# THE STUDY ON ADDIS ABABA FLOOD CONTROL PROJECT

CHAPTER 3

RIVER AND ROAD SURVEY

#### THE STUDY

#### ON

## ADDIS ABABA FLOOD CONTROL PROJECT

#### IN

## THE FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA

## CHAPTER 3 RIVER AND ROAD SURVEY

## Contents

| 3.  | RIV   | ER AND ROAD SURVEY                                           | 3-1 |
|-----|-------|--------------------------------------------------------------|-----|
| 3.1 | Gen   | eral                                                         | 3-1 |
| 3.2 | Rive  | er and Road Cross-section Survey                             | 3-2 |
|     |       | Survey Items and Subcontract                                 |     |
|     | 3.2.2 | Survey Area and Work Volume                                  | 3-1 |
|     | 3.2.3 | Reference Bench Marks and Control Points                     | 3-2 |
|     | 3.2.4 | New Control Points and Cross-section Posts to be Established | 3-2 |
| ,   | 3.2.5 | Final Products                                               | 3-2 |

## List of Tables

| 3.2.1 | Data List of Reference Control Points and Bench Marks | 3-4  |
|-------|-------------------------------------------------------|------|
| 3.2.2 | Data List of Control Points                           | 3-5  |
| 3.2.3 | Data List of Cross Section Post                       | 3-7  |
| 3.2.4 | Data List of Road Cross Section Posts                 | 3-13 |
|       |                                                       |      |
|       |                                                       |      |
|       | List of Figures                                       |      |
| 3.2.1 | Survey Area – River Cross Section Survey              | 3-14 |
| 3.2.2 | Survey Area - Road Cross Section Survey               | 3-15 |

#### 3. RIVER AND ROAD SURVEY

## 3.1 General

In order to carry out the feasibility study for the selected priority projects, river and road surveys were conducted in the period of second work in Ethiopia. The outline of the surveys is described below.

## 3.2 River and Road Cross-section Survey

## 3.2.1 Survey Items and Subcontract

The river cross-section and road cross-section surveys were conducted for priority projects consisting of flood control works and urban drainage improvement. The surveys consist of traverse survey, leveling and cross-section survey for river cross-sections, and leveling cross-section survey for road cross-sections.

The survey was conducted in accordance with the subcontract between the Study Team and Aquatee (Ab) Co., Ltd. appointed as the subcontractor. The survey works have been carried out for the period from the beginning of December 1997 to middle of January 1998 (around 1.5-month) under instruction and supervision by the Study Team.

#### 3.2.2 Survey Area and Work Volume

Figures 3.2.1 and 3.2.2 show the objective river stretches for river survey and road survey, respectively.

The main work items and quantities are as follows.

#### 1) For river cross-sections

- Traverse survey: 310 points

(Total of control points and cross-section posts)

Leveling: 8.5 km
 (Total length of cross-section routes and connecting routes to existing bench marks or control points)

Cross-section survey: 160 sections
 (In total with intervals of approx. 20m to 100m)

## 2) For road cross-sections

- Leveling: 5 km
   (Total length of cross-section routes and connecting routes to existing bench marks or control points)
- Cross-section survey: 50 sections
   (In total with intervals of approx. 100 m)

#### 3.2.3 Reference Bench Marks and Control Points

The verified reference bench marks and control points for the survey work have been established by the Master Plan for this study (1997) and Blue Nile Geodetic Control Project (1957 to 1960), Mapping Project for Urban Planning in Addis Ababa (1972 to 1973).

These reference points to used for the survey work are shown in Table 3.2.1.

#### 3.2.4 New Control Points and Cross-section Posts to be established

The coordinates and elevation of new control points and cross-section posts to be established for the survey work are shown in Table 3.2.2, 3.2.3 and 3.2.4.

#### 3.2.5 Final Products

The results of the survey works are compiled into the followings.

## 1) River Cross-section Survey

- Location Maps of Surveyed River Cross-sections
- Drawings of River Cross-sections
- Drawings of Longitudinal Profiles of Surveyed Rivers

#### 2) Road Cross-section Survey

Location Maps of Surveyed Road Cross-sections

- Drawings of Road Cross-sections
- Drawing of Longitudinal Profiles of Surveyed Roads

## 3) Reports and Survey Data

- Survey Report
- Descriptions of Control Points
- Field Measurement and Computation Sheets

Table 3.2.1 Data List of Reference Control Points and Bench Marks

| TATION No. 🖟 | NORTH (m) | EAST (m) | ELEVATION (m) | REMARKS                                          |
|--------------|-----------|----------|---------------|--------------------------------------------------|
| 382          | 65296.36  | 32934.09 | 2300.099      | *                                                |
| BM 25        |           |          | 2309.529      |                                                  |
| BM 11        |           |          | 2319.591      |                                                  |
| 506          | 66708.16  | 32765.94 | 2333.504      | *                                                |
| BM 10        | i         | ·        | 2323.175      | Elevation data before revised: 2319.240m         |
| 258          | 67819.76  | 31379.23 | 2351.96       | *                                                |
| BM 09        |           |          | 2332.164      | Elevation data before revised: 2331.828m         |
| 259          | 67573.35  | 31304.97 | 2341.898      | *                                                |
| 139          | 68019.17  | 30378.52 | 2345.985      | *                                                |
| 318'         | 68305.38  | 30604.53 | 2349.463      | * Coordinates is the revised data on this study. |
| 320          | 68305.41  | 30604.5  | 2348.031      | *                                                |
| BM 07        |           |          | 2389.099      | Elevation data before revised: 2389.108m         |
| 253          | 69068.66  | 31236.26 | 2409.783      | *                                                |
| 254          | 68838.39  | 31107.21 | 2407.08       | *                                                |
| No.2         |           |          | 2440.077      | **                                               |
| 535          | 70501.47  | 30616.77 | 2439.258      | *                                                |
| 1176         | 71842.84  | 30831.73 | 2506.837      | *                                                |
| 1186'        | 72740.39  | 30151,74 | 2554.396      | * Coordinates is the revised data on this study. |
| BM 04        |           |          | 2507.111      |                                                  |
| 1214         | 71055.83  | 29724.31 | 2499.016      | *                                                |
| BM 12        |           |          | 2360.372      |                                                  |
|              |           | j        |               |                                                  |
|              |           | ·        |               |                                                  |
|              |           |          |               |                                                  |
| .,           | , ,       |          |               |                                                  |
|              |           | <u> </u> | · · · · · · · | _ <del> </del>                                   |
|              |           |          |               |                                                  |
|              |           | <u> </u> |               |                                                  |
|              |           |          |               |                                                  |
|              |           |          |               |                                                  |
|              |           | !        |               |                                                  |
|              | •         |          |               | į                                                |
|              | •         |          |               |                                                  |
|              | •         |          | •             |                                                  |
|              | •         | 1 -      |               |                                                  |
|              | •         |          |               | •                                                |
|              | •         |          | İ             |                                                  |
|              | •         |          |               | İ                                                |
|              |           |          |               |                                                  |
|              |           |          |               |                                                  |
|              |           |          |               |                                                  |
|              |           |          |               |                                                  |
|              |           |          |               |                                                  |

Note: \* Data of the Addis Ababa Mapping Project in 1972/73.

\*\* Data of the Blue Nite Geodetic Control Project in 1957/60.

Table 3.2.2 Data List of Control Points (1/2)

| STATION No. | NORTH (m) | EAST (m) | ELEVATION (m) | REMARKS           |
|-------------|-----------|----------|---------------|-------------------|
| TP 01 (04L) | 65545.46  | 32806.69 | 2304.961      |                   |
| TP 02       | 65637.88  | 32852.48 | 2304.889      |                   |
| TP 03       | 65969.53  | 32708.62 | 2312.928      |                   |
| TP 04       | 66108.41  | 32576,68 | 2314,659      |                   |
| TP 05 (12L) | 66250.01  | 32543.48 | 2314.828      |                   |
| TP 06       | 66409.39  | 32483.21 | 2316,444      |                   |
| TP 07       | 66460.90  | 32608.47 | 2315,304      |                   |
| TP 08       | 66568.72  | 32592.02 | 2316.409      |                   |
| TP 09       | 66660.71  | 32606.66 | 2317.658      |                   |
| TP 10 (24R) | 66790.39  | 32628.57 | 2320.552      |                   |
| TP 11 (26R) | 66857.22  | 32544.69 | 2323,280      |                   |
| TP 12 (28R) | 66943.09  | 32464.69 | 2321.538      |                   |
| TP 13       | 66946.82  | 32391.05 | 2326,553      |                   |
| TP 14       | 67007.12  | 32322,59 | 2322.546      |                   |
| TP 15 (35R) | 67094.12  | 32240,44 | 2323,856      |                   |
| TP 16 (37R) | 67150.71  | 32155.12 | 2328.613      |                   |
| TP 17       | 67203.23  | 32061.11 | 2334.297      |                   |
| TP 18       | 67280.11  | 31951.90 | 2334,578      |                   |
| TP 19       | 67263.78  | 31799.30 |               |                   |
| TP 20 (46R) | 67205.59  | 31795.62 | 2327,684      |                   |
| TP 21 (51L) | 67390.25  | 31704.03 | 2331.903      |                   |
| TP 22 (55L) | 67518.46  | 31570.29 |               |                   |
| TP 23 (58L) | 67579.36  | 31450.85 |               |                   |
| TP 24       | 67661.16  | 31238.21 | 2335.910      |                   |
| TP 25 (64L) | 67549.28  | 31167.57 | 2335,066      |                   |
| TP 26 (67L) | 67453.11  | 31152.23 | 2337,757      |                   |
| TP 27 (69R) | 67424.93  | 31105.10 | 2337.156      |                   |
| TP 28       | 67435,36  | 30964.01 | 2339.070      |                   |
| TP 29       | 67534.77  | 30926.88 | 2339,930      |                   |
| (TP 30)     |           | -        | 2343.641      | Canceled post No. |
| TP 31       | 67569.83  | 30873.76 | 2341.372      |                   |
| TP 32       | 67740.63  | 30710.01 | 2342,686      |                   |
| TP 33       | 67830.69  | 30673.89 | 2341.546      |                   |
| TP 34 (86L) | 67919.38  | 30584.74 | 2343.286      |                   |
| TP 35       | 68071.18  | 30544,50 | 2346.318      |                   |
| TP 36       | 68130.37  | 30493.91 | 2346.403      |                   |
| TP 37       | 68237.10  | 30464.58 | 2348.648      |                   |
| TP 38       | 68241.73  | 30375.05 | 2347.760      | }                 |
| TP 39       | 68320.66  | 30327.84 | 2349.188      |                   |
| TP 40       | 68398.94  | 30517.24 | 2352,397      |                   |
| TP 41       | 68507.38  | 30491.43 | 2354.616      |                   |
| TP 42       | 68671.47  | 30571.20 | 2359.051      |                   |
| TP 43       | 68767.75  | 30632.83 | 3 2364.217    | <u>'</u>          |
| TP 44       | 68891.46  | 30683.3  | 2369.065      |                   |
| TP 45       | 68965.63  | 30697.8  | 2372.578      | 3                 |
| TP 46       | 69089.73  | 30682.4  | 3 2382.037    | ,                 |
| TP 47       | 69125,38  | 30746.9  | 1 2380.797    | /                 |
| TP 48       | 69212.63  | 30832.8  |               |                   |
| TP 49       | 69285.01  | 30796.8  | <b>.</b>      |                   |
| TP 50       | 69365.07  | 30893.5  |               |                   |

Table 3.2.2 Data List of Control Points (2/2)

| STATION No. | NORTH (m) | EAST (m) | ELEVATION (m) | REMARKS                               |
|-------------|-----------|----------|---------------|---------------------------------------|
| TP 51       | 69462.97  | 30729.73 | 2404.146      |                                       |
| TP 51-1     | 68883.94  | 31118.38 | 2406.457      | *                                     |
| TP 52       | 69662.32  | 30719.13 | 2399.975      |                                       |
| TP 53       | 69723.70  | 30633,05 | 2412.490      |                                       |
| TP 54       | 69731.34  | 30619.98 | 2414.698      |                                       |
| TP 55       | 69920.92  | 30682.81 | 2413,839      |                                       |
| TP 56       | 69927,26  | 30567,73 | 2422.986      |                                       |
| TP 57       | 70175.18  | 30675,82 | 2435.374      | · · · · · · · · · · · · · · · · · · · |
| TP 58       | 70361,95  | 30501,35 | 2439,358      |                                       |
| TP 59       | 70272.85  | 30685.43 | 2439.316      |                                       |
| TP 60       | 71920.98  | 30763.96 | 2506.193      |                                       |
| TP 61       | 71975.55  | 30689.65 | 2498.726      |                                       |
| TP 62 (00L) | 72114,37  | 30653.79 | 2488.979      |                                       |
| TP 63 (O3L) | 72263.91  | 30657,03 | 2492,918      |                                       |
| TP 64 (05L) | 72365.14  | 30645.00 | 2504.672      |                                       |
| TP 65 (07R) | 72416.28  | 30555.56 | 2505.975      |                                       |
| TP 66 (10R) | 72559,85  | 30534,25 | 2513.151      |                                       |
| TP 67 (14R) | 72791.25  | 30496.84 | 2524.541      |                                       |
| TP 68       | 72954.32  | 30420.60 |               |                                       |
| TP 69       | 72680,40  | 30249.39 | 2551.039      |                                       |
| TP 70       | 72532,82  | 30280,11 | 2539.744      |                                       |
| TP 7 I      | 72563.69  | 30157.20 | 2540.547      |                                       |
| TP 72       | 72317.28  | 30182.17 | _             |                                       |
| TP 73       | 72241.72  | 30090,37 |               |                                       |
| TP 74       | 71920.86  | 29892.99 | _             |                                       |
| TP 75       | 71452.22  | 29472.15 |               |                                       |
| RBP I       | 68046,13  | 30626,80 | 2344 520      | Bantyiketu Regulating Pond            |
| RBP 2       | 67807.92  | 30654.69 | l             | Bantyiketu Regulating Pond            |
|             |           |          |               |                                       |
| BM 4        | 71798.15  | 29781.74 | 1             | Kostre Regulating Pond                |
| BM 4-1      | 71677.33  | 29913.44 |               | Kostre Regulating Pond                |

Note: \* Elevation is indirectly measured using the Total-station from existing control point No.253.

Table 3.2.3 Data List of Cross Section Posts (1/6)

| CODE | POST NO.   | NORTH (m)            | EAST (m) | ELEVATION (m)                         | REMARKS     |
|------|------------|----------------------|----------|---------------------------------------|-------------|
| KEB  | OOL        | 65241.65             | 32948.05 | 2298.931                              |             |
|      | 00R        | 65240.26             | 32915.98 | 2299.275                              |             |
|      | 01L        | 65327.88             | 32917.89 | 2300.818                              |             |
|      | 01R        | 65336.39             | 32872.88 | 2301.131                              |             |
|      | 02L        | 65397.32             | 32913.1  | 2301.204                              |             |
|      | 02R        | 65380.77             | 32870.77 | 2302.962                              |             |
|      | 03L        | 65496.22             | 32842.76 | 2303.06                               |             |
|      | 03R        | 65447.66             | 32810    | 2302.893                              |             |
|      | 04L (TP1)  | 65545.46             | 32806.69 | 2304.961                              |             |
|      |            | 65565.65             | 32767.17 | 2305.382                              |             |
|      | 04R        | 65658.24             | 32874.24 | 2303.597                              |             |
|      | 05L        |                      | 32850.88 | 2304.755                              |             |
|      | 05R        | 65645.2              |          | 2305.228                              |             |
|      | 06L        | 65787.69             | 32805.63 | 2307.183                              |             |
|      | 06R        | 65766.6              | 32779.54 | 2307.163                              |             |
| DAN  |            | 65865.53             | 32733.95 | 2306.645                              |             |
| BAN  | 07L        | 1                    | 32733.17 | 2309.529                              |             |
|      | 07R (BM25) | 65841.14             | 32675.77 | 2308.833                              |             |
|      | 08L        | 65917.16             | 32638.98 | 2309.614                              |             |
|      | 08R        | 65889.38             |          | 2309.828                              |             |
|      | 09L        | 66005.54             | 32595.66 | 2309.963                              |             |
|      | 09R        | 65995.56             | 32573.57 | 2310.9                                |             |
|      | 09-1L      | 66076.41             | 32552.83 | · · · · · · · · · · · · · · · · · · · |             |
|      | 09-1R      | 66064.87             | 32530.97 | 2311.066                              | <del></del> |
|      | 10L        | 66283.34             | 32688.68 | 2313.861                              |             |
|      | 10R        | 66062.53             | 32483.24 | 2316.77                               |             |
|      | 111        | 66166.72             | 32562    | 2313.947                              |             |
|      | HR         | 66175.58             | 32457.04 | 2316.422                              |             |
|      | 12L (TP5)  | 66250.01             | 32543.48 | 2314.828                              |             |
|      | 12R        | 66268.89             | 32479.5  | 2315.823                              |             |
|      | 13L        | 66280.96             | 32566.09 | 2314.13                               |             |
|      | 13R        | 66302.64             | 32554.49 | 2313.77                               |             |
|      | 141        | 66369.5              | 32528.17 | 2314.492                              |             |
|      | 14R        | 66363.71             | 32500.48 | 2315.58                               |             |
|      | ISL        | 66410.3              | 32613.02 | 2315.722                              |             |
|      | 15R        | 66419.88             | 32602.1  | 2315.782                              |             |
|      | 16L        | 66521.92             | 32649.78 | 2316.873                              |             |
|      | 16R        | 66506.23             | 32638.86 | 2316.58                               | 1           |
|      | 17L        | 66537.84             | 32622.13 | 2316.893                              |             |
|      | 17R        | 66546.35             | 32609.14 | 2317.217                              | ·<br>!      |
|      | 18L        | 66586.71             | 32645.26 | 2317.156                              |             |
|      | 18R        | 66589.8              | 32626.67 | 2316.914                              |             |
|      | 19L        | 66615.05             | 32649.2  | 2317.498                              |             |
|      | 19R        | 66623.3              | 32619.16 | 2317.154                              |             |
|      | 20L        | 66642.91             | 32653.9  | 2317.754                              |             |
|      | 20R        | 66659.56             | 32628.88 | 2317.563                              |             |
|      | 21L        | 66659.87             | 32673.91 | 2318.044                              |             |
|      |            | 66691.64             | 32644.99 | 2317.379                              |             |
|      | 21R        | 66719.26             | 32714.59 | 2318.637                              |             |
| ļ    | 22L        |                      | 32678.57 | 2317.623                              | _           |
|      | 22R<br>23L | 66718.11<br>66775.28 | 32675.28 | 2318.801                              |             |

Table 3.2.3 Data List of Cross Section Posts (2/6)

|                                   | 23R        | 66757.65 | 32662,74 | 2320.003 |             |
|-----------------------------------|------------|----------|----------|----------|-------------|
|                                   | 24L        | 66807.6  | 32642.38 | 2319.253 |             |
|                                   | 24R (TP10) | 66790.39 | 32628.57 | 2320.552 |             |
|                                   | 25L        | 66852.26 | 32620.55 | 2322.336 |             |
|                                   | 25R        | 66828.52 | 32578.79 | 2321.48  |             |
| BAN                               | 26L        | 66887.51 | 32552.09 | 2319.84  |             |
|                                   | 26R (TP11) | 66857.22 | 32544.69 | 2323,28  |             |
|                                   | 27L        | 66899.77 | 32517.88 | 2320.696 |             |
|                                   | 27R        | 66876.58 | 32502.26 | 2323.398 |             |
|                                   | 28L        | 66967.86 | 32490.1  | 2322.074 |             |
|                                   | 28R (TP12) | 66943.09 | 32464.69 | 2321.538 | 1           |
|                                   | 29L        | 66988.36 | 32439.5  | 2321.065 |             |
| ******                            | 29R        | 66957.47 | 32442.91 | 2321.605 |             |
|                                   | 30L        | 66981.21 | 32404.9  | 2321.954 |             |
|                                   | 30R (BM10) | 66955.39 | 32396,84 | 2323.175 |             |
|                                   | 31L        | 67000.09 | 32374.3  | 2322.33  |             |
|                                   | 31R        | 66981.51 | 32352.01 | 2321.765 |             |
|                                   | 32L        | 67029.89 | 32343.41 | 2323.504 |             |
|                                   | 32R        | 67015.9  | 32327.22 | 2323.304 | -           |
|                                   | 33L        | 67068.03 | 32317.33 | 2322.779 | <del></del> |
|                                   | 33R        | 67043.97 | 32296.45 | 2322.774 |             |
| · - · · · · · · · · · - · - · · · | 34L        | 67092.43 | 32275.66 | 2322.774 | *           |
|                                   | 34R        | 67073.81 | 32264.9  | 2323.301 |             |
|                                   | 35L        |          |          |          |             |
|                                   |            | 67104.91 | 32248.23 | 2324.444 |             |
|                                   | 35R (TP15) | 67094.12 | 32240.44 | 2323.856 |             |
|                                   | 36L        | 67148.89 | 32209.36 | 2324.221 | ļ           |
|                                   | 36R<br>37L | 67112.73 | 32199.27 | 2325.334 |             |
|                                   |            | 67172.9  | 32174.31 | 2325.889 | . 📗         |
|                                   | 37R (TP16) | 67150.71 | 32155.12 | 2328.613 |             |
|                                   | 38L        | 67202.88 | 32087.72 | 2330.162 |             |
|                                   | 38R        | 67140.22 | 32139.08 | 2328.337 |             |
|                                   | 39L        | 67200.75 | 32078.59 | 2326.917 |             |
|                                   | 39R        | 67151.95 | 32089.55 | 2327.606 | _           |
|                                   | 40L        | 67188.4  | 32048.17 | 2325.658 |             |
|                                   | 40R        | 67162.56 | 32047.44 | 2325.26  |             |
|                                   | 41L        | 67177.4  | 32000.92 | 2325.581 |             |
|                                   | 41R        | 67161.57 | 32002.92 | 2325.009 |             |
|                                   | 42L        | 67178.33 | 31964.67 | 2328.925 |             |
|                                   | 42R        | 67152.11 | 31971.16 | 2327.284 |             |
|                                   | 43L        | 67178.09 | 31933.2  | 2327.045 |             |
|                                   | 43R        | 67154.09 | 31917.86 | 2325.497 |             |
|                                   | 44L        | 67192.76 | 31889.99 | 2327.364 |             |
|                                   | 44R        | 67177.42 | 31882.3  | 2327.394 |             |
| <br>                              | 45L        | 67207.02 | 31850.29 | 2327.282 | _           |
|                                   | 45R        | 67178.51 | 31844.94 | 2327.198 |             |
|                                   | 46L        | 67225.53 | 31800.56 | 2327.343 |             |
|                                   | 46R (TP20) | 67205.59 | 31795.62 | 2328.734 |             |
|                                   | 47L        | 67239.3  | 31778.13 | 2327.058 |             |
|                                   | 47R        | 67208.93 | 31749.64 | 2328.057 |             |
|                                   | 48L        | 67268.74 | 31754.35 | 2331.941 |             |
|                                   | 48R        | 67273.75 | 31707.66 | 2332.273 |             |

Table 3.2.3 Data List of Cross Section Posts (3/6)

|              | 49L        | 67293.14 | 31759.99 | 2331.91  |          |
|--------------|------------|----------|----------|----------|----------|
|              | 49R        | 67304.44 | 31707.57 | 2332.592 |          |
|              | 50L        | 67355.18 | 31736.52 | 2332.407 |          |
|              | 50R        | 67323.37 | 31716.41 | 2328.833 |          |
|              | 51L (TP21) | 67390.25 | 31704.03 | 2331.903 |          |
|              | SIR        | 67363.56 | 31666.51 | 2328.227 |          |
| BAN          | 52L        | 67428.42 | 31668.08 | 2331.155 |          |
|              | 52R        | 67414.29 | 31648.24 | 2328.640 |          |
|              | 53L        | 67463.61 | 31632.84 | 2331.899 |          |
|              | 53R        | 67443.93 | 31615.89 | 2329.092 |          |
|              | 54L        | 67491.73 | 31599.62 | 2331.456 |          |
|              | 54R        | 67457.96 | 31584.64 | 2330.986 |          |
|              | 55L (TP22) | 67518.46 | 31570.29 | 2331.518 |          |
|              | 55R        | 67498.82 | 31553.96 | 2330,118 |          |
|              | 56L        | 67542.96 | 31528.69 | 2332.262 |          |
|              | 56R        | 67520.92 | 31514.92 | 2330.621 |          |
|              | 57L        | 67563,41 | 31491.39 | 2332.607 |          |
|              | 57R        | 67543.31 | 31481.01 | 2331.517 |          |
|              | 58L (TP23) | 67579.36 | 31450,85 | 2332.159 |          |
|              | 58R        | 67557.39 | 31445.90 | 2331.526 | ,        |
|              | 59L        | 67579.06 | 31400,49 | 2332.868 |          |
|              | 59R        | 67555.99 | 31397.79 | 2332.669 |          |
|              | 60L        | 67582.37 | 31345.58 | 2334.415 |          |
|              | 60R        | 67556.19 | 31336.96 | 2339.434 | ,        |
|              | 6IL        | 67646.19 | 31295.74 | 2341.921 |          |
|              | 61R        | 67561.69 | 31285.25 | 2341.564 |          |
|              | 62L        | 67617.22 | 31252.67 | 2334.020 |          |
|              | 62R        | 67587.43 | 31261.90 | 2334,666 |          |
|              | 63L        | 67583.06 | 31188.72 | 2334.915 |          |
|              | 63R        | 67571.39 | 31218.41 | 2334.449 |          |
|              | 64L (TP25) | 67549.28 | 31167.57 | 2335.066 |          |
|              | 64R        | 67543.76 | 31213.66 | 2334.518 |          |
|              | 65L        | 67508.68 | 31169.58 | 2335.179 |          |
|              | 65R        | 67514.54 | 31205.38 | 2335,104 |          |
|              | 66L        | 67476.16 | 31170.67 | 2335.531 |          |
|              | 66R        | 67474.00 | 31201.34 | 2337.879 |          |
|              | 67L (TP26) | 67453.11 | 31152.23 | 2337.757 |          |
|              | 67R        | 67434.75 | 31181.20 | 2337.312 |          |
|              | 68L        | 67449.96 | 31137.32 | 2337.805 | <b>1</b> |
|              | 68R        | 67427.46 | 31141.93 | 2337.627 |          |
|              | 69L        | 67452.01 | 31104.91 | 2339.940 |          |
| ļ            | 69R (TP27) | 67424.93 | 31105.10 | 2337.156 |          |
| }            | 70L        | 67454.97 | 31072.14 | 2340.704 |          |
|              | 70R        | 67426.50 | 31068.44 | 2338.719 |          |
|              | 71L        | 67454.34 | 31031.85 | 2339,206 |          |
|              | 71R        | 67429.25 | 31032.16 | 2339.157 |          |
|              | 72L        | 67450.36 | 30987.16 | 2339.345 | -        |
| ·            | 72R        | 67432.06 | 30985.11 | 2338.850 |          |
| <del> </del> | 73L        | 67464.55 | 30964.97 | 2339.104 |          |
| <u> </u>     | 73R        | 67450.34 | 30949.23 | 2339.044 | **       |
|              | 74L        | 67496.32 | 30934.94 | 2339.356 |          |
| I            | ) , , , ,  |          | _L       | _1       | <b>L</b> |

