

	Transference	cial	Servicio		Transferencial		Servicio	
Fatiga (kg/cm²)	Total f,(kg/c	m²)	Total f ₄ (kg/cm ²)		Total f ₄ (kg/cm ²)		Total f _a (kg/cm ²)	
Viga Superior: f _{vs}	1 ≤ 168	OK	84 ≤ 140	ок	32 ≤ 168	ОК	128 ≤ 140	ОK
Viga Inferior : f _{vi}	162 ≤ 168	OK	0 ≤ 140	OK	138 ≤ 168	ок	-4 ≥ -15	ок

	Transferen	cial	Servicio Total f _s (kg/cm²)		
Fatiga (kg/cm²)	Total f _a (kg/c	m²)			
Viga Superior: f _{vs}	-1 ≥ -13	ОК	80 ≤ 140	ок	
Viga Inferior : f _{vr}	167 ≤ 168	ОК	8 ≤ 140	ок	

$A_p (cm^2)$	A_s (cm ²)	φM _a (tm) Mu (tm)	φM ₀ (tm) 1.2M ₀ (tm)			
$6 \times 6.910 = 41.460$	$6 - \phi 12 = 6.786$	1585,714 ≥1170.345	oĸ	1585.714 ≥1090.024	OK	

(7) Verificacion de Corte

h/2 =	1.050 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_p = 105.0 \text{ cm}$	
V, =	$V_y = 137.059 t \le \phi(V_c + V_s) = 0.9 \times (135.160 + 149.631) = 256.312 t$					ок
Cálcul	lo de Conectores		$A_x = 4 - \phi 12 = 4.524 \text{ cm}^2$	V., = 137.059 ≤	φV_s = 502.200	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	(cm) δ_L (cm)		Lc/800		
4.6	1.1	Ś	4.0	ок	

(9) Cáluculo de Travesaño

A _{srea} (cm ²)		As (cm²)	
3.081	s	9.864	ок

	$R_{v}(t)$			
28.535	≤	1×5×φ28=30.790	ОК	70.842

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PST-L34_n2 De la Ruta, Camino:

Rol Ruta:

En el Cauce :

Región:

Provincia:

Luz(Longitud de cálculo) : $L_x = 34.000 \text{ m}$ Longitud del Puente : L = m,

Número de Pistas : 1

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ nm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

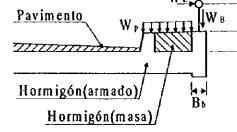
Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

Acero

 $: 7.85 \text{ t/m}^3$

Peatones


: $W_n = 0.415 \text{ t/m}^2(\text{Losa})$

0.292 t/m2(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_V = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_h = 0.15$, $K_v = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cl} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = w_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

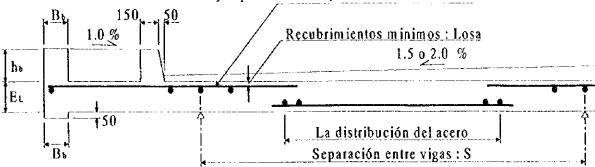
 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H f_v = 4200 kg/cm², f_w= 1690 kg/cm²

Es = 29,000,000 psi = 2.1×10^6 kg/cm²

Acero Travesaño y barras antisísmicas: A44-28H $f_y = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

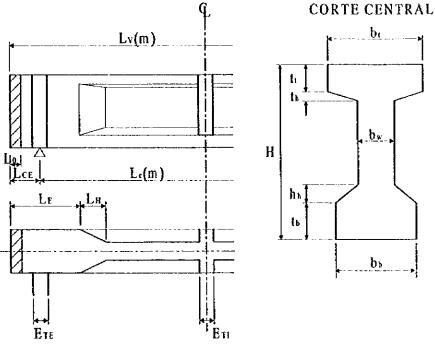

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{pu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Py} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_L = 200 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

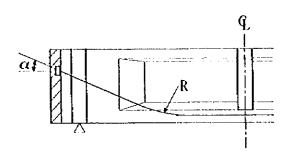
La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

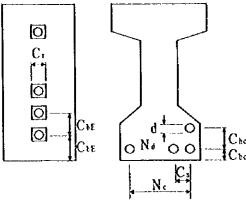
Separación entre vigas : S = 3.000 m, 1@ 3.000 = 3.000 m Número de Vigas : $n_v = 2$,

Longitud de Viga: $L_0 = 34.800 \text{ m}$, $L_{CE} = 0.400 \text{ m}$, $L_0 = 100 \text{ mm}$ $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$, $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga : H = 2.200 m

