# 3.4 REHABILITATION DESIGN

# 3.4.1 Reconstruction Design

# (1) Scope of Design Work

The purpose of the reconstruction design in the Study is to show examples of basic designs for the eight reconstruction bridges. The bridges were planned based on the topographic maps and the ground conditions surveyed, to select bridge type, size and location, considering function and capacity of bridge, geological and geographical condition, and environmental impacts.

After the bridge plan, the CADD (Computer Aided Design and Drafting) programs developed in the Study was used for design and preparation of drawings. However, for case of San Jose Bridge, the MOP is required to carry out supplemental design besides the design by the CADD to complete it.

# (2) Bridge Plan

The reconstruction plans for alignment and location, bridge type, width, high-water-level and freeboard, as well as topographic and soil-boring survey area, had been discussed between the MOP and the Study Team during and after the general inspection. Based on the agreed plan for each bridge site, topographic survey by scale 1/200 and soil-boring survey were carried out (See Chapter 3.3.1).

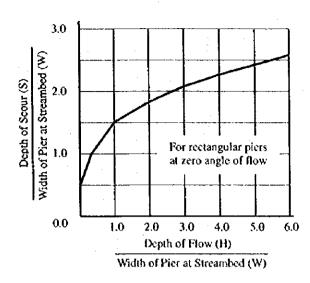
Bridge plan was performed taking account of the following technical points:

# 1) Span arrangement

- Span length was in principle selected from the economical span range of 20 to 30 m, bearing in mind the balance of superstructure and substructure costs. If the substructure cost is expected high for piles, a little longer span is considered for economy.
- For multi-span bridges, a standard beam of same size and span was applied as far as site condition allowed, for easier and economical design and construction.
- To secure smooth water flow, span arrangement was checked from the total pier widths in waterway not over 5 % of river width.
- 2) River crossing direction
  - Bridge was planned as far as possible to cross river at right angle toward river flow.
- 3) Location of pier and abutment
  - Many bridges inspected in Chile have insufficient openings for waterway, so that abutment was planned to be set back from the existing location.
  - Direction of pier and abutment was planned parallel to flow direction.
  - In case that new bridge was constructed parallel and adjacent to the existing bridge, the location of new piers was so determined as to come on the direction of flow from the

existing piers in order not to disturb flow.

- 4) Type of super- and substructure
  - In selection of superstructure type, the following factors were considered.
    - Span length
    - Availability of beam fabrication yard at site
    - Ground condition
    - Transportation of pre-fabricated beams to site
  - For the span over 30 m and terrain of site was mountainous, steel beam was selected considering easiness of erection work although it was costly compared to PC (prestressed concrete) beam.
  - Pile bent pier was not adopted although it was a economical construction, from the following reasons:
    - Pile bent tends to create turbulence in flow around pites and causes severe local scour, and
    - To catch floating woods debris and that causes narrowing flow area.
- 5) Freeboard on high-water-level
  - The minimum freeboard of 1.0 m between high-water-level and the lowest point of superstructure was adopted for safe pass of floating debris.
- 6) Embedding of footing
  - The minimum depth of 2.0 m was taken from river bed down to top of footing, and footing was embedded minimum 1.0 m into hard gravel strata or placed directly onto trimmed level of solid rock or deepened more than the anticipated scouring depth.


## (3) Embedding Depth of Footing against Scour

To examine the embedding depth of footing below riverbed, an estimation of scouring depth was tried.

There are three forms of scour in evaluating the safety of bridges, namely general scour, contraction scour and local scour. General scour is the general degradation of riverbed along some considerable length of the river. Contraction scour results from contraction of channel width near the abutment embankment. Local scour is the erosion of material adjacent to abutments and around piers.

The scour to be checked here is only a local scour around a pier. The other general and contraction scours were not considered, because they involve the river hydraulics but which is unfortunately not surveyed in the Study.

The curve presented in Figure 3.5 (from Iowa Highway Research Board Bulletin No. 4 by Laursen and Toch) shows the predicted local depth of scour for a rectangular pier. For pier shapes other than rectangular, Table 3.12 gives multiplying factors for relating scour.



| (Use onl     | y for piers aligned | l with flow)    |
|--------------|---------------------|-----------------|
| Nose         | form                | Coefficients: K |
| Rectangular  |                     | 1.00            |
| Semicircular | ß                   | 0.90            |
| Eliptic      | $\bigcirc$          | 0.80            |

Table 3.12 Shape Coefficients K for Nose Forms

Figure 3.5 Curve for Depth of Scour

Scour for the reconstruction bridges was estimated with the following assumption:

- Width of pier at stream bed : W = 1.20 m
- Depth of water flow : H = 3.00 m assumed
- $\frac{H}{W} = \frac{3.00}{1.20} = 2.5$

For the pier width to flow depth ratio of  $\frac{H}{W} = 2.5$ , the ratio of scour depth (S) to pier width (W) is taken as  $\frac{S}{W} = 1.9$  from the curb of Figure 3.5.

The designed pier nose is semicircular, accordingly the shape coefficient is given as K = 0.90 from **Table 3.12**. In result, scour depth is estimated as:

$$S = \frac{S}{W} \times W \times K = 1.9 \times 1.20 \times 0.90 = 2.0 \text{ m}$$

Therefore, a minimum 2.0 m of embedding depth was adopted for all the reconstruction bridges. The depth of 2.0 m is a minimum depth of pier foundation given by the Japan's River Act.

# (4) Bridge Design

Main features of the bridge designs are summarized in Table 3.13.

| No. | Bridge Name          | Type of<br>Superstructure | Span & Bridge<br>Longth | Bridge Width<br>(Roadway<br>& Sidewalk) | Location of New<br>Bridge |
|-----|----------------------|---------------------------|-------------------------|-----------------------------------------|---------------------------|
| 2   | David Garcia         | Post-tensioned<br>PC beam | 4 @ 26<br>= 104 m       | 10 + 2 @ 1.5<br>= 13.0 m                | Same location             |
| 3   | Granalias            | Post-tensioned<br>PC beam | 2 @ 28<br>= 56 m        | 7 + 2 @ 1.2<br>= 9.4 m                  | Same location             |
| *5  | San Jose             | Post-tensioned<br>PC beam | 3 @ 28<br>= 84 m        | 10 + 2 @ 1.0<br>= 12.0 m                | Down-stream<br>side       |
| 6   | Puangue              | Post-tensioned<br>PC beam | 4 @ 30<br>= 120 m       | 10 + 2 @ 1.2<br>= 12.4 m                | Up-stream side            |
| 7   | San Jose de Marchiue | Post-tensioned<br>PC beam | 6 @ 27<br>= 162 m       | 7 + 2 @ 1.0<br>= 9.0 m                  | Up-stream side            |
| 8   | Antivero No. 2       | Post-tensioned<br>PC beam | 4 @ 29<br>= 116 m       | 9+2@1.2<br>=11.4 m                      | Same location             |
| 13  | Poculon              | Pre-tensioned<br>PC beam  | 2 @ 20<br>= 40 m        | 7 + 2 @ 1.0<br>= 9.0 m                  | Down-stream<br>side       |
| 16  | San Juan             | Steel plate girder        | 1 @ 34<br>= 34 m        | 8 + 2 @ 1.2<br>= 10.4 m                 | Same location             |

 Table 3.13
 Summary of Reconstruction Bridge Designs

For the new bridges, bridge widths were decided by the MOP taking account of the width of approach roads, the traffic condition, and the future widening plans.

In case of No. 5 San Jose Bridge, the approach road is sharply curved, therefore the bridge has to cross the river curved and skewed. The bridge also needs piles and a circular pier column. Such unusual design can not be handled by the CADD, therefore the design prepared in this Study provides only a basic design with the following features:

- Curved and skewed bridge is designed as a straight and right-angle bridge. It is not a precise analysis but considered enough for small bridges within certain limit of curve and skew.
- Footing with piles and circular pier column can not be designed by the CADD.

# (5) Design Conditions

Major design conditions adopted to the design are as follows:

- 1) Design method: CADD Program (Allowable Stress Method)
- 2) Design specifications: AASHTO (1992)
- 3) Dead loads:
  - Plain concrete : 2.30 t/m<sup>3</sup>
  - Reinforced concrete : 2.50 t/m<sup>3</sup>
  - Steel : 7.85 t/m<sup>3</sup>

| • | Pavement | : | 2.30 t/m <sup>3</sup> |
|---|----------|---|-----------------------|
|   | Soil     | ; | 1.80 t/m <sup>3</sup> |

4) Live loads: HS 20-44 loading

5) Sidewalk load: Wp = 0.293  $t/m^2$  (7.6 m < L  $\leq$  30.5 m)

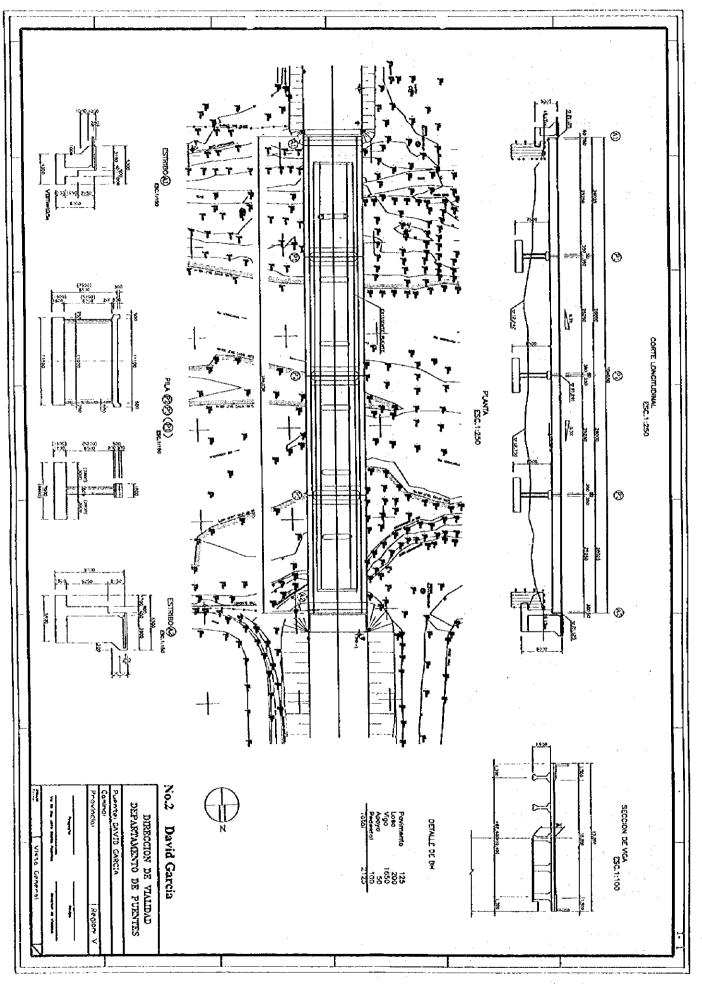
6) Wind load:  $Wv = 0.244 t/m^2$ 

7) Earthquake load: Acceleration coefficient A = 0.15 (Category B by Single Mode Spectral Method)

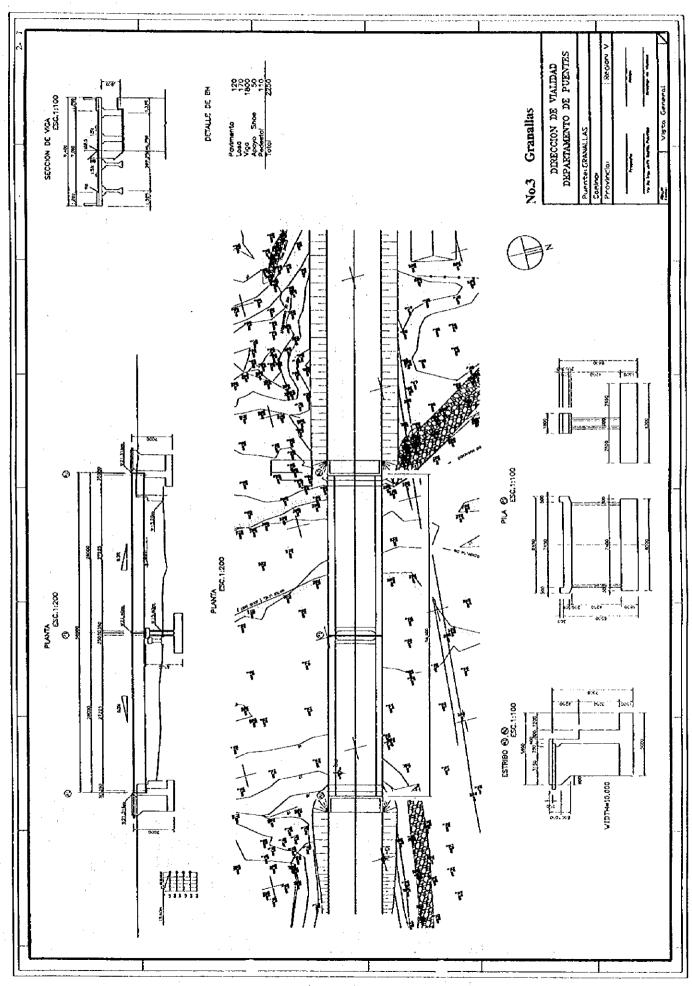
8) **Properties of materials:** 

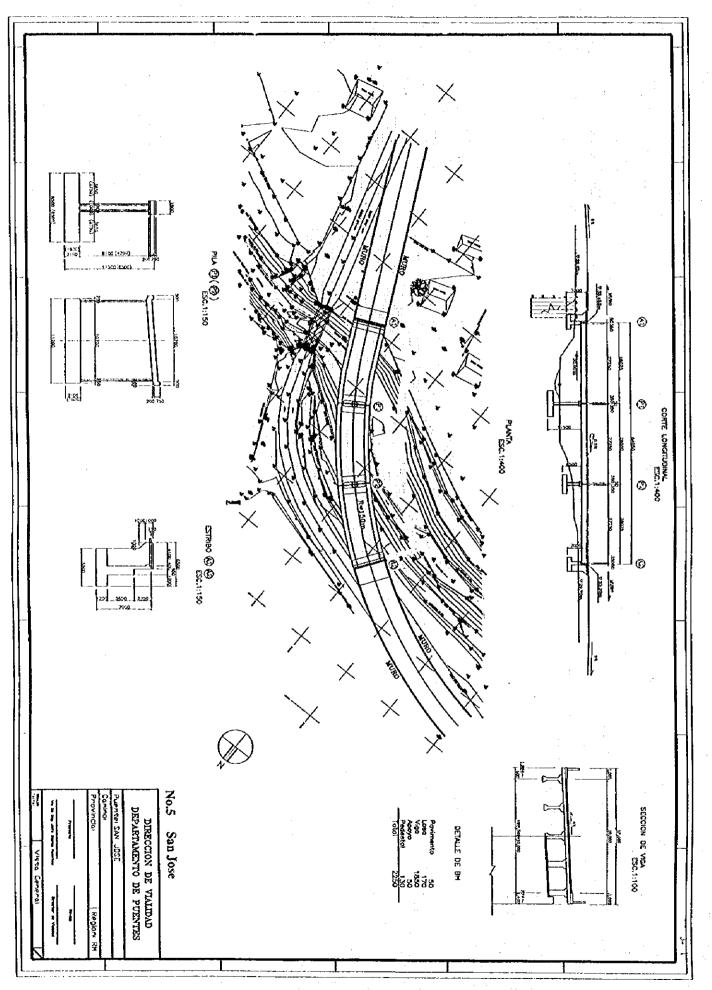
| • | Concrete          | : | H30 and 40,    | fe' = 250 and 350 kg/           | /cm²                          |
|---|-------------------|---|----------------|---------------------------------|-------------------------------|
| • | Reinforcing bar   | : | A63-42H,       | fy = 4,200 kg/cm²,              | $f_s = 6,300 \text{ kg/cm}^2$ |
| • | Anchor bar        | : | A44-28H,       | $f_y = 2,800 \text{ kg/cm}^2$ , | $f_s = 4,400 \text{ kg/cm}^2$ |
| • | Structural steel  | : | A52-34ES,      | $fy = 3,400 \text{ kg/cm}^2$ ,  | fs = 5,200 kg/cm <sup>2</sup> |
|   | High-tension bolt | : | according to A | <b>NSTM A490.</b>               |                               |

<sup>9)</sup> Soil strength parameters of bearing strata:

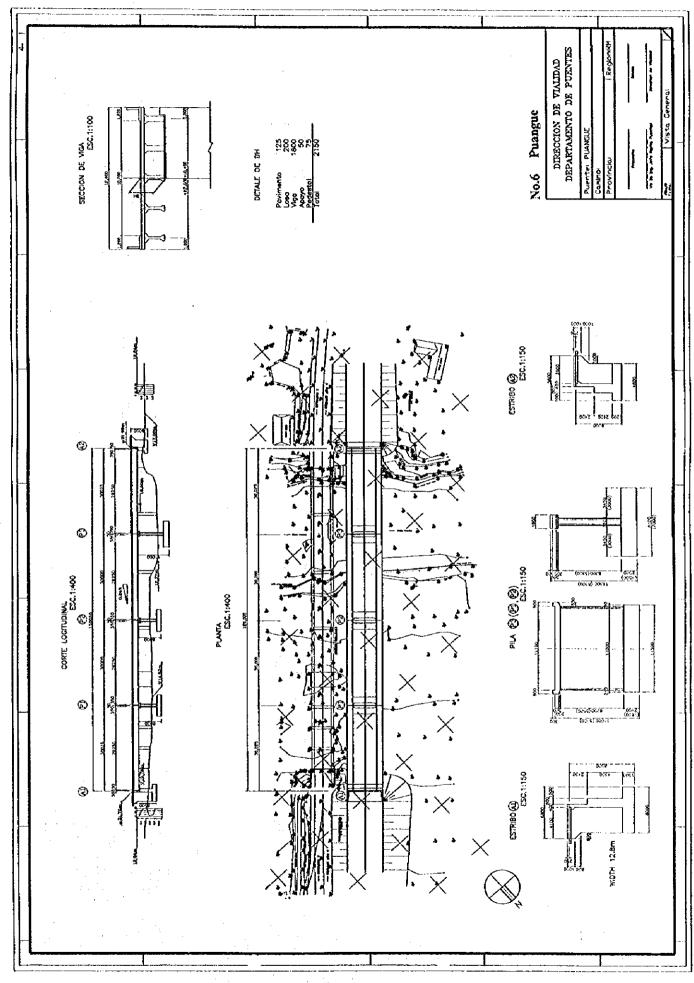

See Table 3.14, assumed based on the results of soilboring survey (See Soil-boring Report).

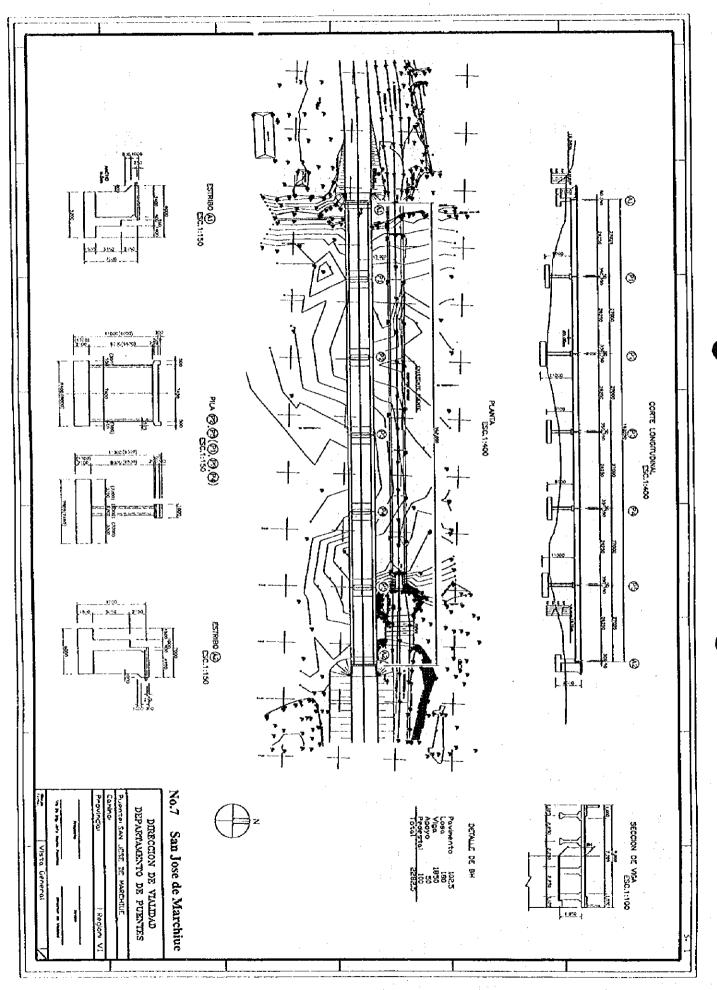
| No. | Bridge Name          | Unit Weight (t/m <sup>3</sup> ) | Internal Friction<br>Angle (degree) | Cohesion (t/m <sup>2</sup> ) |
|-----|----------------------|---------------------------------|-------------------------------------|------------------------------|
| 2   | David Garcia         | 2.0                             | 42                                  | 0                            |
| 3   | Granalias            | 2.0                             | 42                                  | 0                            |
| 5   | San Jose             | 1.5                             | 0                                   | 13.3                         |
| 6   | Puangue              | 1.9                             | 42                                  | 0                            |
| 7   | San Jose de Marchiue | 1.9                             | 42                                  | 0                            |
| 8   | Antivero No. 2       | 2.0                             | 42                                  | 0                            |
| 13  | Poculon              | 1.9                             | 42                                  | 0                            |
| 16  | San Juan             | 1.5                             | 0                                   | 6.4                          |

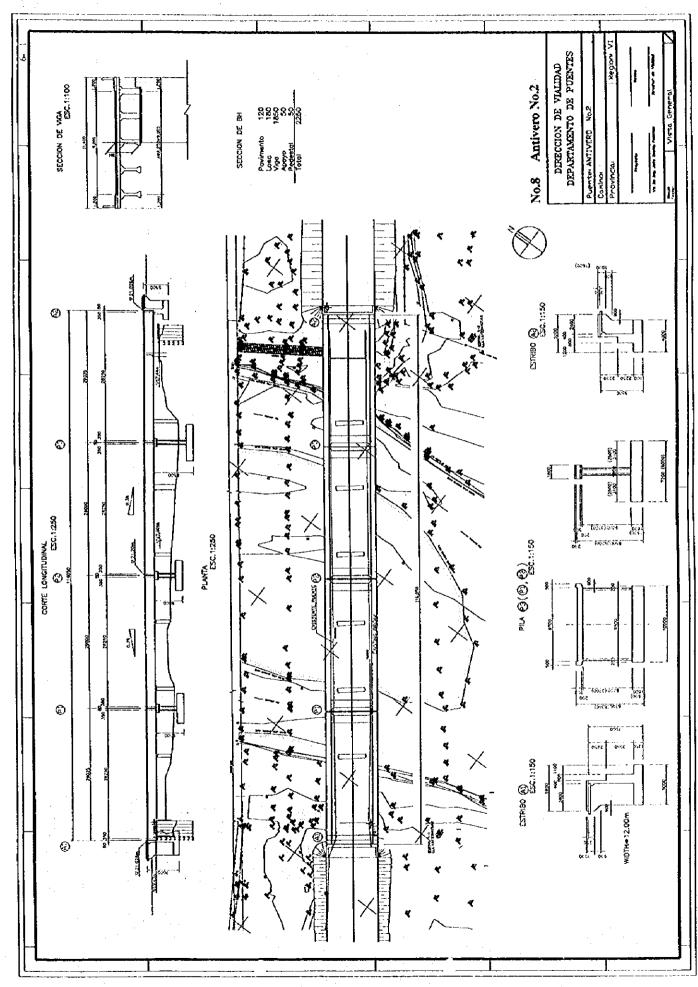

## Table 3.14 Soil Strength Parameters

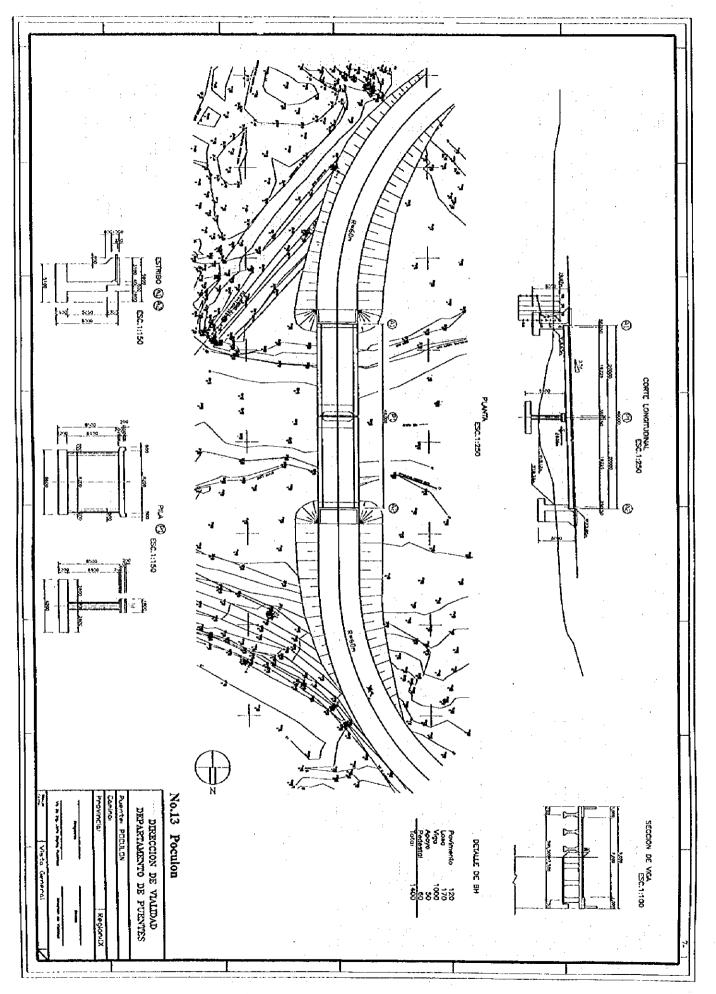

## (6) General View Drawings

Based on the data collected and the plans adopted so far, the eight reconstruction bridges were designed by using the CADD programs developed in the Study. Only the general views of them are attached hereto in the following pages, and details are given in Appendix III (Volume 5/8).

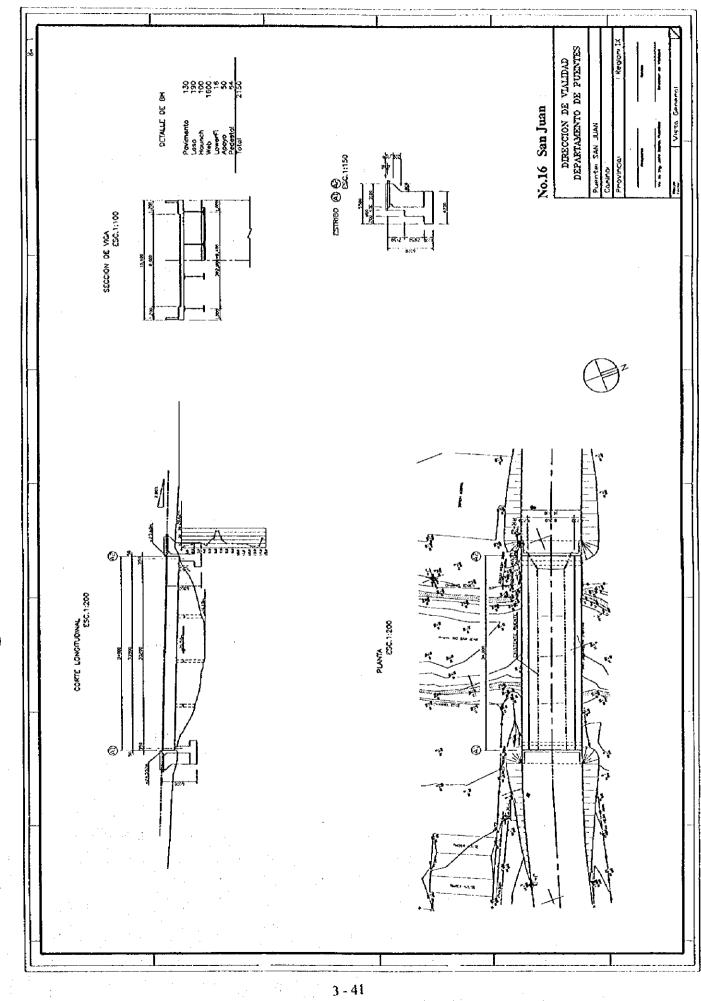




- .74




•










.



