JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

MINISTRY OF SURFACE TRANSPORT GOVERNMENT OF INDIA

THE FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

FINAL REPORT VOLUME III APPENDICES

AUGUST 1998

JICA LIBRARY

NIPPON KOEI CO., LTD. YACHIYO ENGINEERING CO., LTD.

No. 61

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

MINISTRY OF SURFACE TRANSPORT GOVERNMENT OF INDIA

THE FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

1

FINAL REPORT

VOLUME III APPENDICES

AUGUST 1998

NIPPON KOEI CO., LTD. YACHIYO ENGINEERING CO., LTD.

.

The Feasibility Study on National Highway Bypasses in India Final Report

Volume III Appendices

Contents

<u>No.</u> <u>Title</u>

<u>Pages</u>

Appendix 1 Introduction

A1-1	Scope of Work for the Feasibility Study on National Highway Bypasses						
	in India	A1 - 1					
A1-2	Minutes of Meeting Regarding the Scope of Work	A1 - 9					
A1-3	Minutes of Meeting on the Inception Report	A1-13					
A1-4	Minutes of Meeting on the Progress Report	A1-17					
A1-5	Minutes of Meeting on the Interim Report	A1-23					
A1-6	Minutes of Meeting on the Progress Report 2	A1-27					
A1-7	Minutes of Meeting on the Draft Final Report	A1-31					

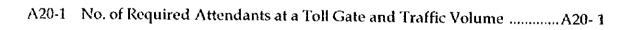
Appendix 8 Preliminary Economic and Financial Analysis

A8-1	Equations and Data for VOC Calculation	A8 - 1
A8-2	Economic Cost-Benefit Streams of the Projects	A8 - 7
A8-3	Financial Cost-Benefit Streams of the Projects	A8-13

Appendix 12 Supplemental Traffic Survey and Analysis

A12-1	Sample Size and Expansion Factor by O-D Survey Location (Bareilly) A	12-1
A12-1	Sample Size and Expansion Factor by O-D Survey Location (Gwalior). A	12-7
A12-3	Axle Load Data (Bareilly)A1	2-11
A12-4	Axle Load Data (Gwalior)A1	2-17
	Questionnaire for Opinion Survey on Toll Bypass (Bareilly)A1	

-25
•


Appendix 14 Field Investigation

A14-1	Survey Control Points in Bareilly Bypass
A14-2	Survey Control Points in Gwalior Bypass
A14-3	Boring Log of Bareilly Bypass
A14-4	Boring Log of Gwalior Bypass
A14-5	Environmental Impact Assessment (Natural Aspects)
	Questionnaire for Environment Appraisal (Bareilly Bypass)
A14-6	Environmental Impact Assessment (Natural Aspects)
	Questionnaire for Environment Appraisal (Gwalior Bypass)
A14-7	Environmental Impact Assessment (Natural Aspects)
	Number of Trees (Bareilly) and Number of Species (Gwalior)

Appendix 16 Design for the Feasibility Study

A16-1	IP Data of Bareilly and Gwalior Bypass	
A16-2	Station and Curve Data of Bareilly Bypass	A16 - 3
A16-3	Station and Curve Data of Gwalior Bypass	A16 - 7
A16-4	Project Profile Data of Bareilly Bypass	A16-13
A16-5	Project Profile Data of Gwalior Bypass	A16-17
A16-6	Earthwork Volume Data of Bareilly Bypass	
A16-7	Earthwork Volume Data of Gwalior Bypass	A16-25

Appendix 20 Cost Estimates

Appendix 21 Economic and Financial Analysis

A21-1	Profit/Loss Statement and Cash Flow of the SPV for Bareilly BypassA21 - 1
A21-2	Profit/Loss Statement and Cash Flow of the SPV for Gwalior Bypass. A21-13

Appendix 1 Introduction

.

1 . .

A1-1

Scope of Work for the Feasibility Study on National Highway Bypasses In India

A1 Introduction

A1-1 Scope of Work for the Feasibility Study on National Highway Bypasses in India

SCOPE OF WORK

FOR

THE FEASIBILITY STUDY

ON

NATIONAL HIGHWAY SYPASSES

 \mathbf{IN}

INDIA

AGREED UPON BETWEEN

MINISTRY OF SURFACE TRANSPORT

THE GOVERNMENT OF INDIA

AND

JAPAN INTERNATIONAL COOPERATION AGENCY

DELHI, NOVEMBER 15,1996

MR. TAKEO KAI, LEADER, PREPARATORY STUDY TEAM, JAPAN INTERNATIONAL COOPERATION AGENCY

MR.R.'L.KOUL CHIEF ENGINEER, MINISTRY OF SURFACE TRANSPORT

11/96

MR.D.N.NARASIMHA RAJU DEPUTY SECRETARY, MINISTRY OF FINANCE, DEPARTMENT OF ECONOMIC AFFARIRS

<u>I. Introduction</u>

In response to the request of the Government of India(hereinafter referred to as "GOI", the Government of Japan has decided to conduct the Feasibility Study on National Highway Bypasses in India(hereinafter referred to as "the Study"), in accordance with the relevant laws and regulations in force in Japan.

Accordingly, the Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of technical cooperation programs of the Government of Japan, will undertake the Study in close cooperation with the authorities concerned of GOI.

The present document sets forth the scope of work with regard to the Study.

I OBJECTIVE OF THE STUDY

The objective of the study is to 1) conduct a pre-feasibility study on proposed highway bypasses projects(target year for the completion of the consruction; 2012) and 2) conduct a feasibility study on high priority projects(target year for the completion of the construction; 2002) selected through the previous phase of the Study.

I STUDY AREA

The Study shall cover the following cities and their peripheral areas where the proposed highway bypasses are located: Vijayawada in Andhra Pradesh, Patna in Bihar; Cannanore in Kerala; Bhopal in Madhya Pradash Khamgaon and Nandura in Maharashtra; Keonjhar and Balugaon in Orissa; Jaipur in Rajasthan and Bareilly in Uttar Pradesh. (see Appendix 1).

N SCOPE OF THE STUDY

In order to achieve the objectives mentioned above, the Study shall cover the following items.

I. Phase 1: Pre-feasibility study on proposed 10 bypasses (Target year for the completion of the construction: 2012)

Collection and analysis of available information

 National Development plans
 Policy and Plans on Transport sector & Road subsector
 Natural conditions
 Traffic volume by mode
 Natural and social environment
 Surveys of present conditions
 Traffic survey including O/D, axle load,ecc
 Road condition including roughness of roads
 Natural & Social environment
 Natural condition including topography,geology,weather
 Evaluation of planning and design standard of road
 Formulation of socio-sconomic framework of India as a whole

and concerned states

A1 - 2 1

```
5.Formulation of a basic plan of respective bypasses
  6.Standard design of the proposed bypasses
  7. Preliminary cost estimate
  8. Preliminary economic analysis
  9.Implementation and management plan for each project
 10.Formulation of project financing and cost recovery plan
 11.Initial Environment Examination(IEE)
 12.Social analysis of affected area
 13.Formulation of criteria for the priority projects
 14. Selection of high priority projects for the second phase of
    tha Study
I . Phase 2: Feasibility study for selected high priority projects
          (Target year for the completion of the construction: 2002)
   1.Collection and analysis of supplementary data
   2.Traffic demand forecast
   3. Evaluation of alternative routes and selection of the optimal option
   4.Engineering surveys
     (1) Topographic survey(taking of aerial photographs and
        preparation of mosaics, route survey, etc.)
     (2)Geological survey and soil test
     (3)Hydrological survey(if necessary)
   5. Preliminary design
   5.Cost estimate
  -7. Formulation of implementation and management scheme
   8. Formulation of construction plan
   9.Environmental Impact Assessment(EIA)
  10.Formulation of appropriate mitigation plan for effected communities
```

- 11.Economic analysis
- 12.Financial analysis(if necessary)
- 13.Formulation of implementation program
- 14. Overall evaluation and recommendation of 'action plan'

V STUDY SCHEDULE

The Study will be carried out in accordance with the attached tentative schedule (Appendix 2)

M. PEPORTS

JICA shall prepare and submit the following reports to GOI.

- 1. Inception Report
- Fifty (50) copies in English at the beginning of the Study in India. 2. Progress Report
- Fifty (50) copies in English within three months after the beginning of the Study.
- 3. Interim Report
- Fifty (50) copies in English within seven months after the beginning of the Study.
- 4. Draft Final Report Fifty (50) copies in English within deven months after the beginning of the Study.

. c/n

5. Final Report

Seventy (70) copies in English within two months after the receipt of the written comments on the Draft Final Report from GOT, while these comments are expected to be delivered to JICA within one month after the receipt of the Draft Final Report.

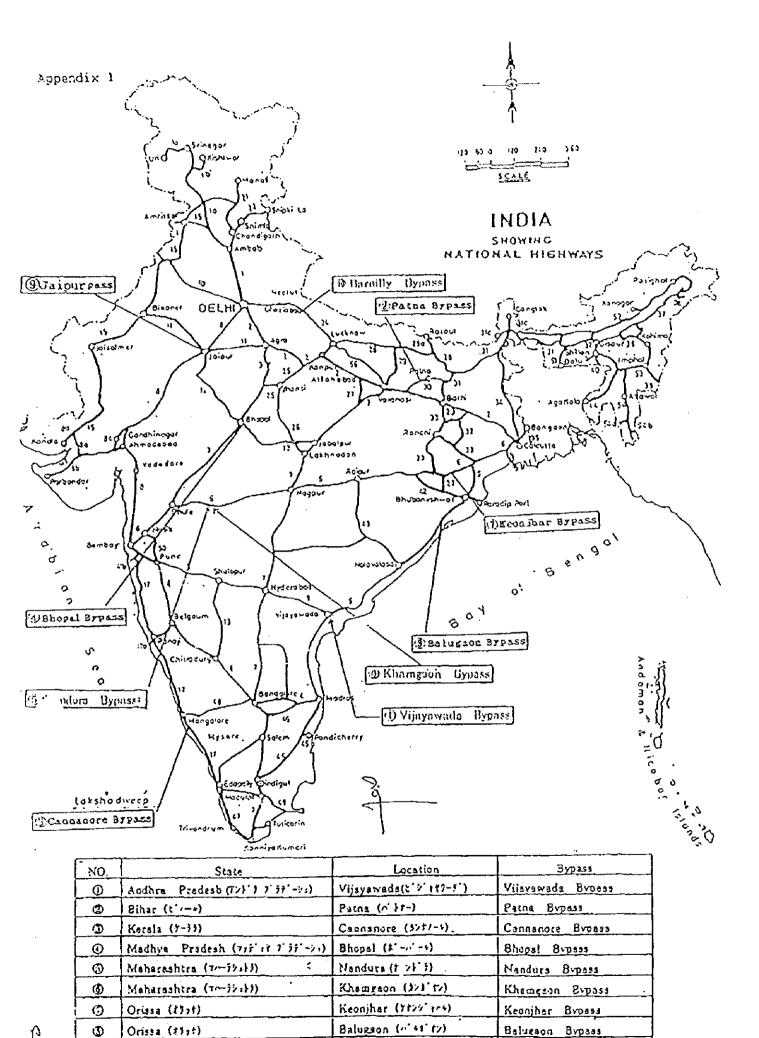
M. UNDERTAKING OF THE GOVERNMENT OF INDIA

- To facilitate smooth implementation of the Study, GOI shall take necessary measures as follows:
 - to secure the safety of the Japanese study team (hereinafter referred to as 'the Team');
 - (2) to permit the members of the Team to enter, leave and stay in India for the duration of their assignment therein, and exempt them from foreign registration requirements and consular fees;
 - (3) to exempt the members of the Team from taxes, duties, fees and other charges on equipment, machinery and other materials brought into and out of India for the implementation of the Study;
 - (4) to exempt the members of the Team from income tax and other charges of any kind imposed on or in connection with any emoluments or allowances paid to the members of the Team for their services in connection with the implementation of the Study;
 - (5) to provide necessary facilities to the Team for remittance as well as utilization of the funds introduced into India from Japan in connection with the implementation of the Study;
 - (6) to secure permission for entry into private properties or restricted areas for the implementation of the study;
 - (7) to secure permission for the Team to take out all data and documents (including maps and photographs), other than those restricted, which are necessary for the Study, from India to Japan; and
 - (8) to provide medical services as needed. Its expenses will be chargeable on the members of the Team.
- 2. GOI shall bear claims, if any arises, against the members of the Team resulting from, occurring in the course of, or otherwise connected with, the discharge of their duties in the implementation of the Study, except when such claims arise from gross negligence or willful misconduct on the part of the members of the Team.
- 3. Ministry of Surface Transport shall act as the counterpart agency to the Team and also as a coordinating body in relation with other governmental and non-governmental organizations concerned for the smooth implementation of the Study.
- Ministry of Surface Transport shall, at its own expense, provide the Team with the followings, in cooperation with other organization concerned;
 - (1) available data and information necessary for the Study;
 - (2) counterpart personnel;
 - (3) suitable office space with necessary furniture and equipment in Delhi and survey site and
 - credentials or identification cards.

1.1.. D

M. UNDERTAKING OF JICA

For the implementation of the Study, JICA shall take the following measures:


- 1. to dispatch, at its own expense, the Team to India and
- 2. to pursue technology transfer to the counterpart personnel of Indian side in the course of the Study.

IX. OTHERS

JICA and Ministry of Surface Transport shall consult with each other in respect of any matter that may arise from or in connection with the study.

る

T.K A1-5

Jaiour(1+17 1)

Barefilly (+ 14 (t-)

13 5 (1)

A1 - 6

Ф

Э

Rejosthan (5-2 +35-2)

Uttar Pradesh (9154 1 17 -2.)

7, K

Jaipur Bypass

Bareilly Bypass

Appendix 2

TENTATIVE STUDY SCHEDULE														
Month	1	ĩ	3	4	5	6	7	8	9	10	11	12	13	14
Work in India		萬屬			<u>N M</u>		軍関	1	XX			×		
Work in Japan														
Report Presentation	۵ IC/R		∆ P/R				∆ ∏R				 DF/R			∆ ₹⁄R

IC/R: Inception Report P/R : Progress Report IT/R: Interim Report DF/R: Draft Final Report F/R : Final Report

Y3 Tr hu

•

A1 - 7

9.K

A1-2

Minutes of Meeting Regarding the Scope of Work

A1-2 Minutes of Meeting Regarding the Scope of Work

MINUTES OF MEETING

FOR

THE FEASIBILITY STUDY

NО

NATIONAL HIGHWAY BYPASSES

IN

INDIA

AGREED UPON BETWEEN

MINISTRY OF SURFACE TRANSPORT

THE GOVERNMENT OF INDIA

AND

JAPAN INTERNATIONAL COOPERATION AGENCY DELHI, NOVEMBER 15, 1996

MR. TAKEO KAI LEADER, PREPARATORY STUDY TEAM, JAPAN INTERNATIONAL COOPERATION AGENCY

MR. R. L. KOUL CHIEF ENGINEER, MINISTRY OF SURFACE TRANSPORT

MR.D.N.NARASIMHA RAJU DEPUTY SECRETARY, MINISTRY OF FINANCE DEPARTMENT OF ECONOMIC AFFAIRS

The Japanese Preparatory Study Team (hereinafter referred to as "the Team"), organized by the Japan International Cooperation Agency (hereinafter referred to as "JICA") and headed by Mr. Takeo Kai, visited India from November 4th to November 15th, 1996, to confirm the Scope of Work for the Feasibility Study on National Highway Bypasses in India (hereinafter referred to as "the Study").

The Team had a series of discussions with the representatives of Ministry of Surface Transport, Ministry of Finance, as well as authorities of concerned State Governments, and surveyed proposed sites of a few bypasses. A part of the Team remains in India till December 6th, 1996, to complete the field survey of all the bypasses proposed by the Indian side.

Main points which were discussed and agreed upon by both sides are as follows;

1. Title of the Study

Both sides agreed to entitle the Study as "Feasibility Study on National Highway Bypasses in India".

2. Scope of the Study

2-1. Both sides agreed that six of the eleven bypasses which were originally requested, should be replaced with five new bypasses, based on the strategy for development of National Highways during ninth five year plan. Consequently number of the bypasses to be covered by the Study was revised to ten number. The bypasses at Davangere and Kolar in Karnataka, Sagar in Madhya Pradesh, Eastern Diversion in Maharashtra, Kota in Rajasthan as well as Barabanki in Uttar Pradesh had been replaced by Khamgaon and Nandura in Maharashtra, Vijayawada in Andra Pradesh, Jaipur in Rajasthan as well as Bareilly in Uttar Pradesh.

2-2. Both sides agreed that up to three bypasses would be selected for the feasibility study, depending upon the results of the pre-feasibility of the proposed bypasses, subject to that their combined road length would not exceed about sixty kilometers.

2-3. Both sides agreed that durations of the Study would be fourteen months.

2-4. Both sides agreed that the Study should also address following aspects.

i)While in formulating alternative plans for each bypasse, emphasis needs to be made on provision of service roads to cater to the requirements of local traffic.

A1 - 10 11 10

ii)While the Indian side indicated a keen interest in private resources mobilization, such as BOT scheme, for proposed bypasses, both sides agreed that the most suitable implementation plan would be worked out for the respective bypasses.

3. Undertaking of both sides

3-1. Concerning the clause XII-1-(7) of the Scope of Work, both sides agreed that some of the data and information necessary for the Study might not be available due to relevent laws and regulations of India.

3-2. Concerning the Clause XII-4-(3) of the Scope of Work, both sides agreed that equipment necessary for the Study, such as facsimile machine and photocopy machine, would be arranged by the Japanese side at its own expense, while suitable office space with basic furniture and a telephone line would be arranged by the Indian side at its own expense both in Delhi and concerned States.

3-3. Both side agreed that vehicles and their drivers would be arranged by the Japanese side at its own expense.

3-4. The Indian side requested that an official who is a counterpart to the Team would be provided an opportunity to undergo technical transfer program in Japan. The Study Team promised to convey the request to the Government of Japan.

Pirlin à

T.K A1-11

ANNEX

ATTENDANTS LIST

INDIAN SIDE

Ministry of Surface Transport

Mr.A.D.Narain Mr.R.L.Koul Mr.N.K.Sinha Mr.N.S.Jain Director General (Road Development) Chief Engineer Chief Engineer Superintending Engineer

Ministry of Finance

Ms.Rama Murali Mr.D.N.Narasimha Raju Mr.G.S.Grewal Mr.Mool Chand

Joint Secretary, Department of Economic Affairs Deputy Secretary, Department of Economic Affairs Under Secretary, Department of Economic Affairs Section Officer, Department of Economic Affairs

JAPANESE SIDE

Mr. Takeo Kai

Mr. Masahiko Yamauchi Mr. Shojiro Kuwasawa Mr. Masaei Matsunaga Mr. Yoshitaka Higuchi Mr. Takeshi Goto Leader, Preparatory Study Team, Japan International Cooperation Agency(JICA) Member of the JICA Team Member of the JICA Team Member of the JICA Team Member of the JICA Team

111"

A1-3

Minutes of Meeting on the Inception Report

A1-3 Minutes of Meeting on the Inception Report

MINUTES OF MEETING ON THE INCEPTION REPORT FOR THE FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

AGREED UPON BETWEEN MINISTRY OF SURFACE TRANSPORT THE GOVERNMENT OF INDIA AND JAPAN INTERNATIONAL COOPERATION AGENCY

DELIII, 10th APRIL 1997

/ Mr. Eiichi Yokota / Team Leader The JICA Study Team

Fes mg

Mr. J. B. Mathur Chief Engineer Ministry of Surface Transport

Witnessed by-

Mr. Takeo Kai Team Leader The JICA Advisory Team

Mr. R. K. Sharma Superintending Engineer ministry of Surface transport

In compliance with the Scope of Work agreed upon between Japan International Cooperation Agency (hereinafter referred to as "IICA") and the Ministry of Surface Transport (hereinafter referred to as "MOST"), 30 copies of the Inception Report for the Feasibility Study on National Highway Bypasses in India (hereinafter referred to as the "Study") was submitted by the IICA Study Team to the Chief Engineer, MOST on 8th April 1997. Discussions were held between the IICA Study Team and concerned MOST officers on 8th, 9th and 10th April 1997, wherein Mr. Eiichi Yokota, Leader of the Study Team, along with the other members of the Study Team conducted a briefing of the Report and explained general approach and methodology to be followed for the Study.