 $t_b = 150 \, \text{mm}$ $b_{w} = 200 \text{ mm}$ $b_1 = 1000 \text{ mm}$, $t_1 = 150 \text{ mm}$,


 $h_b = 250 \text{ mm}$, $t_b = 250 \text{ mm}$, $b_8 = 500 \text{ mm}$ Conficiente de rozamiento parásito : K = 0.0045


Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2

Separación entre Travesaño: 11.333 m

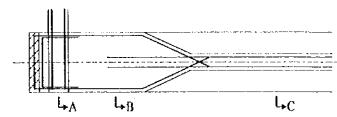
Ancho Mesa Mínimo: W_m= 3.500 m

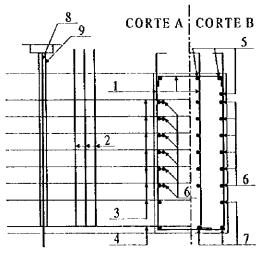
No.	α(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	7.0	10.00
7	0.0	0.00

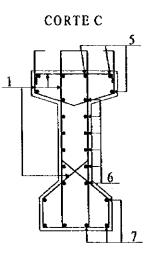
Número de ductos a descontar:

	ì
Che Che	
l Cbc	

d = 80 mm $C_s = 140 \text{ mm}$


 $N_c = 3$, $C_s = 140 \text{ mm}$ $C_{bC} = 120 \text{ mm}$, $C_{bC} = 90 \text{ mm}$


 $C_{r} = 180 \text{ mm}$


 $N_d = 6$,

 $C_{hE} = 310 \text{ mm}, \quad C_{bE} = 325 \text{ mm}$

 $c_{DC} = 15.0 \text{ cm}$, $c_{DE} = 110.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 10, 4: \phi 22$

5:φ12,

6: \phi 12 n 9, 7: \phi 12

8:φ28n5,

9: \$3"

Cuantificación del Postensado

(5) Diseño de Losa

E _M (cm) E _L (cm)	d _{es} (cm)	d (cm)		A_{seq} (cm ²) As (cm ²)		
$20.0 \le 20.0$	OK 15.1	≤ 17.0	ок	13.218 ≤ \$\phi16@150=13.407	ок	
φM _a (tm/m)	Mu (tm/m)		Distribución: As (cm²)			
7.944 ≥	6.823	ок	67 ($(\%) 8.856 \le \phi 12@125 = 9.048$	ОК	

(6) Diseño de Viga

 $(x = ^{L}/_{2} = 17.000 \text{ m})$

Exterior

Interior

	Transferencial		Servicio		Transferencial		Servicio		
Fatiga (kg/cm²)	Total f _a (kg/cm ²)		Total f _s (kg/cm ²)		Total f _a (kg/cm ²)		Total f _s (kg/cm ²)		
Viga Superior: f _{vs}	7 ≤ 168	ок	93 ≤ 14	0 OK	32 ≤ 168	ОК	128 ≤	140	OK
Viga Inferior : fvi	148 ≤ 168	OK	-12 ≥ -1	5 OK	138 ≤ 168	ок	-4 ≥	-15	ОК

(x = 13.872 m) Exterior

	Transferencial		Servicio		
Fatiga (kg/cm²)	Total f _a (kg/c	m²)	Total f _a (kg/cm ²)		
Viga Superior: f _{vs}	4 ≤ 168	OK	88 ≤ 140	ок	
Viga Inferior : f _{vi}	153 ≤ 168	OK	-3 ≥ -15	ок	

A_p (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)	$\phi M_0(tm) 1.2 M_{cl}(tm)$
$6 \times 6.910 = 41.460$	$6 - \phi 12 = 6.786$	1663.085 ≥1309.437 OK	1663.085 ≥1151.015 OK

(7) Verificacion de Corte

h/2 = 1.100 m		$A_{\nu} = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_o = 110.0 \text{ cm}$	
$V_{ij} = 144.206 t$ $\leq \phi(V_c + V_s) = 0.9 \times (139.459 + 156.757) = 266.594 t$					
Cálculo de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_{u} = 144.206 \le \phi$	$V_{\rm ph} = 526.114$	OK

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	$\delta_{\rm L}$ (cm) $\delta_{\rm L}$ (cm)		Lc/800		
5.3	1.2	≤	4.3	ОК	