### 3.4.2 Repair Design

### (1) Scope of Repair Designs

The purpose of the repair design is to show examples of various repairs for the bridges to be repaired. The repair designs were based on the information of each bridge collected by general inspection and the results of damage inspection. The repair methods were decided in accordance with the repairing scheme studied in **Clause (4) of Chapter 3.2.3**.

As regards the repair of timber structures, the repair method the MOP has taken is replacement of damaged timbers with new ones and that has been practiced by regional MOPs in their maintenance duties. There was no particular techniques in the timber repairs to be interpreted by drawings. Therefore, the repair designs for the following timber-used bridges were omitted:

- No. 9 Los Cardos Bridge

The bridge consisted of timber slabs, steel beams and concrete piers/abutments. Damages were observed mainly on timber slabs but very few on steel beams and piers. Slight damages were found on abutments, and it was judged that repair was necessary only for replacement of timber slabs.

- No. 12 Quillen and No. 15 Miraflores Bridges

All members of the two bridges were made of timbers, and some damaged members were required to be replaced.

However, the damages of the above three bridges are presented in Appendix II-1 (Volume 4/8), from which timbers to be replaced can be known.

Therefore, repair designs were prepared for the eleven bridges listed in **Table 3.15**, including No. 2 David Garcia and No. 3 Granallas Bridges. The two bridges were already taken as reconstruction examples but they were considered suitable also for repair examples.

### (2) Selection of Repair Method

There are several repair methods applicable to a damage and the most suitable method can be selected by comparing alternative methods from technical and economical points of views. However, this approach is complex and difficult unless by experienced engineers. Therefore, the repair methods employed in the Study are limited to those which are common, simple and often practiced in the MOP. The repair methods employed are listed in **Table 3.16**, and the details of the methods are presented in **Division III of Bridge Manuals (Volume 6/8)**. For the convenience to select repair methods, relation charts of damage types and repairs method are recommended for major damages. The concept of the charts is shown in **Figure 3.6**.

| No. | Bridge Name   | Bridge Type | Bridge<br>Length (m) | Proposed Major Repairs                                                                                    |
|-----|---------------|-------------|----------------------|-----------------------------------------------------------------------------------------------------------|
| 1   | Confluencia   | ST          | 113.10               | <ul> <li>Repair of concrete</li> <li>Repainting of steel beams</li> </ul>                                 |
| 2   | David Garcia  | RC          | 93.05                | Repair of concrete                                                                                        |
| 3   | Granallas     | ST          | 49,85                | <ul><li>Repair of concrete</li><li>Repainting of steel beams</li></ul>                                    |
| 4   | Ventanas      | RC          | 30.00                | Repair of concrete     Replacement of expansion joints                                                    |
| 10  | Cautin        | RC          | 140.00               | Repair of concrete                                                                                        |
| 11  | El Indio      | ST          | 21.10                | Repair of concrete                                                                                        |
| 14  | Malleco       | Ϋ́Μ         | 92.00                | • Repair of concrete (abutment only)                                                                      |
| 17  | Medina        | ST          | 170.00               | <ul><li>Repair of concrete (abutment only)</li><li>Repainting of steel beams</li></ul>                    |
| 18  | Cautin (88)   | ST          | 39.40                | <ul> <li>Repair of concrete (abutment only)</li> <li>Repainting of steel beams</li> </ul>                 |
| 19  | Salva Tu Alma | ST          | 40.70                | <ul> <li>Repair of concrete (abutment only)</li> <li>Repainting of steel beams and pier column</li> </ul> |
| 20  | Quinchilea    | RC          | 140.00               | Repair of concrete                                                                                        |

 Table 3.15
 Bridges for Repair Design

Table 3.16 Proposed Repair Methods

| Type of Material | Repair Methods                                                                                                                           |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Concrete         | Injection, Caulking, Grinding, Coating,<br>Resurfacing, Pre-packing, Dry-packing,<br>Shotcrete/Gunite, Patching, Overlay,<br>Replacement |
| Steel            | Repainting                                                                                                                               |

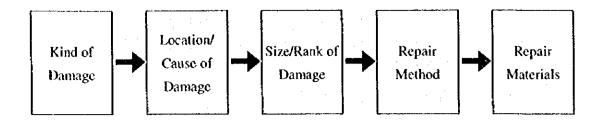



Figure 3.6 Concept of Damage-Repair Method Chart

The damage-repair method charts for major damages are given in Figure 3.7 from the following page.

In case of the repair for cracks of concrete, to assist the selecting process of method, an additional chart is given in Figure 3.8. The chart suggests repair method according to the type and width of cracks.

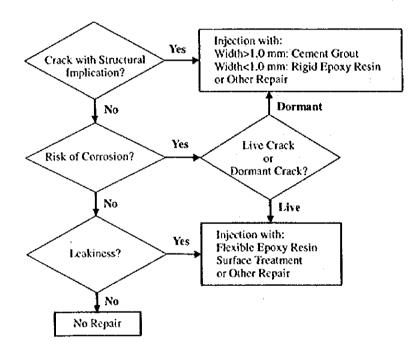



Figure 3.8 Repair Method Chart for Cracks

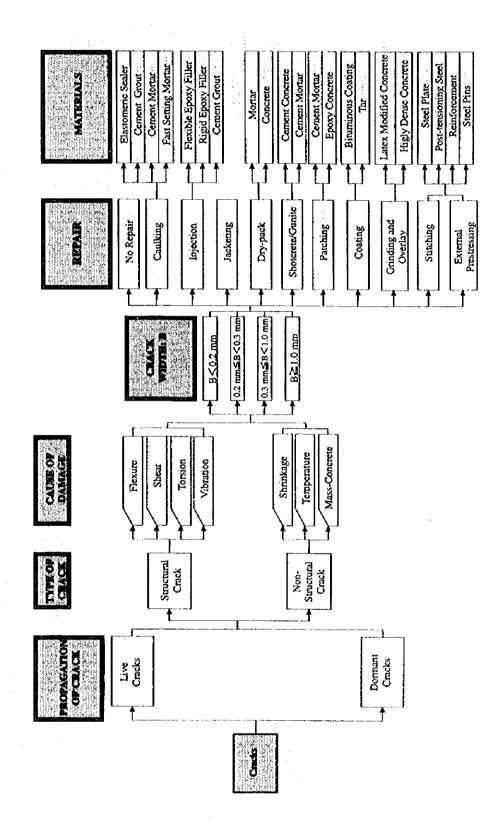
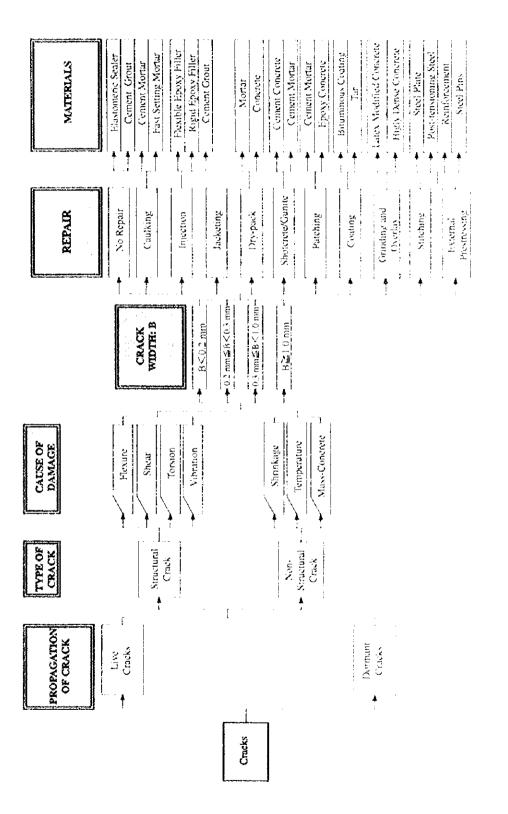




Figure 3.7 Damage-Repair Method Chart (1/7): Cracks on Concrete Structure

•



# Figure 3.7 Dumage-Repair Method Chart (1/7): Cracks on Concrete Structure

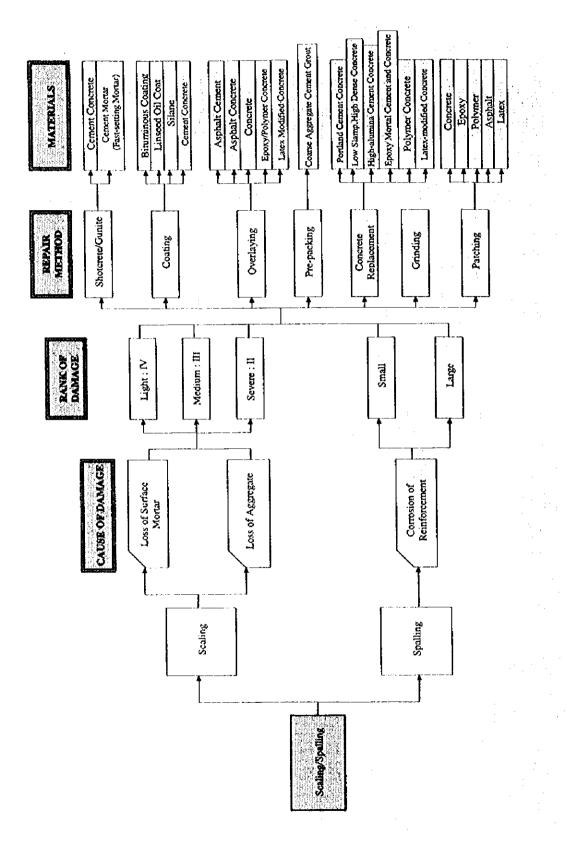



Figure 3.7 Damage-Repair Method Chart (2/7): Scaling/Spalling on Concrete Structure

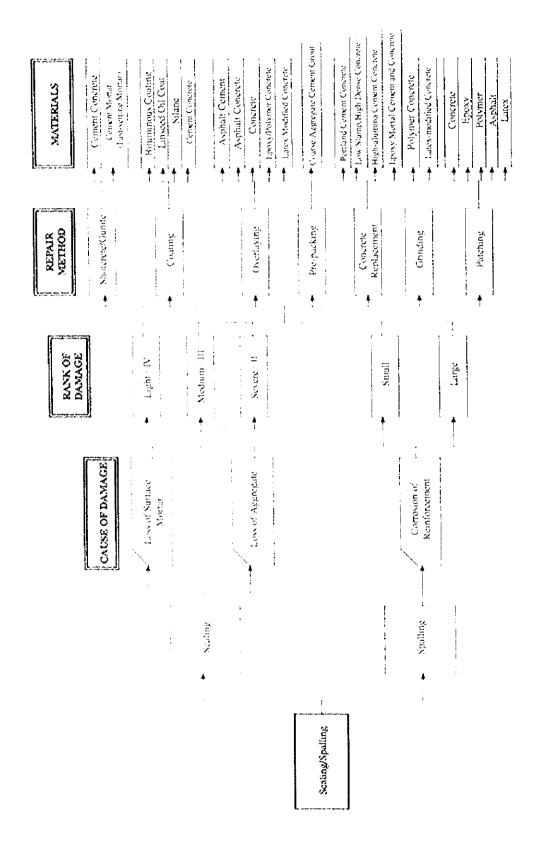
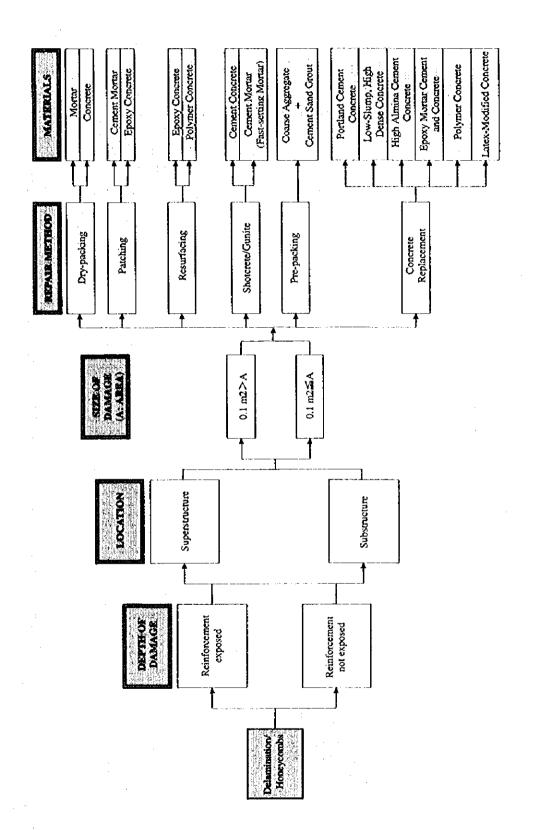
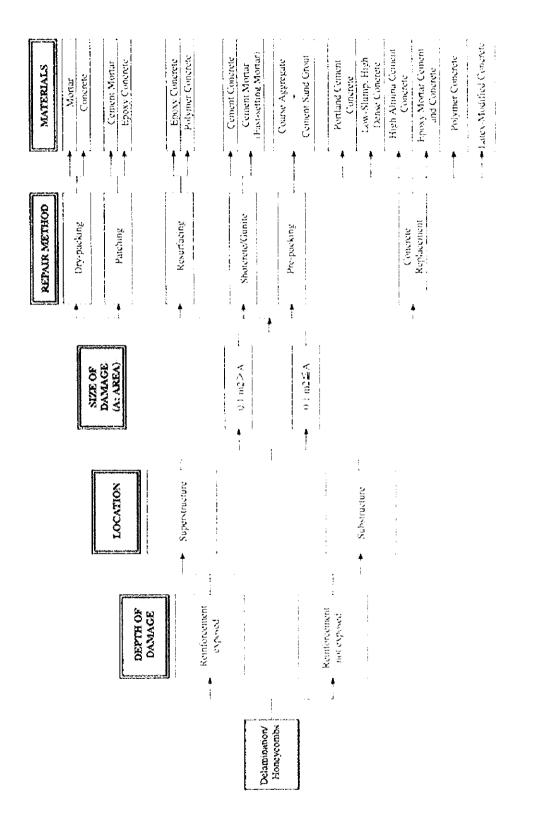
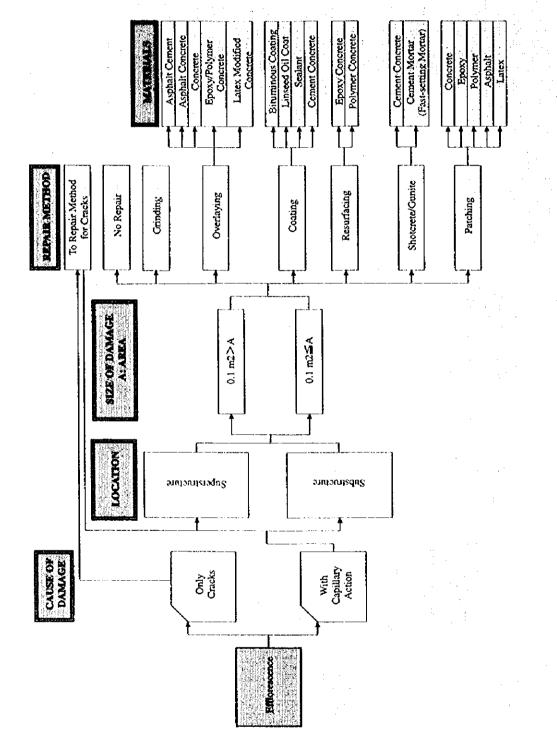
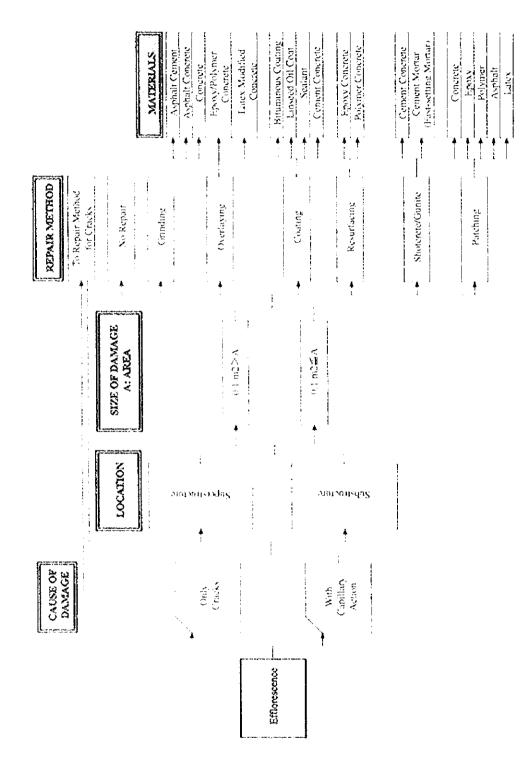



Figure 3.7 Damage-Repair Method Chart (2/7): Scaling/Spalling on Concrete Structure



Figure 3.7 Damage-Repair Method Chart (3/7): Delamination and Honeycombs on Concrete Structure













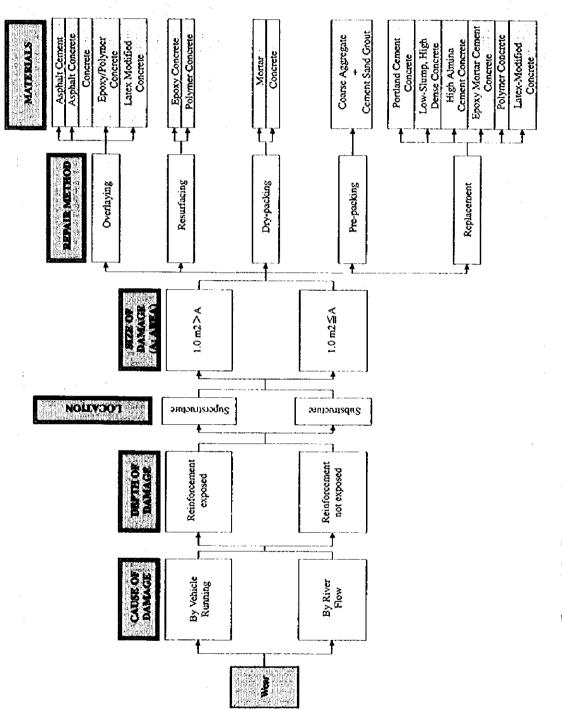
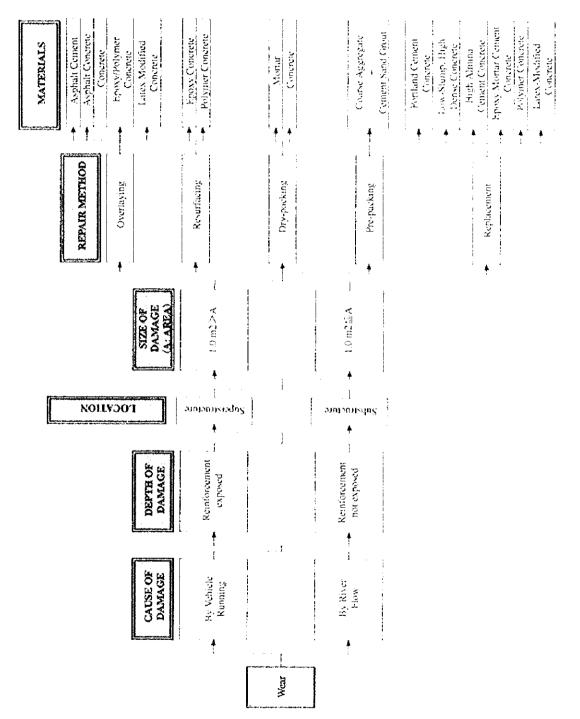




Figure 3.7 Damage-Repair Method Chart (5/7): Wear on Concrete Structure





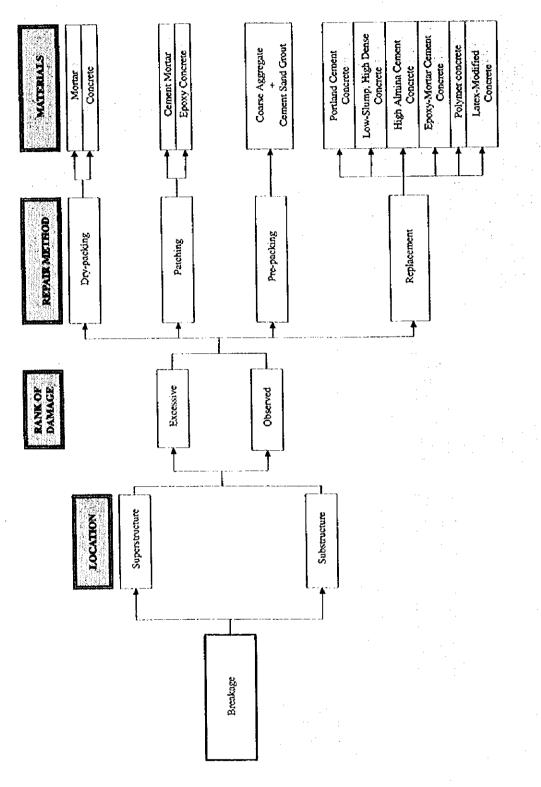
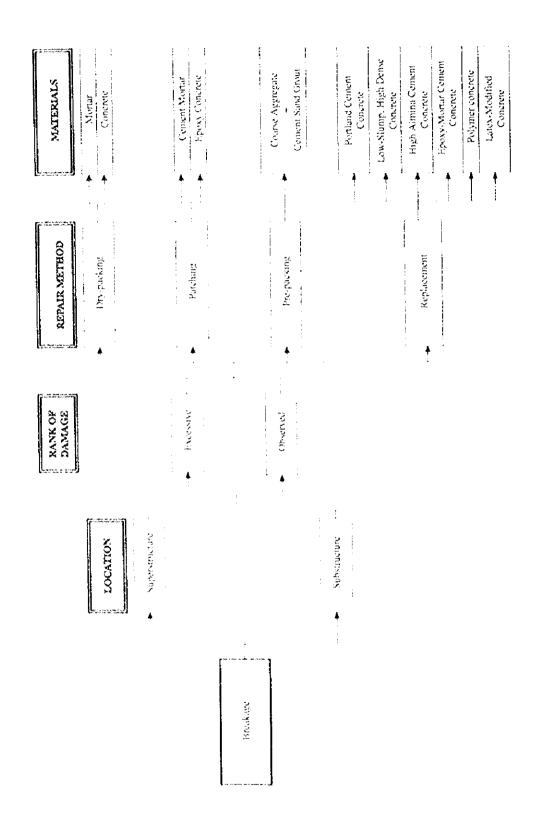




Figure 3.7 Damage-Repair Method Chart (6/7): Breakage on Concrete Structure





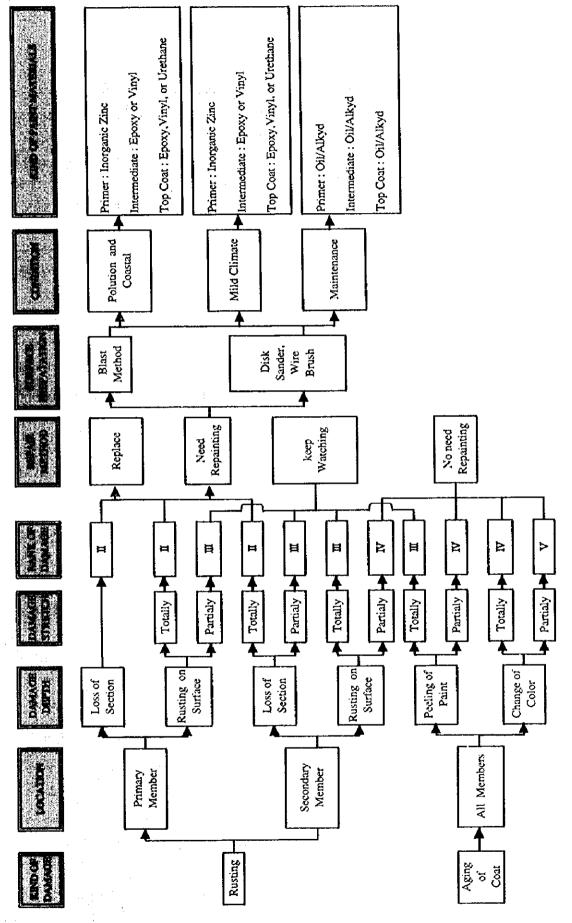



Figure 3.7 Damage-Repair Method Chart (7/7): Rusting and Aging Coat on Steel Structure

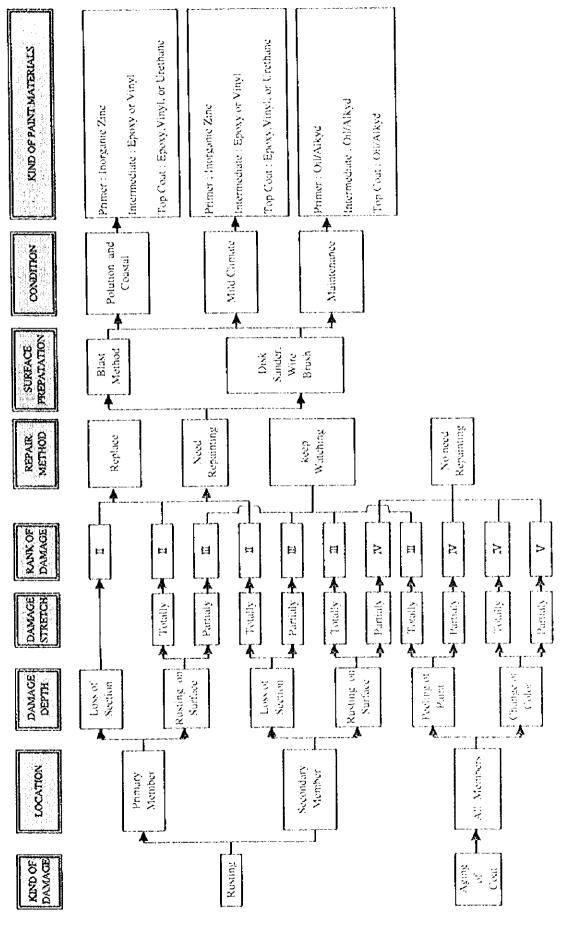



Figure 3.7 Damage-Repair Method Chart (7/7): Rusting and Aging Coat on Steel Structure

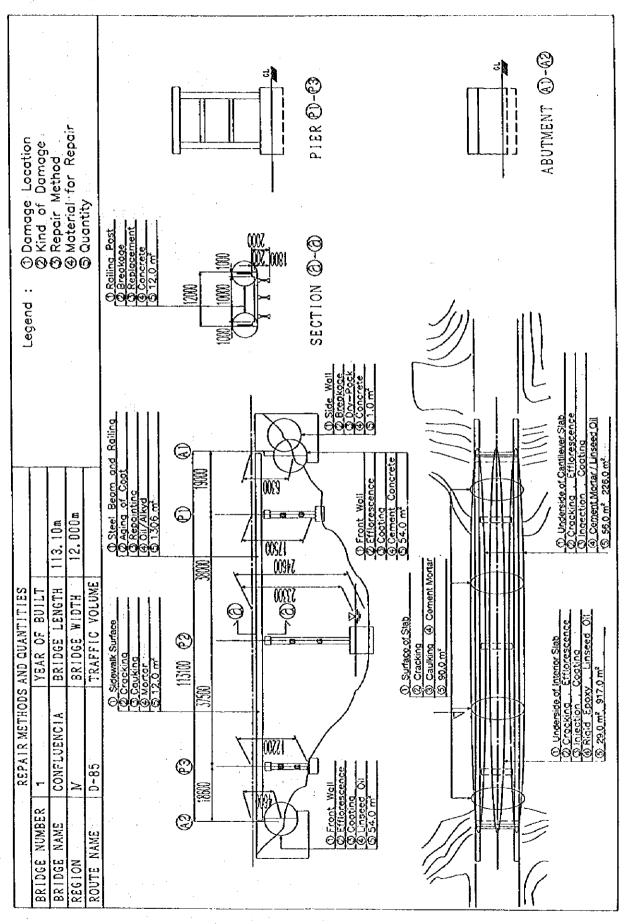
### (3) Repair Designs

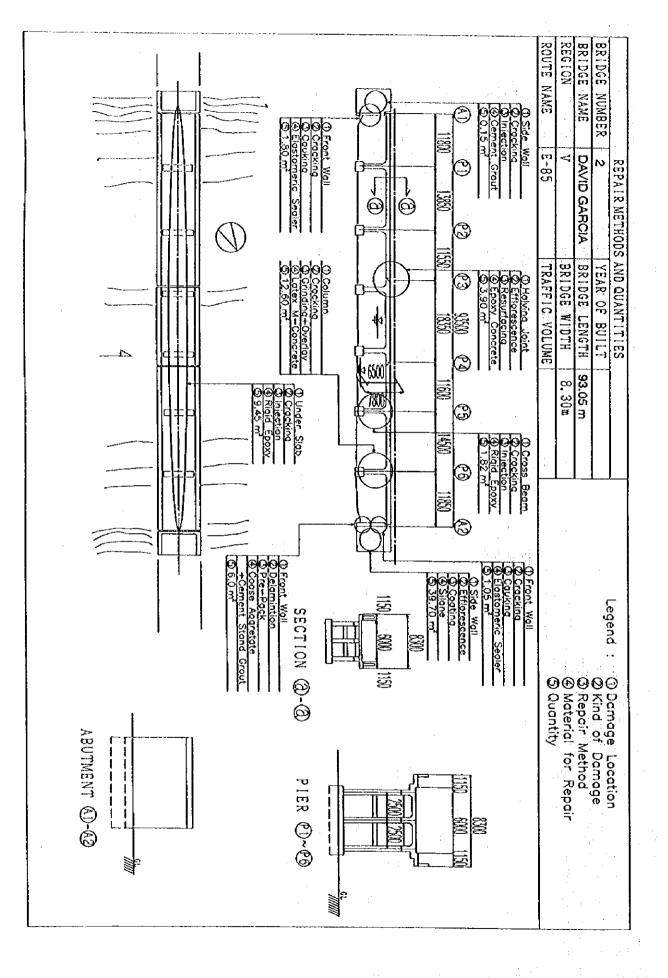
Based on the data of general and damage inspection, kind and location of damages were selected for repair designing. For each damage and its location selected, a repair method together with materials was decided by the aid of the damage-repair method charts given in the preceding **Clause (2)** of this chapter.