Table 3.2.3 Data List of Cross Section Posts (4/6)

|                                       | 74R         | 67482.83             | 30919.31    | 2339.389    |                |
|---------------------------------------|-------------|----------------------|-------------|-------------|----------------|
| ··· -·-··                             | 75L         | 67532.33             | 30915.81    | 2340.422    |                |
|                                       | 75R         | 67517.95             | 30896.16    | 2340.432    |                |
|                                       | 76L         | 67569.60             | 30886.64    | 2341.419    |                |
|                                       | 76R         | 67555.92             | 30871.67    | 2341.251    |                |
|                                       | 77L         | 67629.70             | 30881.35    | 2340.883    |                |
|                                       | (77R)       |                      |             |             | ***            |
| BAN                                   | 78L         | 67667.97             | 30814,17    | 2340.761    |                |
|                                       | 78R         | 67644.96             | 30791.17    | 2340.803    |                |
| ··-·                                  | 79L         | 67690.27             | 30788.17    | 2340.912    |                |
|                                       | 79R         | 67673.32             | 30769.62    | 2340.663    |                |
|                                       | 80L         | 67721.25             | 30751.22    | 2341.252    |                |
| · · · · · · · · · · · · · · · · · · · | 80R         | 67705.47             | 30736.55    | 2341.097    |                |
|                                       | 81L         | 67749.77             | 30719.12    | 2342.324    |                |
| ··                                    | 81R         | 67736.48             | 30703.04    | 2342.266    |                |
|                                       | 82L         | 67781.97             | 30683.50    | 2342.623    |                |
|                                       | 82R         | 67769.66             | 30674.56    | 2341.214    | <del> </del>   |
|                                       | 83L         | 67811.95             | 30648.12    | 2342.155    |                |
|                                       | 83R         | 67801.88             | 30638.71    | 2341.778    |                |
|                                       | 84L         | 67841.18             | 30623.37    | 2342.617    |                |
|                                       | 84R         | 67832.23             | 30619.32    | 2339.546    |                |
|                                       | 85L         | 67884.07             | 30598.08    | 2342.643    | <b> </b>       |
|                                       | 85R         | 67878.48             | 30581.67    | 2342.843    |                |
|                                       |             |                      | 30584.74    | 2343.286    |                |
|                                       | 86L (TP34)  | 67919.38             | 30568.17    | 2341.593    |                |
|                                       | 86R         | 67914.27             | L           | 2341.595    |                |
|                                       | 87L         | 67969.41             | 30572.19    | 2344.341    |                |
|                                       | 87R         | 67957.29             | 30556.10    | 1           |                |
|                                       | 89L         | 68038.13             | 30512.63    | 2346.741    |                |
|                                       | 89R         | 68035.14             | 30474.09    | 2346.745    | _ <del> </del> |
|                                       | 90L         | 68068.20             | 30490.63    | 2347.135    |                |
|                                       | 90R         | 68062.50             | 30435.99    | 2346.675    |                |
| KEC                                   | 91L         | 68076.65             | 30490.02    | 2345.571    |                |
|                                       | 91R         | 68079.66             | 30473.72    | 2343.575    |                |
|                                       | 921.        | 68152.33             | 30487.13    | 2346.604    |                |
|                                       | 92R         | 68147.43             | 30468.93    | 2346.397    |                |
|                                       | 92-1L       | 68215.56             | 30466.86    | 2348.466    |                |
|                                       | 92-1R       | 68205.22             | 30434.49    | 2348.393    |                |
|                                       | 93L         | 68246.39             | 30440.08    | 2348.191    |                |
|                                       | 93R         | 68226.86             | 30408.69    | 2348.373    |                |
| •                                     | 94L         | 68337.67             | 30388.21    | 2347.984    |                |
|                                       | 94R         | 68347.23             | 30367.81    | 2349.260    |                |
|                                       | 95L         | 68436.76             | 30463.10    | 2352,728    |                |
|                                       | 95R         | 68454.42             | 30439.07    | 2352.312    |                |
|                                       | 96L         | 68485.60             | 30511.66    | 2353.707    |                |
|                                       | 96R         | 68498.72             | 30509.37    | 2354.624    |                |
|                                       | 97L         | 68595.66             | 30571.03    | 2355.643    |                |
|                                       | 97R         | 68608.69             | 30546.51    | 2357.420    |                |
|                                       | 1           | · i                  | 30676.01    | 2360.663    |                |
| ·                                     | 981.<br>98R | 68622.19<br>68629.75 | 30648.31    | 2360.003    |                |
|                                       | ı YXK       | i bxb79.75           | 1 111048 11 | 3 Z.1DU.U/4 | 1              |





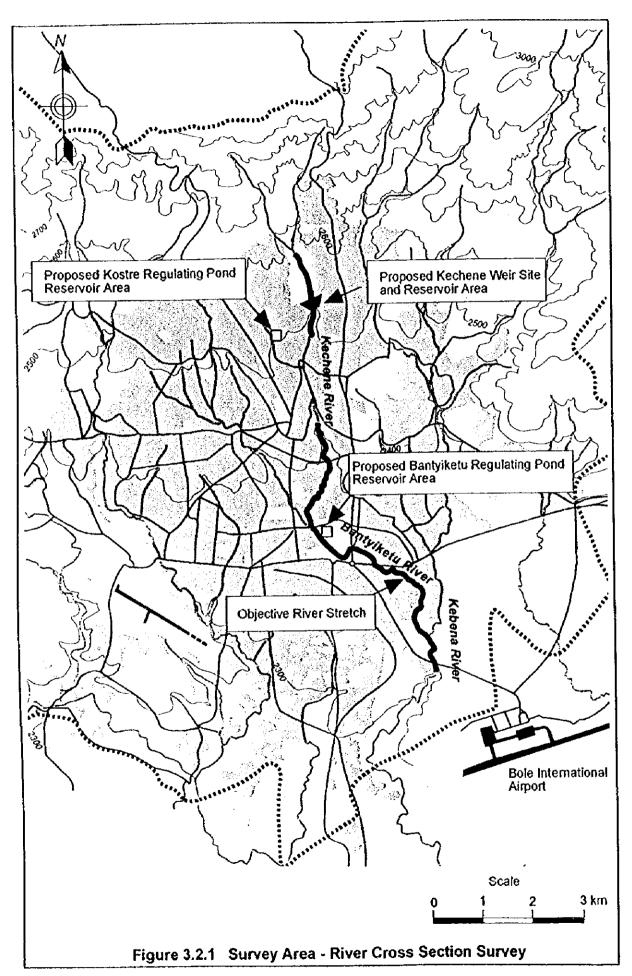
Table 3.2.3 Data List of Cross Section Posts (5/6)

| ·····                                  | 99R           | 68722.36 | 30712.79 | 2363,809 |
|----------------------------------------|---------------|----------|----------|----------|
|                                        | 100L          | 68821.56 | 30736.14 | 2367,835 |
|                                        | 100R          | 68837.43 | 30731.42 | 2367.106 |
|                                        | 101L          | 68958.00 | 30809.14 | 2372.118 |
|                                        | 101R          | 68972.58 | 30794.30 | 2372,081 |
|                                        | 102L          | 69077.65 | 30866.08 | 2381.512 |
| ·                                      | 102R          | 69090.35 | 30842.98 | 2381.440 |
| ···                                    | 103L          | 69151.35 | 30890.22 | 2378,179 |
| ···                                    | 103R          | 69160.84 | 30864.29 | 2378.646 |
| KEC                                    | 104L          | 69312.12 | 30856.93 | 2388,666 |
|                                        | 104R (BM7)    | 69310.06 | 30838.66 | 2389.085 |
|                                        | 105L          | 69397.54 | 30823.87 | 2384.556 |
|                                        | 105E          | 69387.68 | 30810.92 | 2384.874 |
|                                        |               |          |          | l        |
|                                        | 106L          | 69427.91 | 30759.91 | 2385.073 |
|                                        | 106R          | 69444.68 | 30722.20 | 2405.198 |
|                                        | 107L          | 69526.04 | 30826.01 | 2391.447 |
|                                        | 107R          | 69557.56 | 30790.80 | 2393.226 |
|                                        | 108L          | 69636.14 | 30829.78 | 2395.681 |
|                                        | 108R          | 69622.03 | 30805.81 | 2392.666 |
|                                        | 1 <b>0</b> 9L | 69718.27 | 30777.18 | 2399.863 |
|                                        | 109R          | 69689.42 | 30749.38 | 2395.923 |
|                                        | 1101.         | 69794.75 | 30733.55 | 2403.747 |
|                                        | 110R          | 69812.92 | 30680.65 | 2404.240 |
| İ,                                     | IIIL          | 69861.57 | 30677.56 | 2406.504 |
|                                        | IIIR          | 69832.12 | 30675.57 | 2402.370 |
| <u>i</u>                               | 112L          | 69914.77 | 30650.70 | 2408.308 |
|                                        | 112R          | 69907.98 | 30606.05 | 2412.833 |
|                                        | 113L          | 69989.89 | 30619.56 | 2412.660 |
|                                        | 113R          | 70017.43 | 30592.26 | 2413.655 |
| KECW                                   | 00L (TP62)    | 72114.37 | 30653.79 | 2488.979 |
| · KEC II                               | 00R (11 02)   | 72148.04 | 30644.41 | 2487.967 |
| ·                                      | OIL           | 72177.51 | 30681.41 | L        |
|                                        |               | · · · ·  | 1        | 2488.304 |
|                                        | 01R           | 72175.20 | 30647.40 | 2487.494 |
|                                        | 02L           | 72236.27 | 30666.30 | 2488.425 |
|                                        | 02R           | 72217.50 | 30627.09 | 2488.431 |
|                                        | 03L (TP63)    | 72263.91 | 30657.03 | 2492.918 |
|                                        | 03R           | 72261.62 | 30616.25 | 2496.715 |
|                                        | 041.          | 72336.29 | 30655.55 | 2499.838 |
|                                        | 04R           | 72310.00 | 30613.01 | 2499.424 |
|                                        | 05L (TP64)    | 72365.14 | 30645.00 | 2504.672 |
|                                        | 05R           | 72351.66 | 30601.12 | 2501.158 |
| Ì                                      | 06L           | 72394.61 | 30622.30 | 2502.200 |
|                                        | 06R           | 72383.36 | 30594.79 | 2499.334 |
|                                        | 07L           | 72437.12 | 30602.91 | 2504.862 |
| ···· - · - · · · · · · · · · · · · · · | 07R (TP65)    | 72416.28 | 30555.56 | 2505.975 |
|                                        | 0811          | 72508.88 | 30594.73 | 2507.964 |
|                                        | 08L-2         | 72516.92 | 30655.28 | 2514.273 |
|                                        | 08R           | 72500.34 | 30530.57 | 2513.767 |
|                                        |               |          |          |          |
|                                        | 09L           | 72535.76 | 30627.20 | 2513.209 |

Table 3.2.3 Data List of Cross Section Posts (6/6)

| <u> </u> | 10L        | 72623.39          | 30604.24 | 2513.331 |   |
|----------|------------|-------------------|----------|----------|---|
|          | 10R (TP66) | 72559.85          | 30534.25 | 2513.151 |   |
| ,        | 11L        | 72631.11          | 30564.49 | 2511.667 |   |
|          | 11R        | 72642.39          | 30485.23 | 2515.511 |   |
|          | 12L        | 72685.39          | 30555.14 | 2509.253 |   |
|          | 12R        | 72683.35          | 30496,19 | 2518.608 |   |
|          | 13L        | 72756.81          | 30557.37 | 2516.215 |   |
|          | 13R        | 72764.66          | 30497.85 | 2521.967 |   |
|          | 14L        | 72828.83          | 30533.86 | 2518.580 |   |
| ·····    | 14R (TP67) | 72791.25          | 30496.84 | 2524.541 |   |
| KECW     | 15L        | 72846.09          | 30532.62 | 2522.630 |   |
|          | 15R        | 72829.23          | 30459.44 | 2527.090 |   |
|          | 16L        | 72882.61          | 30501.55 | 2526.532 |   |
|          | 16R        | 72882.61          | 30450.68 | 2526.272 |   |
|          | 17L        | 72971.27          | 30474.83 | 2529.982 | A |
|          | 17R        | 72952.47          | 30430.85 | 2534.237 |   |
|          | 18L        | 73028.06          | 30436.71 | 2531.991 |   |
|          | 18R        | 72992.37          | 30411.44 | 2534.820 |   |
|          | 19L        | 73122.91          | 30424.09 | 2535.942 |   |
|          | 19R        | 73102.36          | 30387.07 | 2537.695 |   |
|          | 20L        | 73180.03          | 30400.74 | 2537.457 |   |
|          | 20R        | 73124.41          | 30354.94 | 2540.776 |   |
| KECR     | 01L        | 71820.74          | 29799.18 | 2507.450 |   |
|          | 01R        | 71800.28          | 29782.15 | 2507.048 |   |
|          | 021.       | 71772.31          | 29780.49 | 2503,614 |   |
|          | 02R        | 71777.64          | 29765.52 | 2507.117 |   |
|          | 03L        | 71754.94          | 29817.98 | 2503.571 |   |
|          | 03R        | 71738.21          | 29803.85 | 2501.378 |   |
|          | 04L        | 71691.23          | 29824.98 | 2502.340 |   |
|          | 04R        | 71714.45          | 29785.93 | 2500.623 |   |
|          | 05L        | 71688.67          | 29809.91 | 2500.263 |   |
|          | 05R        | 71668.08          | 29810.07 | 2499.436 |   |
|          |            | ry mastured using |          |          |   |

Note: \* Elevation is indirectry measured using Total Station.


<sup>\*\*</sup> Elevation is measured using Total-Station from Post 73L.

<sup>\*\*\*</sup> Because the area is under construction, this post is not established.

Table 3.2.4 Data List of Road Cross Section Posts

| POST NO.      | ELEVATION (m) | REMARKS     | POST NO.     | ELEVATION (m) | REMARKS |
|---------------|---------------|-------------|--------------|---------------|---------|
| A 01          | 2341.765      |             | D 01         | 2341.825      |         |
| A 02          | 2341.564      |             | D 02         | 2341.956      |         |
| A 03          | 2338.792      |             | D 03         | 2343.496      |         |
| A 04          | 2340.273      |             | D 04         | 2346.270      |         |
| A 05          | 2339.159      | <del></del> |              |               |         |
| A 06          | 2338.201      |             | E 01         | 2349.133      |         |
| A 07          | 2337.293      |             | E 02         | 2346.752      |         |
| A 08          | 2337.944      |             | E 03         | 2346.229      |         |
| A 09          | 2338.531      |             | E 04         | 2346.368      |         |
| A 10          | 2339.036      |             | E 05         | 2346.395      |         |
| A 11          | 2339.405      |             | E 06         | 2345.447      |         |
| A 12          | 2339,604      |             | E 07         | 2343,525      |         |
| A 13          | 2340.792      |             | E 08         | 2343.267      |         |
| A 14          | 2343.550      |             | E 09         | 2344.196      |         |
| A 15          | 2349,073      |             |              |               |         |
| A 16          | 2349.267      | <u> </u>    | F 01         | 2348.239      |         |
|               |               |             | F 02         | 2348.470      |         |
| B 01 & B 01-1 | 2339.619      |             | F 03         | 2349.027      |         |
| B 02 & B 02-1 | 2340.244      |             |              |               |         |
| B 03          | 2340.304      |             | G 01 (BM 12) | 2360.372      | *       |
| B 03-1 & B 04 | 2341.063      |             |              |               |         |
| B 05          | 2342.524      |             |              |               |         |
| B 06          | 2343.854      |             |              |               |         |
| В 07          | 2345.286      |             |              |               |         |
| B 08          | 2348.627      |             |              |               |         |
| B 09          | 2351.185      |             |              |               | İ       |
| C 01          | 2351.230      |             |              |               |         |
| C 02          | 2349.133      |             | -            |               |         |
| C 03          | 2347.791      |             |              |               |         |
| C 04          | 2346.265      | ļ           |              |               |         |
| C 05          | 2348.992      |             |              |               | -       |
|               | <u> </u>      |             |              | . I           | .l      |

Note: This post (G 01) is the same point with BM 12.



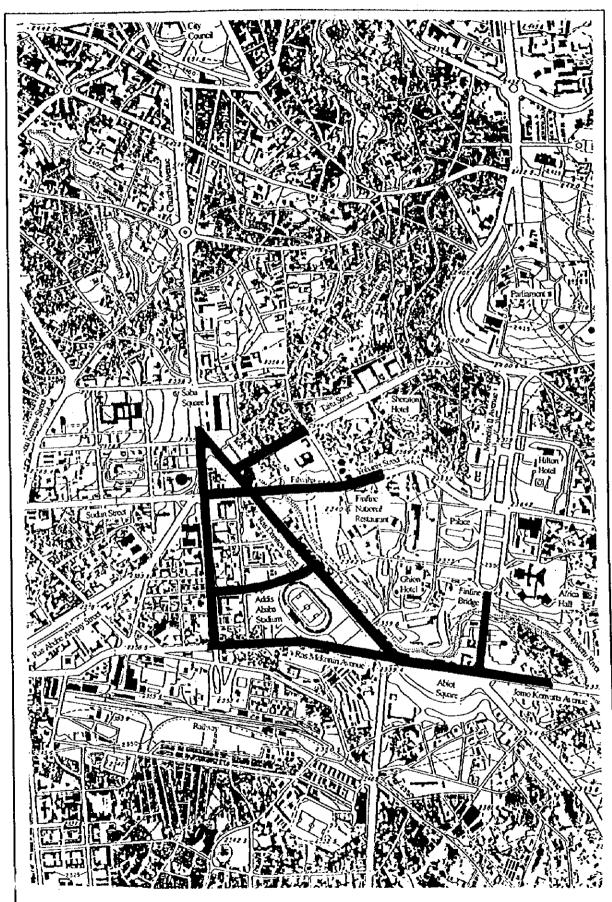



Figure 3.2.2 Survey Area - Road Cross Section Survey

# THE STUDY ON ADDIS ABABA FLOOD CONTROL PROJECT

**CHAPTER 4** 

FLOOD CONTROL PLAN

## THE STUDY

ON

## ADDIS ABABA FLOOD CONTROL PROJECT

IN

## THE FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA

#### CHAPTER 4 FLOOD CONTROL PLAN

#### Contents

| 4.  | FL | OOD CONTROL PLAN                                   | 4-1 |
|-----|----|----------------------------------------------------|-----|
| 4.1 | Ge | neral                                              | 4-1 |
| 4.2 | Ba | sic Conditions and Methodology                     | 4-1 |
|     |    | Basic Conditions of Planning                       |     |
|     |    | Methodology                                        |     |
|     |    | udy on Flood Control Plan                          |     |
|     |    | Channel Improvement                                |     |
|     |    | Bantyiketu and Kostre Regulating Ponds             |     |
|     |    | Kechene Weir                                       |     |
|     |    | oposed Flood Control Plan of the Priority Projects |     |
|     |    | Structural Measures                                |     |
|     |    | Non-Structural Measures                            |     |

## List of Tables

| 4.3.1 | Design Values of Longitudinal Profiles of Objective Rivers                          | 4-21   |
|-------|-------------------------------------------------------------------------------------|--------|
| 4.3.2 | Proposed Cross Section of Bantyiketu River                                          | 4-23   |
| 4.3.3 | Work Item and Quantity of Priority Project (River Channel Improvement)              |        |
| 4.3.4 | Proposed Cross Section of Lower Kebena River                                        | 4-29   |
| 4.3.5 | Proposed Cross Section of Lower Kechene River                                       | 4-30   |
|       | List of Figures                                                                     |        |
| 4.2.1 | Objective Rivers and Stretches of Priority Projects                                 | 4-31   |
| 4.2.2 |                                                                                     |        |
| 4.2.2 | (2/3) Design Discharge Distribution for Kechene River (Return Period 20-year)       | 4-33   |
| 4.2.2 | (3/3) Design Discharge Distribution for Kebena River System (Return Period 30-year) | 4-34   |
| 4.3.1 | Longitudinal Profile of the Bantyiketu River                                        | 4-35   |
| 4.3.2 | Section of Bantyiketu River                                                         | 4-36   |
| 4.3.4 | Longitudinal Profile of the Lower Kebena River                                      | 4-66   |
| 4.3.5 | Section of Lower Kebena River                                                       |        |
| 4.3.6 | Longitudinal Profile of the Lower Kechene                                           | 4-71   |
| 4.3.7 | Section of Lower Kechene River                                                      |        |
| 4.3.8 |                                                                                     |        |
| 4.3.9 | Elevation, Reservoir Storage and Surface Area of Kechene Weir                       | 4-75   |
| 4.3.1 | 0 Flood Control Plan by Kechene Weir                                                | 4-76   |
| 4.4.1 | •                                                                                   |        |
| 4.4.2 | ,                                                                                   |        |
| 4.4.3 | Outline of the Flood Warning System                                                 | - 4-79 |
| 4.4.4 | Community Organization and Communication Chart for Flood Fighting                   | - 4-80 |

#### 4. FLOOD CONTROL PLAN

#### 4.1 General

The following are components for the flood control works of the selected priority projects for the feasibility study.

#### 1) Structural Measures

#### Bantyiketu river

- River channel improvement (widening of river bank, bank protection, construction of floodwall, repair of intake gate), and
- Construction of the Bantyiketu regulating pond.

#### Kechene river

- Construction of the Kostre regulating pond in the Kostre river, and
- Construction of the Kechene weir in the upper Kechene.

#### 2) Non-Structural Measures

- Authorization of river zone and 2) regulation of illegal activities in the viewpoint of rivers management, and
- Flood warning system, 4) flood fighting system and 5) social education in the viewpoint of flood risk management.

Planning on the above components and the proposed flood control plan of the priority projects are explained in the following.

# 4.2 Basic Conditions and Methodology

#### 4.2.1 Basic Conditions

#### (1) Objective Rivers and Stretches

Objective rivers of the priority projects are basically the Bantyiketu and the upper Kechene. Respective parts of the lower Kebena and the lower Kechene rivers are incorporated in the planning from the viewpoint of transitions to the Bantyiketu.

Accordingly, the following are objective rivers and stretches to be considered in the planning, as shown in Figure 4.2.1.

- Lower Kebena river: just upstream of the Bole road bridge
- Bantyiketu river: the confluence with the Kebena river Filwiha bridge
- Lower Kechene river: just upstream of 2nd bridge
- Upper Kechene including Kostre river: respective proposed sites of weir and pond

#### (2) Design Discharge Distribution

Design discharges of the priority projects have been estimated in the Phase1 study with 30-year probable flood for the Bantyiketu (and Kebena rivers,) and 20-year probable flood for Keehene river. Figure 4.2.2 shows the design discharges distribution of the flood control works in the priority projects.

#### (3) Treatment of Urgent Works in the Lower Kechene River

AFCPO has an urgent plan to construct floodwall on both the river banks between the 1st bridge and the 2nd bridge, and repair of broken abutment of the 2nd bridge in the lower Kechene river. The construction works have been scheduled to carry out by contracting system in 1998. The total length of floodwall amounts to 300 m on the left and 340 m on the right, respectively, as explained in chapter 2.

These works are therefore excluded from the components of the priority projects.

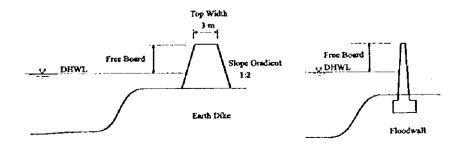
#### 4.2.2 Methodology

#### (1) Topographic Maps and Channel Cross Sections of Rivers to be Used

#### 1) Topographic Maps

Topographic maps of a scale of 1/2,000 with one-meter interval contour developed by Ethiopian Mapping Authority (EMA) in 1995 are available to the planning. The maps were produced for the Addis Ababa Water Supply Project, Stage III A, using air photographs taken in the period from 1993 to 1994.

#### 2) Channel Cross Sections


Cross sections of river channel surveyed are used. The selected contractor surveyed river channel cross sections under the supervision of the Study Team.

### (2) Design Criteria of Flood Control Works

## 1) River Channel Improvement

The existing river is partly channeled so as to convey the design flood safely by means of widening of the existing river channel, construction of earth dike and floodwall, protection of bank slopes, and reconstruction or modification of the related structures. The following are major design criteria to be applied.

- a) Design high water level of the channel is set at an average river bank elevations from the viewpoint of smooth storm water drainage from riparian areas.
- b) Longitudinal channel profiles are prepared based on the survey results of the river cross sections.
- c) Required flow area for the design discharge is estimated by Manning formula. Single section or composite section is employed depending on site conditions.
- d) The following are freeboards above the design high water level for floodwall and dike, and dimensions of dike.
  - Earth dike: 0.6 m for discharges less than 200 m³/sec 0.8 m for discharges equal to 200 and less than 500 m³/sec
  - Floodwall: 0.6 m for discharges less than 200 m³/sec



e) Water supply pipes and sewerage pipes are running along the river courses. In widening the existing channel, replacement of these pipes is considered to avoid as much as possible and to minimize.

#### 2) Regulating Pond

In order to reduce flood peaks to the downstream reaches, a regulating pond is taken in the flood control plan. The pond consists of side overflow dike, reservoir and drainage pipe with flap gate. An image of the pond and the formula to be applied to hydraulic calculation of side overflow dike are shown in Figure 4.2.3.

An elevation of side overflow dike is set around river water level equivalent to that of a flood discharge which occurs once in a year. The reservoir scale is designed for the volume to be cut in the design discharge hydrograph. After finishing the flood, the stored water in the reservoir is to be drained through a flap gate that no operation is required. The drain time of stored water is around a half-day.

Heavy rain time only occupies the pond with water. Therefore, the pond area can be utilized throughout the year as football ground or other inhabitant's purposes.

As described in section 2.1 of chapter 2, the Bantyiketu regulating pond area is to be prepared by Region 14 Administration for a multi-functioned public park as one of the model parks to be developed in Addis Ababa city.

#### 3) Kechene Weir

A weir with orifice is taken into the flood control plan to decrease a flood peak to the downstream reaches. The site of the weir is proposed at valley area in the upper Kechene river.

The weir consists of weir body with orifice that drains base flow in the channel and reservoir to store the excess flood. No operation of the weir is required. Figure 4.2.4 shows an image of the weir and the formula to be applied for hydraulic calculation of the weir.

6

# 4,3 Study on Flood Control Plan

#### 4.3.1 Channel Improvement

## (1) Bantyiketu River

## 1) Longitudinal Profile and Cross-Sections of the Channel

Figure 4.3.1 shows the proposed longitudinal profile of the channel and Figure 4.3.2, the standard cross sections and cross sections at major points of the existing channel, respectively. Table 4.31 presents proposed dimensions of the longitudinal profile.