(9) Cáluculo de Travesaño

A _{srea} (cm ²)		As (cm²)	
3.047	≤	9.864	ок

	A_p (cm ²)					
30.723 ≤	1×5×φ28=30.790	ОК	76.276			

Tipo de Estructura: Viga de Postensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 1-PST-L36 n2

De la Ruta, Camino:

Rol Ruta:

En el Cauce:

Región:

Provincia:

Luz(Longitud de cálculo): L. = 36.000 m Longitud del Puente : L =

Número de Pistas : 1

Ancho

: 1.000 + 4.000 + 1.000 = 6.000 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 80 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

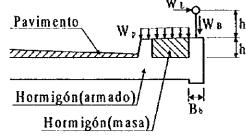
Baranda: $W_R = 0.050 \text{ t/m}$, $W_t = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o postensado)

 $: 7.85 \text{ t/m}^3$ Acero

Peatones : $W_0 = 0.415 \text{ t/m}^2(\text{Losa})$


0.285 t/m2(Viga)

Cargas de Tránsito

: HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_b = 0.15$, $K_c = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

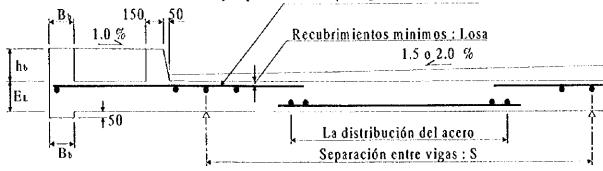
 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{\rm pi} = 2.69 \times 10^5 \, \rm kg/cm^2$

Acero para Armadura de Losa y Viga: A63-42H f_s = 4200 kg/cm², f_{ss}= 1690 kg/cm²

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

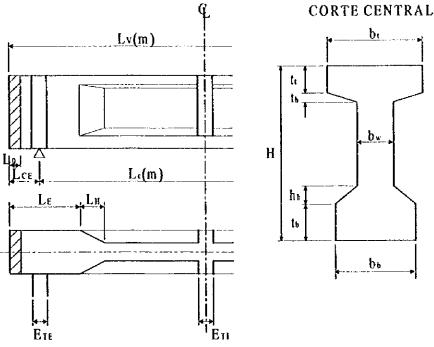

Acero (cable): Grado 270 K, ASTM416-80 Cable: $7-12.7 \text{ As}^* = 6.910 \text{ cm}^2$

Tensión de ruptura : $f_{pq} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 16 @ 150 As = 13.407 cm²



Espesor de losa : $E_1 = 200 \text{ mm}$,

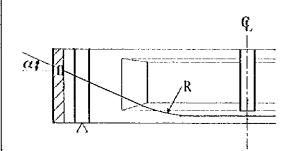
Recubrimientos mínimos: Losa 3.0 cm

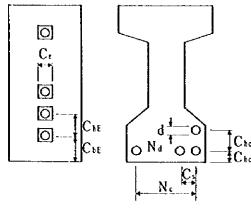
La distribución del acero en el fondo de losa : ϕ 12 @ 125 As = 9.048 cm²

Número de Vigas : $n_v = 2$, Separación entre vigas : S = 3.000 m, 1@ 3.000 = 3.000 m

Longitud de Viga: $L_v = 36.800 \text{ m}$, $L_{ce} = 0.400 \text{ m}$, $L_0 = 100 \text{ mm}$ $L_E = 1600 \text{ mm}$, $L_H = 600 \text{ mm}$, $E_{TF} = 300 \text{ mm}$, $E_{\rm H} = 250 \, \text{mm}$

Altura de Viga : H = 2.400 m

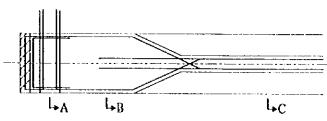

 $b_{w} = 200 \text{ mm}$ $b_i = 1000 \text{ mm}$, $t_i = 150 \text{ mm}$, $t_{\rm k} = 150 \, \rm mm$

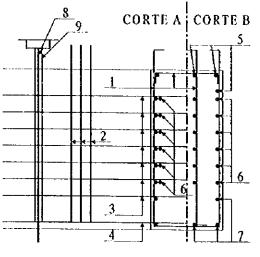

 $h_b = 300 \text{ mm}$, $t_b = 250 \text{ mm}$, $b_{b} = 500 \text{ mm}$

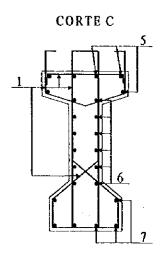
Conficiente de rozamiento parásito : K = 0.0045