After a series of discussion, the following subjects were confirmed and agreed upon by both parties.

Change of the Proposed Bypass Location

Prior to the mobilisation of the JICA Study Team to India, the MOST had requested to JICA to replace "Jaipur Bypass" which is one of the ten (10) proposed bypasses under the Study with "Gwalior Bypass." The Study Team and the MOST mutually confirmed this change.

Standard Design of the Bypass

In relation to the expression of "Standard design of the proposed bypasses" in page 3 of the Inception Report, 6th line from the bottom, the MOST clarified that the bypass design should envisage access control through service road, green belt, and fencing. This concept of the bypass as a fully access controlled highway was understood and confirmed by the JICA Study Team.

3. Selection of Priority Bypasses

In relation to Figure 2-1 General Work Flow, the MOST enquired about their involvement in the selection of the priority for the bypasses to be taken up for the Feasibility Study (Phase 2). The JICA Study Team confirmed that, as stated in the descriptive part of the Report, the MOST is expected to give their comments on every essential aspects of the Study including the selection of priority for the

hypasses. 80 1.

-1. Traffic Survey

The MOST referred to the requirement for delay studies and the minimum duration of three days O-D survey. The BCA Study Team replied that the scheduled O-D survey is one day O-D survey. In relation to Table 2-1 Traffic Counting Sheet, the MOST requested to apply the survey sheet format presented in the guideline of "Traffic studies for Planning Bypasses Around Towns," The Study Foam agreed to do the needful to the extent possible.

Initial Environmental Examination (IEE) 5.

In relation to the IEE, the MOST requested to refer the Forms and Study Items in the guideline of Environmental Impact Assessment established by the Ministry of Environment. The JICA Study Team confirmed to refer the guideline.

Field Survey to be Entrusted to the Local Firms 0.

Regarding the field survey to be entrusted to the local firms, the JICA Study Team requested the co-operation of MOST in short-listing the recommended local firms for bid, or in the process of price negotiation. The MOST confirmed their cooperation in this matter.

7. Economic and Financial Analysis

Regarding the work item 20 Economic and Financial Analysis, the MOST enquired the methodology of the analysis in general and for BOT projects in particular. The JICA Study Team confirmed that the methodology will be formulated during the Study and finalised through the discussion with the MOST.

8. Counter Part of MOST

The MOST confirmed that the Superintending Engineer, Mr. R. K. Sharma will be assigned as the counterpart of the MOST to co-ordinate the Study. Furthermore the MOST confirmed that guidance and assistance from the Chief Engineer, Mr. J. B. Mathur, and the Superintending Engineer, Mr. N. S. Jain, will continue to be available for the Study as hitherto.

9. Available Data for the Study

7K.

The MOST confirmed to provide any other details/data required for the Study. The MCGT requested the JICA Study Team to inform the Team's request with the ample time allowance in order to avoid the delays which may adversely affect the smooth implementation of the Study." j.b-/

Jee

12

Office Space for the IICA Study Team

Although it was not yet provided by the MOST, the MOST confirmed that they will continue their efforts to provide the office space in the MOST for the HCA Study Team.

11. Identification Card of the Study Team Members

Upon the request of the JICA Study Team to issue the ID Card for the Team in order to enable the easy access to the MOST, the MOST confirmed the issuance of

such il) Cards, 72 -82 - 4 SY

Participants

Ministry of Surface Transport

Director General	Mr. A. D. Narain			
(Road Development and Additional Secu	retary)			
Chief Engineer (Planning)	Mr. J. B. Mathur			
Superintending Engineer (Planning)	Mr. N. S. Jain			
Superintending Engineer (Roads)	Mr. R. K. Sharma			

Japan International Cooperation Agency

Deputy Representative

Advisory Team

Study Team

Mr. T. Tanaka

Mr. T. Kai Mr. K. Kozai Mr. M. Terashima

Mr. E. Yokota Mr. M. Honma Mr. K. Ihara Mr. R. Katiyar Mr. M. Kamiya

ite 1

,

189 7K.

A1-4

Minutes of Meeting on the Progress Report

A1-4 Minutes of Meeting on the Progress Report

MINUTES OF MEETING ON THE PROGRESS REPORT FOR THE FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

AGREED UPON BETWEEN MINISTRY OF SURFACE TRANSPORT THE GOVERNMENT OF INDIA AND JAPAN INTERNATIONAL COOPERATION AGENCY

DELHI, 31ST JULY 1997

Mr. Eiichi Yokota Team Leader The JICA Study Team

Mr. J. B. Mathur Chief Engineer Ministry of Surface Transport

Witnessed by

s) -

Mr. R. K. Sharma Superintending Engineer Ministry of Surface Transport In compliance with the Scope of Work agreed upon between Japan International Cooperation Agency (hereinafter referred to as "JICA") and the Ministry of Surface Transport (hereinafter referred to as "MOST"), 20 copies of the Progress Report for the Feasibility Study on National Highway Bypasses in India (hereinafter referred to as the "Study") were submitted by the JICA Study Team to the Chief Engineer, MOST on 29th July 1997. Then the discussions was followed between the JICA Study Team and concerned MOST officers, wherein Mr. Eiichi Yokota, Leader of the Study Team, along with the other members of the Study Team conducted a briefing of the Report.

After the briefing of the Report, the following subjects were confirmed and agreed upon by both parties.

1. Traffic Survey

The MOST accepted the traffic survey output inclusive its methodology which was carried out at the 10 proposed bypass locations.

2. Future Traffic Demand Forecast

The MOST agreed upon the application of the future traffic demand which was estimated by the Study Team for the proposed 10 bypasses, along with the parameters that formed the basis of the traffic demand forecast.

3. Standard Design of the Bypass

The Design Standards which was specified in the Progress Report, and the applied Typical Cross Section which was attached to this Minutes of Meeting, were accepted by the MOST. As noted in the Minutes of Meeting on the Inception Report, the MOST confirmed the concept of full control of access to be applied for the proposed bypasses.

4. Economic and Financial Analysis

The MOST agreed to the methodology applied for the economic and financial analysis of the Study, which follows the guidelines specified in Manual on Economic Evaluation of Highway Projects in India, and other data available in India, such as Updating Road User Cost Data in India.

5. Selection of Bypasses for the Feasibility Study (Phase 2)

The MOST agreed to the screening methodology applied in the Study, to give the priority for the bypasses, and accepted the screening result. The MOST requested to consider the possibility of taking up the Feasibility Study (Phase 2) for three bypasses, namely Bareilly, Gwalior and Bhopal. The Study Team confirmed the request will be forwarded to the JICA Tokyo Head Office.

6. Installation of Telephone Lines

As mentioned in Article 3-2 of Minutes of Meeting for the Feasibility Study on National Highway Bypasses in India, 15th November 1996, it was agreed that the telephone line would be arranged by the Indian side at its own expense. The JICA-Study Team requested the MOST to realise the installation of telephone lines (ISD) to their project office before the next mobilisation for Phase 2. The MOST confirmed to do so.

Participants

Ministry of Surface Transport

Chief Engineer (Planning) Superintending Engineer (Roads)

Japan International Cooperation Agency

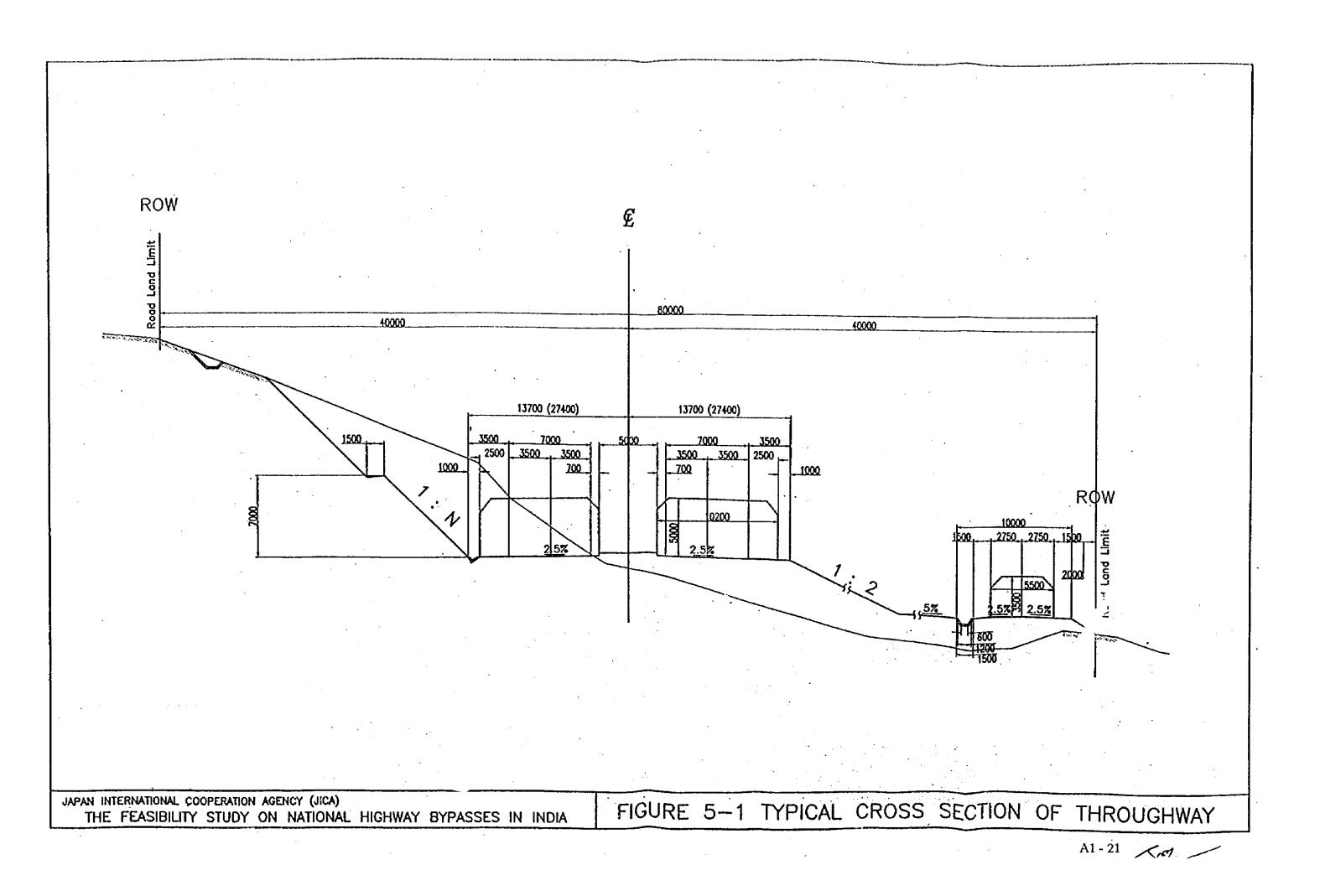
Deputy Representative

Study Team

Mr. J. B. Mathur Mr. R. K. Sharma

Mr. T. Tanaka

Mr. E. Yokota Mr. M. Honma


A1 - 19

-

,

•

. •

A1-5

Minutes of Meeting on the Interim Report

A1-5 Minutes of Meeting on the Interim Report

MINUTES OF MEETING ON THE INTERIM REPORT FOR THE FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

AGREED UPON BETWEEN MINISTRY OF SURFACE TRANSPORT THE GOVERNMENT OF INDIA AND JAPAN INTERNATIONAL COOPERATION AGENCY

DELHI, 22ND OCTOBER 1997

Mr. Eiichi Yokota Team Leader The JICA Study Team

Mr. J. B. Mathur **Chief Engineer Ministry of Surface Transport**

Witnessed by

Mr. Takeo Kai **Team Leader** The JICA Advisory Team

Mr. R. K. Sharma Superintending Engineer Ministry of Surface transport

In compliance with the Scope of Work agreed upon between Japan International Cooperation Agency (hereinafter referred to as "JICA") and the Ministry of Surface Transport (hereinafter referred to as "MOSI"), 30 copies of the Interim Report for the Feasibility Study on National Highway Bypasses in India (hereinafter referred to as the "Study") was submitted by the JICA Study Team to the Chief Engineer, MOST on 20th October 1997. Discussions were held between the JICA Study Team and concerned MOST officers; attended together with JICA Advisory Team, on 22nd October 1997, wherein Mr. Eiichi Yokota, Leader of the Study Team, along with the other members of the Study Team conducted a briefing of the Report and explained general approach and methodology to be followed for the Feasibility Study.

After the discussion, the following subjects were confirmed and agreed upon by both parties.

1. The Interim Report

Upon the briefing of Interim Report by the JICA Study Team, the MOST accepted the Report.

2. Selection of the Bypasses for the Feasibility Study

As recommended in the Interim Report, the selection of two bypasses, Bareilly Bypass and Gwalior Bypass, for the Feasibility Study was accepted by the MOST, and confirmed by both parties.

3. Issuance of the Certificate Letter for the Field Surveys

In order to allow the free access to the project sites to execute the field surveys, the MOST confirmed the issuance of the required documents to the Study Team.

I.K.

Participants

Ministry of Surface Transport

Director General	Mr. A. D. Narain
(Road Development and Additional Secretar	y)
Chief Engineer (Planning)	Mr. J. B. Mathur
Superintending Engineer (Roads)	Mr. R. K. Sharma

Japan International Cooperation Agency

Deputy Representative

Advisory Team

Study Team

Mr. T. Tanaka

Mr. T. Kai Mr. K. Kubo Mr. K. Kozai

Mr. E. Yokota Mr. K. Ihara Mr. I. Ishimoto Mr. R. Katiyar Mr. M. Kamiya

7.K

.

.

A1-6

Minutes of Meeting on the Progress Report 2

A1-6 Minutes of Meeting on the Progress Report 2

MINUTES OF MEETING ON THE PROGRESS REPORT 2 FOR THE FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

AGREED UPON BETWEEN MINISTRY OF SURFACE TRANSPORT THE GOVERNMENT OF INDIA AND JAPAN INTERNATIONAL COOPERATION AGENCY

DELHI, 26TH MARCH 1998

Mr. Eiichi Yokota Team Leader The JICA Study Team

Mr. J. B. Mathur Chief Engineer Ministry of Surface Transport

ola w Witnessed by

Mr. R. K. Sharma Superintending Engineer Ministry of Surface Transport

manna

In compliance with the Scope of Work agreed upon between Japan International Cooperation Agency (hereinafter referred to as "JICA") and the Ministry of Surface Transport (hereinafter referred to as "MoST"), 20 copies of the Progress Report 2 for the Feasibility Study on National Highway Bypasses in India (hereinafter referred to as the "Study") were submitted by the JICA Study Team to the Chief Engineer, MoST, on 25th March 1988. Then the discussions was followed on 26th March 1998, between the JICA Study Team and concerned MoST officers, wherein Mr. Eiichi Yokota, Leader of the Study Team, along with the other members of the Study Team conducted a briefing of the Report.

After the briefing of the Report, the following subjects were confirmed and agreed upon by both parties.

1. Traffic Survey/Future Traffic Demand Forecast

The MoST accepted the traffic survey output, which shows the lower figures than the previous ones surveyed in Pre-Feasibility Study. Accordingly the MoST agreed upon the application of the future traffic demand, adjusted to downward from the previous figures for the proposed 2 bypasses, along with the parameters that formed the basis of the traffic demand forecast.

2. Design Standards/Criteria of the Bypass

The Design Standards/Criteria which was specified in the Progress Report 2 was generally accepted by the MoST, except the followings.

- Superelevation : Due to the local condition of the heavy commercial vehicles with slow speed and overloaded, the MoST requested to limit the maximum superelevation by 5%, instead of 7%, to avoid the turn over of the vehicle. The maximum value of 7% is specified in IRC Standards, and once agreed by the MoST in the Pre-Feasibility Study phase.
- Embankment Slope : The MoST requested that the embankment slope shall be kept to 1:2 (V:H), instead of 1:1.5, which was applied to the Typical Cross Section in the Report.
- Others: The gradient for the drains should preferably ensure self cleaning velocity.

The specifications for the work may be as per Ministry's specifications for Road and Bridge Works (3rd revision)

3. Preliminary Design of the Bypasses

Based on the field investigation, which includes Geodetic Survey, Geotechnical Survey, Hydrological Survey, and Environmental Impact Assessment (Natural Environmental Aspects and Social Environmental Aspects), JICA Study Team recommended the final preliminary design of the bypasses in the Report. The MoST requested to superimpose the proposed alignment on master plan and to ensure the land use as per master plan. Alignment should run well beyond master plan fringe limits.

The MoST requested that the CBR values need to be rechecked and the pavement design should correspond to it. The provision of tollgates for each and every entry and exit needs justification especially for sections having short lengths in respect of Bareilly Bypass. The provision of service road shall be optional and for portion where local traffic justify the provision.

4. Economic and Financial Analysis

The MoST agreed to the methodology applied for the economic and financial analysis of the Study. Accordingly the MoST noted the estimated results of economic/financial analysis, and simulation results which was conducted in the course of financial analysis and implementation programme analysis to assess the possibility of project implementation by BOT basis. The MoST requested that the reasonableness of the toll rates as proposed needs to be analysed with respect to the VOC savings of road users.

5. Land Acquisition

The JICA Study Team submitted the ROW (80 m band width) schedule required for the project, which was expressed in terms of UTM co-ordinates system, along with the control point co-ordinates data. The MoST informed that the land would be acquired for the project based on the proposed alignment, and requested the JICA Study Team to identify the land required for the final alignment.

6. Installation of Telephone Lines

The JICA Study Team regretted that the telephone lines were not provided at all for the Team, in spite of the Team's continuous request. Although the used of existing PWD's line in the office was permitted by the MoST, the said lines were not available during the Study period. The provision of the telephone lines was agreed to be arranged by the Indian side at its own expense in Article 3-2 of Minutes of Meeting for the Feasibility Study on National Highway Bypasses in India, 15th November 1996.

7. Comments on Progress Report

The Report was made available to the MoST on 23/3/98 and the officers did not get sufficient time to go through it. Any additional comments would be communicated by 30th April 1998.

Participants

Ministry of Surface Transport

Chief Engineer (North) Chief Engineer (PL & PI) Chief Engineer (S & R) Chief Engineer (T & T) Superintending Engineer (P-8) Superintending Engineer (PL & PI) Superintending Engineer (P-7)

Japan International Cooperation Agency

Deputy Representative

Study Team

Mr. S. C. Sharma Mr. J. B. Mathur Mr. Indu Prakash Mr. Nirmaljeet Singh Mr. R. K. Sharma Mr. R. P. Indoria Mr. A. N. Dhodapkar

Mr. T. Tanaka

Mr. E. Yokota Mr. Y. Tsujimoto Mr. N. Hara Mr. K. Ihara Mr. I. Ishimoto Mr. N. Sonobe A1-7

Minutes of Meeting on the Draft Final Report

.