 Table 3.17 summarizes the repairs designed for each bridge being classified by the kinds of damages.

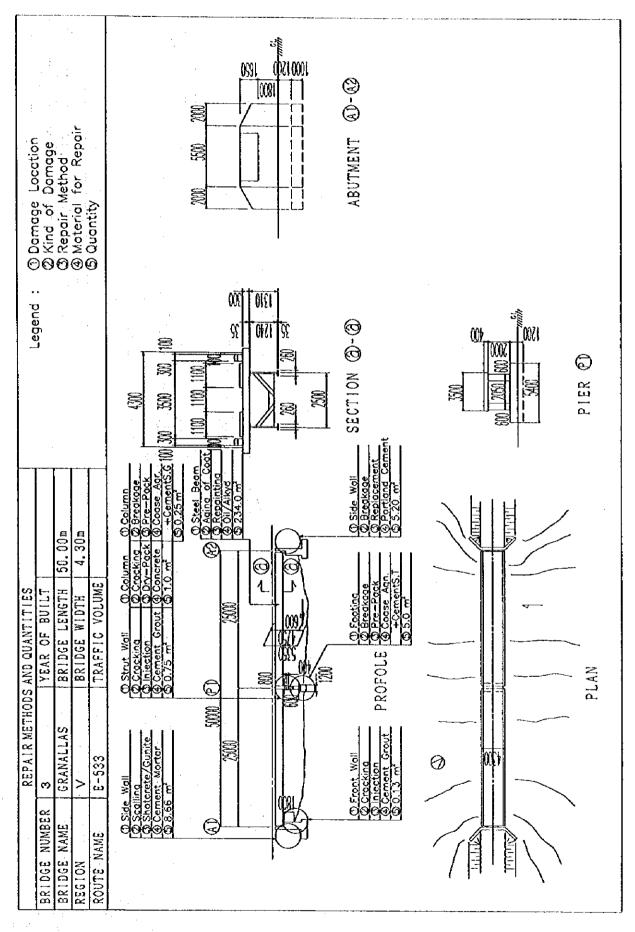
 After the table, the repair design drawings for the eleven bridges are attached.
 On the drawings, the following design data are shown:

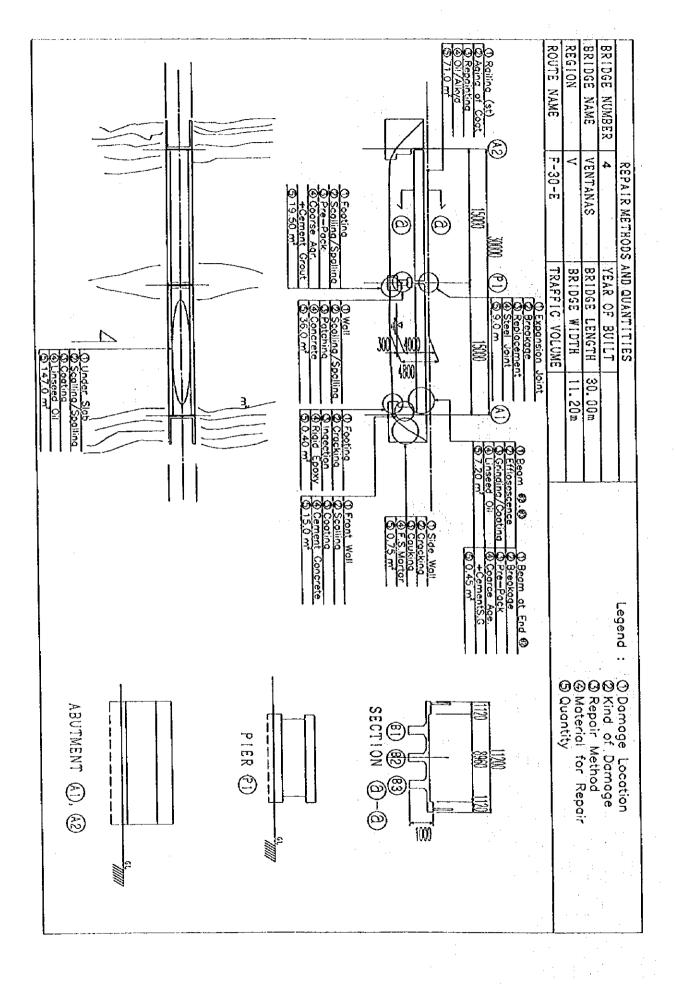
- ① Damage Location
- ② Kind of Damage
- ③ Repair Method
- (4) Material for Repair
- **(5)** Quantity


The details of repair methods are presented in Division III of Bridge Manuals (Volume 6/8), and the basis of the quantities are given in Appendix II-4 (Volume 4/8).

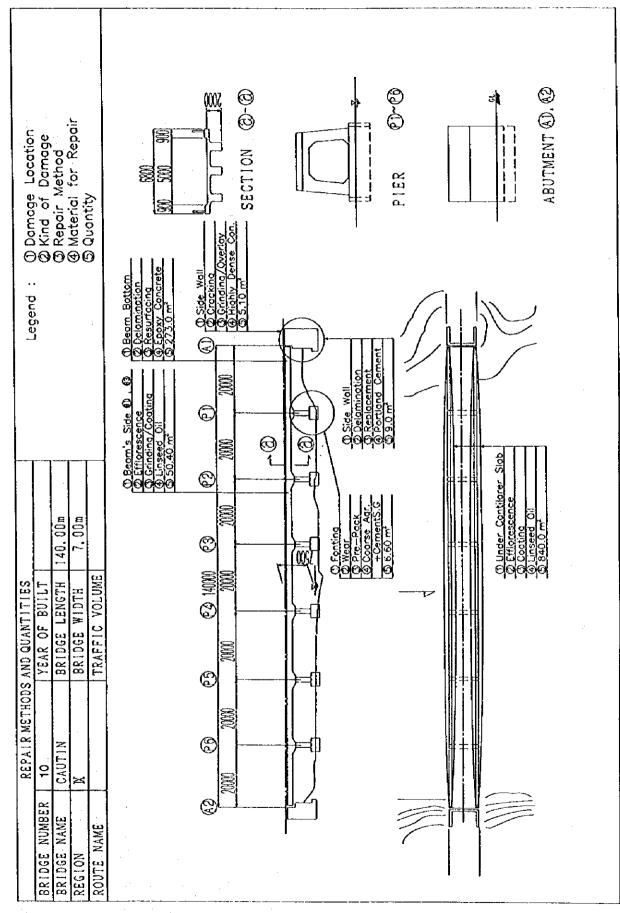

Table 3.17 Summary of Repair Designs

| (1) For Concre                        | For Concrete Members | Table J.T.                           | angua nehan ya wanan wangua | angresa i                                     |                                        |
|---------------------------------------|----------------------|--------------------------------------|-----------------------------|-----------------------------------------------|----------------------------------------|
| Material Type                         | Damage               | Location                             | Damage Rank                 | Repair Method                                 | Materials                              |
| · · · · · · · · · · · · · · · · · · · | Cracks               | Deck Slab on Surface                 | III                         | Caultong                                      | Cement Grout     Cement Mortar         |
| •                                     |                      | Sidewalk                             | III                         | Caultong                                      |                                        |
| -                                     |                      | Deck. Noth on Canilarias I ladoorida | E.                          | Injection for Cracks                          | <ul> <li>Rigid Epoxy Filler</li> </ul> |
| (                                     |                      |                                      | п                           | <ul> <li>Grinding and Coating</li> </ul>      | <ul> <li>Linseed Oil Coat</li> </ul>   |
| Continencia                           | Efflorescence        | Deck Slab on Cantilever Underside    | н<br>П<br>-                 | - Injection for Cracks                        | Rigid Epoxy Filler                     |
| •<br>•<br>•<br>•<br>•                 |                      | A1-Abutment on Front Wall            | II                          | Coating and Coating     Coating               | Cement Mortar                          |
|                                       | 2                    | A2-Abutment on Front Wall            | II                          | Coating                                       | Linseed Oil Coat                       |
| · ·                                   | Denstrana            | A1-Abutment on Side Wall             | 11 -                        | Dry-packing                                   | Concrete                               |
|                                       | DICANAGE             | Hand Railing                         | IV                          | Replacement                                   | Concrete                               |
| :                                     |                      | Deck Slab on Underside               | п                           | <ul> <li>Injection</li> </ul>                 | <ul> <li>Rigid Epoxy Filler</li> </ul> |
| :                                     |                      | A1-Abutment on Side Wall             | Π                           | Injection                                     | Cement Grout                           |
| -                                     | Cravbe               | Al-Abutment on Front Wall            | III                         | Caulking                                      | Elastomeric Sealer                     |
| :<br>:                                | Cidens               | A2-Abutment on Front Wall            | 11                          | Caulking                                      | - Elastomeric Sealer                   |
| David Garcia                          |                      | Pier on Cross Beam                   | Π                           | Injection                                     | Ripid Epoxy Filler                     |
|                                       | -                    | Pier on Side Column                  | 111                         | Grinding and Overlay                          | Latex Modified Concrete                |
|                                       | Efflorescence        | Halving Joint                        | 11                          |                                               | Epoxy Concrete                         |
| :                                     | דרוזותו בארבוורב     | A2-Abutment on Side Wall             | II                          | - Coating                                     | Silane                                 |
|                                       | Delamination         | A2-Abutment on Side Wall             | II                          | Coating                                       | Silance                                |
| -                                     |                      | A1-Abutment on Side Wall             | 11                          | Injection                                     | Cement Grout                           |
|                                       | Cracks               | Pier on Strut Wall                   | 11                          | Injection                                     | Cement Grout                           |
|                                       |                      | Pier on Column                       | II                          | Dry-Packing                                   | Concrete                               |
|                                       | Scaling/Spalling     | A1-Abutment on Side Wall             | III                         | Shotcrete/Gunite                              | Cement Concrete                        |
| Cranaulas                             | •                    | A2-Abutment on Side Wall             | · II                        | Replacement                                   | Concrete                               |
|                                       | Breakage             | Pier on Column                       | п                           | <ul> <li>Pre-Packing</li> </ul>               | Coarse Aggregate     Cement Sand Grout |
|                                       | Ware                 | Pier on Foundation                   | Ш                           | <ul> <li>Pre-Packing</li> </ul>               | Coarse Aggregate     Cement Sand Grout |
|                                       |                      | Al-Abutment on Side Wall             | II                          | Caulking                                      | Fast Setting Mortar                    |
|                                       | CINCUS               | A2-Abutment on Footing               | П                           | <ul> <li>Injection</li> </ul>                 | <ul> <li>Rigid Epoxy Filler</li> </ul> |
|                                       |                      | Beams at Span 1                      | П                           | Coating                                       | Linseed Oil Coat                       |
|                                       | Efflorescence        | Beams at Span 2                      | П                           | Crinding     Conting                          | Linseed Oil Coat                       |
| Ventanas                              | Breakage             | Beams at Span 1                      | II                          | • Pre-Packing                                 | Coarse Aggregate                       |
|                                       | ,                    | ×                                    |                             | <b>0</b>                                      | Cement Sand Grout                      |
|                                       |                      | Deck Slab on Underside               | п                           | <ul> <li>Coating</li> <li>Grinding</li> </ul> | Linseed Oil Coat                       |
|                                       | Scaling/Spalling     | A1-Abutment on Front Wall            | П                           | Coating     Grinding                          | Cement Mortar                          |
|                                       |                      | Pier on Column                       | II                          | <ul> <li>Patching</li> </ul>                  | Concrete                               |
|                                       |                      | Pier on Footing                      | п                           | Pre-Packing                                   | Course Aggregate                       |
|                                       |                      |                                      |                             |                                               |                                        |

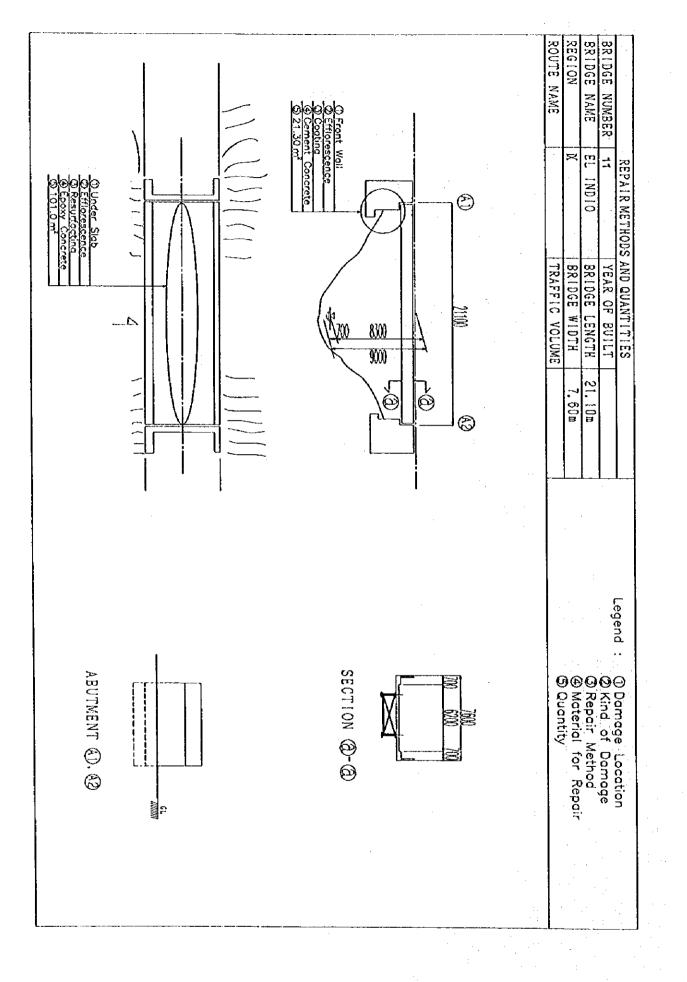

|               |                           | Al-Abutment on Side Wall                    | 11          | Caulking                                      | <ul> <li>Fast Setting Mortar</li> </ul>      |
|---------------|---------------------------|---------------------------------------------|-------------|-----------------------------------------------|----------------------------------------------|
|               | Cracks                    | Al Abutmont on Stda Wall                    | 11          | <ul> <li>Grinding and Overlay</li> </ul>      | Highly Dense Concrete                        |
|               |                           |                                             | 11          | <ul> <li>Coating</li> </ul>                   | <ul> <li>Linseed Oil Coat</li> </ul>         |
| -             |                           | Deams                                       |             | Injection for Cracks                          | Elastomeric Scaler                           |
| riting (      | Ettiorescence             | Deck Slab on Underside                      | II          | . Coating                                     | <ul> <li>Bituminous Coating</li> </ul>       |
|               |                           | Danme                                       | 11          | Resurfacing                                   | Epoxy Concrete                               |
|               | Delamination              | A2 Abitment on side Wall                    |             | Replacement                                   | <ul> <li>Portland Cement Concrete</li> </ul> |
| - <b>F</b>    |                           | Az-Abulitan on Nuclear                      | m           | • Pre-Paciong                                 | Coarse Aggregate                             |
|               | wear                      |                                             |             |                                               | - Cuntin Jane Crow                           |
|               |                           | Deck Slab on Underside                      | 11          | • Kesuracing                                  |                                              |
| El Indio      | Efflorescence             | Al-Abutment on Footing                      | Η           | <ul> <li>Grinding</li> <li>Coating</li> </ul> | Cement Mortar                                |
|               |                           | A1 Abuendan Sida Wall                       |             | Caulking                                      | <ul> <li>Fast Setting Mortar</li> </ul>      |
|               | Cracks                    | AI Abutingin on Side Wall                   | j]          | - Injection                                   | Cement Grout:                                |
| Malleco       |                           |                                             |             | Patching                                      | Concrete                                     |
|               | Scaring/Spaning           | Al-Abutukut on From Wall                    |             | Replacement                                   | Concrete                                     |
| Medina        | Scampy spanning           | Contrig opartities At Abitmant on Side Wall | · 11 ·      | Grinding                                      |                                              |
|               | LINOTENCERICE             | EIIIOTEXCENCE AL-ADMINER VII 3100 Mail      | 111         | Drv-Packing                                   | Concrete                                     |
| Cautin (88)   | Honeycomps                | _                                           |             | Replacement                                   | Concrete                                     |
|               | Breakage                  |                                             | - 11        | - Caulking                                    | Cement Grout                                 |
| Salva Tu alma | Cracks                    |                                             |             | - Imection                                    | Cement Grout                                 |
|               | Crack                     | A I-Abutment on Side wall                   |             | Overlaving                                    | Concrete                                     |
| Ouinchilca    | Scaling/Spalling Sidewalk | Sidewalk                                    | 11          | Surfarman -                                   | CASES A MOREOSIE                             |
| •             | Delamination              | Delamination Beams at Support               | II          | Pre-Packing                                   | Cement Sand Grout                            |
|               |                           |                                             |             |                                               |                                              |
|               |                           |                                             |             |                                               |                                              |
| For Steel M   | (2) For Steel Members     |                                             |             |                                               | T Matariale                                  |
| Material Type | Damage                    | Location                                    | Damage Rank | Repair Method                                 | Malichais                                    |
|               |                           |                                             |             |                                               |                                              |


| Material Tune | Damage  | Location     | Damage Rank | Repair Method                     | Matenals     |
|---------------|---------|--------------|-------------|-----------------------------------|--------------|
| 2462 1111111  |         |              |             |                                   | CUANNA STATE |
| Confluencia   | Rusting | Hand Railing | m           | Hand Cleaning                     |              |
| David Carris  | Rusting | Hand Railine |             | Hand Cleaning                     | Oil/Alkyd    |
|               | Ducting | +            | IJ          | Hand Cleaning                     | Oil/Alkyd    |
| Cimmes        | Simeny  | Used Dollies |             | Hand Cleaning                     | Oil/Alkyd    |
| ventanas      | SUBSUL  |              |             |                                   | )            |
| Cautin (88)   | Rusung  | Beams        | Π           | <ul> <li>Hand Cleaning</li> </ul> | OILALKYG     |
|               |         |              |             |                                   |              |
|               |         |              | •           |                                   | •            |

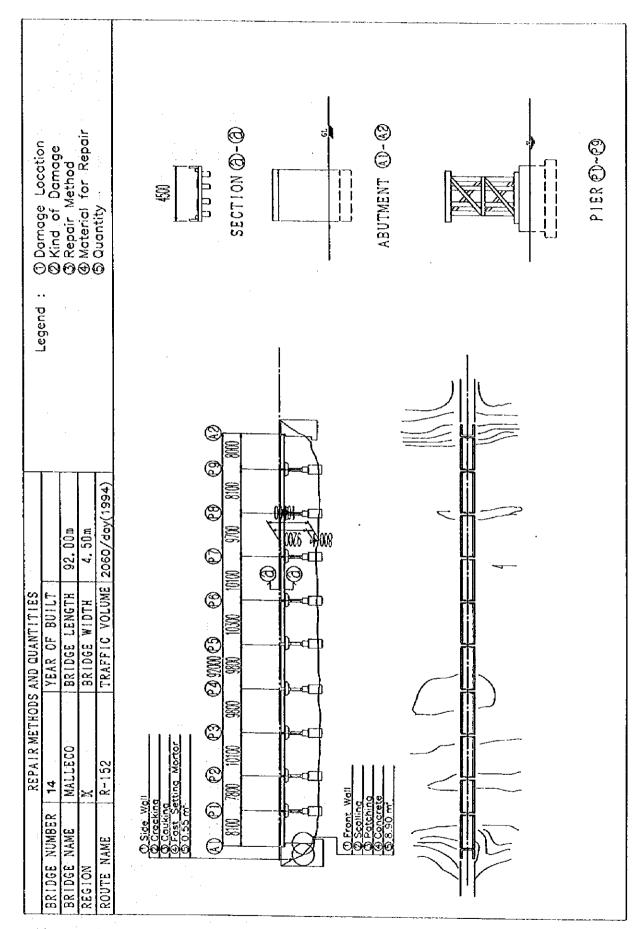


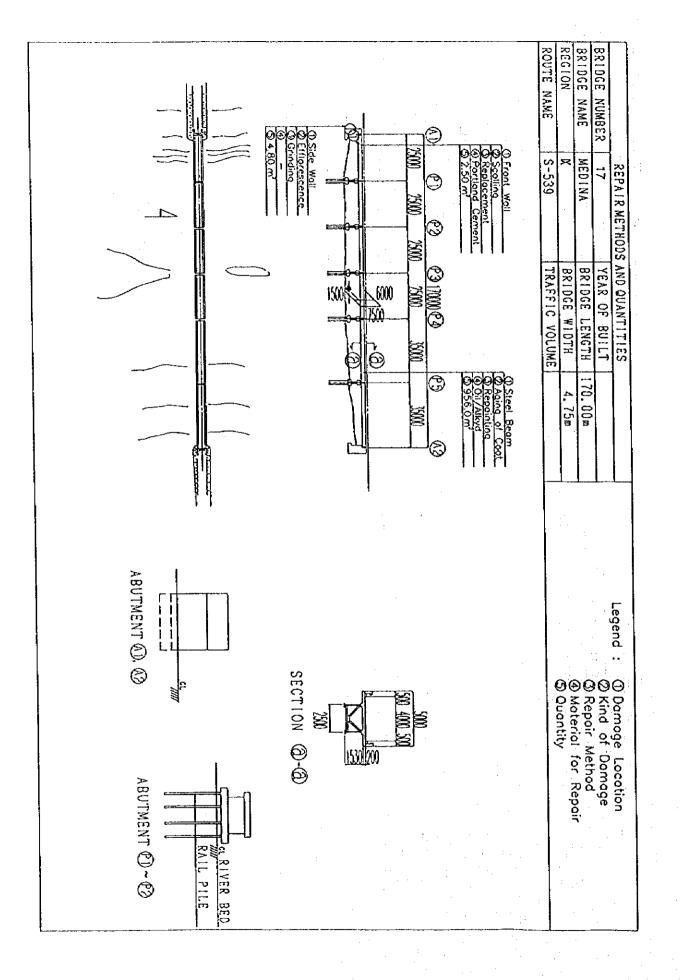



· · · · ·

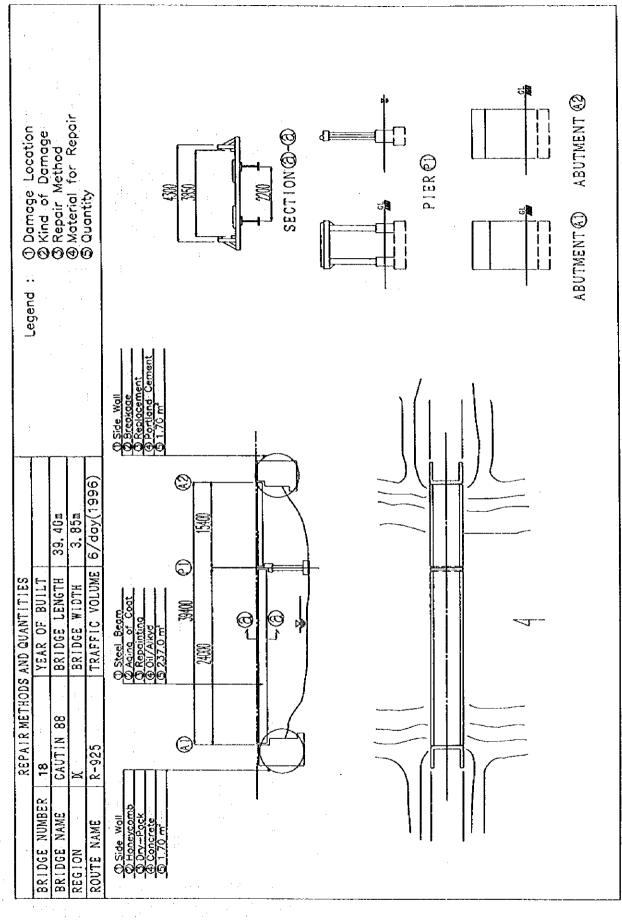




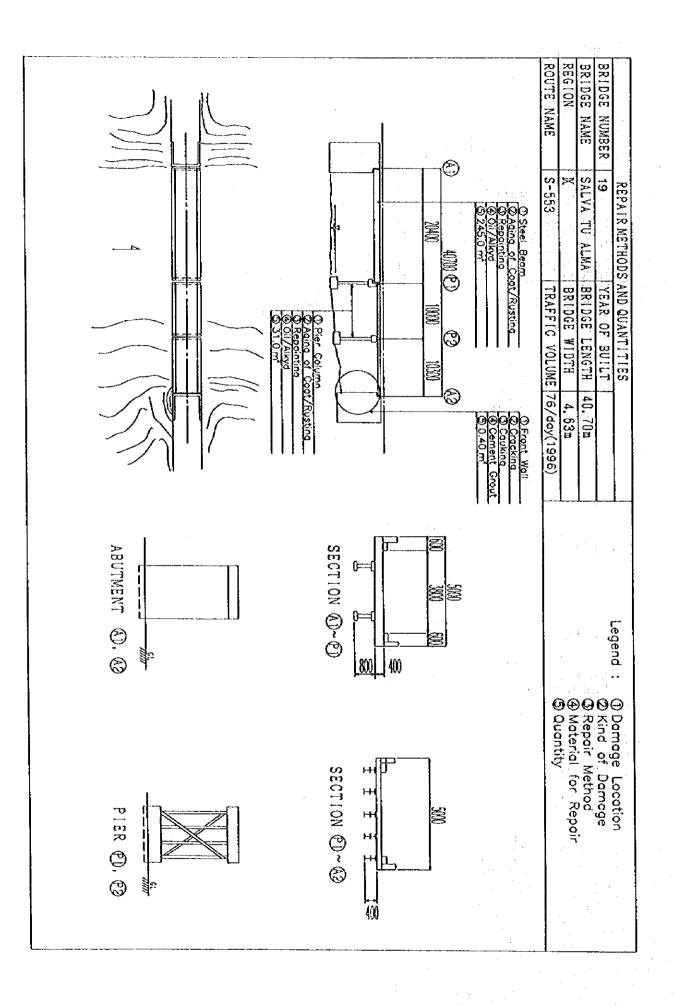


. .