The river channel of the Bantyiketu is divided into 5 reaches, as shown in Table 4.3.2. Depending on the site conditions of the present river channel, single or composite section is applied

#### 2) Alignment of River Channel

In line with present river courses, river channel alignment is drawn up in Figure 4.3.3.

#### 3) River Structures and Related Structures

The proposed river structures and related structures are as follows.

- Floodwall,
- Slope protection,
- Improvement of intake weir
- Improvement of aqueduct
- Protection of water supply pipes (2 places around 7th bridge)

The details of the proposed structures are explained in chapter 6 and outline of the works is shown in Table 4.3.3.

#### (2) Lower Kebena and Lower Kechene

#### 1) Lower Kebena River

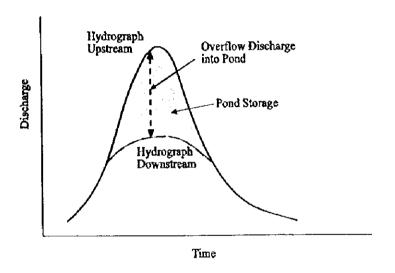
The bank slopes of the lower Kebena just upstream of Bole bridge are prone to bank erosion. Slope protection works are taken up in the said reach.

Figures 4.3.4 and 4.3.5 show a tentative longitudinal profile and cross sections of the lower Kebena. Tables 4.3.1 and 4.3.4 show dimensions of longitudinal profile and standard cross section in the lower Kebena.

The existing channel has sufficient capacity for a design discharge. Based on this plan, both the present bank slopes are guarded by slope protection works. The alignment and work quantity of the protection works is shown in Figure 4.3.3 and Table 4.3.3, respectively. The details of the protection works are described in chapter 6.

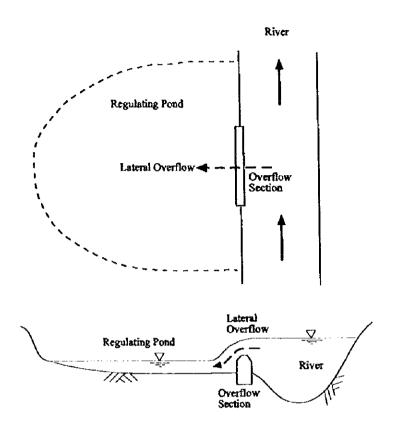
#### 2) Lower Kechene River

Just upstream of 2<sup>nd</sup> bridge in the lower Keehene river, both the river banks have been croded and riparian areas are subject to inundation and washing away. Accordingly, this reach is protected by construction of floodwall.


Figures 4.3.6 and 4.3.7 show a tentative longitudinal profile and cross section of the lower Kechene river. Tables 4.3.1 and 4.3.5 show dimensions of longitudinal profile and standard cross section in the lower Kechene.

As seen in the said figure, the existing Kechene river has sufficient flow capacity for a design discharge. Therefore, the existing bank slopes are protected by construction of floodwall. The alignment and work quantity of the floodwall are shown in Figure 4.3.3 and Table 4.3.3, respectively. The details of the floodwall are described in chapter 6.

## 4.3.2 Bantyiketu and Kostre Regulating Ponds


#### (1) Outline

The Bantyiketu regulating pond is proposed near the confluence of the Kechene and the Kurtume rivers on the downstream left bank of the Bantyiketu river where the open area is mostly covered with grassland. The proposed site of the Kostre regulating pond is a soccer field on the left bank of the Kostre river, a tributary joining with the Kechene river at 2 km downstream from the proposed site. Both sites are to be utilized as temporary storage to reduce flood peak discharge in the manner of 'peak cut'. A concept of discharge regulation by pond is illustrated below.



#### (2) Analysis on Regulating Pond

The analysis is carried out to determine a required storage capacity of pond and dimensions (width and height) of lateral overflow section. Flood discharge is introduced into pond in the manner of lateral overflow as illustrated below.



Along lateral overflow section, water level - discharge (H-Q) relationships of river channel are known from the survey data of river cross sections. Whereas, H-Q relationship of lateral overflow section is obtained on the basis of the following equations.

$$q = K \times H^{3/2}$$

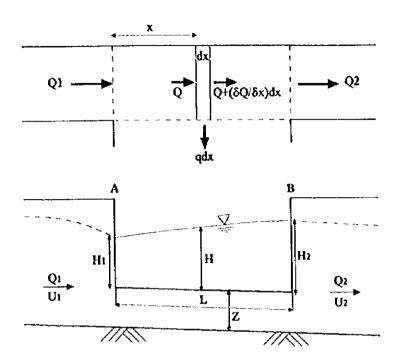
$$\delta Q/\delta x = -q$$

$$Q_2 = Q_1 - \int_0^L q dx$$

where,

q: lateral overflow for unit width (m²/sec)

K : discharge coefficient of lateral overflow


H: water depth from crest of lateral overflow section (m)

Q<sub>1</sub>: river discharge at upstream end of lateral overflow section (m³/sec)

Q<sub>2</sub>: river discharge at downstream end of lateral overflow section (m<sup>3</sup>/sec)

x : distance from upstream end of lateral overflow section (m)

Q : river discharge at distance 'x' (m³/sec)
 L : width of lateral overflow section (m)



When channel water depth at each end of lateral overflow section is given as 'H<sub>1</sub>+Z' at upstream end (Section-A) and 'H<sub>2</sub>+Z' at downstream end (Section-B), overflow water depth at distance 'x' can be obtained assuming that overflow water depth in between is known by linear interpolation.

$$H = H_1 + (H_2 - H_1) / L \times x$$

$$Q_2 = Q_1 - \int_0^L K \times \{ H_1 + (H_2 - H_1) / L \times x \}^{3/2} dx$$

$$= Q_1 - 2/5 \times L \times (H_2^{5/2} - H_1^{5/2}) / (H_2 - H_1)$$

Providing that Bernoulli Theorem (energy conservation law) is applicable between Section A and B, the following equation can be obtained.

$$H_1 + U_1^2/2g = H_2 + U_2^2/2g$$
  
 $H_1 = H_2 - (U_1^2 - U_2^2)/2g$   
where,

U<sub>1</sub>: flow velocity at upstream end (m/sec)

U<sub>2</sub>: flow velocity at downstream end (m/sec)

g : acceleration of gravity (=9.8 m/sec<sup>2</sup>)

When  $Q_1$  and  $Q_2$  are given, length of lateral overflow section 'L' is calculated by means of trial and error for  $U_1$  and  $H_1$  solving the equations above simultaneously.

Applying the above-mentioned method, hydraulic calculation is carried out. Design discharge for each regulating pond is given below.

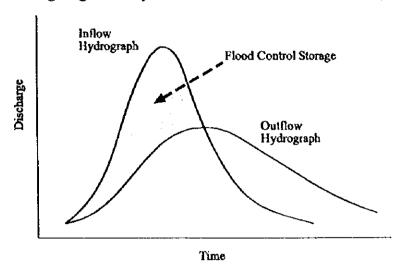
| Regulating<br>Pond | Return<br>Period | Peak Discharge<br>(m       | Lateral Overflow (m³/sec)    |               |
|--------------------|------------------|----------------------------|------------------------------|---------------|
|                    |                  | Upstream (Q <sub>i</sub> ) | Downstream (Q <sub>2</sub> ) | $(Q_1 - Q_2)$ |
| Bantyiketu         | 30-Year          | 175                        | 145                          | 30            |
| Kostre             | 20-Year          | 28                         | 14                           | 14            |

Discharge hydrographs for the respective regulating ponds are shown in Figure 4.3.8. As the results of the hydraulic analysis described above, the basic design features of regulating pond are obtained as follows.

Bantyiketu Regulating Pond

| 1) Design Discharge<br>(Peak Discharge) | Probable 30-Year Flood - Upstream River Channel - Downstream River Channel - Lateral Overflow | : 175 m³/sec<br>: 145 m³/sec<br>: 30 m³/sec |
|-----------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------|
| 2) Lateral Overflow Section             | Length: 50 m<br>Height: 3.3 m                                                                 |                                             |
| 3) Required Storage                     | 73,000 m <sup>3</sup>                                                                         |                                             |

#### Kostre Regulating Pond


| 1) Design Discharge Probable 20-Year Flood |                                                                                                     |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| - Upstream River Channel                   | : 28 m³/sec                                                                                         |  |  |  |
| - Downstream River Channel                 | : 14 m³/sec                                                                                         |  |  |  |
| - Lateral Overflow                         | : 14 m³/sec                                                                                         |  |  |  |
| Length : 30 m                              |                                                                                                     |  |  |  |
| Height : 4.5 m                             |                                                                                                     |  |  |  |
| 26,000 m <sup>3</sup>                      |                                                                                                     |  |  |  |
|                                            | - Upstream River Channel - Downstream River Channel - Lateral Overflow Length : 30 m Height : 4.5 m |  |  |  |

#### 4.3.3 Kechene Weir

#### (1) Outline

The Kechene Weir is proposed in the upper basin of the Kechene river at 5 km upstream from the confluence of the Bantyiketu river. It consists of weir and orifice type outlets

to reduce flood peak discharge by means of a reservoir in the upstream of weir. A concept of discharge regulation by reservoir is illustrated below.



## (2) Reservoir Water Level, Surface Area and Storage

A relationship between reservoir water level and storage is obtained from the topographic maps with a scale of 1/2,000 as shown in Figure 4.3.8 and summarized below. The lowest riverbed elevation is EL. 2,494 m. The highest reservoir water level should be less than EL. 2,512 m in order to minimize resettlement of houses covered by reservoir surface area.

| Water Level (EL. m)       | 2,495 | 2,500  | 2,505  | 2510    | 2,515   |
|---------------------------|-------|--------|--------|---------|---------|
| Surface Area (m²)         | 115   | 4,096  | 9,331  | 17,013  | 31,127  |
| Storage (m <sup>3</sup> ) | 60    | 10,600 | 44,200 | 110,100 | 230,500 |

#### (3) Analysis on Flood Control Storage

The analysis is carried out to determine a flood control storage by weir in compliance with inflow – outflow calculation. The basic equation for this analysis is given below.

 $\Delta Si = Ii - Oi$ 

where,

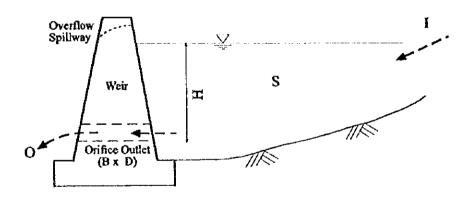
 $\Delta Si$ : difference of reservoir storage within time step (i)

Ii : reservoir inflow within time step (i)Oi : reservoir outflow within time step (i)

In the equation above, reservoir inflow is known as the flood hydrograph of the Kechene river at the proposed weir site. Reservoir outflow is calculated by the following equations used for orifice flow.

$$O = 1.8 \times B \times H^{3/2}$$
 (H < 1.2D)  
 $O = C \times B \times D \times \{ 2 \times g \times (H - D/2) \}^{1/2}$  (H > 1.8D)  
 $O = O_{H=1.2D} \sim O_{H=1.8D}$  (interpolation) (1.2D < H < 1.8D)

#### where,


O : outflow (m<sup>3</sup>/sec)

B: width of orifice outlet (m)
D: height of orifice outlet (m)

H: water depth (m)

C: discharge coefficient (=0.85)

g : acceleration of gravity (=9.8 m/sec<sup>2</sup>)



Reservoir storage at each time step is calculated by the equations above and reservoir water level is obtained from reservoir storage on the basis of the relationship between water level and storage.

Elevation of invert level of orifice outlet is set at EL. 2,500 m in consideration of topographic feature of riverbed.

The flood control storage of reservoir is examined by inflow – outflow calculation. The design flood hydrographs of probable 20-year and 30-year flood are applied as reservoir inflow. The results of calculation are illustrated in Figure 4.3.9 and summarized below.

Low Water Level of Reservoir : EL. 2,499 m

Orifice Outlet : 1.2 m×1.2 m, Invert Level EL. 2,499 m

| Design Flood           | Peak Discharge<br>Inflow<br>(m³/sec) | Peak Discharge<br>Outflow<br>(m³/sec) | Design Flood<br>Water Level<br>(EL. m) | Reservoir<br>Storage<br>(m³) |
|------------------------|--------------------------------------|---------------------------------------|----------------------------------------|------------------------------|
| Probable 20-year Flood | 85                                   | 49                                    | 2,508.3                                | 83,000                       |
| Probable 30-year Flood | 91                                   | 50                                    | 2,509.0                                | 96,000                       |

## (4) Discharge Capacity of Spillway

For construction of weir, it is necessary to provide an overflow spillway discharging excessive flood from reservoir. Discharge capacity of overflow spillway was therefore examined using the following equation.

 $Q = C \times B \times H^{3/2}$ 

where,

Q : overflow discharge (m³/sec)

B: width of overflow spillway (m)

H: water depth from crest of overflow spillway (m)

C: discharge coefficient (=1.8)

The probable 200-year flood was applied as design capacity of overflow spillway. The results of calculation are summarized below.

Crest of Overflow Spillway : EL. 2,509.5 m

Width of Overflow Spillway : 20 m

)

| Design Flood            | Peak Discharge<br>(m³/sec) | Water Depth of<br>Overflow<br>Discharge | Highest Water<br>Level<br>(EL. m) |
|-------------------------|----------------------------|-----------------------------------------|-----------------------------------|
| Probable 200-year Flood | 120                        | 2.5                                     | 2,511.5                           |

# 4.4 Proposed Flood Control Plan of the Priority Projects

The proposed flood control plan of the priority projects consists of both the measures of the structural and non-structural. The proposed plan is summarized below.

#### 4.4.1 Structural Measures

The following are major components of the flood control works of the priority projects. Locations of the proposed works are shown in Figure 4.4.1. The detail dimensions of major facilities are described in chapter 6.

#### 1) River Channel Improvement

- Bantyiketu river channel improvement

Channel excavation: 20,500 m<sup>3</sup>

Embankment: 400 m<sup>3</sup> Floodwall: 3.010 m<sup>2</sup>

Slope protection: 5,010 m<sup>2</sup> Repair of intake weir: 1 set

Improvement of aqueduct: 1 set Protection of sewrage pipe: 2 sets

 Bank slope protection in the lower Kebena Slope protection: 4,830 m²

 Construction of floodwall in the lower Kechene Floodwall: 540 m<sup>2</sup>

## 2) Bantyiketu Regulating Pond

- Reservoir area: 29,900 m<sup>2</sup>

Reservoir volume: 73,000 m³
 Lateral overflow dike: 50 m

## 3) Kostre Regulating Pond

- Reservoir area: 6,500 m<sup>2</sup>

Reservoir volume: 26,000 m³
 Lateral overflow dike: 30 m

#### 4) Kechene Weir

- Reservoir volume: 88,000 m<sup>3</sup>

- Weir (by concrete) height: 16-19.5 m

- Crest length: 120 m

#### 4.4.2 Non-Structural Measures

The non-structural measures proposed in the priority projects are explained below.

They are 1) authorization of river zone and 2) regulation of illegal activities in the viewpoint of river management, and 3) flood warning system, 4) flood fighting system and 5) social education in the viewpoint of flood risk management.

These measures need to be supported by appropriate institutional systems in accordance with the regulations and institutions of Region 14 Administration, and by wide participation of inhabitants in the flood control and prevention activities. Regarding institutional support, an explanation is made in chapter 8.

The details of the proposed non-structural measures are described below.

#### (1) River Zone

3

The river zone is established to administrate and manage the rivers and river structures in proper conditions. Objective rivers and stretches for the river zone are proposed below.

#### 1) Objective rivers and stretches

- Bantyiketu river system: from confluence with Kebena river to head water
- Kebena river system: from Aba Samuel lake to head water
- West Akaki river system: from Aba Samuel lake to head water
- Little Akaki river system: from confluence with West Akaki to head water
- Hanku river system: from confluence with Kebena river to head water

#### 2) Cross-sectional boundary of river zone

The following are cross-sectional boundary of the river zone and shown in Figure 4.4.2.

In case without flood protection wall

- 5 m from present or proposed river bank line

In case with flood protection wall

- 5 m from flood protection wall

For the above purpose, an institutional support with bylaw is required for an overall river management system. The concerned law-section in the Region 14 Administration and Addis Ababa River Management Authority (AARMA, as Executing Body of the Project) which are directed by Addis Ababa River Board (AARB), take charge of these institutional matters in accordance with the regulations of Region 14 Administration. The details of AARMA and AARB are explained in Chapter 8. River Management and O/M Division of AARMA is in charge of matter. The following are the required institutional support items:

- Designation of the highest responsible administrator (President) in the river management for rivers and river structures,
- Rivers, river stretches and river widths to be designated,
- Regulation of land use in the riparian areas,
- Permission system for utilization and construction of facilities in the river zone, and
- Regulation of and penalty for illegal activities such as illegal utilization of river zone, and garbage and soil disposals.

The regulation of garbage and soil disposals is principally progressed in combination with improvement of the present garbage collecting system.

The garbage collecting system by Health Bureau of Region 14 Administration needs to improve in stepwise. While campaigns for "Three R Movement" of 1) reducing, 2) reuse and 3) recycle of garbage need to enlighten people in relation with social education that is explained in the following item of (4). To solve garbage issues is, anyhow, to improve the present garbage collecting system and additionally to change of traditional spirits for garbage treatment. A longstanding feud will be required for this issue.

## (2) Flood Warning System

In order to mitigate the damage due to flooding as much as possible, a simple flood warning system is setup in AARMA. AARMA takes charge to issue warning under the direction of AARB. The warning system comes into force firstly in the concerned area of the priority projects, as a pilot one. Then, the system is one after another applied to other areas.

Warning is issued based on the rainfall amount observed at the 1 rainfall observatory station to be newly installed in the mountainous area of the Kechene river and information obtained from National Meteorological Services Agency. In addition, 3 staff gauges are installed in the Kechene and Bantyiketu rivers.

AARMA is to issue warning in accordance with the following manner, as shown in Figure 4.4.3.

- Observation of rainfall amount (entrust to local people),
- Transmission of rainfall data by transceiver to AARMA (Chief of Survey and
- Investigation Division),

- Analysis and warning by AARMA (Survey and Investigation Division),
- Transmission of analysis result to AARB,
- Judgement by AARB and warning by siren,
  - Warning is to be issued as follows:
  - 1st warning: in case rainfall amount exceeds 8 mm/10 minutes (occurs 2-3 times per year)
- Issuance of order for flood fighting by AARMA(Manager) to Zone/Wereda,
  - Warning is to be issued as follows:
  - 2nd warning for stand by for flood fighting: in case the accumulated rainfall amount exceeds 20 mm/20 minutes (100 m³/sec at Filwiha bridge: occurs once in about 2 years)
- Transmission of order by Wereda to leaders of concerned Kebele, and
- Transmission of order by Kebele leader to community leaders.

It should be noted that other 2 rainfall observatory stations in the Kebena and Little Akaki rivers are to be installed in the implementation period of the priority projects. On the other hand, other 7 staff gauges in the Kebena, Little Akaki and Hanku are to be installed in due time of their implementation periods.

To operating this system needs required institutional system in relation with flood fighting system that is to be operated by community organizations.

## (3) Flood Fighting System

In order to mitigate the flooding damage during flooding, a flood fighting system is established. The flood fighting system consists of flood prevention works mainly for prevention of the damage due to overtopping by using sandbags and evacuation of the concerned people for emergency case. In the same manner with the flood warning system, the flood fighting system is operated in the concerned areas of the priority projects.

Each community of the Kebeles principally operates the system under the direction of AARB and AARMA (mainly by Survey and Investigation Division), as shown in Figure 4.4.4. For this purpose, existing community organizations (flood fighting teams) are applied to this system. These communities actually operate the fighting system on the sites, in cooperation with other organizations such as NGO and Wereda Disaster Relief Cell. Participation of inhabitants is essential requisites for this system and self-defense by communities is a basic factor of this system.

A communication and information system among AARMA, Zone/Wereda, Kebele and each community is established. The following are the flowchart of communication and information in the system, as shown in Figure 4.4.4.

- Zone/Wereda receives order from AARMA (Manager),
- Transmission of order by Wereda to leader of the concerned Kebele,
- Order by Kebele to leaders of concerned communities,
- Flood fighting by each community (flood fighting team), and
- Evacuation of riverine people to specified area, if needed.

In order to carry out the system effectively, demonstrations (training) of the flood fighting system are annually needed from the viewpoint of not only maintenance and operation of the system but also social education for flooding.

In the riparian areas, 5 storage houses (for priority projects) are installed to keep necessary materials and equipment for activity use. The following are the required materials and equipment to be stored:

- Transceiver,
- Sand bags,
- Handy light
- Shovel,
- Helmet,
- Raincoat, and
- Others required.

It should be noted that 7 houses for other than priority projects are to be installed in due time of respective implementation periods.

From the above, the system and organization need authorization by the regulations and institutions of the Region 14 Administration. Major matters to be authorized are described in chapter 8.

## (4) Social Education

At present, many illegal activities have been observed in the river areas. They are garbage and soil disposal to river areas, and illegal (not permitted) utilization of river areas and construction of private facilities. AARMA (River Management and O/M Division) is newly to manage such illegal ones.

From the viewpoint that river area and river structures are the public facilities and they are considerably important ones for daily life of people, therefore, social education is required to enlighten people for river and flooding.

Kebele and each community are principally responsible for the social education that is directed by AARB and AARMA (mainly by Administration Division). The social

education is, at all times, programmed applying community organizations of the flood fighting system. The menus are as follows

- Seminar for community leaders,
- Seminar for people in each community,
- Campaign through TV and radio,
- Designation of River Day and annual River Festival (Love River),
- Annual demonstration of flood fighting activity, and
- Commendation system for outstanding community.

· ·

| L CONEC WAI                                                                                                                                 |         | 2300.00 2300.80 |        |        |        | 2305.20 2306.00 |         |        |             |        |                 |        | 14,00 2314,60 | 14.74  | 2315.43 | 16.50  | 4 6              | 700     | 19.0   | 18.78  | 18.50 2319.10 |        | 1917   | 19,47  | 20.01   | 20.36  | 20.70  | 2163   | 21.90  | 22.26  | 122.59 | 23.00   | 22.22  | 20.00  | 24.16      | 724.63 | 124.09 | 125.27 | 125.51 | 125.91 | 726.36 | 326.73 | 327.01    |        | 320.00 2329.00 |          | 2329.50   | 329.93     | 2330.42 | 331.35         | 2331.75 | 332.20         |             |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|--------|--------|--------|-----------------|---------|--------|-------------|--------|-----------------|--------|---------------|--------|---------|--------|------------------|---------|--------|--------|---------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|-----------|--------|----------------|----------|-----------|------------|---------|----------------|---------|----------------|-------------|
| Duverbed DHWL                                                                                                                               |         | 2295.00 230     |        |        |        | 2300.20 230     |         |        |             |        |                 |        |               |        |         |        |                  |         |        |        |               |        |        |        |         |        |        |        |        |        |        |         |        |        |            |        |        |        |        |        |        |        |           |        |                |          | 2326.59 2 |            |         |                |         |                |             |
| tal width                                                                                                                                   |         |                 | 58.0   | 35.0   |        |                 | ě       | 0.60   | 9           |        |                 |        |               | 30.0   |         |        |                  |         |        |        |               |        | 905    | 38.0   |         |        |        |        | 080    | *:01   |        |         |        |        |            | 900    | 5 6    | 300    | 27.0   | 38.0   |        |        |           |        |                | 0        | 3         |            | •       | 2. 0.<br>0. 0. | 9       |                |             |
| er width To                                                                                                                                 | 20.5    | 2 2             | 300    | 26.5   | 22.0   | 19.0            | 200     | 0.4    | 2 6         | 2 4    | 2 5             |        | •             | 180    | 15.0    | 20.0   | 15.0             | 15.0    | 22.0   | 2 :    | 0 6           | 3 6    | 2 .    | 0 94   | 20.0    | 21.0   | 30.0   | 25.0   | 0.5    | 3 6    | 19.5   | 18.0    | 7.0    | ;      | 20.0       | 031    | 0.0    | 9 6    | 9      | 130    | 17.0   | 21.0   | 170       | 26.0   | 0.4            | ç        | 26.0      | 28.0       | 35.0    | 20.0           | 200     | -0.0           |             |
| offit Riv                                                                                                                                   | 2298.2  | 7.509.4         |        |        |        |                 |         |        |             |        | 0.816.2         | 22143  | 74 (27        |        |         |        |                  |         |        |        |               |        |        |        |         |        |        |        |        |        |        |         |        |        |            |        |        |        |        |        |        |        |           |        | 2331.0         |          |           |            |         |                |         |                |             |
| A flood wal Be                                                                                                                              |         |                 |        |        |        |                 |         |        |             |        |                 |        |               |        |         |        |                  |         | 2318.0 |        |               |        |        | 2322.0 | À 49.77 |        | 2322.4 |        |        |        |        |         |        |        | 2328.8     | 2329.0 | 2326.8 |        |        | 2256   | 2328.6 |        |           |        |                |          |           |            |         |                |         |                |             |
| Regulate Rich                                                                                                                               |         |                 |        |        |        |                 |         |        |             |        |                 |        |               |        |         |        |                  |         |        | 2318,0 |               |        |        | 2323.0 | 2321.0  |        | 2322.4 |        |        | 2323.4 | 2323.0 | 2325.8  |        |        |            | 2330.0 |        |        |        |        |        |        |           |        |                |          |           |            |         |                |         |                |             |
| ent bank Left                                                                                                                               | 2298.2  | 2301.0          | 2303.2 | 2302.0 | 2305.0 | 2305.0          | 2310.0  | 2309.0 | 2310.0      | 2311.0 | 2316.0          | 2312.0 | 2315.0        | 2314.0 | 03150   | 2315.6 | 2316.2           | 2317.0  | 2317.0 | 2317.6 | 2318.0        | 2318.0 | 2320.0 | 2320.6 | 2318.7  | 2323.4 | 2321.2 | 2322.0 | 2323.0 | 23216  | 2322.5 | 2,525,5 | 2324.0 |        | 2328.5     |        | 2325.6 | 2326.0 | 2325.0 | 2327.4 | 2323.0 | 737    | 8 4 2 5 7 | 2335.0 | 2332.0         |          | 2332.0    | 2328.0     | 2330.0  | 2331.0         | 2330.0  | 2331.6         |             |
| of bank Ri                                                                                                                                  | 2298.0  | 2300.6          | 2302.6 | 2303.0 | 2305.0 | 2305.4          | 2310.0  | 2309.2 | 2310.0      | 2311.0 | 2316,0          | 2312.0 | 2314.8        | 23.68  | 2314.6  | 23162  | 2316.6           | 23172   | 2317.5 | 2317.2 | 2318.0        | 2318.4 | 2319.0 | 2319.0 | 23220   | 2120.6 | 23210  | 2321.0 | 2321.9 | 2322.2 | 2322.5 | 2322.0  | 2.26.4 |        | 2326.0     |        | 2327.0 | 2327.3 | 2325.6 | 2329.0 | 2330.0 | 17757  | 4.752     | 23270  | 2332.0         |          | 2332.5    | 47 15 15 C | 2333    | 2331.5         | 2331.8  | 2332.1         |             |
| anel depti Le                                                                                                                               | 011     | 7.6             | 7.6    | 9.0    | 0.0    | o c             | 001     | 9      | 2.5         | 4.0    | 0. <del>0</del> | 30     | 9             | 7.0    | 9 9     |        | ? _              | , C     | 50     | 2      | 2.5           | 5.0    | 2.0    | 2.5    | Ci (    | 9 e    | 4 6    | 98     | 2.6    | 2.6    | 3.5    | 9 9     | 3 4    | ř      | 4.5        | !      | 3.1    | 0.4    | 5.5    | 4.00   | 5.6    | e e    | m c       | 7 6    | 10             | ŝ        | 20        | 2.6        | - 6     | î              | <u></u> | 5 6<br>6 8     | i           |
| December Iow inverses Ave averbee Ave channel depti Left bank. Right bank Left Rood wal Right Rood wal Bri. ooffit. River width Total width | 0,187,0 | 2293.0          | 2295.0 | 2296.0 | 2297.0 | 2289.0          | 23000   | 2305.0 | 2307.5      | 2307.5 | 2307.5          | 2309.0 | 2309.0        |        | 2313.0  | 2313.1 | 4014.0<br>0314.0 | 2214.5  | 2315.0 | 23150  | 2315.5        | 2316.0 | 2317.0 | 2316.5 | 2317.0  | 2317.5 | 2318.9 | 23190  | 2319.0 | 2319.0 | 2319.0 | 2320.0  | 2320.0 | 77777  | 2.107.5    | 2321.5 | 2322.5 | 2322.0 | 2322.5 | 2322.5 | 2323.0 | 2323.0 | 2324.0    | 2324.0 | 2222.0         | 0.000    | 2327.0    | 2327.0     | 2327.5  | 2327.5         | 2328.5  | 2328.5         | × 0 0 0 0 0 |
| riverber Av                                                                                                                                 | 2286.8  | 2292.2          | 2294B  | 2295.0 | 2296.8 | 2298.2          | 27.55.0 | 17620  | 2706.0      | 2307.0 | 2307.5          | 2308.5 | 2309.0        | 2307.5 | 2311.6  | 2313.1 | 2313.5           | 7.5.5.6 | 2314.5 | 2314.7 | 2314.9        | 2315.3 | 2316.6 | 2315.6 | 2316.8  | 2317.3 | 2317.0 | 2317.7 | 2318.4 | 2319.0 | 23190  | 2319.4  | 2319.8 | 2320.0 | 2220.8     | 22208  | 7323.8 | 2321.2 | 2322.0 | 2322.3 | 2322.2 | 2322.4 | 2323.4    | 2324.0 | 0.0252         | 2324.0   | 2326.0    | 2326.4     | 2326.8  | 2320.0         | 2328.3  | 2327.9         | 7 17 17 17  |
| ietance Low                                                                                                                                 | 6       | 000             | 178.0  | 296.0  | 426.0  | 578.0           | 0.000   | 0.00   | 0.050       | 1300   | 1040            | 12640  | 1366.0        | 1420.0 | 1524.0  | 1620.0 | 1778,0           |         |        |        |               |        |        |        |         |        |        |        |        |        |        |         |        |        |            |        |        |        |        |        |        |        |           |        |                |          |           |            |         |                |         | 3730.0         |             |
|                                                                                                                                             | ۱ ۹     | ۰ -             | . 7    | m      | 4      | v               | eo r    | ۰. ۵   | 0 6         | • -    | ; =             | 2 =    | 2             | 5      | 2       | io.    | 92               | - :     | 2 5    | 2 6    | 3 5           | 3 5    | 3 2    | 2.5    | 3       | 50     | £1     | 8 8    | 3 8    | Š      | 3      | 33      | 34     | 23     | <b>8</b> 3 | 500    | 9 6    | 3 9    | ₹ ₹    | 4      | 4      | 4      | 4         | \$     | 4              | <b>*</b> | e S       | 45         | 22      | e :            | U 4.    | ) <b>2</b> 5 ( | ,           |
| Section Contract                                                                                                                            | Ċ       | Rail DA.        | 5      |        |        |                 |         |        | (Bantynket) | (Jeau) | 1               |        | Sad bos       |        |         |        |                  |         |        |        |               |        |        |        |         |        |        |        |        |        |        |         |        |        | 34 by      |        |        |        |        |        |        |        |           |        | ,              | Ban Bri  |           |            |         |                |         |                |             |

