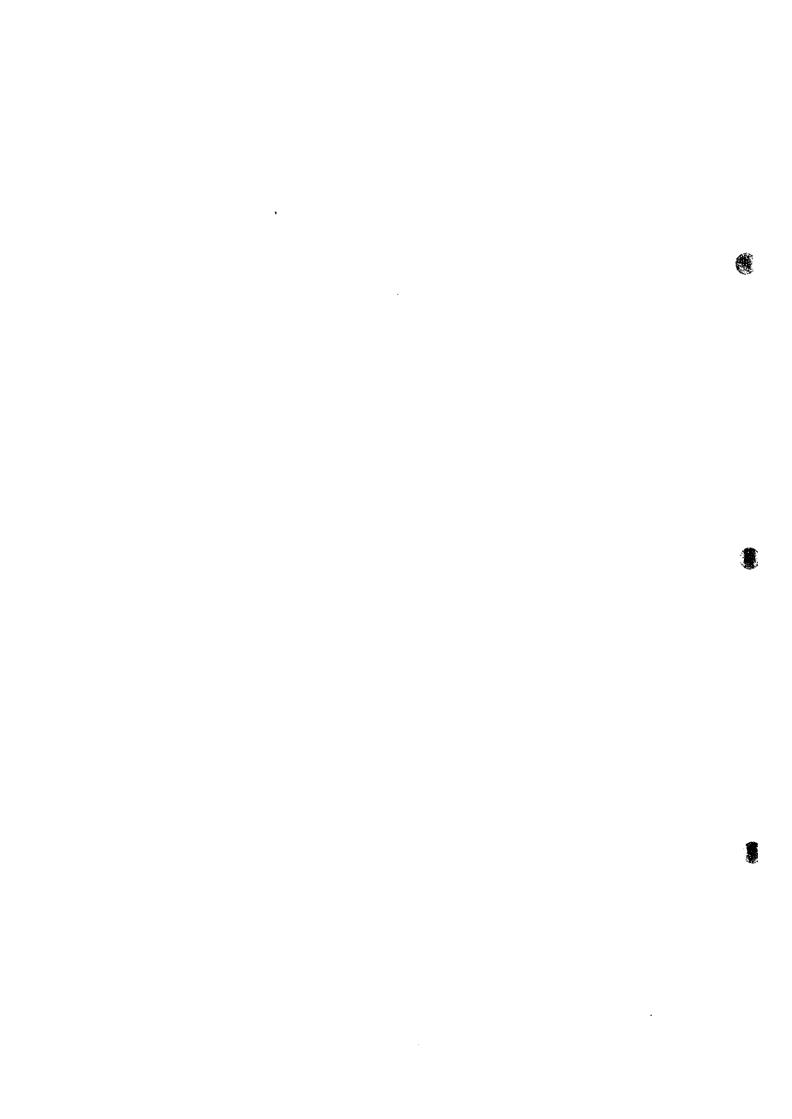
第5章 太湖の水環境と湖内モデル


1

		Ħ
第5章 太	湖の水環境と湖内モデル	
5-1	概説	5.1
·	ĸホス・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· -
5-2- 5-2-		5.1
		5-1
5 - 2 -		5-2
5-2-	- 3	5-4
		5.5
5-3-		5.5
5-3-		5-6
5 – 3 -		5.7
5-3-	7-17-17-17-17-17-17-17-17-17-17-17-17-17	5-8
	太湖富栄養化予測モデルの概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-9
5 – 4 -		5-9
5 4 -		5-9
	- 3 流入負荷モデルと湖内モデルの接合及び計算手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-10
	湖内モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-10
5 5 -	• • • • • • • • • • • • • • • • • • • •	5-10
5 5 -		5-14
	太湖富栄養化予測プログラムの操作の流れ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-23
5 – 7	太湖富栄養化予測モデルの課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-24
	表	
表 5.1.1	太湖富栄養化モデル検討のために実施した現地調査内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.26
表 5.2.1	太湖の鉛直方向の水環境の変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-27
表 5.2.2	太湖の水質の経年変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-30
表 5.2.3	太湖の底泥分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.30
表 5.2.4	底泥の汚染物質含有量と負荷溶出量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-31
表 5.3.1	1次生産量試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-32
表 5.3.2	沈降速度試験結果 · · · · · · · · · · · · · · · · · · ·	5-33
表 5.3.3	有機物分解速度定数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.34
表 5.3.4	底泥溶出量の比較 · · · · · · · · · · · · · · · · · · ·	5-34
表 5.3.5	底泥酸素消費試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-35
表 5.5.1	太湖接続河道の流入流出量 (1995年) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-36
表 5.5.2	湖流シミュレーションに用いる太湖の風況条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.40

>

表 5.5.3	その他の計算諸条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.41
表 5.5.4	太湖接続河道の流入負荷量(1995~1996 年)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-42
表 5.5.5	太湖に接続する水域ブロックの水質形態別負荷量比率 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.50
表 5.5.6	生態系モデルの計算パラメータ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.51
表 5.5.7	太湖の有機物沈降速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-53
表 5.5.8	太湖水域別の底泥の汚染物質含有量及び溶出速度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-54
表 5.5.9	太湖の月別平均水温・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-55
表 5.5.10	太湖の月別平均日射量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-55
図 5.1.1	水塊構造調査及び実験試料採取地点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-56
⊠ 5.2.1	太湖の潮流実測結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-57
図 5.2.2	数値シミュレーションで再現された太湖の湖流パターン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-58
図 5.2.3	湖内の電気伝導分布 (1) [冬季、低水位期] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-59
図 5.2.3	湖内の電気伝導分布 (2) [夏季、高水位期] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-60
図 5.2.4	太湖の栄養塩類濃度の経年変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-61
図 5.2.5	太湖の水域別水質変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-62
⊠ 5.2.6	Chl-a と BOD、COD(Mn)、T-N、T-P との関係 · · · · · · · · · · · · · · · · · · ·	5-64
図 5.2.7	Chl-a と P·COD、O-N、O-P との関係 · · · · · · · · · · · · · · · · · · ·	5-65
図 5.2.8	アオコの発生と T-N、T-P 濃度との関係 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-66
図 5.2.9	1980 年における太湖表層底泥の汚染状況 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-67
図 5.2.10	1980 年と 1996 年の太湖表層底泥の汚染状況の比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-68
図 5.2.11	湖沼底泥の T-N、T-P 含有量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-69
図 5.2.12	太湖の未固結堆積物の層厚分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-70
図 5.3.1	沈降筒実験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-71
図 5.3.2	有機物分解試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-72
3 5.3.3	底泥溶出試験における直上水の濃度変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.77
፟ 5.3.4	汚染物含有量と溶出速度の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-78
⊠ 5.3.5	底泥酸素消費試験における直上水の DO 濃度変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-79
図 5.4.1	富栄養化予測モデルの全体構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-80
図 5.4.2	流入負荷量モデルと湖内モデルの整合関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-81
図 5.5.1	湖流予測の検討手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
⋈ 5.5.2	湖内シミュレーション計算格子及び河川流出入位置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
፟ 5.5.3	水域ブロック分割図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
☒ 5.5.4	太湖の水深分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
図 5.5.5	湖流シミュレーションの結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
図 5 5 6	牛龍系モデルの概念図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-90

×	5.5.7	湖内水質予測の検討手順・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-91
这	5.5.8	水域ブロック別の水質経時変化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5.92
义	5.5.9	湖内水質の再現結果と実測値の比較(1995年)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-100
×	5.5.10	湖内水質の再現結果と実測値の比較(1996年)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-101
X	5.6.1	太湖富栄養化予測プログラムの操作フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-102

第5章 太湖の水環境と湖内モデル

5-1 概説

Ì,

太湖富栄養化モデルを構築するために、第一次現地調査では既存資料及び補足調査により太湖の湖流、水質、底質特性等の概略を把握した。また、太湖のような閉鎖性の強い湖の場合、湖内の物質循環を支配する主要な反応速度項目は、植物プランクトンの増殖速度、沈降物の沈降速度、沈降物の分解速度、底泥からの汚濁物質の溶出速度と考えられる。そこで、第二次現地調査では、第一次現地調査と同じ項目の他に、上記の物質循環速度を把握するための現地観測及び室内実験を行った。実施した調査内容及び調査地点は、表 5.1.1 及び図 5.1.1 に示すとおりである。

5-2 太湖の水環境

5-2-1 湖内流況と水塊構造

(1) 湖内流況

太湖は西~南側の湖岸が単純な形状を示すのに対し、北~東側の湖岸は凹凸に富む複雑な形状を示し、島も多数分布している。太湖の湖流はこのような地形特性に影響を受けるとともに、風況により異なったパターンを形成するものと予想されるが、これを湖面全体について体系的に観測した例は少なく、1987~1988年に中日共同調査として実施されたものがほとんど唯一のものである。

この調査では1987年の5、7、10、12月及び1998年の3月の5回、湖内の33点の各2層で電磁流速計による連続観測が実施された。図 5.2.1 はその観測結果であり、どの点も上層と下層で流向・流速に多少の違いはあるが、大きな違いのある点は少ない。また、この調査の結果だけでは風向・風速と湖流の流向・流速の間に規則的な関係を見出すことは難しいが以下に述べる湖流シミュレーション結果と同様に、風向の変化により湖内にはいくつかの環流が形成されていることが分かる。

太湖の湖流を吹送流(風成流)とみなして物理的な計算によりこれを再現することは何人かの研究者により試みられている。図 5.2.2 はその成果の1例で、十分長い時間一定方向・一定風速の風が吹いた場合の湖流パターンを示している。これらの図から風向により湖内には位置・規模・回転方向の異なるいくつかの環流が形成されることが分かり、梅梁湾や貢湖のような湾入部では湾外に形成される環流により湾の外との水交換が行われにくいことが推察される。

(2) 水塊構造

ある水域で物理的、化学的あるいは生物的な不連続帯が見られる場合は、その不連続帯で区切られた水空間を1つの均質な水塊と見なすことにより、水域内の水の運動を支配する主要な要因を推察できるだけでなく、モニタリング地点の選定や数値モデルの作成に根拠を与えることができる。

図 5.2.3 は本調査で実施された湖内の電気伝導度 (EC) 測定の結果を示している。この図によると、太湖の水位が低い冬季には湖の北部の梅梁湾から竺山湖、貢湖にかけて EC の値が非常に高い。特に、梅梁湾内では変化が大きく、五里湖及びこれにつながる湾奥部は EC 値が 700 μ s/cm 以上を示す。これは太湖北部から流入した汚濁レベルの高い河川水が水交換の悪い湾入部に滞留しているためと考えられる。北部とは対照的に東太湖は EC 値が 300 μ s/cm 以下と湖内で最も低くなっている。

太湖の水位が高い夏季には湖内の EC 値は冬季に比べて全体的に低くなっているが、冬季と 同様、梅梁湾、竺山湖、貢湖では他の水域に比べて相対的に高い。また、西太湖にも EC 値 の高い水域が広がっている。これは伏渓河から流入する汚濁レベルの高い河川水が拡散して いることによると考えられる。一方、南部の小梅口、大銭口から西洞庭山にかけては EC 値 の低い水域が広がっているが、これは小梅口で流入する汚濁レベルの低い苕渓河の河川水が 拡散しているためであろう。

上述のような EC 値の水平分布から、梅梁湾・竺山湖など湾入部では水平方向の拡散係数が極めて小さく、それぞれが独立した水塊を形成していると見ることができる。また、太湖の西部から南部にかけては、河川水の影響範囲が大きいが、湖心部(大太湖)は均質な1つの水塊を形成していると見ることができる。

太湖内部における成層構造の有無を確認するために、本調査では湖内の8地点で鉛直方向の水温・EC・DO・濁度・照度の変化を観測した。表 5.2.1 に示した観測結果から、冬季にはこれらの項目の鉛直方向の変化は小さく、上下にほぼ均一な状態になっていることが分かる。また、夏季もEC・濁度はほぼ均一な状態にあり、水温・DOは水深方向に減少する傾向が見られるが、顕著に成層化した状態は見られない。したがって、太湖では年間を通じて成層構造は形成されないと言ってよい。

5-2-2 水質

(1) 経年変化

表 5.2.2 及び図 5.2.4 は既往の資料から求めた太湖の平均的な水質の経年変化を示している。 データ数や観測位置は年により異なるが、全体として水質が悪化し、富栄養化が進行してい る状況が読みとれる。 1980年と 1990年代を比較すると、COD_(Mo)濃度は約2倍、T-N 濃度は約3倍、T-P 濃度は約4倍になっている。藻類(主に藍藻類の microcystis)の異常増殖による水の華(アオコ)が毎年見られるようになったのは 1980年代からと言われている。

(2) 水域による差異

1991~1993 年の水域別の BOD、 $COD_{(Mn)}$ 、T-N、T-P、Chl-a の濃度変化は図 5.2.5 に示すとおりである。各項目とも概ね太湖北部の五里湖から梅梁湾で高く、東太湖で最も低い傾向を示している。また、 $COD_{(Mn)}$ 、T-N、T-P は、時期により西太湖が最も高く、西太湖側にこれらの有力な供給源があることがうかがえる。

(3) 栄養塩類の形態

植物プランクトンが増殖活動の際に取り込む無機態窒素 (IN: NH4·N、NO2·N、NO3·N) 及び無機態リン (IP: PO4·P) の総窒素 (T-N) 及び総リン (T-P) に対する割合は、1987~1988年の調査結果 (図 5.2.4) に示すように、無機態窒素の方が無機態リンに比べその割合が大きい。また、1996年2月~11月の水質調査結果によると、無機態窒素及び無機態リンの割合はそれぞれ約70%と約4%である。このように太湖においては無機態窒素は無機態リンに比べて、植物プランクトンの活発な増殖を支えるに十分な量が常に存在していると言える。

(4) 植物プランクトンと主要な水質項目の相関性

植物プランクトンとそれに関連する主要な水質項目の相関性は富栄養化モデルを構築するう えでも重要であるので、これを 1991 年 8 月の水質調査の結果について検討した(図 5.2.6)。

植物プランクトンの指標である Chl-a に対して BOD、COD は強い正の相関(1 次相関係数0.7 以上)を示す。一方、T-N、T-P は BOD、COD に比べ相関性が低い。これは、COD が植物プランクトン等の生物体も含めた有機物の量を示し、BOD がバクテリア・植物プランクトン等の呼吸量を示すのに対し、T-N、T-P は有機態と無機態の総量を示すために、BOD やCOD に比べて植物プランクトンの増殖・衰退に伴う変化を直接反映しないことによる。

したがって、富栄養化モデルにおけるこれら水質項目相互の関係をより正確に定式化するためには、COD、窒素、リン等について粒子態と溶存態に分離し、窒素及びリンは溶存態をさらに有機態 (D·O-N、D·O-P) 及び無機態 (IN:NH4-N、NO2-N、NO3-N、IP:PO4-P) に分離して分析・解析することが必要である。

図5.2.7には1996年5月及び7月の水質データ(分析機関:TBA)から得たCbl-aとP・COD(Mn) 粒子態 COD(Mn) 、O-N (有機態 N) 、O-P (有機態 P) の一次相関を示す。これを見ると

Chl-a と O-P との相関性 (1 次相関係数 γ =0.871) が最も強い。このことから、太湖では N よりも P が植物プランクトンの制限要因として強く働いていると考えられる。

(5) 他の湖沼との比較

太湖における富栄養化の特徴を把握するために、水質について他の湖沼と比較した。

図 5.2.8 は湖水中の T-N、T-P 濃度の散布図である。これらによると、アオコが恒常的に発生するような富栄養化の進行が著しい湖沼は右上方に位置しており、そのなかでも太湖は富栄養化の進行が早い方に属する。

5-2-3 底質

(1) 底泥の汚染レベル

1980 年に行われた太湖の表層底泥の底質分析結果を図 5.2.9 に示す。表層底泥中の $COD_{(Cr)}$ と T-N の濃度は水質汚濁の進行が著しい太湖北部で高く、中央部から東部にかけて低くなる傾向が見られる。一方、T-P の濃度は $COD_{(Cr)}$ 、T-N とやや異なり、太湖北部だけでなく南西部においても高くなる傾向を示している。

本調査における底質分析 (分析機関:TBA) の結果は、表 5.2.3 に示す。表層底質の COD(cr)、T-N、T-P 濃度は、上記の調査結果と同様に、太湖北部の五里湖 (SB1) 、梅梁湾内 (SB2、SB3) 及び東太湖 (SB8) で高い値を示す。

図 5.2.10 は 1980 年と 1996 年の表層底泥の汚染状況を比較したものであるが、いずれの地点でも 1996 年の方が濃度が高くなっていて、特に太湖北部の五里湖 (SB1) から梅梁湾奥 (SB2) でこの傾向が著しい。

図 5.2.11 は底泥中の T-N、T-P 濃度の散布図である。太湖の底泥の富栄養化はこれらの湖沼のなかでは低い方に位置している。

このように、太湖においては流域からの負荷の増大に伴って湖水の富栄養化は著しく進行しているが、底泥はそれほど悪化していないことと言える。

(2) 底泥の層厚分布

本調査で実施した湖底に堆積している未固結堆積物 (その一部が汚泥と考えられる) の層厚 測定の結果を図 5.2.12 に示す。 未固結堆積物は湖岸及び湾入部に厚く分布し、湖心部にはほとんど堆積していない。これは 湖心部では風の吹送距離が長く、波も高くなるので、土砂は一旦堆積してもすぐに巻き上げ られて年間を通じて平均的に波の弱い水域へ運ばれるためと考えられる。