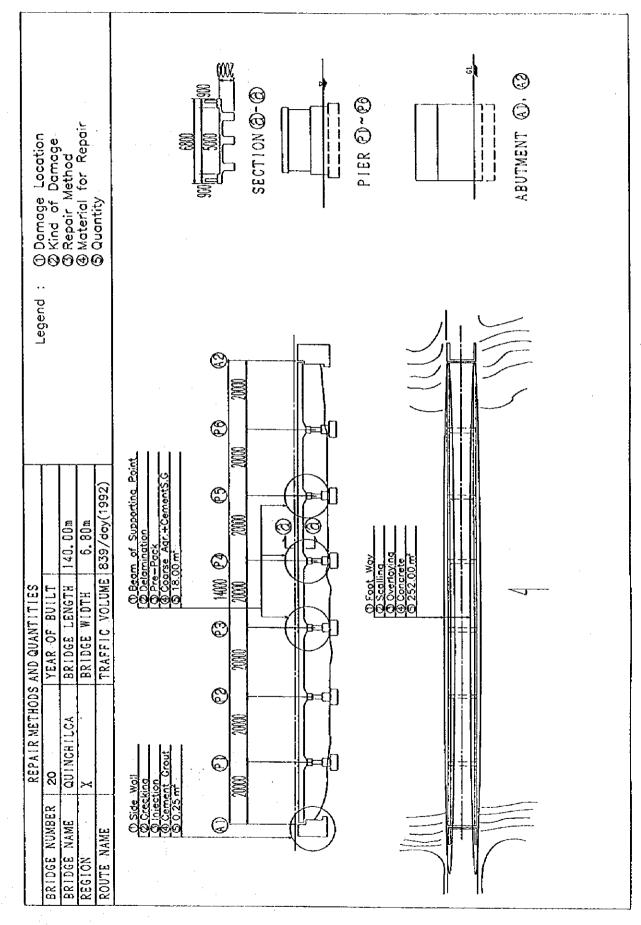

.




. ....







:



· .



f



## 3.5 REHABILITATION COST ESTIMATE

## 3.5.1 Scope of the Cost Estimate

Reconstruction costs for the eight bridges and repair costs for the eleven bridges were estimated based on the designs prepared in **Chapter 3.4**. The estimation was made only for construction cost but did not cover administration and land acquisition costs. The costs estimated here were referred to a basis for the estimation of rehabilitation costs in the rehabilitation plan of **Chapter 2.5**.

#### 3.5.2 Reconstruction Costs

#### (1) Cost Items

The cost items for reconstruction includes the followings:

- Construction cost for new bridge.
- Construction cost for approach roads, if the new bridge is designed parallel to the existing bridge. In this case, demolition of the existing bridge is not considered.
- Demolition cost for the existing bridge, if the new bridge is designed on the same location.
- Protection costs for local erosion or scouring around the bridge, but levee work or revetment work of river is not considered.

#### (2) Cost Components

Each cost item is broken down to the following five components:

- Material cost
- Labor cost
- Equipment cost
- Transport cost (assumed for about a distance of 100 km)
- Miscellaneous (assumed 40 % of the total of other cost components, considered to include overhead, taxes, profit, and other indirect costs.)

## (3) Cost Data Source

Unit costs were prepared based on the following data sources:

- Actual cost data of bridge rehabilitation projects of the MOP near Santiago in 1996 and 1997
- List of unit costs for bridge works in MOP
- "ONDAC", the manual for the construction in October 1996
- Interview to concrete products suppliers

#### (4) Reconstruction Costs

Reconstruction cost for each of the eight bridges was estimated in accordance with the above mentioned procedures. The results of the estimation are summarized in Table 3.18. The breakdowns of the costs are presented in Appendix II-5 (Volume 4/8).

| No. | Bridge Name          | Cost (pesos) |
|-----|----------------------|--------------|
| 2   | David Garcia         | 329.000.000  |
| 3   | Granallas            | 212.000.000  |
| 5   | San Jose             | 431.000.000  |
| 6   | Puangue              | 504.000.000  |
| 7   | San Jose de Marchiue | 432.000.000  |
| 8   | Antivero No. 2       | 339.000.000  |
| 13  | Poculon              | 263.000.000  |
| 16  | San Juan             | 269.000.000  |

Table 3.18 Summary of Reconstruction Costs

#### 3.5.3 Repair Costs

#### (1) Cost Items

Repair works are classified into the works for bridge surface, underside of bridge, and pier and abutment. Each work includes the following cost items:

- The work for bridge surface includes repair of hand rails, deck-slab surface, expansion joints, and the traffic management cost during repair work.
- The work for underside of bridge includes repairs of underside of deck-slabs, beams, bearing shoes, and considers false work.
- Pier work considers scaffolding on both sides.
- Abutment work considers scaffolding on the side facing river only.

#### (2) Cost Components

Repair costs are estimated by assuming the repair unit cost for each type of damage. The following major damages are taken into the cost estimate:

#### Concrete Structure

# Steel Structure

- Cracks

Rusting/Aging of Coat

1 2

- Scaling/Spalling
- DelaminationEfflorescence
- Honeycombs
- Wear
- Breakage

Unit repair cost of each damage is obtained as the average of costs of various repair methods. The unit repair costs proposed are summarized in Table 3.19 and their breakdowns are presented in Appendix II-6 (Volume 4/8).

| ·                                     |                            |                          | (pesos/n                 |
|---------------------------------------|----------------------------|--------------------------|--------------------------|
| Damage Type                           | For Underside<br>of Bridge | For Surface<br>of Bridge | For Pier and<br>Abutment |
| · · · · · · · · · · · · · · · · · · · | For Concrete St            | ructure                  | · · ·                    |
| Cracks                                | 35,700                     | 24,000                   | 24,000                   |
| Scaling/Spalling                      | 34,500                     | 24,000                   | 20,800                   |
| Delamination                          | 42,000                     | 45,500                   | 31,800                   |
| Efflorescence                         | 16,900                     | 10,400                   | 9,100                    |
| Honeycombs                            | 42,000                     | 45,500                   | 31,800                   |
| Breakage                              | 60,000                     | 65,900                   | 50,000                   |
| Wear                                  | 45,700                     | 35,700                   | 30,800                   |
|                                       | For Steel Stru             | cture                    | <u></u>                  |
| Rusting/Aging of Coat                 | 6,300                      | 5,400                    | 5,600                    |

#### Table 3.19 Unit Repair Costs by Damage

#### (3) Repair Costs

Repair costs of the eleven bridges were estimated in accordance with the above mentioned procedures. The results of the estimation are summarized in Table 3.20, and their breakdowns are given in Appendix II-6 (Volume 4/8).

| No. | Bridge Name   | Cost (pesos) | Recommended<br>Execution Method |
|-----|---------------|--------------|---------------------------------|
| 1   | Confluencia   | 26,723,000   | Contract                        |
| 2   | David Garcia  | 1,373,000    | Direct Force                    |
| 3   | Granallas     | 748,000      | Direct Force                    |
| 4   | Ventanas      | 6,719,000    | Direct Force                    |
| 10  | Cautin        | 20,029,000   | Contract                        |
| 11  | El Indio      | 1,990,000    | Direct Force                    |
| 14  | Maileco       | 1,990,000    | Direct Force                    |
| 17  | Medina        | 104,000      | Direct Force                    |
| 18  | Cautin (88)   | 135,000      | Direct Force                    |
| 19  | Salva Tu Alma | 9,000        | Direct Force                    |
| 20  | Quinchilca    | 5,820,000    | Direct Force                    |

Table 3.20 Summary of Repair Costs

In the above table, repair cost fluctuates widely by bridge. Only No. 1 Confluencia and No. 10 Cautin Bridges show round amount of costs over twenty million pesos, but others are small. In particular, No. 19 Salua Tu Alma Bridge amounted only the nine thousand pesos, that was why the bridge was designed with a very little repairs and its cost was estimated by unit cost method. For such variation of the repair cots, it is recommended that the bridges with small costs be repaired by the direct force of the MOP as a maintenance work. On the other hand, the bridges with fair amount of costs should be repaired by contracts.

#### 3.6 ENVIRONMENTAL STUDY ON BRIDGE SITE

#### 3.6.1 General

By the passage of the General Fundamental Law of Environment (LEY No.19.300) in March 1994, a series of the following environment-related laws have been enacted in Republic of Chile, such as Modification of Article No.71 of LEY No.19.300 in February 1995, Regulation of Council for National and Regional Consultative Commission for Environment (D.S.No.86) in October 1995, Regulation for the Dictation of Rules of Environmental Quality and Emission (D.S.No.93.) in October 1995, Regulation that fix the Procedure and Stages for Plans Establishment of Prevention and Decontamination (D.S.No.94) October 1995, and Modification of D.S.No.86 (D.S.No.181.) in October 1995. Finally, Regulation System of Environmental Impact Evaluation (D.S.No.30.) has been enacted in April 1997.

The agencies of the MOP are required to assess the environmental impact of their projects. Since bridge rehabilitation is a part of highway projects, which have major impact on land use and community development, LEY requires that social, economic and environmental impacts resulting from existing and proposed projects be formally documented and that appropriate measures be taken to reduce adverse environmental effects.

Meanwhile as a rule, the JICA projects intend to simultaneously attain two goals namely economical development and environmental conservation. For the achievement of the former, various aspects of technical consideration have been already developed in the previous subsections of this report. For the achievement of the latter target, there will be presented a basic consideration in this subsection.

The twenty bridges which are the representative objects for the study of rehabilitation design, have always played more important role as a local road network connecting local major cities, towns and villages. This role will continue to grow in the future.

The main purpose of the Environmental Study is to identify the existing significant environmental elements that would have a high possibility of being affected by implementation of projects and to formulate mitigation measures for adverse impacts. Both of Initial Environmental Examination (IEE) and Preliminary Environmental Impact Assessment (Pre-EIA) should cover pre-construction stage, construction stage and maintenance and operation stage for subjects whatever these are directly or indirectly affected.

#### 3.6.2 Scope of Environmental Study

#### (1) Process of Environmental Study

The environmental study was carried out by the Study Team in cooperation with the MOP. The study

of Initial Environmental Examination (IEE) and Preliminary Environmental Impact Assessment (Preliminary-BIA) for the 20 bridges includes the following activities:

- Investigation of the existing environmental condition,
- Project description and site description,
- IEE (Initial Environmental Examination),
- Pre-EIA (Preliminary Environmental Impact Assessment),
- Pre-EIA matrix, and
- Preparation of environmental assessment manual.

The process of the environmental study is shown in Figure 3.9.

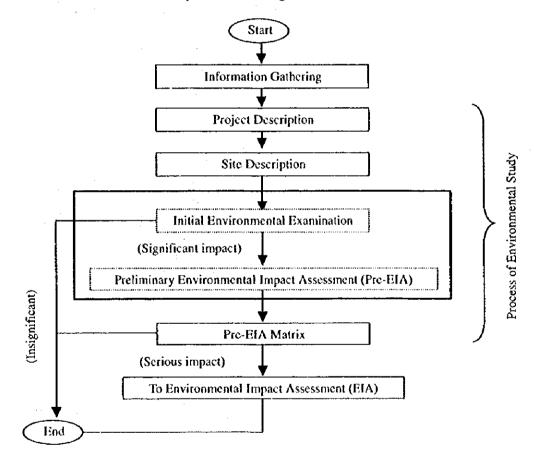



Figure 3.9 Process of Environmental Study

## (2) Study Area

The study area covers the existing bridges and adjacent area along their bridges. Table 3.21 shows the object 20 bridges.

| No. | Bridge Name          | Region | Province                    | Bridge<br>Type | Bridge<br>Length<br>(m) | Rehabilitation Method |
|-----|----------------------|--------|-----------------------------|----------------|-------------------------|-----------------------|
| 1   | Confluencia          | IV     | Choapa                      | ST             | 113.10                  | Repair                |
| 2   | David Garcia         | v      | Los Andes                   | RC             | 93.05                   | Reconstruction/Repair |
| 3   | Granallas            | v      | San Fellipe de<br>Aconcagua | ST             | 49.85                   | Reconstruction/Repair |
| 4   | Ventanas             | V      | Valparaiso                  | RC             | 30.00                   | Repair                |
| 5   | San Jose             | RM     | Chacabuco                   | RC             | 16.10                   | Reconstruction        |
| 6   | Puangue              | RM     | Melipilla                   | RC             | 105.10                  | Reconstruction        |
| 7   | San Jose de Marchiue | VI     | Cachapoal                   | ST             | 120.00                  | Reconstruction        |
| 8   | Antivero No.2        | VI     | Colchagua                   | RC             | 102.90                  | Reconstruction        |
| 9   | Los Cardos           | Ví     | Colchagua                   | ST             | 73.55                   | Repair                |
| 10  | Cautin               | IX     | Cautin                      | RC             | 140.00                  | Repair                |
| 11  | El Indio             | IX     | Malleco                     | ST             | 21.10                   | Repair                |
| 12  | Quillen              | IX     | Cautin                      | TM             | 25.90                   | Repair                |
| 13  | Poculon              | IX     | Cautin                      | TM             | 31.00                   | Reconstruction        |
| 14  | Malleco              | IX     | Malleco                     | TM             | 92.00                   | Repair                |
| 15  | Miraflores           | IX     | Malleco                     | TM             | 44.40                   | Repair                |
| 16  | San Juan             | IX     | Cautin                      | TM .           | 31.60                   | Reconstruction        |
| 17  | Medina               | IX     | Cautin                      | ST             | 170.00                  | Repair                |
| 18  | Cautin (88)          | IX     | Cautin                      | ST             | 39.40                   | Repair                |
| 19  | Satva Tu Alma        | IX     | Cautin                      | ST             | 40.70                   | Repair                |
| 20  | Quinchilea           | X      | Valdivia                    | RC             | 140.00                  | Repair                |

 Table 3.21
 Bridges for Environmental Study

## (3) Inspection Items

Many common environmental problems were observed in rural bridges relating to geographical condition and due to construction activity. Therefore, inspection items were standardized for the survey of the 20 bridges. The items were chosen through scoping and screening survey on site.

The items to be inspected are as follows:

## Social Environment

| Inhabitants:            | Residents, indigenous people, their views on the project, and others           |  |  |
|-------------------------|--------------------------------------------------------------------------------|--|--|
| Landuse and Facilities: | Urban area, farm land, and others,                                             |  |  |
|                         | Historic & cultural site, scenic spot, hospitals, schools and other facilities |  |  |
| Economy:                | Commerce, agriculture, forestry, and others                                    |  |  |
| Transport:              | Bus terminal, traffic, etc.                                                    |  |  |

## **Natural Environment**

| Topography :   | Feature of river bank area, steep slopes, soft ground, wetland, etc.           |
|----------------|--------------------------------------------------------------------------------|
| Geology :      | Feature of river bank/bed, outcrop, stone, gravel, sand/fault, soil type, etc. |
| Hydrology:     | Feature of river flow, water level, flood level, etc.                          |
| Fauna & Flora: | Habitats, rare species /community, etc.                                        |

## Pollution

| Complaints:     | Population of the upmost concern        |
|-----------------|-----------------------------------------|
| Measures taken: | Institutional measures and compensation |

Others

## 3.6.3 Project and Site Inspection Forms

To conduct the IEE and Preliminary EIA, it is essential at the outset to fully understand the Project Description (PD) and Site Description (SD). The PD includes the contents and features of the projects, such as background, objectives, study area, competent ministry, number of beneficiaries, and type of the project, etc. The SD includes the present conditions of natural and social environment. **Table 3.22** and **Table 3.23** show the standard forms for project description and site description.

| Item                                                                         | Description                                                                                                                                               |  |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Background                                                                   |                                                                                                                                                           |  |  |
| Objectives                                                                   |                                                                                                                                                           |  |  |
| Executing Agency                                                             | Ministry of Public Works (MOP)                                                                                                                            |  |  |
| Beneficiaries                                                                |                                                                                                                                                           |  |  |
| Project Components                                                           |                                                                                                                                                           |  |  |
| Existing bridge structure<br>Bridge length, width<br>Other specific features | Slab(Conc.), Beam(Steel), Abutment(Conc.), Pier(Conc.), Foundation(Conc.)         Length(m), Width(m)         Carriage way width (m), Side walk width (m) |  |  |
| Project Type                                                                 | ( ) Replacement, (X) Repair                                                                                                                               |  |  |
| Road Type                                                                    | ( )Urban / (X)Rural area, ( )Plain area /(X)Mountain area<br>(X)Paved / ( )Unpaved                                                                        |  |  |
| Existing traffic volume                                                      | Year 79/6/13(Fri.) (46)Cars/hour, ()Cars/day                                                                                                              |  |  |
| Road width/lanes                                                             | Exist Width = $(5x^2 \text{ m})$ Nos. lanes = $(2)$                                                                                                       |  |  |
| Road structure                                                               | ( )Embankment / ( )Elevated / ( X )Others: Cutting of original ground                                                                                     |  |  |
| Supplemental facilities                                                      |                                                                                                                                                           |  |  |
| Others                                                                       | River name:                                                                                                                                               |  |  |

#### Table 3.22 Standard Form for Project Description

| tem                                                            |                              | Description      |
|----------------------------------------------------------------|------------------------------|------------------|
| Social environment                                             |                              |                  |
| Inhabitants:                                                   | Upperstream: Left bank area: | Right bank area: |
| Residents, Indigenous people                                   |                              |                  |
| Their views on the project, Others                             | Downstream: Loft bank area:  | Right bank area: |
| Landuse and facilities:                                        | Upperstream: Left bank area: | Right bank area: |
| Urban area, Farm land, Others, Historic & cultural             |                              |                  |
| site, Scenic spot, Hospitals and other facilities              | Downstream: Left bank area:  | Right bank area: |
| Economy:                                                       | Upperstream: Left bank area: | Right bank area: |
| Commerce, Agriculture, Forestry, Others                        | Downstream: Left bank area:  | Right bank area: |
| Transport: Bus terminal, etc.                                  |                              |                  |
| Yatural environment                                            | · · ·                        |                  |
| Topography, (Feature of river bank area)                       | Upperstream: Left bank area; | Right bank area: |
| Steep stopes, Soft ground, Wetland                             | Downstream: Left bank area:  | Right bank area: |
| Geology, (Feature of river bank/bed): Outcrop, stone,          | Left bank area:              | Right bank area: |
| Gravel, sand/ Fault, Soil type, etc.                           |                              |                  |
| Hydrology, ( Feature of river flow, Water level, flood level.) |                              |                  |
| Fauna & Flora / habitats, Rare species /community, etc.,       |                              |                  |
| Pollution                                                      | -                            |                  |
| Complaints: Population of the upmost concern                   |                              |                  |
| Measures taken: Institutional measures, Compensation           |                              | ,                |
| Others                                                         |                              |                  |

Table 3.23 Standard Form for Site Description

#### 3.6.4 Evaluation Forms

All the environmental elements, which would be affected by projects, are listed and discussed in relation to the project activities on a so-called format checklist for the evaluation of IEB and Preliminary EIA. See **Table 3.24**, the standard form proposed for environmental impact consideration. The head line of the table shows Environmental component, Identification of activities, Description of activities, IEE evaluation, Preliminary EIA evaluation and Remarks, while the columns show the environmental components concerned to be affected.

The cause-effect relation will be explained with a mark at each corresponding cell of the checklist. In the IEE evaluation column, 'Yes' means the related project may cause a significant effect on environmental element or negative side, 'No' indicates no influence or positive side, and 'Temporary or Slightly' means either temporary or slightly effect.

When the IEE evaluation becomes positive (No effect) and or temporary/slightly, it is not required to proceed to the Preliminary EIA evaluation. When the IEE evaluation becomes negative (Yes effect), then it is required to proceed to Preliminary EIA evaluation.

In the column of Remarks, reasons of cause-effect relations are required to be filled in corresponding to Yes or Temporary/Slightly effect.

For the Preliminary BIA stage, a standard form of environmental assessment matrix as shown in **Table 3.25** was proposed. The form is divided into pre-construction, construction, and operation and maintenance stages to fill in impact assessment mark for each project activities. Assessment marks are noted below the table.

|          | Environmental<br>component | Identification of<br>activities | Description<br>of activities                      | IEE        | Preliminary                                                                                                     | Remarks (Reason)                  |
|----------|----------------------------|---------------------------------|---------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|
|          |                            |                                 | of activities                                     | evaluation | EIA evaluation                                                                                                  |                                   |
|          | lo economic Er             |                                 |                                                   |            |                                                                                                                 |                                   |
| -1       | Land and<br>Property       | Land aquisition                 | Transfer of right of land ownership               | No         |                                                                                                                 |                                   |
|          | riopeny                    | Resettlement                    | compensation<br>Transfer of rights of residence / |            |                                                                                                                 | ·                                 |
|          | 2.11                       | Resettiement                    |                                                   | No         |                                                                                                                 |                                   |
| 3        | Economic                   | Economic                        | compensation                                      | No         | · · · · ·                                                                                                       |                                   |
| 4        | Economic                   | activities                      | Loss of basis of economic activities,             | 00         |                                                                                                                 |                                   |
|          |                            | activities                      | such as land, and change of economic              |            |                                                                                                                 |                                   |
|          |                            | Employment                      | structure                                         | *          |                                                                                                                 | O D I                             |
|          |                            | Employment                      | Increase or decrease of employment                | Increase   | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - | Const. Period                     |
| -        |                            | 7.00                            | opportunity                                       | · ·        |                                                                                                                 |                                   |
| 3        | Traffic and                | Traffic                         | Impact on present traffic conditions,             | Temporal   | Temporal                                                                                                        | Use of detour rout                |
|          | Public facilities          |                                 | increase of traffic congestion                    |            |                                                                                                                 | Safety control                    |
|          |                            | Public facilities               | Impacts on schools, hospitals caused              | No         |                                                                                                                 |                                   |
|          |                            |                                 | by increase of traffic volume                     |            |                                                                                                                 |                                   |
| 4        | Communities                | Disintegration of               | Community split due to interruption               | No         |                                                                                                                 |                                   |
|          |                            | communities                     | of area traffic                                   |            |                                                                                                                 |                                   |
|          | Amenity                    | Amenities                       | Increase or loss of existing amenities            | Increase   | Enhance                                                                                                         | Aesthetic conditio                |
| ð        | Historical and             | Historical assets               | Damage or loss of the value of                    | No         |                                                                                                                 |                                   |
|          | Cultural                   |                                 | historic or archaeological remains                |            |                                                                                                                 |                                   |
|          | 1                          | Oultural properties             | Damage or loss of the value of                    | No         |                                                                                                                 |                                   |
| -        | <b> </b>                   |                                 | cuitural assets                                   |            |                                                                                                                 |                                   |
| 7        | Vested rights              | Water rights and                | Obstruction of fishing rights, water              | No         |                                                                                                                 |                                   |
| <u> </u> |                            | rights of common                | rights, or other rights of common                 |            |                                                                                                                 |                                   |
| \$       | Waste                      | Waste                           | Generation of construction and                    | Yes        | Temporal                                                                                                        | Obligation to the                 |
|          |                            |                                 | demolition debris                                 |            |                                                                                                                 | construction side                 |
|          | Hazards                    | Risk and damage                 | Risk of accidents, traffic damage                 | Slightly   | Temporal                                                                                                        | Safety control                    |
| _        | tural Environs             |                                 |                                                   |            |                                                                                                                 |                                   |
| 10       | Land                       | Topographic feature             | Changes of valuable topographic                   | No         | 1                                                                                                               |                                   |
|          | ļ .                        | /river bank and bed             | land form condition                               |            | ·                                                                                                               | l                                 |
|          | ł .                        | Geological condition            | Changes of geological condition                   | No         |                                                                                                                 |                                   |
|          |                            | Land use                        | Change of original land use                       | No         |                                                                                                                 | Negligible                        |
|          | l .                        | Soil erosion                    | Topsoil erosion by rainfall after                 | Slightly   | Temporal                                                                                                        | Negligible                        |
|          |                            |                                 | earth work and vegetation removal                 |            |                                                                                                                 |                                   |
| 13       | Surface water              | Hydrological feature            | Changes of flow variation                         | No         | <b></b>                                                                                                         |                                   |
|          | .: '                       | Water use                       | Change of existing water use                      | No         |                                                                                                                 |                                   |
|          | · ·                        | Water quality                   | Change of water quality                           | slightly   | Temporal                                                                                                        | Negligible                        |
|          |                            | Floating debris                 | Floating obstacles                                | No         |                                                                                                                 | · · · · · · · · · · · · · · · · · |
|          | I                          | Flood affection                 | Flood affected area                               | No         |                                                                                                                 |                                   |
| 12       | Species and                | Terrestrial vegetation          | Obstruction of valuable species and               | No         |                                                                                                                 |                                   |
|          | their                      | /flora<br>Terrestrial wildlife  | their community, habitat                          |            | <b> </b>                                                                                                        |                                   |
|          | population,                |                                 | Obstruction of breeding and extinction            | No         | 1                                                                                                               |                                   |
|          | habitat                    | /fauna                          | of species, communities, habitat                  | <u> </u>   |                                                                                                                 |                                   |
|          |                            | Aquatic flora                   | Obstruction of valuable species                   | No         |                                                                                                                 |                                   |
|          | · · · ·                    | Aquatic fish fauna              | Obstruction of breeding and extinction            | Slightly   | Temporal                                                                                                        | Negligible                        |
|          | <b></b>                    |                                 | of species, communities , habitat                 |            |                                                                                                                 |                                   |
| 13       | Aesthetics                 | Landscape                       | Changes of lopography and vegetation              | No         |                                                                                                                 |                                   |
|          |                            |                                 | due to reclamation. Deterioration of              |            |                                                                                                                 |                                   |
| Da       | t<br>Nution                | l                               | aesthetic harmony by structure                    |            | <u> </u>                                                                                                        | L                                 |
|          |                            | ·····                           |                                                   |            | · · · · · · · · · · ·                                                                                           |                                   |
| 15       | Atmosphere                 | Air pollution                   | Pollution caused by exhaust gas or                | Slightly   | Temporal                                                                                                        | Control of soil du                |
|          | Į                          |                                 | toxic gas from vehicles                           |            | <u> </u>                                                                                                        |                                   |
| ю        | Water                      | Water pollution                 | Pollution by inflow of silt, sand and             | Slightly   | Temporal                                                                                                        | Negligible                        |
|          | <b>.</b>                   |                                 | effluent into rivers                              |            | L                                                                                                               |                                   |
| 17       | Noise and                  | Noise and vibration             | Generation by construction machinery              | Slightly   | Temporal                                                                                                        | Control operation                 |
|          | vibration                  |                                 | and traffic vehicles                              |            |                                                                                                                 | hour.                             |
|          |                            |                                 |                                                   |            | 1                                                                                                               |                                   |
| 0        | erall evaluation           |                                 | cessary for the project implementation?           | Need of    |                                                                                                                 |                                   |

## Table 3.24 Form for Environmental Impact Consideration

÷

## Table 3.25 Form of Environmental Assessment Matrix

la posta posta d

#### Impact Assessment Mark:

- $\mathbf{P}$ : Possibilities of highly negative environmental impact are noted, but a solution has already been found.
- A: High possibilities of negative impact, but data obtained to predict the extent is insufficient.
- X: Remaining notable negative impact is perceived.
- E : Notable improvement of environment is perceived.