Conficiente de rozamiento en curva : $\mu = 0.25$

Número de Travesaños(Intermedio): 2 Separación entre Travesaño: 12.000 m Ancho Mesa Mínimo: W_m= 3.500 m






No.	α(deg)	R(m)
1	7.0	10.00
2	7.0	10.00
3	7.0	10.00
4	7.0	10.00
5	7.0	10.00
6	7.0	10.00
7	7.0	10.00

Número de ductos a descontar:

$N_d = 7$,	d = 80 mm
$N_c = 3$,	$C_s = 140 \text{ mm}$
$C_{hC} = 120 \text{ mm},$	$C_{bc} = 90 \text{ mm}$
$C_{c} = 180 \text{ mm}$	
$C_{hE} = 300 \text{ mm}$,	$C_{6E} = 300 \text{ mm}$
$c_{DC} = 17.6 \text{ cm},$	$c_{DE} = 120.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

 $1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 12 n 11, 4: \phi 22$

5:φ12,

6: \phi 12 n 10, 7: \phi 12

8:φ32n5,

9: \$3"

Cuantificación del Postensado

(5) Diseño de Losa

$E_{\rm M}$ (cm) $E_{\rm L}$ (cm	E_{M} (cm) E_{L} (cm) d_{eq} (cm) d (cm)			cm) E_L (cm) d_{eq} (cm) d (cm) A_{seq} (cm ²)					A_{sreg} (cm ²) As (cm ²)	
20.0 ≤ 20.0	OK	15.1	≤	17.0	oĸ	13.218 ≤ \$\phi16@150=13.407	ок			
φM _a (tm/m)	φM _s (tm/m) Mu (tm/m)					Distribución: As (cm²)				
7.944 ≥	6	.823		OK	67 ($(\%) 8.856 \le \phi 12@125 = 9.048$	ок			

(6) Diseño de Viga

 $(x = \frac{1}{2} = 18.000 \text{ m})$

Exterior

Interior

	Transferen	cial	Servicio)	Transferen	 cial	Servicio)
Fatiga (kg/cm²)	Total f _a (kg/c	m²)	Total f _a (kg/c	m²)	Total f _a (kg/c	m²)	Total f _s (kg/c	m²)
Viga Superior: f _{vs}	6 ≤ 168	ОК	92 ≤ 140	ок	32 ≤ 168	ок	128 ≤ 140	ок
Viga Inferior : f _{vi}	160 ≤ 168	oĸ	4 ≤ 140	ок	138 ≤ 168	ок	-4 ≥ -15	OK

(x = 14.727 m) Exterior

	Transference	cial	Servicio		
Fatiga (kg/cm²)	Total fa(kg/c	m²)	Total f ₃ (kg/cm ²)		
Viga Superior: f _{vs}	3 ≤ 168	ОК	87 ≤ 140	ОК	
Viga Inferior : f _{vi}	166 ≤ 168	OK	13 ≤ 140	ок	

A_p (cm ²)	A _s (cm ²)	φM _a (tm) Mu (tm)		$\phi M_{\rm o}(tm) 1.2 M_{\rm cr}(tm)$	
$7 \times 6.910 = 48.370$	$6 - \phi 12 = 6.786$	2071.143 ≥1468.457	OK	2071.143 ≥1412.658	ок

(7) Verificacion de Corte

h/2 =	1.200 m		$A_v = 6 - \phi 12 = 6.786 \text{ cm}^2$	s = 20.0 cm	$d_0 = 120.0 \text{ cm}$	
$V_u =$	153.294 t	S	$\phi(V_c + V_s) = 0.9 \times (158.824 + 15$	+171.007) = 296.84	18 t	ок
Cálcul	o de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_v = 153.294 \le \phi$	$V_{\rm ph} = 573.942$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ _ι (cm)			
5.4	1.1	≤	4.5	ОК

(9) Cáluculo de Travesaño

A _{sree} (cm ²)		As (cm²)	
2.885	≤	9.864	ок

A _p (cm²)					$R_{v}(t)$
33.401	≤	1×5×φ32=40.215		OK	82.924

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 2-PRE-L14 n6

Rol Ruta:

De la Ruta, Camino: En el Cauce :

Región:

Provincia:

Longitud del Puente : L =

Luz(Longitud de cálculo) : $L_c = 14.000 \text{ m}$

Número de Pistas

Ancho

1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.5

Espesor mínimo del Pavimento: 50 mm, Espesor máximo del Pavimento: 103 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