(3) 底泥溶出負荷の影響

太湖における底泥溶出負荷の影響を把握するために、軟質泥の分布状況、底質と溶出量の相 関関係及び各水域の底質分析結果等を基に、太湖全域の底泥溶出負荷量を見積もった。表 5.2.4 には、水域別の溶出負荷量を示す。また、後述する流入負荷モデルにより得た 1995 年 の総流入負荷 (陸域負荷) に対する底泥溶出負荷の割合は、COD(Ma) が約 19%、T-N が約 4%、 T-P が約 3%となっている。

このように、底泥溶出負荷の影響は、特に植物プランクトンの増殖に関係する栄養塩類 (窒素、リン) に関してみると、流入負荷に比べて小さいことがわかる。

5-3 汚濁物質循環速度に関する実験結果

5-3-1 植物プランクトン生産量試験結果

太湖の一次生産力を把握するために、明暗ビン試験を行った。

明暗ビン法により測定した光合成量から一次生産速度を算出する方法は次のとおりである。

純生産速度(mg C/Chl-a mg/hr)

=0.3×純光合成量(mgOs/l)/Chl-a 現存量(mg/L)/測定時間(hr)

呼吸速度(mg C/Chl·a mg/hr)

=0.3×呼吸量(mg O2/1)/Chl-a 現存量(mg/1)/測定時間(hr)

総生産速度(mg C/Chl-a mg/hr)

=純生産速度(mg C/Chl-a mg/hr)+呼吸速度(mg C/Chl-a mg/hr)

ここで、 O_2 量から C 量へ変換する場合の変換係数は、光合成商 (PQ) を通常よく使われている 1.25 として次式から算出した結果、0.3 となった。

 $C(mg) = (O_2/PQ) \times (12.01/32.00) = 0.3 \cdot O_2(mg) \quad (PQ=1.25)$

また、日生産速度は次のようにして求めた。

日純生産速度(mg C/L/day)

=純生產速度(mg C/Chl-a mg/hr)×Chl-a 現存量(mg/L)×測定時間(hr)×(Rd/R)

日呼吸速度(mg C/L/day)

=呼吸速度(mg C/Chl-a mg/hr)×Chl-a 現存量(mg/l)×24(hr)

日総生産速度(mg C/l/day)

= 日純生産速度(mg C/L/day) + 日呼吸速度(mg C/L/day)

ここで、測定時間内の純生産量を1日当たりの生産量にするために、1日の総日射量 (Ro) を測定時間内の日射量 (R) で割った値を測定時間内の生産量に乗じている。なお、中国科学院南京地理湖沼研究所による過去の調査結果によると、R/Roは夏季の平均的な状態で約30%と報告されており、本調査ではR/Ro=0.3と仮定し日純生産速度を算出した。

表 5.3.1 には、梅梁湾奥部 (SB3) 及び湾口部 (SB4) における一次生産量の算出結果を示す。 これらの結果をみると、梅梁湾奥部の日総生産速度は湾口部に比べ約3倍大きくなっている。

また、比増殖速度 (1/day) は、本調査で得た生産速度(mg C/Chl-a mg/hr)を植物プランクトン中の炭素含有量で割ることにより求められる。ここでは、霞ヶ浦で報告されている植物プランクトン中の炭素含有量の値 (49mg C/Chl-a mg) を用いて、比増殖速度 (1/day) を求めると、次のとおりである。

	比增殖速度(1/day)
梅梁湾奥部 (SB2)	0.40~1.07
湾口部 (SB4)	0.34~1.02

5-3-2 沈降速度試験結果

太湖の浮遊粒状物質(生物起源、非生物起源)の沈降速度を把握するために、沈降筒試験及び沈降量試験を行った。

(1) 沈降筒試験

アクリル製パイプ (水深 100cm、内径 6.2cm) でできた沈降筒内に均一に浮遊物質を分散させ、水面から約7割の水深における濁度を所定の時間毎に測定した。

試験ケースは、以下の3ケースである。

ケース1:湖水

ケース2:底泥巻き上げ水(船舶移動時に発生した濁水)

ケース3:湖水+底泥

図 5.3.1 には本試験の沈降筒による沈降速度の加積曲線を示す。各ケースの沈降速度の中央値で見ると、ケース 1 (湖水) が 0.5m/day、ケース 2 (底泥巻き上げ水) が 17.3m/day、ケース 3 (湖水+底泥) が 19.0m/day となっている。

(2) 沈降量試験

I

現場における沈降量試験では、沈降物捕集器 (セジメントトラップ) を水深 1m に1昼夜設置し、回収前後の沈降筒内の試水を分析し、沈降量 (F:単位時間・単位面積当たりの平均沈降フラックス及び沈降速度を測定した。沈降量及び沈降速度の算出は、次のとおりである。

 $F = (R - C_0 \cdot V) / (A \cdot T)$

ここで、 R: i 集器内の粒状物質

Co: 捕集器設置前の浮遊粒状物質

V : 捕集器容積

A : 捕集器開口部の断面積

T:捕集器設置時間である。

また、沈降速度 (ω : m/day) は、次のように求められる。

 $\omega = F / C_0$

表 5.3.2 には、上記の方法により求めた各地点の沈降量試験結果を示す。各地点の SS の沈降速度をみると、水域の形状が閉鎖的となっている五里湖 (SB1)、梅梁湾 (SB3)及び東太湖 (SB8)では、SS の沈降速度は 0.58~3.1m/day の範囲にある。一方、水域が開放的で波浪の影響を受けやすい西太湖及び大太湖では、14~22m/day の範囲にあり、室内の沈降筒試験で得た底泥巻き上げ水の沈降速度と同程度となっている。また、Chl-a の沈降速度は 0.07~1.7m/day (平均 0.79)の範囲にある。

5-3-3 有機物分解試験結果

有機物分解試験期間における有機物の濃度変化は、図 5.3.2 に示すように西太湖(SB5) 及び 大太湖(SB6) を除くと、時間とともにほぼ指数関数的に減少しており、水中の有機物の分解 は、以下のような一次反応式で表すことができる。なお、SB5 及び SB6 の結果については、 有機物の分解に伴う減少傾向がはっきりしない。これは、SB5 及び SB6 の試料が底泥から巻 き上がった沈降物をかなり多く含むためであり、一般にこの底泥から巻き上がった物質は河 川由来の有機物や湖内の植物プランクトン等により生産されたものに比べて極めて分解速度 が遅いと言われている。

dc/dt = -kc

ここで、 c : 有機物濃度 k : 分解速度定数

上式は次のように変形され、分解速度定数 (1/day) は試水の有機物濃度の対数値と経過日数の一次回帰式の傾きとして求められる。

ln C t = ln C0 - k t

ここで、 Ct :試験開始からt日目の有機物濃度 (mg/l)

t : 分解時間 (day)

算出した各有機物の分解定数 (1/day) は表 5.3.3 に示す。底泥からの巻き上げの影響が比較的少ない五里湖 (SB1)、梅梁湾 (SB3)及び東太湖 (SB8)における結果をみると、水中の各有機物の分解速度としては、P·COD(cr)が 0.028~0.069、D·COD(cr)が 0.023~0.067、O-Nが 0.008~0.018、O-Pが 0.024~0.040 の範囲にある。

5-3-4 底泥溶出試験結果

(1) 底泥溶出試験

底泥溶出試験期間における直上水の濃度変化は、図 5.3.3 に示すように五里湖 (SB1) 及び梅梁湾中央部 (SB3) では時間とともに顕著に増加している。そこで、これらの直上水中のCOD(cn、NH4-N及びPO4-Pの増加量を基に太湖の底泥溶出速度を算出した。

表 5.3.4 には、本調査で得た結果と他の湖沼における報告値を比較して示す。太湖において 顕著な溶出が確認された五里湖及び梅粱湾の底泥溶出量は、琵琶湖の南湖と同程度である。

また、太湖における底質と底泥溶出量の関係は、図 5.3.4 に示すように底質の含有量と強い正の相関を示している。なお、富栄養化モデルの入力条件となる太湖の各水域の底泥溶出量は、本調査及び既存資料による底質分析結果と上記の底質と底泥溶出量の関係を基に設定した。

(2) 底泥酸素消費試験

アオコが多発する梅梁湾における湖水と底泥との関係を把握するために、底泥溶出試験の他に底泥酸素消費試験を行った。試験期間中の直上水の DO 濃度変化を表 5.3.5 及び図 5.3.5 に示す。底泥酸素消費速度は梅梁湾では湾央に比べ湾奥でやや大きく、100 mg/m²/日となっている。

		DO 消費速度(mg/m²/日)	備考
中国	太湖(梅梁湾)	0~100	本調査 (夏季)
日本	諏訪湖	180~780	

5-4 太湖富栄養化予測モデルの概要

5-4-1 太湖富栄養化予測モデルの基本的考え方

本調査で構築する富栄養化モデルは、行政機関が太湖の富栄養化対策を立案する際のツール として使われるモデル、すなわち施策決定支援型のモデルである。

施策決定支援型のモデルは、保全目標となる水質項目あるいはそれに関連する項目が状態変数として組み込まれ、かつ想定される保全対策が入力条件として設定できることが重要である。さらに、施策決定支援型のモデルの場合は、予測対象水域において卓越し、しかも水質変化を支配する過程を最小限組み込み、計算が比較的簡単に実行できるものが求められる。

5-4-2 太湖富栄養化予測モデルの基本構成

太湖の富栄養化モデルは基本的には流入負荷量モデルと湖内モデルから構成される。

このうち流入負荷量モデルは、太湖に接続する河川の流入・流出水量を算定する河川水量モデルと河川水質を算定する河川水質モデルの2つのサブモデルから構成される。河川水量モデルは世銀プロジェクトにより開発されたものである。

いっぽう湖内モデルも、湖流特性を把握するための湖内水理モデルと富栄養化に伴う水質変化を把握するための湖内水質モデルの2つのサブモデルから構成される。湖内水質モデルは、水質シミューションの計算時間を短縮するため、水質的にほぽ一様と見なせる水域をブロックとして扱い、ブロック単位で水理量及び流入負荷量等を入力して水質変化を予測するモデルとなっている。

5-4-3 流入負荷量モデルと湖内モデルの接合及び計算手順

図 5.4.1 に示すように河川水量モデルから得られた河川別の流入・流出水量計算結果が湖流シミュレーションの入力データとして湖内モデルに組み込まれることにより流入負荷量モデルと湖内モデルが接合される。次に、河川水質モデルから算出される河川別の流入負荷量データ (T・COD、T・N、T・P の流入負荷量) を湖内水質モデルの入力データとして引き継ぐために、最終的にブロック毎の河川流入・流出水量及び形態別の水質 (S・COD、P・COD、I-N、O-N、I-P、O-P) に変換し、河川流入出水量とともにブロック単位で湖内水質モデルに組み込まれる。

富栄養化モデルの計算手順は、図 5.4.2 に示すように流入負荷量モデル及び湖内モデルの計算を実行する上で必要な各種データの読み込み及び引継・出力用ファイルの作成を行った後、流入負荷量モデルから計算を開始し、湖内モデルの流況計算及び湖内水質計算を順次行い、1日ステップ毎に各モデルの計算結果を出力し、これを1年分 (365 日ステップ) 継続するものである。

5--5 湖内モデル

5-5-1 湖内水理モデル

(1) 湖内水理モデルの基本的考え方

太湖は水深が最大で 2.6m の浅水湖であり、また現地調査で行った水塊構造調査の結果より、 鉛直方向にはほぼ均一な水質分布状態にあるとみることができる。したがって、密度効果は 比較的小さいと考えられるため、鉛直方向については 1 層として取り扱った。

湖内水理モデルは、太湖の湖流特性を解析するために湖内を 1.2km メッシュで表現した 2次元 1層モデルによる湖流シミュレーションプログラム (メッシュモデル) を含む。さらに、この湖流シミュレーションの計算結果を基に湖内水質モデルの入力データとなるブロック毎の水理量 (ブロック間移動水量) を求めるプログラムが含まれている。

(2) 計算方法

① 検討手順

湖内水理モデルによる湖流予測は、図 5.5.1 に示す手順で行った。

太湖の湖流について、まず本モデルの再現性を検証するために、安定した風況下における湖流シミュレーション (2次元1層モデル)を行い、本計算結果がこれまで報告されているような湖流パターンを形成するかどうか検討した。

上記の検討結果にもとづいて、湖内水理モデルの各種パラメータを設定した後、湖内水質モデルの検証対象年度である 1995 年及び 1996 年の湖流について湖流シミュレーション及び水域ブロック間移動水量計算を行った。

② 湖流シミュレーション

湖流シミュレーションは水域ブロック間の移動水量算出の基礎となるものであり、以下 に示すナヴィエ・ストークスの運動方程式と連続式を用いて差分法により計算する。

計算に当たっては、対象水域を正方メッシュで格子分割し、各々の格子について予測対象年 の水文量 (河川流入・流出水量) 及び風況等の入力条件を与えて、流速及び水位を求める。

【運動方程式】

$$\frac{\partial M}{\partial t} = -g(H+\zeta) \frac{\partial \zeta}{\partial x} - \frac{\gamma_b^2 M \sqrt{M^2 + N^2}}{(H+\zeta)}$$

$$-\frac{1}{(H+\zeta)} \left(\frac{\partial M^2}{\partial x} + \frac{\partial MN}{\partial y} \right) + A \left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2} \right)$$

$$+ \frac{\rho_A}{\partial x} \cdot \gamma_A^2 \cdot Wx \sqrt{Wx^2 + Wy^2} + fN$$

$$\frac{\partial N}{\partial t} = -g(H+\zeta) \frac{\partial \zeta}{\partial y} - \frac{\gamma_b^2 N \sqrt{M^2 + N^2}}{(H+\zeta)}$$

$$-\frac{1}{(H+\zeta)} \left(\frac{\partial N^2}{\partial y} + \frac{\partial MN}{\partial x} \right) + A \left(\frac{\partial^2 N}{\partial x^2} + \frac{\partial^2 N}{\partial y^2} \right)$$

$$+ \frac{\rho_a}{\rho} \cdot \gamma_s^2 \cdot W \dot{x} \sqrt{W \dot{x}^2 + W \dot{y}^2} + f N$$

【連続の式】

$$\frac{\partial \zeta}{\partial t} = -\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y}$$

$$M = \int_{-\zeta}^{H} u \, dz \qquad N = \int_{-\zeta}^{H} v \, dz$$

u,v : x、y 軸方向の流速 (cm/s) g : 重力加速度 (980 cm/s²) t:時間(s)

H:水深(cm)

ζ : 水 位 (cm)

A : 水平渦動粘性係数 (cm²/s)

f: コリオリの係数 (1/s)

 $f = 2 \omega s i \pi \phi$

ω: 地球の自転角速度 (rad/s)

φ: 計算領域の北緯(°)

y。 : 水面摩擦係数 (一)

γ b : 底面摩擦係数 (一)

 $\gamma^2 = \frac{n^2 g}{H^{1/3}}$

n : 粗度係数

Wx, Wy: x方向、y方向の風速 (cm/s)

ρ : 流体の密度 (g/cm³)ρ a : 大気の密度 (g/cm³)

③ ブロック間移動水量計算

ブロック間移動水量計算は、湖内水質モデルの入力データとなるものであり、湖内水質シミュレーションを行う上での計算時間の短縮のため、水質的にほぼ一様と見なせる水域をブロック区分し、ブロック間の移動水量 (水交換量) を算出する。

ブロック間移動水量は、湖流シミュレーションにより得られた流速および水位から各ブロック境界面について、以下の式により算出される。

$$Q = u \times (h + \zeta)$$
 $\pm \pi \operatorname{id} Q = v \times (h + \zeta)$

ここに、 O : ブロック間移流量 (m³/s)

u, v : 水平流速成分 (m/s)

h : ブロック境界面の水深 (m)

さ : 水位 (m)

(3) 計算ケース

湖流シミュレーション (2次元1層モデル)の計算ケースは、下表に示すように湖内水理モデルの再現性の検証用として4ケース、湖内水質モデルの検証に用いる入力条件用として2ケース (現況) とした。

ケース	風 況 条 件		河川流入・流出水量	水深
	風向	風 速		
検 証1	S	5 m/s		1,9 m
検 証2	N	5 m/s		
検 証3	SE	5 m/s		
検 証4	W	5 m/s		1,9 m
現 況1	1986~1995	年の太湖周辺	1995年1月~12月の	1995年1月1日の
(1995年)	の月別風向・	風速 (平均値)	日別流入・流出水量	水深を初期値設定
現 況2	1986~1995	年の太湖周辺	1996年1月~12月の	1996年1月1日の
(1996年)	の月別風向・	風速 (平均値)	日別流入・流出水量	水深を初期値設定

(4) 計算条件

① 計算格子

湖流シミュレーションで用いる計算格子は、図 5.5.2 に示すように太湖の水域形状を表現できるように 1.2km 間隔とした。

また、ブロック間移動水量計算は、対象水域を図 5.5.3 に示した 12 のブロックに分割して行った。この水域ブロックの設定については5-5-2 (2) で述べる。

② 地形条件:

湖流シミュレーションに用いた太湖の水深値は、図 5.5.4 に示した深浅測量結果 (TBA 提供資料) を基に設定した。

③ 流出入流量条件

太湖に接続する主要な河川の流出入位置は図 5.5.2 に示すとおりである。

現況計算で用いる 1995 年及び 1996 年の河川流出入水量は、表 5.5.1 に示すとおりである。なお、河川流出入水量データは、世銀プロジェクトで開発された水量モデルから計算された河川ネットワークの計算結果から抽出されたものである。

④ 風況条件

現況計算で用いる風況条件は、太湖周辺に設置されている4箇所の気象観測所(無錫、東山、長興、蘇州)における1986年~1995年の観測データを基に、表5.5.2のように設定した。

⑤ その他の計算諸条件

湖流シミュレーションに用いたその他の計算条件は、表 5.5.3 に示すとおりである。

(5) 計算結果

本モデルの再現性を検討するために行った湖流計算結果は図 5.5.5 に示す。なお、図中には南京地理湖沼研究所(1993年)が行った数値シミュレーションによる太湖の代表的な風況条件の湖流パターンも併せて示してある。

本計算結果の湖流パターンを風向別に見ると次のとおりである。

- a. 南風時: 西太湖側は時計回りの循環流が形成され、大太湖から洞庭西山周辺にかけては大規模な反時計回りの循環流が形成されている。風速 5 m/s の条件下では、湖流の流速値としては、湖岸側で最大 8 cm/s 程度、沖合側で4 cm/s 以下となっている。
- b. 北風時:南風時と逆の湖流パターンを示し、西太湖側は反時計回り、大太湖から洞庭西山 周辺にかけては時計回りの循環流が形成されている。
- c. 南東風時:西太湖側の循環流は、南風時に比べその中心がやや南側に移動し、貢湖の沖側では反時計回りの循環流が形成されている。
- d. 酉風時: 西太湖北側では時計回りの循環流、大太湖から酉太湖及び洞庭酉山周辺にかけて は反時計回りの大規模な循環流が形成され、また梅梁湾の沖側では時計回りの循環流が形 成されている。

このように、太湖の代表的な風況条件におけ湖流パターンについては、本モデルによる計算結果とこれまでに中国側で行われた計算結果はほぼ一致しており、本モデルに適用した基本式及び主要なパラメータ等については特に問題がないものと考えられる。

5-5-2 湖内水質モデル

(1) 湖内水質モデルの基本的考え方

湖内水質モデルとしては、太湖のような植物プランクトンの多量発生に起因する水質現象を 取り扱う場合に有効となる生態系モデルが適している。そこで、本調査では日本の湖沼の富 栄養化対策を立案する際によく利用されているモデルを基本とし、これを太湖の条件に適す るように改変することにした。 選定した生態系モデルの概念図を図 5.5.6 に示す。生態系の構成要素としては、栄養塩類 (無機態の窒素(IN)及びリン(IP))、植物プランクトン (珪藻類及びその他藻類)、動物プランクトン及び非生物性有機物 (主としてデトリタス:プランクトンの破砕物及び河川起源の粒状有機物)が考慮に入れられている。

モデルの基本方程式は次に示すように、無機態窒素、無機態リン、有機態窒素、有機態リン、SS性 COD (粒子態 COD 及び溶存態 COD) の時間的変動が表現される。物質の移動経路としては、植物プランクトンの増殖、呼吸及び排泄(無機化率を考慮)、動物プランクトンの捕食、呼吸及び排泄(無機化率を考慮)、非生物性有機物の分解及び沈降、並びに底質からの溶出が考えられている。

なお、これまで中国側が実施している太湖の水質モニクリング調査では、COD(Mo)は過マンガン酸 法により分析されているもので、本モデルで計算される COD 値は COD(Mo)値を示すものとした。

(2) 湖内水質モデルのブロック分割

湖内水質モデルに用いる太湖の水域区分 (プロック分割) は、図 5.5.3 に示したが、これは 現地調査及び既存資料による主要な水質項目の水平分布特性及び湖流の循環パターンに基づ いたものである。

湾の形状が島・半島等で閉鎖された梅梁湾、竺山湖、貢湖、洞庭西山東部及び東太湖は、独立のブロックとして扱った。また、富栄養化の進行が著しい梅梁湾については、これまでの調査より湾奥部と湾口部で顕著な水質差が見られることから、湾奥ブロックと湾口ブロックの2ブロックに分割した。

太湖の湖岸に沿った水域は、河川及び湖岸付近の湖流の影響範囲を考慮し、西太湖側は北部 ブロックと南部ブロックに分割し、太湖東部側 (蘇州地先) 及び南部側 (湖州地先) はそれ ぞれ1ブロックとした。

大太湖は、環流の影響等により他の水域に比べ比較的均一な水質分布を示しているが、太湖 北西部周辺からの流入負荷の影響を受けやすい北部ブロックと南西部からの流入負荷の影響 を受けやすい南部ブロックの2ブロックに分割した。

(3) 計算方法

湖内水質モデルによる各ブロック内の水質計算は、流入等の外部負荷条件及び分割ブロック間水移動量計算プログラムによって計算されたブロック間の移動水量等を入力条件として、図 5.5.7 に示すような手順で行った。

また、各ブロック内で用いる生態系モデルの概念を基に構築される各水質項目の基礎方程式 は、以下に示すとおりである。

$$dp/dt = \begin{pmatrix} G_p - k_2 \cdot T - \frac{G_z \cdot Z/P}{1} - \frac{G_z \cdot Z/P}{1} - \frac{G_z \cdot Z/P}{1} - \frac{G_z \cdot Z/P}{1} \end{pmatrix} \cdot P + \begin{pmatrix} Q_0 \cdot P_0 - Q \cdot P \\ \frac{Q_0 \cdot P_0}{1} - \frac{Q \cdot P}{1} \end{pmatrix} / V$$
分解 の補食 の沈降

$$Gp = \begin{cases} \frac{p \cdot \mu_0 \cdot \left(-T^2/289 + T/8.5\right)}{\text{珪藻類の増殖速度}} + \frac{\left(1 - p\right) \cdot \mu c \cdot k_1 \cdot T}{\text{珪藻以外の増殖速度}} \\ \frac{\left\{L/\left(k_L + L\right)\right\}}{\text{日射量の影響}} \cdot \frac{\left\{C_{IV}/\left(k_N + C_{IV}\right)\right\}}{\text{I - N浸度の影響}} \cdot \frac{\left\{C_{IP}/k_{IP} + C_{IP}\right\}}{\text{IP浸度の影響}} \end{cases}$$

動物プランクトン濃度
$$Z$$
 $dZ/dt = \left(\frac{\alpha \cdot aS \cdot G_2}{\dot{q}_{2}} - \frac{k_3 \cdot T}{\dot{r}_{3} \cdot G_{2}}\right) \cdot Z + \left(\frac{Q_0 \cdot Z_0}{\dot{n}_{3}} - \frac{Q \cdot Z}{\dot{n}_{3}}\right) / V$

ここで、

$$Gz = rac{C_g}{5$$
過速度・ $rac{K_{PP} \cdot P/(K_{PP} + P)}{ ilde{a}$ 物プランクトン濃度の影響

無機態窒素

$$dCIN/dt = \left(\frac{-G_P}{P$$
の増殖に + $\frac{\eta_N \cdot k_2 \cdot T}{P$ の呼吸に 伴う減少 伴う増加 + $\frac{\zeta_N \cdot \beta_P \cdot (1 - a_S) \cdot G_Z \cdot Z}{Z}$ の排泄に伴う増加

+
$$\dfrac{eta_{Z} \cdot heta_{N} \cdot k_{3} \cdot T \cdot Z}{Z$$
の呼吸に + $\dfrac{D_{C,N}}{O - N O$ 無機化 + $\dfrac{\left[W_{NN} \cdot \exp\left\{\gamma_{NN} \cdot \left(T - 20\right)\right\}\right] \cdot A/V}{$ 底泥からの溶出 による増加

$$+\left(\frac{Q_0\cdot C_{IN}}{$$
流入 $-\frac{Q\cdot C_{IN}}{$ 流出 $}\right)$ / V

$$Dc$$
, $N = fc$, $N \cdot \exp \frac{\left\{k_{c,N} \cdot (T-20)\right\}}{O-N$ 無機化速度 $\cdot C_{ON}$

有機態窒素
$$(O-N)$$

$$dCON/dt = \begin{pmatrix} G_P & -\eta_N \cdot k_2 \cdot T \\ PO 増殖に & PO 呼吸による \\ 伴う増加 & 無機化減少 \end{pmatrix} \cdot \beta P \cdot P - \frac{\zeta_N \cdot \beta_P \cdot (1-a_s) \cdot G_2 \cdot Z}{ZO 排泄による無機化減少}$$

 $-rac{eta_{Z}\cdot heta_{N}\cdot k_{3}\cdot T\cdot Z}{Z$ の呼吸による無機化減少-O-Nの無機化

による減少

$$-\frac{d_{SS} \cdot \left(C_{ON} - \beta_P \cdot P - \beta_Z \cdot Z\right)}{\hat{\tau}' \text{ 1192の沈降による減少}} + \frac{\left[W_{ON} \cdot \exp\left\{\gamma_{ON} \cdot \left(T - 20\right)\right\}\right] \cdot A/V}{$$
底泥からの溶出 $+\left(\frac{Q_0 \cdot C_{ON0}}{$ 流入 $-\frac{Q \cdot C_{ON}}{$ 流出 $\right)/V$

+
$$\frac{\gamma_2 \cdot \theta_N \cdot k_3 \cdot T \cdot Z}{Z$$
の呼吸に伴う増加 + $\frac{D_{c,P}}{O - P$ の無機化 + $\frac{\left[W_{IP} \cdot \exp\left\{\gamma_{IP} \cdot (T - 20)\right\}\right] \cdot A/V}{$ 底泥からの溶出

による増加

$$-\frac{d_{IP} \cdot C_{IP}}{\dot{\chi}} + \left(\frac{Q_0 \cdot C_{IP0}}{\ddot{\chi}} - \frac{Q \cdot C_{IP}}{\ddot{\chi}}\right) / V$$
(化学反応)

ここで、

I

$$D_{c,P} = f_{c,P} \cdot \exp \frac{\left\{k_{c,P} \cdot (T-20)\right\}}{O-P無機化速度} \cdot C_{OP}$$

有機態リン (O-P)

$$dCOP/dt = egin{pmatrix} G_P & \eta_N \cdot k_2 \cdot T \\ \hline P の増殖に & P の呼吸による \\ 伴う増加 & 無機化減少 \end{pmatrix} \cdot \gamma P \cdot P - \frac{\zeta_N \cdot \gamma_P \cdot (1-a_s) \cdot G_Z \cdot Z}{Z の排泄による無機化減少}$$

$$-rac{\gamma_2 \cdot heta_N \cdot k_3 \cdot T \cdot Z}{\mathsf{Z}$$
の呼吸による無機化減少 $-rac{D_{C,P}}{\mathsf{O}-\mathsf{P}$ の無機化 $+rac{\left[W_{OP} \cdot \exp\left\{\gamma_{OP} \cdot \left(T-20\right)\right\}\right] \cdot A/V}{$ 底泥からの溶出

$$-\frac{d_P \cdot \gamma_P \cdot P}{P の 沈降} - d_{SS} \cdot \left(\frac{C_{OP} - \gamma_P \cdot P - \gamma_Z \cdot Z}{\tilde{\tau}^* 1993 の 沈降による減少} + \frac{Q_0 \cdot C_{OP0}}{流入} - \frac{Q \cdot C_{OP}}{流出} \right) / V$$
による減少

$$\frac{dCSC/dt}{dCSC/dt} = \frac{\eta_{c} \cdot k_{2} \cdot T \cdot \delta_{P} \cdot P}{P \text{ PO呼吸による増加}} + \frac{\zeta_{N} \cdot \delta_{P} \cdot (1 - a_{s}) \cdot G_{z} \cdot Z}{2O$$
 $\frac{1}{2}$ $\frac{\delta_{Z} \cdot \theta_{c} \cdot k_{3} \cdot T \cdot Z}{2O$ $\frac{1}{2}$ $\frac{D_{c,sc}}{2}$ $\frac{D_{c,sc}}{2}$ $\frac{D_{c,sc}}{2}$ $\frac{D_{c,sc}}{2}$ $\frac{D_{c,sc}}{2}$ $\frac{1}{2}$ $\frac{D_{c,sc}}{2}$ $\frac{D_{c,sc}}$

$$D_{c,sc} = f_{sc} \cdot \exp \frac{\left\{k_{sc} \cdot (T-20)\right\}}{\text{SC無機化速度}} \cdot C_{sc}$$

$$D_{c,pc} = f_{pc} \cdot \exp \frac{\left\{k_{pc} \cdot (T-20)\right\}}{\text{PCO ※ 在化速度}} \cdot \left(C_{pc} - \delta_{p} \cdot P - \delta_{z} \cdot Z\right)$$

粒子態 COD (PCOD)

$$dCPC/dt = \left\{ rac{G_P}{P or ar{g}} - rac{\left(\eta_c + \eta_I\right) \cdot k_2 \cdot T}{P or ar{g}} \cdot \delta P \cdot P
ight.$$

$$\left(f + f \right) \cdot \delta \cdot \left(1 - g \right) \cdot G \cdot Z \cdot \delta \cdot \left(\theta + \theta \right) \cdot k \cdot T$$

$$-\frac{\left(\zeta_{c}+\zeta_{I}\right)\cdot\delta_{P}\cdot\left(1-a_{s}\right)\cdot G_{z}\cdot Z}{\mathsf{Z}O排泄よる減少} - \frac{\delta_{z}\cdot\left(\theta_{c}+\theta_{I}\right)\cdot k_{3}\cdot T\cdot Z}{\mathsf{Z}O呼吸による減少}$$

$$-rac{D_{C,PC}}{ ext{PC}$$
の溶存化によ $-rac{d_P \cdot \delta_P \cdot P}{ ext{P}}$ の沈降に $-d_{SS} \cdot \left(rac{C_{PC} - \delta_P \cdot P - \delta_Z \cdot Z}{ au' ext{ Hタスの沈降による減少}}
ight)$

る増加(P, Z以外) よる減少

$$+\frac{Q_0 \cdot C_{PC0}}{$$
流入 $-\frac{Q \cdot C_{PC}}{$ 流出 $/V$

上式における記号の意味は次のとおりである。

P. Po : 湖水中及び流入水中の植物プランクトン濃度

Z, Zo : 湖水中及び流入水中の動物プランクトン濃度

CIN, CINO :湖水中及び流入水中の I-N濃度

CON, CONO :湖水中及び流入水中のO-N濃度 CIP. CIPO :湖水中及び流入水中のI-P灣度 COP. COPO ;湖水中及び流入水中の〇一P濃度 Csc. Csco :湖水中及び流入水中のSCOD濃度 :湖水中及び流入水中のPCOD湾度 Crc. Crco ;時間 t :植物プランクトンの増殖速度 GP Gz. :動物プランクトンの増殖速度 T : 水温 : 日射量 L P :植物プランクトン群衆中の珪藻の割合 : 珪藻の最大増殖速度 μ_{o} : 珪藻以外の植物プランクトンの最大増殖速度 μс : 珪藻を除いた植物プランクトンの増殖速度に対する温度影響に k, 関する定数 :植物プランクトンの呼吸速度 $\mathbf{k_2}$:動物プランクトンの呼吸速度 \mathbf{k}_3 : 日射量に関するミハエリス定数 $\mathbf{k}_{\mathbf{L}}$:I-Nに関するミハエリス定数 \mathbf{k}_{IN} :I-Pに関するミハエリス定数 \mathbf{k}_{IP} : 飽食効果に関するミハエリス定数 **k**PP :動物プランクトンが周囲の水をろ過する速度 C_{R} :動物プランクトンの同化率 as :植物プランクトンの沈降速度 ďР : デトリタスの沈降速度 dss : I-Pの化学反応による沈降速度 die :植物プランクトン中の C/chla 比 α :植物プランクトン中の N/cbla 比 βP :植物プランクトン中の N/C 比 Bz:植物プランクトン中の P/chla 比 γP :植物プランクトン中のP/C比 γz : 植物プランクトン中の COD/chla 比 δP : 動物プランクトン中の COD/C 比 δz ηΝ, ηΡ, ης, ηι :植物プランクトンの呼吸に伴うО-Νの無機化率、О-Рの無 機化率、PCODの溶存化率、無機化率 θ_{N} , θ_{P} , θ_{C} , θ_{1} :動物プランクトンの呼吸に伴うO-Nの無機化率、O-Pの無 機化率、PCODの溶存化率、無機化率 ζN, ζP, ζc, ζι:動物プランクトンの排泄に伴うO-Nの無機化率、O-Pの無

I

機化率、PCODの溶存化率、無機化率

Qo, Q

: 流入水量、流出水量

V

:湖容積

A

. Namas≉±

~

:湖面積

Dc. N

:O-Nの無機化速度

Dc. P

: O -- Pの無機化速度

De, re

: PCOD の溶存化速度

Dc. sc

:SCOD の無機化速度

fc, N, kc, N

:20℃におけるO-Nの無機化速度及び定数

fc. p. kc. p

:20℃におけるO-Pの無機化速度及び定数

fe, pe, ke, pe

:20℃における P C O D の溶存化速度及び定数

fc. sc. kc. sc

:20℃におけるSODの無機化速度及び定数

W. y

:20℃における底泥からの溶出速度及び定数

(4) 計算ケース

湖内水質モデルの再現性を検討するための計算ケースは、下表に示すとおりである。

計算ケース		予測対象年	流況	流入負荷※		
	現況水質	R況水質 検 証 1 1995 年		1995 年時の湖流計算結果	1995年時の流入負荷量	
1		検 証 2 1996年		1996 年時の湖流計算結果	1996年時の流入負荷量	