A1-7 Minutes of Meeting on the Draft Final Report

MINUTES OF MEETING ON THE DRAFT FINAL REPORT FOR THE FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

AGREED UPON BETWEEN

MINISTRY OF SURFACE TRANSPORT THE GOVERNMENT OF INDIA

AND

JAPAN INTERNATIONAL COOPERATION AGENCY

DELHI, 24TH JUNE 1998

Mr. Eiichi Yokota Team Leader The JICA Study Team

Formallenzor

Mr. J. B. Mathur Chief Engineer Ministry of Surface Transport

Mr/Kanji Kubo Team Leader The JICA Advisory Team

Witnessed by

Jamontonaras

Mr. R. K. Sharma Superintending Engineer Ministry of Surface Transport

In compliance with the Scope of Works agreed upon between Japan International Cooperation Agency (hereinafter referred to as "JICA") and the Ministry of Surface Transport (hereinafter referred to as "MoST"), 30 copies of the Draft Final Report for the Feasibility Study on National Highway Bypasses in India (hereinafter referred to as the "Study"), inclusive of the volume of Drawings and the Summary, were submitted by the JICA Study Team to the Chief Engineer, MoST, on 23rd June 1988, wherein Mr. Eiichi Yokota, Leader of the Study Team, along with the other members of the Study Team conducted a briefing of the Report, in the presence of the JICA Advisory Committee (hereinafter referred to the Advisory Committee) headed by Mr. Kanji Kubo.

After a series of discussions, between the Study Team and the MoST officers concerned, the following subjects were confirmed and agreed upon by both parties.

1. Submission of the Draft Final Report

The Study Team submitted 30 copies of the Draft Final Report (Main Text and Drawings), and 30 copies of the Summary to the MoST. The MoST acknowledged the receipt of the report.

The Study Team explained the Draft Final Report, and the attendants agreed upon the contents of the report.

2. The Final Report

The Final Report is scheduled to be submitted by the end of August 1998 to the MoST after the finalisation of the report incorporating the minor comments made during discussions.

The both sides agreed that the Final Report shall be utilised in its full extent for the purpose of the realisation of the proposed bypass projects.

3. Further Action

The MoST expressed their intention to start the preparatory work in order to implement the projects by BOT basis, as recommended in the report.

Participants

Ministry of Surface Transport

Director General Chief Engineer (P-2) Chief Engineer (PL & PI) Chief Engineer (P-7) Chief Engineer (S & R) Chief Engineer (T & T) Superintending Engineer (P-8) Superintending Engineer (PL & PI) Superintending Engineer (P-2) Executing Engineer (PL & PI) Mr. A. D. Narain Mr. S. C. Sharma Mr. J. B. Mathur Mr. P. K. Chakrabarti Mr. C. C. Bhattacharya Mr. Nirmaljeet Singh Mr. R. K. Sharma Mr. R. P. Indoria Mr. N. S. Jain Mr. Avinash Chand Mr. O. P. Shrivastava

Japan International Cooperation Agency

Advisory Committee

JICA Expert

Study Team

Mr. K. Kozai Mr. Y. Matsui Mr. E. Yokota Mr. M. Homma Mr. N. Hara

Mr. K. Kubo

Appendix 8

Preliminary Economic and Financial Analysis

A8-1

Equations and Data for VOC Calculation

Appendix: Equations and Data for VOC Calculation

Terrain	Pavement Width	Eq-No.	Equation
Plain	Two-lane	SF-43	$V_{co} = 67.96 - 0.012Q$
	(with	SF-44	$V_{cN} = 85.45 - 0.017Q$
	earthen	SF-45	$V_{LCV} = 65.96 - 0.013Q$
	shoulders)	SF-46	$V_{HCV} = 58.96 - 0.008Q$
		SF-47	$V_{MW} = 44.81 - 0.006Q$
		SF-48	$V_{B} = 66.79 - 0.013Q$
		SF-49	$V_{IW} = 51.58 - 0.007Q$
	Four-lane	SF-85	$V_{co} = 68.73 - 0.0049Q$
	(divided	SF-86	$V_{\rm CN} = 92.79 - 0.0075Q$
	carriageway	SF-87	$V_{LCV} = 70.94 - 0.0057Q$
	with paved	SF-88	$V_{HCV} = 63.25 - 0.0047Q$
	shoulders)	SF-89	$V_{M4V} = 48.07 - 0.0036Q$
		SF-90	$V_B = 74.48 - 0.0042Q$
		SF-91	$V_{TW} = 57.21 - 0.0062Q$
wher	$V_X;$	velocity of a	vehicle type x in km/hour
	<i>CO</i> ;	old technolog	iy car
	CN;	new technolo	gy car
	LCV;	light commer	
	HCV;	heavy comme	ercial vehicle (two-axled)
	MAV;	multi-axled h	
	Q;		offic in PCU/hour (both direction for two-lane and in the direction surement for four-lane divided carrigeway)

 Speed Flow Equations (1990) Manual on Economic Evaluation of Highway Projects in India, Indian Road Congress,

.

,

Special Publication 30, 19	Equation
VOC Component	
I. New Technology Car	$FC = 21.85 + 504.15/V + 0.004957V^2 + 0.000652RG + 1.0684RS - 0.3684FL$
 Fuel consumption Spare parts cost 	$SP(IT)/NP(IT) = 0.008(RG - 2000)/10^5$
2. Spare parts cost	$SP(H)/NP(H) = 0.008(RG - 2000)/10^{5}$
2 Maintananaa lahaur	SP(ET)/NP(ET) = 0.008(RO - 2000)/10 LC = 0.5498SP(IT)
3. Maintenance labour	TL = 47,340 - 101.8RF - 18.39RG/W
4. Tyre life	EOL = 1.936 + 0.03769RF + 0.0005952RG/W
5. Engine oil	$PLOL = 1.930 \pm 0.05769 RF \pm 0.0003932 RO/W$ $OL = 1.631 \pm 0.05167 RF \pm 0.001867 RG/W$
6. Other oil	G = 2.816 + 0.2007RF
7. Grease	V = 73.38 - 0.6816RF - 0.001634(RG - 2000)
8. (a) Speed on two-lane roads	V = 78.52 - 0.7293RF - 0.001034(RG - 2000)
(b) Speed on four-lane roads	
9. Utilisation per day	UPD = 3.083V
10. Fixed cost	FX(ET) = FXD(ET)/UPD = 75.32/UPD
11. Depreciation cost	DC(ET) = 0.0034NP(ET)/300UPD = 8.00/UPD
II. Old Technology Car	
1. Fuel consumption	$FC = 10.31 + 1675.52/V + 0.013 W^{2} + 0.0006 RG + 1.3879 RS - 1.0322 FL$
2. Spare parts cost	$SP(IT)/NP(IT) = 0.008(RG - 2000)/10^{5}$
	$SP(ET)/NP(ET) = 0.008(RG - 2000)/10^{5}$
3. Maintenance labour	LC = 0.5498SP(IT)
4. Tyre life	TL = 47,340 - 101.8RF - 18.39 RG/W
5. Engine oil	EOL = 1.937 + 0.03769RF + 0.0005952RG/W
6. Other oil	OL = 1.631 + 0.05167RF + 0.001867RG/W
7. Grease	G = 2.816 + 0.2007 RF
8. (a) Speed on two-lane roads	V = 57.78 - 0.5367RF - 0.001287(RG - 2000)
(b) Speed on four-lane roads	V = 58.35 - 0.5421RF - 0.001299(RG - 2000)
9. Utilisation per day	UPD = 3.083V
10. Fixed cost	FX(ET) = FXD(ET)/UPD = 75.32/UPD
11. Depreciation cost	DC(ET) = 0.0034NP(ET)/300UPD = 9.59/UPD
III. Light Commercial Vehicle	
1. Fuel consumption	$FC = 21.28 + 1615.327/V + 0.0245V^2 + 0.001525RG + 5.377RS - 0.8268FL$
2. Spare parts cost	SP(IT)/NP(IT) = o[-10.755+0.0001413RG+3.4930W]
	$SP(ET)/NP(ET) = e^{[-10.755+0.0001413RG+3.4930W]}$
3. Maintenance labour	LC = 0.3692SP(1T)
4. Tyre life	TL = 21,933 - 3740W - 367.8RF - 1.016RG
5. Engine oil	EOL = 0.9926 + 0.0240RF + 0.00016RG/W
6. Other oil	OL = 2.0415 + 0.0001058RG
7. Grease	G = 0.3661 + 0.0283RF + 0.000251RG
8. (a) Speed on two-lane roads	V = 52.77 - 0.4629RF - 0.000492(RG - 2000)
(b) Speed on four-lane roads	
9. Utilisation per day	UPD = 35.24 + 2.6716V
9. Othisation per day 10. Fixed cost	FX(ET) = FXD(ET)/UPD = 277.1/UPD
	DC(ET) = 0.0059NP(ET)/300UPD = 43.83/UPD
11. Depreciation cost	CW = 99/UPD
12. Wage of crew	CH = 33/01D

VOC Equations (1993) Manual on Economic Evaluation of Highway Projects in India, Indian Road Congress,

VOC Component	Equation
IV. Two-axled Heavy Commercia	al Vehicle
1. Fuel consumption	$FC = 44.08 + 3904.64/V + 0.0207V^2 + 0.0012RG + 3.3281RS - 1.7769FL$
2. Spare parts cost	$SP(IT)/NP(IT) = e^{\{-10.755+0.0001413RG+3.4930W\}}$
	$SP(ET)/NP(ET) = e^{[-10.755+0.0001413RG+3.4930W]}$
3. Maintenance labour	LC = 0.3692SP(IT)
4. Tyre life	TL = 21,933 + 3740W - 367.8RF - 1.016RG
5. Engine oil	EOL = 2.4816 + 0.0601RF + 0.0004RG/W
6. Other oil	OL = 5.1037 + 0.0002646RG
7. Grease	G = 0.9153 + 0.0707RF + 0.000627RG
8. (a) Speed on two-lane roads	V = 49.67 - 0.4357RF - 0.000463(RG - 2000)
(b) Speed on four-lane roads	V = 53.64 - 0.4706RF - 0.0005(RG - 2000)
9. Utilisation per day	UPD = 68.12 + 5.1637V
10. Fixed cost	FX(ET) = FXD(ET)/UPD = 353.9/UPD
11. Depreciation cost	DC(ET) = 0.0059NP(ET)/300UPD = 54.95/UPD
12. Wage of crew	CW = 196/UPD
	•
V. Bus	
1. Fuel consumption	$FC = 32.97 + 3904.64/V + 0.0207V^2 + 0.0012RG + 3.3281RS - 1.7769FL$
2. Spare parts cost	$SP(IT)/NP(IT) = e^{[-10.3547+0.007373RF+0.0000723RG+1.925/W]}$
	$SP(ET)/NP(ET) = e^{\{-10.3547+0.007373RF+0.0000723RG+1.925/W\}}$
3. Maintenance labour	LC = 0.4027SP(IT)
4. Tyre life	<i>TL</i> = 35,699 + 911.3 <i>W</i> - 361 <i>RF</i> - 1.227 <i>RG</i>
5. Engine oil	EOL = 3.663 + 0.01271RF + 0.006713RG/W
6. Other oil	OL = 3.3201 + 0.002889RF + 0.0008217RG - 0.3295W
7. Grease	G = 4.972 + 0.03376RF - 0.3634W
8. (a) Speed on two-lane roads	V = 50.95 - 0.3570RF - 0.000890(RG - 2000)
(b) Speed on four-lane roads	V = 61.14 - 0.4285 RF - 0.00107 (RG - 2000)
9. Utilisation per day	UPD = 14.84 + 8.011V
10. Fixed cost	FX(ET) = FXD(ET)/UPD = 270.83/UPD
11. Depreciation cost	DC(ET) = 0.0059NP(ET)/300UPD = 56.20/UPD
12. Wage of crew	CW = 336/UPD
VI. Multi-axled Heavy Commer	cial Vehicle
1. Fuel consumption	$FC = 141.0 + 2695.79/V + 0.0517V^{2} + 0.0035RG + 17.75RS - 5.40FL$
2. Spare parts cost	$SP(IT)/NP(IT) = e^{[-10.6066+0.0001413RG+3.4930/W]}$
	$SP(ET)/NP(ET) = e^{\{-10.6066+0.0001413RG+3.4930/W'\}}$
3. Maintenance labour	LC = 0.3692SP(IT)
4. Tyre life	TL = 21,933 + 3,740W - 367.8RF - 1.016RG
5. Engine oil	EOL = 2.4816 + 0.0601RF + 0.0004RG/W
6. Other oil	OL = 5.1037 + 0.0002646RG
7. Grease	G = 0.9153 + 0.0707RF + 0.000627RG
8. (a) Speed on two-lane roads	V = 37.75 - 0.3311RF - 0.000352(RG - 2000)
(b) Speed on four-lane roads	V = 40.77 - 0.3577RF - 0.00038(RG - 2000)
9. Utilisation per day	UPD = 68.12 + 5.1637V
10. Fixed cost	FX(ET) = FXD(ET)/UPD = 473.6/UPD
11. Depreciation cost	DC(ET) = 0.0059NP(ET)/300UPD = 95.0/UPD
12. Wage of crew	CW = 336/UPD

•

VOC	Compone	nt Equation
VII. Two-wh	eeler	
1. Fuel consu	mption	$FC = 3.38 + 549.57/V + 0.00436V^2 + 0.000196RG + 0.4552RS - 0.3386V$
2. Spare parts	s cost	$SP(IT)/NP(IT) = (-51.80 + 0.0222RG)/10^{5}$
		$SP(ET)/NP(ET) = (-51.80 + 0.0222RG)/10^{5}$
3. Maintenan	ice labour	LC = 0.5498SP(IT)
4. Tyre life		TL = 47,340 - 101.8RF - 18.39RG/W
5. Engine oil		EOL = 0.387 + 0.0075RF + 0.000119 RG/W
6. (a) Speed		
(b) Speed		
		UPD = 1.814V
9. Utilisation 10. Fixed con		FX(ET) = FXD(ET)/UPD = 10.67/UPD
11. Deprecia	tion cost	DC(ET) = 0.0034NP(ET)/300UPD = 1.41/UPD
where,	FC:	Fuel consumption in litres per 1000 km
	V:	Speed of a vehicle in km per hour
	RG:	Roughness in mm per km (BI)
	RS:	Rise in m per km
	FL:	Fall in m per km
	SP:	Cost of spare parts in paise (R. 0.01) per km
	<i>(IT)</i> :	Inclusive of taxes
		clusive of taxes
	NP:	Cost of a new vehicle in Rupees
	LC:	Maintenance labour cost in paise per km
	TL:	Tyre life in km Pavement width in meter (restricted to 7.0 m in the calculation)
	W: EOL:	Engine oil consumption in litres per 1000 km
	OL:	Other oil consumption in litres per 10000 km
	0L: G:	Grease consumption in kg per 10000 km
	G: UPD;	Utilisation of vehicle in km per day
	EX:	Fixed cost of a vehicle in Rupees per km
	DC:	Depreciation cost of a vehicle in Rupees per km
	CW:	Wages of a vehicle in Rupees per km
(Note) W		s of 300 are assumed.

(Note) Working days of 300 are assumed.

 Recommended Equations for Distance-related Congestion Factor Manual on Economic Evaluation of Highway Projects in India, Indian Road Congress, Special Publication 30, 1993, Table 3 (P.16)

	Two Lane (Plain Terrain)	Four Lane (Plain Terrain)
1, NTC	CF=0.70+0.90 VCR	CF=0.90+0.90 VCR
2. OTC	CF=0.90+0.50 VCR	CF≈0.90+0.80 VCR
3. LCV	CF=0.90+1.00 VCR	CF=0.90+0.70 VCR
4. HCV & Bus	CF=0,80+1.10 VCR	CF=1.00+0.75 VCR
5. MAV	CF=0.90+1.40 VCR	CF=0.90+0.70 VCR

The congestion factor of buses can be taken the same as for HCV's.

2. The congestion factor of busies can be taken the same as for the V s.

The distance-related congestion effect on two-wheelers can be taken as 1.
 The congestion factors obtained from the above equations are subject to the

minimum value of 1.00 and the maximum value of 2.00.

4. Market Prices for VOC Calculation

The following prices as of July 1997 was applied according to the result of the interviews with dealers in Delhi. Cost update for other items were made with the assumptions mentioned in the report. The prices shown below include taxes.

	T.	Cost in	Rupees
	Item	July 1997	March 1998
A.	New Vehicle		
	1. Maruti (NTC)	Rs. 194,791	Rs. 209,313
	2. Ambassador (OTC)	Rs. 321,675	Rs. 321,675
	3. LCV (Ashok-Leyland, Tata)	Rs. 415,073	Rs. 415,073
	4. HCV (Ashok-Leyland, Tata)	Rs. 613,445	Rs. 613,445
	5. Bus (Ashok-Leyland, Tata)	Rs. 702,500	Rs. 702,500
	6. MAV (Ashok-Leyland, Tata)	Rs. 916,700	Rs. 916,700
	7. Two-wheeler (Vespa)	Rs. 25,470	Rs. 25,470
B.	Petroleum Product		
	1. Petrol (Gasoline) per litre	Rs. 21.52	Rs. 22.84
	2. Diesel per litre	Rs. 8.02	Rs. 10.25
C.	Tyre (MRF, Dunlop, etc.)		
	1. NTC	Rs. 975	Rs. 975
	2. OTC	Rs. 1,425	Rs. 1,47(
	3. LCV	Rs. 4,113	Rs. 3,488
	4. HCV	Rs. 8,375	Rs . 7,500
	5. Bus	Rs. 8,725	Rs. 8,725
	6. MAV	Rs. 8,900	Rs. 9,30
	7. Two-wheeler	Rs. 325	Rs. 28

A8-2

Economic Cost-Benefit Streams of the Projects

.