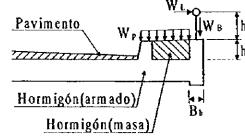
(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

 $: 7.85 \text{ t/m}^3$ Acero


Peatones : $W_p = 0.415 \text{ t/m}^2(\text{Losa})$

0.293 t/m²(Viga)

Cargas de Tránsito : HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos : $K_b = 0.15$, $K_c = 0.00$

(3) Material

Hormigón:

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$ Losa y Travesaño grado: H-30 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} \text{psi} = 15800\sqrt{f_{RC}} \text{kg/cm}^2 = 2.50 \times 10^5 \text{kg/cm}^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado : H-40

 $f_{cv} = 350 \text{ kg/cm}^2$,

 $E_{PC} = 3.01 \times 10^5 \text{ kg/cm}^2$

 $f_{ci}' = 280 \text{ kg/cm}^2$

 $E_{\rm pi} = 2.69 \times 10^5 \, \text{kg/cm}^2$

Acero para Armadura de Losa y Viga: A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = $29,000,000 \text{ psi} = 2.1 \times 10^6 \text{ kg/cm}^2$

Acero Travesaño y barras antisísmicas: A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

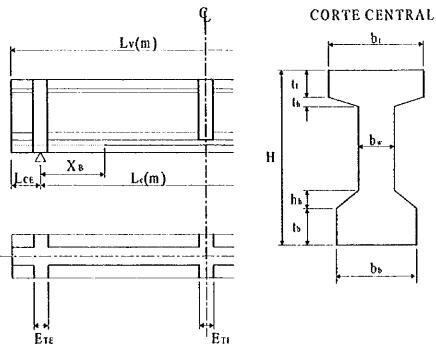
Acero (cable): Grado 270 K, ASTM416-80 Cable: $1-12.7 \text{ As}^* = 0.987 \text{ cm}^2$

Tensión de ruptura : $f_{pq} = 18980 \text{ kg/cm}^2$, Es = 1.97 × 10⁶ kg/cm²

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_1 = 170 \text{ mm}$,

Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

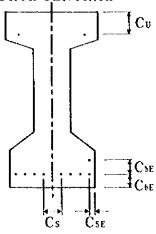
Número de Vigas : $n_v = 6$, Separación entre vigas : S = 1.500 m, 5@ 1.500 = 7.500 m

Longitud de Viga: $L_x = 14.600 \text{ m}$, $L_{CE} = 0.300 \text{ m}$, $x_B = 2.100 \text{ m}$ $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$

Altura de Viga : H = 0.700 m

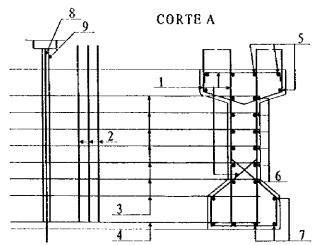
 $b_i = 400 \text{ mm}$, $t_i = 150 \text{ mm}$,

 $t_{b} = 110 \, \text{mm}$ $b_{w} = 180 \text{ mm}$


 $b_{k} = 550 \text{ mm}$ $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$,

Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 7.000 m Ancho Mesa Mínimo: W_m= 8.050 m

0.000 m	$x_B =$	2,100 m


				()		
No.	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N
1	64.5	2	0	2	0	2
2	33.0	0	0	0	0	0
3	27.5	0	0	0	0	(
4	22.0	0	0	0	0	(
5	16.5	0	0	0	0	(
6	11.0	2	6	4	4	8
7	5,5	4	3	4	3	7
Г	otal	8	9	10	7	17

CORTE CENTRAL

$$C_U = 55 \text{ mm}$$
, $C_S = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 15.0 \text{ cm}$
 $C_{bE} = 55 \text{ mm}$, $C_{DE} = 21.6 \text{ cm}$, $C_{DX} = 19.5 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

1: \phi 12 @ 200, 2: \phi 12 @ 200, 3: \phi 18 n 3,

5:φ12,

6: φ 12 n 2, 7: φ 12

8:φ22 n 2,

9: \$3 "

Cuantificación del Pretensado

(5) Diseño de Losa

E_{M} (cm) E_{L} (cm) d_{eq} (cm) d (cm)					A _{sreq} (cm ²)	As (cm²)			
16.5 ≤ 1	7.0	OK	11.1	≾	14.0	ок	8.692 ≤ ¢12	2@125=9.048	ОК
φM _o (tm/m) Mu (tm/m)						Distribució	on: As (cm²)		
4,482	≥		3.566		ОК	67	$(\%) 5.824 \le \phi$	12@175=6.463	ок