※:流入負荷量は河道モデルに対象年の河道施設、降雨及び排出負荷量を入力して算出した。

(5) 計算条件

(1) 分割ブロック

水質計算に用いた分割プロックは、図 5.5.3 に示したとおりである。

② 流入負荷量

流入負荷量モデルで算定された T-COD_(Mo)、T-N、T-P の現況流入負荷量 (1995 年時及 び 1996 年時) は、表 5.5.4 に示すとおりである。流入位置は、図 5.5.2 に示す。

また、T-COD_(Mn)、T-N、T-P の流入負荷量を湖内水質モデルの入力条件とするために、T-COD_(Mn)の粒子態 (P·COD_(Mn))、溶存態 (S·COD_(Mn)) への割り振り、及びT-N、T-P の有機態 (O·N、O·P) 、無機態 (I·N、I·P) への割り振りは、中国側 (TBA) が実施している 河川水質調査結果 (1996 年 1~11 月) を基に、表 5.5.5 に示すように設定した。

なお、流入河川の Chl·a (植物プランクトン) 濃度およびC (動物プランクトン) 濃度については、日本側が実施した第二次現地補足調査により、湖内に比べ極めて低いレベルにあることが確認されたため O とした。

③ 計算パラメータ

水質計算に用いるパラメータは、第二次現地補足調査で行った汚濁物質循環速度に関する 実験及び既存資料を参考に、表 5.5.6 に示すように設定した。

なお、表 5.5.6 に示す各パラメータの中で水質変化を支配する主要なパラメータは、本調査で行った物質循環速度に関する実験項目となっている植物プランクトンの増殖速度、沈降速度、有機物分解速度、底泥溶出速度等であり、これらの最適値は次のように設定した。

植物プランクトン

一次生産量試験 (明暗ビン試験) により、植物プランクトンの比増殖速度として 0.3 ~1.1 (1/day) の値を得た。本モデルでは、植物プランクトンは2種類 (珪藻類、藍藻類) を取り扱う。珪藻類については本実験結果と日本の琵琶湖で求められた値を基に最大比増殖速度 (1/day) を 0.4 とした。また、藍藻類としては、太湖における水質汚濁の原因種である Microcystis を対象とし、本実験結果及び日本の霞ヶ浦で求められた値を基に最大比増殖速度を 1.2 とした。

沈降速度

沈降速度(植物プランクトン及びデトリタスの沈降速度(m/day))については、現地実験により得られた値は 0.04~3.1 とその変動幅が大きいため、計算値と実測値を比較しながら最適値を求めた。なお、非生物性有機物(主としてデトリタス:プランクトンの破砕物及び河川起源の粒状有機物)の沈降速度については、一般に河口に近い水域ではデトリタスの沈降速度が大きく、沖合に行くに従ってその沈降速度が小さくなることを考慮し、水域ブロック別に設定した(表 5.5.7 参照)。

有機物の分解速度

本実験で得た有機物の分解速度 (1/day) は、P-COD が 0.028~0.069 (平均値:0.05)、S-COD が 0.023~0.067 (0.03)、O・N が 0.008~0.02 (0.02)、O・P が 0.024~0.04 (0.03)の値を得た。本モデルでは、これらの平均値を最適値とした。

底泥溶出速度

本モデルで用いる水域別の溶出速度は、本調査(実験及び現地調査)で得た底泥含有量と溶出速度の相関関係及び底泥層厚分布状況を基に、表 5.5.8 に示すように設定した。表中に示すように、溶出速度は水温及び軟泥域の比率等の補正を行い、20℃基準

における水域ブロック当たりの溶出速度を求めている。また、本実験で求めた COD(cn) の溶出速度は COD(mn)として換算している。

なお、本モデルにおける植物プランクトンの増殖速度、有機物の分解速度、底泥溶出速度は、基本式に示すように水温・日射量の関数になっており、表 5.5.9 に示すような月別平均水温と表 5.5.10 に示す月別平均日射量を与えて、これらパラメータに季節変化を持たせた。

(6) 計算結果

湖内モデルによる 1995 年及び 1996 年の湖水質の再現結果を、ブロック別の水質経時変化図として図 5.5.8 に示す。なお、Chl·a、T·N、T·P、T·COD(Mo)については、計算値と実測値を比較するために TBA による 1995~1996 年の太湖水質モニタリング結果を実測値として示している。また、年平均水質について実測値と計算値の比較は、図 5.5.9、5.5.10 に示すとおりである。

水質の経時変化について比較すると、流入河川が集中する湖岸付近の水域ブロックにおいては、一部計算値の方が実測値に比べやや急激な水位変化を示す時期が見られるが、全体的には各項目とも2年間にわたる経時変化はほぼ実測値の変化に近いものとなっている。

次に、水質の年平均値について比較すると、T-N は2ヶ年とも計算値と実測値がよく一致している。T-P は計算値の方が実測値に比べわずかに低めの値をしめしている。また、Chl-a 及びT-COD(Mo)では 1995年の計算値は実測値に比べてわずかに低く、1996年の計算値は実測値に比べてわずかに高めの値を示している。しかし、これら項目の計算値は2ヶ年とも実測値の全体的な濃度分布傾向、すなわち太湖の北西部において各項目とも濃度が高く南東部で低くなる傾向や各水域の濃度レベルはよく一致しており、本モデルによる太湖の現況水質状況は概ね再現されていると言える。

また、これらの水質再現計算の結果から判明した、湖内水質変化の特徴をまとめると、次のとおりである。

- ② 湖内の COD 濃度は、植物プランクトンの増殖が活発化する夏季には内部生産(植物プランクトンの増加による COD の生産)により、河川水質に比べ1桁以上高くなる時期がある。
- ③ 太湖に流入する P は極めて速やかに植物プランクトンの増殖に利用されるため、無機態の P(I・P)濃度は低い。逆にN は植物プランクトンに利用される割合が低いので無機態の N (I・N)の濃度は高い。

このように、本調査で開発した富栄養化モデルは、太湖の全体的な水質分布を十分再現しう るものといえる。

5-6 太湖富栄養化予測プログラムの操作の流れ

本調査で構築した太湖富栄養化予測プログラムのパソコン (パーソナルコンピュータ) による操作手順は、図 5.6.1 に示すとおりであり、以下に各操作の概要について述べる。

① 湖流計算に必要な条件の設定

世銀水量モデルの計算結果(太湖流域全体を網羅した河川ネットワークの計算結果)、太湖の地形データ(湖流シミュレーション用に設定した水深及び水域・陸域判別メッシュデータ)及び風向風速データから、湖流シミュレーションに必要なデータ(コントロールファイル)を設定する。このデータ設定は、湖流シミュレーションのコントロールファイルを自動的に作成するプログラム(demaker.exe)により行う。

なお、この demaker.exe は、世銀水量モデルで取り扱っている 1000 以上もある太湖流域の河川から太湖に接続する河川の計算結果を引き出し、必要なデータフォーマットに変換できるようにするプログラムである。

② 湖流計算

湖流シミュレーションプログラム (drft.exe) により、①で作成したデータを読み込み太湖内の1年間の流況を1.2km 格子単位で連続して計算する。

③ 湖流計算結果の図化

作図プログラム (pltide.exe、winplot.exe) により、太湖の水深図、格子分割図、流速ベクトル図、流速分布 (数値) 図を画面またはプリンターに出力する。

④ ボックス間移動水量の計算

ブロック間の移動水量を計算するプログラム (flbox.exe) により、②で計算した湖流計算結果 (格子単位) を読み込み、湖内水質シミュレーションの入力データとなる太湖の水域ブロック間の移動水量を設定する。なお、flbox.exe の実行には、コントロールファイルが必要であるが、このファイルの作成は簡便であり、自由にボックスの数・形状等を変更できるようにした。

⑤ 流量、排出負荷量等の設定

太湖へ流入する負荷量を計算するための河川データを、世銀水量モデルの計算結果から設定する。また、流域の排出負荷量データ、流達率等のデータを設定する。

⑥ 湖内水質計算

⑤で設定したデータ(世銀水量モデルの計算結果;ブランチフロー(brflow)、ノードフロー(ndflow)、流域の発生負荷量データ、流達率等)及び湖内水質計算用のコントロールファイル(生態系モデルの各種パラメータを含むデータセット)を読み込み、太湖富栄養化モデルプログラム(fukapr.exe)を実行する。

⑦ フォーマット変換

水質計算結果を市販の表計算ソフトに読み込ませるため、テキストファイル形式のデータ に変換する。

⑧ 水質計算結果のグラフ化

⑦でできたデータを表計算ソフトに読み込み、水質の時系列変化や各種対策による水質改善効果を作表・作図する。

5-7 太湖富栄養化予測モデルの課題

① 湖内における観測値の代表性

モデルの検証に際し、まず、観測値の代表性について検討しておくことが必要である。例 えば、水域をブロック単位で予測するモデルでは、観測値は設定した水域ブロックの平均 濃度としての代表性を有する必要があり、さらに、年平均値を求めるモデルであれば観測 値は年平均を代表するものでなければならない。

しかし、現在の中国側の水質モニタリング状況を見ると、観測頻度は年4回程度であり、 1回の観測に1週間程度を要している。また、観測地点 (1995年以降:観測地点数 22) の中には、水質変化の大きい流入河川の河口部沖合に設けられている点もある。

従って、現在の観測値がその水域ブロックの水質を十分に代表していると考えるのは危険 である。今後、湖内の水質モニタリング体制を強化することにより、各水域の水質の時間 的・空間的な変動が把握されれば、各水域を代表する観測地点を設定できるであろう。

② 流入負荷量 (流入水量・水質) に関する課題

富栄養化予測モデルの再現性を決定する重要な問題として、今のところ流入負荷量の観測値が十分でないため、流入負荷量モデルの再現性を評価することが難しいことが挙げられる。一般に、湖沼に流入する河川の水質モニタリングは、湖内と同程度の観測頻度で行われているが、観測時期は平水時を中心としたものが多く、降雨時の流入負荷量についてはほとんど調査されていないのが現状である。観測頻度が比較的高い、鎖ヶ浦や琵琶湖における最近の成果によると、年間の流入負荷量に占める降雨時負荷の割合は、CODやTーPでは約50%を占めることがわかってきた。

従って、流入負荷の観測が十分でない場合、この流入負荷量と実測値の間にはかなり大きな差があることを考慮しておく必要がある。

湖内の富栄養化予測モデルの精度は、湖内の観測(湖流、水質等)頻度や水質の分析精度とともに、流域からの流入負荷量の観測頻度と密接に関係している。今後、河川の流入負荷に関する水質モニタリング体制を充実化させて、流入負荷量モデルを改良することにより、富栄養化予測モデルの精度の再現性を高めることができる。

③ 湖内水質モデル (生態系モデル) のパラメータに関する課題

湖内水質予測モデルは、生物化学的な反応を取り扱うモデルであり、多くの物質相互の関係を表現できるが、項目が多くなれば不確定なパラメータを多く使用することにもなる。 したがって、パラメータを多く使用すれば水質予測の精度が上がるというものではない。 例えば、本調査でも実験によりその数値を求めた、植物プランクトン増殖速度、沈降速度、 有機物分解速度、底泥溶出速度、現地の状況(場所、時期等)により大きく変化するので、 各水域ブロックの代表値を得るには、繰り返し実験を行う必要がある。

以上述べたように、富栄養化モデルによる計算結果と実測値が一致するための条件としては、検証データとしての観測値の代表性、入力条件としての流入負荷量の精度、および設定したモデルのパラメータの確度等がある。現在のような湖内および河川の観測状況は、観測地点ごとに観測値と計算値を厳密に比較することによりモデルの再現性を評価するには不十分であり、年間を通しての経時変化パターンや面的分布パターンが現象の特徴を反映していれば満足しなければならない。

本調査で開発した富栄養化予測モデルは、水質保全行政の行政機関が水質保全のための施策を立案し、対策の効果を確認するための道具である、と言うことに十分留意して、今後観測を継続し、実測データを蓄積することにより、実用性の高いモデルに改良していくことが期待されている。

表 5.1.1 太湖富栄養化モデル検討のために実施した現地調査内容

査の種類	調査目的	項目	7	調 査 方 法
	条件の把握	地形条件、水象条件、水 質条件、流入負荷条件、 底質条件、物質循環条件		既存資料収集により太湖の 水利、流入負荷、内部生 産、浮遊物の沈降及び底泥 溶出等の概略を把握した
内航走調查	布の実態把握及び富栄養化 モデルのプロック分割の基 礎データ収集	水温、EC、測位	水域) 1996. 7. 2~7. 31 (約 40地点)	簡易CPSと運動する水温、 EC計を船で曳航し太湖内に おけるこれら3成分を連続 的に測定した
	(底泥層厚調査)底質の水平 分布の実態把握	軟泥厚さ	1996. 7. 2~7. 31 (約 80地点)	突き棒により湖内の底泥厚 を測定した
k塊構造調査		水温、EC、DO、濁度、水 中照度	1996. 2. 26~3. 7(7 地点X3~7層) 1996. 7. 17~7. 19(8 地点X12~16層)	水中照度計、水温・瀏度 計、水温・EC計、DO計等を 用い、太湖内の代表点にお いて水温、EC、DO、濁度、 水中照度の鉛直分布を測定
直物プラン外ン 上産量試験	(財暗ピン試験)湖水の1次 生産量の把握	DO, D-COD, D-TN, NH4- N, NO2-N, NO3-N, D-TP, PO4- P, Chla	1996. 7. 9 DO:2地点X4層 その他項目:2地点 X6回	し、一定時間後に採取前後 の水質変化を測定した
	(AGP試験)湖水の1次生産量 の把握とそれを規制する因 子の把握	各測定日 Chala, 細胞数 O. 7日日 (2回) D-COD, D-TN, NH4-N, NO2- N, NO3-N, D-TP, PO4-P, Chla	1996. 7. 12~7. 31: 5地点X6回	上層水を用いて藻類の培養 実験を行った。 接種藻類:Microcystis 水温:28℃ 照度:4000lux 培養期間中の0,2,4,5,6,7 日目の6回試水の分析を
沈降速度試験	(沈降筒試験)湖水、底泥巻 き上げ水、底泥等の沈降速 度の把握	濁度	1996. 7. 26~7. 28(3 ケース)	泥資料も用いて沈降筒にJ る濁度の経時変化を測定し
	(沈降量試験)流入士砂、底 泥、植物プラントンの死骸等の 沈降速度の把握	[捕集器内の湖水] COD, C-COD, T-N, D-TN, T- P, D-TP, NH4-N, NO2-N, NO3- N, PO4-P, Chala, SS	1996. 7. 22~7. 24 5地点 X1層	沈降物捕集器を水中(水面下:1m)に設置し、一定時間後に採取前後の水質変化を測定した
有機物分解試 験	湖水中の有機物の分解速度 の把握	DO, D-COD, D-TN, NH4- N, NO2-N, NO3-N, D-1P, PO4- P		上記で採取した沈降物を見いて分解実験を行った。 水温:28℃ 湖水に沈降物を添加したが 対は、2を10節和状態にした 後、0,4,6,8,10日目の5回 試水の分析を行った
底泥器出試験	(底泥溶出試験)底泥からの 汚濁物質が溶出する速度の 把握	DO, D-COD, D-TN, NI4- N, NO2-N, NO3-N, D-TP, PO4 P	- 地点X5回	5 不攪乱柱状泥(0~30cm)を 用いて室内実験を行った。 水温:28℃ 直上水を現場DOに保ち、 0,3,5,10,20日目の5回直 水の分析を行った
	(底泥酸素消費試験)底泥の 酸素消費速度の把握	DO	1996.7.30~8.5:2 地点X6回	不攪乱柱状泥(0~30cm)を 用いて室内DO消費実験を 行った。 水温:28℃ 直上水を現場DOに保ち、 0,1,2,3,4,6日目の6回直

表 5.2.1 太湖の鉛直方向の水環境の変化 (1/3)