Projects
s of the
lefit Streams o
Cost-Bene
Economic

2. Patna Bypass

(Rs. million)

1. Bareilly Bypass

838.8 734.9 1,319.9 1,178.5 1,052.2 939.5 668.7 549.5 1,708.1 1,635.4 1,524.0 1,399.7 597.1 533.1 22.545.0 -830.9 -1,187.0 -794.9 -118.3 1,878.8 1,774.6 1.479.7 Discounted Batanco (12%) 1,909.1 1,832.5 1,921.1 0 >dN NgN -1,187.0 504.9 199.9 178.4 232.9 6,093.7 571.4 472.8 394.5 280.8 223.8 -794.9 734.4 704.4 639.2 605.3 441.8 352.2 314.5 -830.9 -118.3 761.4 672.4 503.1 236.7 € -1,667.6 8,091.5 8.091.5 8,091.5 49.7% -1,250.7 -208.5 3.791.8 4,221.8 4,651.8 5,081.8 6,371.7 7 231.6 7,661.6 8,091.5 8,091.5 8,091.5 7,940.0 8,091.5 8,091.5 5,511.7 5,941.7 6,650.1 9.342.3 -1,042.3 ඔ Balance 2,708.5 2,557.0 2,708.5 2,708.5 2,708.5 27.9% 1,502.9 2,708.5 -1,042.3 -1,667.6 -1,250.7 -208.5 1,623.4 1,744.0 2,195.3 2,587.9 2,708.5 2,708.5 2,708.5 3.959.2 2,105.7 2,467.4 1,864.6 1, 985.1 2.226.3 ₹ 31.6 31.6 31.6 183.1 31.6 31.6 31.6 31.6 31.6 31.6 31.6 183.1 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 NβO Cost Construc-tion 042.3 1,667.6 1,250.7 208.5 -1,250.7 5,543.3 6,973.3 6,403.3 6,833.2 7.263.2 7,693.2 8,123.1 8,123.1 8,123.1 8, 123.1 4,253.4 4,683.4 8,123.1 8,123.1 8,123.1 8,123.1 8.123.1 5,113.4 3,823.4 8,123.1 +Time saving (B) Benefit 2,740.1 2,740.1 2,740.1 2,740.1 2,499.0 2,257.9 2,740.1 2,740.1 2,740.1 1,534.5 1,655.0 1,896.2 2,137.3 2,378.4 2,619.5 2,740.1 2,740.1 2.740.1 1,775.6 2,016.7 voc saving (A) 2019 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2020 2021 2022 2004 2005 2006 201 2002 2003 2007 1998 1999 2000 year 1997 203 633.9 2032.6 1925.4 1675.6 1496.1 1335.8 1064.9 941.0 348.9 758.0 676.8 1769.2 1192.7 -190.6 2251.4 2247.8 2170.8 2107.3 1861.1 30,348.6 358.7 533.8 2223.4 2219.1 Discounted Balance (12%) (Rs. million) Ô 180.2 190.6 6,639.0 201.9 473.4 482.8 446.3 398.5 355.8 283.6 533.8 -190.6 471.8 497.2 511.8 517.5 516.1 509.1 465.5 317.6 243.4 226.1 358.7 433.1 € 9,171.7 9,171.7 7,501.2 8,121.0 9,621.6 7,070.4 9,171.7 9,171.7 112,1% -749.9 -300.0 5,494,4 6.019.7 8,646.3 9,171.7 9,171.7 9,077.1 -449.9 3,918.5 4,443.8 4,969.1 6,545.1 9,171.7 9,171.7 0 Balance 46.8% 931.2 1,603.0 1,844.3 2.106.8 2,274.7 2,442.7 2,348.1 2,442.7 2,442.7 2,442.7 2,892.6 449.9 -300.0 763.3 1,099.1 1,267.1 1,435.0 2,442.7 -749.9 1,770.9 2,442.7 2,442.7 2,442.7 ₹ 126.3 31.7 26.3 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 31.7 0 & M Cost -449.9 449.9 749.9 300.0 Construc-<u>§</u> 9,203.4 9,203.4 9,203.4 9,203.4 9,203.4 9,203.4 9,203.4 5,000.8 6,051.5 6,576.8 7,627.4 8,678,1 9,203.4 9.203.4 3,950.2 5,526.2 7,102.1 8,152.7 9,203.4 4,475,5 saving +Time <u>@</u> Benefit 2,474.4 2,474.4 1,970.6 2,306.5 1,634.7 1,802.6 2,138.5 2,474.4 2,474,4 2,474,4 2,474,4 2,474,4 795.0 962.9 1,130.9 1,298.8 1,466.8 2,474,4 2,474,4 2,474,4 VOC saving (A) 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2009 2011 2021 2008 2005 2006 2007 1999 2000 2002 2003 2004 1997 1998 year 2001

ERR

≥dZ

ER

3. Ке	3. Keonjnar bypass	bypas:	Сл				Ģ		4 0 7	4. Daluyavı 1. Dypass	- nypac	2				, aŭ	(Re million)
	i						(Rs.	(Rs. million)	ľ								
	Ber	Benefit	Cost	st	Balan	ance	Discounted Balance (12%)	f Balance %)		Benefit	efit	Cost		Balance	e	Discounted Balance (12%)	Balance
year	VOC saving	+Time saving (B)	Construc- tion	रू अ 0	€	(8)	(¥)	(8)	year	VOC saving (A)	+Time saving (B)	Construc- tion	M & O	ર્સ	<u>(a)</u>	(¥	<u>6</u>
1997									1997								
1998									1998						-		
000									1999			132.3		-132.3	-132.3	-105.5	-105.5
0000			180.8		-180.8	-180.8	-128.7	-128.7	2000			220.5		-220.5	-220.5	-156.9	-156.9
2004			180.8		-180.8	-180.8	-114.9	-114.9	2001			88.2		-88.2	-88.2	-56.0	-56.0
2002	¢ C	•		10.7	-11.6	96	-6.6	-5.4	2002	6.3	13.7		14.3	-8.0	-0.5	4.5	-0.3
2003	4	12.6		10.7	-6.5	6.1	0.0- 0.0	1.0	2003	20.8	49.9		14.3	6.6	35.6	3.3	18.0
2004	6	24.2		10.7	4.1-	13.5	-0.G	6.1	2004	35.4	86.0		14.3	21.1	71.8	9.6	32.5
2005	14.4	35.7		10.7	3.7	25.0	1.5	10.1	2005	50.0	122.2		14.3	35.7	107.9	14.4	43.6
2006	19.5	47.2		10.7	8,8	36.5	3.2	13.2	2006	64.5	158.3		14.3	50.3	144.0	18.1	51.9
2007	24.6	58.7		10.7	13.9	48.0	4.5	15.5	2007	79.1	194.5		14.3	64.8	180.2	20.9	58.0
2008	6.00	70.2		10.7	19.0	59.5	5.5	17.1	2008	93.7	230.6		14.3	79.4	216.3	22.8	62.2
2009	8.46	81.7		36.5	-1.8	45.2	-0.5	11.6	2009	108.2	266.7		61.1	47.1	205.7	12.1	52.8
2010	99.6	93.2		10,7	29.2	82.5	6.7	18.9	2010	122.8	302.9		14.3	108.5	288.6	24.9	6 6.
2011	45.0	104.8		10.7	34.3	94.1	7.0	19.2	2011	137.4	339.0		14.3	123.1	324.8	25.2	66.5
2012	50.1	116.3		10.7	39.4	105.6	7.2	19.3	2012	151.9	375.2		14.3	137.7	360.9	25.1	62.9
2013	50.1	116.3		10.7	39.4	105.6	6.4	17.2	2013	151.9	375.2		14.3	137.7	360.9	22.5	58.9
2014	50.1	116.3		10.7	39.4	105.6	5.7	15.4	2014	151.9	375.2		14,3	137.7	360.9	20.0	52.6
2015	50.1	116.3		10.7	39.4	105.6	5.1	13.7	2015	151.9	375.2		14,3	137.7	360.9	17.9	46.9
2016	20.1	116.3		10.7	39.4	105.6	4.6	12.3	2016	151.9	375.2		14.3	137.7	360.9	16.0	41.9
2017	50.1	116.3		36.5	13.5	7.67	1.4	8.3	2017	151.9	375.2		61.1	90.8	314.1	9.4	32.6
2018	50.1	116.3		10.7	39.4	105.6	3.6	9.6	2018	151.9	375.2		14.3	137.7	360.9	12.7	33.4
2019	20	116.3		10.7	39.4	105.6	3.3	8.7	2019	151.9	375.2		14,3	137.7	360.9	11.4	29.8
2020	203	116.3		10.7	39.4	105.6	2.9	7.8	2020	151.9	375.2		14.3	137.7	360.9	10.2	26.5
2021	50.1	116.3	-108.5	10.7	147.8	214.0	9.7	14.1	2021	151.9	375.2	-132.3	14.3	270.0	493.2	17.8	32.5
					2.9%	11.6%	-176.3	-9.8					I	11.7%	23.0%	-8.7	554.0
				1	EIRA	Œ	VPV						L_)	EIRR	c	VPV	
				I													

4. Balugaon. Bypass

3. Keonjhar Bypass

.

Bypass	
Vijayawada.	
പ്	

Bypa:
Kannur.
G.

6
ass
å
ŝ.
5
E

5. Vij:	Vijayawada. Bypass	a. Byp	ass				ć		. 7 <u>6</u>	o. Namu uypass	2000				i	(Rs. 1	(Rs. million)
	5						(HS.	(HS, militor)								Discounted Balance	Balance
	Benefit	əfit	Cost	 9	Balance		Discounted Balance (12%)	Balance		Benefit	afit	Cost	21	Balance		(12%)	
year	VOC	+Time saving	Construc- tion	0 & M	(A)	(8)	8	6)	year	VOC saving (A)	+Time saving (B)	Construc- tion	0 & M	(A)	8	\$	බ
1997	¥,								1997								
1008									1998					:			 [
			401.8		491.8	-491.8	-392.1	-392.1	1999		_	335.4		-335.4	-335.4	-267.4	
			819.7		-819.7	-819.7	-583.4	-583.4	2000			559.0		-559.0	-559.0	-397.9	6.795-
			207.0		9.705.	327.9	-208.4	-208.4	2001			223.6		-223.6	223.6	-142.1	-142.1
	0 1 1	120.4	2.10	20.6	53.2	109.8	30.2	62.3	2002	147.1	702.6		12.0	135.1	690.6	76.7	391.8
2002	0.0.0	4 4 4 4 4		20.6	177.8	546.0	90.1	276.6	2003	178.1	946.8		12.0	166.0	934.8	84.1	473.6
5002	190.0	0.000		20.02	302 4	982.1	136.8	444.3	2004	209.0	1,191.0		12.0	196.9	1,179.0	89.1	533.3
2004	020	0.200.1		2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	407.4	1 4183	172.5	572.8	2005	239.9	1,435.2		12.0	227.9	1,423.2	92.0	574.8
-2007 7	44/./	2.00.4		0.00		2020	0.801	668.7	2006	270.8	1,679.4		12.0	258.8	1,667.4	93.3	601.3
2006		1,875.1		0.02 0.02	0.000	1 000 0	017 B	737.6	2007	301.7	1.923.6		12.0	289.7	1.911.6	93.3	615.5
2007		2,112,2		2.5		0.000.0	0.000	1000	2008	332 7	2 167.8		12.0	320.6	2,155.8	92.2	619.7
2008		2.747.5		20.6		2,720.0	230.2	2.00/		2 6 2 6	0 410 1		45.9	317.7	2.366.2	81.5	607.3
2009		3,183.6		106.1	840.0	3.077.5	9.612	5.69.	2202		2 2 2 2 2		0 6 7	2005	2 644 2	87.7	606.0
2010		3,619.8		20.6	1,050.2	3,599.2	240.7	824.8		0.400	0.000.0			N 4 4 5 4	2 888 4	84.6	0.165
2011	1,195.4	4,056.0		20.6		4.035.4	240.4	825.7	1.02	425.4	C.UUX 2				2 120 F	5 12 6 13	572.3
2012		4,492.2		20.6		4,471.5	237.4	816.9	2012	456.3	3, 144.7		2.2			1 CF	
2013		4,492.2		20.6	1,299.4	4,471.5	212.0	729.4	2013	456.3	3 144.7		0.21		0.201.0	C 4 4	255.2
2014		4.492.2	·	20.6	1,299.4	4,471.5	189.2	651.3	2014	456.3	3,144.7		0.7	0.444	0.201.0	5	2.00
2016		4,492.2		20.6	1,299.4	4,471.5	169.0	581.5	2015	456.3	3,144.7		2.0	444.3	3,132.0	0 C	1, 10 C
2016		4,492.2		20.6	1.299.4	4,471.5	150.9	519.2	2016	456.3	3,144.7		12.0	444.3	0.102.0	0.50 2.50	2.200 0 100
2017		4 492 2		106.1	1.213.9	4,386.0	125.8	454.7	2017	456.3	3,144.7		45.9	4.0.4	3,096.5	0.24	31.20
8100		0 000 0		20.6	1.299.4	4.471.5	120.3	413.9	2018	456.3	3,144.7		12.0	444.3	3, 132.6	41.1	7.752
	- •	C COV V		20.6	1 299.4	4.471.5	107.4	369.5	2019	456.3	3,144.7		12.0	444.3	3,132.6	36.7	6-9CZ
6172		1.100 ×		20.6	1 209 4	4 471.5	9.56	329.9	2020	456.3	3,144.7		12.0	444.3	3,132.6	32.8	Z31.Z
SV2		11221 F	0 00	20.6	1 701 9	6 2 3 0 V	0.811	327.0	2021	456.3	3,144.7	335.4	12.0	779.7	3.468.1	51.4	228.5
202	1,020.0	4,472.4		>.>.	702 20	10.004	0 115 1	9 996 1					i	18.8%	57.4%	599.3	8,447.3
					e 1.07	1	1.014						L	EIRR	ä	VPV	
				_			2						,				

7. Na	ndura.	7. Nandura. Bypass	s S						8. Kha	8. Khamgaon. Bypass	n. Bypa	SS				(j)	(Be million)
							(Rs.	(Rs. million)								Viscounted	Salance
	Ber	Benefit	Cost	st	Balance		Discounted Balance (12%)	Balance		Benefit	ž	Cost		Balance		(12%)	
year	voc saving	+Time saving	Construc- tion	0 & M	(4)	æ	(Y	(B)	year	VOC saving (A)	+Time saving (B)	Construc-	₩ 80	Ŕ	(3)	(A)	<u>(</u>)
1001	(r	6							1997								
1998									1998			1 70 1		170.1	-170.1	-135.6	-135.6
1999									6661			283.5		-283.5	-283.5	-201.8	-201.8
2000			143.1		-143.1	-143.1	-101.9	8°101-	2007			113.4		-113.4	-113.4	-72.1	-72.1
2001			143.1		-143.1	-143.1	-90.9	2, 1 2, 1 2, 1 2, 1 2, 1 2, 1 2, 1 2, 1		69.4	158.6	•	11.9	57.4	146.7	32.6	83.2
2002	31.5	75.5		9.6 9.6	21.8	65.9	4 1 4	4.70	2002	505	219.4		11,9	79.0	207.5	40.0	105.1
2003	54.4	134.1		9.6	44.8	124.4	1.22	0.20		112.5	280.2		11.9	100.6	268.3	45.5	121.3
2004	77.4			9.6	67.8	183.0	30.7	י מ מיים מיים		0 721	341.0		11.9	122.1	329.1	49.3	:32.9
2005	100.4	251.2		9.6	90.8	241.6	36.7	0'/6	2008	155.6	401.8		11.9	143.7	389.9	51.8	140.6
2006	123.4	309.8		9.6	113.7	300.1	41.0	2.901	2002		A 63 6		11.9	165.2	450.7	53.2	145.1
2007				9.6	136.7	358.7	44.0	115.5	1002		105.0		6	186.8	511.5	53.7	147.0
2003				9.6	159.7	417.3	45.9	120.0	2002	0000	5 P.C. 2		45.0	175.2	539.2	45.0	138.4
2009				29.0	163.3	456.5	41.9	2.711	5002	2.027 2.1 B	545.0		11.9	229.9	633.1	52.7	145.1
2010		•		9.6	205.7	534.4	47.1	0.221	20172	0.172	705.8		11.9	251.4	693.9	51.5	142.0
2011	238.3	602.6		9.6	228.6	593.0	46.8	0.121	2010	0 780	766.6		11.9	273.0	754.7	49.9	137.9
2012				9.6	251.6	651.5	40.0	0.911	2 C C C C C C C C C C C C C C C C C C C	284.9	766.6		11.9	273.0	754.7	44.5	8
2013			<u>.</u>	9.6	251.6	651.5	41.0	2.001	2014	284 9	766.6		11.9	273.0	754.7	39.8	109.9
2014			<u>.</u>	9.9	251.6	651.5 7	0.02 0.02	5. T C	2015	9.44.9	766.6		11.9	273.0	754.7	35.5	98.1
2015	261.3		~	9.0	251.6	651.5 7.7.5	22.1	446	2016	284.9	766.6		11.9	273.0	754.7	31.7	87.6
2016			<u></u>	9.6	0'LCZ	0.100	4 F F F F	2 2 2 2	2017	284.9	766.6		45.0	239.9	721.6	24,9	74.8
2017			<u></u>	29.0	232.2	2.229		5 U 3	2018	284.9	766.6		11.9	273.0	754.7	25.3	6.69
2018			~	0.0	251.6	0.100 A 1.70	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.00	2019	284,9	766.6		11.9	273.0	754.7	22.6	62.4
2019				9.6		0.100	9 0 F	100	2020	284.9	766.6		11.9	273.0	7.54.7	20.1	55.7
2020	261.3			9.6	0.162	0.100			1400	284.9	766.6	-170.1	11.9	443.1	924.8	29.2	609
2021	261.3	3 661.2	2 85.9		337.5	/3/.4	7.72	1 540 5						20.0%	36.8%	389.2	1.771 6
					28.6%	%7.0c	4/0.4	2:2:0'- /V					I	EIRR	æ	ΛdN	
					두고	Ĩ	Z						,				

8. Khamgaon. Bypass

10
SS
0.0
Ø
Ο.
~
ഫ്
LL.
-
_
ര
Õ
~
Ů,
2
m
اليك
S

10. Gwalior. Bypass

<u>.</u>	a. Dilopai. Dypass	ypass					ļ		5		, , , , , , , , , , , , , , , , , , ,					, Де	(Re million)
				ſ			(HS.	(Hs. million)	ľ								
	Benefit	efit	Cost		Balance		Discounted Balance (12%)	Balance		Benefit	ž	Cost		Balance	e	Uiscounied baiance (12%)	
year	VOC Saving	+Time saving (B)	Construc- tion	O&M	(A)	(8)	(Y)	(B)	уеаг	VOC saving (A)	+Time saving (B)	Construc- tion	M & O	\$	8)	Æ	(£)
1997									1997								
1998						2	0.004	0 001	1998			50R 2		508.2	-508.2	-405.2	-405.2
1999			511.8		0,530	0.110	-406.0	-2007-0 -2012-0	0000			847.1		-847.1	-847.1	-602.9	-602.9
2000			241 2		-341.2	-341.2	-216.9	-216,9	2001			338.8		-338.8	-338.8	-215.3	-215.3
	332.6	1.289.2		36.4	296.2	1,252.9	168.1	710.9	2002	335.6	743.1		9.61	316.1	723.6	179.3	410.6
2003	378.4	1.530.8		36.4	342.0	1,494.4	173.3	757.1	2003	361.7	782.8		19.6	342.1	763.3	173.3	336.7
2004	424.2	1.772.4	- 6 2-	36.4	387.8	1,736.0	175.4	785.3	2004	387.8	822.6		19.6	368.2	803.0	166.6	363.2
2005	469.9	2.013.9		36.4	433.6	1,977.5	175.1	798.7	2005	413.9	862.3		19.6	0.460	842.7	159.3	340.4
2006	515.7	2.255.5		36.4	479.3	2,219.1	172.9	800.2	2006	439.9	902.0		19.6	420.4	882.4	151.6	318.2
2007	561.5	2,497.0		36.4	525.1	2,460.6	169.1	792.3	2007	466.0	941.7		19.6	446,5	922.1	143.8	296.9
2008	607.3	2,738,6		36.4	570.9	2.702.2	164.1	776.8	2008	492,1	981.4		19.6	472.6	961.8	135.8	276.5
2009	653.1	2,980.1		122.6	530.5	2,857.5	136.2	733.5	2009	518.2	1,021.1		0.67	439.1	942.0	112.7	241.8
2010	698.8	3,221.7		36.4	662.4	3,185.3	151.8	730.0	2010	544.3	1,060.8		19.6	524.7	1,041.2	120.3	238.6
2011	744.6	3,463.2		36.4	708.2	3,426.8	144.9	701.2	2011	570.4	1,100.5		19.6	550.8	1,080.9	112.7	221.2
2012	790.4	3,704.8		36.4	754.0	3,668.4	137.8	670.2	2012	596.4	1,140.2		19.6	576.9	1,120.7	105.4	204.7
2013	790.4	3,704,8		36.4	754.0	3,668.4	123.0	598.4	2013	596.4	1,140.2		19.6	576,9	1,120.7	94.1	132.8
2014	790.4	3,704.8		36.4	754.0	3,668.4	109.8	534.3	2014	596.4	1,140.2		19.6	576.9	1,120.7	84.0	63.2
2015	790.4	3,704.8		36.4	754.0	3,668.4	98.0	477.0	2015	596.4	1,140.2		19.6	576.9	1,120.7	75.0	145.7
2016	790.4	3.704.8		36.4	754.0	3,668.4	87.5	425,9	2016	596.4	1,140.2		19.6	576.9	1,120.7	67.0	130.1
2017	790.4	3,704.8		122.6	667.8	3.582.2	69.2	371.4	2017	596.4	1,140.2		79.0	517,4	1,061.2	53.6	110.0
2018	790.4	3.704.8		36.4	754.0	3,668.4	69.8	339.5	2018	596.4	1,140.2		19.6	576.9	1,120.7	53.4	103.7
2019	790.4	3,704.8		36.4	754.0	3,668.4	62.3	303.2	2019	596.4	1,140.2		19.6	576.9	1,120.7	47.7	92.6
2020	790.4	3.704.8		36.4	754.0	3,668.4	55.6	270.7	2020	596.4	1,140.2		19.6	576.9	1,:20.7	42.6	82.7
2021	790.4	3.704.8	-511.8	36.4	1,265.8	4,180.2	83.4	275.4	2021	596.4	1.140.2	-508.2	19.6	1,085.1	1,628.9	71.5	107.3
]					21.6%	56.9%	1,295.3	10,619.8					ł	19.7%	34.5%	926.2	3,193.6
					EIRA	æ	VPV	>						EIRR	ũ	VdN	