|                          |            |         |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         |          |         |          |         |        |         |         |         |            |            |         |         |         |            |         |          |        | Curverbed URIVIL DIGINAL VIIII | 2       | 2353.50 2357.50 2358.10 |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
|--------------------------|------------|---------|---------|---------|---------|---------|----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|----------|---------|----------|---------|--------|---------|---------|---------|------------|------------|---------|---------|---------|------------|---------|----------|--------|--------------------------------|---------|-------------------------|--------|--------|---------|----------|--------|----------|----------|--------|--------|--------|--------|--------|--------|---------|--------|
| 100                      | COR6/ Wall | 2333.10 |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         |          |         |          |         |        |         |         |         | 03 5756    |            | 2343.90 | 2345,60 |         |            | 2347.60 |          | •      | O 07 6366                      |         | •••                     | ,      |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
|                          |            | 2334.50 | 0000000 | 233370  | 40000   | 2250.70 | 2000                 | 12002   | 2339.30 | 20000   | 507567  | 237.00  | 2337.67 | 2337.96 | 679867  | 233000  | 20000    | 2000    | 22.08.03 | 2000    | 23.00.34 | 224.00  | 88     | 2341.20 | 49.1862 | 2342.01 | 2262       | 7347.00    | 234330  | 2345.00 |         |            | 2347.00 |          |        | 42.1366                        | A Co.   |                         |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
|                          | **         | 2334.60 |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         |          |         |          |         |        |         |         |         |            |            |         |         |         |            |         |          |        |                                |         |                         |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
| 2328.60 2332.60          |            |         |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         |          |         |          |         |        |         |         |         |            |            |         |         |         |            |         |          |        |                                |         |                         |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
| 2329.60                  | 2330.30    | 2331.00 | 04.150  | 2331.76 | 18.1503 | 2325.20 | 4.7.7.7<br>4.7.7.7.7 | 2332.81 | 233300  | 2333.30 | 2333.53 | 2333.90 | 2334 17 | 2334.46 | 2334.79 | 2335.16 | 2333.44  | 2333.80 | 2336.33  | 2336.69 | 2337.04  | 2337.26 | 33.38  | 2337.79 | 2338.14 | 2338,51 | 2338.87    | 2008.00    | 2329,40 | 7341.00 |         |            | 2343.00 |          |        | 4                              | 2347.30 |                         |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
|                          |            |         |         |         |         | 0.25    |                      |         |         |         |         |         |         |         |         |         |          |         |          |         |          |         |        |         |         |         |            |            |         |         |         |            |         |          |        | 28.0                           |         |                         |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
| 2331.5 200<br>2335.0 200 | 20.0       | 0.0     | 22.0    | 200     | 0.01    | 13.0    | 002                  | 25.0    | 35.0    | 20.0    | 25.0    | 25.0    | 14.0    | 15.0    | 11.0    | 15.0    | 12.0     |         | 20 c     | 19.3    | 14.5     | 12.0    | 17.5   | 13.0    | 14.0    | 19.0    | - 6<br>0 6 | 0.02       | 0.61    | > -     | 16.0    | 15.5       | 8       | 14.0     | 12.0   | 13.0                           | •       | 15.0                    | 210    | 14.0   | 18.0    | 8.0      | 22.0   | 5.5      | 5.5      | 5 G    | 22.5   | 36.0   | 33.0   | 20.0   | 30.0   | 33.6    | ,      |
|                          |            | 2338.8  |         |         | 0.7557  |         |                      |         | 2336.5  |         |         |         |         |         | 2338.6  |         | 2340,6   |         |          |         |          | 2342.2  | 0.5    |         |         |         |            |            |         | 20400   | 2       |            | 2348.0  |          |        | ;                              | 2355.0  |                         |        |        |         | 2380.0   |        | 2386.0   |          |        |        |        |        |        |        |         |        |
|                          |            | 53      |         | •       |         | 2337.5  | 238.0                |         |         |         | 338.B   | 339.3   | 2340.0  |         |         | 2339.8  | 2        |         | 2342.6   | 342.2   |          | 2       |        | 346.0   | 343.8   | 345.0   | 2345.8     | 340.4      | Š       | 3.5     | 3       | 2347.5     |         |          |        | ;                              | 23      |                         |        | 2368.3 |         | ×        |        | **       |          |        |        |        |        |        |        |         |        |
|                          |            |         |         |         | ;       | × 1     | Si :                 |         | 5       | •       | **      | X       |         |         |         | èú      |          |         |          |         |          |         |        | 22      | 23      | N       | <b>~</b> 7 | N.         |         |         | ~       |            |         |          |        |                                |         |                         |        | 2      |         |          |        |          |          |        |        |        |        |        |        |         |        |
|                          |            |         |         |         |         |         |                      |         | 2338    |         |         |         |         | 2340.0  |         |         |          |         | 2342.8   | 2343,   | 2343     |         |        |         |         |         |            |            |         |         | 9346    | 27470      |         |          |        |                                |         |                         |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
| 2335.0                   | 2339 4     | 2342.0  | 2336.4  | 2336.0  | 2335.0  | 2336.0  | 2337.0               | 2337.0  | 2337.0  | 2337.0  | 2338.6  | 2337.2  | 2339.0  | 2339.0  | 2339.4  | 2339.2  | 2341.2   |         | 2341.0   | 2341.0  | 2341.0   | 2342,2  | 2341.0 | 2341.8  | 2341.6  | 2342.5  | 2343.8     | 2344.0     | 2344.3  | 7340.7  | 4,040.4 | 23463      | 2348.6  | 2346.6   | 2349.2 | 2354.0                         |         | 2357.3                  | 2360.0 | 23672  | 2372.5  | 2381.5   | 2378.8 | 2389.0   | 2386.0   | 2395.0 | 2392.0 | 2382.3 | 2408.0 | 2407.0 | 2413.0 | 4 1 4 1 | 2      |
| 2332.0                   | 2334.5     | 2342.0  | 2335.0  | 2336.0  | 2336.0  | 2336.0  | 2336.0               | 2337.5  | 2337.6  | 2341.0  | 2340.5  | 2339,1  | 2339,3  | 2339.0  | 2339.3  | 2340.4  | 2341.4   |         | 2340.0   | 2341.8  | 2341.3   | 2342.2  | 2343.0 | 2342.0  | 2342.6  | 2343.0  | 2343,0     | 2343.7     | 2346.0  | 2340    | 2340.4  | 0.148 5    | 2348.6  | 2346.6   | 2347.8 | 2353.0                         |         | 2355.5                  | 2360.5 | 23680  | 2372.0  | 2381.5   | 2378.2 | 2388.5   | 2385.0   | 2385.0 | 2381.0 | 2398.0 | 24040  | 24040  | 2407.0 |         |        |
| 30.5                     |            |         |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         | 5.0      | 5.0     | 3.5      | 4.2     | 3.0    | 3.8     | 3.6     | 3.5     | 0.         | <u>, 4</u> | 6.3     | 97      | 9 0     | р t<br>1 ч | 7 -     | <br>5 40 | S      | 0.7                            |         |                         | o :    | 7.7    | 2       | <u>.</u> | 3.2    | 83<br>12 | <b>4</b> | 0<br>6 | in i   | 4. (   | 2 -    | 2 6    |        |         |        |
| 2329.0                   |            |         |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         |          |         |          |         |        |         |         |         |            |            |         |         |         |            | _       |          |        | _                              |         |                         |        |        |         |          |        |          | _        |        |        |        |        |        |        |         |        |
|                          |            |         |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         | 2337.1   | 2335.5  | 2337.5   | 2338.0  | 2338.0 | 2338.0  | 2338.0  | 2339.0  | 2339.0     | 2339.0     | 2340.0  | 2338,0  | 2341.0  | 0.000      | 2000    | 9347.5   | 2364.5 | 2346.0                         |         | 2351.0                  | 2353.0 | 2004   | 2365.0  | 23 70 5  | 23750  | 2380.0   | 2381.0   | 2382.0 | 2384.5 | 2396.0 | 2389.0 | 7283   | 2000   | 200     | TOYE   |
| 2328.1                   | 2329.5     | 2330.5  | 2331.9  | 2332.1  | 2331.8  | 2333.0  | 2334.6               | 2332.6  | 2332.6  | 2333.3  | 2333.3  | 2334.1  | 2333.6  | 2334.7  | 2334.8  | 2335.4  | 2336.0   |         | 2337.1   | 2335.0  | 2337.5   | 2337 6  | 2337.7 | 2337.9  | 2337.6  | 2338.5  | 2338.4     | 2338.7     | 2339.1  | 2339.0  | 2340.3  | 2340.0     | 2367    | 2742 5   | 2344.3 | 2345.7                         |         | 2350.4                  | 2352.2 | 3350   | 0.362.0 | 23700    | 2373.9 | 23793    | 2380.8   | 2381.4 | 2383.8 | 2367.3 | 2388.6 | 0.000  |        | L'AAC'  | 2401 2 |
| 3830 0<br>3885 0         | 3936.0     | 39940   | 4050.0  | 4100.0  | 4130.0  | 41700   | 4202.0               | 4248.0  | 4274.0  | 4316.0  | 4348.0  | 0 000   | 4438.0  | 44780   | 4524.0  | 4576.0  | 4616.0   | 4680.0  | 4740.0   | 4790.0  | 4840.0   | 4870.0  | 4912.0 | 4944.0  | 4094.0  | 5046.0  | 5096.0     | 5150.0     | 5204.0  | 5262.0  | 5298.0  | 3318.0     | 5402.0  | 5480.0   | 1818   | 5756.0                         | 5818.0  | 5964.0                  | 6114.0 | 0.8020 | 5652.0  | 6768.0   | 6582.0 | 0000     | 7098,0   | 7184.0 | 7290.0 | 7450.0 | 7530.0 | 7640.0 | 2000   | 79797   | 2      |
| 88.88                    |            |         |         |         |         |         |                      |         |         |         |         |         |         |         |         |         |          |         |          |         |          |         |        |         |         |         |            |            |         |         |         |            |         |          |        |                                |         |                         |        |        |         |          |        |          |          |        |        |        |        |        |        |         |        |
| 00000                    |            | 50.50   |         |         | 6th bri |         |                      |         | 70. by  | ,       |         |         |         |         | Arts ho | ,       | <b>8</b> |         |          |         |          | 195     |        |         |         |         |            |            |         | Ž.      | F       | Kechene    | nver)   | 4        |        |                                |         |                         |        |        |         | 2nd to   | ?      | Ath be   |          |        |        |        |        |        |        |         |        |

Table 4.3.2 Proposed Cross Section of Bantyiketu River(1/5)

1.42 k (Intake weir) - 2.056 k (Sect.22), O=170 cu.m/s

|              | Gradient         | 1/140  | Freeboard(m)              | 9.0       | Crown width(m)                          | 3.0   |
|--------------|------------------|--------|---------------------------|-----------|-----------------------------------------|-------|
| ***          | 8.452E-02        |        |                           | 2317.00   | 2317.00 O(q1+qhL+qhR.m <sup>3</sup> /s) | 174.8 |
| Low Water    | Width(top.m)     | 16.5   | 16.5 Total water depth(m) | 3.00      |                                         |       |
| Channel      | Width(bottom.m)  | 10.5   | 10.5 Water depth(m)       | 2.00 S(m) | S(m)                                    | 17.71 |
|              | Depth            | 2.00   | 2.00 Width(m)             | 16.5      | 16.5 R(m)                               | 2.456 |
|              | Slope gradient   | 1.5    | 1.5 A(m²)                 | 43.5      | 43.5 V(m/s)                             | 3.85  |
|              | n                | 0.040  |                           |           |                                         |       |
|              | Bed elevation(m) | 2314.0 |                           |           | ql(m³/s)                                | 167.3 |
| High Water   | Width            | 2.0    | 2.0 Water depth           | 1.00      | 1.00 S(m)                               | 3.80  |
| Channel      | Slope gradient   | 1.5    | 1.5 Width(m)              | 3.5       | 3.5 R(m)                                | 0.723 |
| (left side)  | u                | 0.050  | 0.050 A(m²)               | 2.8       | 2.8 V(m/s)                              | 1.36  |
|              |                  |        |                           |           | qhL(m³/s)                               | 3.7   |
| High Water   | Width            | 2.0    | 2.0 Water depth           | 1.00 S(m) | S(m)                                    | 3.80  |
| Channel      | Slope gradient   | 1.5    | 1.5 Width(m)              | 3.5       | 3.5 R(m)                                | 0.723 |
| (right side) | L L              | 0.050  | 0.050 A(m²)               | 2.8       | 2.8 V(m/s)                              | 1.36  |
|              |                  |        |                           |           | qhR(m³/s)                               | 3.7   |



2.056 k (Sect.22) - 3.336 k (Bantyiketu bridge), Q=170cu.m/s

|              | Gradient         | 1/140  | Freeboard(m)              | 9.0       | Crown width(m)                          | 1.0   |
|--------------|------------------|--------|---------------------------|-----------|-----------------------------------------|-------|
|              | 8.452E-02        |        |                           | 2322.00   | 2322.00 O(q1+qhL+qhR.m <sup>3</sup> /s) | 173.5 |
| I ow Water   | Width(top.m)     | 17.5   | 17.5 Total water depth(m) | 3.00      |                                         |       |
| Channel      | Width(bottom.m)  | 12.5   | 12.5 Water depth(m)       | 2.50 S(m) | S(m)                                    | 19.57 |
|              | Depth            | 2.50   | 2.50 Width(m)             | 17.5      | 17.5 R(m)                               | 2.363 |
|              | Slope gradient   | 1.0    | 1.0 A(m²)                 | 46.3      | 46.3 V(m/s)                             | 3.75  |
|              | 3 4              | 0.040  |                           |           |                                         |       |
|              | Bed elevation(m) | 2319.0 |                           |           | q1(m³/s)                                | 173.4 |
| High Water   | Wicth            | 0.0    | 0.0 Water depth           | 0.50      | 0.50 S(m)                               | 0.71  |
| Channel      | Slone gradient   | 1.0    | 1.0 Width(m)              | 0.5       | 0.5 R(m)                                | 0.177 |
| (left side)  | u.               | 0.050  | 0.050 A(m²)               | 0.1       | 0.1 V(m/s)                              | 0.53  |
| 1            | **               |        |                           |           | qhL(m³/s)                               | 0.1   |
| High Water   | Width            | 0.0    | 0.0 Water depth           | 0.50      | 0.50 S(m)                               | 0.71  |
| Channel      | Slope gradient   | 1.0    | 1.0 Width(m)              | 0.5       | 0.5 R(m)                                | 0.177 |
| (right side) | L.               | 0.050  | 0.050 A(m²)               | 0.1       | 0.1 V(m/s)                              | 0.53  |
|              |                  |        |                           |           | qhR(m <sup>3</sup> /s)                  | 0.1   |
|              |                  |        |                           |           |                                         |       |

Table 4.3.2 Proposed Cross Section of Bantyiketu River(3/5)

3.374 k (Bantyiketu bridge) - 3.994 k (Finfine bridge), Q=170cu.m/s

|                    | Gradient         | 1/125  | Freeboard(m)              | 9'0     | Crown width(m)                          | 1.0   |
|--------------------|------------------|--------|---------------------------|---------|-----------------------------------------|-------|
| ·                  | 8.944E-02        |        | Water level               | 2331.00 | 2331.00 Q(q1+qhL+qhR.m <sup>3</sup> /s) | 175.7 |
| Yow Water          | Width(top.m)     | 14.5   | 14.5 Total water depth(m) | 3.00    |                                         |       |
| Channel            | Width(bottom,m)  | 8.5    | 8.5 Water depth(m)        | 2.00    | 2.00 S(m)                               | 15.71 |
|                    | Depth            | 2.00   | 2.00 Width(m)             | 14.5    | 14.5 R(m)                               | 2.387 |
|                    | Slope gradient   | 1.5    | $1.5  A(m^2) $            | 37.5    | 37.5 V(m/s)                             | 3.99  |
|                    | ű                | 0.040  |                           |         |                                         |       |
|                    | Bed elevation(m) | 2328.0 |                           |         | ql(m³/s)                                | 149.8 |
| High Water Width   | Width            | 5.0    | 5.0 Water depth           | 1.00    | 1.00 S(m)                               | 6.80  |
| Channel            | Slope gradient   | 1.5    | 1.5 Width(m)              | 6.5     | 6.5 R(m)                                | 0.845 |
| (left side)        | u                | 0.050  | 0.050 A(m²)               | 5.8     | 5.8 V(m/s)                              | 1.60  |
|                    |                  |        |                           |         | qhL(m³/s)                               | 9.2   |
| High Water   Width | Width            | 10.0   | 10.0 Water depth          | 1.00    | 1.00 S(m)                               | 11.00 |
| Channel            | Slope gradient   | 0.0    | 0.0 Width(m)              | 10.0    | 10.0 R(m)                               | 0.909 |
| (right side)       | u                | 0.050  | 0.050 A(m²)               | 10.0    | 10.0 V(m/s)                             | 1.68  |
| 8                  |                  |        |                           |         | qhR(m³/s)                               | 16.8  |
|                    |                  |        |                           |         |                                         |       |

Table 4.3.2 Proposed Cross Section of Bantyiketu River(4/5)

3.994 k (Finfine bridge) -5.15 k (Side overflow dike), Q=145cu.m/s

|              |                  |        |                           |           | ı                                       |       |
|--------------|------------------|--------|---------------------------|-----------|-----------------------------------------|-------|
|              | Gradient         | 1/140  | Freeboard(m)              | 9.0       | Crown width(m)                          | 1.0   |
|              | 8.452E-02        |        | Water level               | 2336.50   | 2336.50 O(q1+qhL+qhR.m <sup>3</sup> /s) | 146.3 |
| Low Water    | Width(top.m)     | 13.6   | 13.6 Total water depth(m) | 3.50      |                                         |       |
| Channel      | Width(bottom.m)  | 7.6    | 7.6 Water depth(m)        | 3.00 S(m) | S(m)                                    | 16.09 |
|              | Depth            | 3.00   | 3.00 Width(m)             | 13.6      | 13.6 R(m)                               | 2.400 |
|              | Slope gradient   | 1.0    | 1.0 A(m²)                 | 38.6      | 38.6 V(m/s)                             | 3.79  |
| !            | u                | 0.040  |                           |           |                                         |       |
|              | Bed elevation(m) | 2333.0 |                           |           | ql(m³/s)                                | 146.2 |
| High Water   | Width            | 0.0    | 0.0 Water depth           | 0.50 S(m) | S(m)                                    | 0.71  |
| Channel      | Slope gradient   | 1.0    | 1.0 Width(m)              | 0.5       | 0.5 R(m)                                | 0.177 |
| (left side)  | a                | 0.050  | 0.050 A(m²)               | 0.1       | 0.1 V(m/s)                              | 0.53  |
|              |                  |        |                           |           | qhL(m³/s)                               | 0.1   |
| High Water   | Width            | 0.0    | 0.0 Water depth           | 0.50      | 0.50 S(m)                               | 0.71  |
| Channel      | Slope gradient   | 1.0    | 1.0 Width(m)              | 0.5       | 0.5 R(m)                                | 0.177 |
| (right side) | a a              | 0.050  | 0.050 A(m²)               | 0.1       | $0.1  \mathrm{V(m/s)}$                  | 0.53  |
| 8            |                  |        |                           |           | qhR(m³/s)                               | 0.1   |

Table 4.3.2 Proposed Cross Section of Bantyiketu River(5/5)

5.15 k (Side overflow dike) -5.262 k (Filwiha bridge), Q=175cu.m/s

|              | Gradient         | 1/140  | Freeboard(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9'0               | Crown width(m)                          | 1.0   |
|--------------|------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|-------|
|              | 8.452E-02        |        | Water level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2343.50           | 2343.50 Q(q1+qhL+qhR.m <sup>3</sup> /s) | 177.0 |
| Low Water    | Width(top.m)     | 15.5   | 15.5 Total water depth(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.50              |                                         |       |
| Channel      | Width(bottom.m)  | 9.5    | 9.5 Water depth(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.00 S(m)         | S(m)                                    | 17.99 |
|              | Depth            | 3.00   | 3.00 Width(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.5              | 15.5 R(m)                               | 2.516 |
|              | Slope gradient   | 1.0    | 1.0 A(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.3              | 45.3 V(m/s)                             | 3.91  |
|              | u                | 0.040  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                         |       |
|              | Bed elevation(m) | 2340.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | q1(m³/s)                                | 176.9 |
| High Water   | Width            | 0.0    | 0.0 Water depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50 S(m)         | S(m)                                    | 0.71  |
| Channel      | Slope gradient   | 1.0    | 1.0 Width(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5               | 0.5 R(m)                                | 0.177 |
| (left side)  | S C              | 0.050  | 0.050 A(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1               | 0.1 V(m/s)                              | 0.53  |
|              |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | qhL(m³/s)                               | 0.1   |
| High Water   | Width            | 0.0    | 0.0 Water depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50 S(m)         | S(m)                                    | 0.71  |
| Channel      | Slope gradient   | 1.0    | 1.0 Width(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5               | 0.5 R(m)                                | 0.177 |
| (right side) | , L              | 0.050  | 0.050 A(m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1               | 0.1 V(m/s)                              | 0.53  |
|              |                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | qhR(m³/s)                               | 0.1   |
|              |                  |        | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | The second second |                                         |       |