<u>冬季</u>	h-1 1 - 1 - 1 -	1 10	F. //	DA	₩1 #	照度
調査点 (水深)	観測深度 (cm)	水温 (℃)	EC (us/cu)	DO (mg/l)	濁度	照及 (lux)
	10	7.0	734	13. 1	20. 3	
ses en Mo	-10 05	7. 9	194	10. 1	20.0	100000
五里湖	-25 - 5 0	7. 9	733	13. 1	20. 2	34000
SB1 (1.4m)	-30 -75	1. 9	,00	257.4		16000
(1. 40)	-100	7.9	731	12.8	20.0	6700
	-125					3300
	B+10	7. 9	731	11.9	21.0	1600
	-10	7.0	487	12.0	44. 0	
梅梁湾	-25					41000
SB2	-50	7. 0	485	12. 1	44.8	6200
(1.6m)	-75					1200
	-100	7. 0	485	11.9	44. 3	560 130
	-125		•			0
	-150		486	11.9	46. 4	ŏ
	B+10	6.9				
	-10	6.6	585	13. 2	31. 9	50000
梅梁湾	-25	a =	604	12.9	32. 3	21000
SB3	-50	6. 5	584	12. 5	52. 5	6400
(1.9m)	-75 -100	6. 4	578	13. 1	32. 4	1600
	-100 -125	0. 4	0.0	201 \$		500
	-150	6.3	576	13. 1	32.8	170
	-200					60
	B+10	6.3	576	12. 7	34. 9	63
	-10	6. 5	331	11.5		
貢湖	-25					21000
SB4	-50	6. 5	331	12. 8		6500 2400
(1.9m)	-75		000	19.0		300
	-100	6.4	330	12.9		73
	-125 -150	6. 4	332	11.2		0
	B+10	6.3	333	12. 0		0
			328	12. 3		
(No. Ha	-10	8. 4	326	12. 0		28000
大太湖北	-25 -50	7. 3	319	11.8		3100
SB6 (1.9m)	-75					450
(1. 511)	-100	6. 2	323	12.5		51
	-125					0
	-150	5. 7	322	12.1		0 0
	B+10	5. 7	323	12. 4		
	-10	6.6	313	12. 4		9500
西太湖南	-25		^	10.0		35000 4400
SB7	-50	6. 3	312	12. 3		750
(2. 1m)	-75	C 0	311	12.8		83
	-100	6. 2	911	12.0		Õ
	-125 -150	6. 2	311	12.8		0
	-150 B+10	5. 4	311	12. 1		0
			268	11.6	63. 0	
ميد ياد عو	-10 -25	12. 7 12. 6	268	11.5	60. 0	4300
東太湖 SB8	-25 -50	12.0	200	23. 0		1130
SDO	JU					3560

1

表 5.2.1 太湖の鉛直方向の水環境の変化 (2/3)

調査点	観測深度	水温	ЕC	DO	濁度	照度
(水深)	(cm)	(°C)	(ms/cm)	(mg/l)	1	(EIN/m²/s
				-		15000
-se rei NA	-10	27.0	380	6. 1	20.0	9000
五里湖	-25	07.0	000	r 2	20. 0	4500
SB1	-50	27.0	380	5. 7	20. 0	3000
(3.5m)	-75	00.0	000	<i>r</i> c	00.0	
	-100	27.0	380	5. 6	20. 0	2000
	-125	07.0	000	c 0	00.0	1300
	-150	27. 0	380	5. 2	20.0	700
	~175	A. 7. A	000	<i>,</i> 77	00.0	400
	-200	27. 0	380	4. 7	20. 0	250 120
	-225		000	0.0	40.0	50
	-250	26. 0	380	2.6	40.0	21
	-275	05.0	000	1.0	70.0	
	-300	25. 0	380	1.8	70.0	4 0
	B+10	25. 0	380	1.5	60. 0	v
	-10	28.0	324	10. 2	45. 0	18000
梅梁湾	-25	20.0	,			7500
SB2	-50	27.6	324	9. 3	30. 0	3000
(3.6m)	-7š		- 	-		1500
(U. Um)	-100	27. 6	326	9.5	24.0	700
	-125			•		400
	-150	26. 7	328	8. 7	21.0	180
	-175					120
	-200	26.1	332	8. 1	19. 0	60
	-225					30
	-250	25. 5	336	5. 4	21.0	18
	-275					
	-300	25. 3	338	4.8	40. 0	0
	B+10	25. 3	337	4.6	38. 0	0
	-10	26.0	320	8. 2	40.0	9000
特沙沙	-10 -25	20.0	320	0, 2	10. 0	4500
梅梁湾 SB3	-23 -50	26. 0	320	7. 9	40.0	1500
3D3 (3. 7m)	-75	20.0	320	1. 2	20.0	500
(3.711)	-100	26.0	320	7. 9	40.0	250
	-125	20.0	020	****	10.0	100
	-150	26.0	320	7.8	40. 0	45
	-175	20.0	320	1.0	10.0	30
	-200	26.0	320	7. 5	40. 0	10
	-225	20.0	520	1.0	10. 0	2
	-250	26. 0	320	7.4	50. 0	õ
	-200 -300	25. 0 25. 0	310	5.8	50. 0	ŏ
	-350 -350	25. 0 25. 0	310	5. 8	50. 0	ŏ
	B+10	25. 0 25. 0	320	5. 8	50. 0	Ö
	-10	26.0	291	7. 9	21.0	5000
貢湖	-25				00.0	1800
SB4	-50	26. 1	290	7. 7	20. 0	1000
(3.8m)	-75			. -	20.0	900
	-100	26. 0	290	7.5	20. 0	600
	-125			~ -	20.0	500
	-150	26.0	300	7.7	22. 0	400
	-175				00.0	300
	-200	26. 0	300	7. 6	20.0	200
	-225				^^	150
	-250	26.0	300	7. 4	20. 0	7 5
	-275	_				45
	-300	25.0	320	6. 7	30. 0	30
	-325					30
	-350	25. 0	320	5.8	40. 0	30
	B+10	25. 0	320	5.8	40.0	30

表 5.2.1 太湖の鉛直方向の水環境の変化 (3/3)

調査点	観測深度	水温	EC	関査年月日: 1 DO	濁度	照度
(水深)	(cm)	(℃)	(ms/cm)	(mg/l)	(2002,	(EIN/m²/s)
	-10	27. 1	356	7. 1	24.8	189000
西太湖北	-25					79000
SB5	-50	27. 0	353		13. 1	13400
(3. Om)	-75					9600
	-100	27. 0	346		12. 3	5500
	-125					2600
	-150	26. 9	343		12, 1	1500
	-175					980
	-200	26. 9	335		11.2	630
	-225					330
	-250	26. 7	328	6. 4	11. 2	189
	-275	00.0	00.4		40.0	70
	B+10	26. 2	324		12. 8	34
大太湖北	-10 -25	26, 5	325	8. 6	17. 1	199900
SB6	-50	26. 2	322		15. 7	145900 12000
(3.5m)	-75	20. 2	322		10. 7	9800
(о. ош)	-100	25.8	321		15. 3	5800
	-125	20.0	021		10.0	2900
	-150	25.6	321		15. 5	2240
	-175	2000				1350
	-200	25. 0	318	8. 4	15. 3	625
	-225					360
	-250	25. 1	317		15. 1	188
	-275					24
	-300	25. 1	317		15. 1	24
	-325	AF 4				24
	B+10	25. 1	317		15. 1	24
सर् के अवस्त	-10	27. 7	328	9. 4	18. 6	199900
西太湖南	-25 50	02.2	200		10.0	35900
SB7 (4. 1m)	-50 -75	27. 7	328		18. 6	12600
(4.10)	-100	27. 7	327		18. 7	6610 3800
	-125	21. 1	321		10. 1	4400
	-150	27. 7	325		18.8	1030
	-175	21. 1	020		10.0	820
	-200	27.0	326		18.5	470
	-225					270
	-250	24.7	329	9. 1	18. 5	170
	-275					60
	-300	24. 7	328		18. 5	10
	-325					0
	-350	24. 7	328		18. 5	0
	B+10	24. 7	329		18. 5	0
車-1-24-0	-10	28. 6	155	8. 9	3. 0	44000
東太湖 SB8	-25 50	00.0	155	7.0	2.0	44000
(2. 7m)	~50 ~75	28.6	155	7.8	3. 0	29800
(2. 4m)	-75 -100	28.6	155	. 8. 0	3. 0	20000 16700
	-100 -125	20. U	100	o. v	5. 0	13000
	-125 -150	28.6	156	8. 0	2.0	9000
	-175 -175	20. 0	100	0. 0	2.0	7570
	-200	28. 6	156	8. 0	3.0	7090
	-225	20.0	100	0.0	0.0	1000
	-250	28.6	156	7. 9	3.0	2630
	B+10	28. 6	200			2630

表5.2.2 太湖の水質の経年変化

項目	19604F	1980年	1987年	1991年	1992年	1993年	1994年	1995年
COD _{WW} mg/L	•	3.13	3.30	3.70%	3.48※	3.63	4.52	5.04
COD _(a) mg/L	•	•	-	10.6	10.3	10.7※	13.2※	14.6※
T-N mg/L	0.1	0.9	1.43	1.56	1.36	2.47	2.27	2.44
T-P mg/L	0.01	0.02	0.04	0.057	0.104	0.090	0.053	0.079
N/P比	10	45	36	27	13	27	43	31
Chl-a mg/L			-	0.007	0.015	0.009	0.012	0.012

1960年~87年の水質データ : 出典1; (「Environmental Protection and Lake Ecosystem」

China Science and Technology Press:1993)

出典2; (「太湖」海洋出版社:1993年)

1991年~95年の水質データ : 出典3; (太湖流域管理局による水質モニタリング結果)

※ 相関式 (COD_(Cr)=2.776×COD_(Mr)+0.628) より算出 (太湖流域管理局提供資料)

表5.2.3 太湖の底泥分析結果

測点			調査期間:1996年2月29日~3月29日				
	含水率	COD(Cr)	T-N	T-P	Eh mV		
	%	%	%	%			
SB1	35.6	3.03	0.245	0.082	••		
SB2 47.5		1.29	0.106	0.066	••		
SB3	36.0	1.91	0.156	0.059	-267		
SB4	47.3	0.93	0.062	0.042	-270		
SB5		1.10	0.074	0.045	-332		
SB6	29.3	0.76	0.060	0.049	72		
SB7 53.4		1.02	0.071	0.046			
SB8 44.4		2.67	0.202	0.054	-303		

※ : Ehは酸化還元電位

出典:太湖流域管理局提供資料

表5.2.4 底泥の汚染物質含有量と負荷溶出量

	水域面積 (k ni)	軟泥域 (%)	較泥域汚染物質含有量 (%)		軟泥域汚染物質負荷溶出量 (mg/ml/日)			年間負荷溶出量 (ton/年)			
			COD	T-N	T-P	COD	T-N	T-P	COD	T-N	Т-Р
五里湖	4.4	100	3.03	0.235	0.082	361	18.3	5.55	580	29.4	8.91
梅梁湾	131.5	36	1.6	0.131	0.063	75	5.8	1	1291	100.9	17.26
竺山湖	36.6	88	1.5	0.098	0.055	67	3.7	0.33	792	43	3.94
貢湖	109.6	14	0.92	0.062	0.042	31	1.8	0.04	173	9.8	0.21
西太湖	752.5	50	1.06	0.072	0.046	39	2.2	0.08	5325	306	10.91
東太湖	122.8	100	2.67	0.202	0.052	169	11.7	0.21	7571	525,2	9,55
その他	1180.7	46	1.3	0.072	0.064	54	2.2	1.13	10639	441.7	224.8
全体	2338.1	48							26371	1456	275.6

軟泥域年平均負荷溶出量: 本調査で得た夏期溶出量 (水温25℃) を水温補正を行い算出した。 年平均16とした。

Ţ

表 5.3.1 1次生産量試験結果

000 0.0 0.0 0.0 0.0 0.0 0.0 産 速 C/1/day) ₩ (g 0.0 0.0 0.0 ш 0.0 0.0 0.0 (#g C/#g chl-a/hr) |生海 | 呼吸 0.0 0.0 0.0 捯 00000 枡 000 0.0 0.0 卓 訤 ŲΩ 純生産量 *的 是 (hg/s) 99 /bob/4/k/a 現存**型** (µg/1) 0. Sn 0.4m <u>=</u> *SB2:每涨前线配 SB4:每然该第四 软头斑 調查点 SB2 SB4

调查年月日:平成8年7月9日

(DO)

₩

澂

掛

₩

終

1

ΠÍ,						
8年7月9日	ት ያ	終年廉	13.4	7.26		
月日:平成	3 生産速度 (mg C/1/dav)	松油	9.6	5.76		
調査年	田(東)	純生産	3.8	1.5		
		総生産	11.8	18.8		
	②速度 chl-a/hr)	呼吸	6.1	11.6		
	生 <u>産</u> (ag C/mg (純生産	5.8	7.2		
		総生産量	7.8	3.9		
	合成 股	COD減少量	4.0	2.4		
	光 6	純生産量	3.8	1.5		
	測定時間	(<u>f</u>	3	3		
	1007410a 現存母	(L'R/1)	99	20.7		
	株大阪		Om	Om	梅粱鸡鸡奥	春残寒寒口
			SB2	S B 4	*SB2:	••

(COD)

度

捯

産

놴

敉

表5.3.2 沈降速度試験結果

	項目	Chl•a	フェオ色素	P-COD	P-TN	р.тр	SS
調査点		(µg/L)	(μg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
SB1	初期濃度	32.21	6.79	12.29	0.547	0.057	12.8
(五里湖)	沈降物濃度	172.29	54.11	25.42	1.053	0.382	75.6
	沈降量	41.61	13.07	3.171	0.25	0.09	15.166
	沈降速度(m/d	ay)1,292	1.925	0.258	0.465	1.618	1.185
SB3	初期濃度	23.08	4.83	6.02	0.757	0.055	17.4
(梅梁湾)	沈降物濃度	6.61	4.82	5.42	0.331	0.009	41.6
	沈降量	1.61	1.17	1.32	0.08	0.002	10.11
	沈降速度(m/d	ay)0.070	0.243	0.219	0.106	0.040	0.581
SB5	初期濃度	28.12	2.81	0.51	0.527	0.039	14.6
(西太湖北)	沈降物濃度	12.06	78.88	40.93	2.533	0.567	1240.0
	沈降量	3.18	20.81	10.80	0.67	0.15	327.14
	沈降速度(m/d	ay)0.113	7.400	21.173	1.268	3.836	22.407
SB6	初期濃度	11,16	0.56	2.80	0.284	0.048	23.6
(大太湖北)	沈降物濃度	72.54	169.64	58.90	3.034	0.379	1294.0
	沈降量	18.96	44.33	15.39	0.79	0.10	338.17
	沈降速度(m/d	lay)1.699	79.450	5.497	2.792	2.063	14.329
SB8	初期濃度	8.48	1.54	3.39	0.058	0.003	2.6
(東太湖)	沈降物濃度	-3.71	2.27	8.05	0.845	0.074	30.0
	沈降量	-0.09	0.61	2.15	0.23	0.02	8.02
	沈降速度(m/c	lay)-0.117	0.396	0.635	3.896	6.597	3.086

^{*:}沈降量の単位:クロロフィル·a、フェオ色素、mg/m²*日、その他の項目はg/m²*日

表5.3.3 有機物分解速度定数

単位:1/日 P-COD_(Cr) D-COD(Cr) O-N. O-P . 点质 SB1 -0.049 -0.040 -0.018 -0.040(0.860)(0.918)(0.689)(0.939)SB3 -0.028-0.067-0.024-0.014(0.260)(0.996)(0.873)(0.888)SB5 -0.016 -0.020 -0.007(-) (0.754)(0.727)(0.722)SB6 -0.003**(·)** (-) (-) (0.573)-0.023SB8 -0.069-0.008-0.038(0.433)(0.407)(0.392)(0.935)

表5.3.4 底泥溶出量の比較

	場所	COD _(Cr) mg/m²/日	T-N mg/m²/日	T-P mg/m²/B	備考
中国	太 湖	44~720	4.7~ 37	0~ 11	本調査 (夏季)
	滆 湖			0~ 1.9	
	巣 湖			0~ 1.4	
	西 湖			0~ 0.2	
日本	琵琶湖南湖		$2\sim 70$	1.4~ 3.7	実験条件:好気
	霞ヶ浦		5		
	手賀沼		$11 \sim 97$	11~ 97	
	宍道湖		$11 \sim 20$	0.9~ 3.9	
	諏訪湖		104 ~238	0~ 6.3	

^() 内は一次相関係数

⁻ は有機物濃度の減少が認められないことを示す。

表5.3.5 底泥酸素消費試験結果

	梅粱	段湾湾奥	梅梁	湾湾央	湖	水	水温
径過日数 (日)	DO濃度 (mg/L)	DO現存量 (mg/m²)	DO濃度 (mg/L)	DO現存量 (mg/m²)	DO濃度 (mg/L)	DO現存量 (mg/m²)	(°C)
0.0	7.5	5250	7.5	4875	7.5	4875	31.1
0.9	6.2	4340	6.1	3965	6.8	4420	29.8
1.9	4.6	3220	5.3	3445	5.6	3640	29.6
2.9	4.3	3010	4.5	2925	4.7	3055	29.6
3.9	3.7	2590	3.9	2535	4.3	2795	29.6
5.9	2.4	1680	3.2	2080	3.3	2145	30.2

⁽注): 酸素消費速度は、DO現存量の減少速度より求める。

なお、底泥の酸素消費速度は全酸素消費速度(底泥+湖水)から湖水の酸素消費速度を 差し引き求める。

(1/4)	
1995年	
太湖桜統河道の流入流出量:	