: -

A8-3

Financial Cost-Benefit Streams of the Projects

Financial	l Cost-Bene	Financial Cost-Benefit Streams of the Projects	ne Projects		2. Patni	2. Patna Bypass			(Rs. million)
:	. [:]					Revenue	Cost		Balance
1. Bareill	1. Bareilly Bypass			(Rs. million)	year		Construction	0 & M	
	Revenue	Cost	1	Balance	1997				
year		Construction	0 & M		1999		1.576.4		-1,576.4
1997					2000		2,774.5		-2.774.5
1998		1 000		680 5	2001		2,289.0		-2,289.0
1999		000.0 1 047 6		-1 247.6	2002		419.6		-419.6
2000		549.0		-549.0	2003	707.0		70.0	637.0
2002	306.2		63.9	242.3	2004	844.4		77.0	767.5
2003	477.9		70.3	407.6	2005	981.8		84.7	897.2
2004	649.6		27.3	572.3	2006	1,119.3		93.1	1.026.1
2005	821.3		85.0	736.3	2007	1,256.7		102.5	1,154.2
2006	0.599.0		93.5	899.4	2008	1,394.1		112.7	1,281.4
2007	1,164.7		102.9	1,061.8	2009	1,531.5		124.0	1,407.5
2008	1,336.3		113.2	1,223.2	2010	1,668,9		790.2	878.7
2009	1,508.0		495.4	1,012.7	2011	1,806.3		150.0	1,656.3
2010	1.679.7		136.9	1,542.8	2012	1,943.7		165.0	1,778.7
2011	1,851.4		150.6	1,700.8	2013	1.943.7		181.5	1,762.2
2012	2,023.1		165.7	1,857.4	2014	2.587.1		199.7	2,387.5
2013	2,023.1		182.2	0,840.9	2015	2,587.1		219.6	2.367.5
2014	2,692.8		200.3 200 F	2.472.2	2016	2,587.1		241.6	2,345.5
C102	0,260,2 2,09,20		242 F	2 450.2	2017	3,443.4		265.7	3,177.7
2102	0.700.7 2 7 8 4 4		1 061 9	2.522.2	2018	3,443.4		1,693.8	1.749.6
2018	9,584.1		293.5	3,290.6	2019	3,443.4		321.5	3.121.9
20102	3.584.1		322.8	3,261.2	2020	4,583.2		353.7	4.229.5
2020	4.770.4		355.1	4,415.2	2021	4,583.2		389.1	4,194.2
2021	4.770.4		390.6	4,379.7	2022	4,583.2		428.0	4,155.2
}			FIRR	25.9%				FIRR	14.2%

a Keoni	 Keonihar Bybass 				4. Balug	4. Balugaon. Bypass	S		(Rs. million)
				(HS. Million)		Revenue	Cost		Balance
	Revenue	Cost		balance			Construction	0 & M	
		Construction	O&M		year				
year					1997				
1997					1998				
1998					000		200.1		-200.1
1999							366.8		-366.8
0000		300.7		-300.7	2000				-1614
		330.8	0.0	-330.8	2001		101.4	1	
			215	-12.1	2002	25.3		28.7	0.0
2002	9.9) I 1 1		000	52.7		31.6	21.2
2003	15.8		23.7	D. 7.	2002			34.7	45.5
2004	22.2		26.1	-3.9	2004	200		6 86	69.5
	980		28.7	-0.1	2005	107.7			
2002			2 F C	3.5	2006	135.2		42.0	20.6
2005	35.0				2000	162.7		46.2	116.5
2007	41.4		1.45	2.0 	2001			50.9	139.3
8000	47.8		38.2	9.7	2008	190.2		9000	010
2002			143.4	-89.1	2009	217.7		239.0	0.007
2009	9.40 0			14 5	2010	245.2		61.6	183.6
2010	60.7		40.2			7 070		67.7	205.0
2011	67.1		50.8	0.01		0.000		745	225.7
0100	7 3 5		55.9	17.6	2012	2002			010
2102			615 5	12.0	2013	300.2		81.9	710.7
2013	(3.5)		6.7 G	30.2	2014	399.5		90.1	309.4
2014	97.8		0.10	1.00		300 5		1.66	300.4
2015	97.8		74.4	23.4		2005		109.0	290.5
2016	97.8		81.8	16.0	9102			513 E	18.1
	0.021		307.3	-177.1	2017	531.8	~		
			0.60	31.2	2018	531.8	~	131.9	333.3
2018	130.4			01 2	0010	531.8	~	145.1	386.6
2019	130.2		0.001		0000	207 B		159.7	548.1
2020	173.3		119.8	53.5	2020			1756	532.2
2021	173.3		131.8	41.5	2021	9.101	ň		13.0%
			FIRR	negative				1 11 1	

	•			(HS, million)					
	Revenue	Cost		Balance		Revenue	Cost		Balance
vear		Construction	O&M		year		Construction	O&M	
1997					1997				
1998					1998				
1999		743.9		-743.9	1999		507.3		-507.3
0002		1.363.7		-1,363.7	2000		930.1		-930.1
2001		600.0		-600.0	2001		409.3		-409.3
2002	77.5		41.5	35.9	2002	57.2		24.2	33.0
2003	1.115		45.7	165.4	2003	83.4		26.7	56.8
2004	344 7		50.3	294.5	2004	109.6		29.3	80.3
2005	478.4		55.3	423.1	2005	135.8		32.3	103.5
2006	612.0		60.8	551.2	2006	162.0		35.5	126.5
2007	745.6		6.99	678.7	2007	188.2		39.0	149.1
2008	879.2		73.6	805.6	2008	214.4		42.9	171.4
2009	1.012.8		416.4	596.4	2009	240.6		180.1	60.5
2010	1.146.5		89.0	1,057.4	2010	266.8		52.0	214.8
2011	1.280.1		6.76	1,182.2	2011	292.9		57.2	235.8
2012	1 413.7		107.7	1,306.0	2012	319.1		62.9	256.3
2013	1.413.7		118.5	1,295.2	2013	319.1		69.2	250.0
2014	1,881.7		130.4	1,751.3	2014	424.8		76.1	348.7
2015	1.881.7		143.4	1,738.3	2015	424.8		83.7	341.1
2016	1 881.7		157.7	1.723.9	2016	424.8		92.0	332.7
2012	2.504.5		892.6	1,611.9	2017	565.4		386.0	179.3
2018	2.504.5		190.9	2,313.6	2018	565.4		111,4	454.0
2019	2.504.5		209.9	2,294.6	2019	565.4		122.5	442.9
2020	3,333,5		230.9	3,102.5	2020	752.5		134.8	617.7
2021	3 333 5		254.0	3.079.5	2021	752.5		148.2	604.3
			FIRR	18.6%				FIRB	7.4%

		1000		Balance		Revenue	Cost		Balance
	Hevenue		0 Y 0 (VEAL		Construction	0 & M	
year		Construction	ž V V		1997				
101					1998				
998					600		257.3		-257.3
666				- 000			471.6		-471.6
000		238.1		-1.00.7-	2002		9 200		-207.5
001		261.9		-261.9	2001		C'107		
	55.7		19.4	36.3	2002	110.2		24.0	202
			21.3	52.7	2003	147.6		26.4	121.2
			23.5	69.0	2004	185.0		29.0	155.9
			25.8	85.0	2005	222.3		31.9	190.4
			28.4	100.7	2006	259.7		35.1	224.6
e i			31 0 0	116.3	2007	297.1		38.6	258.5
	0.74		34.4	131.5	2008	334.5		42.5	292.0
. 900	0.001		0 4 1 1 2 0	70.3	2009	371.9		176.6	195.3
600	104.2		A16	161.0	2010	409.2		51.4	357.8
010	6.202		0	175.0	1100	446.6		56.5	390.1
110	220.9		1.04	4.001	- 103			62.2	421.8
012	239.2		50.3	100.3	2102	o.tot		¥ 03	015 G
013	239.2		55.3	183.9	2013	484.0		00.4	
014	318.4		60.9	257.6	2014	644.2		75.3	568.9
	318.4		66.9	251.5	2015	644.2		82.8	561.4
2 0			73.6	244.8	2016	644.2		91.1	553.1
			244.1	179.8	2017	857.4		378.6	478.9
10	470.0 400 a		89.1	334.7	2018	857.4		110.2	747.3
	0.024		98.0	325.8	2019	857.4		121.2	736.2
610	423.0 F FA 1		107.8	456.3	2020	1,141.3		133.3	1,007.9
			1186	445.5	2021	1,141.3		146.7	994.6
120	1.400								

9. Bropai, bypass									
	Revenue	Cost		Balance		Revenue	Cost		Balance
vear		Construction	O&M		year		Construction	O&M	
1997		- - - - - - -			1997				
1008					1998				
1000		774 1		- 774 1	1999		768.7		-768.7
		1 4193		-1.419.3	2000		1,409.3		-1,409.3
2004		624.5		-624.5	2001		620.1		-620.1
1002	200.6		73.3	127.3	2002	225.2		39.4	185.8
2002	3538		80.6	273.2	2003	309.7		43.3	266.4
2002	5070		88.6	418.4	2004	394.3		47.6	346.7
1000	560 2		97.5	562.7	2005	478.9		52.4	426.5
2006	813.4		107.3	706.2	2006	563.5		57.6	505.9
2000	9.5.5 966.6		118.0	848.6	2007	648.1		<u>83</u> .4	584.7
2008	119.8		129.8	0.066	2008	732.6		69.7	662.9
	1 273 0		480.9	792.2	2009	817.2		310.1	507.1
2010	1 426.3		157.0	1,269.2	2010	901.8		84.4	817.4
2011	1 579 5		172.7	1,406.7	2011	986.4		92.8	893.6
- 100	1 730 7		190.0	1.542.6	2012	1,071.0		102.1	968.9
2013	1 732.7		209.0	1,523.6	2013	1,071.0		112.3	958.7
2014	2 306.2		229.9	2.076.2	2014	1,425.5		123.5	1,301.9
2015	2 306.2		252.9	2,053.3	2015	1,425.5		135.9	1,239.6
2016	2,306.2		278.2	2,028.0	2016	1,425.5		149.5	1,276.0
2017	3.069.5		1.030.8	2,038.7	2017	1,897.3		664.7	1,232.6
2018	3.069.5		336.6	2,732.9	2018	1,897.3		180.9	1,716.4
2019	3,069,5		370.3	2,699.2	2019	1.897.3		198.9	1,698.3
20202	4,085.5		407.3	3,678.2	2020	2,525.3		218.8	2,306.4
1202	4 085.5	·	448.1	3,637.5	2021	2,525.3		240.7	2,284.6
			FIRB	20.9%				FIRR	16.9%

Appendix 12

Supplemental Traffic Survey and Analysis

A12-1

`,

Sample Size and Expansion Factor by O-D Survey Location (Bareilly)

Sample Size and Expansion Factor by Survey Location A12-1

A12 Supplemental Traffic Survey and Analysis

Sample Rate X

Sample Size and Expansion Factor by Survey Location

A12-1

(2/5)
illy)
are
<u>e</u>

1.00360021			r	۰ ر	Ċ,	4		ŝ	6	7		
			- 10 0	Burk		Twit	Fast	Cycles	Agreutions	Animal/	Slow	
118, hway			True Vand	Mint						Hund		
(Chainage)	itsoo 9fe 1591i			, Sig	Trucks	Whenlers	vehicles	Rickshaw	Tractors	Drawn	vehicles	Total
			464	107	463	83	1207	92	38	5]	181	1368
51137		Sample size	NOY	401	575	752	2218	1762	132	30	2612	4830
(km 14)	2 .	12 hrs Trailic	140		208	11.0	54.4	3.9	28.8	46.8	6.9	28.7
/6/11/21	<u>17</u>	Sample Kate 7	00.7	2.00	1052	774	2990	3006	141			6255
	Average traffi	h(Nov. 7/)	0101	50	1534	868	3922				2185	6107
	Average traffic(May. 3/)	c(May. 7/)	1001	25	1793	821		2407				6181
	۲ <u>۲</u>	ADI	2 35	107	02.0	9.89						4.45
	La parsion racion		141	6	176	152		1				751
		hyperative here Tradice	213	188	525	653						4457
	2 0	12 DIS FRAINC	300	516		23.3						16.8
		pampie vale a	18	000								5864
	Average traits (1909-27)		1313	376								6371
	Average trailic(May. 77)	k(Niay. 7/)	CICI DYUL	500								6118
	× .	AAUI	(V) 7			1		Į				8.15
	UCHSUP	cior	20.7	ł			ļ	ł		ļ		2139
Both Directions		Sample size	1407									9287
		LA DES FRANC	44 4								6.9	23.0
5112	2 + C C		Pub.	1								928
502		comput succ 12 her Teaffor	733									5130
(Km 14)	1.3	tz ms train. Samola Rala S	46.2									18.1
12/11/of	A viorano traffi	(ind Nov. 97)	963									6255
	Average traff	(fic(May. 97)	1219									1010
	<u> </u>	AADT	1001			. }					ľ	1010
-	Exransion Fa	actor	3.27							ł		240
	2 2 2 Sa	2 Sumple size	136	2	322	8	638	101		45	207	040 4743
	11	2 hrs Traffic	651									001
	<u>گ</u>	Sample Rate X	20.9	44.0							•	TARKA CALL
	Average traffic(Nov.'97)	id(Nov.'97)	825			•						1262
	Average traffic(May.'97)	lic(May.'97)	1313						_			1/00
	N I	ADT	1069								ľ	0110
	Excension Fa	actor	7.86								1271	*7. /
Buth Directions		Sample size	470									C/ / T
		12 hrs Traffic	1374		1184		1601					0.91
	<u>x</u>	Sample Rate X	34.2						43.7		2.7	10.7

A12-1 Sample Size and Expansion Factor by Survey Location (Bareilly) (3/5)

Location3			p-4	2	Э	4		5	6	7		
Highway			Cars,	Bure		TWO	J'ast	Cy, her,	Agricultural	Animul/	Slow	
(Chainage)	iog si a		teeps, Vansa	-juiW						Pricel		
Date	D96		3 Wheelers	Buse	Trucks	Wheelers	vehicles	Rickshaw	Tractors	ŏ	vehicles	Total
SH33	-	size	214	38	138	ድ	484	57	35			. 620
(km 42)	12 hrs Traffic	raffic	796	115	361	650	1922	877	86		1147	3069
18/11/97	<u> </u>	R.tc X	26.9	33.0	38.2	14.5	25.2	6.5	35.7			20.2
•	Average In	(14.1	1014	187	776	673	2650	1304	112	155		4221
	Average traffic(May. 97)	(79.4	1445	891	1453	1096	4885	1368	342			6878]
	AADT		1230	539	1115	885	3768	1336	227		1782	5550
	Expansion Factor		5.75	14.18	8.08	9.41	7.78	23.44	67-9			8.95
	3 1 2 Sumple size	size	300	78	239	107	724	20	30	_	118	842
	12 hrs Traffic	rathe	705	134	469	541		981	16			3075
	Sample Rate %	Rate %	42.6	58.2	51.0	19.8		5.1	33.0			27.4
	Average traffic(Nov. 97)	(.97)	1243	206	857	161		1323	147			4777
	Average traffic (May. 97)	(26.4	1495	889	1441	887			373			7008
	ADT		1369	548	1149	842		1424	260			5893
	Expansion Factor		4.56	7.02	4.81	7.87			8.67			7.00
Both Directions	ons Sample size	size	514	116	377	201			.59		254	1462
	12 hrs Traffic	Traffic	1501	249	830	1611	-		189.			6144
	Sample Rate %	Rate %	34.2	46.6	45.4	16.9			34.4			23.8
SH33	3 2 1 Sample size	size	328	81	186	233			19			696
(km 42)	12 hrs Traffic	raffic	888	163	589	625			80			3770
19/11/97	Sample Rate X	Rate X	36.9	49.7	31.6	37.3			23.8			25.7
	Average traffic(Nov.'97)	v.'97)	1014	187	776	673			112			4221
	Average traffic(May. 97)	y.97)	1445	891	1453	1096	4885	1368	342	283		6878
	TCAD		1230	539	1115	. 885			227			5550
	Expansion Factor		3.75	6.65	5.99	3.80			11.95			5.73
-	3 2 2 Sumple size	size	384	83	278	224			64			1174
	12 hrs Traffic	Traffic	1023	174	578	774		1748	. 125			4578
	Sample Rate %	Rate %	37.5	47.7	48.1	28.9	_		34.4			25.6
	Average traific(Nov. 97)	(16.1	1243	206	857	262		1323	147		1674	4777
	Average traffic(May. 97)	(7?.y)	1495	888	1441	887	-		373			7008
			1369	548	1149	842	-		260	301	1985	5893
	Expansion Factor		3.57	6.60	4.13	3.76			6.05		9.68	5.02
Both Directions	ons Sample size	size	712	164	464	457			62	134	346	2143
	12 hrs Traffic	Traffic	1911	337	1167	1399	4814	3078	205	251	3534	8348
	• · · · · · · · · · · · · •	D	010	1	0 00	100	C & C C		000	ν υ	00	T UC

A12-3

•

Sample Size and Expansion Factor by Survey Location (Bareilly) (4/5)