(6) Diseño de Viga

 $(x = ^{L}/_{2} = 7.000 \text{ m})$ Exterior Interior

	Transferencial	Fransferencial Servicio		Servicio		
Fatiga (kg/cm²)	Total f _a (kg/cm ²)	Total f ₃ (kg/cm ²)	Total f ₂ (kg/cm ²)	Total f ₃ (kg/cm ²)		
Viga Superior: f _{vs}	23 ≤ 168 OK	104 ≤ 140 OK	23 ≤ 168 OK	103 ≤ 140 OK		
Viga Inferior : f _{vi}	131 ≤ 168 OK	-11 ≥ -15 OK	131 ≤ 168 OK	-9 ≥ -15 OK		

(x = 2.100 m)	Exterior			Bond Control: Ne = 10						
	Transference	cial	Serv	icio	Tran	sferen	cial	Se	rvicio	
Fatiga (kg/cm²)	Total f _s (kg/c	Total f _s (kg/cm ²)		Total f ₂ (kg/cm ²)		Total f ₃ (kg/cm ²)		Total f _a (kg/cm ²)		
Viga Superior: fys	0 ≥ -13	ОК	43 ≤ 1	40 OK	27	≤ 168	ок	67 ≤	140	oĸ
Viga Inferior: fvi	151 ≤ 168	ок	66 ≤ 1	40 OK	64	≤ 168	ОК	56 ≤	140	oĸ

	A_{p} (cm ²)	A_s (cm ²)	φM _a (tm) Mu (tm)		φM _o (tm) 1	.2M _{st} (tm)	
1	7×1-12.7 = 16.779	$4-\phi 12 = 4.524$	212.472 ≥ 158.878	OK	212.472	≥ 130.516	OK

(7) Verificacion de Corte

h/2 =	0.350 m		$A_y = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_{\rm p} = 48.4 \; \rm cm$	
V ₁₁ =	45.810 t	≤	$\phi(V_c + V_s) = 0.9 \times (21.306 + 4.00)$	45.958) = 60.538 t	·	ок
Cálculo	de Conectores		$A_{\nu} = 4.612 = 4.524 \text{ cm}^2$	V ₀ = 45.810 ≤ 6V	$r_{\rm s} = 210.995$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	$\delta_{\rm L}$ (cm)		Lc/800	•
2.0	0.8	≤	1.8	OK

(9) Cáluculo de Travesaño

A _{stea} (cm ²)		As (cm ²)	
14.364	≤	14.908	ок

	A _p (cm²)			
16.044 ≤	5×2×φ22=38.010	ок	13.278	

Tipo de Estructura: Viga de Pretensado

Fecha:

(1) Datos Generales

Número de Puente:

Nombre del Puente: 2-PRE-L16 n6

De la Ruta, Camino:

Rol Ruta:

En el Cauce :

Región:

Provincia:

Longitud del Puente : L=

Luz(Longitud de cálculo) : $L_c = 16.000 \text{ m}$ m,

Número de Pistas : 2

Ancho

: 1.200 + 7.000 + 1.200 = 9.400 m

(Pasillos) (Calzada) (Pasillos)

Pendiente: 1.0

1.0 % 1.5

Espesor mínimo del Pavimento: 50 mm,

Espesor máximo del Pavimento: 103 mm

Ancho de Baranda: $B_b = 200 \text{ mm}$, $h_b = 0.250 \text{ m}$

(2) Cargas

Baranda: $W_B = 0.050 \text{ t/m}$, $W_L = 0.020 \text{ t/m}$, h = 1.100 m

Cargas de Pavimento : 2.30 t/m³

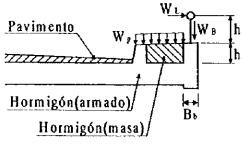
Hormigón : 2.30 t/m³ (en masa), 2.50 t/m³ (armado y/o pretensado)

Acero

 $: 7.85 \text{ t/m}^3$

Peatones

: $W_0 = 0.415 \text{ t/m}^2(\text{Losa})$


0.293 t/m2(Viga)

Cargas de Tránsito

: HS20-44

Cargas de Viento $: W_v = 0.244 \text{ t/m}^2$

Coeficientes sísmicos: $K_h = 0.15$, $K_v = 0.00$

(3) Material

Hormigón:

Losa y Travesaño grado: H-30

 $f_{cL} = 250 \text{ kg/cm}^2$, $f_{RC} = 100 \text{ kg/cm}^2$

 $E_{RC} = W_c^{1.5} \times 33\sqrt{f_{RC}} = 57000\sqrt{f_{RC}} psi = 15800\sqrt{f_{RC}} kg/cm^2 = 2.50 \times 10^5 kg/cm^2$

 $w_c = 145 \text{ pcf} = 2.32 \text{ kg/m}^3$

(AASHTO 8.7.1)

Viga grado

: H-40

 $f_{cV} = 350 \text{ kg/cm}^2$,

 $E_{rc} = 3.01 \times 10^5 \text{ kg/cm}^2$

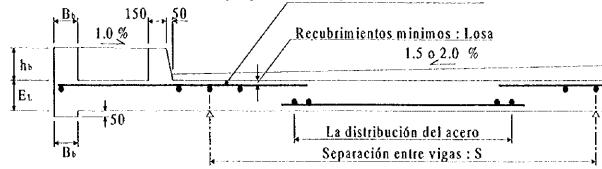
 $f_{ci}' = 280 \text{ kg/cm}^2$,

 $E_{pi} = 2.69 \times 10^5 \text{ kg/cm}^2$

Acero para Armadura de Losa y Viga : A63-42H $f_v = 4200 \text{ kg/cm}^2$, $f_{sa} = 1690 \text{ kg/cm}^2$

Es = 29,000,000 psi = 2.1×10^6 kg/cm²

Acero Travesaño y barras antisísmicas : A44-28H $f_v = 2800 \text{ kg/cm}^2$, $f_{sa} = 1400 \text{ kg/cm}^2$

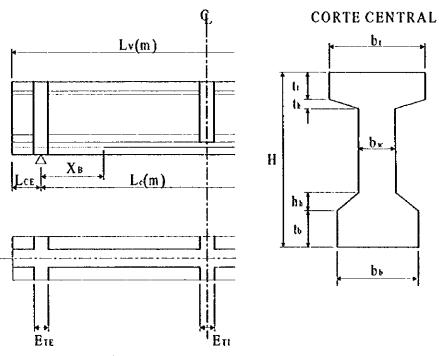

Acero (cable): Grado 270 K, ASTM416-80 Cable: 1-12.7 As* = 0.987 cm^2

Tensión de ruptura : $f_{pu} = 18980 \text{ kg/cm}^2$, Es = $1.97 \times 10^6 \text{ kg/cm}^2$

Tensión de fluencia : $f_{Pv} = 16100 \text{ kg/cm}^2$

(4) Geometría:

Determinación de número de barras y espaciamiento : ϕ 12 @ 125 As = 9.048 cm²



Espesor de losa : $E_1 = 170 \text{ mm}$,

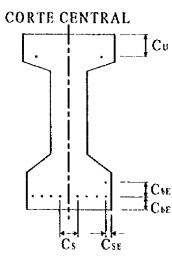
Recubrimientos mínimos: Losa 3.0 cm

La distribución del acero en el fondo de losa : ϕ 12 @ 175 As = 6.463 cm²

Número de Vigas : $n_v = 6$, Separación entre vigas : S = 1.500 m, 5@ 1.500 = 7.500 m

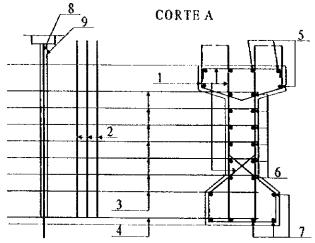
Longitud de Viga: $L_v = 16.600 \text{ m}$, $L_{CE} = 0.300 \text{ m}$, $x_B = 3.100 \text{ m}$

 $E_{TE} = 300 \text{ mm}$, $E_{TI} = 250 \text{ mm}$


Altura de Viga: H = 0.800 m

 $b_r = 400 \text{ mm}$, $t_r = 150 \text{ mm}$, $t_{b} = 110 \text{ mm}$, $b_{w} = 180 \text{ mm}$

 $h_b = 185 \text{ mm}$, $t_b = 150 \text{ mm}$, $b_b = 550 \text{ mm}$


Número de Travesaños(Intermedio): 1 Separación entre Travesaño: 8.000 m Ancho Mesa Mínimo: W_m= 8.050 m