表 5.5.1

Total ×10⁴m³/∉	9,230.6	-34.5	6,471.4	-64,036.2	3,899.2	-14,169.6	2,196.3	-7,992.0	6,867.9	.18,880.1	6.16.9	-1,153.4	22,007.8	-14,361.4	14,965.3	-1,605.3	9,528.2	-1,011.7	68,840.9	-753.4	54,192.7	190.9	9,114.3	-54.4	20,075.9	-38.1	27,903.7	129.6	43,884.3	-204.8	14,819.3	-170.2
12.B ×10 ⁴ m³/.B	0 (0	0	-4339	12.1	-467.4	7.8	-264.4	137.4	-451	12.1	-42.3	1227.7	-48.4	811.3	٥	627	٥	3593.4	٥	2511.6	0	377.6	0	844.1	٥	1242.4	0	1983.7	٥	428.5	0
11.B ×10 ⁴ m³/,B	0 (0	141.7	-3363.8	236.9	-504.6	131.3	-285.1	504.6	-641.1	26.1	-38	1597.8	-132.2	1007.4	0	651.5	0	4475.5	0	3205.4	0	491.6	0	1099.9	0	1675.1	0	2494.4	٥	516.7	٥
10月 ×10 ⁴ m³/月	0	٥	123.6	.4523.9	176.3	-690.3	99.4	-390.5	405.2	-797.5	31.1	-49.2	1830	-2.6	1342.7	0	862.3	0	6169.8	0	4641.4	0	743	o	1671.8	0	2358.7	0	3738.5	0	1264.9	0
9月 ×10 ⁴ m³/月	0	-13.8	1205,3	-2802	9.880	-450.1	389.7	-254.9	1226.9	-556.4	154.7	6.0-	2828.7	-412.1	1271.8	-13	816.5	-5.2	6022.9	0	4196.4	0	523.6	٥	1265.8	0	1760.8	0	2733.7	0	556.4	-26.8
8月 ×10 ⁴ m³/月	0	-7.8	222	-9218	192.7	-2382	108	-1343.5	346.5	-3290.1	117.6	-58.8	1236.4	-3064.6	1147.4	-428.5	727.6	.281.7	9.0299	-544.3	4607.7	-144.3	718	-29.4	1601	-61	2194.6	-65.7	3461.2	-87.3	1236.4	-73.4
7.78 ×10 ⁴ m³/,8	7963.5	-5.2	٥	-15361.1	0	-5584.9	0	-3151	0	.7970.4	22.6	-266.1	104.5	-9583.5	2962	.1106.8	376.7	-691.2	5071.7	-201.3	6531	0	1377.2	0	2935	0	3807.6	0	8.0683	0	2699.1	-10.4
6,9 × 10 ⁴ m³/,9	1311.6	-1.7	1600.1	-5768.9	1079.1	-1274.4	605.7	.718.8	1758.2	-1686.5	86.4	.286	5057	.312.8	3588.2	0	2236	0	14750.2	0	11060.9	0	2011.4	0	4308.8	0	5841.5	0	9042.6	0	3040.4	٥
5.8 ×10 ⁴ m³/.B	13	-5.2	2645.6	.3916.5	973.7	-763.8	647.8	-428.5	1461	-997.1	98	.249.7	3606.3	-343.9	1726.3	.67	1087.8	-33.7	6964.7	.7.8	4910.1	0	810.4	-12.1	1773.8	.17.3	2473.6	-36.3	3869.9	.70.8	1498.2	-59.6
4.B ×10 ⁴ m³/.B	6:0	0	353.4	-2494.4	276.5	-386.3	154.7	-217.7	484.7	-481.2	41.5	-27.6	1468.8	-182.3	844.1	0	545.2	0	3881.1	0	2840.8	0	437.2	0	160	0	1437.7	0	2285.3	0	764.6	0
3.B ×10 ⁴ m³/.H	1.7	0	179.7	-2880.6	219.5	.336.1	125.3	-187.5	407.8	-367.2	25.9	.42.3	1576.8	0	938.3	0	602.2	0	4077.2	0	2921.2	0	485.6	0	1054.1	0	1547.4	0	2484.9	٥	843.3	0
2.F × 10⁴m³/.A	٥	0	6	-4348,5	0	-696.4	0	.394	5.2	-893.4	3.5	-31.1	382.8	-240.2	638.5	0	413	0	3182.1	0	2616.2	0	426.8	0	941.8	0	1370.3	0	2198.9	0	584.1	0
1,8 ×10°m³/,8	0	6.0-	0	-4519.6	44.9	-634.2	26.8	-356	130.5	-748,2	1.7	-61.3	1091.2	38.9	1053.2	0	682.6	0	5001.7	0	4149.8	-46.7	711.9	.13	1588.9	•19.9	2293.9	.27.6	3700.5	.46.7	1386.7	0
海入水東(Qii) 新田米東(Qoui)	G.	5 0 out	o o	i i	G	i i	G	i i	G	. 0		: i	4 6	E i	ď	· G	. 0	i i	G	; ;	5	. G	G.	· (*)	Q.	. Q.	9,0	: G	G,	\ \text{S}	G,	વે જા
河河	-		22		60	,	4	ı	100		9		-		80		6.)	93		11		12		13		14		15		16	,

表 5.5.1 大湖接続河道の流入流出費: 1995 年 (2/4)

					後 5.5.1					() () ()				
Æ	海入水中(0.)	1,8	2.月	3,8	4 月	5.A	6.8	7.8	8.8	月6	10月	11.3	12月	Total
		×	×10*m³/A	×10°m³/月	×10 ⁴ m³/A	×10⁴m³/β	×10 ⁴ m³/A	×10 ⁴ m³/月	×10°m³/月	×10 ⁴ m³/月	×10 ⁴ m³/月	×10°m³/月	×10°m³/A	×10°m³/年
1.1	o di	580.6	115.8	774.1	1174.2	1682.2	3939.8	3417.1	610	1.7	802.7	٥	9.8	13,107.7
	. Or	-1.7	-30.2	6.0-	0	-19.9	0	-334.4	-241.1	-422.5	-53.6	-157.2	-86.4	-1,347.8
28	Q.	1515.5	238.9	1923.3	2738.9	4096.2	9434.9	8133.7	1544.8	0	2091.7	٥	1.7	31,779.6
	Q.	-14.7	-109.7	.10.4	0	-52.7	0	.908.1	-670.5	-1198.4	-213.4	-466.6	-305.9	-3,950.2
2	s Or	7363.9	1296.9	13427.4	17090.8	29477.1	64107.1	55365.1	6541.3	0	16496.4	0	٥	211,165.9
	on or	-2302.6	-6571.6	-1742.7	-304.1	-524.4	-473.5	-19173	-15253.9	-20526.1	8229	-13576	-10895	-99,601.9
2	A.	298.1	44.1	1064.4	1201.8	2615.3	7181.6	6251.9	342.1	0	1780.7	0	0	20,780.1
	Or .	-1223.4	.1328	-680.8	-437.2	-555.6	.718	-4624.1	-3393.8	-3242.6	-1728	-2106.4	-1622.6	-21,660.5
12	G.	76.9	0	432	476.1	1565.6	3864.7	3240	32.8	0	1064.4	٥	0	10,752.5
	G.	-2134.9	.1987.2	.1168.1	-1029	.1239.8	-1347.8	5828.5	.4442.7	-3860.4	-2349.2	-2728.5	-2183.3	-30,299.6
22	g G	72.6	0	430.3	474.3	1767.7	4456.5	3767.9	0	0	1213.9	0	0	12,183.3
	. Q.	.2572.1	-2353.5	-1417	.1272.7	.1550	-1771.2	-7280.1	-5421.6	-4599.9	-2824.4	-3233.1	-2560	-36,855.6
ន	å	49,2	0	324	388.8	1724.5	4287.2	3583	0	0	1210.5	0	0	11,567.2
	: ă	-2703.5	-2442.5	-1515.5	-1397.1	-1683.1	.1976.8	.7420	.0028.1	-4688.1	-2916.9	-3313.4	-2620.5	-38,305.4
24	S. Co	24.2	0	160.7	192.7	892.5	2353.5	2090.9	0	0	635	0	٥	6,349,5
	: i	1364.3	-1218.2	-765.1	-701.6	-864	-1045.4	-4225.8	.2992.9	-2417.5	-1494.7	-1668.4	-1295.1	-20,043.1
83	g.	0	0	0	0	1220.8	2211.8	1255.4	0	0	729.2	0	٥	5,417.3
	D	82259.8	-6804.9	-5799.2	-5952.1	-6335.7	-8293.5	-20409.4	-14390.8	-10381.8	-7909.1	-8535.5	-6613.9	-109,685.7
92 92	 8	0	o	9.5	11.2	22.5	5,2	33.7	1.7	0	11.2	0	0	95.0
	G*	0	٥	0	0	-4.3	-2142.7	-17062.3	-9525.6	-25.9	٥	0	0	-28,760.8
27	5	0	٥	0	0	365.5	56.2	0	٥	ø	49.2	0	0	470.9
	i ii	-5495.9	-4383.9	-4100.5	-4318.3	-4898	.7141	-16483.4	-9427.1	-6592.3	-5709.3	-5459.6	-4151.5	-78,160.9
88	ď	0	o	0	0	200.4	o	٥	0	0	0	0	٥	200.4
	: i	-2071.9	-1707.3	-1548.3	.1565.6	.1722.8	-2851.2	-7064.1	-3912.2	-2405,4	-2103.8	-2069.3	-1578.5	-30,600.3
53	G,	٥	0	0	0	233.3	27.6	0	0	0	0	٥	0	560.9
	S.	1469.7	-1258	.1124.9	.1086	-1148.3	-2036.4	-5146	-2928.1	-1668.4	-1510.3	-1468.8	-1154.3	-21,999.2
96	Ġ,	0	0	0	0	725.8	160.7	0	0	0	0	0	٥	886.5
	S out	-3188.2	-2791.6	-2448.6	-2332.8	-2520.3	-4431.5	-11436.8	-6607.9	-3641.8	-3297	-3184.7	-2580.8	.48,461.8
듄	e o	0	0	0	0	600.5	122.7	0	0	0	0	٥	0	723.2
	, O	.2278.4	.1988.1	.1730.6	.1646.8	-1854.1	-3322.9	-9170.5	-4981	-2589.4	-2429.6	-2265.4	-1825.6	-36,082.4
32	 O.	0	0	0	1.7	715.4	218.6	0	0	0	0	0	0	935.7
	&	.1970.8	-1778.1	-1442	-1302	-1671	-2700	-7839.1	-4408.1	.1952.6	-2075.3	1906.8	-1683.1	-30,729.0
상	Q in sum	31845	14519	36037	40558	82363	169806	124515	32640	25644	51544	18154	13728	641,351.0
会	Q out sum	-43565	-43356	.29298	-27134	-33643	-50301	.188337	.115296	-74748	-51328	-57605	-46769	-761,380.0

表 5.5.1 太尚接続河道の流入流出量: 1996年(3/4)

Total ×10 ⁴ m³/年	52.7	-37,606.5	5,973.7	-62,080.1	3,802.5	-12,344.0	2,133.2	-5,955.2	6,804.0	-15,929.6	501.1	1,544.8	25,624.5	-7,529.8	20,453.5	-248.8	12,946.2	-152.9	94,213.2	-350.8	74,831.0	-343.9	13,170.0	-57.9	28,785.0	-114.9	39,757.0	-163.3	62,608.9	-271.3	21,909.3	-88.1
12.B ×10 ⁴ m³/B	٥	٥	٥	-4673.4	48.4	-748.2	26.8	-419	119.2	-964.2	9.5	-81.2	556.4	-592.7	676.5	٥	437.2	٥	3455.1	0	2868.5	٥	481.2	0	1049.8	0	1510.3	٥	2416.6	0	641.1	0
11.A ×10*m³/A	۰	0	64.8	-4020.2	167.6	-505.4	94.2	-286	384.5	-500.3	14.7	-34.6	2503	٥	1747	٥	1113.7	٥	7791.6	0	5898.5	٥	972	0	2145.3	٥	3028.3	٥	4778.8	٥	1380.7	٥
10.H ×10*m³/.H	6.0	0	234.1	-4171.4	276.5	-588.4	154.7	-330	543.5	-636.8	25.1	-63.1	2620.5	٥	1781.6	0	1141.3	0	8252.9	0	6408.3	0	1067.9	0	2360.4	٥	3303.1	0	5200.4	٥	1450.7	٥
9月 ×10⁴m³/月	0	-648	0	-6227.7	93,3	-1150	51.8	-646.3	342.1	-1451.5	136.5	-1.7	1864.5	-70	, 1911.2	0	1223.4	0	9435.7	0	7566.9	0	1188	0	2723.3	0	3748	0	6851.9	0	1629.5	0
8A ×10°m³/A	6.0	.19253.4	0	-10041.4	102	-2536.7	57	-1434.2	279.9	-3411.9	120.1	-108.9	2027.8	-3165.3	1716.8	-197	1080	-125.3	9523	0	8104.3	0	1363.9	٥	3075	0	4155.8	0	6521.5	0	2528.9	0
7月 ×10 ⁴ m³/月	21.6	-17697.3	781.1	-12182.4	6.14.9	-3827.5	286	-2155.7	734.4	.5343	35.4	-540	2327.6	-2626.6	4229.3	6.9	2608.4	6.0	19443.5	0	16877.4	0	3372.2	c	7179.8	0	9305.3	0	14251.7	0	5546.9	0
6月 ×10 ¹ m³/月	12.1	۰	1647.6	-1721.1	970.3	-145.2	541.7	-79.5	1673.6	-139.1	43.2	-223.8	4514.4	0	2287.9	0	1459.3	٥	9435.7	٥	6740.1	0	1285.6	0	2674.9	0	3776.5	0	6038.5	0	2694.8	.13
5月 ×10 ⁴ m³/月	0	.7.8	0	9,6693-	132.2	890.8	72.6	-502	298.1	-1112.8	99.4	-22.5	1520.6	.130.5	1256.3	0	6.008	0	5914.1	0	4382.2	0	628.1	0	1446.3	0	2065.5	0	3234.8	0	674.8	-39.7
4.8 ×10°m³/.Я	۰	٥	0	-4887.6	52.7	-741.3	30.2	-419.9	139.1	-867.1	7.8	-65.7	1690.8	.218.6	1378.1		883	6.0	6746.1	0	5527	0	893.4	٥	2016.6	0	2838.2	Φ	4469.5	٥	1324.6	•
3.39 × 10 ⁴ m³/,8	10.4	¢	2060.6	.2454.6	794	-360.3	448.4	-203	1215.6	-470	3.5	-184	2706.2	-306.7	1375.5	0	860.5	0	6076.9	0	3427.5	0	669.6	0	1392.8	0	2020	0	3291.8	0	1467.9	0
2.A ×10 ⁴ m³/A	0	· ~	- -	-4566.2	0	-744.8	0	-420.8	2.6	-949.5	0	-50.1	451.9	-393.1	723.2	0	467.4	0	3639.2	c	3075	0	518.4	0	1137	0	1663.2	0	2672.4	0	796.6	0
1月 ×10 ⁴ m³/月	6.9	; c	1185.4	-1534.5	650.6	.105.4	369.8	8.88	1071.4	-93.3	9	169.3	2841.7	.36.3	1370.3	41.5	870.9	8. 6.	5499 d	350.8	3955.4	343.9	739.6	67.9	1583.7	.114.9	2352.7	.163.3	3881.1	.271,3	1772.9	-36.4
范入水素(Qin) 范田水素(Qon)	G	E r C	100	ž G	** G	ی ب	A 94	* G	A suf	= : 7 G	3	# °	# C	# ¹	and C	s ¹ ₹ G	3 C	ž G	K out	s ∂r G	anne 2	r G	e d	: : : :	Ğ	. G	0	· · ·	7 0	: l	- G	. Or
(西) (西)	-	٠,		1	6)	_	r	K	>	٠	>		-	~	•	σ	•	٤	3	=	;	12	l	13		14		15	i	16	

表 5.5.1 太湖接続河道の流入流出量: 1996 年 (4/4)