A12-1

Another I			-	2	ς σ	4		S	ç	7		
1.000000			Current	Buxt		TWD	Fast	Cy kr.	Agricultural	Animal/	Slow	
Kumilini										PurH		
(Chainage)	ste ste down		Sun A Salari	-	r F		aaloidau	Ďi luhaur	Tentore	Denvir	vehicles	Total
Date			Coc .	20 L 20	50A	VULNIN V	1016	129	35	L	258	1274
	4 1 1	Sample size	707	701	070			2000			2073	1019
(km 252)		12 lies Teatlie	784	226	250	5.11	0100	Vene				
26/11/61		Sample Rate %	36.0	58.4	62.2	6.4	33.3	4.2	47.3	28.0	5.1	707
· · · · ·	Average tru	Average traffic(Nov. 97)	1220	419	2434	1506	5579	3628	121		086£	9559
	Average In	Average traffic(May.'97)						1				(il
	,	AADT	1220	419	2434	1506	5579	3628	121		3980	222
	TRAINING ST		4.33	3.17	4.63	19.82	5.49	28.12	3.46		15.43	7.50
	4 1 2		168	6	604	21	890	71	9		139	1029
		12 hes Traffic	821	222	924	1068	3035	2588	48		2780	5815
		Samole Rate %	20.5	43.7	65.4	2.0	29.3	2.7	12.5	43.1	5.0	17.7
	Average Ira	Average traffic (Nov. 97)	1077	338	2226	6111	4760	3263	86		3529	8289
	Average Ire	Average traffic (May. 97)						-				
		ADT	1077	338	2226	1119	4760				3529	8289
	Expansion		6.41	3.48	3.69	53.29	5.35	4			25.39	8.06
Both Directions			450	229	1130	67	1906	200	41	156	397	2303
		12 hrs Traffic	1605	448	1769	2261	6083				6053	12136
		Sample Rate %	28.0	51.1	63.9	4.3	31.3	i			6.6	19.0
NH74	4 2 1	Sumple size	347	171	496	267	1281				493	1774
(Lm 252)		12 hes Teaffic	1326	321	1485	1729	4861				4472	9333
20/11/06		Sample Rate &	26.2	53.3	33,4	15.4	26.4		55.5		11.0	0.61
111 /07	Average In	Average traffic(Nov.97)	1220	419	2434	1506	5579	3628			3980	9559
	Average tr	Average traffic(May. 97)										
	>	ADT	1220		2434	1506	5579				3960	9559
	Expansion	Factor	3.52	2.45	4.91	5.64	4.36	12.96	1.83	1.57	8.07	5.39
		Sample size	531		623	370	1659				458	2117
	J	12 hrs Traffic	778		1076						ត្ត	5054
		Sumple Rate X	68.3		57.9			14.9	25.0		20.6	41.9
	Average tri	Average traffic(Nov. 97)	1077	338	2226	1119		3263	86	_	3529	8289
	Average tr	Average traffic(May. 97)							•			0000
	,	ADT	1077	338								6979
	Expansion		2.03	2.50							1.7	3.92
Roth Directions		_	828	306								3891
		12 hrs Traffic	2104	473					203	394	-	14387
		Sample Rate X	41.7	64.7	43.7	24.9	38.2	9.5			14.2	27.0

A12-1 Sample Size and Expansion Factor by Survey Location (Bareilly) (5/5)

54.7 3759 6256 6256 5008 3.96 5171 39.9 46.3 3964 1108 Total 321 189 321 321 321 553 553 911 911 911 255 251 30.5 30.5 101 339 553 911 168 168 725 232 232 232 62 503 570 570 939 939 67 386 17.4 570 1308 939 4.01 vehicles Slow 20 32 52.5 79 79 178 129 6.43 52.0 Animal/ Drawn hand 5 Agricultural Trators -0 43.9 83 189 391 944 9668 968 96 777 777 28 9.1 9.1 960 960 24.64 Cycles **Rickehaw** ഗ
 3394

 5176

 5176

 2059

 22059

 22059

 22059

 22059

 22059

 22059

 22059

 22059

 22059

 22059

 22059

 22059

 22059

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 23206

 33394

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 2541

 <tr 1041 2005 51.9 vehicles Faet 117 268 316 5.78 676 676 5.78 28.2 28.2 Wheelers 1 M 4 41.0 934 640 940 68.1 True la Ċ,
 3.67

 164

 164

 209

 2164

 2209

 3397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 397

 398

 398

 308

 308

 308

 308

 308

 308

 308

 308

 308

 308

 308
 318 318 654 486 375 375 79.6 134 188 71.3 308 675 492 Bush Mint-Burs 3
 5.18
 5.18

 5571
 269

 2571
 276

 2571
 276

 2551
 255

 2553
 2558

 2571
 273

 2511
 255

 255
 255

 257
 255

 257
 255

 257
 255

 35.0
 35.0
 wine, Vane, 193 556 779 222 222 3 Whisher Č Ű Sample Rate % Sample Rate 🕱 Sample Rate X Sample Rate X Sample Rate & Sample Rate 3 **32 hrs Traffic** 12 hrs Traffic 12 hrs Traffic 12 hrs Traffic Average traffic(Nov.'97) Average traffic(May. 97) 12 hrs Traffic Average traffic(May.'97) 12 hrs Traffic Average traffic(Nov. 37) Average traffic (May, 97) Average traffic(Nov.'97) Average traffic(May. 97) Average traffic(Nov.97) 5 2 2 Sample size Sample size Sumple size 2 Sample size Sample size Sumple size Expansion Factor Expansion Factor AADT **Expansion Factor** AADT AADT **Expansion Factor** AADT DUREDON 5 2 916Ū ŝ ປວດຂາວ **Both Directions Both Directions** 22/11/97 21/11/97 .ocation5 (Chainage) (km 260) Hiphway km 260) ч С NH24 NH24

A12-2

Sample Size and Expansion Factor by O-D Survey Location (Gwalior)

(Gwalior) (1/3)

Location6		1	2	e	4		5	é	7		
Highway		Cury,	Buww.		Two	Fast	Cyc h.e.	Agrieultural	/Inmul/	Slow	
(Chainage)	KXQ XX Ə UKXQ P	Ingu, Vans.	Mau-						Hand		
Date	1EQ	3 Whenkin	Buww	Trucks	Wheelers	vehicles	Rickelhaw	Tractory	Drawn	vehicles	Total
NH3		691	55	262	94	624	48	46	শ	86	722
(km 103)	12 hrs Traffic	669	146	806	689	2340	436	87			2872
10/11/97	Sample Rate %	24.2	67.8	32.5	13.6	26.7	11.0			18.4	25.1
	Average traffic (Nov. 97)	1005	204	1693	708	3610	447				4168
	Average traffic (May. 97)	783	323	1850	603	3559	266				3965
	ADT	894	264	1772	656	3585	357	102	24		4067
	Expansion Factor	5.29	2.66	6.76	6.97	5.74	7.43			4	5.63
	6 1 2 Sample vize	123	92	361	55	631	18				673
	12 hes Traffic	538	176	869	582	2165	376				2651
	Sample Role 20	22.9	52.3	41.5	9.5	1.62				8.6	25.4
	Average traffic (Nov. 97)	961	318	1628	696	3603	505				4296
	Average traffic (May. 97)	800	277	1747	683	3507					3913
	ADT	881	298	1688	690	3555				1	4105
	Expansion Factor	7.16	3.23	4.67	12.54	5.63	2				6.10
Both Directions	its Sumple size	292	161	623	149	1255			_		1395
	12 hrs Traffic	1237	322	1675	1221	4505					5523
	Sample Rate %	23.6	59.3	37.2	11.7	27.9				1	25.3
CH3	6 2 1 Sample size	212	144	328	88	772					836
(km 103)	12 lirs Traffic	790	344	1036	584	2554					1962
79/11/11	Sample Rate %	26.8	100.0	31.7	15.1	30.2	12.1	32.7	66.7	16.5	28.4
	Average traffic (Nov. 97)	1005	204	1693	708	3610				•	4168
	Average traffic(May. 97)	283	323	1850	603	3559					3965
	AADT	894	264	1772	. 656	3585	357				4067
	Expansion Factor	4.22	1.83	5.40	7.45	4.64					4.86
	6 2 2 Sample size	113	130	405	34	682					602
	12 hrs Traffic	635	202	9611	529	2562		_			3045
	Sample Rate X	17.8	64.4	33.9	6.4	26.6					23.3
	Average traffic (Nov. 97)	196	318	1628	6969	3603					42%
	Average traffic (May. 97)	800	277	1747	683	3507	236		33	\$	3913
	AADT	188	298	1688	690	3555				550	4105
	Expansion Factor	7.79	2.29	4 17	20.28	5.21	74	12.33		20.35	5.79
Both Directions		325	274	. 733	ក្ត	1454		29	18	16	1545
	12 hrs Traffic	1425	346	2232	1113	5116	209	127	ह	870	5986
	Sample Rate X	22.8	79.2	32.8	11.0	28.4	6.2	22.8	52.9	10.5	25.8

A12-2 Sample Size and Expansion Factor by Survey Location (Gwalior) (2/3)

18.2 4847 6.70 6.70 8235 712 712 712 712 5302 5302 5302 7.45 657 3617 4847 7.38 1369 7527 18.2 5302 6.69 3829 18.9 1847 4406 18.0 5302 Total 36 2.9 448 448 128 2870 4.5 68 5.0 5.0 1362 1617 1448 1617 1448 104 2583 2583 4.0 39.60 4.6 1448 1566 4.3 1617 1617 23.78 vehicles 8 Slow 519 39.13 9.23 238 16 44 36.4 35 27 75 36.0 11 52.4 30 Drawn Animal/ Hand 17 156 10.9 138 138 47 307 15.3 138 6.57 66 66 312 30 30 30 151 151 151 170 170 170 21 15.8 15.8 45 179 170 Cyches, Agricultoral Truture Ś 1275 42 2514 27 1180 1417 1417 1021 0.3 1275 1417 1275 2201 2.6 1.4 Rukshuw 12 1417 18.08 30 1148 366 0.9 1417 ഗ 25.9 3399 3685 53 % 53 % 3399 5.47 5.47 1265 4944 4944 25.6 3399 5.13 1388 1388 25.9 644 25.48 25.3 3685 725 2840 25.5 3685 3685 5.08 663 2525 26.3 26.3 3399 vehicles Fast 98 98 34 35 35 35 35 35 35 35 35 35 35 35 880 1.9 993 1149 33.79 993 51 1860 2.7 2.7 1149 34 849 64 6.0 1149 4.0 17 993 Whicher 4 1 1 1 1563 445 50.1 532 1532 3.44 767 757 43.3 1532 657 657 33.7 33.7 322 36.4 1563 4.75 328 934 35.1 1532 329 1017 32.4 1563 Trucks e 91 137 66.4 208 173.8 12 208 173.8 12 62 29 173 153 259 259 80 147 54.4 208 107 107 173 164 173 5123 187 311 60.1 Buw. Muni-Buen 2 701 294 27.9 27.9 765 3.04 578 33.6 701 701 3.61 3.61 37.65 547 547 765 36.0 252 41.4 765 lorges, Vansal 3 Wheelers ĉ Sample Rate % Sample Rate 🛪 Sample Rate % Sumply Rate & Sample Rate & Sample Rate X 12 hrs Traffic **12 hrs Traffic** 12 hrs Traffic Average traffic(Nov.'97) 12 hrs Traffic Average traific(May. 97) Diwfice 1 Sumple size 12 hrs Traffic Average traffic (May. 97) Average traffic(Nov. 97) Average traffic (May. 97) 12 hrs Tratfic Average traffic (Nov. 97) Average traffic (Nov. '97) Average traffic(May.'97) Sample size 2 Sumple size Sample size Sample size 2 2 Sample size Expansion Factor 7 2 2 ISamolo Expansion Factor ADT **Expansion Factor** AADT AADT Expansion Factor AADT 2 ⊷]Dste WALN **Both Directions** Both Directions 13/11/97 12/11/97 (Chainage) wation7 (km 115) Hughway (km 115) Date CH2 ST 13

A12 - 8

Sample Size and Expansion Factor by Survey Location (Gwalior) (3/3)

A12-2

1 Austion8			-	2	e	4		S	6	2		
L'ANDUN			C V	Bush		Two	Fast	Cy ki	Agricultural	Animal/	Slow	
(Chainang)	uog		Surv. Survi	Mini-					•	Hand		
	kocal Safe Sarec		1 Whenlord	Buen	Trucks	Wheelern	vehicles	Rxikshaw	Tractors	Drawn	vehicles	Total
NH3		Sample size	62	57	306	23	465	3	17	0	20	· 485
(F-m133 3)		12 her Traffic	293	62	569	234	1158	80	7		167	1325
17/11/97		Samole Rate X	27.0	6.16	53.8	9.8	40.2	3.8	6.62	0	120	36.6
	Autoreou tru	Australia traffic (Nov. 97)	367	105	1168	309	1949	123	87		219	2168
	Average traff	dfic(Mav. 97)	1007	417	2647	486	4557	237	140	45	57	4979
		ANDT	687	261	1908	398	3253	180			321	3574
	Exnansion Fa	Factor	8.70	4.58	6.23	17.28	2.00	60.00			16.03	7.37
	8 1 2	2 Sample with	115	68	321	60	564	14			42	606
		12 hes Teallie	271	62	571	251	1172	119		, ,	771	1349
		Samulo Rato X	42.4	86.1	56.2	23.9	48.1	11.8			23.7	4.9
	Average traff	(fic(Nev. 97)	382	111	1288	261	2042	25			200	2242
	Average traff	ffic(May, 97)	1077	471	3134	529	5211	207			455	2000
	3	ADT	230	291	221	395	3627	156	144	28	328	3954
	Exmansion Factor	Eactor	6.34	4.28		6.58	6.43	11.11			7.80	6.52
Both Directions		Sample size	194	125	627	83	1029	17				1601
		12 hrs Traffic	564	141		485	2330	199		17		2674
		Sample Rate X	34.4	88.7		17.1	44.2	. 8.5			18.0	40.8
SHN	8 2 1		601	63		4	553	6		2		593
(km133.3)		12 hrs Troffic	262	85		237	1228	115				1405
18/11/97		Sample Rate %	41.6	74.1	52.3	18.6	45.0	5.2			226	42.2
	Average tr	Average traffic(Nov.'97)	367	105		608	1949	ន្ម				2168
	Average tr	Average traffic(May. 97)	1007	417		486	4557	237		45		4979
	,	ADT	687	261		398	3253	180				3574
	Expansion Factor	Factor	6.30	4.14	5.66	, 9.03	5.88	30.00				6.03
	8 2 2	2 Sumple nize	18	104	355	34	274	~	16			597
		12 hrs Traffle	264	104	553	ลี	1144	89			21	5671
		Sample Rate X	30.7	100.0	64.2	15.2	50.2	10.3		00	15.3	[·9 [
	Average traf	affic(Nov.'97)	382	III	1288	261	2042	164	8		500	2242
	Average traf	affic(May, 97)	1077	471	3134	529	5211	207		28	455	5666
	>	AADT	730	291	2211	395	3627	156			328	3954
	Expansion Factor	Factor	10.6	2.80	6.23	11.62	6.32	22.21				6.6 2
Both Directions		Sample size	190	167	692	78	1127	13	48	~~ ·		1190
		12 hrs Traffic	526	189	1197	460	2372	18 3	E			2699
		Sample Rate X	36.1	88.4	57.8	17.0	47.5	17	35.8	20.0	19.3	1.1

A12-3

100 C 100 C

Axle Load Data (Bareilly)

Date :	19 Nov. 1997
Road :	NH 24 (km 252)

Direction 1	the second se	Registration		Type			ing (ton)		Load /
	the second se	Kasistralium							
					2.33		$\frac{\text{Axie } 5}{0}$		Unload L
1 1		UII	Light Truck	2	0.68	5.4 0.57			с UL
		DL		2	0,00	2.14			เ.
1	1993 :			2 2	1.24	2.03	· ŀ		Ľ
1		UGL		2	1.24	1.16	· ŀ		UL.
		UP		2	0.81	0.63	· ľ		UL
1		UP		2	0.66	1.95	1		UL
		U9		2	1.01	1.95	· 0.	•	UL
1		UP		2	0.68	0.68	0	1	UL
1	1990	UP		2	0.08	0.86	0	1	UL UL
1		UP		2	0.58	0.88	0	•	UL
1		EL		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.74	0.86	0	•	L
1		UP		2	0.93	1.03		•	ĩ
1		UP			0.33	0.79		•	UL.
1		DDL			1.03	1.89	o l	•••	L
	1988	DDL	2			0.89		•	UL
	1988	UP	1	2 2	1.41 1.22	0.89	0	•	UL
1	1988	UP			0.85			•	L
1	1992	UP	1	2 2		1.48 1.54		•	L
1	1989	UP	ŀ		1.19 0.7	1.54		•	L
1	1991	DL	[2	2.52	3.7	0	•	L
1	1987	ហ		2 2	1.09	3.31	o	•	L
1	1988	UP		2	1.33	1.89		•	L
1	1997	UP	ļ	2	1.27	4.21		•	L
	1997	UP	1		1.58	1.33		•	Ľ
1	1997	UP		2	2.92			•	บีน
1	1985	UP		2	1.68	3.54		•	L
	1991	DL		2 2	1.76			•	Ĩ.
<u> </u>	1002 1982	itib Tilb	Medium	3	2.26	7.07		<u>.</u>	L
	2 1	USE	Truck	3	2.86	6.6			L
	1972	HNG	Index	3	3.14	6.14		•	L
1	1900	UP		3	3.11	15.2		•	L ·
	1996	MP		3	3.18				L
	1997	PB		3	3.5	7.87		•	L L
1	1987	DIL	1	3 3 3	3.65				լլ
	1985	UHQ	1	3	3.48				L
	1989	UHB		3	2.39			•	L
ÎÎ	1981	UP	T	3	2.73				L
	1984	UP	}	3	2.03				CL
	1999	UP	ł	3	1.51				L
	1984	UP		3	1.56				լլ
1	1988	HP	i	3	1.65		0		{L
1	1993	UP	ļ	3	1.84				UL
i	1982	UP		3	2.81	3.68	0		L
	1984	BL	1	3	2.49				L
	1986	BR	1	3	2.63	4.89	0		L
li	1991	HR		3	2.23			•	L.
3 1	1982	UP	1	3 3	1.44	1.48			UL
i i -	1986	UP		3	1.33				UL
1	1991	UP	}	3	2.12				L
i	1981	UR	ł	3	1.47			-	ហ្រ
i	1996	AP	{	3	2.49			1-	L
i	1984	UP	1	3	2.24			1	L
1	1992	UP		3	2.02				UL
1	1990	UP		3	1.95				L
1	1987	DIG	1	3	3.47				L
1	1996	MP	<u> </u>	3	2.28	6.69	0 0	ŀ	<u>_IL</u>

.