5

#### 3.6.5 Results of the Study

The results of the environmental inspection are presented in Appendix II-7 (Volume 4/8) for each of the 20 bridges.

Most of the bridge sites were apart from inhabitant or settlement, and the project activities were not so large. There were generally slight or temporary actions. Existence of historical or cultural assets were unlikely around the bridges. From the view of natural ecosystem, there was no critical place but reverie area, that meant less possibility of the existence of valuable natural flora and fauna resources.

#### (1) Bridges for Repair

For the bridge sites of repairs among the 20, all activities of environmental components from socioeconomic through pollution were evaluated 'No effect' or positive side, for the project activities were limited to partial work for bridge repairs. At some bridges, there were slightly or temporary effects noted, but they were judged negligible.

#### (2) Bridges for Reconstruction

For the bridge sites of reconstruction among the 20, some activities of environmental components of socioeconomic, natural environment and pollution were evaluated 'Yes' or negative side, for the projects involved construction of bridges. In this case, one of significant activities might be land acquisition and its related resettlement in the socioeconomic environment, if there were private lands and inhabited within the site of bridge construction. Also, the problem of traffic congestion was considered during construction.

As regards soil erosion, water quality and aquatic fish fauna, there might be considered of temporary affects. Also, air pollution due to dust might be caused by the earthwork in dry summer season. Noise caused by operation of construction equipment might affect cattle ranch if there was any nearby.

## 3.7 RECOMMENDATION FOR BRIDGE REHABILITATION IN CHILE

## 3.7.1 Timber Bridges

#### (1) Cause of Collapse

Timber has been commonly used for short span bridges as temporary on gravel surfaced local roads, which are mainly in Regions VIII, IX, and X of forested area. Urgent problem of timber bridge to be solved is that about 40 to 50 timber bridges have annually collapsed in last 10 years, according to the MOP. Causes of collapse are as follows:

Heavy loaded vehicles

Heavy vehicles such as dump trucks, semi-trailers loaded with lumber products and road construction equipment are passing on the timber bridges which loads are more than twice of the load limit written on sign boards.

Deterioration

Lot of timber bridges have already severely deteriorated due to weathering and decay by bacteria, fungi, moss, and insects. Heavy vehicles also cause abnormal deflection and lateral movement which promote more deterioration to mechanically connected portions of the structure.

• Erosion of river bank

Some bridge beams seated directly on a bank without abutment and without proper bank protection (bank seat type) will cause land erosion, settlement and damage to the structure.

Scouring of foundation

Shallow embedding depth of concrete or rail pile foundation have seriously scoured causing pier column to sink.

#### (2) Maintenance and Repair

The followings are necessary measures for maintenance and repair.

- Periodical creosote treatment on surface, in cracks and mechanically connected portions every 2 –
   4 years after construction.
- · Fastening loosed connections of main members and hand railing.
- Strengthening splits of timber columns by steel plate connection.
- Cleaning soil and debris around location of end beams which can easily decayed due to moist of environment.

- · Replacement of damaged or weathered longitudinal planks and deck planks.
- River bank protection and river bed protection for the bank seat type and wire mesh gabion or dumped stone for locally scoured pier foundation.

## (3) Design and Construction

## 1) Design

Beams should be designed to satisfy both working stress within allowable stress and beam deflection limitation within 1/300 ratio of span length for enough bending stiffness. Allowable bending stress of wood is as follows:

| Kind of tree          | Young's modules<br>(kg/cm <sup>2</sup> ) | Allowable bending<br>stress parallel to<br>grain (kg/cm <sup>2</sup> ) | Remarks                    |
|-----------------------|------------------------------------------|------------------------------------------------------------------------|----------------------------|
| COIGUE (Chilean tree) | 105,500                                  | 96                                                                     | Santiago university        |
| Needle-leaved tree    | 100,000                                  | 90                                                                     | Japanese specification for |
| Broad-leaved tree     | 100,000                                  | 120                                                                    | timber bridge (1940)       |

The height of timber beam should be more than 1/18 - 1/20 of span length in order to limit deflection less than 1/300 of span length.

Type of bridge and applicable span length for design load of 9 ton's vehicle are shown below:

| Type of Bridges                        | Span Length (m) |   |    |       | Number of  | Height of |
|----------------------------------------|-----------------|---|----|-------|------------|-----------|
|                                        |                 | 5 | 10 | 15 20 | Beam (Nos) | Beam (cm) |
| Simple Beam                            | 4               | 7 |    |       | 5 ~ 6      | 30 - 40   |
| Double Truss and<br>Rigid Frame        | 6               |   |    | 15    | 5 - 6      | 30 - 40   |
| Fink Type (Reversed queen-post girder) |                 | I | ,  | 18    | 5 - 6      | 30 - 40   |

Simple beam of 7 m in span length is maximum practical for sawn-timber bridge. Fink type bridge (reversed queen-post girder) has considerably deformed due to elongation of steel bars, loosened nuts and sink of anchor plate into timber, therefore, this type is not recommendable.

If design load over 10 tons is required for timber bridges, the built-up beams (2-beams in layer) is to be applied and designed.

- 2) Construction
  - a. Selection of timber

The seasoned (naturally dried) timber, not the green one should be used because of less strength depending on moisture content and possibility of cracks (checks, shakes and splits). The timber which have defects of knots, cracks or decayed spots should not be used.

b. Preservative treatment

Non-pressure treatment with creosote is usually used in Chile. This treatment protect growth of fungus, attack of insects, and also water proofing the timber. Creosote treatment should be carried out two-times on surface, in cracks and mechanically connected portions at construction stage.

c. Bolt connection

A bolt not smaller than 16 mm in diameter should be used for connection of main members. Size of washer should be 3.5 times of bolt diameter and thickness to be at least 1/3 of bolt diameter.

#### 3.7.2 Concrete Bridges

Concrete is a major material commonly used in Chile for bridge construction both of super- and substructures. During the bridge inspection work, various damages of concrete were observed namely crack, scaling/spalling, delamination, efflorescence, honeycomb, breakage, teakage, etc., which were detailed in Chapter 3.2.2.

The causes of those damages are classified as follows:

- Inadequate Design: may cause shortage of strength and stiffness of bridge structures.
- Poor Construction Workmanship: decreases durability of bridge; such as insufficient compaction of concrete, cold construction joint, shallow concrete cover, etc. deteriorate strength and water-tightness of concrete.
- Poor Quality of Materials: also decreases durability of bridge; such as saltish water and alkaline
  aggregates for concrete mixture, accelerate corrosion of reinforcement to induce large cracks.
- Environmental Affection: accelerates carbonation of concrete; such as chemical attack by carbon dioxide and other acidic gases in the air and rains, deteriorate concrete seriously.
- Unexpected External Forces: may damage bridge structure decisively; such as over-loaded traffic, big earthquake, and large flood, which bring about excessive stress in structure beyond the design stress level assumed, may sometimes wreck bridges.

Among various causes of damages of concrete bridges as above mentioned, the majors observed were cracking, scaling, spalling, and delamination.

## 3.7.3 Steel Bridges

#### (1) General Problems of Steel Bridges

Steel material is utilized not only for main girders, but for bearing shoe, expansion joint, hand rail and so on. Described below are some matters on damages of steel material used as parts of bridges and other matters affecting the damages of steel.

#### 1) Main Structure

- a. Welded plate girders, rolled H-shapes or assembled rails are employed as a main girder. Occasionally main girders are modified, transported and reused for the other bridge.
- b. Many of steel bridges in Chile have rust on them even under a good atmosphere, supposedly because of leaving it without maintenance for a long period and the lack of maintenance looks to be the biggest cause of the corrosion.
- c. As the outer surfaces of web plate of main girders is well ventilated, they rust less than the inner surfaces.
- d. Steel girders with timber deck usually rust severely, for the timber deck has gaps between planks and from the gap drop water and mud.
- e. Rain water creeping down along the web plate goes to bottom surface of lower flange, and remains there. The water drops hanging down from the flange bottom bring about bad corrosion.
- f. Field joints are made not by high tensile grip bolts but by welding. The butt welding are not finished by grinding. The former is nowadays a much easier method of connection than the latter.
- g. Most of cross frames are of X-shape composed of rolled angle shapes joined back to back each other, or sometimes steel round bars, which are not strong enough, are used.
- h. Each member for lateral bracing is assembled in the same manner as those of the cross frame mentioned above.
- i. Because of difficulty of procuring the steel materials and in order to save the materials for the web plates, steel plates are connected by welding side by side and up-and-down to constitute a sheet of plate.

- j. Sometimes vertical stiffeners are found attached to the outer side of web plates, and this will cause dust, leaves and then moisture to be accumulated on top of the lower flange. The moisture is, no need to say, the direct cause of rust on steel materials.
- 2) Bearing Shoe
  - a. Although the height of bearing is too low to observe the condition of the bearings, the type is supposed to be the one composed of two steel plates, so-called linear bearing type. They are stuffed completely with mud, and supposedly are not functioning as a bearing shoe.
  - b. As expansion joint is usually not installed, or even in case of having it drainage from deck through a gap of expansion joint is not taken into account, water and mud drop down and accumulated near bearing shoes. This is the main cause to deteriorate bearing shoes.
  - c. Occasionally main girders are mounted on the top of substructures directly without bearing shoe, and therefore this will do harm to these girders.
  - d. A bearing shoe is usually equipped with a pair of anchor bolts, but they do not look strong enough to resist horizontal earthquake force. Anti-seismic bars inserted into a cross beam are expected to resist the force.
  - e. An elastomeric bearing is used, and a bearing which employs lead instead of neoprene also exist.
  - f. Most bearing shoes seat too close to the edge of bridge seat, which means a danger of shearing fracture of concrete by a heavy reaction force or fall-down of main girders from bridge seat under earthquake force.
- 3) Deck Slab
  - a. Timber or reinforced concrete are used as the materials for deck slab. Timber planks are arranged perpendicular to the main girders with proper gaps so that rain water can easily drained away from the deck surface in case of timber bridge. On the other hand for a steel bridge, timber planks are laid on the steel girders so that the longer side of the cross-section of the timber planks stand vertically to make them more rigid by the method so-called "paquete" in Spanish, and in this case the gaps between the floor materials are less narrow or they contact each other.
  - b. When a deck is made of concrete, then it is usually paved by concrete as well.

- 4) Expansion Joint
  - a. In case of a timber deck, generally there's no expansion joint but a gap of several centimeters wide is given between parapet and timber deck. Water and mud fall down from the gap, and they are deposited around the bearing so deeply as to conceal the bearing totally.
  - b. In case of a concrete deck, generally expansion joints are installed at both ends of the deck, but their purpose is just to cover and protect the edge of the concrete deck, and not to support a wheel load when it is exactly on the gap. The disadvantage of the expansion joints in the latter type is that when the gap is narrow, then mud and stone stay between the gap, and when it is wide, then wheel load gives an impact to the edge of the concrete and does harm.
  - c. The expansion joints usually are not equipped with gutter which may process water from the deck surface.
  - d. Many expansion joints were found not functioning normally because they catch heavy mud and many stones in the gap.
  - e. And also many steel expansion joints are found that the face plates have been worn out or corroded, and in some case part of the face plate are lost.
- 5) Hand Rail
  - a. When a deck is made of timber, then the hand rails of the bridge are of timber as well. When a deck is of concrete, then the hand rails are of steel or concrete.
  - b. Steel hand rails are utilized more than the concrete one these days in order to reduce the dead weight.
  - c. The materials for the steel hand rails is usually steel flat bars of only 3 to 4 millimeter thick. This type of hand rails is not strong enough to resist a collision load of vehicles, but aims to prevent pedestrians from falling down.
  - d. Wrong structure of steel hand rail were found sometimes during the detail inspection, that is, a post of hand rail was fixed at an abutment but the next post was fixed at the end of bridge deck, this will result in unnecessary tensioning through the top rail because the rail connects these neighboring posts.
  - e. It was often found that hand rails were not properly maintained even if they were seriously corroded, or heavily deformed due to collision.

#### 6) Drainage System

- a. For a timber deck, there's no need a drainage system at all for the reason described in (3) Deck Slab.
- b. For a concrete deck, short pipes of usually 50 cm long with diameter of approximately 5 to 7 cm are set up at both sides of road way penetrating the concrete slab. These pipes work as eatch basin and lead water from bridge surface down.
- 7) Others
  - a. Corrosion represents most of the damages on steel structure. When rust appears only on the surface of the steel, repainting will be sufficient to protect it against the further corrosion. On the other hand, the corrosion is so deep that the cross-section of the steel member decreases, then the other remedy by which it is compensated like patching of a steel plate.
  - b. Hand rails are exposed directly to the atmosphere, thus they tends to be corroded severely and quickly. They have to be maintained well, but in case that their damage is so serious they have to be replaced.
  - c. Expansion joints are exposed not only to the atmosphere but to the rubbing by tires of vehicles. The condition of the expansion joints affect the damage of deck, and so they have to be replaced.

#### (2) Sample Strengthening Design

As defined before in this report, reconstruction means to replace a whole bridge by a new structure to restore a bridge to the service level. There is a third way of rehabilitation of a bridge, that is strengthening, where the existing load carrying capacity and/or geometry of the bridge are improved. Although strengthening is out of scope of the study, some ideas of how to strengthen a bridge is being described hereafter taking Granallas Bridge as a sample, which consists of two span simply supported steel girders with timber deck. There was no signpost showing the load capacity, and neither the structural analysis nor the drawings of the bridge of those days were found.

The calculation refers briefly to:

- the penetration dye test and measurement of thickness of the existing steel plates of the structural elements conducted at the site of Granallas Bridge,
- analytical estimation of the present load carrying capacity of the bridge based on the data resulted from the measurement as mentioned above, and

- strengthening and improvement by replacing the timber deck by concrete slab deck to compose the steel girders with the concrete deck as a composite girder.

The result of the calculation shows that:

- the bridge has at present the toad carrying capacity of equivalent HS10-44 through a simple estimation, and
- in order to replace the timber deck by concrete as shown in **Figure 3.10**, lower flange plates have to be reinforced by thick steel cover plates, because the neutral axis goes up higher and then stronger tension stress works in the lower flange after the two materials are composed.

The calculation process is given in Appendix II-8 (Volume 4/8).

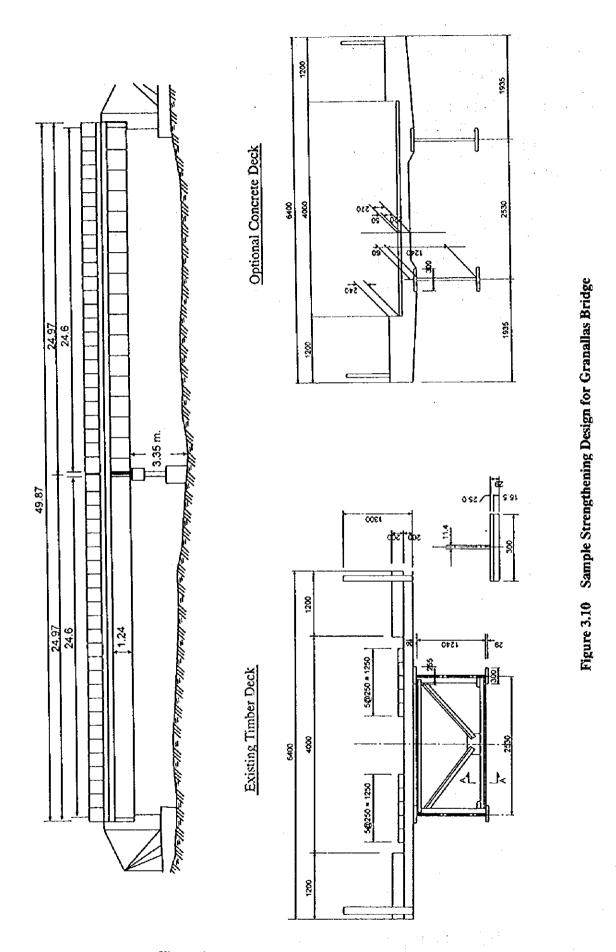
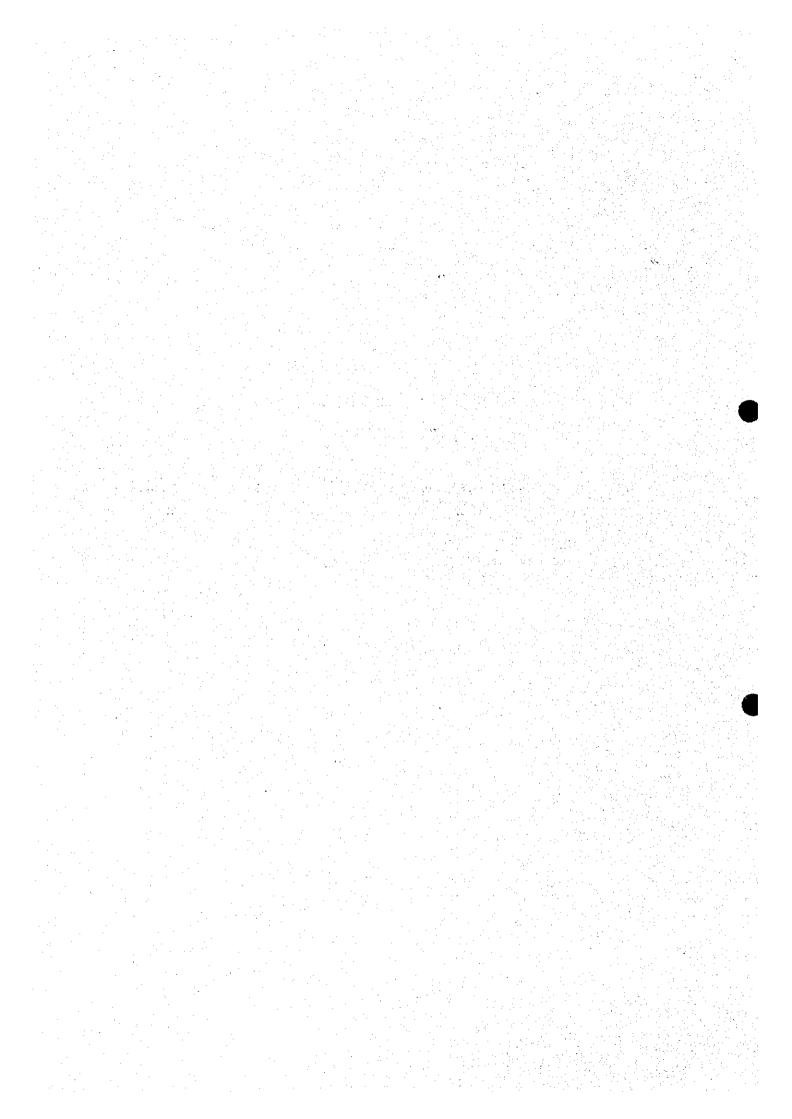




Figure 3.9 Sample Strengthening Design for Granallas Bridge

# CHAPTER 4 STANDARD BRIDGE CADD SYSTEM



## CHAPTER 4 STANDARD BRIDGE CADD PROGRAM

## 4.1 CURRENT COMPUTER USE IN CHILE

In August, 1995, 'Windows 95' was launched in USA and as early as a month later its Spanish version was put on market in Chile. Since then, the combination of the IBM-compatible computers (DOS/V) and the operation system(OS) of Windows 95 has become the standard use of personal computer(PC)s in the world and so in Chile.

In Chile, the DOS/V PCs are dominant: the makers available are IBM, COMPAC, Acer, EPSON, HP, etc. and the most are pre-installed with Windows 95 Spanish version. The Macintosh OS machines are also found in Santiago but very few. The world common application programs such as MS-office and Lotus Super-offices are widely used in Chile, too.

As regards the programming language, on the base of Windows 95, 'Visual Basic 4.0' has begun to be used and take the place of 'Basic' in Chile. For the drawing program, 'Auto-CAD R12 (MS-DOS) for Spanish' and 'R13 (Windows) for English' are popularly used.

## 4.2 CURRENT BRIDGE DESIGN AND CONSTRUCTION PRACTICES IN CHILE

#### 4.2.1 Design Practice

## (1) Design Criteria

- 1) Design Standards: Fundamentally the MOP designs bridges in accordance with the AASHTO(American Association of State Highway and Transportation Officials) standards.
- 2) Design Vehicle Load: The MOP applies:
  - 120 % of the AASHTO's HS20-44 load for major highways and trunk roads, and
  - 100 % of the AASHTO's HS20-44 load for rural roads.
- 3) Earthquake: The MOP applies the earthquake coefficient of 0.15 all over the country.
- 4) According to an experienced bridge consultant who the Study Team interviewed in Santiago:
  - The other climate-related loads (such as wind load, snow load and temperature change), and river flow pressure are not usually taken account of for design of small-scale rural bridges. These loads are considered individually only for design of large bridges.
  - There is no particular standards for bridge design method in MOP, but service load design method is popular among the bridge engineers of Chile and strength design method is rarely used.
- 5) For the freeboard of bridge beams above the high-water-level, 1.0 m has been conventionally taken as a minimum value.
- 6) Footings are usually designed to be embedded not less than 1.0 m deep into the hard riverbed which will not be scoured.

## (2) Bridge Types

- For 10 to 25 m span range; many RC(Reinforced Concrete) cast-insitu beams, applying cantilever method for longer spans, had been constructed before, but nowadays they have been taken the place by pre-cast PC (Prestressed Concrete) beams.
- 2) Regarding PC beams:
  - PC beams are generally economical compared to steel beams for short to medium span bridges in Chile.

- For 15 to 25 m span range; pre-tensioned PC beams are most often used for advantage in cost and construction.
- For 25 to 35 m span range; post-tensioned PC beams are usually used depending on site condition and for the transportation difficulty of pre-tensioned beams.
- 3) Regarding steel beams:
  - For over 35 up to 50 m span range; welded steel plate girders become competitive to PC beams under certain site condition such as difficult access of heavy equipment.
  - Even for the span range less 35 m; steel girders are sometimes used for special reasons such as skewed or curved designs.

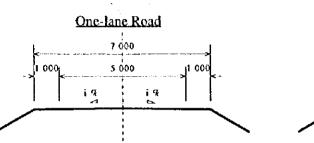
## 4.2.2 Construction Practice

## (1) Construction Methods

- 1) Factory-made bridge members
  - Precast concrete members are widely used in Chile for from drain ditches to building members. Pre-tensioned PC members are produced in several factories around Santiago mostly of electric poles and building members but a little of bridge beams.
  - Only two or three steel fabricators in Santiago manufactures steel bridge beams on order basis. Because the steel bridge market is so small in Chile, its design and fabrication remain just as they have been: (1) rivets are still used in regions, (2) field welded splices are designed although high strength bolts are available in Chile, (3) they prefer manufacturing steel shapes by welding steel plates rather than using rolled steel shapes.
- 2) Beam erection work
  - For short to medium span bridges if site is accessible, traveling crane is most often used together with temporary stages. The 50 to 80 ton class crane is most available in Chile, but the class over 150 ton is difficult to procure even in Santiago.
  - Where access is difficult but having enough space behind abutment, launching girder is used. Post-tensioned PC beams around up to 35 m are usually erected by this method.

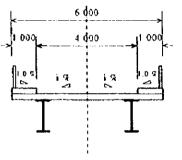
## (2) Construction Materials

- Cement is produced domestically here and the quantity is enough for domestic use.
- Chile is a treasure house having enough aggregate both in quality and quantity.
- Reinforcing bars are produced domestically except some import products.
- All prestressing steel is imported and structural steel is partially imported.

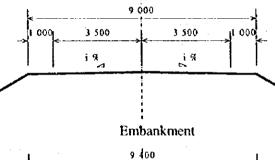

#### STANDARD BRIDGE TYPES AND DESIGN CONDITIONS 4.3

#### Road Hierarchy, Standard Width and Geometry 4.3.1

- (1) Road Hierarchy Rural road. ٠
  - Horizontally straight and Vertically level. :
- One or two lanes with sidewalks both sides. (3) Number of Lanes :
- (4) Standard Width


Geometry

(2)




•









Two-lane Road

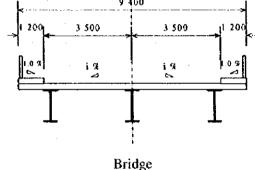
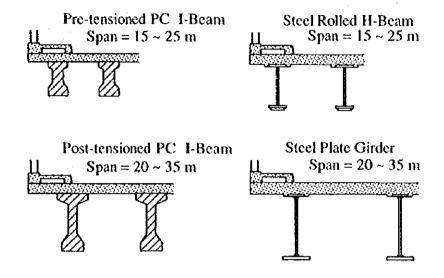


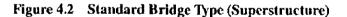

Figure 4.1 Standard Bridge Width

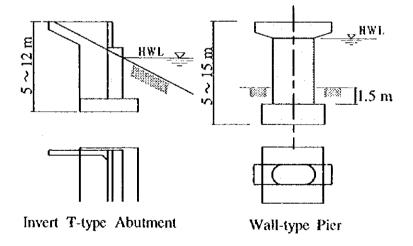
## 4.3.2 Design Conditions

(1) Design Standards **AASHTO 1992** 2

:


- (2) Design Method Service load (allowable working stress) design :
- (3) Design Loads
  - 100% of HS20-44 **Design Vehicle Load** 1
  - Earthquake : Acceleration coefficient, A = 0.15
  - Other Loads based on AASHTO. :


(4) Material Properties:


| Concrete Strength | : | Reinforced co  | oncrete : | H-30                 | f <sub>c</sub> ' = 250 kg/cm²  |
|-------------------|---|----------------|-----------|----------------------|--------------------------------|
|                   |   | Prestressed co | oncrete : | H-40                 | $f_{c}' = 350 \text{ kg/cm}^2$ |
| Reinforcement     | : | A63-42H        | fy = 4200 | ) kg/cm²             |                                |
|                   |   | A44-28H        | fy = 2800 | ) kg/cm <sup>2</sup> |                                |

| • | Prestressing Steel  | : | ASTM A416 Stress-relieved Seven-wire Strand. |
|---|---------------------|---|----------------------------------------------|
|   | Structural Steel    | : | based on ASTM or AASHTO.                     |
|   | Elastomeric Bearing | : | based on ASTM or AASHTO.                     |

## 4.3.3 Standard Bridge Types









#### 4.4 PROPOSED CADD SYSTEM

#### 4.4.1 Outline of CADD System

The outline of the whole CADD program is illustrated in Figure 4.4. The outline of each CADD program for superstructure (steel beam and PC beam) and substructure (abutment and pier) are shown in Figure 4.5 through Figure 4.8.