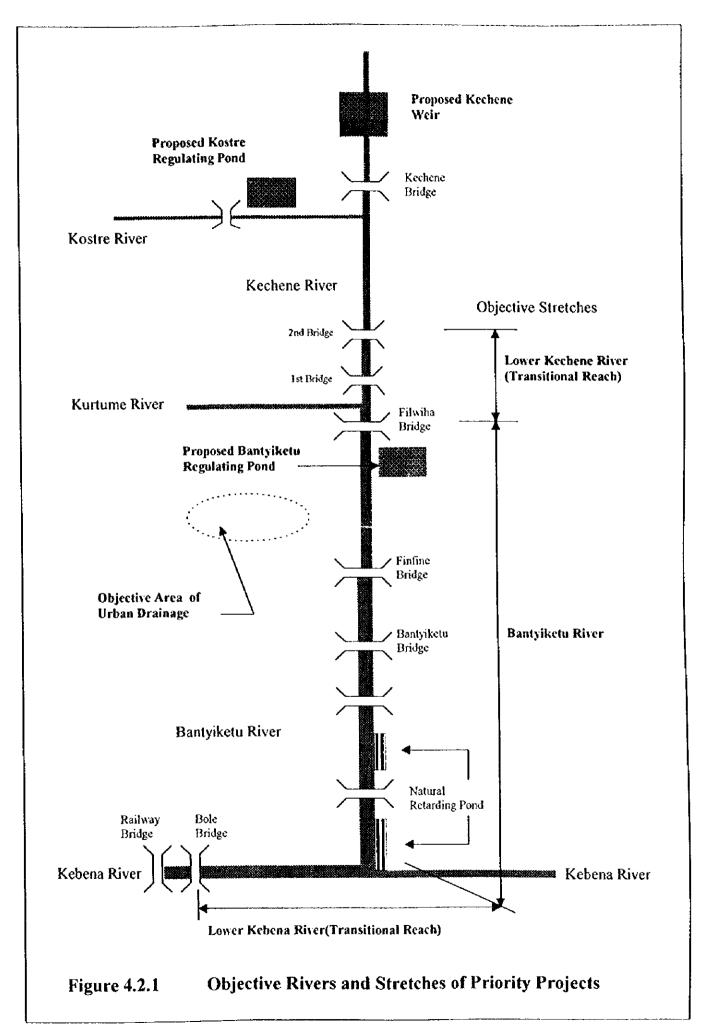
Work Item and Quantity of Priority Project(River Channel Improvement) **Table 4.3.3** 

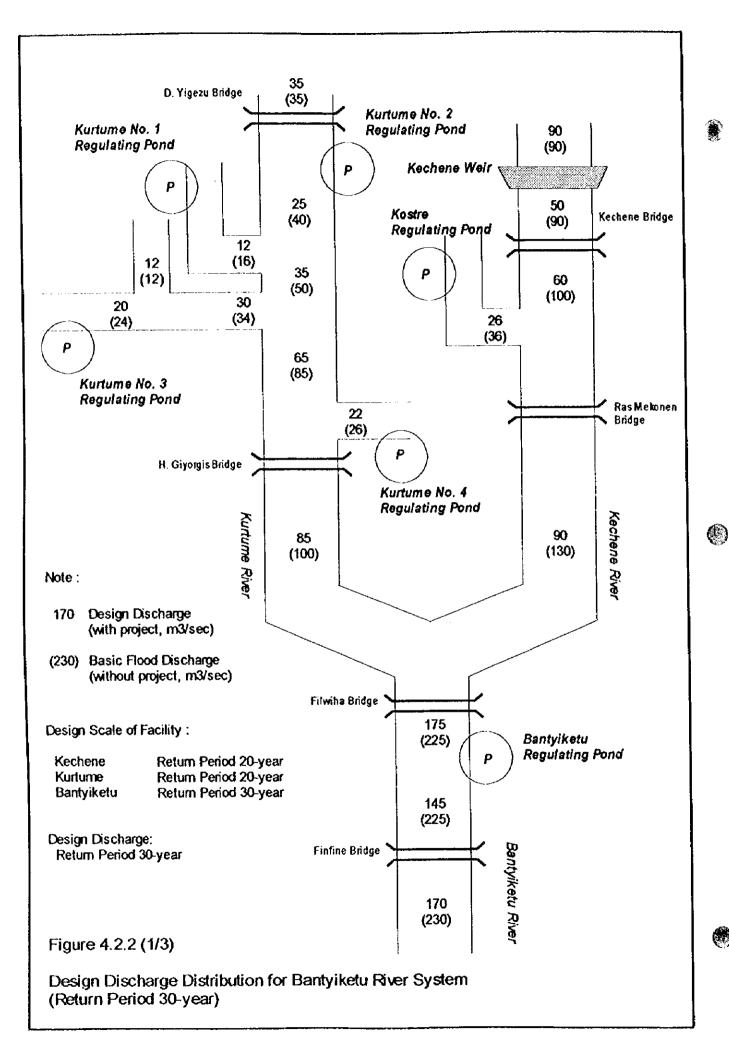
| (length=190m, slope length=13.4m)<br>(length=170m, slope length=13.4m) | (length=100m)                                | (length=295m)<br>(length=810m)         | (length=350m)<br>(length=360m)         |                                 | (length=80m,average height=4.5m)<br>(length=40m,average height=4.5m) |
|------------------------------------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------------------------------------|
| 2,550 sq.m<br>2,280 sq.m<br>4,830 sq.m                                 | 20,500 cu.m<br>400 cu.m                      | 1,180 sq.m<br>1,800 sq.m<br>3,010 sq.m | 2,820 sq.m<br>2,190 sq.m<br>5,010 sq.m | 2 places                        | 360 sq.m<br>180 sq.m<br>540 sq.m                                     |
| Left bank;<br>Right bank;<br>Total;                                    | Right bank;                                  | Left bank;<br>Right bank;<br>Total;    | Left bank;<br>Right bank;<br>Total;    | er supply pipe                  | Left bank;<br>Right bank;<br>Total;                                  |
| Kebena River<br>Slope protection                                       | Bantyiketu River<br>Excavation<br>Embankment | Floodwall                              | Slope protection                       | Protection of water supply pipe | Kechene River<br>Floodwall                                           |

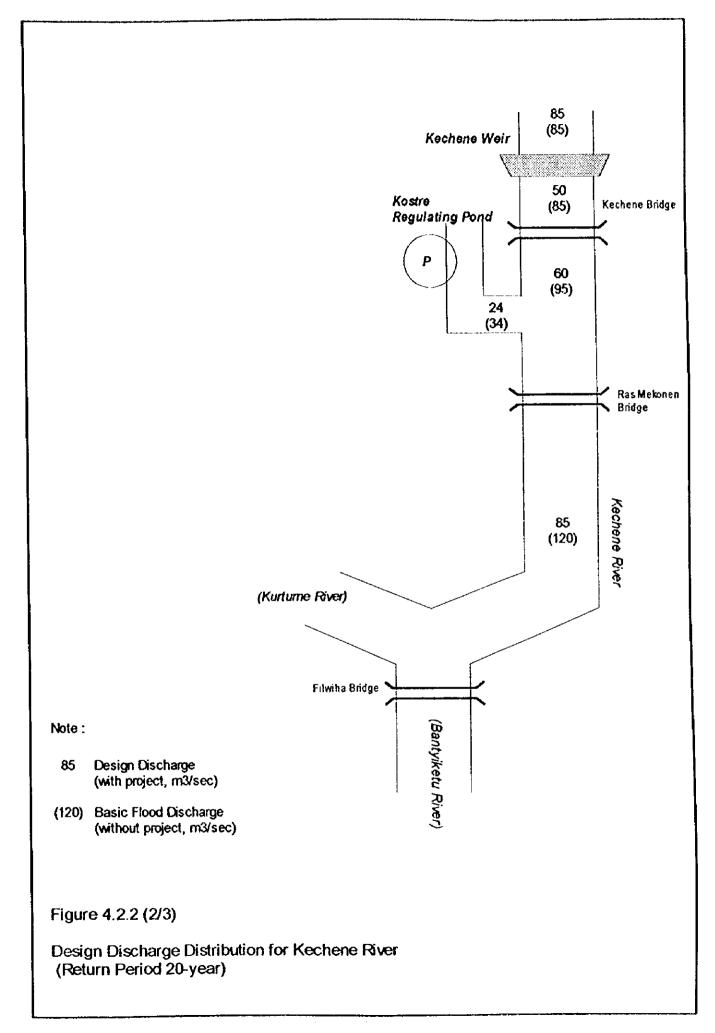
Table 4.3.4 Proposed Cross Section of Lower Kebena River

)

0.1 k (Sect.1) - 0.696 k (Sect.6), Q=400cu.m/s


|              | Gradiant         | 1/100  | Freeboard(m)              | 0.8       | Crown width(m)                          | 4.0   |
|--------------|------------------|--------|---------------------------|-----------|-----------------------------------------|-------|
|              | 1 000E-01        |        | Water level               | 2299.20   | 2299.20 O(q1+qhL+qhR.m <sup>2</sup> /s) | 422.4 |
| I out Water  | Width(ton m)     | 18.0   | 18.0 Total water depth(m) | 5.00      |                                         |       |
| Channel      | Width(hortom m)  | 7.5    | 7.5 Water depth(m)        | 3.50 S(m) | S(m)                                    | 20.12 |
| Cinamica     | Denth            | 3.50   | 3.50 Width(m)             | 18.0      | 18.0 R(m)                               | 3.560 |
|              | Slope gradient   | 1.5    | 1.5 A(m²)                 | 71.6      |                                         | 5.83  |
|              | G                | 0.040  |                           |           |                                         |       |
|              | Bed elevation(m) | 2294.2 |                           |           | ql(m³/s)                                | 417.5 |
| High Water   | Width            | 0.0    | 0.0 Water depth           | 1.50      | 50 S(m)                                 | 2.70  |
| Channel      | Slope gradient   | 1.5    | 1.5 Width(m)              | 2.3       | 2.3 R(m)                                | 0.624 |
| (left cide)  | 8                | 0.050  | 0.050 A(m²)               | 1.7       | 1.7 V(m/s)                              | 1.46  |
| (anie irai   |                  |        |                           |           | qhL(m³/s)                               | 2.5   |
| Timb Woter   | Width            | 0 0    | 0.01Water depth           | 1.50      | 1.50 S(m)                               | 2.70  |
| Channel      | Slope gradient   | 1.5    | 1.5 Width(m)              | 2.3       | 2.3 R(m)                                | 0.624 |
| (right side) | 6                | 0.050  | 0.050 A(m²)               | 1.7       | 1.7 V(m/s)                              | 1.46  |
| (115.11)     |                  |        |                           |           | qhR(m³/s)                               | 2.5   |
|              |                  |        |                           |           |                                         |       |





5.818 k (Sect.96) - 6.114 k (Sect.98), Q=85cu.m/s

|              | Gradient         | 1/50   | Freeboard(m)             | 9.0       | Crown width(m)                  | 1.0   |
|--------------|------------------|--------|--------------------------|-----------|---------------------------------|-------|
|              | 1.414E-01        |        | Water level              | 2354.00   | $2354.00   O(ql+qhL+qhR.m^3/s)$ | 187.5 |
| Low Water    | Width(top.m)     | 8.0    | 8.0 Total water depth(m) | 4.00      |                                 |       |
| Channel      | Width(bottom.m)  | 8.0    | 8.0 Water depth(m)       | 3.50 S(m) | S(m)                            | 15.00 |
|              | Depth            | 3.50   | 3.50 Width(m)            | 8.0       | 8.0 R(m)                        | 2.133 |
|              | Slope gradient   | 0.0    | 0.0 A(m²)                | 32.0      | 32.0 V(m/s)                     | 5.86  |
|              | c                | 0.040  |                          |           |                                 |       |
|              | Bed elevation(m) | 2350.0 |                          |           | ql(m³/s)                        | 187.5 |
| High Water   | Width            | 0.0    | 0.0 Water depth          | (w)S 05:0 | S(m)                            | 0.50  |
| Channel      | Slope gradient   | 0.0    | 0.0 Width(m)             | 0.0       | 0.0 R(m)                        | 0.000 |
| (left side)  | u                | 0.050  | 0.050 A(m²)              | 0.0       | 0.0 V(m/s)                      | 0.00  |
|              |                  |        |                          |           | qhL(m³/s)                       | 0.0   |
| High Water   | Width            | 0.0    | 0.0 Water depth          | 0.50 S(m) | S(m)                            | 0.50  |
| Channel      | Slope gradient   | 0.0    | 0.0 Width(m)             | 0.0       | 0.0[R(m)                        | 0.000 |
| (right side) | c                | 0.050  | $0.050\mathrm{A(m^2)}$   | 0.0       | 0.0 V(m/s)                      | 0.00  |
| 2            |                  |        |                          |           | qhR(m³/s)                       | 0.0   |

(`







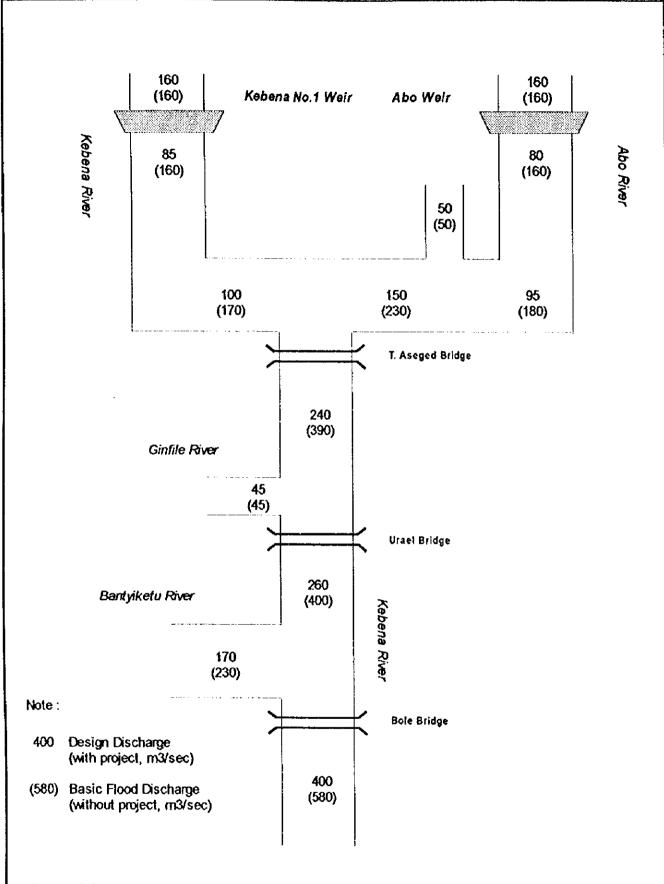
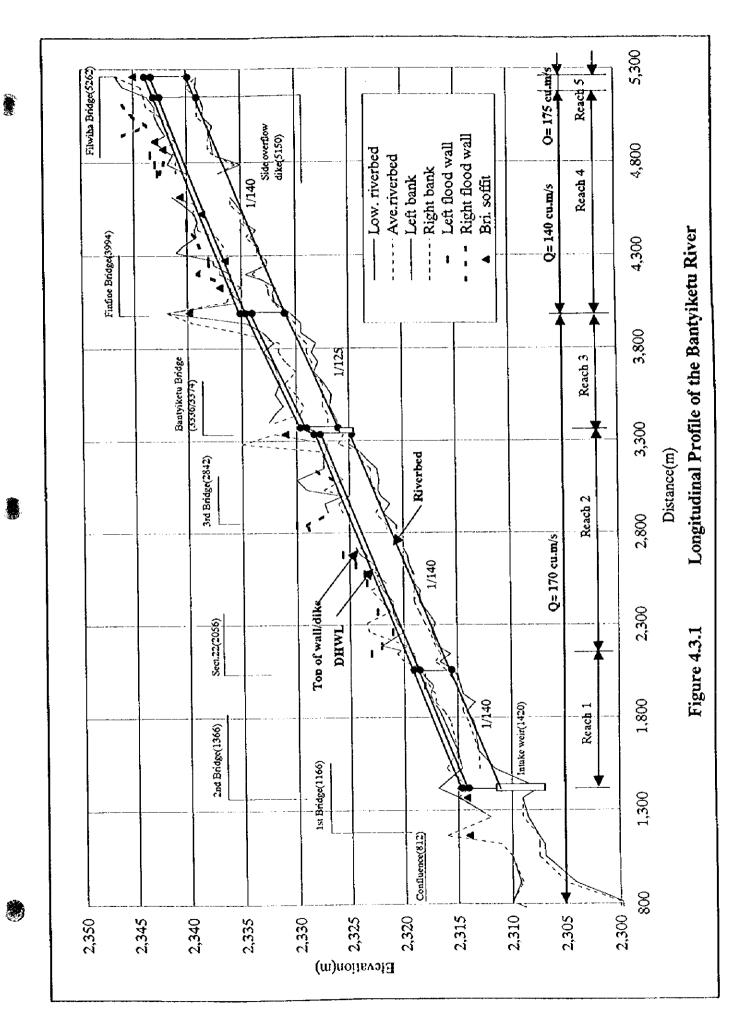
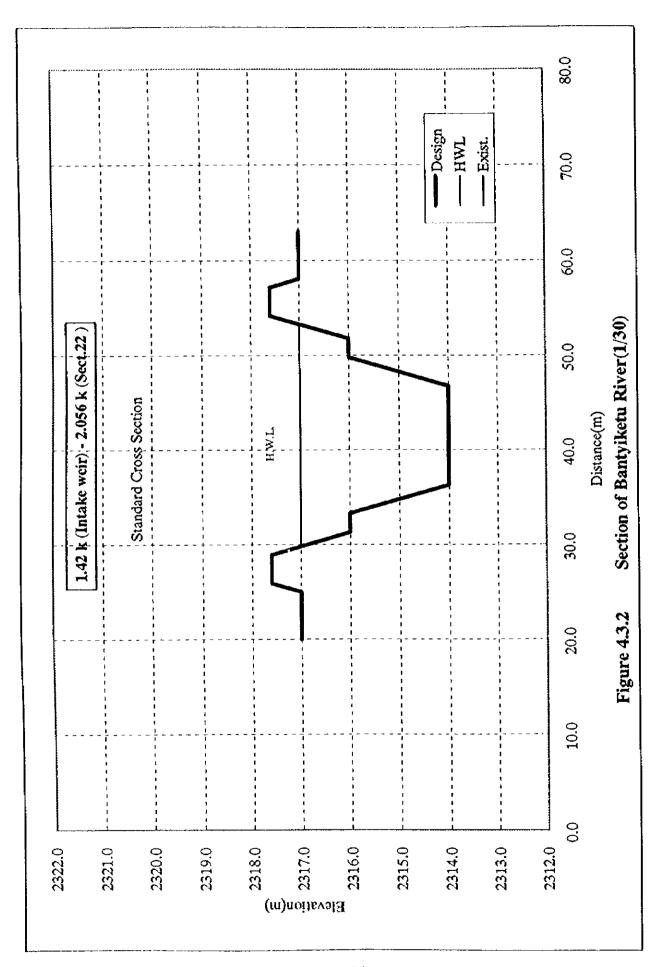
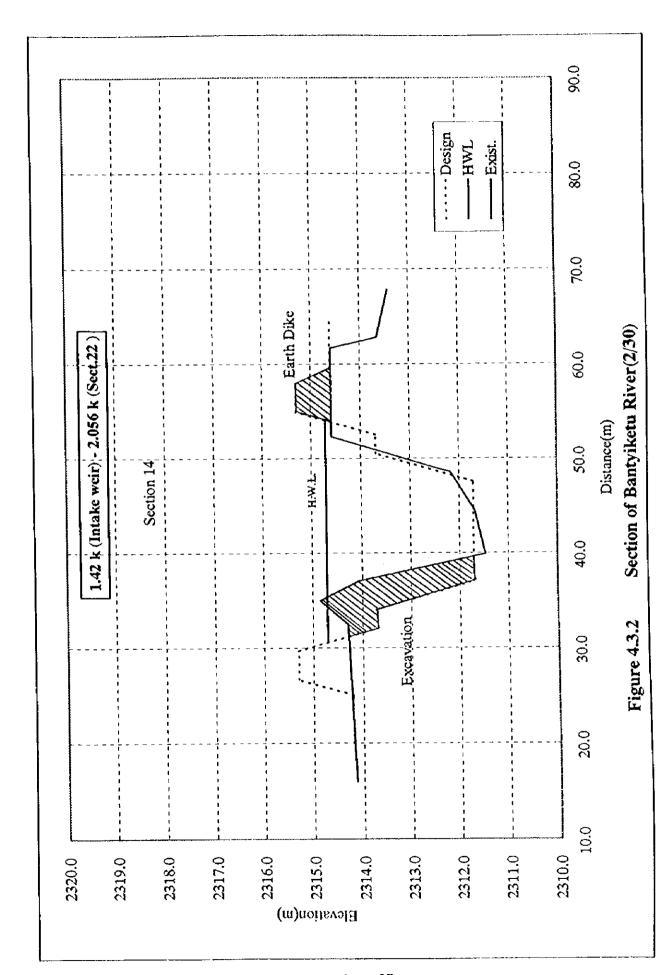
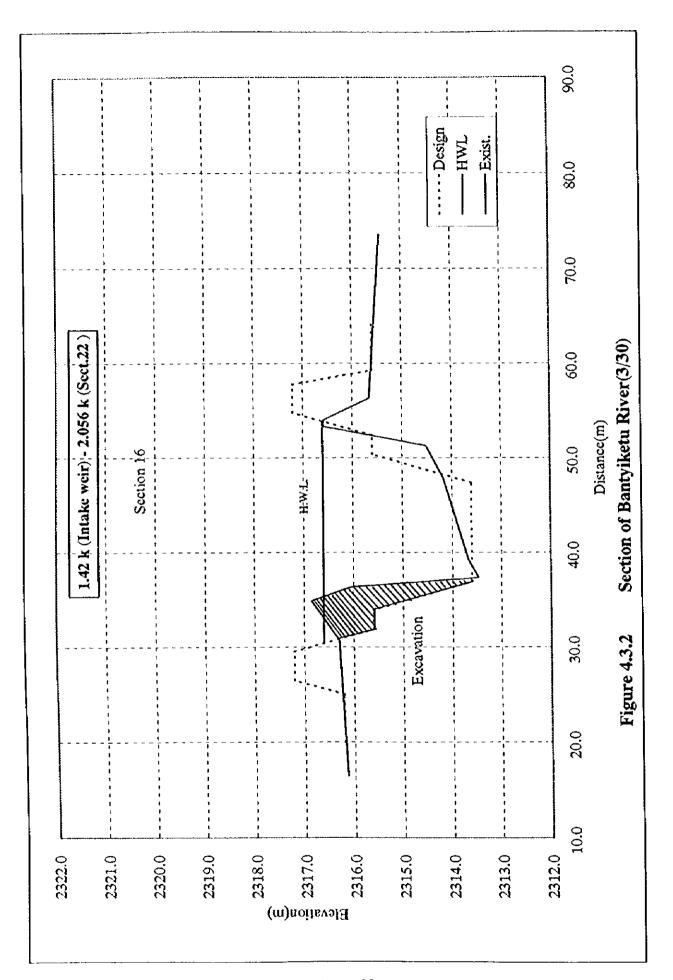
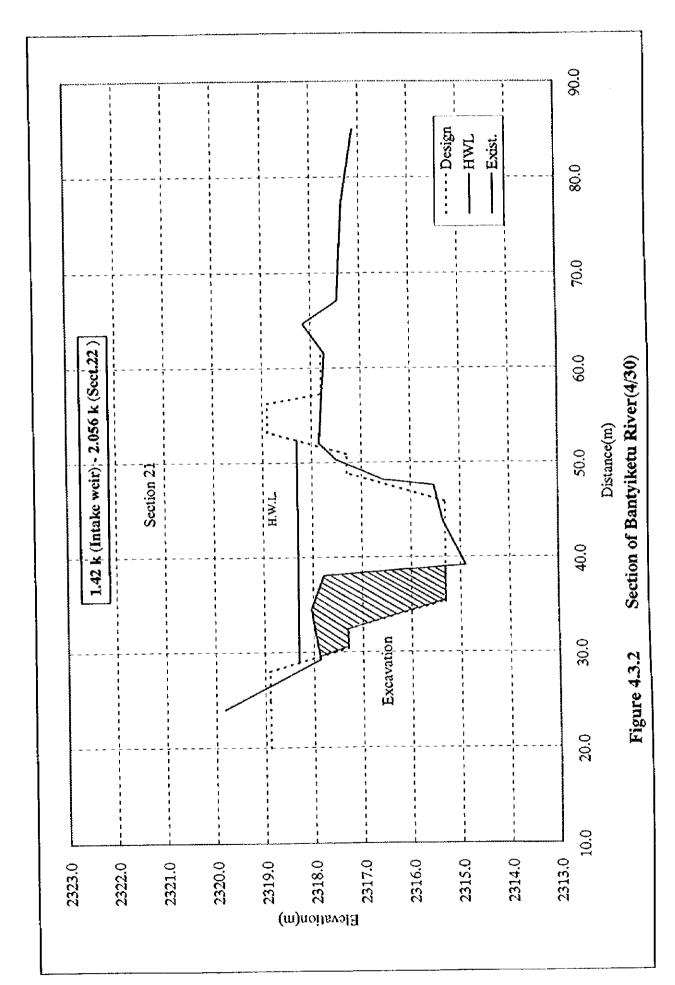
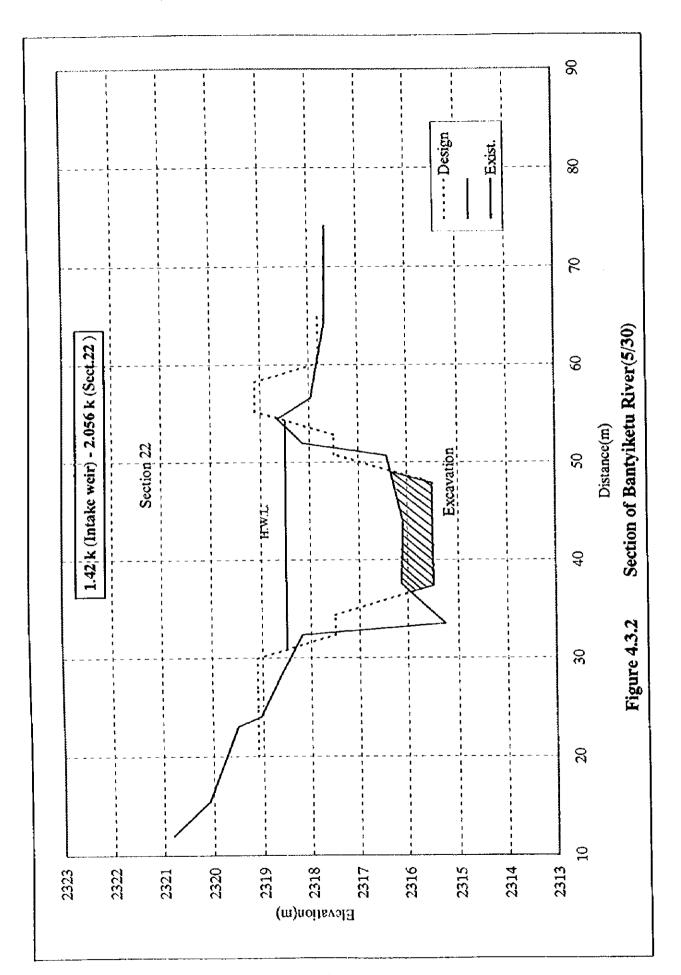
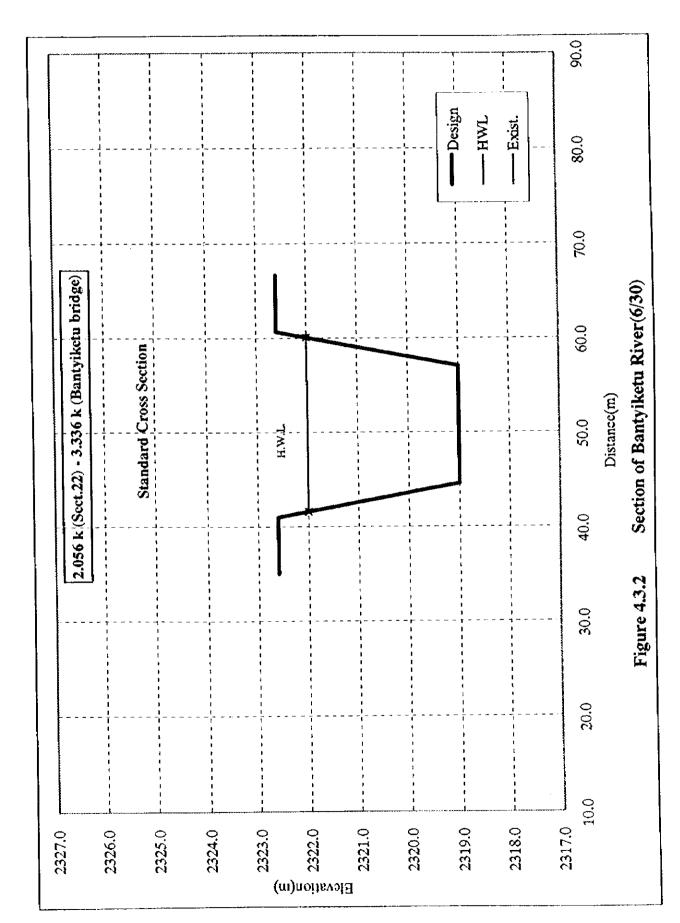