19 Nov. 1997 NH 24 (km 252) Date :

Road :	NH 24 (k	m 252)							$\left(\frac{1}{1}\right)$
			Vehicle	Туре	<u> </u>	Axle Load	ling (ton)	Arlad	Load / Unload
Direction	Model	Registration		Code No.	Axle 1	Axle 2	Axle 3	Axle 4	L
1	1990	UP	Medium	3	2.03	4.49	0	•	UL U
1	1989	GMM	Truck	3	1.2 2.71	1.76	0	•	L
1	1986	PI		3 3 3		3.47	0	•	u U
1	1980	НУН		3	1.3	2.4	-	•	UL I
	1987	MP	1	3	2.52	3.82	0	•	L
	1997	MP		3	1.68	4.77	0	•	
1	1989	UMM		3	2.32	.6.01	0	•	บเ
	1984	DEL	1	3 3 3 3	1.07			•	
1	1987	WB	Į		2.45		0	ł	և Լ
[1	1995	WB	1	3	1.36		0	ŀ	L I
1	1996	UP		3 3 3 3 3	2.67			ŀ	L
1	1982	BRC		3	2.09			•	L
1	1984	UHG	1	3	1.68	3.36			L L
1	1996	UP		3	2.31	5.04			L
1	1984	GHI		3	1.35				
1	1978	URD]	3	1.21				ւ ՄԼ
1	1990	UP	1	3	1.16				
1	1976	UP	ł	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	• 1.63				L
1	1987	UP		3	1.66				ՄԼ
1	1983	UP		3	1.58				ហ
1	1985	UP		3	3.86				L
1	1992	UP	{	3	2.43				UL
1	1982	WGA		3	1.19				ՄԼ
1	1985	UP	1	3	2.28	3.09			L
1	1983	DL	{	3	3,86				L
1	1980	UP		3	2.32	j 3.46		1	L
1	1988	UGL	l l	3	1.28			4	UL
1	1991	BR	}	3	2.89			L	
1	1990	WB		3	1.89				UL
1	1992	UP		3	1.56				L I
1	1989	UMM		3	1.96				L
1	1996	HR		3	3.34				L
1	1985	HR		3	3.17				L
1	1985	URR		3	2.82				L.
1	1990	CIF	ļ	3	3.29			1	L
1	1986	UGR	1	3	3.15).	L
1	1990	UGL		3	2.68) .	L
1	1988	DL		3	3.66				L
1	1990	HR		3	3.18	6.49		Ŋ.	L
1	1989	UMS	1	3	2.23)] .	L.
1	1992	HP		3	0.83).	L
1	1990	MP			1.58			<u>9</u> .	L
1	1991	UP		3	2.7:			p].	L
1	1992	UP		3 3 3 3	2.01			DĮ.	L
1	1996	HR		3	2.97			0 .	L
l i	1981	υτχ	1	3 3 3 3	1.67			0.	L
1	1989	HR	ļ	3	1.98			p .	L
i	1994	UP	1	3	1.3			0].	UL
1	1985	UHZ		3	1.31			0].	۱ <u>ـ</u>
1	1985			- 3	2.9			D .	L
1	1991	UP	ł	3 3 3	2.62			0.	L
l i	1976	UTF	1	3	1.70	5 4.3		0].	L
i	1997	UAR		3	2.3			0 .	L
ł i	1992	BR	1	3	2.1			oļ.	L
i	1984	UH		3	2.6			o į .	L
1	1987	UTJ	1	3	2.7	4 4.1		0].	ւ Մւ
1	1991	UP	1	3	1.			ol	ហ្រ
L									

÷

A12-3 Axle Load Data (Bareilly) (3/6)

Date :	19 Nov. 1997
Road :	NH 24 (km 252)

Road :	NH 24 (ki	m 252)					1		Load /
		_	Vehicle	Type	Axle 1	Axle Load Axle 2	Axle 3	Axle 4	Unload
Direction	Model	Registration	14	Code No.	2.14	Ade 2 2.7	Ade 5	nor 1	UL
		HR	Medium Truck	3	1.83	3.14	ŏ	•	lĭ
	1991	UP	LIUCK	3 3 3 3	1.87	6.89	ŏ		L
	1981	HR UP		3	1.71	3.3	Ō		li
	1992	UP		3	1.93	4.08	0		1.
2 -	1992 1997	USP	[3	2.08	4.11	0	ĺ.	L I
	1980	UP	ł	3 3 3	2.64	4.83	· 0		L
	1986	BI		3	3.22	7.03	Ó		il I
	1980	UP	ļ	3	1.23	2.04	0].	UL
	1997	WB]	3	2.42				L
	1989	UP	1	3	1.31			.	UL I
	1994	UP		3	2.18			.	L I
	1985	UP	1	3	2.17			.	ւ
1	1905	UT	1	3	2.87				L I
1	1997	UP		3	2.82	5.41		.	L
1	1985	UTI		3	1.47			1.	UL
	1994	UP		3	2.76].	L
1	1992	UP	f	3	2.23].	L
1	1992	UP		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.47] .	տ
	1995	UR		3	1.47			ų.	տ
1	1985	UHN		3	2.39] .	L I
1	1985	UP	1 I	3	2.76].	L
l i	1993	HR		3	2.52].	L
	1997	UP		3	3.1			Ŋ.	L
1	1994	UP		3	2.19			·[.	L
1	1992	UP	Į	3	1.57] .	ՄԼ
i	1993	HR	1	3	1.99	4.03	0) .	L L
1	1991	UP		3	2.66		i 0) { .	L
1	1995	UP		3	2.31		i c).	L
1	1990	UHI		3	2.12	4.03	st c).	L
1	1992	URW	1	3	2.25	3.89).	ן ג
l i	1981	URQ		3	2.46).	L
1	1997	UP		3	1.97	4.33	i c).	L
1	1996	HR		3	1.53) [.	UL
1	1985	MP		3	1.79	2.83		D [.	L
1	1989	DEL		3	2.48	5.23) ļ .	L
1	1996	UP		3	2.71				L
i	1987	UP		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.51) .	UL
1	1989	UP	ł	3	1.99	4.63) () [.	L
1	1981	UHN	1	3	2.27	4.03	4 ·) .	L
1	1992	HR	1	3	1.78	3.17			L
i	1995	UP		3	1.71				UL
i	1982	URN		3	1.91			2.	L
i	1990	WB	ł	3	1.88			<u>-</u>	L
i	1981	USW	- 1	3	2.14			o .	L
1	1986	HNU	1	3	1.59				ՄՆ
1	1986	HNE		3	1.91			0].	UL
1	1990	HR		3	1.94			0.	UL
i	1985	URN		3	1.67			0.	L
1	1985	инн	1	3	217			0.	L L
i	1982	UR	1	3	2.36			0.	L
1 î	1992	UT	1	3	3.21			0].	L
	1985	AP		3	3.42			oj.	L
1 1	1990	WB	1	3	1.8			01.	UL.
1 1	1990	WB		3	1.77			0].	UL.
li	1981	URN		3	3.0			0].	L
l i	1985	UPO		3	3.2	3 7.2	<u>オ</u>	oj	
				· · · · · · · · · · · · · · · · · · ·					

Date: 19 Nov. 1997

Road :	NH 24 (ki	n 252)						<u></u>	Load /
			Vehicle	Type		Axle Load Axle 2	Axle 3	Axle 4	Unload
Direction	Model	Registration		Code No.	Axle 1 2.95	6.94	- Aue 3 0	nall 3	L
	1985	UR	Medium	3	1.39	3.03	ŏ	•	UL
		HP	Truck	3 3	2.65	3.09	ŏ	•	L
1		HP		3	1.64	2,19	ŏ	•	UL I
1	1986	WB		3	3.95	8.87	ŏ	•	li
	1993	HR		3		.6.62	ŏ	•	ĩ.
1	1992	DL		3	2.18	7.75	0	•	ĩ.
	1987	UTI		3	3.02	6.23	ŏ	•	ĩ
1 1	1992	UP		3	3.08	5.39	0	•	lĩ
1	1985	PIL		3 3 3 3 3 3 3 3 3 3 3 3 3	3.16	8.06	Ő	•	
1	1993	RJ		3	2.74	6.03	0	•	L I
1	1985	URL		3	3.5	6.05	0	1	L I
1	1988	UP		3	2.53	5.14	- 0	•	L I
1	1987	UP		3	2.54	5.14 7.52	0	•	L I
{ 1	1984	UAB	ļ	3	3.13		0	•	ĩ
1	1985	UGD	1	3	3.25	7.52	.0	•	L
1	1985	DIG		3 3 3	2.51	5.41	-	·	ĩ
1	1997	UP		3	. 3.53	4.57	0		i.
1	1989	UMM	ļ	3	2.96	4.21 5.17	4.63		L
1	1995	U9	Heavy	4	2.93				ī
1	1996	HR	Truck	4	2.71	5.67			L I
1	1994	UPF		4	3.37	4.14		i.	Ľ
1	1995	HR		4	3.36				ίŪΕ
2	1994	UP	Pickup	1	0.1	1.39 2.16			L
2	1995	UP	Light Truck	2	1.13			•	L
2	1994	UP	Į	2	0.83			r	lī
2 2	1996	UP	ł	2	1.57			-	UL
2	1997	UP		2	1.1 0.92			1	
2	1997	UP		2	1.57		l õ	1	L
	1987	UP		2	1.46			·	UL.
2	1980	UP	Medium	3	1.5		1	1	UL
2	1986	USE	Truck		223				L
2	1991	URI			1.53				L
2	1992	UP		3 3 3 3 3	1.38			1	L
2	1992	UP បរា	1		1.84				L
2	1985				229				L
2	1985	UIA	1		3.13			sl.	L
2	1987	UH			1.64				UL
2	1983	UTI		3 3 3	2.01				L
2	1995	UP	4	3	3.57		d i).	L
2	1990	UP UP	1		3.14			ol.	L
2	1996			3	2.05				l
2	1993	UP		3	2.52			5.	L
2	1996 1988	UP UH	1	3 3 3 3 3	1.57			j.	L
2 2 2	1988	DL		3	1.92			b .	L
	1991	UT	1	3	1.76			o].	UL.
	1989	UP		3 3 3 3	1.58			b.	UL
2	1972	HR		3	2.9		-	0.	L
2	1995	UMH	1	3	0.8			o .	ՄԼ
2	1992	UP	1	3	1.0			0.	UL
2	1990	HR		3	1.20			o].	UL
2	1990	UP	1	3	2.6			o].	L
2	1990	UR	1	3	2.8			c .	L
	1990	HR	1	3	3.2		5	0.	L
2	1997	UP	1	3	1.70			0.	L
2	1993	HR	1	3	24		9	ol	L
<u> </u>	<u> </u>	IUN							

A12-3 Axle Load Data (Bareilly) (5/6)

Date :	19 Nov. 1997
Road :	NH 24 (km 252)

Road :	NH 24 (km 252) Vehicle Type Axle Loading (ton)									
		_	Vehicle	Ivpe			Axle 3	Axle 4	Load / Unload	
Direction	Model	Registration		Code No.	Axle 1	Axle 2 6.22	Axie 3		L	
2	1983	UR	Medium	3	2.61	0.22	0 0	•	υ.	
2	1989	UP	Truck	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.88		0	•	n I	
2	1992	UP		3	2.46	4.9	0	•	L	
2	1969	USW		3	1.98	5.23	-	•	۱ <i>۲</i>	
2	1992	UP		3	21	5.88	• 0	• .		
2	1995	DL		3	2.53	4.57	0	•		
2	1990	DL		3	2.91	6.36	0	•		
2	1982	URU		3	2.83	3.39	- 0	•	L L	
2	1980	UB		3	2.66	5.82	0	·	UL	
2	1979	USC		3	- 1.94	2.95	0	-		
2	1995	UP		3	1.69	1.97	0	ŀ		
2	1991	UP	1	3	1.97	1.78	0	•	L UL	
2	1995	UP	1	3	3.03	4.5	0	ŀ		
2	1994	MP		3	2.97	5.14	0		L L	
2	1990	UH	ļ	3	2,75	5.12	0	ľ		
2	1995	UP		3	1.64	2.78	0		UL	
2	1996	DL	1	3	3.67	6.92	0		L L	
2	1980	URK	ļ	3 3 3	1.78	5.49	0		L	
2	1985	WGQ		3	3.39		0	E.	L L	
2	1988	WGQ	{	3	3.5	4.68	0	L.	<u> </u> L	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1985	UAN		3 3 3	2.71		0	 .	L	
	1996	HR		3	1.54		0		L	
2	1997	UP		3 3 3 3 3 3 3 3 3 3 3	2.44				L	
	1979	URK	1	3	0.98		0	.	ហ	
2	1972	US7		3	1.73		0	1	Լ Լ	
2	1994	URM		3	2.26	3.19	0	1- C	L	
5	1997	UP		3	3.67	3.79		·[.	រ ប្រ	
	1987	DIG		3	1.76	1.83	0	ų.	υL	
2	1987	DIG		3	3.02	9.01			L	
2	1990	DIG		3	7.55	5.13	0) .	L	
2	1985	UP		3	2.62	5.79	0)].	ւ ՄԼ	
2 2 2 2 2 2 2	1980	UGL	l	3	1.4	1.48				
5	1991	MP	1	3 3 3	2.18	3.01).	L	
2 2	1986	USR		3	2.44	5.31	j () .	L	
5	1992	298 298	1	3	2.63		i (L	
1 2	1996	HR		3	1.89	4.88	()].	L	
1 5	1990	DL	1	3	3.1	5.89	().	L	
2	1990	MP		3	3		{ ()].	L	
5	1992	UP	1	3	2.44	5.95		oļ.	L	
1 5	1992	DL		3	214		1 () .	L	
2 2 2 2 2 2 2 2 2 2 2	1985	UP	i	3 3 3 3 3 3 3 3 3	2.05		;] (D].	L	
	1963	UP		3	1.94		(o]	UL	
4	1 1392	107	I	<u> </u>	1	1				

Date :	19 Nov. 1997
Road :	NH 24 (km 252)

Koad :	<u>NH 24 (K</u>	T	Vehicle	Туре		Load /			
Direction	Model	Registration		Code No.	Axle 1	Axle 2	Axle 3	Axle 4	Unload
2	1990	UP	Medium	3	3.33	7.21	0	•	L
2	1985	บรบ	Truck	3	2.39		0	•	{L
2	1990	ហា		3	3.12		0	•	L
2	1992	UP		3	3.63		0	•	L
2 2	1988	UP	,	3	3.19		0	•	<u>l</u> r
2	1985	HR		3	3.98		0	*	լլ
2	1996	NL		3	3.98		0	•	
2 2	1995	UP	Í	3	2.63		0	•	L
2	1990	UP		3	2.07			•	UL
2	1985	UP		3	3.01			•	IL .
2 2 2 2 2 2 2 2 2	1995	DL		3	2.24			•	UL
2	1992	UP		3	3.42			•	UL
2	1988	UP		3	3.64			•	L
2	1981	UR		3	3.24			•	UL
2	1981	UP		3 ·	2.1			•	լւ
2	1996	UP		3	4.12			•	լւ
	1981	UP		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.6	7.89	· 0	•	լե
2	1992	UP			4.01				լլ
2	1996	UP	Į	3	4.14				
2	1993	UP	Heavy	4	3.01				L
2	1996	UP	Truck	4	2.48	1.67			lr 🛛
2	1996	UP	Į	4	1.56	1.52	1.26	•	<u> L</u>

•

A12-4

,

•

Axle Load Data (Gwalior)

•

·

Date : 17 Nov. 1997 Road : NH 3 (km 133.3)

Road :	NH 3 (km	133.3)		T					Load /
			Vehic	e Type		Axle Load	Axle 3	Axle 4	Unload
Direction	Model	Registration		Code No.	Axle 1	Axle 2			L
1	1996	MP	Light	2	1.35	3.11	0		UL
1	1991	MP	Truck	2	0.76	0.66	0		UL
1	1997 -	MP	2	2	1.02	0.9			L
1 1	1995	MP		2	0.57	6.3	0		L
	1996	P8	•	2	1.08	2.39	0		
\$ 1	1995	MPK		2	1.1	1.4	0		ហេ
1	1995	MP		2	0.92	1.37	0		<u>UL.</u>
1	1992	MP	Medium	3	1.78		· 0		L
1	1979	MP	Truck	3	2.78		0		L
1	1996	MP	ł	3	3.02	5.49	0		L
1 1	1995	UP	1	3	3.21	4.85	0		L
1	1985	MR		3	2.29		0		L
1	1991	UP	ţ	3	2.71	5.4	0		L
i	1995	MP	1	3	2.81	6.56	0		L I
l i	1985	MR		3	2.14		0		L
l i	1991	MP	{	3	2.58		0	1 0	L
	1995		1	3	3.05			1 (IL I
		MP UP	1	1 1	2.04				UL
1	1996		[333	3.24				L
1	1991	HR	1	3	3.16		Ö		L
1	1987	RJ	1	3	1.99		Ö		
1	1993	MBH			1.78		Ö		
1	1996	MP		3	1.70		Ö		ហ
1	1991	MP	1	3	0.86		2		
1	1991	MP		3	2.39				
1	1988	MKW	}	3 3 3 3 3 3 3 3 3 3 3	3.09				
1	1994	DL	1	3	3.02				
1	1994	MP	1	3	3.09				
1	1994	DL	1	1 3	3.37				DL
1	1979	СРН		3	2.45				
1	1994	UP	1	3	2.04				UUL
1	1996	UP	1	3	222				OL
1	1991	AP		3	2.02				OL
i	1982	MP	5	3	1.92	2 5.21	<u> </u> (0 L
1	1991	MP		3	2.89	7.14		- I	OL
1	1992	DL			2.9	5 7.23			OL
1	1991	UP		3	3.3				OL
	1987	UGU	1			1			OL
1					1.7			0	OUL
1	1990	MP							ឲាល
1	1992	HR			0.4			D	OL
1	1995	DL						0	OL
	1987	CTW			3 3.2 3 2.6			0	OL
1	1991	DL	1		3.6				OL
1	1997	UP			21 3.0	3 5.49		ő	OL
1	1992	UP		1	3 3 2.6		r		OL
1	1991	MP		1	20			0	OL
1	1996	KL.	1		3 21				ÖL
1	1991	UP		1	3 2.8			0	OL
1	1986	DL			3 3.5		1		OL
1	1995	MP	1	1 1	3 3.2			0	
1 1	1990	UP			3 2.7			0	
1 1	1990	UP	1		3 3.5		-	0	0L
1	1995	UP	1		3 29			0	OL
i	1996	BRI	1		3 3.5			0	OL
i	1980	CIG	ļ		3 2.7			0	0 L
i	1990	HR			3 2	2 1.9	- I	0	OUL
1	1996	MP	1		3 4.4		6	0	OL
	1996	MP			3 1.6		4	0	OUL ·
	1995		ļ		3 2.0		6	0	OUL
1	1995	MP	1	1	3 1.5	7 25		0	OUL
L	<u> (641</u>	MP	<u> </u>						
									A12

Date : 17 Nov. 1997 Road : NH 3 (km 133.3)

Road :	NH3 (kn	133.3)							
			Vehic	le Type		Axle Load			Load /
Direction		Registration		Code No.	Axle 1	Axle 2	Axle 3	Axle 4	Unload
1	1991	CPG	Medium	3	2.65	6.73	0	0	
1	1992	MP	Truck	3	3.24	6.83	ୢୢୄୄୄ		1
1	1993	DL	1	3	1.62		0	0	UL
1	1989	MKW		3	3.16	5.67	0	0	L
i	1988	МКН		. 3	2.67	7.02	0	0	L
1	1995	HR		3 3 3	3.26		0	0	ι
1	1989	мин		3	3.13		0	0	L
1		UP		3	2.27		Ō		L
1		HR	1	3	3.42				L
	1996	MP		3 3 3	2.86		Ő	, N	ī.
1	1997	MP			2.01				ī
1	1997		•	3 3 3 3 3 3 3	2.83				ī
1		MP	t	lă	2.21				ī
1	1996	TN	\$		1.13			i n	Ĺ
1	1990	MBH	1		3.62				L
1	1994	MP			2.08				ւ
1	1996	MP	Ī	3	2.00				
1	1995	MP	ł		3.52				
1	1994	MP]	3 3 3	3.18			0	
1	1991	UP	1		2.95			0	
1	1986	CPW		3	1.95				ហ
1	1996	MP		3	3.03			0	
1	1990	MP	ļ	3	2.85				ւ
1	1995	MP		3333	2.85				L
1	1992	DL		3	2.8				L
1	1991	DL		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.37				L
1	1989	MP] 3	1.33				L
1	1994	MKW		3	244				L
1	1990	PY	1	3	2.01				L
1	1992	MP		3	2.98	5.74	0		L
1	1994	UP		[3	2.58	5) o		L
i	1995	MP		5 3	3.38				L
i	1989	WAK	ł	3	3.21			0	L
i	1995	NL	1	3	2.97				L
1	1995	MP	1	3	1.23				U
1	1992	HR			2.44				L
1	1994	DIG			2.17				UL.
	1995				2.65				υL
1		MRG			3.04				L
1	1996	MP	1		2.09				L
1	1994	HR			3.04 2.09 2.82				L
1	1996	MP	1	-	1				L
1	1996	MP							L
1	1994	MKW						5	յլ ՄԼ
1	1992	UP							
1	1994	HYU		. 3		5.79			L
1	1991	M9							L
1	1992	MP		3					
1	1991	RJ	1	3)L
1	1989	MP	1		3.33				
1	1986	MKW		1 3		5.26			L
1	1990	MP		1 3)L
1	1990	MP	ł	3					DÍL –
1	1992	MP	1	3	3.57				D L
i	1992	G]	1	3	1.52				ាររា
1	1997	HP	Heavy	4	2.80	5 1.01)L
i	1995	HR	Truck		1	6.01	l 5.71	j (L
l i	1991	MP	1)L
li	1989	MP							D L
1 4	1 1/07		1	1					