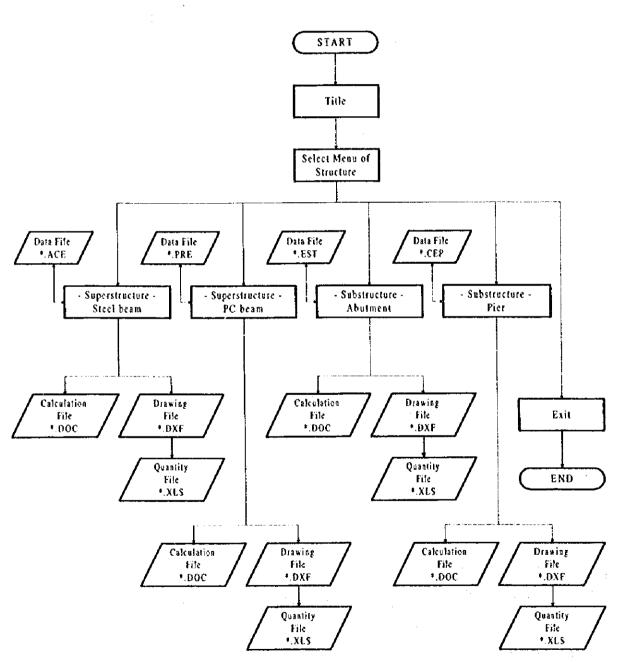
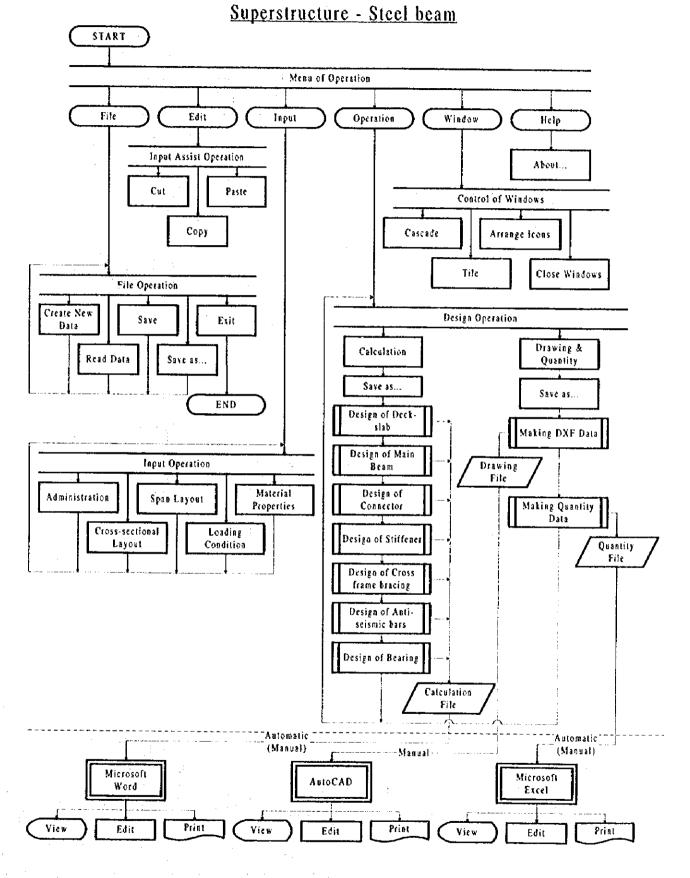




Figure 4.4 Outline of Whole CADD Program



# Figure 4.5 Outline of CADD Program (Steel Beam)

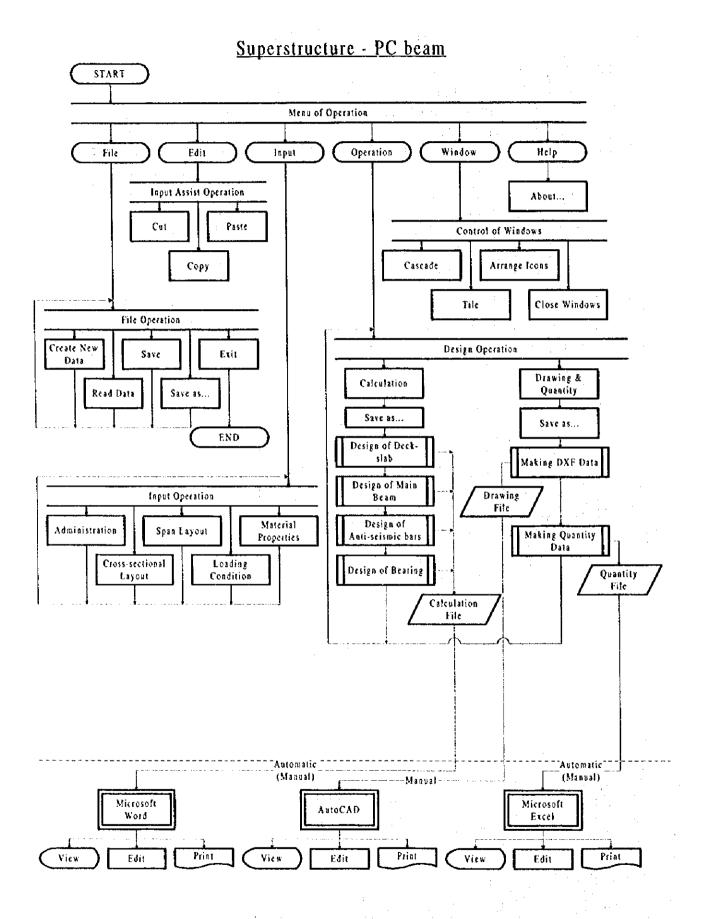
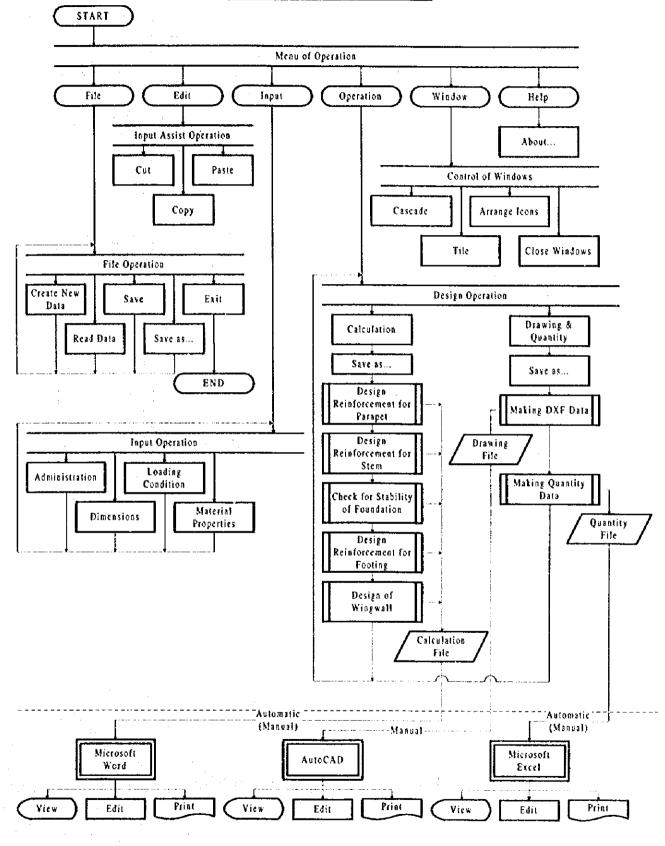




Figure 4.6 Outline of CADD Program (PC Beam)

4 - 8



Substructure - Abutment

Figure 4.7 Outline of CADD Program (Abutment)

Substructure - Pier

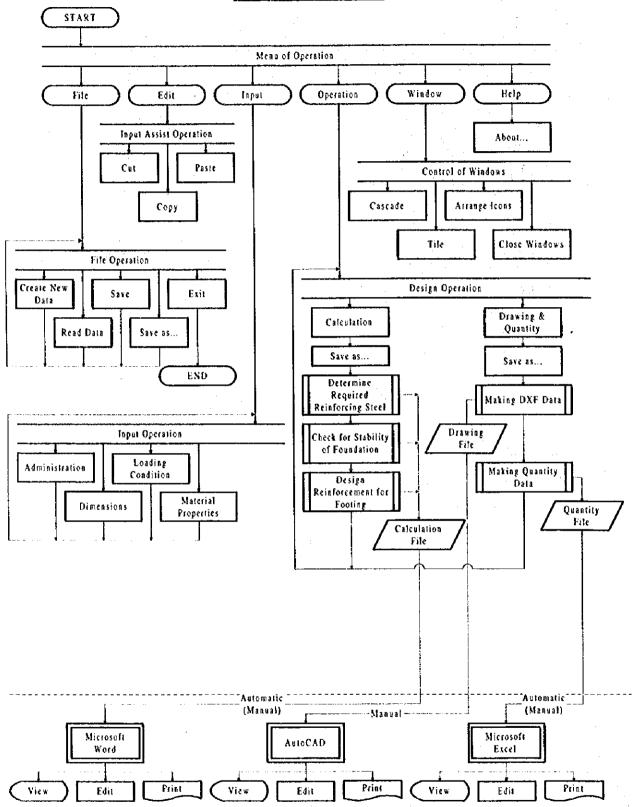



Figure 4.8 Outline of CADD Program (Pier)

4 - 10

# 4.4.2 Program Development

## (1) Scope of CADD Program

The scope and parameters of the CADD program are as follows:

| ٠ | Bridge types:            | Superstructure:   | Steel beam and PC beam.                          |
|---|--------------------------|-------------------|--------------------------------------------------|
|   |                          | Substructure :    | Abutment and Pier (only direct foundation).      |
| • | Number of lanes:         | One and two lan   | es.                                              |
| ٠ | Bridge width:            | 4.0 m for one fai | ne and 7.0 m for two lanes, that can be changed. |
| • | Cross-fall:              | Footpath:         | Fixed to 1.0%.                                   |
|   |                          | Roadway:          | 1.5% or 2.0%.                                    |
| • | Concrete strength:       | Can be selected   | H-30 or H-40, but it can be changed.             |
| • | Reinforcement:           | Can be selected   | A63-42H or A44-28H, but it can be changed.       |
| • | Concrete cover:          | Standard covers   | are shown but can be changed.                    |
|   |                          | Superstructure:   | deck slab: 3 cm, precast beam: 2.5 cm,           |
|   |                          |                   | insitu member: 3 cm                              |
|   |                          | Substructure:     | members in atmosphere: 4 cm,                     |
|   |                          |                   | members under earth or water: 7 cm               |
| • | Prestressing steel:      | Only ASTM A4      | 16 stress-relieved seven wire strand .           |
| • | Structural steel:        | A52-34ES, A42     | -27ES, or A37-24ES.                              |
| ٠ | Geometry:                | Cross-section of  | f bridge structure shall be symmetrical.         |
| ٠ | Span length:             | 10 to 40 m.       |                                                  |
| ٠ | Number of beams:         | 2 to 6 beams.     | Size and spacing of beams shall be uniform.      |
| ٠ | End cross-beam:          | Reinforced conc   | crete.                                           |
| ٠ | Intermediate cross-beam: | An intermediate   | cross beam for PC beam.                          |
| ٠ | Sway bracing:            | Spacing shall be  | e less than 6 m for steel beam.                  |
| • | Bearings:                | Elastomeric (rut  | bber) bearings.                                  |
| ٠ | Height of substructure:  | 5 to 15 meters.   |                                                  |
|   |                          |                   |                                                  |

# (2) Input and Output Language

The language for the CADD program shall be Spanish. The following special Spanish characters can be input through the Japanese keyboard by changing the keyboard property of Windows 95:

| Characters        | Key Operation          |
|-------------------|------------------------|
| [á,é,ú,í,ó]       | [:]+[a,e,u,i,o]        |
| [Á, É, Ú, Í , Ó ] | [:]+[A, B, U, I, O]    |
| [ñ,Ň]             | [ ; ], [Shift] + [ ; ] |
| [;,;]             | [ ^ ], [Shift] + [ ^ ] |

#### (3) Utilization of Windows 95's Functions

1) Output by OLE-Function

The OLE (object linking and embedding)-function equipped in 'Visual Basic' was utilized. By this function, the design results(outputs) of the program operation can be displayed and printed out on the form of Word and Excel.

2) Parallel Operation by MDI-Function

The MDI(multi-document interface)-function of Windows 95 allows the parallel operation of several documents on the different windows of display and they are controlled under each home window. With this function, the CADD program is divided into four sub-programs (Steel Beam, PC Beam, Abutment, and Pier) and each is installed in separate home window.

3) File Management by Filename Extension

All input and output files are distinguished by the following extension codes:

| ٠ | Input Data Files:  | Steel Beam | *.ACR             |
|---|--------------------|------------|-------------------|
|   |                    | PC Beam    | *.PST             |
|   |                    | Abutment   | *.EST             |
|   |                    | Pier       | *.CEP             |
| • | Output Data Files: | Design     | *.DOC( MS-Word )  |
|   |                    | Drawing    | *.DXF( Auto-CAD ) |
|   |                    | Quantity   | *.XLS(MS-Excel)   |

#### 4.4.3 Input and Output Formats

#### (1) Design Calculation Formats

The design calculation formats listed below are shown in Program Operation Manual.

- Select Menu of Structure
- Superstructure (Steel beam)
- Superstructure (PC beam)

- Substructure (Abutment)
- Substructure (Pier)

# (2) Drawing Formats

The drawing formats listed below are shown in Standard Bridge Drawings.

- 1) Superstructure(Steel beam)
  - Reinforcement arrangement of deck slab and end cross beam
  - Details of main beam
  - Details of sway bracing and lateral bracing

## 2) Superstructure(PC beam)

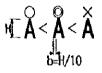
- · Reinforcement arrangement of deck slab and end cross beam
- Reinforcement arrangement of main beam
- 3) Substructure(Abutment)
  - Reinforcement arrangement of stem wall and footing
  - Reinforcement arrangement of wing wall
- 4) Substructure(Pier)
  - Reinforcement arrangement of wall and footing

#### (3) Summary Tables of Quantities

The summary tables of quantity listed below are shown in Standard Bridge Drawings too.

- Steel beam
- PC beam
- Abutment
- Pier
- Reinforcement table
- Structural steel table

### 4.4.4 Drawing Specifications


#### (1) Color and Thickness of Lines and Letters

Shown in the table below are kinds of color and thickness for the lines and letters used in drawings.

| Cotor of Line | Thickness of Line (mm) |
|---------------|------------------------|
| Red           | 0.18                   |
| Yellow        | 0.80                   |
| Green         | 0.35                   |
| Blue          | 0.50                   |
| White         | 0.20                   |

Table 4.1 Color and Thickness of Lines and Letters

Thickness of a letter line shall be less than one tenth of height of a letter.



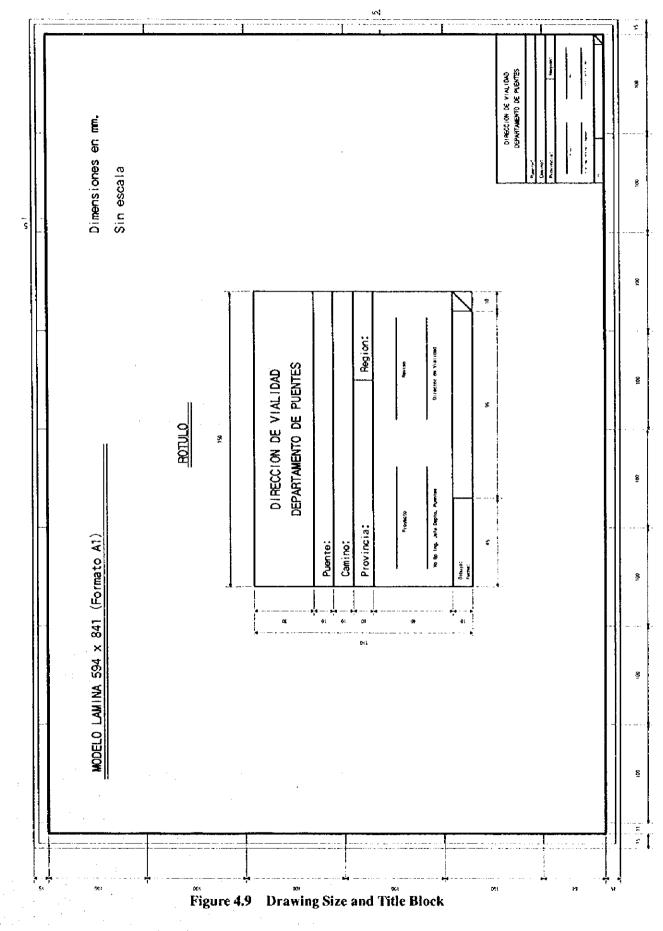
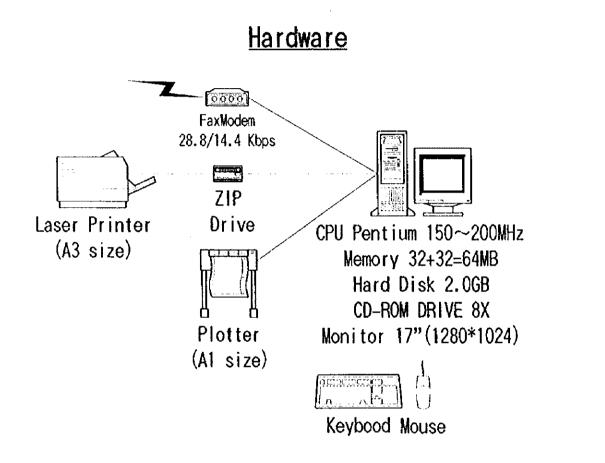

Types of lines used in drawings are shown in the table below.

Table 4.2 Types of Lines


| Type of Line         | Sample |
|----------------------|--------|
| Solid line           |        |
| Dotted line          |        |
| Dash and dotted line |        |

#### (2) Size of Drawing

Drawing size and a drawing title are shown in Figure 4.9.







(3)

# <u>Software</u>

MS-Windows95

MS-Visual Basic4.0 Enterprise Edition for Windows95(CD-ROM) MS-Office PRO for Windows95(Word, Excel, Access, etc) (CD-ROM) AutoCAD R13 for Windows95 (CD-ROM)

Figure 4.10 Computer Hard- and Soft-ware for CADD Program

## 4.6 DEVELOPED CADD PROGRAMS

٩

**(1)** 

The details of the developed CADD programs are explained in "CADD Program Operation Manual". A part of input operation is shown in Figure 4.11.

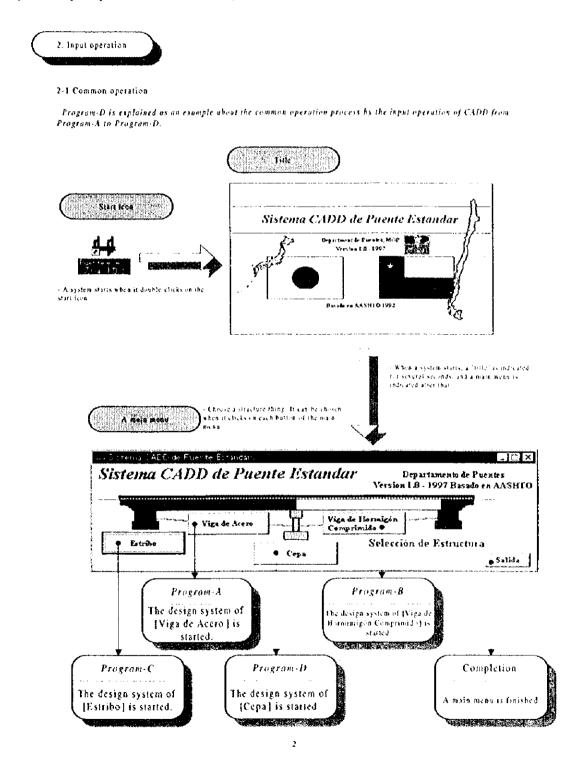



Figure 4.11 Input Operation of CADD Program

# 4.7 PREPARATION OF STANDARD BRIDGE DRAWINGS

- 4.7.1 Design Conditions
- (1) Design Method: Allowable Stress
- (2) Loads

| I) | Dead Loads | Plane Concrete      | : | $W_{c} = 2.30  t/m^{3}$               |
|----|------------|---------------------|---|---------------------------------------|
|    |            | Reinforced Concrete | : | $\gamma_{\rm C} = 2.50 \text{ t/m}^3$ |
|    |            | Steel               | : | $\gamma = 7.85 \text{ t/m}^3$         |
|    |            | Pavement            | : | $\gamma = 2.30 \text{ t/m}^3$         |
|    |            | Soil                | : | $\gamma_{\rm S}=1.80~t/m^3$           |

- 2) Horizontal Force of Railing :  $W_B = 0.050 \text{ t/m}, W_L = 0.020 \text{ t/m}, h = 1.100 \text{ m}$
- 3) Sidewalk Live Load

Lc ≤ 7.6 m  $\rightarrow$  W<sub>p</sub> = 0.415 t/m<sup>2</sup> Where  $\rightarrow$  Lc = Span Length 7.6 m < Lc ≤ 30.5 m  $\rightarrow$  W<sub>p</sub> = 0.293 t/m<sup>2</sup> 30.5 m < Lc

Wp = 
$$\left(147 + \frac{4464}{Lc}\right) \times \left(\frac{16.76 - (Sw - 0.25)}{15.24}\right) \times \frac{1}{1000}$$
  
※ In case of W<sub>p</sub>>0.293 → W<sub>p</sub> = 0.293 t/m<sup>2</sup> Where → Sw = Sidewalk width

- 4) Live Load : HS20-44(100%)
- 5) Wind :  $W_V = 0.244 t/m^2$
- 6) Earthquake : A = 0.15, Category B by Single Mode Spectral Method

### (3) Materials

| Slab Concrete   | : | H-30, $f_c = 250 \text{ kg/cm}^2$ , $E_c = 2.50 \times 10^5 \text{ kg/cm}^2$                                       |
|-----------------|---|--------------------------------------------------------------------------------------------------------------------|
| Beam Concrete   | : | H-40, $f_c = 350 \text{ kg/cm}^2$ , $E_c = 3.01 \times 10^5 \text{ kg/cm}^2$                                       |
| Reinforcing Bar | : | A63-42H, $f_y = 4200 \text{ kg/cm}^2$ , $f_{sa} = 1690 \text{ kg/cm}^2$ , $E_s = 2.10 \times 10^6 \text{ kg/cm}^2$ |
| Concrete Cover  | : | 3.0 cm (Lateral Beam 2.5cm)                                                                                        |
| Anchor Bar      | : | A44-28H , $f_y = 2800 \text{ kg/cm}^2$ , $f_s = 1400 \text{ kg/cm}^2$                                              |
| Steel           | : | A52-34ES, $f_y = 3400 \text{ kg/cm}^2$ , $f_{sa} = 1870 \text{ kg/cm}^2$                                           |
| Bolt            | : | ASTM A490, $f_{sa} = 1400 \text{ kg/cm}^2$ , $\phi = 22 \text{mm}$                                                 |
| PC Cable        | : | 1-12.7 (Pre-tensioned), 7-12.7 (Post-tensioned)                                                                    |
|                 |   | $f_{pq} = 18980 \text{ kg/cm}^2$ , $f_{py} = 16100 \text{ kg/cm}^2$ , $E_s = 1.97 \times 10^5 \text{ kg/cm}^2$     |

# 4.7.2 Design Parameters for Standard Bridges

The following design parameters are attached:

 Table 4.3
 For steel beam – one lane

 Table 4.4
 For steel beam - two lanes

Table 4.5 For PC beam - one lane

 Table 4.6
 For PC beam - two lanes

After the tables, some samples of standard bridge drawings are presented. The full set of the standard drawings are in Volume 8/8.