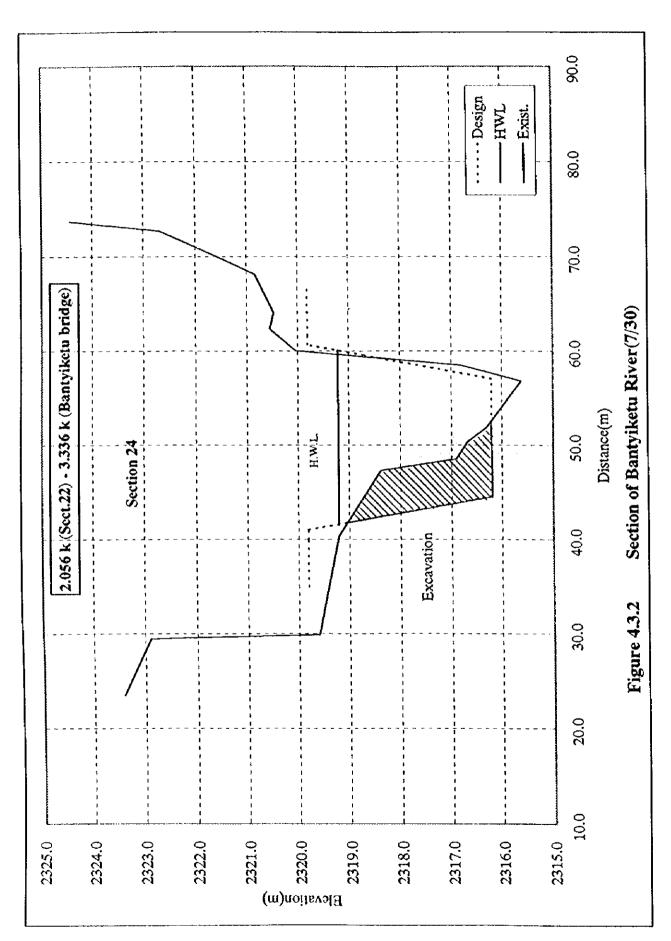

Figure 4.2.2 (3/3)

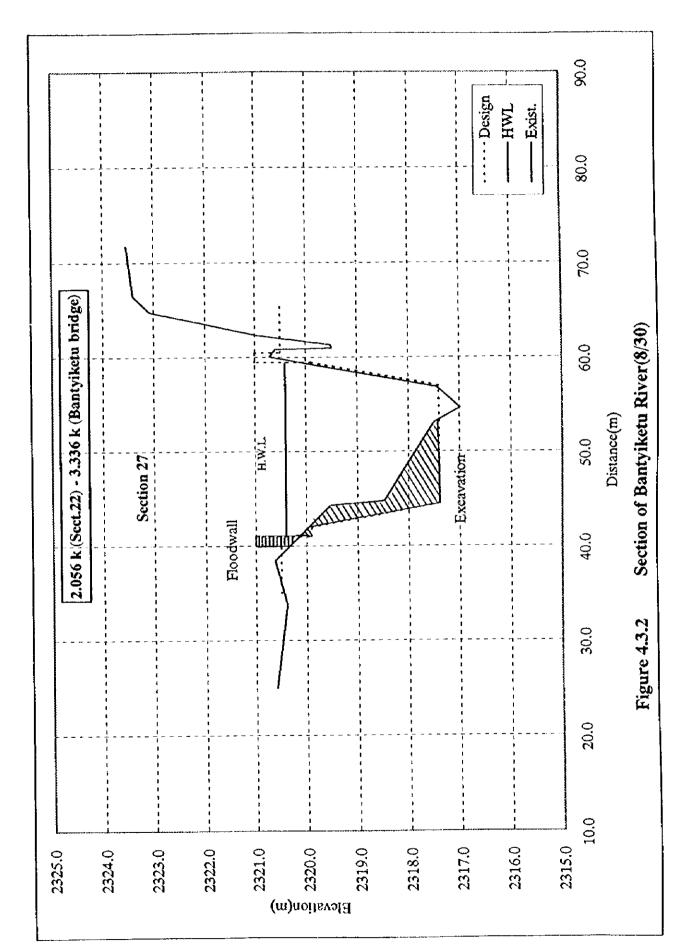

Design Discharge Distribution for Kebena River System (Return Period 30-year)

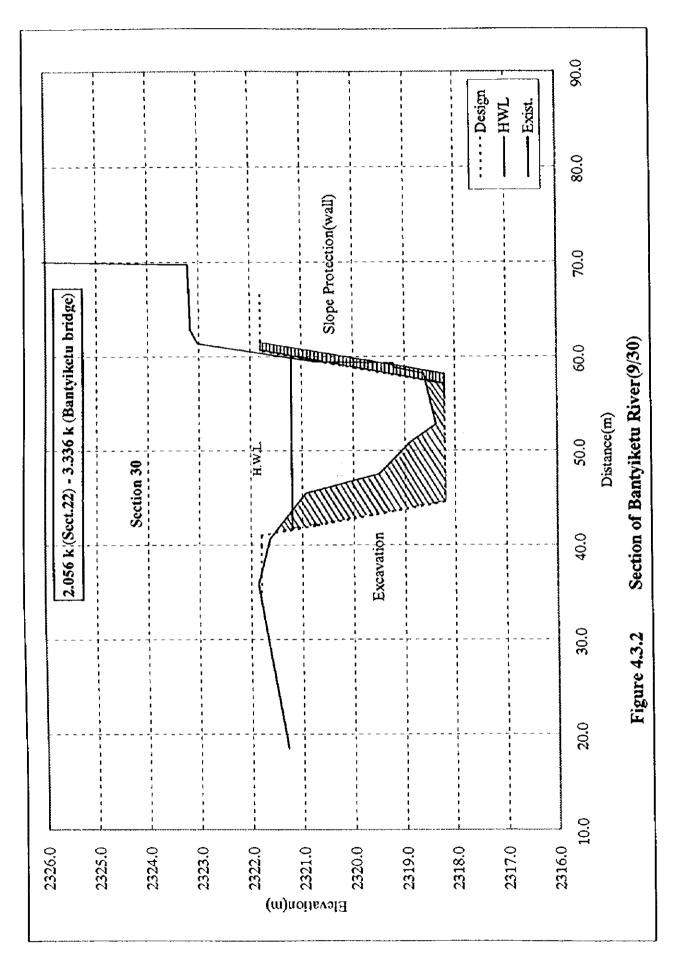


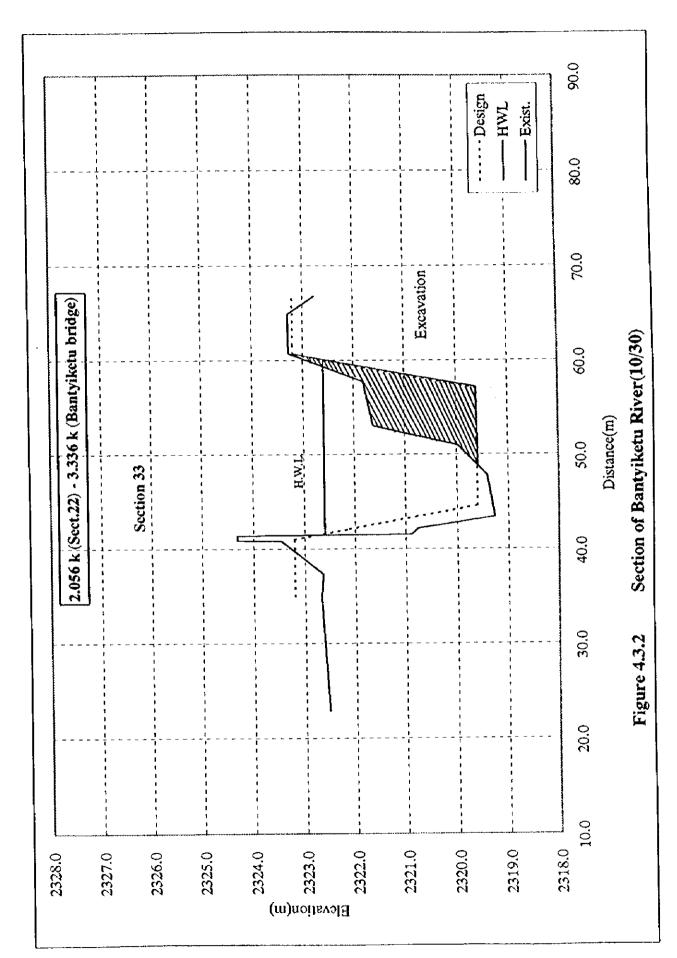



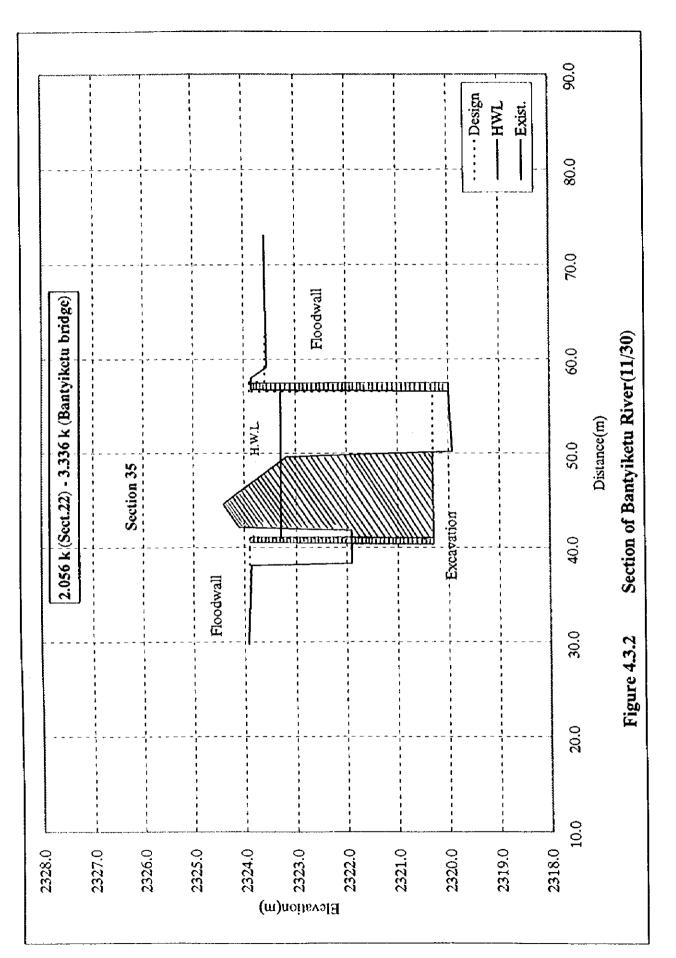





)