					¥ 0.0.4									
Ē	(1) 电平均数	<u>.</u>	ei c	ब्रा रा	4	5,3	6月	1月	8,B	9月	10月	11.月	12.F	Total
; ;	祖田木神(名。こ)	×10 ⁴ m³/月	×10°m³/A	×10 ⁴ m ³ /B	×10 ⁴ m³/月	×10°m³/月	×10 ⁴ m³/月	×10°m³/A	×10 ⁴ m ³ /A	× 10 ⁴ m³/月	×10 ⁴ m³/月	×104m³/B	×104m³/β	×10 ⁴ m³/年
1	0	1042.8	630.7	1372	459.6	107.1	2601.5	3519.9	594.4	235	473.6	176.4	51.8	11,264.0
;	. Q.	0	0	-2.6	-27.6	296.4	-20.7	-26.8	-93.3	3.5	-36.3	-60.5	-119.2	-686.9
82	G.	2406.2	1328	3613.2	1166.8	261.8	6606.1	8892.3	1201.8	341.3	913.2	279.1	4.4	27,063.1
	: iii	٥	٥	-22.6	-44.9	-812.2	-55.3	.146	-413	-399.2	-188.4	-192.7	-379.3	-2,653.3
2	G.	14326	2134.1	35538.9	2851.2	٥	62761.9	62519	2772.6	177.1	4316.7	903.7	0	178,300.2
;	: i	.1038.5	-1077.4	-2109	-2039.9	-15080.3	-1215.6	-7143.6	-14764	-15456.1	-8020.5	-8232.2	-12547	-88,724.2
ន	G.	1194	60.5	3887.1	19	0	5601.3	7121.1	162.4	0	273	0	0	18,350.5
	G.	-659.2	-1151.7	-619.5	-1767.7	-2428.7	-250.6	-2390.7	-3534.6	-3155.3	-1972.5	-1791.9	-2086.6	-21,809.1
21	G.	617.8	٥	2617.1	0	0	3245.2	5003.4	76.9	0	63.9	0	0	11,624.3
		-1246.8	-1983.7	.972	-2776.2	-3019.7	-622.1	-3604.6	-4546.4	-4022.8	-2864.2	-2561.8	-2802	-31,021.1
ដ	9	660.1	0	2964.4	0	0	3627.9	5838	72.6	0	23.3	٥	0	13,186.4
ļ	: i	.1475.7	-2359.6	-1142.2	-3357.5	-3585.6	-788.8	-4579.2	-6586.6	-4849.6	-3442.2	-3062	-3323.8	-37,552.9
12	ď	623.8	o	2874.5	0	0	3558	5644.5	37.2	0	0	0	0	12,738.0
ì	£ {	1553.5	-2451.2	-1173.3	.3499.2	-3677.2	-930.5	.4838.4	-5756	-4955.9	-3603.7	-3155.3	-3412.8	-39,007.0
7.5	ď	314.5	٥	1465.3	0	٥	1902.5	3135.5	19.9	0	0	0	0	6,837.7
;	e l	-764.6	-1222.6	.578	.1791.9	-1858.5	470.9	.2750.1	-3109.6	-2600.6	-1865.4	-1613.1	-1720.2	-20,345.5
83		22.5	0	881.3	0	0	1604.2	2683.6	0	0	0	٥	٥	5,091.6
	i å	.5159.8	-6950	-4085.9	-9965.4	-8928.6	-4346.8	-17434.7	-15209.9	-11643.3	-9641.4	-8357.5	-8875	-110,598.1
22	e G	12.1	6:0	28.5	5.2	6.0	38.9	54.4	0		0	٥	0	140.8
	: B	-2.6	0	٥	0	-19.9	6.0-	-21959.4	.19166.1	-663.6	-1.7	٥	0	-41,814.1
27	G	0	0	0	0	٥	145.6	0	0	0	0	0	0	148.6
ı	: Î	-3748	-4451.3	-4167.1	-6679.6	-5623.8	-4134.2	-14617.2	-10412.1	-7688.7	-6526.9	-5681.7	-5679.9	-79,510.5
88	9	0	0	0	0	0	38	0	0	0	0	0	0	38.0
	: i	.1350.4	.1714.2	.1471.4	-2434.8	-2221.3	.1469.7	-6033.3	.4246.6	-2876.3	-2395.9	.2088.3	-2143.6	-30,445.6
क्ष	G	5.2	0	44.9	°	0	14.7	12.1	0	0	٥	Q	ç	76.9
	. Q.	.879.6	-1242.4	.899.4	-1660.6	-1663.2	-976.3	-4222.4	-3133,7	-2043.4	-1648.5	-1457.6	-1507.7	-21,334.8
8	Ċ	51	0	267	0	o	72.6	169.3	0	0	0	٥	0	559.9
	: è	.1764.3	-2744.1	.1851.6	-3558.8	-3759.3	-2001	-9218	-7032.1	-4535.1	-3553.6	-3168.3	-3268.5	-46,454.7
31	S. Co	57	0	255.7	0	٥	59.6	156.4	0	0	0	0	0	528.8
	: j	-1194.9	-1961.3	-1283	-2586	2706.9	.1425.6	-7332.8	-5387	-3355.8	-2585.1	-2293.9	-2332.8	-34,445.1
25	Q.	205.6	0	519.3	٥	٥	236.7	194.4	0	0	•	0	0	1,156.0
	: ž	-871.8	.1789.3	-1002.2	-2204.1	-2441.7	-965.1	-6149.1	-4739.9	-2918.6	-2134.9	-1937.1	-2025.2	-29,179.0
상 *	Q in sum	49696	19301	83150	32530	22886	127814	192459	45585	38520	40884	33443	14403	700,670.0
邻	Q out sum	-25112	-38223	-25358	-51588	-66429	-21996	.156826	-147395	-81363	-66371	-51000	-59702	-781,364.0

表5.5.2 湖流シミュレーションに用いる太湖の風況条件

	1月	2Л	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
風向	NNW	NNE	ESE	SE	SE	ESE	SE	SE	NE	NE	NNE	NNW
風速(m/s)	2.4	2.8	3.2	3.1	3.3	2.9	3.0	3.1	2.4	2.2	2.3	2.3

注:風向・風速は太湖周辺に設置されている4箇所の気象観測所(無錫、東山、長興、蘇州) の観測データ (1986~1995年)を基に月別の平均値を求めた。

表5.5.3 その他の計算諸条件

	設 定 值
	1,200 m
	60 sec
f)	7.5×10 ⁻⁵
g)	9.8 m/s ²
A)	1.0 m ² /s
ρa)	0.0012 t /m³
ρ w)	1.0 t/m³ s
γb^2)	0.0026
γ a²)	0.013
	f) g) A) ρ a) ρ w) γ b²)

I

表 5.5.4 太湖接続河道の流入負荷盘:1995 年 (1/4)

Total	Ton/年	236.8	99.2	12.0	401.0	201.0	21.6	1150.5	696.5	76.8	1606.0	1106.1	122.5	3159.2	1792.9	211.9	1507.9	1242.2	138.5	2628.8	1447.8	155.5	149.7	15.0	1.5
12月	Ton/月	0.2	0.1	0.0	0.0	0.0	0.0	8.0	5.1	0.6	6.8	7.3	0.8	112.7	68.4	8.1	37.1	35.3	3.9	219.2	132.9	14.3	8.1	8.0	0.1
11.3	Ton/月	0.2	0.1	0.0	18.1	9.4	1.0	125.5	81.3	9.0	157.6	125.0	13.8	386.3	234.1	27.7	74.2	68.5	7.6	272.9	163.1	17.5	10.1	1.0	0.1
10月	Ton/月	0.2	0.1	0.0	11.8	6.2	0.7	88.1	56.7	6.3	122.0	92.4	10.2	298.5	178.8	21.1	1001	88.6	9.9	285.7	169.0	18.2	13.4	1.3	0.1
月6	Ton/月	-0.1	-0.1	0.0	102.9	53.8	5.8	317.9	202.4	22.3	467.0	340.0	37.6	875.3	516.5	0.19	516.4	438.4	48.9	417.7	242.7	26.1	12.7	1.3	0.1
8,∄	Ton/A	0.3	0.2	0.0	18.2	9.5	1.0	69.5	43.7	4.8	126.0	87.1	9.6	204.4	119.4	14.1	344.2	284.3	31.7	177.4	100.2	10.8	11.5	1.1	0.1
7.B	Ton/用	210.2	8.06	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	64.0	51.0	5.7	20.7	11.5	1.2	6.0	9.0	0.1
6.A	Ton/月	25.6	7.9	6.0	90.1	44.7	4.8	236.6	136.3	15.0	314.9	204.8	22.7	563.0	302.7	35.8	180.8	138.7	15.5	8.909	319.3	34.3	35.9	3.6	0.4
5.B	Ton/月	0.2	0.0	0.0	127.5	62.1	6.7	205.0	115.8	12.8	271.4	169.5	18.8	447.0	235.0	27.8	133.8	97.9	10.9	377.2	189.9	20.4	17.3	1.7	0.2
4月	Ton/月	0.0	0.0	0.0	21.5	10.2	1.1	55.4	30.7	3.4	74.7	44.4	4.9	133.7	0.69	8.2	36.8	25.5	65 63	121.0	58.6	6.3	8.5	0.8	0.1
3,9	Ton/B		0.0	0.0	10.8	5.1	9.0	39.4	21.7	2. 4.	57.3	32.5	3.6	116.3	58.3	69	18.3	12.4	1.4	94.0	44.1	4.7	9.4	6.0	0.1
2月	Ton/ E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	1.0	0	1.6	1.1	0.1	14.3	6.5	0.7	6.4	9.0	0.1
1 E	Ton/B	0.0	0.0	00	0.0	0.0	0.0	5.0	2.7	0.3	6.2	83	0.3	19.9	9,4	-	0.7	0.5	0.1	21.8	6.6	1.1	10.5	1.1	0.1
海入鱼植成		GOD	, E	. t	CO.	N.T.	. Γ	COD	N.E.	T.p	Cop) F	a L	COD	N.T.	ŭ.T	COD	20 5	d L	COD	Z L	T.P	COD	Z	T.p
三原		-	•		c	ı		ď	,		-	ķ		ĸ	>		4	>		1			00	•	

表 5.5.4 太湖接続河道の流入負荷量:1995年 (2/4)

I

Total	Ton/年	8333.7	10369.4	1120.6	1275.4	610.8	69.4	3014.0	3563.2	396.2	2039.1	1344.2	158.4	1566.9	1392.6	154.8	1345.6	1217.5	135.3	1095.0	903.4	100.4	5224.8	4898.1	544.6
12月	Ton/B	697.0	6.696	104.8	92.3	55.5	6.3	198.8	278.8	31.0	167.0	113.9	13.4	118.9	113.3	12.6	103.8	102.1	11.3	74.5	74.3	8.3	261.1	268.9	29.9
11月	Ton/月	829.8	1127.5	121.8	107.9	67.9	7.2	248.6	337.9	37.6	199.9	136.3	16.1	144.2	136.2	15.1	123.4	119.9	13.3	90.0	87.5	9.7	307.5	310.8	34.6
10月	Ton/月	1037.3	1380.0	149.1	139.2	78.2	8.9	350.4	460.0	51.1	281.0	190.8	22.5	205.9	192.0	21.3	173.1	165.6	18.4	128.6	121.5	13.5	699.3	638.9	77.7
9月	Ton/B	905.7	1178.9	127.4	130.7	71.0	8.1	309.0	388.4	43.2	189.2	127.0	15.0	149.9	136.6	15.2	123.6	115.4	12.8	89.9	81.9	9.1	288.3	282.4	31.4
8,3	Ton/月	742.0	943.4	102.0	117.9	61.6	7.0	339.6	403.7	44.9	245.8	163.9	19.3	182.9	163.1	18.1	148.0	134.9	15.0	110.5	6.96	10.8	625.8	597.4	66.4
7月	Ton/月	368.3	454.9	49.2	95.3	46.3	5.3	363.9	431.7	48.0	274.3	179.7	21.2	210.7	187.0	20.8	176.9	160.4	17.8	148.5	124.3	13.8	6.866	942.5	104.8
€.B	Ton/月	2077.1	2475.6	267.5	262.3	120.7	13.7	584.3	659.7	73.4	369.2	238.0	28.0	289.5	250.0	27.8	251.8	221.7	24.6	213.2	168.9	18.8	1029.1	937.5	104.2
5,3	Ton/用	806.6	915.9	0.66	121.7	53.4	6.1	250.7	261.4	29.1	141.5	88.9	10.5	115.1	95.3	10.6	101.3	85.2	9.5	85.3	62.5	6.9	446.4	389.9	43.4
4.B	Ton/月	326.5	356.7	38.5	62.0	24.6	2.8	128.2	125.6	14.0	63.5	39.3	4.6	55.3	44.5	4.9	50.9	41.5	4.6	45.3	30.7	3.4	203.4	171.4	19.1
3月	Ton/月	283.9	301.4	32.6	58.0	19.9	2.3	110.2	102.5	11.4	55.5	34.2	4.0	46.9	37.2	4.1	43.9	35.0	3.9	42.5	26.2	2.9	180.3	148.8	16.5
2.A	Ton/ B	133.6	137.7	14.9	38.1	9.7	1.1	70.3	62.3	6.9	30.2	18.6	2.2	26.8	21.0	2.3	25.8	20.1	2.2	29.7	15.6	1.7	88.7	71.8	8.0
EL1	Ton/	125.7	127.5	13,8	50.0	6.8	0.8	60.1	51.1	5.7	22.0	13.7	1.6	20.7	16.2	1.8	23.2	15.8	1.8	37.0	13.2	1.5	96.0	77.8	8. 8.
流入负荷益		COD	Z.L	T.P	COD	T.N	T.P	COD	T. N.	$\mathbf{T}.\mathbf{P}$	COD	T.N	Ţ.p	COD	T.N	T.P	COD	N.L	T.P	COD	T.N	T.P	COD	J.Y	T.P
三定		6.	,		01	ī		11			12			13			14			15			16		

表 5. 5. 4 太湖接続河道の流入負荷量: 1995 年(3/4)

Total	Ton/年	499.8	505.8	69.6	1675.8	1526.8	208.7	4300.5	2860.2	363.3	251.8	133.3	17.6	280.3	204.8	27.2	346.4	272.0	36.0	384.4	335.0	42.2	183.9	174.6	20.8
12月	Ton/月	0.5	0.7	0.1	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11.9	Ton/月	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10月	Ton/月	40.1	51.3	7.1	168.6	177.2	24.2	451.6	386.5	49.1	25.7	20.2	2.7	43.2	36.2	4.8	53.5	47.3	6.3	61.9	59.3	7.5	29.1	30.6	3.7
9月	Ton/月	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8.FJ	Ton/月	33.5	37.3	5.1	119.6	116.4	15.9	160.7	124.5	15.8	5.1	3.4	0.4	1.4	1.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7.A	Ton/月	160.4	170.4	23.5	486.1	463.7	63.4	1193.8	864.9	109.9	79.4	47.3	6.2	88.2	65.8	8.7	109.5	87.8	11.6	119.1	105.7	13.3	9'09	58.7	7.0
6.A	Ton/ A	158.0	155.2	21.4	531.8	473.8	64.8	1403.6	945.0	120.0	86.2	43.7	بر 8	91.9	65.1	88	115.5	2 10 00 00	11.7	128.9	110.4	13.9	61.3	56.9	6.8
5.B	Ton/ H	54.8	49.5) 00 } (C	183.0	153.3	21.0	530.9	306.5	38.9	28.1	11.3	1.5	35.3	23.8	6	446	9 9 8	5 6	52.2	42.6	5.4	23.3	20.6	2.5
4.13	Ton/B	31.9	1.10	4 4	108.9	2	11.7	285.0	144.1	18.3	12.8	4.2	0.6	11.1	7.1		2000	0.21		13.1	10.1	13	5.6	4.6	0.6
H 60	T/40/E	1017.73	14.1) L	2 T	404		185.9	74.3	9.4	11.	6	4.0	25.55) 60 30	! t		0. 4	Q Q	200	* e) 0 5 C	2 6	. 0	0.4
9.8	C/7 E	101/73	o. c	6.0	7. N) o) K	15.4	4.5	9.0	0.55	? ;	. c	000		2 6)) (0,0	200) c	9 6	2 6	2 0	0.0
<u>a</u>	ָרָין ק	H /uoi	x 0	જ જ	0.0	7.0T	1.6.0	73.7	. o	6.	2 6) n	? 6	000) (1.0	0.9	9.0	1.0	- M		1.0	9 6 6 6	0.0
南铁板上	誤く対 を 関	\$	GO	Z (4-1		Z	7.1	JOS E	מיד	100		۲ با ا	1.1	(C)	N-1	4.1	COD	Z :	4. 6		Z, F	1-1	3 2	r.i.
	E/ (0).		17			2		ç	2		8	07		;	7.1			22			23			7.7	

E

表 5.5.4 太湖接続河道の流入負荷量:1995年 (4/4)