(1-Lane)

Table 4.3 Design Parameter of Steel Beam for 1-Lane

| Kd(t)<br>RL(t)     | - 32       | 5       | 18.956              | ē               | 19.396                     | 17 233                 | 19.707             | 8               | 19.929       | 21.585                 | 20.089       | 23.930           | 20.206              | 37 404      | 23.715         | 40.183    | 23.784       | 43,379        | 23,831        | 46.570        |               | 23.862    | 49.742        |               | 23.880   | 52.948                     |                     | 23.888   |
|--------------------|------------|---------|---------------------|-----------------|----------------------------|------------------------|--------------------|-----------------|--------------|------------------------|--------------|------------------|---------------------|-------------|----------------|-----------|--------------|---------------|---------------|---------------|---------------|-----------|---------------|---------------|----------|----------------------------|---------------------|----------|
| RL(t)<br>RL(t)     | ы<br>      | 13.521  | 1                   | 15.421          |                            | 1                      |                    | 19.670          |              | <b>1</b>               | - 1          |                  |                     |             | - 1 A B        |           | · .          |               |               |               | ·             |           |               |               |          |                            |                     |          |
| WA<br>Weine        | ы          | 90.86   | 199.99              | 58.36           | 199.84                     | 96.76                  | 199.46             | 122.30          | 198.52       | 124.43                 | 199,19       | 141.34           | 198.35              | 93.14       | 229.84         | 92.98     | 229.63       | 102.06        | 229.38        | 106.10        |               | 229.01    | - 111.45      | · .           | 229.24   | 115.84                     |                     | 228.90   |
| Wĸ                 | 26         |         | 6181.61             |                 | 6938.31                    |                        | 7695.02            |                 | 8524.36      |                        | 9324.24      | : ;              | 10094.09            |             | 12841.33       |           | 13772.99     |               | 14751.41      |               |               | 15676.01  |               |               | 16633.84 |                            |                     | 17559.16 |
| S. Weight          | ม          | 7904.71 |                     | 9487.37         |                            | 10740.35               |                    | 15116.53        |              | 16872.61               |              | 20862.36         |                     | 14865.92    | -              | 15955.00  |              | 18799.32      |               | 20816.80      |               |           | 23203.12      |               |          | 25507.09                   |                     |          |
| ×<br>S             | ส          | +       | 30.91               |                 | 34.72                      | -                      | 38.58              |                 | 42.94        | 1                      | 46.81        | 2                | 50.89               |             | 55.87          |           | 59.98        | 1             | 64.31         | 4             |               | 68.45     |               |               | 72.56    | 2                          |                     | 76.71    |
| Area               | ន          | 87.00   |                     | 99.00           |                            | 007111                 |                    | 123.60          |              | 135.60                 |              | 147.60           |                     | 25nd 159.60 |                | 171.60    |              | 184.20        |               | 196.20        |               |           | 208.20        |               |          | 220.20                     |                     |          |
| A.S.B.             | ន          | •       |                     | φ 22n2          |                            | ¢ 22n2                 | -                  | ¢ 22n2          |              |                        |              | ¢ 22n2           |                     | ¢ 25n4      |                | ¢ 25n4    |              | \$25n4 184.20 |               | ¢ 25n4 196.20 |               |           | φ 28n4        |               |          | <b>♦ 28n4 220.20</b>       | . **<br>            |          |
| S. Bracing         | 21         | 0,10    |                     | 300/C300×100×10 |                            | 150 300 300 300 100 10 |                    | 400 C300×100×10 |              | 400 C300×100×10 ¢ 22n2 |              | 400 C300×100×10  |                     | L-80×80×8   |                | L-80×80×8 |              | L-80×80×8     | 10<br>10      | L-80×80×8     |               | 1.1       | L-80×80×8     |               |          | L-80×80×8                  |                     |          |
| Pc S. 1            | _          | 2       |                     | 00<br>C3<br>00  |                            | 00C300                 |                    | 00 C 300        |              | 80030                  |              | 030<br>030       |                     | 400<br>L    |                | 400 L.S   |              | 400<br>L-8    |               | 400 L-8       | :             |           | 400 L-8       |               |          | 400 L-S                    |                     |          |
| 2                  | ł          | -       |                     | 150 3           |                            | 150 3                  |                    |                 |              | 8                      |              | 8                | $\square$           | 8           |                | 8         |              | 20            |               | 200 4         |               |           | 200           |               |          | 5<br>50                    |                     |          |
| x(stud)            | 3          |         |                     | 4.700           |                            | 5,100                  |                    | 7.800 200       |              | 8.600                  |              | 8.600            |                     | 8.000       |                | 5.800     |              | 6.400         |               | 1.000         |               |           | 7.000         |               |          | 4.200                      |                     |          |
| um × uu<br>um × uu |            |         | 1-                  |                 |                            |                        |                    |                 |              |                        |              |                  |                     | 222         | 53             | 2X2       | ŝ            | ž             | ž             | 32            |               | 7×2       | 3x2           |               | 7X2      | 42                         |                     | 8        |
|                    | yin yi     |         |                     |                 |                            |                        |                    |                 |              |                        | Γ            |                  |                     | 5.850       |                | 6.300     | 2×14         | 6.750         | 2XIS          | 8.575         | 2×17          | •         | 9.163         | 2×18          |          | 9.750                      | 2×18                |          |
| н Сна              | 71         | 3       |                     |                 |                            |                        |                    |                 |              |                        |              |                  |                     |             |                |           |              | 905           | 120×16        | 320           | 120×16        |           | <del>9</del>  | 120×16        |          | 360                        | 120×16              |          |
| Chief H Chief      |            |         | 3 2.400             | 12,400          |                            | 3 2.400                |                    | 32.400          | ļ            | 12 400                 |              | 12 400           |                     | 2 3 000     |                | 2 3 000   |              | 23.000        |               | 2 3.000       | <br>          | <br> <br> | 2 3.000       |               |          | 2 3 000                    |                     |          |
|                    |            | ≺ .     | 0 10@100            |                 |                            |                        |                    |                 | ŧ.           |                        | <b>_</b>     |                  |                     |             | 5@175          | 521.007   | 6@175        |               |               |               | <b>I</b>      | 6@175     | 6@125         | ļ             | 6@175    | 5@125                      |                     | 6@175    |
|                    | -          |         | =<br>•<br>•         |                 | 6                          |                        | Ð                  |                 | -9           | 4                      |              | 1<br>+<br>-<br>- | • •                 | ÷           | F<br>F         | Ę         | Ē            | •             | 9             | 9             | <u> </u>      | ÷<br>†    | ÷<br>•        | _             | ÷<br>e   | 9                          | -                   | ë<br>Đ   |
| -                  |            | 2       |                     | ş               |                            | 350                    |                    | Ę               |              | S.                     |              | Ę                | 1                   |             |                |           | ╂─           | -             | ╁╌            |               | 1             |           | <b>†</b>      | <u> </u>      |          | -                          | 1-                  |          |
|                    | 5 4        | ~       | 2                   | 4               | 2 2                        | 2                      | 16                 | ~               | ~            | 2                      | <u>ې</u> ۲   | 2 8              | 3 8                 |             | _              |           |              | -             |               | _             | ÷             | -         | _             | -             | -        | _                          | _                   |          |
| Ŀ                  | <i>6</i> • | ~       | 8                   | Į               |                            | +                      | g g                | Ş               | 2            | 240                    |              |                  | _                   |             | -              |           | +            | 3 5           | s s           | 2<br>2<br>2   | 3             | ŝ         |               |               |          | S<br>S<br>S<br>S<br>S<br>S | 84                  |          |
|                    | -          |         | 2                   |                 |                            | _                      | _                  | -               | _            | _                      |              |                  | 3 8                 |             |                |           |              |               | _             | _             |               |           | ÷             |               |          | -                          | -                   |          |
|                    | د<br>      | _       | 8                   | 2               |                            | 2                      |                    |                 |              |                        |              |                  |                     |             |                |           |              |               |               |               |               | *         |               |               |          |                            |                     |          |
| .                  | 3   1      | 6       | 14.800              |                 | 2 100                      |                        | 400                | 000 21 71       | 80           | 200                    | V01+1 01     | S 7              | 10.000              | NC.4        | 4 800          |           |              | 27.C          |               | 17 400        | 008           | 006 5     | 18.400        | 014           | 0017     |                            | 8                   | 4,400    |
|                    | · .        | 4       | 7                   | ;               | 2                          | 2                      | 4                  | _               | _            | -                      |              | \$               | 2                   | 4           | 2              | 2         | 2            | 4             | 2             | 9             | 2             |           | ç             | -             | Ĺ        | 5                          | 2                   |          |
|                    | ΞL         | ~       | 0.800               |                 | 0.80                       |                        | _                  | 800             | <u>}</u>     | 200                    | 335.7        |                  | 8.                  |             | 2              |           |              | 3.            | 8             | 1 C .         | S.            |           |               | 100           |          |                            | 8                   |          |
|                    | Ľ٦]        | N       | 14.000              |                 | 16.00                      | 80.0                   | 10.01              | 200             | N.77         | 200                    | N. 77        |                  | 000-32 I            |             | 0.000          |           | N. 97        |               | MN'NC MN' NC  | 32,000        | 30.30         | **.       | 24 000        |               |          | No ye                      | 22.00               | l ·      |
|                    | (B)        | -       | 14.500              |                 | 00-01                      | 202                    |                    | 100             | 10.02        |                        | 2000         |                  | 79.90               |             |                | 8         | 80.02        |               |               | 002.02        |               |           | 2.1 700       |               |          | - 4 T                      | AV OC               |          |
|                    | INDEX      |         | 1-SRH-L14_n3 14.500 |                 | 1-SRH-L16_n3 16.500 16.000 |                        | MC 01 CU 017-HXC-I |                 | CU_077-UXC-1 |                        | 1-SKH-L.2_03 |                  | 1-SKH-L24_n3 24.600 | 0           | 7-20-077-190-1 |           | 70 877-188-1 |               | 74 08 T-198-1 |               | 711-767-100-1 | :         | 50 13 1 24 00 | TIT-LTT-100-1 |          | 6- 76 1 100 1              | 00/ 0C 70 0CT-10C-1 |          |

;

4 - 20

| Lumb         Lumb <thlumb< th="">         Lumb         Lumb         <thl< th=""><th>:<br/></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Ta</th><th>Table 4.4</th><th></th><th>tign Pa</th><th>tramet</th><th>er of Si</th><th>teel Be</th><th>am</th><th>for</th><th>Design Parameter of Steel Beam for 2-Lanes</th><th>s</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thl<></thlumb<>                                                                                                                                                                                                                                                                        | :<br> |              |           |                    |          |     |        |                |          |     |             | Ta       | Table 4.4                             |         | tign Pa   | tramet    | er of Si | teel Be        | am     | for   | Design Parameter of Steel Beam for 2-Lanes | s         |         |        |        |           |          |          |          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-----------|--------------------|----------|-----|--------|----------------|----------|-----|-------------|----------|---------------------------------------|---------|-----------|-----------|----------|----------------|--------|-------|--------------------------------------------|-----------|---------|--------|--------|-----------|----------|----------|----------|-----|
| TXDRX         Lundi         Lundi <th< th=""><th></th><th>(2-1-3me)</th><th>()</th><th>:</th><th></th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>ľ</th><th></th><th></th><th>ľ</th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                         |       | (2-1-3me)    | ()        | :                  |          |     | ,      |                |          |     |             |          |                                       |         |           |           |          |                |        |       |                                            |           |         | ľ      |        |           | ľ        |          |          |     |
| 1         2         3         4         5         6         1         1         1         1         1         1         1         1         1         1         2         3         4         5         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •     | INDEX        | Lv(II)    | L <sub>c</sub> (m) |          |     | يا.    | م              | 4        | đ   | \$          | <u> </u> |                                       | h       | fain Gird |           | _        | nu×mu<br>nu×mu | x(stud |       |                                            |           | Ę       | Area   | . 1    | S. Weight | ××       | N/N<br>W | RIG<br>0 |     |
| CRMM.14mm         Lessent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |              | -         | 2                  |          |     | 8      | •              | 2        | ×   | ه           | ł—       |                                       | :       | 13 14     |           | 16       | 17             | 18     | 51    |                                            | 21        | ន       | ส      | R      | 52        | 8        | ä        | **       |     |
| CARHALINGE         Control         Contro         Control         Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 2-SRH-1.14-  | 14.50     | 14.000             |          | 4   | 14.800 |                |          | 8   |             |          | 8                                     | 16@150  | 4 2.400   |           |          |                | 5.500  |       |                                            | ×100×10 4 | 52m2    | 131.60 |        | 10664.04  |          | 81.03    | 15.243   |     |
| Scretchicke         Correl 14         Correl 10         Correl 14         Correl 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              | _         |                    |          |     |        |                |          |     | _           |          | 5                                     | 12@125  |           |           |          |                |        |       | - 44<br>- 44                               |           |         |        | 47.36  |           | 9001.63  | 190.07   | 24.033   |     |
| Constructive         Constructive<                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 2-SRH-1.16-r | 16.50     | 000                |          | 4   | 10,600 | 80             |          | +   | <u>9</u>    |          |                                       | 16@150  | 42.400    |           |          |                | 6.500  |       |                                            | ×100×10   |         | 150.40 |        | 12774.26  |          | 84.94    | 17.364   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |           |                    |          |     | 3.100  | 30             |          | +   | 2           |          |                                       | 12@125  |           | <br>      |          |                |        |       |                                            | <br>      |         |        | 53.21  |           | 10098.13 | 189.78   | 24.592   |     |
| 1111         1.000         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         000         15         15         15         15         15         15         15         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 2-SRH-L18-1  | 54 18.50X | 18.000             |          | 4   | 12.000 | 8              |          |     | 5           |          | _                                     | 16@150  | 4 2.400   |           |          |                | 7.350  | 130   |                                            | ×100×10   | \$22n2  | 169.20 |        | 14915.87  |          | 88.16    | 19.489   |     |
| SRNHLIZNed         Zoold 70000         Cool 16 (1.200)         Cool 18 (1.200) <th></th> <td></td> <td></td> <td></td> <td></td> <td>ŀ</td> <td>3.400</td> <td></td> <td>1</td> <td>-</td> <td><u>8</u></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>12@125</td> <td></td> <td>59.12</td> <td></td> <td>11194.62</td> <td>189.35</td> <td>24.985</td> <td></td> |       |              |           |                    |          | ŀ   | 3.400  |                | 1        | -   | <u>8</u>    |          | · · · · · · · · · · · · · · · · · · · | 12@125  |           |           |          |                |        |       |                                            |           |         |        | 59.12  |           | 11194.62 | 189.35   | 24.985   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 2-SRH-L20-   | n4 20.60( | 20.000             | 0.900    | 9   |        | 350            |          | _   | 18          |          |                                       | 16@150  | 4 2.400   |           |          |                | 7.45(  | 150   |                                            | ×100×10   | \$ 22n2 | 188.00 |        | 20343.79  |          | 108.21   | 22.082   |     |
| CSRH.L.Zerol         Zerol         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | -            |           |                    |          |     |        | 350            |          |     | 18          |          |                                       | 12@125  |           |           |          |                |        |       |                                            |           |         |        | 65.78  | -         | 12398.03 | 188.48   | 25.267   |     |
| Construction         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I </td <th>•</th> <td>2-SRH-122-</td> <td>o4 22.60</td> <td>22.000</td> <td>006.0</td> <td>٩</td> <td>14.600</td> <td>350</td> <td></td> <td>_</td> <td>2</td> <td>1</td> <td></td> <td>16@150</td> <td>4 2.400</td> <td></td> <td></td> <td></td> <td>8.450</td> <td>1 150</td> <td></td> <td>×100×10</td> <td>\$22n2</td> <td>206.80</td> <td></td> <td>23372.89</td> <td></td> <td>113.02</td> <td>24.353</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                               | •     | 2-SRH-122-   | o4 22.60  | 22.000             | 006.0    | ٩   | 14.600 | 350            |          | _   | 2           | 1        |                                       | 16@150  | 4 2.400   |           |          |                | 8.450  | 1 150 |                                            | ×100×10   | \$22n2  | 206.80 |        | 23372.89  |          | 113.02   | 24.353   |     |
| CSRNHLIGH-IN         CSRNHLIGH-IN<                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |              |           |                    |          |     | 4.100  | 350            |          |     | 81          |          |                                       | 12@125  |           |           |          |                |        |       |                                            |           |         |        | 71.70  |           | 13556.74 | 189.08   | 25.471   |     |
| CSBBLLIZE-613         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         C         <t< td=""><th></th><td>2.SRH.1.247</td><td>nd 24 600</td><td>24,000</td><td></td><td>, e</td><td></td><td>35</td><td><u> </u></td><td>1 .</td><td>3</td><td></td><td></td><td>16@150</td><td>42.400</td><td><b>.</b></td><td></td><td></td><td>8.25</td><td>150</td><td></td><td>×100×10</td><td>\$22n2</td><td>225.60</td><td></td><td>28750.83</td><td></td><td>127.44</td><td>26.945</td><td></td></t<></thc<>                                                                                                                                                                                                                                                                                                                                                                                           |       | 2.SRH.1.247  | nd 24 600 | 24,000             |          | , e |        | 35             | <u> </u> | 1 . | 3           |          |                                       | 16@150  | 42.400    | <b>.</b>  |          |                | 8.25   | 150   |                                            | ×100×10   | \$22n2  | 225.60 |        | 28750.83  |          | 127.44   | 26.945   |     |
| S-SBLL26-r5         5.600         500         420         5.800         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.80         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90         5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4     |              |           |                    |          |     |        | 50             |          | -   | R           |          |                                       | 12@125  |           | <br>      |          |                |        |       |                                            |           |         |        | 77.95  |           | 14672.94 | 188.24   | 25.618   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 21  | 2-SBI-1.26-n |           | 1 26.000           |          |     |        | 8              |          |     |             |          | 6                                     | 16@125  | 3 3.200   |           | 5.850    |                | 8.50   | 16    | 30                                         |           | 525n4   | 244.40 | -      | 25109.78  |          | 102.74   | 38.883   |     |
| 10         18.400         400         20         4         6.300         4×1         8.000         170         1.900         2.95.5         2.786.457         2069.553           1.400         5.200         360         10         400         20         5         6         1668.175         3.3.200         5.713         7×2         5         5         5         205.95         3.1044.12         2069.55           1.400         5.500         360         10         400         20         5         6         16.66175         5         2×13         7×2         7×2         7×5         2564         22.00         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         2069.55         31044.12         20475.60         206         206         206         206         206 <th>l</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>1</td> <td>-</td> <td></td> <td>  · ·</td> <td>0</td> <td>16@175</td> <td> </td> <td></td> <td>2×12 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>87.10</td> <td></td> <td>19245.02</td> <td>220.95</td> <td>34.298</td> <td></td>                                                                                                                                                                                                                                                                                              | l     |              |           |                    |          |     |        | 8              | 1        | -   |             | · ·      | 0                                     | 16@175  |           |           | 2×12 -   |                |        |       |                                            |           |         |        | 87.10  |           | 19245.02 | 220.95   | 34.298   |     |
| 1.400         5.200         360         10         400         20         20         6.66175         7x2         7x5         160         20         2035         20639.55           1.100         10         198.00         400         20         300         20         300         5.500         350         10         300.55         31044.12         31044.12           1.500         5.500         360         10         400         21         20         5.750         4x2         7.450         180         300         100.32         31044.12           1.500         5.500         360         10         400         21         20         21.750         32.00         3575         4x2         7.450         180         300.50         3104.12         22098.84           1.500         3.800         360         10         400         255         33.200         390         2.8050.66         425.66         310.46         2         2347.81         2         2478.19         2         2478.19         2         2478.19         2         2         2         2         2         2         2         2         2         2         2         2         2         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 2-SB1-1.28-n | 13 28,60  | 1 28,000           |          | _   | 18.400 | 8 <sup>4</sup> |          |     |             | †-       | •                                     | 16@125  | 33.200    |           | 6.300    |                | 8.0    | 170   | 8                                          |           | 625n4   | 263.20 |        | 27884.87  |          | 105.95   | 42.003   |     |
| 10         10         10         200         200         20         25         23         200         4x3         22.00         4x3         22.00         4x3         22.00         200.1         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.2         200.80         200.2         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80         200.80<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |              |           |                    |          |     | 5.200  | 36             |          |     | £           | †        | •                                     | 16@175  |           | <br>      | 2×13     | 7×2            |        |       |                                            | •         | 1       |        | 93.55  |           | 20639.53 | 220.63   | 34 398   |     |
| 1.500         5.500         360         10         400         21         0         2x13         7x2         7x50         180         200.360         3405.601         32038.84           1.600         10         17.400         400         20         520         3575         4x2         7450         180         200.86         2576         34936.01           1.600         3800         360         10         480         25         4x2         7450         180         200.86         25764         34936.01         23478.19           1.600         380         10         480         25         4x2         7.250         190         200         1.06.81         2377.60         3475.60           1.700         360         10         360         13         616@175         340         345.60         3827.50         3277.60           1.700         4.100         360         10         500         1.800.80         8.25n4         319.60         38277.60         24877.60           1.700         4.100         360         10         500         1.800.80         8.25n4         319.60         38277.60         24877.60           1.700         360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 2-SBI-L30-n  | 3 30.70   | 30.000             |          | 2   | 19.800 | -94<br>-04     | 1        |     |             |          | 6                                     | 16@125  | 3 3.200   |           | 6.750    |                | 7.65(  | 081 0 | 300                                        |           | b 25n4  | 282.00 |        | 31044.12  |          | 110.09   | 45.316   |     |
| 32.700         32.000         10         17.400         400         20         52.0         35         32.00         35.75         4x2         7.450         150         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80         40.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |              |           |                    | · · · ·  |     | 5.500  | 360            | <u> </u> |     |             |          | -0                                    | 16@175  |           |           | 2×13     |                |        |       | -                                          |           |         |        | 100.32 |           | 22098.84 | 220.28   | 34.467   |     |
| 1.600         3.800         360         10         480         25         1.20x16         2x17         8x2         7         9         7         9         7         9         106.81         23478.19           34.700         34.00         360         360         10         360         10         360         10         360         10         360         36         1         216@175         33.200         340         9.163         4x2         7.250         190         30         1.80x80x8         425n4         319.60         38272.60         38272.60           34.700         34.00         360         10         500         36         10         360         10         360         10         362760         38272.60         38272.60           34.700         34.00         360         10         360         10         360         10         38272.60         38272.60           34.700         34.00         36.00         360         10         360         10         100.83         425n4         319.60         103272.60         38272.60           34.700         36.00         36.00         36.0         26.00         200         200         180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 2-SBI-L32-r  | 13 32.70  | 32.000             |          | 2   |        |                |          |     | · · · · · · |          | <del>•</del>                          | 16@125  | 3 3.200   |           |          |                | 7.45   | 0 180 | 300                                        |           | b 25n4  | 300.80 |        | 34936.01  | ·        | 116.14   | 48,490   |     |
| 34.700         34.000         10         360         13         60         13         60         13         60         13         60         13         60         13         60         13         60         13         60         13         60         13         60         13         60         13         60         10         38273.60         3420         342         7.250         900         139.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |              |           |                    |          |     |        |                |          |     |             |          |                                       |         |           | 120×16    | 1        |                |        |       |                                            |           | :       |        |        |           | :        |          |          |     |
| 34.700         34.000         10         18.400         400         560         34         61.6%         34.7         7.250         190         300         L-80×30×8         6.25n4         319.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60         38272.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·     |              | :<br>     |                    | <u> </u> | [   | 3.900  |                | ŧ.       |     |             |          | 10<br>                                | 16@175  |           |           |          | 8×2            |        |       |                                            |           |         |        | 106.81 |           | 23478.19 | 219.81   | : 34,511 |     |
| 1.700         4.100         360         10         500         26         1.20×16         2×17         8×2         0         0         0         13.27         24872.60           36.700         36.000         10         360         13         0         16@175         33.200         360         0         2.80×80×8         42564         338.40         113.27         24872.60           36.700         36.000         10         19.400         400         21         600         33         42         6.000         200         300         L.80×80×8         42564         338.40         41836.87           36.700         36.000         10         19.400         400         21         20         37.00         360         472         6.000         200         200         19.60         7         41836.87           36.700         36.000         11         520         26         9.750         472         6.000         200         1.800         7         41836.87         2551.84           36.700         36.00         11         520         26         5.18         5.351.84         5.351.84         119.70         119.70         26251.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 2-SBI-L34-r  |           | 34.000             |          |     |        |                |          | f   | <b></b>     |          | - <del>0</del>                        | 1600125 | 3 3.200   | :         |          |                | 7.25(  |       | 300                                        |           | ¢ 25n4  | 319.60 |        | 38272.60  |          | 119.75   | 51.710   |     |
| 36.700         36.000         10         360         10         360         13         0         16(e)175         36.00         36.00         300         L-80×80×8         #25n4         33.40         24872.60         24872.60           36.700         36.000         10         19.400         400         21         600         33         300         L-80×80×8         #25n4         33.40         41836.87           36.700         36.000         36.00         200         300         L-80×80×8         #25n4         33.5.00         41836.87           36.700         36.000         4.300         360         11         520         26         2×18         420         200         208         425n4         338.40         41836.87           36.700         36.00         18.00         200         200         200         200         100         138.40         41836.87           36.700         4.300         360         11         520         26         2×18         40         19.70         19.70         26251.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |              |           |                    | <b>_</b> |     |        |                | · · · ·  |     |             |          |                                       |         |           | · · · · i | -        |                |        |       |                                            |           |         | :      |        |           |          |          |          |     |
| 36.700       36.000       10       19.400       400       21       600       33       3.0       9.750       4x2       6.000       200       300       L.80x80x8       # 25nd       318.6.87       41836.87         1       1.800       365       11       520       26       120x16       2x18       120x16       2x18       138.40       41836.87       41836.87         1       1.800       360       11       520       26       120x16       2x18       19       1970       26231.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |              |           |                    | <b> </b> |     | 4 100  | _              | L        |     |             |          | 0                                     | 16@175  |           |           |          | 8              |        |       | •                                          |           |         |        | 113.27 |           | 24872.60 | 219.59   | 34.538   |     |
| 4.300         360         11         520         26         120×16         2×18         1         1         1         1         1         2         1         1         1         1         1         1         1         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 2-SBI-L36-r  |           | 36.000             |          | 01  | 19.400 | 400            |          |     |             |          | -9                                    | 16@125  | 3 3.200   |           |          |                | 6.0    |       | 300                                        |           | \$ 25n4 | 338.40 | ·      | 41836.87  |          | 123.63   | 55.005   |     |
| 360 10 360 14 0 16/20175 6×3 1 119.70 26251.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |              |           |                    | 1.800    |     | 4.300  |                |          |     |             |          |                                       |         |           | 120×16    |          |                |        |       |                                            | :         |         | . [    |        |           |          |          |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              | -         |                    |          |     | 4.400  |                |          |     |             |          | ¢                                     | 16@175  |           |           | -        | 6x3            |        |       | ·                                          |           |         |        | 119.70 |           | 26251.84 | 219.31   | 74.549   | ~ • |