Pludbur			0.000) m	$x_B = 3$	3.100 r	n
No	ο.	y _{ci} cm	N _B	N _{BC}	N _B	N _{BC}	N
1		74.5	2	0	2	0	2
_2	,	33.0	0	0	0	0	0
_3	}	27.5	0	0	0	0	0
4		22.0	0	0	0	0	0
_ 5	}	16.5	0	2	2	0	2
6	,)	11,0	2	6	2	6	8
7	7	5.5	4	3	5	2	7
	1	otal	8	11	11	8	19

 $C_U = 55 \text{ mm}$, $C_S = 70 \text{ mm}$, $C_{SE} = 80 \text{ mm}$, $C_{DC} = 16.2 \text{ cm}$ $C_{bE} = 55 \text{ mm}$, $C_{DE} = 55 \text{ mm}$, $C_{DE} = 24.1 \text{ cm}$, $C_{DX} = 21.0 \text{ cm}$

Recubrimientos mínimos: Viga 2.5 cm

1: \$\phi\$ 12 @ 200, 2: \$\phi\$ 12 @ 200, 3: \$\phi\$ 16 n 3, 4: \$\phi\$ 25

 $5: \phi 12$, $6: \phi 12 n 2$, $7: \phi 12$

8:\psi 22 n 2, 9:\psi 3"

Cuantificación del Pretensado

(5) Diseño de Losa

E_{M} (cm) E_{L} (cm) d_{req} (cm) d (cm) A_{seq} (cm ²) As (cm ²)				
$16.5 \leq 17.0 \text{ OK}$	11.1 ≤ 14.0	OK 8.692 ≤ ¢1	2@125=9.048	oĸ
ϕM_{D} (tm/m) Mu ((tm/m)	Distribuci	ón: As (cm²)	
4.482 ≥ 3	3.566 OK	67 (%) 5.824 ≤ ¢	12@175=6.463	oĸ

(6) Diseño de Viga

(x = 1/2 = 8.000 m)	ı) Ext	erior	Interior			
	Transferencial	Servicio	Transferencial	Servicio		
Fatiga (kg/cm²)	Total f _a (kg/cm ²)					
Viga Superior: f _{vs}	27 ≤ 168 OK	112 ≤ 140 OK	27 ≤ 168 OK	111 ≤ 140 OK		
Viga Inferior : f _{VI}	135 ≤ 168 OK	-11 ≥ -15 OK	135 ≤ 168 OK	-9 ≥ -15 OK		
(y = 3.100 m) F	ivterior	Rond Control	No = 11			

(x = 5.100 11)	EXCHOL	Bond Control: INC = 11			
	Transferencial	Servicio	Transferencial	Servicio	
Fatiga (kg/cm²)	Total f (kg/cm²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	Total f _a (kg/cm ²)	
Viga Superior: f _{vs}	7 ≤ 168 OK	$62 \le 140$ OK	34 ≤ 168 OK	86 ≤ 140 OK	
Viga Inferior: fur	151 ≤ 168 OK	$49 \le 140 \text{ OK}$	59 < 168 OK	52 < 140 OK	

A_p (cm ²)	A _s (cm²)	φM _a (tm) Mu (tm)	$\phi M_a(tm) 1.2 M_{cr}(tm)$
$19 \times 1 - 12.7 = 18.753$	$4-\phi 12 = 4.524$	264.553 ≥ 199.950 O	\mathbf{K} 264.553 ≥ 164.324 $\mathbf{O}\mathbf{K}$

(7) Verificacion de Corte

h/2 =	0.400 m		$A_y = 4 - \phi 12 = 4.524 \text{ cm}^2$	s = 20.0 cm	$d_0 = 55.9 \text{ cm}$	
V, =	49.526 t	S	$\phi(V_c + V_s) = 0.9 \times (24.416 + 3.00)$	53.083) = 69.750 t		ок
Cálculo	de Conectores		$A_v = 4 - \phi 12 = 4.524 \text{ cm}^2$	$V_u = 49.526 \le \phi^{v}$	$V_{ab} = 243.707$	ок

(8) Deflexión de Transferencia

$\delta_{\rm D}$ (cm)	δ _L (cm)		Lc/800	
2.4	0.9	≤	2.0	ОК

(9) Cáluculo de Travesaño

A _{sreq} (cm ²)		As (cm²)	
13.075	≤	13.840	ОК

A_{p} (cm ²)			$R_{y}(t)$
18.709 ≤	5×2×φ22=38.010	ок	15.483