A12-4 Axle Load Data (Gwalior) (3/4)

Date : 17 Nov. 1997 Road : NH 3 (km 133.3)

Koau :	INU 2 (MI	100.00	Vahia	le Type		Load /		
Direction	Model	Registration	veiuc	Code No.	Axle 1	Axle Load Axle 2	Axle 3	Axle 4 Unload
2	1995	MP	Light	2	3.61	7.61	0	0 L
	1996	MP	Truck	2	1.24	3.04	ol	0 L
	1995	MP	1 WCD	5	1.53	2.57	. 0	OL
2 2 2	1993	MP		2	2.67	5.88	ol	0 L
2	1996	PCQ		2 2 2	1.56	2.76	o	0 L
	1990	CPH	Medium	3	2.24	6.62	0	0 U
2	1992	MP	Truck	3	2.83	5.16	ol	0 U
	1996	MP	ITUCK	3	3.13	5.4	0	0 U
	1989	MP]	3	2.12	5.79	0	OL
	1986	MP	1	3	2.99	4.2	0	• 0 L
	1983	MP		3 3 3	2.92	6.98	0	0 L
	1903	MP	ŀ	3		7.24	O	QL
	1997	MP		3	1.73	2.1	0	0 L
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1992	MP		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3	5.47	Ō	OL
	1969	MP		3	2.52	6.69	0	OL
2	1997		Į –	3	2.55	5.26	Ő	OL
	1997	MP HR	Í	3	3.15	6.69	o	OL
	1991	UP	1		3.89	8.32	o	OL
2	1995			3	3.14	7.79	Ō	0 L
2	1990	MP MP		ि य	1.89		o	OL
2		MP		3	1.07		Ŷ	0 L
2 2 2 2 2 2 2 2 2 2 2 2 2	1990	UP		2	2.74		o l	OL
	1986	MP			2.86		0	OL
	1990			1 3	2.05		0	OUL
2	1986 1991	MP MP	}	ă	2.62		0	OL
	1991	CIV		3	2.67		Ō	OL
		CIW	í		2.85			OL
	1990 1990	MP			2.79			OL
2					2.5		0	OL
2	1988 1993	HIX MP		ă	2.51		Ō	OL
	1993	MP	1	3	3.59		o	OL
				3	2.23			OL
	1996	MP HP		3				01
2	1995			3				OL
	1991	MP		3	2.01			OL
	1995	MP MKW		3				OL
	1988							OL
2	1995	MP		3	279			OL
2	1995	MP		3			0	OL
	1995	MP	1	3			Ö	0 L
	1994	MP		3				OL
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1995	MP	•	3				OUL
L2	1991	UP	<u> </u>		1.91		·*i	

A12-4 Axle Load Data (Gwalior) (4/4)

Date : 17 Nov. 1997 Road : NH 3 (km 133.3)

	11110 (idi	[Vehicle Type			Axle Loading (ton)			Load /
Direction	Model	Registration		Code No.	Axle 1	Axle 2	Axle 3	Axle 4	Unload
2	1997	UP	Medium	3	2.04	3.34	0	0	L
2	~1990	MPW	Truck	3	2.4	3.34	0	0	L
2	1990	Срн	}	3	1.91	2.67	0	0	L
2	1996	MP	Į	. 3	2.95		0	0	E
2	1997	MP		3	2.94	7.07	Û	0	L
2	1994	HR	2	3	2.91	7.52	0		L
2 2	1990	UAW	1	3	2.18		0	0	UL
2	1996	HR		3	2.32		0	0	L
	1997	MP	1	3	2.9 9		0	0	L
2 2 2	1997	MP		3	2.83	8.26	0	0	L
2	1990	MP		3	3.03		0	0	լլ
2	1996	HR	ĺ	3	2.96		0	0	L
2 2 2	1996	MP		3	3.03		0	0	L
2	1989	CPO	1	3	2.18		0	0	L
2	1997	MP	1	3	3.13	6.79	0	0	L
2	1989	UP	1	3	2.98	7.02	0	0	L
2	1997	MP		3	2.67	6.76	0	0	L
2	1991	MP	1	3	2.83	8.3	0		L
2	1988	UP	Heavy	4	• 3	1.1	2.26	0	L
		I	Truck						L

A12-5

Questionnaire for Opinion Survey on Toll Bypass (Bareilly)

A12-5 Questionnaire for Opinion Survey on Toll Bypass (Bareilly) (1/4)

Sample No. 1-(1)-

hal

FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

Questionnaire for Farmers about Toll Bypass (Bareilly)

1 Name and Address : Name :

Address : (Mark the sample No. on a map)

- 2 How much cultivable land do you own ?
- 3 Annual production of major crops ?

Crops	Tonnes per annum
1)	
2)	
3)	
4)	······································
5)	

4 What is the main market for your major products ?

Crops	Market Place	Distance to market
	(Mark the location on a map)	(kcm)
1)		
2)		
3)		
4)		
5)		

5 How do you usually transport your major produce ? (Mark with \checkmark)

LCV (pickup)	MAV	Bullock/1	Horse
HCV (truck)	Tractor	Cart	

6 How many trips do you make in a week/month by vehicles ?

per week	per month	
----------	-----------	--

7 Do you feel the need/usefulness of the proposed Bareilly Bypass ?

(Reasons of above)	
(How about levving toll ?)	

8 If the proposed bypass reduces the trip distance by following kilometers, how much toll would you pay ?

Distance Savings (km)	up to 2	2-5	5-10	10-15	15-20	more than 20
Amount of toll (Rs.)						

9 If the proposed bypass reduces the trip time by following minutes, how much toll would you pay ?

Time Savings (Min.)	up to 10	10-20	20-30	30-45	45-60	more than 60
Amount of toll (Rs.)						J

10 Please give your suggestions and comments regarding the proposed Bareilly Bypass, if any.

Yes/No

A12-5 Questionnaire for Opinion Survey on Toll Bypass (Bareilly) (2/4)

							Sample No. 1-(2}-
	FEASIBILITY ST	UDY ON	NATION	AL HIGH	WAY BY	PASSES I		
	Questionnaire fo							
	Quionomanere		y mach o	Paraois		10)pas	Duriny)	
N	lame and Address	of Operat	or:					
;	Name : Address :				······			
		····	·			(Mark Chi	e sample No. on a	цару
F	leet Composition (I	Nos.):						
	CV (pickup)				MAV			
H	ICV (truck)	L			Others			
P	lease name five ma	jor places	i (origins (& destinat	ions both	outside I	he city/towi	n)
	Origin			Destination		Distan	ce (km)	
1								
2					· ·			
3)						i 		
4	6							
5)			··· · ···			j	
Н	low many trips do	you make	e in a mon	th with v	ehicles op	erated ?		
H	low much time doe	- es it norm	ally take t	o travel a	long the e	existing co	orridors ?	
Г	Corridor		Peak	Hour	Off Pea	k Hour		
) Bareilly to Rampu							
) Bareilly to Shahjal							
) Bareilly to Haldw							
_) Bareilly to Pilibhit							
5) Bareilly to Bisalpu	<u>иг</u>						
D	S							
)o you feel the need	l/usefuln	ess of the	proposed	Bareilly	Bypass ?	Y	es/No
{{	Reasons of above)	l/usefuln	ess of the	proposed	Bareilly	Bypass ?	<u>[v</u>	es/No
	Reasons of above)		ess of the	proposed	Bareilly	Bypass ?		es/No
			ess of the	proposed	Bareilly	Bypass ?		es/No
	Reasons of above)		ess of the	proposed	Bareilly	Bypass ?		es/No
(1	Reasons of above) How about levying to	оШ ?)						es/No
() () ()	Reasons of above)	oll ?) ass reduce	es the trip					es/No
() [] []	Reasons of above) How about levying to f the proposed bypa low much toll woul	oll ?) ass reduce d you pay	es the trip y ?	distance	by follow	ing kilom	eters,	
	Reasons of above) How about levying to f the proposed bypa	oll ?) ass reduce	es the trip					
	Reasons of above) How about levying to I the proposed bypa ow much toll woul Distance Savings (km) amount of toll (Rs.)	oll ?) ass reduce d you pay up to 2	es the trip y ? 2-5	distance	by follow 10-15	ing kilom 15-20	eters,	20
	Reasons of above) How about levying to I the proposed bypa iow much toll woul distance Savings (km) imount of toll (Rs.) I the proposed bypa	oll ?) ass reduce d you pay up to 2	es the trip y ? 2-5	distance	by follow 10-15	ing kilom 15-20	eters,	20
	Reasons of above) How about levying to the proposed bypa ow much toll woul distance Savings (km) isount of toll (Rs.) I the proposed bypa yould you pay ?	oll ?) ass reduce d you pay up to 2 ass reduce	es the trip y ? 	distance 5-10 time by f	by follow 10-15 ollowing	ing kilom 15-20 minutes, 2	eters, more than how much to	x 20 >11
	Reasons of above) How about levying to I the proposed bypa iow much toll woul distance Savings (km) imount of toll (Rs.) I the proposed bypa	oll ?) ass reduce d you pay up to 2	es the trip y ? 2-5	distance	by follow 10-15	ing kilom 15-20	eters,	x 20 >11

9 Please give your suggestions and comments regarding the proposed Bareilly Bypass, if any.

A12-5 Questionnaire for Opinion Survey on Toll Bypass (Bareilly) (3/4)

Sample No. 1-(3)-

FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA

Questionnaire for Industries/Factories about Toll Bypass (Bareilly)

- 1 Name of the Organisation/Industry/Factory and Address Name :
 - Address : (Mark the sample No. on a map)
- 2 Names of major commodities manufactured/processed at your unit, and the quantity produced monthly :


Commodity	Quantity
(1)	
2)	
3)	
4	

3 a) Do you arrange to transport the raw materials and finished goods yourself ? Yes/No

b) If yes, please specify the major Origins and Destinations.

Commodity	Origin	Destination
1)		
2)		
3)		
(4)		

4 Which mode of transport do you usually use to transport your raw materials and finished goods ? (Mark the vehicle type(s))

- 5 How many trips do you make in a month to transport your commodities ?
- 6 Do you feel the need/usefulness of the proposed Bareilly Bypass?

Yes/No

(Reasons of above)	
(How about levying toll ?)	· · · · · · · · · · · · · · · · · · ·

7 If the proposed bypass reduces the trip distance by following kilometers, how much toll would you pay ?

Distance Savings (km)	up to 2	2-5	5-10	10-15	15-20	more than 20
Amount of toli (Rs.)						

8 If the proposed bypass reduces the trip time by following minutes, how much toll would you pay ?

Time Savings (Min.)	up to 10	10-20	20-30	30-45	45-60	more than 60
Amount of toll (Rs.)						

9 Please give your suggestions and comments regarding the proposed Bareilly Bypass, if any.

A12-5 Questionnaire for Opinion Survey on Toll Bypass (Bareilly) (4/4)

		Sample No). 1-(4)-
	FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES	SIN INDIA	4
	Questionnaire for Local Leaders about Toll Bypass (Bar	eilly)	
1	Name and Designation : Name : Designation :		
2	Is the present road corridor able to cater to the traffic needs ?		Yes/No
3	Do you feel the needs/usefulness of the proposed Bareilly Bypass ?		Yes/No
	(Reasons of above)		
	(What do you think about levying toll on users of the proposed bypas	s ?)	
4	Has there been any demand from the Traders/Truck Operators/Indu alternative Road/Bypass which could save their travel distance and t	inte?	ners for Yes/No
	(If Yes, please describe the alternatives.)		
5	Do you agree with the proposed alignment of the Bypass ? Any sugge	rstions/co	mments ?

6 What do you think would be the alternative choice of the people ?

1) Not to have a Bypass	
2) Have a toll Bypass	

7 If a toll bypass, what should be the appropriate toll charges (in Rs.) per :

1) LCV	
2) HCV	
3) MAV	
4) Car	
5) Scooter	
6) Bus	

8 Please give your suggestions and comments regarding the proposed Bareilly Bypass, if any.

A12-6

•

Questionnaire for Opinion Survey on Toll Bypass (Gwalior)

·

A12-6 Questionnaire for Opinion Survey on Toll Bypass (Gwalior) (1/4)

Sample No. 2-(1)-

FEASTBILITY STUDY ON NATIONAL HIGHWAY BYPASSES IN INDIA Questionnaire for Farmers about Toll Bypass (Gwalior)

1 Name and Address :

Name : Address : (Mark the sample No. on a map)

2 How much cultivable land do you own?

hal

3 Annual production of major crops ?

Crops	Tonnes per annum
1)	
2)	
3)	
4)	
5)	

4 What is the main market for your major products ?

Crops	Market Place	Distance to market
	(Mark the location on a map)	(km)
(1)		
2)		
3)		
4)		1
5)		

5 How do you usually transport your major produce ? (Mark with $\sqrt{~}$)

LCV (pickup)	MAV	Bullock/Horse
HCV (truck)	Tractor	Cart

6 How many trips do you make in a week/month by vehicles ?

	pe	r wee	·k	per month	
	_				2

7 Do you feel the need/usefulness of the proposed Gwalior Bypass ?

Yes/No

Reason	s of ab	ove)	
How al	out le	vvin	z toll '

8 If the proposed bypass reduces the trip distance by following kilometers, how much toll would you pay ?

Distance Savings (km)	up to 2	2-5	5-10	10-15	15-20	more than 20
Amount of toll (Rs.)			L			LJ

9 If the proposed bypass reduces the trip time by following minutes, how much toll would you pay ?

				· · · · ·		
Time Savings (Min.)	up to 10	10-20	20-30	30-45	45-60	more than 60
Thate out this (
Amount of toll (Rs.)					L	<u>L</u>

10 Please give your suggestions and comments regarding the proposed Gwalior Bypass, if any.

A12-6 Questionnaire for Opinion Survey on Toll Bypass (Gwalior) (2/4)

	Name and Address (of Operato	ər:					
	Name :					04.1.6.		
	Address :				· · · · · · · · · · · · · · · · · · ·	(Mark the	sample No. on a map	
	Fleet Composition (N	Vos.) :						
I	LCV (pickup)			1	MAV			
	HCV (truck)				Others			
	Please name five ma	jor places	(origins &	e destinat	ions both	outside t	he city/town)	
	Origin			Destination		Distan	ce (km)	
	1)						••••••	
	2)							
	3)							
	4) 5)						· 	
					_		J	
	How many trips do	you make	in a mon	th with v	ehicles op	erated ?	L	
	How much time does it normally take to travel along the existing corridors ?							
	Corridor		Peak	How	Off Pea	k Hour		
	1) Gwalior to Agra/				 _			
	2) Gwalior to Shivpu	เก่				<u>`</u>		
	3) Gwalior to Datia				[
	4) Gwalior to Bhind	1			I			
	Do you feel the need/usefulness of the proposed Gwalior Bypass ? Yes/I							
	(Reasons of above)							
	(How about levying to	이민?)						
	If the proposed byp how much toll would	ass reduce d you pay	s the trip ?	distance			eters,	
	Distance Savings (km)	up to 2	2.5	5-10	10-15	15-20	more than 20	
	Amount of toll (Rs.)				L			
	If the proposed bypass reduces the trip time by following minutes, how much toll would you pay ?							
	Time Savings'(Min.)	up to 10	10-20	20-30	30-45	45-60	more than 60	
	Amount of toll (Rs.)				I			
		vestions a	and comm	nents rega	arding the	propose	d Gwalior	

A12-6 Questionnaire for Opinion Survey on Toll Bypass (Gwalior) (3/4)

					6	Sample No. 2-(3)-		
FEASIBILITYS	STUDY OF	NATIO	NAL HIG	HWAY B	YPASSES I	N INDIA		
Questionna	ire for Ind	ustries/F	actories al	out Toll	Bypass (Gv	valior)		
Name of the Organis Name :	ation/Ind	ustry/Fa	ctory and	Address				
Address :					(Mark the	e sample No. on a map)		
Names of major commodities manufactured/processed at your unit, and the quantity produced monthly :								
Commodity				Quantity				
1)								
2) 3)								
4)								
a) Do you arrange to transport the raw materials and finished goods yourself ? Yes/No b) If yes, please specify the major Origins and Destinations.								
Commodity		Origin	<u></u>	<u> </u>	Destinatio	n		
1)								
2)								
(3) (4)						<u> </u>		
Which mode of trans finished goods ? (Ma LCV (Light Truck) HCV (Heavy Truck) MAV(Multi Axle)				ansport y	OUT TAW MA	aterials and		
How many trips do	vou make	in a mont	th to trans	port vour	commodit	ties?		
Do you feel the need						Yes/No		
(Reasons of above)								
(How about levying to)))							
If the proposed bypa toll would you pay?		s the trip	distance b	y followii	ng kilomete	ers, how much		
Distance Savings (km)	up to 2	2-5	5-10	10-15	15-20	more than 20		
Amount of toll (Rs.)			J		L]			
If the proposed bypa would you pay ?	ss reduce	s the trip	time by fo	llowing n	ninutes, ho	w much toll		
Time Savings (Min.) Amount of toll (Rs.)	up to 10	10-20	20-30	30-45	45-60	more than 60		
						Gwalior Bypass,		

A12-6 Questionnaire for Opinion Survey on Toll Bypass (Gwalior) (4/4)

		Sample No.	2-(4)-
	FEASIBILITY STUDY ON NATIONAL HIGHWAY BYPASSES	IN INDIA	
	 Questionnaire for Local Leaders about Toll Bypass (Gwa 	lior)	
1	Name and Designation :		
	Name :		
	Designation :		
2	Is the present road corridor able to cater to the traffic needs ?		Yes/No
3	Do you feel the needs/usefulness of the proposed Gwalior Bypass ?		Yes/No
	(Reasons of above)		
		•	
	· · ·		
	(What do you think about levying toll on users of the proposed bypase	s ? <u>)</u>	

4 Has there been any demand from the Traders/Truck Operators/Industries/Others for alternative Road/Bypass which could save their travel distance and time ? Yes/No

(If Yes, please describe the alternatives.)

- 5 Do you agree with the proposed alignment of the Bypass ? Any suggestions/comments ?
- 6 What do you think would be the alternative choice of the people ?

1) Not to have a Bypass	
2) Have a toll Bypass	

7 If a toll bypass, what should be the appropriate toll charges (in Rs.) per :

1) LCV	
2) HCV	
3) MAV	
4) Car	
5) Scooter	
6) Bus	

8 Please give your suggestions and comments regarding the proposed Gwalior Bypass, if any.