Table 4.4 Design Parameter of Steel Beam for 2-Lanes

4 - 21

Table 4.5 Design Parameter of PC Beam for 1-Lane Bridge

| Troncy         Lum         Dial         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B <th< th=""><th>br tr tb bw hh tb bb Nr ST Nd XB NBNINSNGVT CS RB3 RB4 RB6 A.S.B. Vc Wc</th><th>WeVe</th><th>- M.</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | br tr tb bw hh tb bb Nr ST Nd XB NBNINSNGVT CS RB3 RB4 RB6 A.S.B. Vc Wc                                                            | WeVe     | - M.     |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|
| 6         7         8         9         10         11         12         13         14         15         16         17         10         25         24         25         24         25         25         34         25         34         25         34         25         34         25         100         1120         1709         152         1706         155         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110         110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    | -        | 2        | - OTR   |
| 4         1.500         0.700         400         150         152         182         705         152         182         705         152         182         705         152         182         705         152         1900         15         705         152         1900         15         705         151         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705         705 </td <td>8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 22 23 24 25 26 27 28</td> <td>ล</td> <td>E</td> <td>æ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 22 23 24 25 26 27 28                                                                 | ล        | E        | æ       |
| 4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400 150 110 180 185 150 550 1 7.000 17 2.100 9 2 0 8 7 70 0 12 0 22 0 12 0 22 1 242 4                                              | 152.9    | 1935     | 2742    |
| 4       1.500       0.000       400       151.6       152.6       152.6       151.6       155.7       2.000       1100       157.8       2.000       1100       151.6       155.0       1100       157.8       2.000       1100       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1       151.1 <td></td> <td></td> <td></td> <td>15.021</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |          |          | 15.021  |
| a         1.300         0.000         400         191.10         2011.0         191.00         2011.0         191.00         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0         2011.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400 150 110 180 185 150 550 1 8 000 19 2.800 11 2 2 8 7 70 0 12 0 22 0 12n2 0 22n2 33.0 4995 1                                     | 151.6    | 2202     | 15.626  |
| a       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                  |          |          | 15.370  |
| 4       1.500       1.001       100       12       6       15       6.15       2.61       2.61       2.64       2.66       15         4       1.500       1.000       10       10       10       10       100       100       100       100       10       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400 150 110 180 185 150 550 1 9.000 21 3.500 13 2 4 8 7 70 0 12 0 22 0 12n3 0 22n2 36.8 5563 1                                     | 151.0    | 2631     | 17.921  |
| 4       1.500       1.000       1.81       10       10       10       100       400       1.901       1950       113.1       206       113.1       206       113.1       206       113.1       206       113.1       206       113.1       206       113.1       205       113.1       205       113.1       205       113.1       205       113.1       205       113.1       205       113.1       205       245       113.1       205       245       113.1       205       245       113.1       205       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       245       113.1       215       213.1       213.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214.1       214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |          | 2        | 15.616  |
| 4         1500         1100         400         100         100         100         400         100         100         800         101         100         400         100         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         800         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td>400 150 110 180 185 150 550 1 10.000 23 4.100 13 2 6 8 7 70 4 12 4 22 4 12n3 4 22n2 40.9 6146 1</td> <td>46 150.2</td> <td>2949</td> <td>20.305</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400 150 110 180 185 150 550 1 10.000 23 4.100 13 2 6 8 7 70 4 12 4 22 4 12n3 4 22n2 40.9 6146 1                                    | 46 150.2 | 2949     | 20.305  |
| 4       1500       1100       300       1100       100       15       100       23       4700       137       23       335       135       335       135       335       135       335       135       335       135       335       135       335       135       335       135       335       135       97.0       23       335       97.0       235       335       135       97.0       235       335       97.0       235       335       97.0       135       97.0       135       97.0       135       97.1       135       97.1       135       97.1       135       97.1       135       97.1       135       97.1       135       97.1       135       97.1       135       97.1       135       97.1       135       97.1       135       135       97.1       135       135       97.1       155       137       135       147       140       155       23       23       23       23       233       335       135       137       135       137       137       137       137       137       137       137       137       137       137       137       137       137       137       137 <td></td> <td></td> <td>8</td> <td>15.792</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                    |          | 8        | 15.792  |
| 4       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.500       1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400150110180188150550 111.00023 4:00013 2 6 8 7 70 0 12 0 22 0 12 0 22 2 12 4 22 22 4 8                                            | 149.8    | 3436 113 | 22.779  |
| a       15.00       1.5.00       10.50       110.500       25       51.0013       2       8       7       70       12       62.2       61.20       62.7       98.33       186.4       32.3       3136       97.0       25         2       3000       1.600       100       10       10       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                    |          |          | 15.919  |
| 153         111         111         113         153         4.7         726         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370         193         7370 </td <td>4001501101301351505550 112.000 25 5.10013 2 8 8 7 701 0 12 0 22 0 12 0 22 0 2 2 2 2 8 8 7 701 0 12 0 23 0 23 0 23 0 23 0 23 0 23 0</td> <td>186.4</td> <td>3136</td> <td>:5,344°</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4001501101301351505550 112.000 25 5.10013 2 8 8 7 701 0 12 0 22 0 12 0 22 0 2 2 2 2 8 8 7 701 0 12 0 23 0 23 0 23 0 23 0 23 0 23 0 | 186.4    | 3136     | :5,344° |
| 2       3.000       1.600       1500       1500       112.000       4       1400       1200       45.7       776       149.2       34.7       7760       108.5         2       3.000       1.500       150       100       120       12.000       4       11.2       101.4       55.2         2       3.000       1.700       100       150       200       20       114.5       185.1       36.1       34.7       776       191.4       55.2         2       3.000       1.700       100100       1501       20       20       114.5       185.1       36.1       34.7       730       191.4       55.2         2       3.000       1.700       1001       1501       20       20       114.5       184.7       39.9       38.77       95.8         2       3.000       1201       200       2       2.3.20       20       114.5       184.7       39.9       38.77       95.8       38.77       95.8       38.77       95.8       38.77       95.8       95.9       38.77       95.8       95.9       95.8       95.8       95.8       95.8       95.8       95.8       95.8       95.8       95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |          |          | 16.011  |
| 2         3.000         1.700         1000         150         25.00         1         440         425         95.0           2         3.000         1.700         1000         150         25.05         50.0         36.1         36.1         36.1         36.1         36.1         36.1         36.0         1444         40.0           2         3.000         1.700         1001         150         20.0         2         9.2.3         5         9.1.0         1446         40.0         156.1         36.1         36.1         36.1         36.1         36.1         36.0         1444         40.0           2         3.000         150         150         20.0         2         9.333         5         1         140         412         42.1         42.0         42.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0         43.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1250[250[500] 1 12.000] 4 1 140 0 12 0 22 0 12 0 25 0 48.7 7264                                                                    | 149.2    | 3760 108 | 50.149  |
| 2       3:000       1:700       1:000       1:50       1:500       2       6       1:2       6       2       6       1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1       36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |          |          | 23.617  |
| 2       3 000 1 800 1000 150 150 200 250 250 500       2       9.333       5       140       40.0         2       3 000 1 800 1000 150 150 200 250 250 500       2       9.333       5       140       40.0         2       3 000 1 800 1000 150 150 200 250 250 500       2       9.333       5       140       410       612       62.0       11459       184.7       39.9       3827       95.8         2       3 000 150 150 200 250 250 500       2       10.000       150 150 200 250 250 500       2       140       612       62.2       612n7       65.7       12315       184.5       45.6       4300       94.0         2       3 000 2.100 1000 150 150 200 250 250 500       2       10.000       61.2       62.2       612n7       628n5       66.7       12315       184.5       45.6       4300       94.0         2       3 000 2.100 1000 150 150 200 250 250 500       2       10.40       61.2       62.2       61.2n7       62.8 12.05       194.6       45.8       92.0       92.0         2       3 000 2.100 1000 150 150 200 250 250 500 500       2       14.0       61.2       62.2       61.2n3       62.2       138.6       138.6       45.0       93.0       41.6       45.8 <td>1250250500 2 8.667 5 140 \$ 12 \$ 22 \$ 1275 \$ 2515 578 10704</td> <td>185.1</td> <td>3425 95</td> <td>55.152</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1250250500 2 8.667 5 140 \$ 12 \$ 22 \$ 1275 \$ 2515 578 10704                                                                     | 185.1    | 3425 95  | 55.152  |
| 2       3 000       1 800       1000       1500       184.7       39.9       38.7       95.8         2       3 000       1 800       1000       150       23.30       2       9.333       5       140       91.2       92.3       41.2       62.0       11459       184.7       39.9       38.7       95.8         2       3 000       2 000       150       156       200       2       140       91.2       92.3       65.7       123.15       184.5       45.6       43.00       94.9       36.6         2       3 000       2 000       150       150       2       140       612       62.3       123.15       184.5       45.6       43.00       95.0         2       3 000       2 100       150       150       2       140       612       62.2       612.0       130.4       184.6       49.9       1667       36.0         3 000       2 100       100       1       140       612       62.2       612.0       130.4       184.5       45.8       92.0       92.0         3 000       2 000       1000       1       140       612       62.2       612.0       130.4       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |          |          | 23.715  |
| 2       3.000       2.000       150       5       140       612       6.27       12315       184.5       45.6       4300       94.3         2       3.000       2.000       150       50       2       1040       622       6127       12315       184.5       45.6       4300       94.3         2       3.000       2.000       150       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250250500 2 9.333 5 140 0 12 0 22 0 20 140 0 12 0 25 0 11459                                                                       | 184.7    | 3827     | 779.977 |
| 2 3 000 2 000 1000 150 150 250 550 25 10.000 5       140       140       612       6 23       6 120       123 15       184.5       45.6       4300       94.3         2 3 000 2 100 1000 150 150 250 250 250 250 250 250 250 250 250 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                    |          |          | 23.784  |
| 2       3.000       2.1001000       15601560       2505       2       10.0       13094       184.6       49.9       4588       92.0         2       3.000       2.1001000       15601560       250       2       10.0666       6       1       140       412       422.4       170.9       13094       184.6       49.9       4588       92.0         2       3.000       2.1001000       1560       20       1       40.1       4       4       4       45.7       45.8       92.0         2       3.000       2.2001000       1560       20       2       4       1       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250250500 210.000 5 140 \$ 140 \$ 12 \$ 22 \$ 12n7 \$ 28n5 66.7 12315                                                              | 184.5    | 4300     | 65.767  |
| 2       3.000       2.1001000       1500       2500       2000       13004       184.6       49.9       4588       92.0         2       3.000       2.1001000       150       13004       184.6       49.9       4588       92.0         2       3.000       2.001000       150       13004       184.6       49.9       4588       92.0         2       3.000       2.2001000       150       1301       184.5       54.3       50.3       92.7         2       3.000       2.2001000       150       200       211.333       6       14.0       912       62.2       \$13851       184.3       54.3       50.3       92.7         2       3.000       2.2001000       150       2500250       25015500       212.000       75.2       13851       184.3       54.3       52.62       41.6         2       3.000       150       150       212.000       7       14.0       91.2       62.2       62.2       62.2       62.2       61.2       67.6       14.6       75.2       138.4       60.6       55.4       91.5         2       3.000       150       150       140.8       62.8       62.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |          |          | 16862   |
| 2       3.000       2.200       100       150       211.333       6       1.40       \$12       \$2.2       \$1.3851       1.84.3       54.3       5038       92.7         2       3.000       2.200       100       150       200       211.333       6       1.40       \$12       \$2.2       \$13.851       1.84.3       54.3       5038       92.7         2       3.000       1.50       1       1       1       1       1       1       1       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       41.6       1       1 <t< td=""><td>250250500 210.666 6 13040 140 0 12 0 22 0 12 7 0 28n5 70.9 13094</td><td>184.6</td><td>4588</td><td>70.842</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250250500 210.666 6 13040 140 0 12 0 22 0 12 7 0 28n5 70.9 13094                                                                   | 184.6    | 4588     | 70.842  |
| 2 3.000 2.200 1000 150 150 200 250 500 2 11.333 6 140 \$\phi12 \$\phi22 \$\phi22 \$\phi12 \$\phi22 \$\phi12 \$\phi22 \$\phi12 \$\phi22 \$\phi12 \$\phi22 \$\phi12 \$\phi22 \$\phi12 \$\phi22 |                                                                                                                                    |          |          | 23.862  |
| 23.000       2.400       1000       150       1200       7       140       912       6.22       6.12       60.6       5547       91.5         23.000       2.400       1000       150       120       7       140       612       6.22       612.03       75.6       14684       184.4       60.6       5547       91.5         23.000       150       150       16       140.6       12       62.5       61.5       5547       91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 250 250 500  2 11.333  6     140  \$12  \$22  \$12  \$28  \$28n5  75.2   13851   1                                                 | 184.3    | 5038     | 76.017  |
| 2 3.000 2.400 1000 150 150 200 250 250 2 12.000 7 140 \$\$12 \$22 \$12n9 \$32n5 79.6 14684 184.4 60.6 5547 91.5 24.0 \$1.5 14684 184.4 50.6 5547 91.5 24.0 \$21.5 14684 184.4 50.6 5547 91.5 24.0 \$21.5 14684 184.4 50.6 5547 91.5 24.0 \$21.5 14684 184.4 50.6 5547 91.5 24.0 \$21.5 14684 184.4 50.6 5547 91.5 24.0 \$21.5 14684 184.4 50.6 5547 91.5 24.0 \$21.5 14684 184.4 50.6 5547 91.5 24.0 \$21.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14684 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 184.5 14685 1                                                                                                                                                                                                                                            |                                                                                                                                    |          | _        | 23.880  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 250250500 2 12.000 7 1 140 \$ 12 \$ 22 \$ 1209 \$ 3205 79.6 14684                                                                  | 184.4    | 6 5547   | 82.816  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |          |          | 23.888  |

PRE : Pre-tensioned PST : Post-tensioned

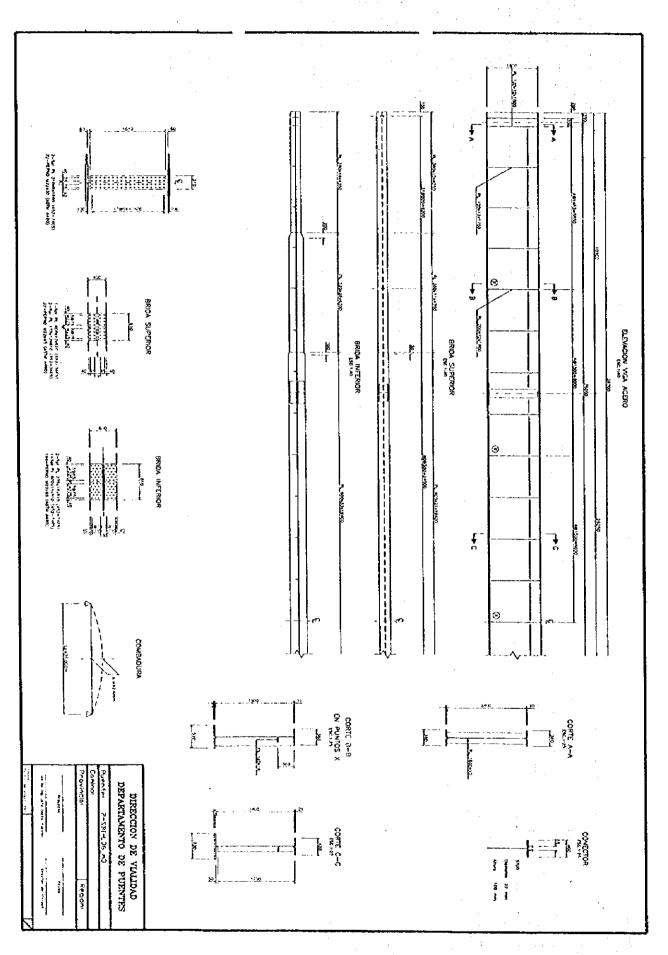
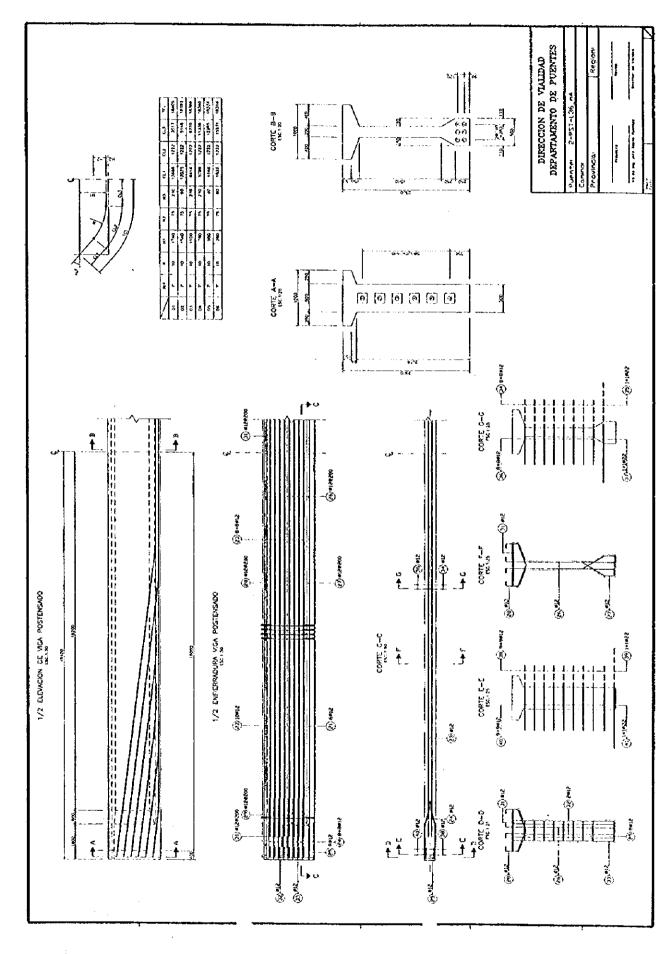

4 - 22

Table 4.6 Design Parameter of PC Beam for 2-Lane Bridge

| TNDEX         L <sub>c</sub> (m)         L <sub>v</sub> (m)         EL         R. Bar         Main Gird H(m)         bt         th         bw         hh         tb         bb           1         2         3         4         5         6         7         8         9         10         11         12         13         14           2.PRE-L14_n6         14.000         14.600         170         \$1269125         6         1.500         0.0150         110         101         12         13         14           2.PRE-L14_n6         14.000         14.600         170         \$1269125         6         1.500         0.0150         101         101         101         103         150         550           2.PRE-L16_n6         16.000         16.600         170         \$126125         6         1.500         0.800         400         150         150         550           2.PRE-L16_n6         16.000         16.600         170         \$126175         6         1.500         0.800         400         150         150         550 |                                       |                                     |             |          |             | ŀ         | 0.476  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|-------------|----------|-------------|-----------|--------|
| 4         5         6         7         8         9         10         11         12           #12@125         6         1.500         0.700         400         150         180         185           #12@175         6         1.500         0.700         400         150         110         180         185           #12@175         6         1.500         0.800         400         150         110         180         185           #12@175         6         1.500         0.800         400         150         110         180         185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bb N, ST Nd XB NBNI N2 N4 NS N6 N7 CS | N7 CS RB3 RB4 RB6 A.S.B.            | Vc Wc       | WeVc Vs  | × ×         | Wr.V. RI  | RL(t)  |
| \$\$\phi\$12@125         \$\$(1.500)         \$\$00150         \$\$1010         \$\$180         \$\$126         \$\$15         \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                     | 22 23 24 25 26                      | 27 28       | 29 30    | 31          | 32        | R      |
| Φ12@175 0.800 400 150 110 180 185<br>Φ12@175 6 1.500 0.800 400 150 110 180 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 550 1 7.000 17 2.100 9 2 1 0 8        | 7 70 \$ 18 \$ 25 \$ 12n2 \$ 22n2    | 44.9 6752   | 150.4 2  | 22.9 3215   | 140.7 13. | 13.550 |
| Φ12@125 6 1.500 0.800 400 150 110 180 185<br>Φ12@175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                     |             |          | 1154        | 50.5 15.  | 15.021 |
| ¢12@175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 550 1 8.000 19 3.100 11 2 2 8         | 7 70 \$ 16 \$ 25 \$ 12n2 \$ 22n2    | 50.9 7530   | 148.0 2  | 27.8 3532   | 127.2 15  | 15.775 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                     |                                     |             |          | 1467        | 52.8 15.  | 15.370 |
| 2-PRE-L18 no 18.000 18.600 170 ¢ 12@125 6 1.500 0.900 400150110180185 150 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 550 1 9.000 21 4.100 13 2 4 8         | 7 70 \$ 16 \$ 25 \$ 12n3 \$ \$ 22n2 | 56.9 8397   | 147.5 3  | 33.1 4222   | 127.4 18. | 18.086 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                     |                                     |             |          | 1816        | 54.8 15.  | 15.616 |
| 2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 550 1 10.000 23 5.100 13 2 6 8        | 7 70 \$ 16 \$ 22 \$ 12n3 \$ 22n2    | 63.2 9230   | 146.0 3  | 39.1 4614   | 118.0 20. | 20.490 |
| ¢12@175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                    |                                     |             |          | 2214        | 56.6 15.  | 15.792 |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 550 1 11.000 25 5.600 13 - 2 8 8      | 7 70 \$ 16 \$ 22 \$ 12n4 \$ 22n2    | 69.2 10097  | 145.9 4  | 45.3 5391   | 118.9 22. | 22.983 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                     |             |          | 2639        | 58.2 15.  | 15.919 |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122 000 271 6.300 15 2 8 8            | 7 70 \$ 16 \$ 22 \$ 12n4 \$ 22n2    | 75.2 10912  | 145.1 5  | 52.0 5877   | 113.0 25. | 25.556 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                    |                                     |             |          | 3101        | 59.6 16.  | 16.011 |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 1 12:000 4                        | 140 \$ 12 \$ 22 \$ 12n5 \$ 25n3     | 75.6 14907  | 197.2 6  | 64.6 6298   | 97.5 41   | 41.944 |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                     |             |          | 2136        | 33.0 24.  | 24.017 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5001 2 8.667 4                        | 140 \$ 12 \$ 22 \$ 12n5 \$ 25n3     | 83.6 16276  | 194.7 7  | 72.1 6898   | 95.7 46.  | 46.625 |
| 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                     |             |          | 2310        | 32.0 24.  | 24.116 |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 2 9.333 4                         | 140 ¢ 12 ¢ 22 ¢ 12n6 ¢ 25n3         | 90.0 17442  | 193.9 8  | 81.3 7741   | 95.3 50.  | 50.802 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                     |             |          | 2484        | 30.6 24.  | 24.186 |
| 2-PST-L30_n4 30,000 30,800 170 0 16@150 4 2.250 2.000 1000 150 200 250 250 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iscol 2 10.000 5                      | 140 \$ 12 \$ 22 \$ 12n7 \$ 28n3     | 96.6 18748  | 194.0    | 91.2 8659   | 95.0 56.  | 56.064 |
| 0.400   \$ 12@125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                     |             |          | 3335        | 36.6 24.  | 24.234 |
| 32.000 32.800 170 0 16@150 4 2.250 2.1001000150[2020250250500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500 2 10.666 5                        | 140 \$ 12 \$ 22 \$ 12n7 \$ 28n4     | 102.7 19926 | 194.0 9  | 15.26 8.99  | 92.5 60.  | 60.494 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                     |             |          | 3552        | 35.6 24.  | 24.266 |
| 2-PST-1.34 n4 34,000 34,800 1701 # 16@150 4 2.250 2.200[1000[150]2502550250[500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500 2 11.333 5                        | 140 ¢ 12 ¢ 22 ¢ 12n8 ¢ 28n5         | 108.8 21080 | 193.8 10 | 108.7 10135 | 93.3 65.  | 65.023 |
| ¢ 12@125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                     |             |          | 3770        | 34,7 24   | 24.284 |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 212.000 6                         | 140 \$ 12 \$ 22 \$ 12n8 \$ 32n3     | 114.9 22305 | 194.2 11 | 117.9 10736 | 91.1 70.  | 70.785 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                     |             |          | 4785        | 40.6 24   | 24.292 |


PST : Post-tensioned PRE : Pre-tensioned

4 - 23



4 - 24

. .



4 - 25

# **CHAPTER 5**

# CONLUSION AND RECOMMENDATION

# CHAPTER 5 CONCLUSION AND RECOMMENDATION

The objective of the Study is to assist Chile technologically in rehabilitating rural bridges distributed throughout the country.

Conclusions and recommendations for the three main subjects of the Study are described below.

- · Establishment of bridge rehabilitation plan method
- · Preparation of sample bridge rehabilitation designs
- · Development of standard bridge CADD programs and design drawings

#### 5.1 BRIDGE REHABILITATION PLAN

The bridge rehabilitation plan is composed of three systems, namely the bridge inventory system, rehabilitation cost estimation system, and rehabilitation priority system. The rehabilitation project investment plan was prepared through the information collected from the three systems.

#### (1) Bridge inventory system

#### Conclusion

A computerized bridge inventory system was proposed as it was necessary to grasp the present situation of existing bridges, especially the inventory data held by the MOP. The inventory data includes location, structural type, dimensions, etc., of bridges, and is essentiat as fundamental data for rehabilitation. Besides the bridge inventory data, such data as population, income and traffic volume were collected as indices by which necessity of a bridge can be measured, and may be defined as parts of bridge inventory in a wider sense.

#### Recommendation

The bridge inventory system was developed as a universal system that can be applied to all types of bridges and not merely a data tool to apply to the bridge rehabilitation plan in this Study. One advantage of utilizing the system is that once a network system linking regional organizations is constructed and the central MOP office centralizes the bridge inventory data, maintenance work of bridges may then be carried out effectively and the rehabilitation plan may be prepared or changed promptly.

#### (2) Cost estimation of rehabilitation

#### Conclusion

Rehabilitation method (to be repaired or reconstructed) was judged from the data combined of structural bridge type, scale (width and load carrying capacity), and rank of damage which came from the inventory data. The cost of bridge rehabilitation was calculated according to the selected rehabilitation method.

#### Recommendation

The elements which are considered in the Study for the cost estimation of each bridge are the width and the length of a bridge, although the average construction cost was set in order to process many bridge data. Therefore, data such as the location for reconstruction, type of bridge, span length and information of piles, etc., which effect cost but cannot be known until the bridge is planned, are not included. As primary data for bridge rehabilitation (horizontal topography of river crossing, geological quality of riverbed, etc.) are included in the inventory data, though not in such detail, more precise estimation may be possible, if other data such as the location for reconstruction, type of bridge, span length and information of piles are added to the width and bridge length. Other types of data that maybe needed will be recommended by the MOP.

#### (3) Judgement of priority for rehabilitation

#### Conclusion

In order to establish the system for judging the priority of rehabilitation, three indices were defined; those being economy index (traffic volume/rehabilitation cost), safety index (degree of bridge damage), and social index (income differential). First of all, these three indices were calculated, and then total index value was worked out by adding the three weighted indices. Next, bridges were allocated into each 'road link', and the maximum total index value of all bridges belonging to a link represents the link. A list of rehabilitation cost was prepared by arranging the link in the order of the higher index value for each region.

#### Recommendation

The three evaluation indices mentioned above were recommended based on the fundamental concept that safety and socioeconomic considerations must be made in public investments not placing priority only on economic feasibility, especially when considering the many bridges in rural areas where there may be low returns of investment. This recommendation is in conjunction with the MOP policy. In cases where there is a change in the situation of regional bridges, or where applied to a typical bridge, the MOP must make corrections.

5 - 2

#### (4) Rehabilitation project investment plan

#### Conclusion

Road links (bridges) are allocated into the scheduled rehabilitation program of each fiscal year in order of priority on the rehabilitation cost table. The allocation was made in such a manner that the total rehabilitation cost is approximately the same every year.

#### Recommendation

The project rehabilitation period is supposed as 10 years (first phase 5 years and second phase 5 years). The rehabilitation period was so established that the MOP could complete the rehabilitation project for each year within their budget and organization. It was judged from the conjectured volume of the rehabilitation for all regions based on the data collected at the model survey (IX) region that 10 years would be sufficient for the rehabilitation period. It is recommended that after the first 5-year period, that the plan review the whole rehabilitation plan including the rehabilitation principle on the analysis of the achieved rehabilitation thus far, as 10 years is a long period, and during that time the economical situation and traffic demand in rural roads would change.

# 5.2 BRIDGE REHABILITATION DESIGN

#### Conclusion

The bridge rehabilitation design was prepared in order to show an actual technological example which would be useful for the MOP to decide rehabilitation method based on actual inspection results. The Study Team selected twenty bridges with the MOP counterparts and conducted inspection and analysis of amount of damage as well as designs for rehabilitation method.

Besides the inspection of bridge itself, an environmental study was conducted to estimate the effect which rehabilitation of bridges may have on its surroundings. A standardized and simplified method of the environmental study was recommended consequently after exchange of opinions with the staff of the Department of Environment in the MOP over the necessity and procedure of the environmental study for small-scale rural bridges.

#### Recommendation

To date there do not seem to be many bridges having been inspected and strengthened on a large scale in Chile. Furthermore, more money and effort has been spent on reconstruction rather than repair. Thus, many bridges have not been recognized in the inventory nor maintained over a long period. In order to maintain bridges systematically, it is most important to discover damage as early as possible and to make appropriate repairs without delay. It is therefore recommended to intentionally and actively maintain and repair damaged bridges by efficient use of the inspection method proposed by the Study.

Although the MOP intends to replace timber bridges with more permanent structures such as concrete or steel, the element of time must be considered. To construct a new timber bridge is difficult nowadays from economical and environmental aspects, but on the other hand there is still the advantage of easy repair; therefore the MOP must maintain their technology of timber bridges and not discard it.

Regarding the quality of concrete, it is proposed that the MOP makes effort to improve the quality of concrete implementation. The problem of the quality of concrete is not merely a construction-site issue. If the problem is not properly addressed, Chile will end up with many concrete bridges of poor quality, consequently bringing about the risk of deterioration of rural bridges in general. At the beginning of the rehabilitation plan, there is thus a chance to present bridges of high quality for future users.

In order to extract environmental problems accompanying bridge rehabilitation, it is recommended to start with the Project Description and the Site Description. Following scoping and screening, the initial environmental examination (IEE) is carried out using inspection forms for environmental considerations. In case that an obvious environmental impact is recognized, preliminary environmental impact assessment (Pre-EIA) is carried out. In the Pre-EIA, mitigation methods of remarkable negative impacts caused by the rehabilitation are considered. By proceeding with the study in the order described above, it is easier to grasp the existence of the little-understood environmental problems of the small bridges and measures for overcoming them.

#### 5.3 STANDARD BRIDGE CADD PROGRAM

#### Conclusion

The bridge CADD program developed in the Study is based on the specifications of AASHTO which are usually adopted by the MOP. The representative bridge types to be developed as well as computer hardware and software were selected according to the investigation results of bridge design, bridge construction, and computer use in Chile.

The programs developed are as follows:

Superstructure

- Pre-tensioned PC beam
- Post-tensioned PC beam
- Steel rolled H beam
- Steel plate girder

All the beams and girders above are composite types with concrete deck.

#### Substructure

- Inverted T abutment with spread foundation
- Wall-type pier with spread foundation

The standard drawings were prepared by using the CADD program for the bridges both of one and two lanes with span length between 14 and 36 m.

The CADD program and the standard drawings can be applied to typical bridges with a straight alignment and a symmetric transverse cross section, but not to a skewed or curved bridge.

#### Recommendation

Verification and examination of the CADD program output as well as decision-making is the user's responsibility. Therefore, the program was developed so that the user can compile the output according to his/her purpose. It is possible to use the program out of the scope of its original specifications to some extent depending upon the user's creative capacity.

On developing such a program it is not necessarily advantageous to develop every detail by oneself in such an age when computer technology progresses quickly, therefore existing application software were implemented. In order to maintain the best status for the computer at all times, regular renewal of software and hardware versions must be kept in mind. At the same time, the program itself must be maintained and improved to keep up with the latest version of design standards.

It is recommended that the program be widely used in the country. For the technical staff of the MOP in charge of bridge planning, the basic use of the program is recommended for the estimation of approximate size of planned bridge. While, for the bridge designers both in the MOP and in private firms, the program would be used more in professional application to the identification of suitable design parameters and to the preparation of structural design drawings within the capacity of the program.

- .