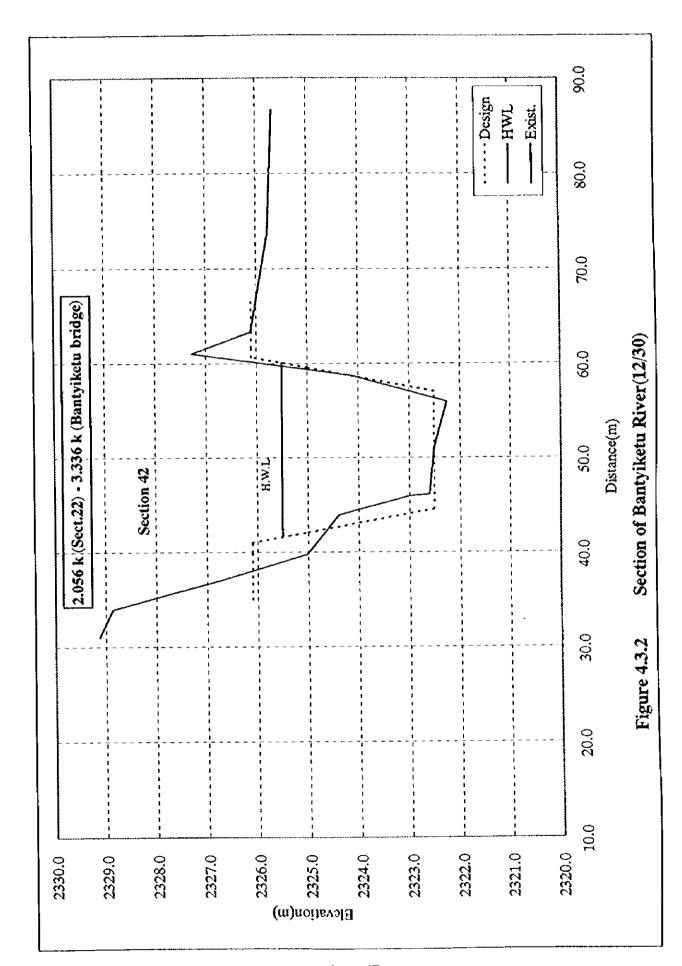


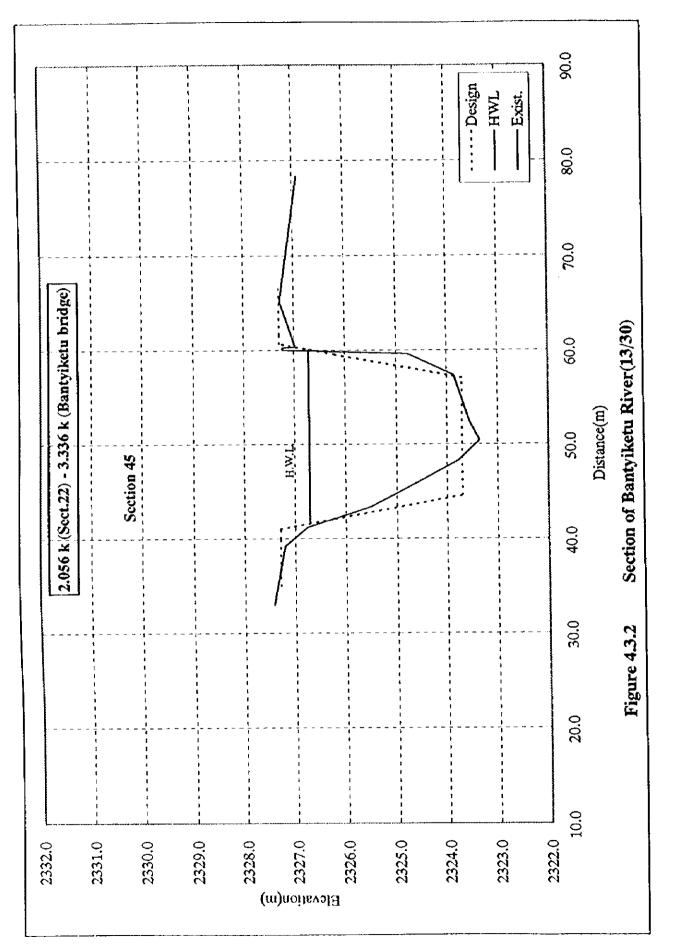



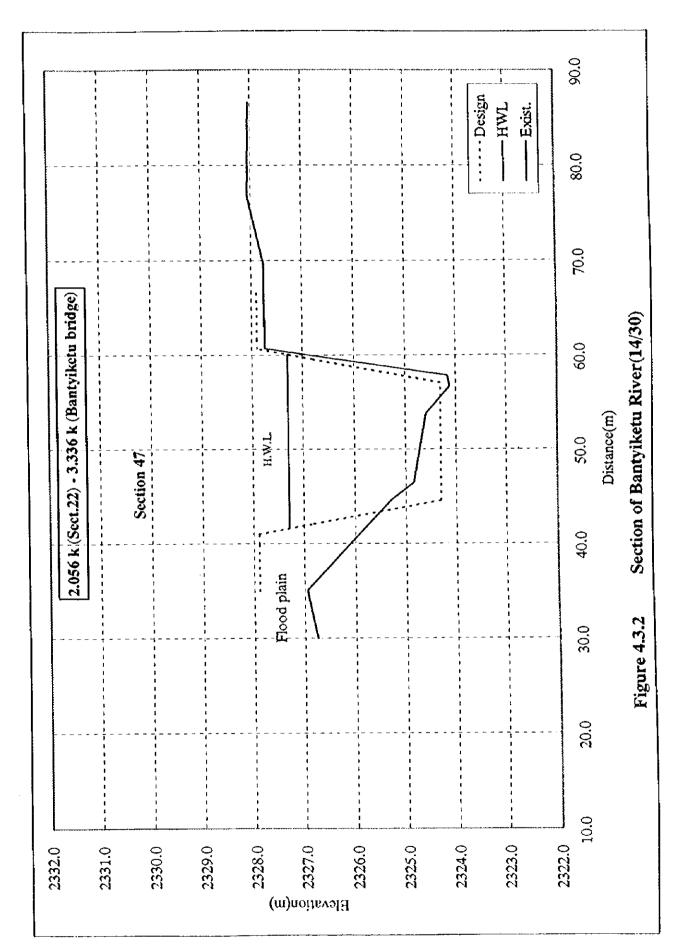



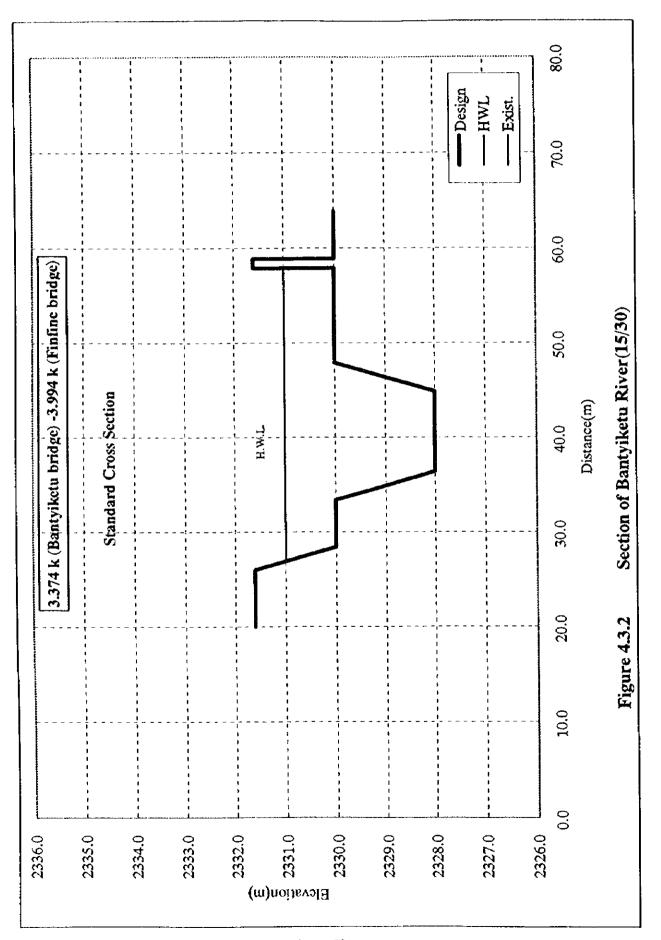



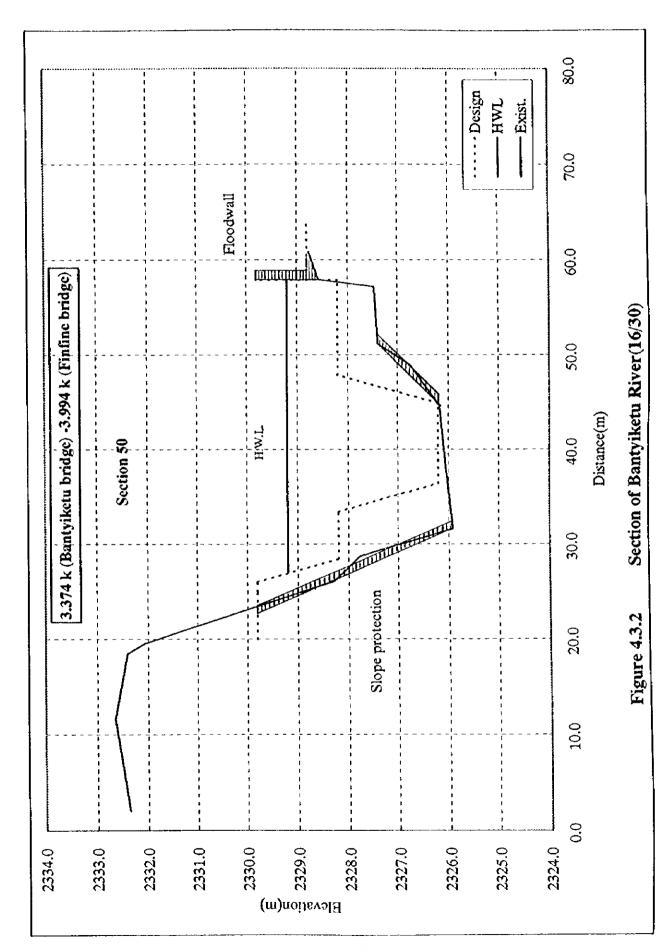


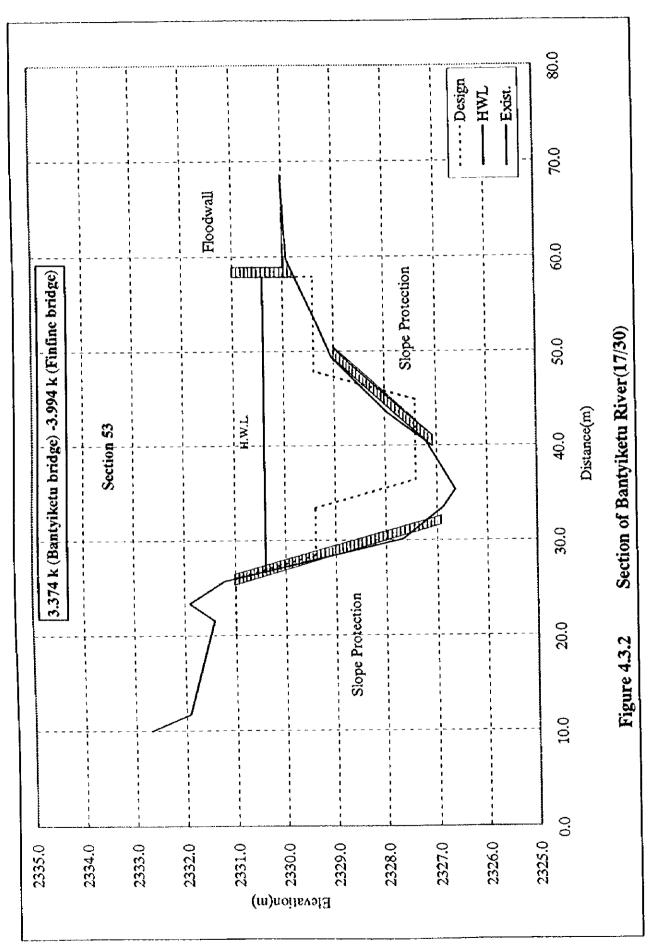



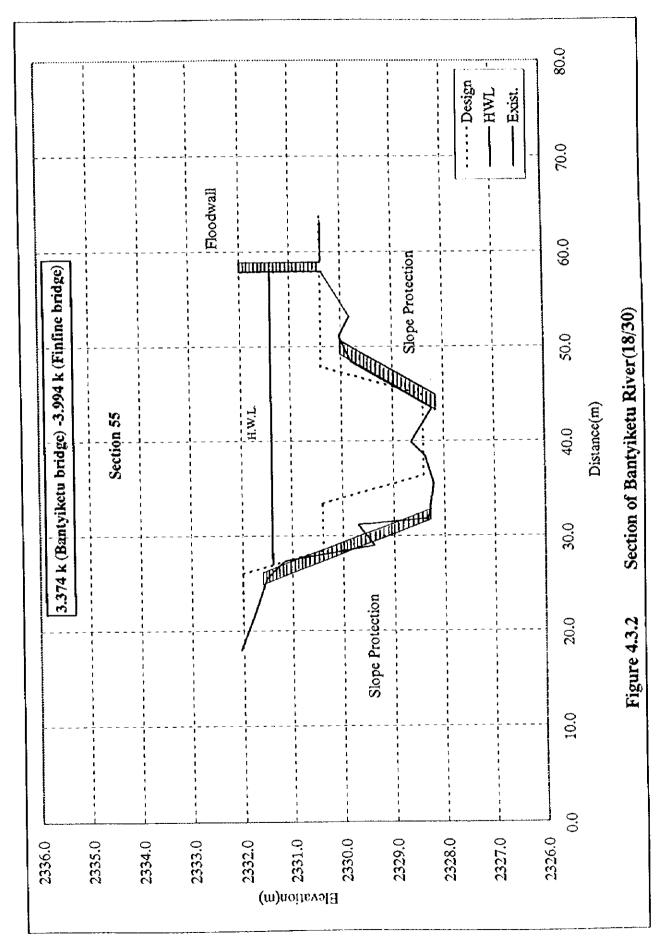



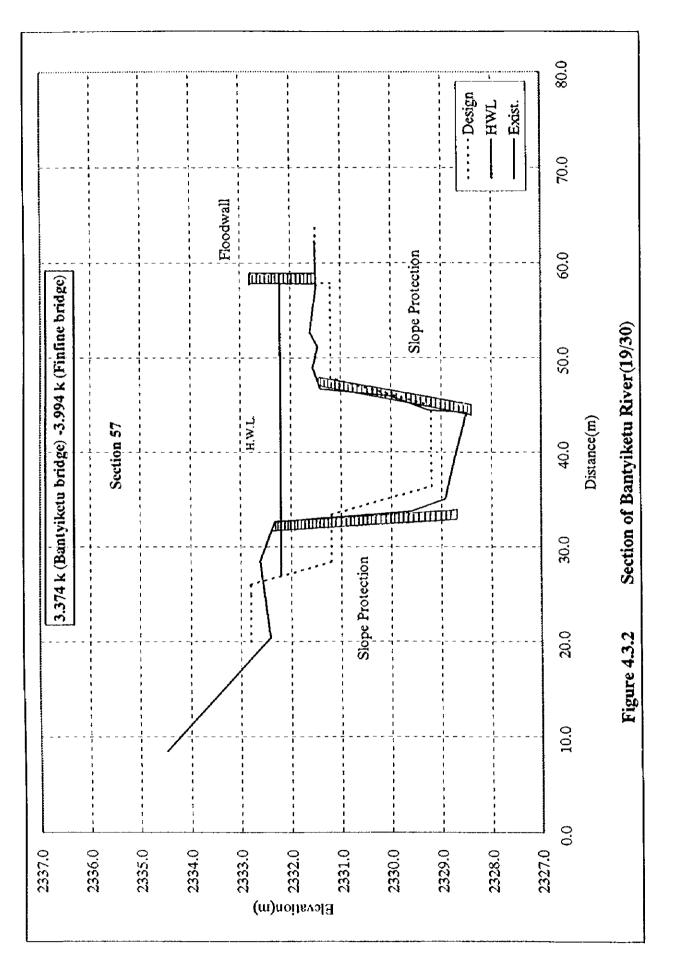



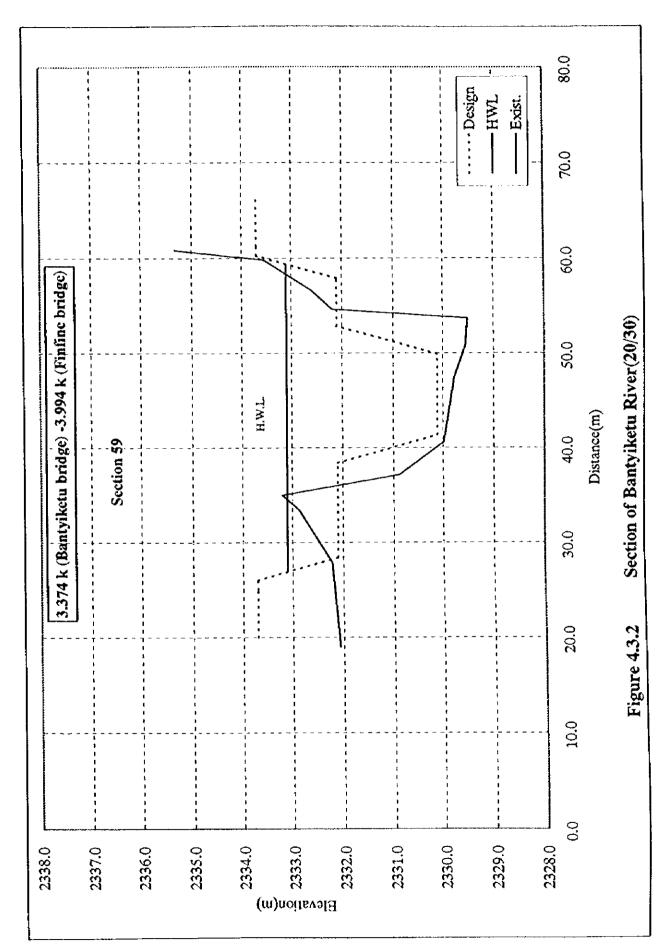



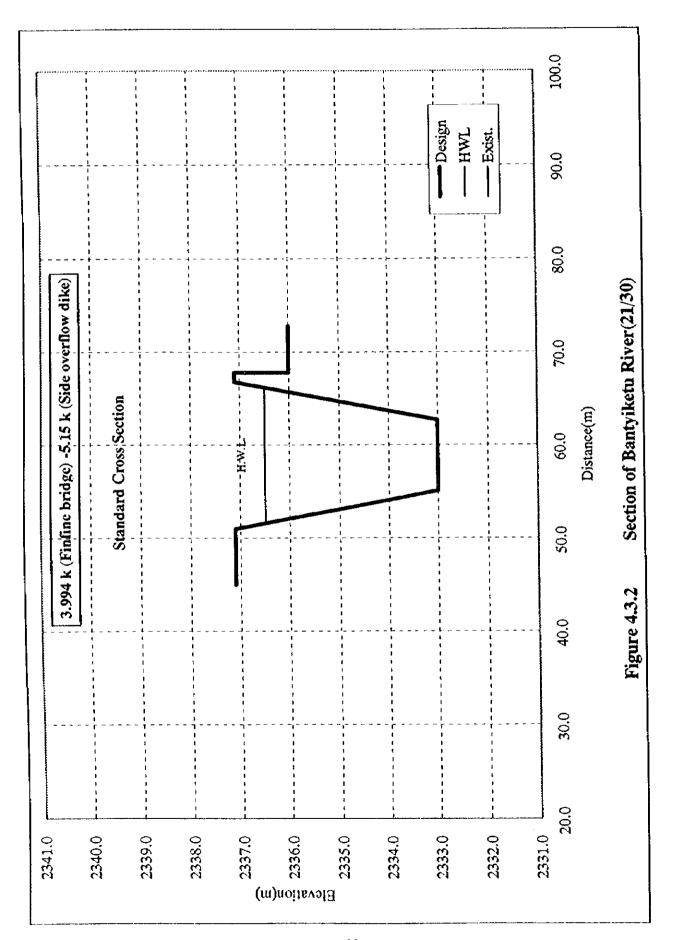


()

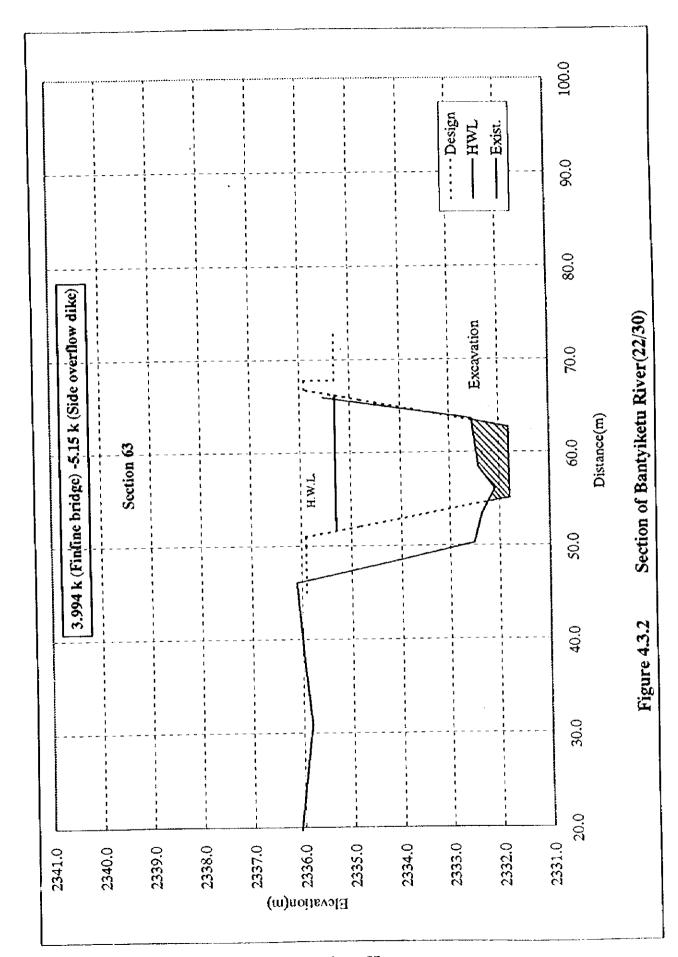


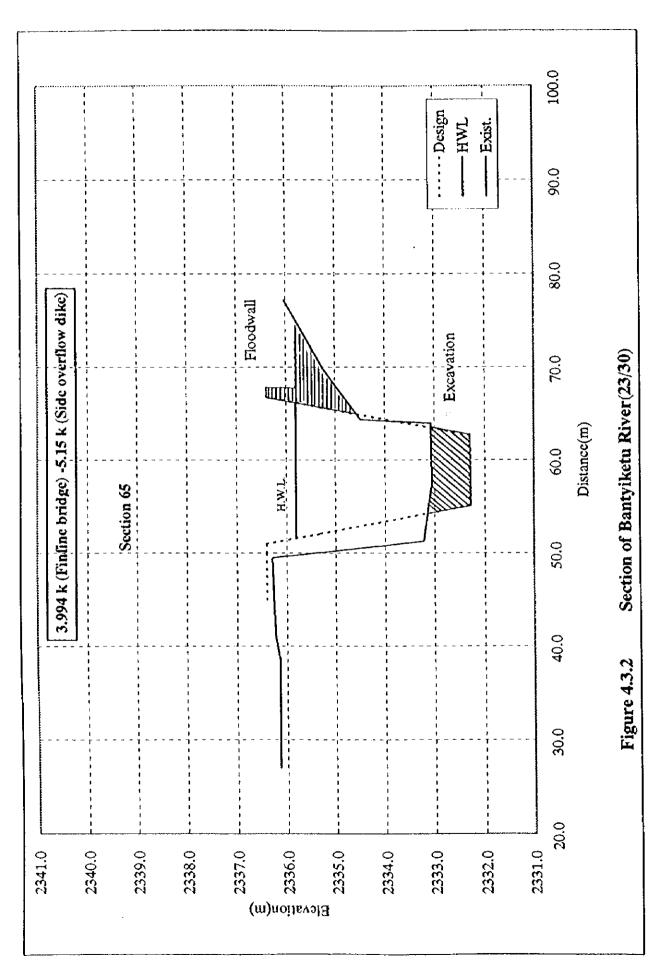



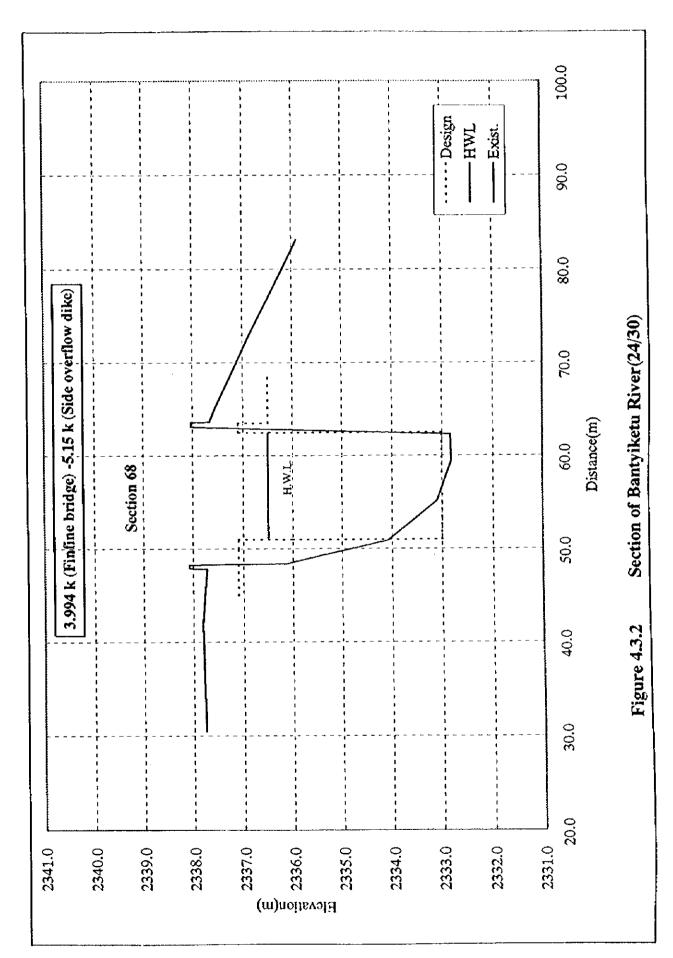



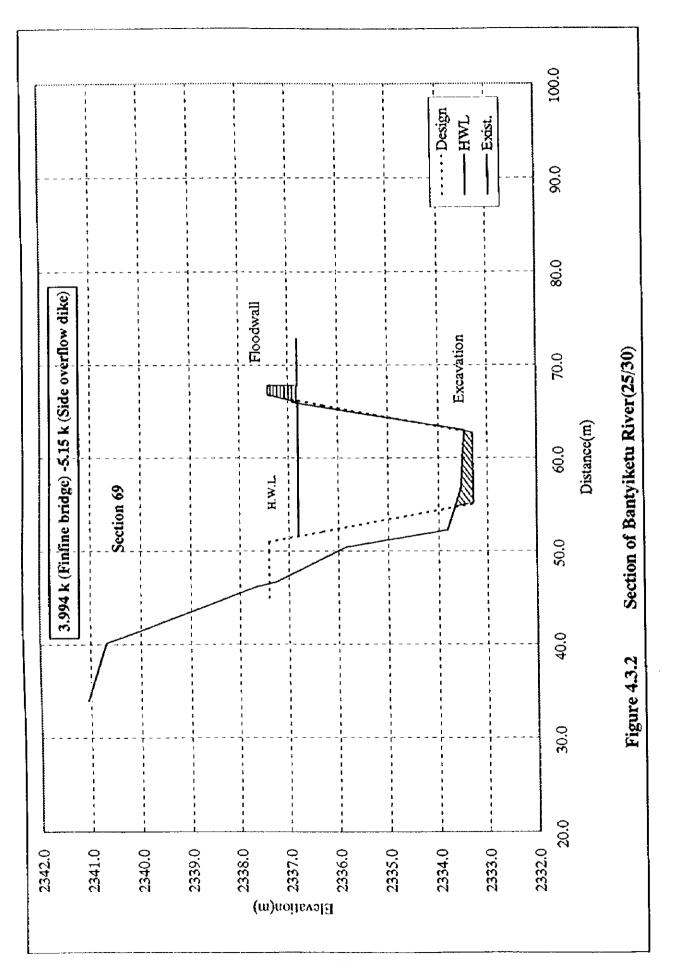



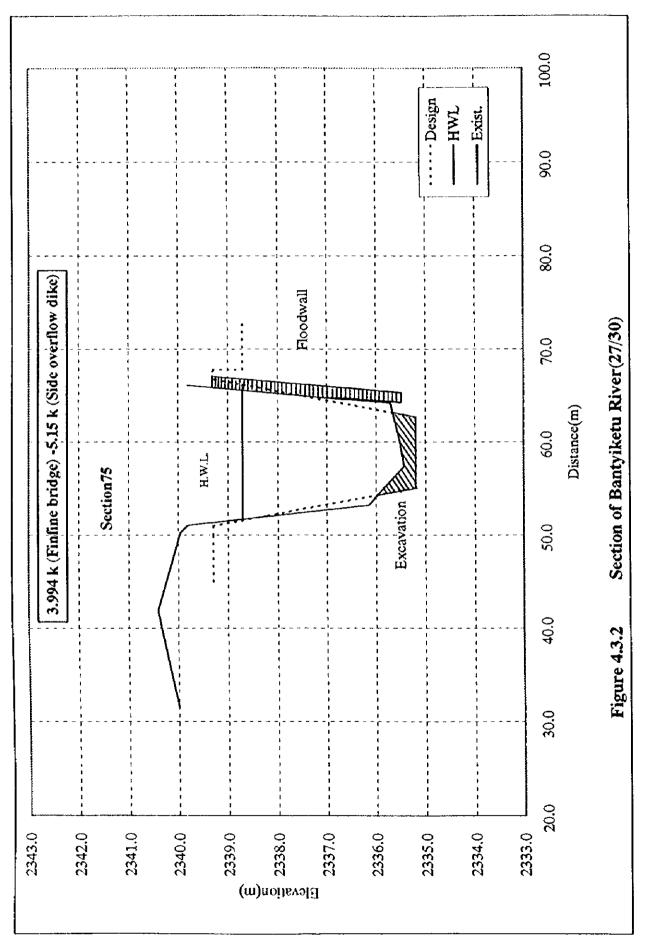


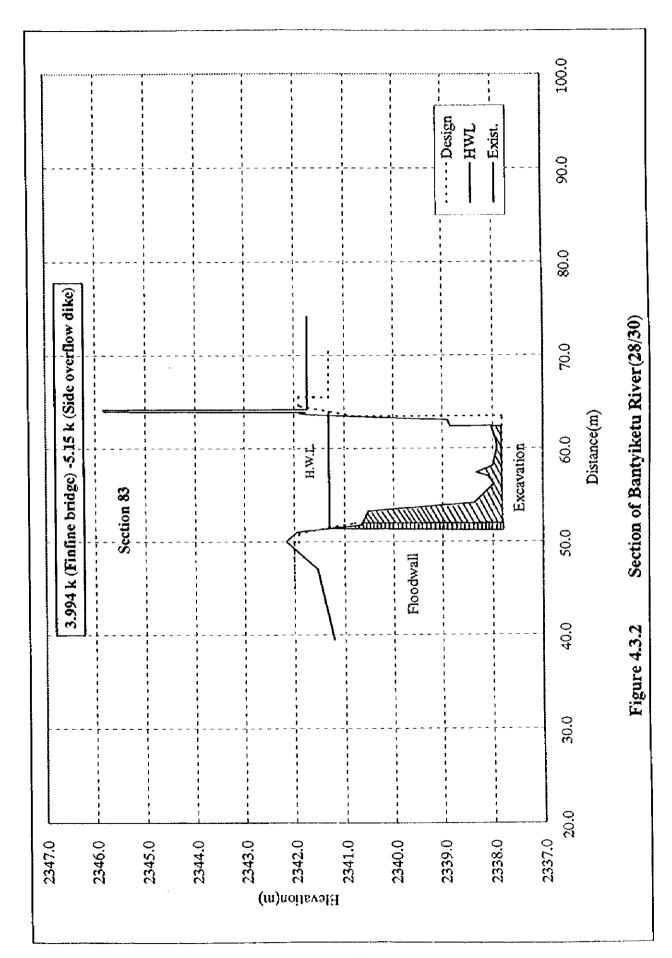



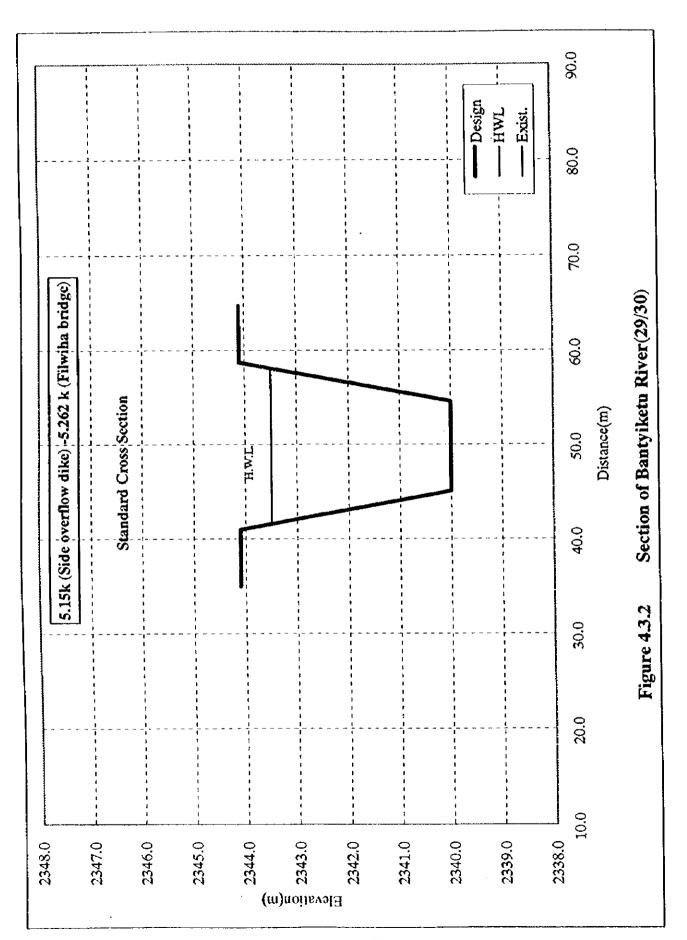


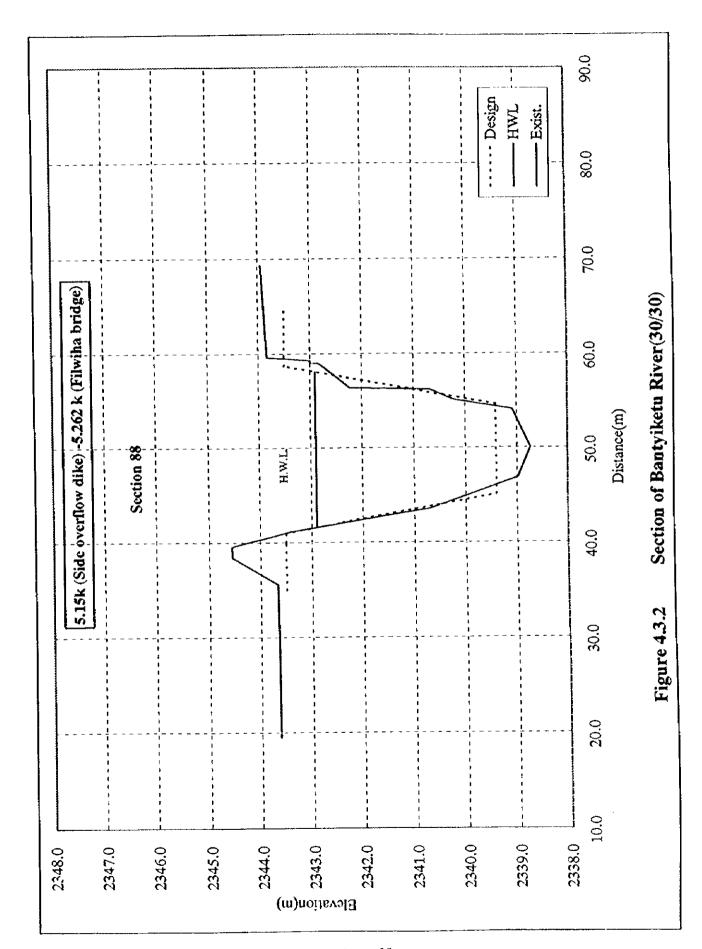




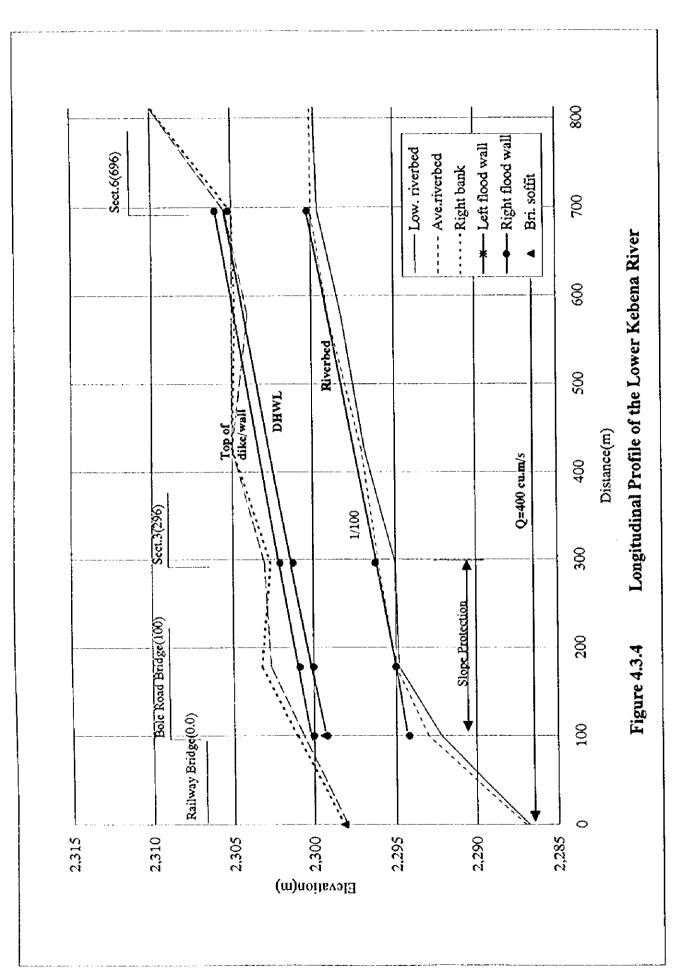

(%)

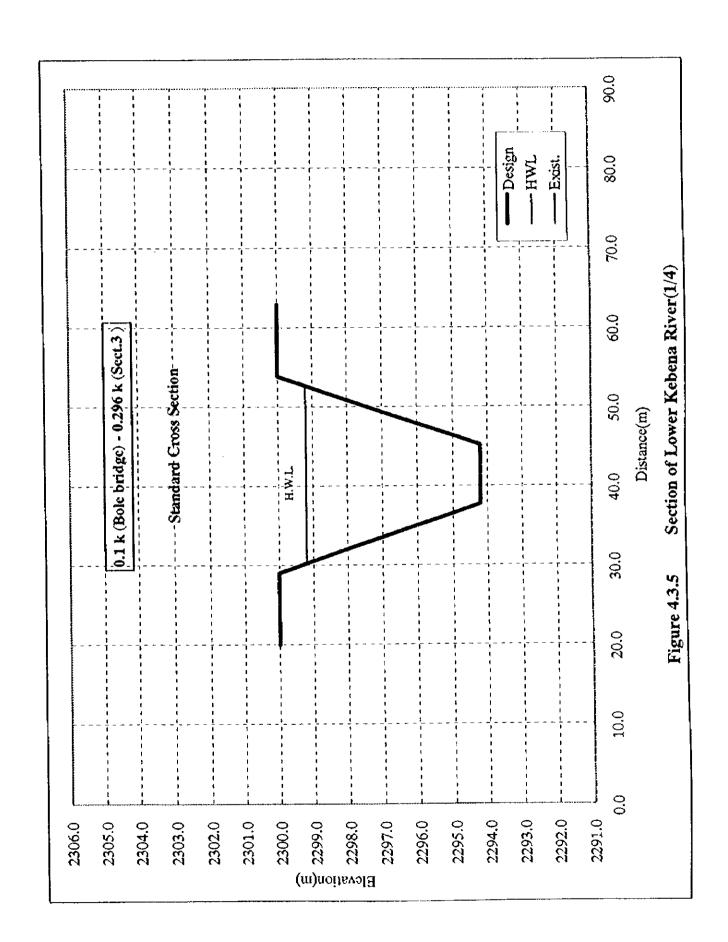


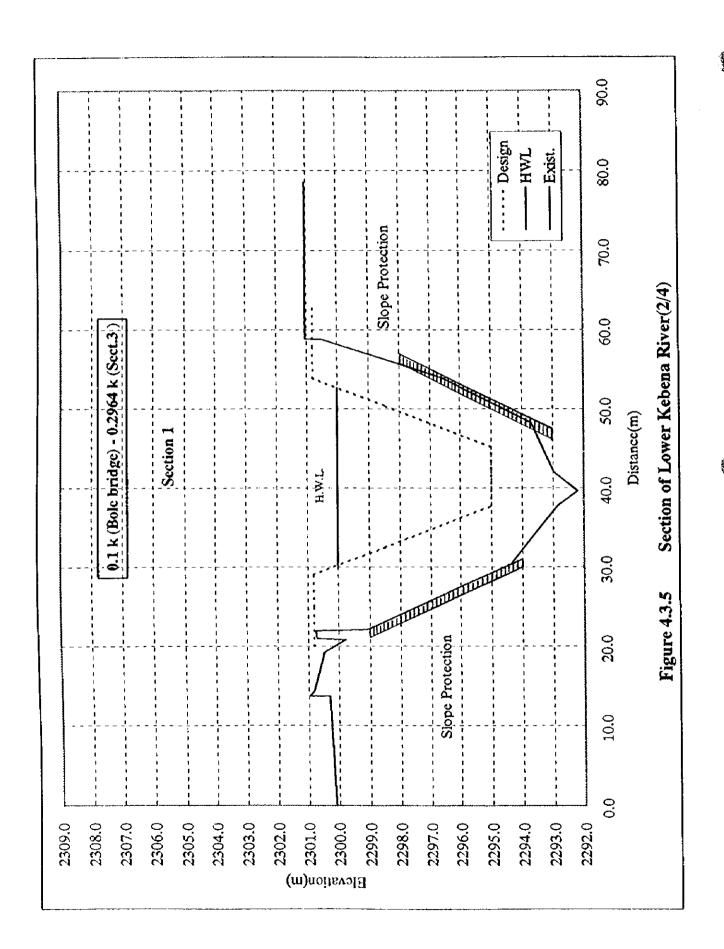



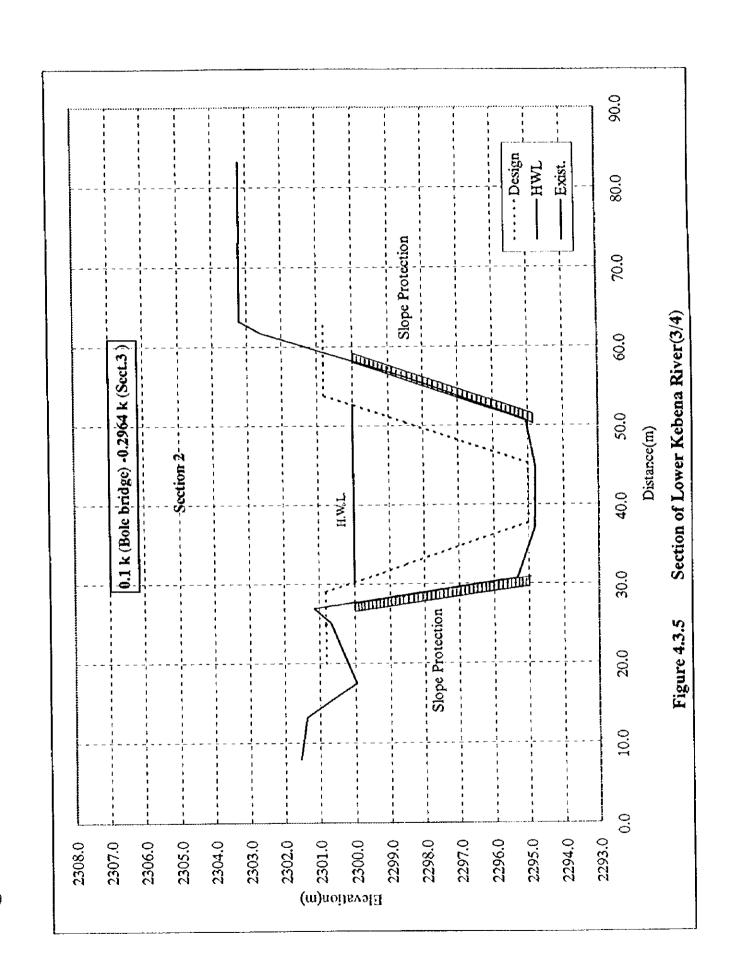





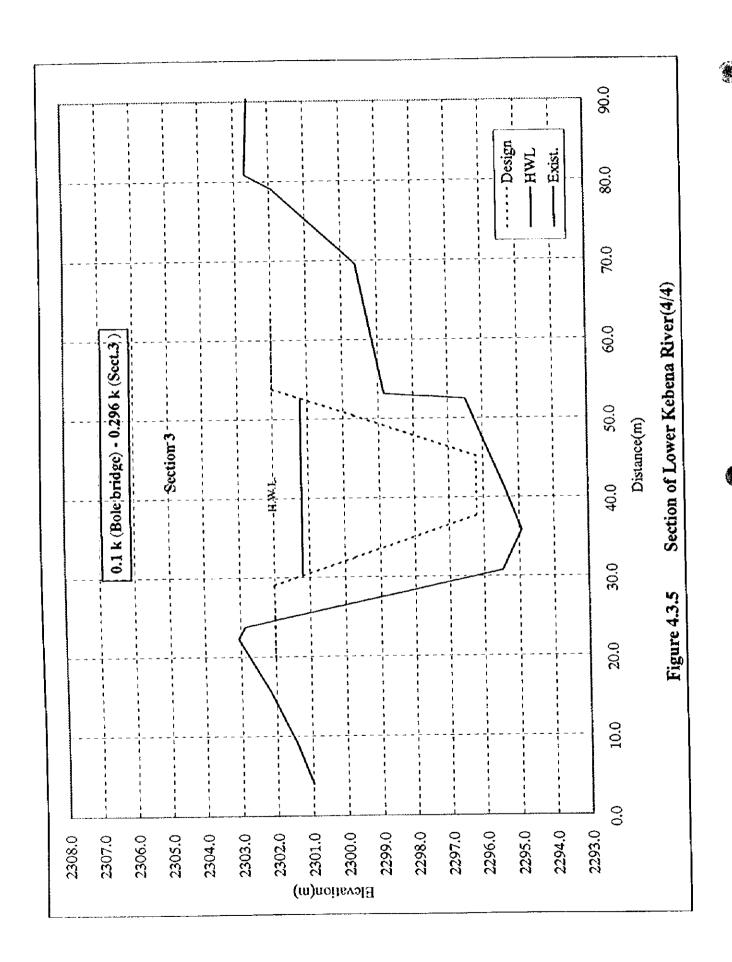


(

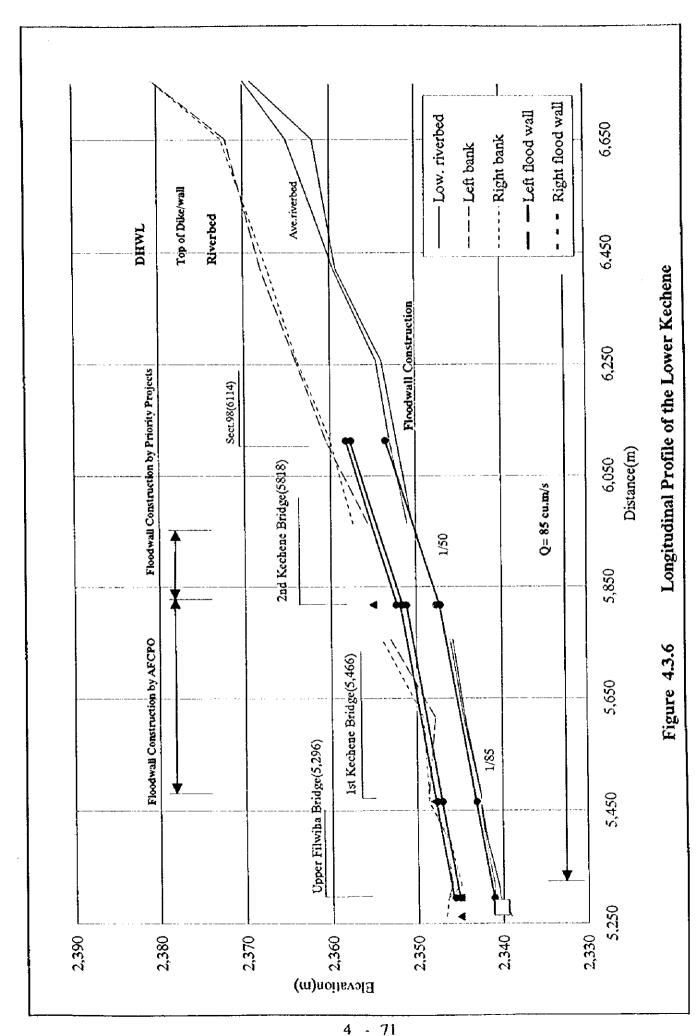


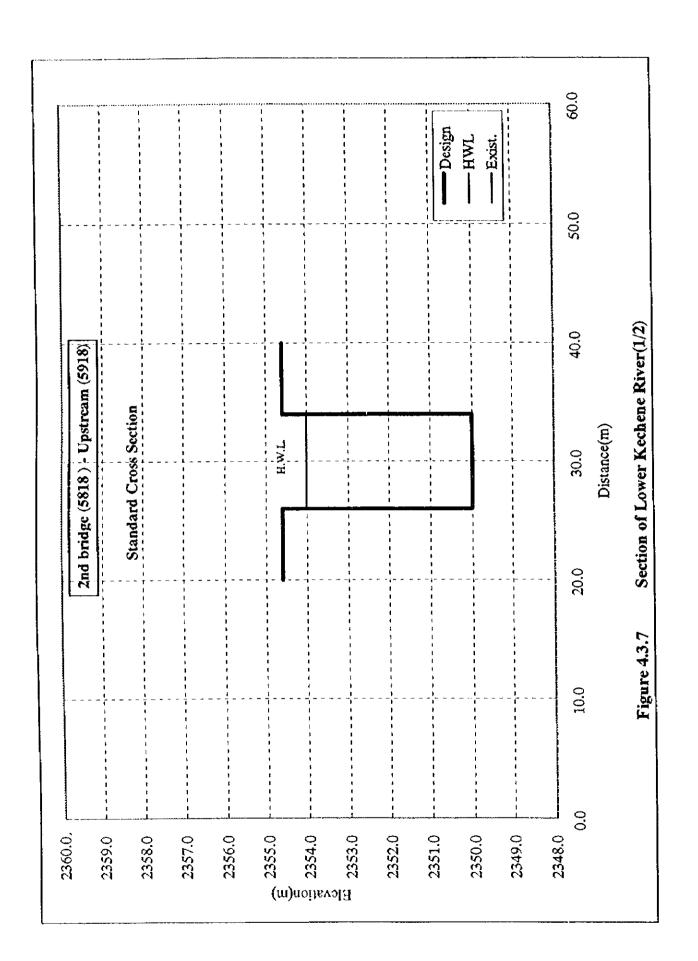



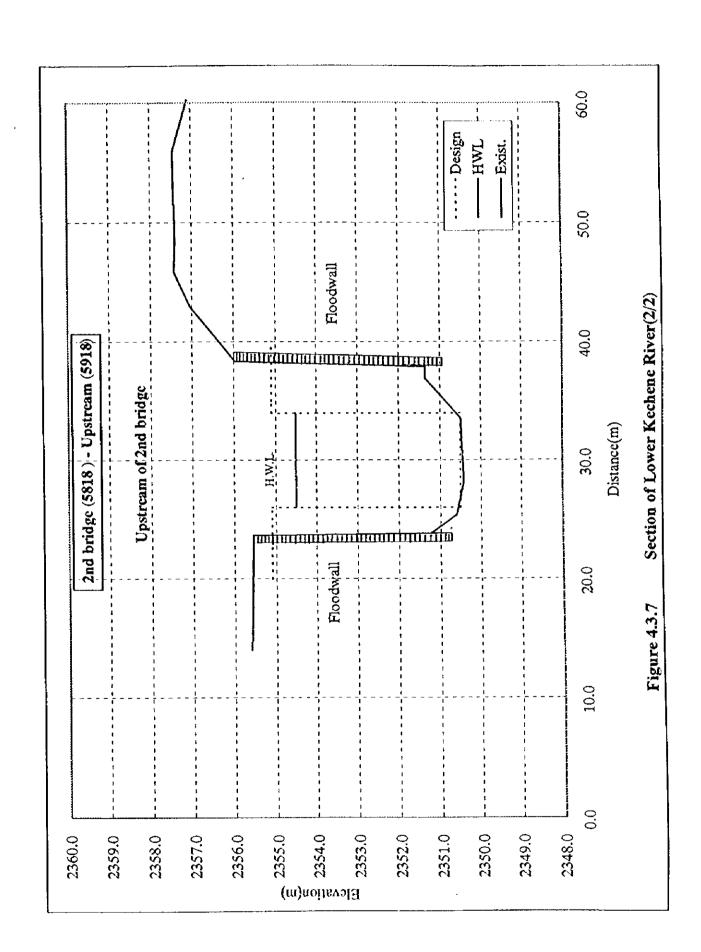



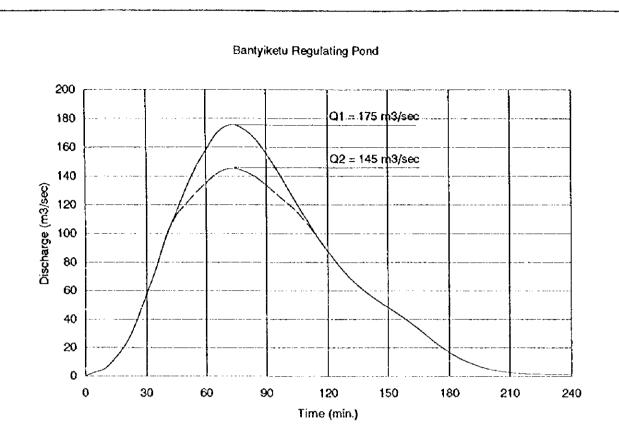

.





-

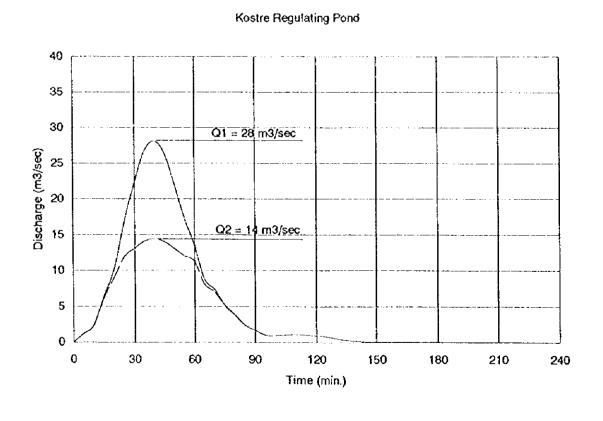
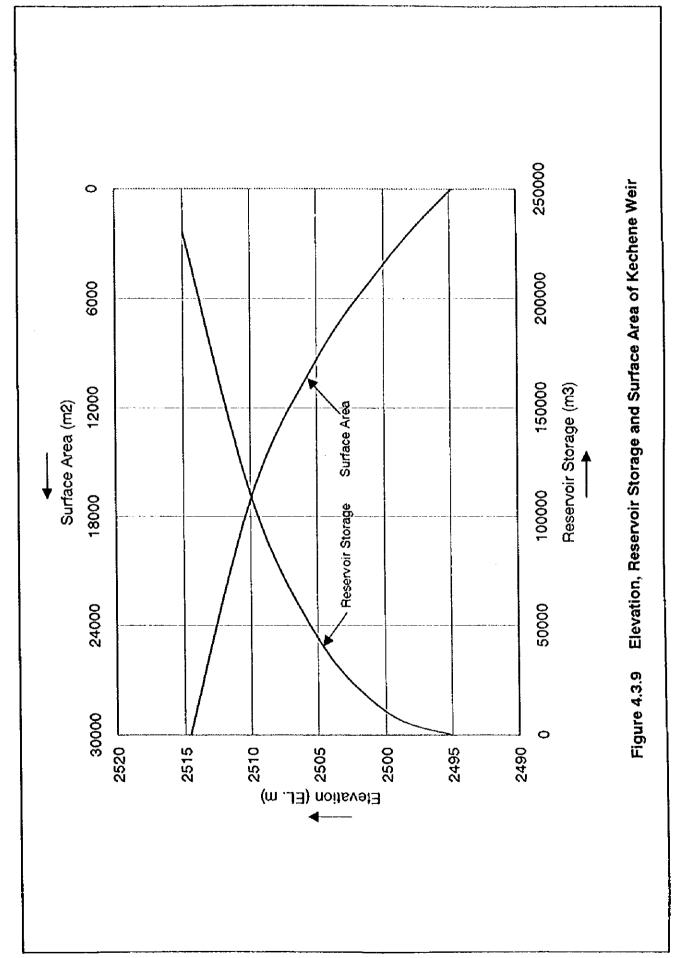
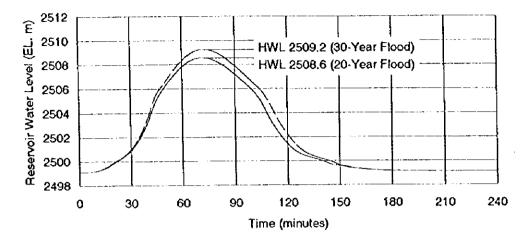


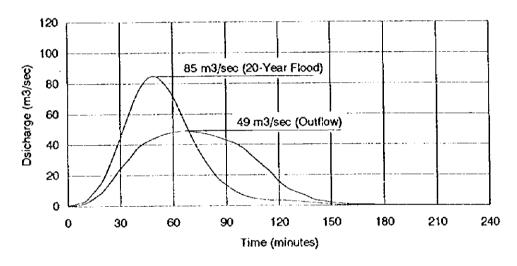










Figure 4.3.8 Flood Control Plan by Regulating Pond







Inflow - Outflow Hydrograph (20-Year Flood)



Inflow - Outflow Hydrograph (30-Year Flood)

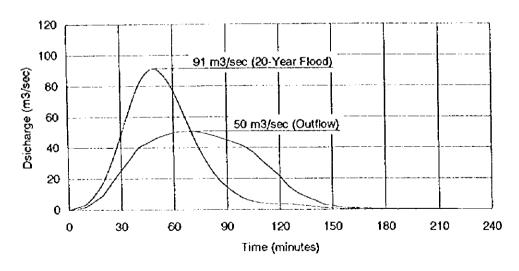
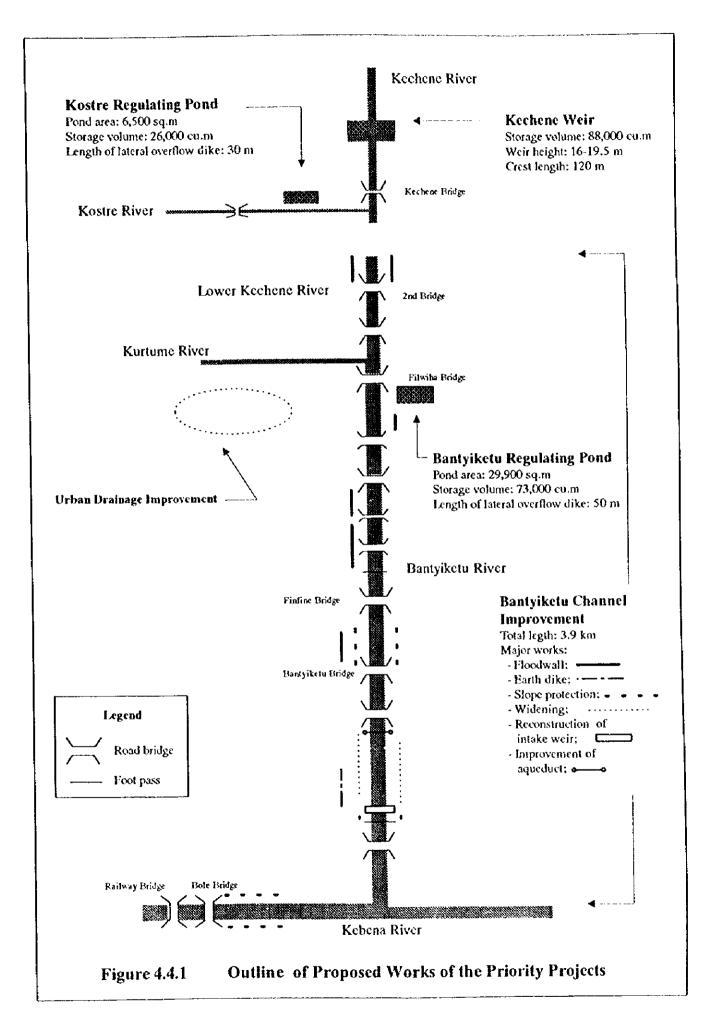
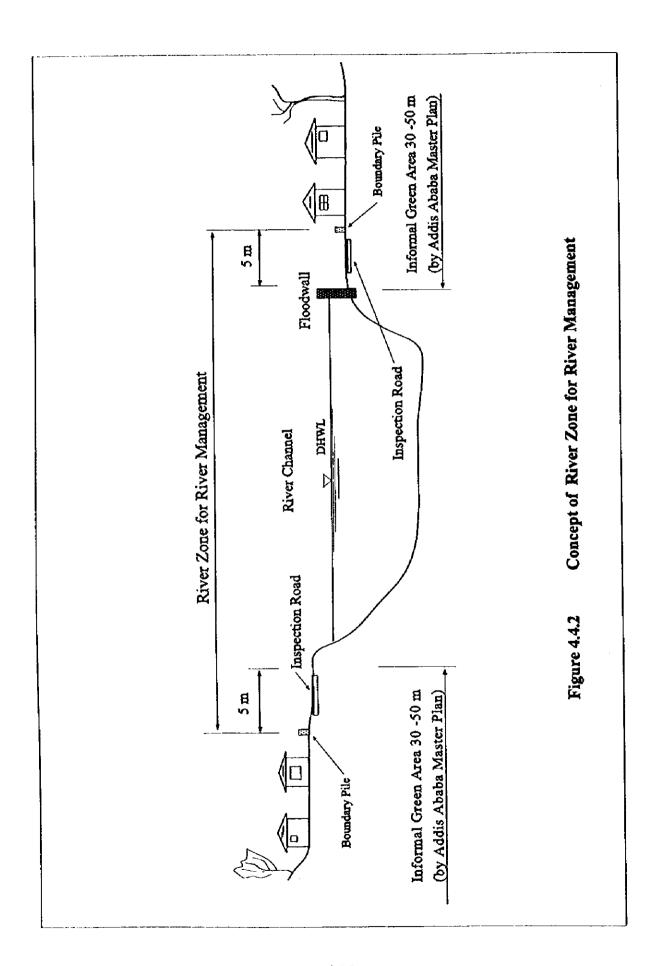
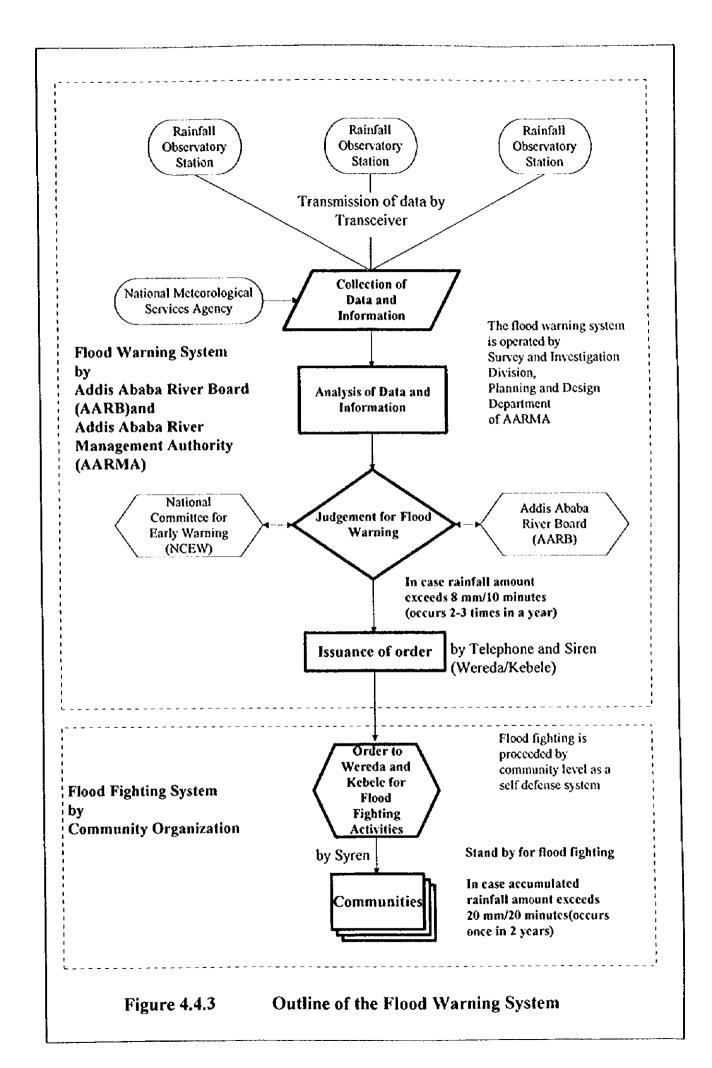






Figure 4.3.10 Flood Control Plan by Kechene Weir







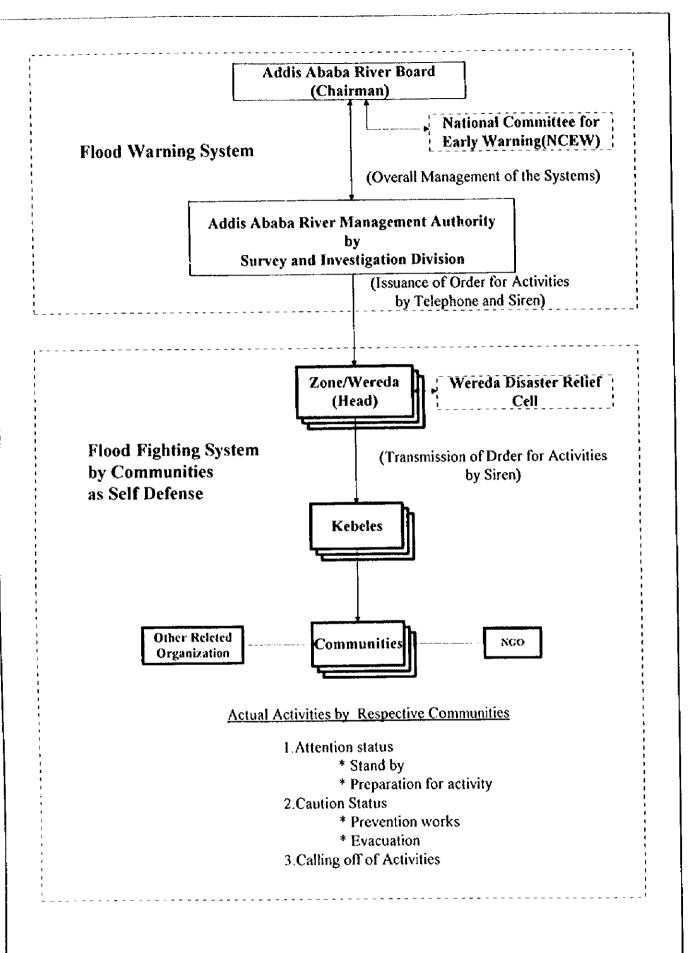



Figure 4.4.4 Community Organization and Communication Chart for Flood Fighting