Ţ

I

COD OLO OLO Ton/A	這	流入負荷量	1.9	2月	3月	4.FJ	5月	6.Я	7月	8月	9月	10月	11,9		Total
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	·		Ton/ E	Ton/A	`	Ton/A	Ton/月	Ton/月	Ton/B	Ton/月	Ton/月	Ton/月	- 1	ı	Ton/年
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	COD	0.0	0.0	1	0.0	25.1	43.6	27.7	0.0	0.0	17.7	0.0	0.0	114.2
T.P. 0.0 0.0 0.0 1.9 3.4 2.4 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 0.0 1.8 0.0 <td>}</td> <td>Z</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>15.5</td> <td>28.5</td> <td>19.9</td> <td>0.0</td> <td>0.0</td> <td>14.7</td> <td>0.0</td> <td>0.0</td> <td>78.5</td>	}	Z	0.0	0.0	0.0	0.0	15.5	28.5	19.9	0.0	0.0	14.7	0.0	0.0	78.5
COD 0.0 <td></td> <td>T.P</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.9</td> <td>3.4</td> <td>2.4</td> <td>0.0</td> <td>0.0</td> <td>1.8</td> <td>0.0</td> <td>0.0</td> <td>9.4</td>		T.P	0.0	0.0	0.0	0.0	1.9	3.4	2.4	0.0	0.0	1.8	0.0	0.0	9.4
T.N 0.0 <td>26</td> <td>COD</td> <td>0.0</td> <td>0.0</td> <td>0.1</td> <td>0.1</td> <td>0.2</td> <td>0.0</td> <td>0.3</td> <td>0.0</td> <td>0.0</td> <td>0.1</td> <td>0.0</td> <td>0.0</td> <td>1.0</td>	26	COD	0.0	0.0	0.1	0.1	0.2	0.0	0.3	0.0	0.0	0.1	0.0	0.0	1.0
T-P 0.0 <td></td> <td>T.N</td> <td>0.0</td>		T.N	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		T-P	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T.N 0.0 0.0 0.0 8.3 2.7 0.0 0.0 2.3 0.0 T.P 0.0 0.0 0.0 0.0 1.0 0.3 0.0	27	COD	0.0	0.0	0.0	0.0	10.6	3.2	0.0	0.0	0.0	2.4	0.0	0.0	16.3
T.P. 0.0 <td></td> <td>Ä</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>8.3</td> <td>2.7</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>2.3</td> <td>0.0</td> <td>0.0</td> <td>13.2</td>		Ä	0.0	0.0	0.0	0.0	8.3	2.7	0.0	0.0	0.0	2.3	0.0	0.0	13.2
COD 0.0 <td></td> <td>T.P</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.0</td> <td>0.3</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.3</td> <td>0.0</td> <td>0.0</td> <td>1.6</td>		T.P	0.0	0.0	0.0	0.0	1.0	0.3	0.0	0.0	0.0	0.3	0.0	0.0	1.6
T.N 0.0 <td>28</td> <td>COD</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>10.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>10.0</td>	28	COD	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.0
T.P 0.0 <td></td> <td>Z.L</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>11.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>11.0</td>		Z.L	0.0	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.0
COD 0.0 0.0 0.4 0.0 <td></td> <td>T.P</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.2</td>		T.P	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
T.N 0.0 0.0 0.0 1.6 0.2 0.0 <td>29</td> <td>COD</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>2.9</td> <td>0.4</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>3.2</td>	29	COD	0.0	0.0	0.0	0.0	2.9	0.4	0.0	0.0	0.0	0.0	0.0	0.0	3.2
T.P 0.0 <td></td> <td>Z</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.6</td> <td>0.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.9</td>		Z	0.0	0.0	0.0	0.0	1.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.9
COD0.00.00.065.214.40.00.00.00.00.0T.N0.00.00.065.518.50.00.00.00.00.0T.P0.00.00.00.065.518.50.00.00.00.00.0COD0.00.00.00.062.616.30.00.00.00.00.00.0T.P0.00.00.00.06.41.70.00.00.00.00.0COD0.00.00.00.00.00.00.00.00.00.0T.P0.00.00.00.00.00.00.00.00.00.0COD sum60.01462.01868.04832.05263.03784.04896.04828.03096.0T.P sum42.0117.0157.0424.0952.0545.0364.0364.0366.0		T.P	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
T-N 0.0 0.0 0.0 65.5 18.5 0.0 </td <td>30</td> <td>COD</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>52.2</td> <td>14.4</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>66.7</td>	30	COD	0.0	0.0	0.0	0.0	52.2	14.4	0.0	0.0	0.0	0.0	0.0	0.0	66.7
T.P 0.0 0.0 7.8 2.2 0.0 <td></td> <td>Z</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>65.5</td> <td>18.5</td> <td>0.0</td> <td>0.0</td> <td>0:0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>84.1</td>		Z	0.0	0.0	0.0	0.0	65.5	18.5	0.0	0.0	0:0	0.0	0.0	0.0	84.1
COD 0.0 0.0 62.6 16.3 0.0 </td <td></td> <td>T.P</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>7.8</td> <td>63 63</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>10.1</td>		T.P	0.0	0.0	0.0	0.0	7.8	63 63	0.0	0.0	0.0	0.0	0.0	0.0	10.1
T-N 0.0 0.0 0.0 6.4 1.7 0.0 <td>31</td> <td>COD</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>62.6</td> <td>16.3</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>78.9</td>	31	COD	0.0	0.0	0.0	0.0	62.6	16.3	0.0	0.0	0.0	0.0	0.0	0.0	78.9
T.P 0.0 0.0 6.4 1.7 0.0 <td></td> <td>Z.F</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>52.8</td> <td>14.1</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>67.0</td>		Z.F	0.0	0.0	0.0	0.0	52.8	14.1	0.0	0.0	0.0	0.0	0.0	0.0	67.0
COD 0.0 <td></td> <td>T.P</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>6.4</td> <td>1.7</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>8.1</td>		T.P	0.0	0.0	0.0	0.0	6.4	1.7	0.0	0.0	0.0	0.0	0.0	0.0	8.1
T-N 0.0 0.0 0.0 9.6 3.7 0.0 <td>32</td> <td>COD</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.2</td> <td>68.4</td> <td>26.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>94.5</td>	32	COD	0.0	0.0	0.0	0.2	68.4	26.0	0.0	0.0	0.0	0.0	0.0	0.0	94.5
T.P 0.0 0.0 0.0 0.0 9.6 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		Z.E	0.0	0.0	0.0	0.2	80.1	31.2	0.0	0.0	0.0	0.0	0.0	0.0	111.5
COD sum 602.0 490.0 1462.0 1868.0 4832.0 9812.0 5263.0 3784.0 4896.0 4828.0 3096.0 T-N sum 376.0 375.0 1030.0 1365.0 3700.0 8264.0 4565.0 3493.0 4177.0 4706.0 3002.0 T-P sum 42.0 42.0 117.0 157.0 424.0 952.0 545.0 393.0 464.0 536.0 332.0		ď.F	0.0	0.0	0.0	0.0	9.6	3.7	0.0	0.0	0.0	0.0	0.0	0.0	13.4
T-N sum 376.0 375.0 1030.0 1365.0 3700.0 8264.0 4565.0 3493.0 4177.0 4706.0 3002.0 T.P sum 42.0 42.0 117.0 157.0 424.0 952.0 545.0 393.0 464.0 536.0 332.0	金	COD sum	602.0	490.0	1462.0	1868.0	4832.0	9812.0	5263.0	3784.0	4896.0	4828.0	3096.0	2108.0	43042.0
T.P sum 42.0 42.0 117.0 157.0 424.0 952.0 545.0 393.0 464.0 536.0 332.0	全	T-N sum	376.0	375.0	1030.0	1365.0	3700.0	8264.0	4565.0	3493.0	4177.0	4706.0	3002.0	2228.0	37280.0
	分谷	T.P sum	42.0	42.0	117.0	157.0	424.0	952.0	545.0	393.0	464.0	536.0	332.0	246.0	4249.0

表 5.5.4 太湖接続河道の流入負荷量:1996 年(1/4)

COD													
-	Ton/E	Ton/E	Ton/用	Ton/ A	Ton/月	Ton/月	Ton/月	Ton/ A	Ton/月	Ton/A	Ton/月	Ton/A	Ton/年
	0.1	0.0	NI .	0.0	0.0	0.1	2.9	0.2	-0.1	0.0	0.0	0.1	က က
	0.0	0.0	0.0	0.0	-0.1	0.0	1.8	0.1	-0.1	0.0	0.0	0.0	50
	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.2
	13.1	0.0	57.0	0.0	0.0	151.3	81.8	0.0	0.0	52.0	17.6	0.0	372.9
	8.	0.0	21.2	0.0	0.0	65.6	37.4	0.0	0.0	25.9	8.8	0.0	161.7
	6.0	0.0	2.3	0.0	0.0	7.0	4.0	0.0	0.0	2.8	6.0	0.0	17.2
	16.4	0.0	190.3	21.6	62.5	495.7	265.4	71.3	79.6	235.2	146.6	46.9	1661.5
••	23.8	0.0	103.0	11.8	34.8	282.9	157.8	43.4	49.2	148.3	93.7	30.1	978.8
-	2.6	0.0	11.2	1.3	89,6	30.8	17.2	4.7	5.4	16.2	10.2	3.3	106.7
~	35.1	0.0	280.8	27.0	76.0	636.3	385.3	99.4	101.6	285.1	164.4	48.8	2189.7
•	12.1	0.0	155.9	15.5	45.6	400.5	258.2	68.0	72.1	216.0	131.1	40.0	1445.2
	9.4	0.0	17.1	1.7	5.0	43.9	28.3	7.5	6.7	23.7	14.4	4.4	158.5
-	164.6	1.5	614.5	103.5	247.9	1605.7	709.3	345.5	477.2	713.2	498.5	6.691	5651.4
-	79.4	0.8	312.0	52.8	129.4	862.5	398.3	198.3	277.9	430.6	307.7	105.3	3154.8
	භ	0.1	36.6	6.2	15.2	101.3	46.8	23.3	32.6	50.6	36.1	12.4	370.4
	3.7	0.3	4.2	12.4	190.1	104.8	120.6	392.4	481.3	84.0	50.6	32.0	1476.4
	2.5	0.2	2.9	80 80	139.0	78.6	94.1	321.3	402.8	72.9	45.7	29.6	1198.4
	0.3	0.0	0.3	1.0	15.5	8.8	10.5	35.9	45.0	8.1	5.1	3.3	134.0
	93.0	26.8	206.7	189.5	256.0	948.4	629.0	542.5	519.5	759.9	805.7	166.0	5143.1
-	47.7	13.7	108.9	100.5	135.9	518.4	356.3	317.3	311.1	466.4	500.5	107.5	2984.1
	5.1	1.5	11.6	10.7	14.5	55.2	37.9	33.8	33.1	9.64	53.3	11.4	317.7
	13.7	7.2	13.7	13.8	12.5	22.9	42.3	17.2	19.1	17.8	17.5	6.8	204.5
	1.4	0.7	1.4	1.4	1.3	2.3	4.2	1.7	1.9	1.8	Ŀï	.0.7	20.4
	0.1	0.1	0.1	0.1	0.1	0.2	0.4	0.2	0.2	0.2	0.2	0.1	2.0

表 5. 5. 4 太湖接続河道の流入負荷量: 1996 年 (2/4)

		Ton/月 549.0 566.7 61.5 103.0 35.3 4.0 239.7 229.7	Ton/月 617.7 655.5 71.1 106.1 43.8	Ton/月 1382.4	Ton/B	Ton/A	Ton/B	Ton/A	1	Ton/月	Ton/年
COD 155.1 T.N 147.7 T.P 16.0 COD 55.0 T.P 0.6 COD 52.1 T.P 4.6 COD 18.5 T.P 11.0 T.P 11.0 T.P 11.3 COD 18.8 T.P 1.3 COD 24.3 T.P 1.5 COD 24.3 T.P 1.5 COD 38.8 T.P 1.5	410. 444.0 75.1 24.1 133. 119.	549.0 566.7 61.5 103.0 35.3 4.0 239.7 229.7	617.7 655.5 71.1 106.1 43.8	1382.4			26741		1000		
T.P 147.7 T.P 16.0 COD 55.0 T.N 6.1 T.P 0.6 COD 52.1 T.P 4.6 COD 18.5 T.P 1.3 COD 18.8 T.P 1.5 COD 24.3 T.P 1.5 COD 24.3 T.P 1.5 COD 24.3 T.P 1.5 COD 24.3 T.P 1.5		566.7 61.5 103.0 35.3 4.0 239.7 229.7	655.5 71.1 106.1 43.8		2856.6	1439.8	1745.6	1715.9	1770.5	695.3	13487.3
T.P 16.0 COD 55.0 T.N 6.1 T.P 0.6 COD 52.1 T.P 4.6 COD 18.5 T.N 11.0 T.P 1.3 COD 18.8 T.N 11.0 T.P 1.5 COD 38.8 T.N 13.8 T.N 13.8		61.5 103.0 35.3 4.0 239.7 229.7	71.1 106.1 43.8	1518.7	3278.8	1696.9	2119.7	2147.5	2273.4	921.8	15882.2
COD 55.0 T.N 6.1 T.P 0.6 COD 52.1 T.P 41.8 T.P 4.6 COD 18.5 T.N 11.0 T.P 1.3 COD 18.8 T.P 1.3 COD 24.3 T.P 1.5 COD 24.3 T.P 1.5 COD 38.8 T.P 1.5		103.0 35.3 4.0 239.7 229.7	106.1	164.7	355.6	184.1	229.9	232.9	246.6	100.0	1722.7
T.N 6.1 T.P 0.6 COD 52.1 T.N 41.8 T.P 4.6 COD 18.5 T.N 11.0 T.P 1.3 COD 18.8 T.N 13.8		35.3 4.0 239.7 229.7	43.8	189.9	395.8	214.1	216.6	197.0	196.3	92.4	1884.2
T.P 0.6 COD 52.1 T.N 41.8 T.P 4.6 COD 18.5 T.N 11.0 T.P 1.3 COD 24.3 T.P 1.5 COD 24.3 T.P 1.5 COD 38.8 T.N 12.2 T.P 1.5		239.7 229.7 25.1		87.4	189.2	111.2	116.0	109.3	113.0	54.7	898.6
COD 52.1 T.N 41.8 T.P 4.6 COD 18.5 T.N 11.0 T.P 1.3 COD 18.8 T.N 13.6 T.P 1.5 COD 24.3 T.P 1.5 COD 38.8 T.N 12.2 T.N 12.2 T.N 12.2	·	229.7	5.0	9.9	21.5	12.6	13.2	12.4	12.8	6.2	101.8
T-P 4.6 COD 18.5 T-P 11.0 T-P 11.0 T-P 1.3 COD 18.8 T-P 1.3 COD 24.3 T-P 1.5 COD 38.8 T-P 1.5 COD 38.8 T-P 1.5		229.7	254.9	458.8	1100.0	630.2	586.6	524.6	510.3	253.8	4824.9
T-P 4.6 COD 18.5 T-N 11.0 T-P 1.3 COD 18.8 T-P 1.5 COD 24.3 T-P 1.5 COD 24.3 T-P 1.5 COD 38.8 T-P 1.5		25.1	254.0	482.6	1267.7	750.4	740.1	684.7	685.8	351.4	5674.9
COD 18.5 T.N 11.0 T.P 1.3 COD 18.8 T.P 1.5 COD 24.3 T.N 13.8 T.P 1.5 COD 38.8 T.P 1.5	7.4 13.0	40,	27.8	52.8	138.6	82.1	80.9	74.9	75.0	38.4	620.6
T-N 11.0 T-P 1.3 COD 18.8 T-N 13.6 T-P 1.5 COD 24.3 T-P 1.5 COD 38.8 T-N 12.2 T-N 12.2 T-N 12.2		105.0	104.3	301.9	795.0	371.8	338.8	330.9	326.8	177.8	2973.2
T.P 1.3 COD 18.8 T.P 1.5 COD 24.3 T.P 1.5 COD 38.8 T.N 12.2 T.N 12.2 T.N 12.2		63.7	63.8	186.4	502.0	240.1	221.6	218.5	217.5	118.3	1903.6
COD 18.8 T.N 13.6 COD 24.3 T.N 13.8 T.P 1.5 COD 38.8 T.N 12.2 T.N 12.2 T.N 12.2	2.1 5.0	7.5	7.5	21.9	58.8	28.1	26.0	25.6	25.5	13.9	223.1
T-P 1.5 COD 24.3 T-P 1.5 T-P 1.5 COD 88.8 T-N 12.2 T-N 12.2 T-N 12.2 T-P 1.3	29.1 62.7	97.8	98.6	241.6	636.9	317.1	287.8	269.5	265.2	140.6	2466.6
T.P 1.5 COD 24.3 T.N 13.8 T.P 1.5 COD 38.8 T.N 12.2 T.P 1.3	21.7 47.8	77.3	79.9	197.8	543.7	278.7	259.7	247.5	247.1	131.8	2146.4
COD 24.3 T-N 13.8 T-P 1.5 COD 38.8 T-N 12.2 T-P 1.3		8.4	8.7	21.6	59.4	30.5	28.4	27.1	27.0	14.4	234.7
T.P 13.8 COD 38.8 T.N 12.2 T.P 1.3	31.7 61.4	94.1	93.7	217.6	530.2	278.4	257.1	244.4	242.0	129.2	2204.1
T.P 1.5 COD 38.8 T.N 12.2 T.P 1.3	21.4 44.6	71.7	73.9	177.5	453.5	246.3	234.6	227.9	229.9	124.1	1919.2
COD 38.8 T-N 12.2 T-P 1.3	2.3 4.9	7.8	8.1	19.4	49.6	26.9	25.7	24.9	25.1	13.6	209.9
T-N 12.2 T-P 1.3	36.8 59.1	87.8	78.8	173.4	409.7	221.1	203.0	192.8	188.9	99.4	1789.7
T-P 1.3	17.5 34.3	56.3	55.6	131.8	332.6	190.1	182.3	179.2	181.0	97.7	1470.8
COD 117.9	1.9 3.8	6.2	6.1	14.4	36.4	20.8	19.9	19.6	19.8	10.7	160.8
7777	109.1 300.3	316.2	202.9	1003.0	2083.3	1188.7	793.1	798.1	822.9	393.5	8128.2
T·N 92.3 85.2	85.2 241.2	261.3	169.6	861.0	1879.6	1103.4	756.1	769.8	806.7	393.4	7419.4
	9.3 26.4	28.6	18.5	94.1	205.5	120.6	82.7	84.2	88.2	43.0	811.2

表 5. 5. 4 太湖接続河道の流入負荷量: 1996 年 (3/4)

Total	Ton/年	493.5	208.0	69.0	1689.6	1536.4	207.2	3303.2	2582.2	321.4	244.6	129.4	16.1	357.6	245.3	31.4	447.5	329.1	42.1	484.6	383.1	47.4	216.2	181.7	21.6	
12.A	Ton/B	2.3	3.4	0.5	4.8	5.7	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
11.B	Ton/A	9.0	12.3	1.7	25.4	28.6	3.9	31.1	29.2	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
10月	Ton/A	26.7	33.9	4.6	86.2	92.9	12.5	137.8	127.7	15.9	5.2	4.2	0.5	4.0	3.2	0.4	1.7	1.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	
8月	Ton/月	13.9	16.5	2.2	33.5	34.4	4.6	6.1	5.3	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
8.A	Ton/月	38.7	42.4	5.8	132.9	125.9	17.0	77.8	68.0	8.5	2.6	1.9	0.2	3,6	2.7	0.4	3.9	3.2	0.4	2.6	2.2	0.3	1.1	1.0	0.1	
7.月	Ton/A	183.2	195.1	26.5	603.4	573.4	77.3	1257.5	1064.4	132.5	95.9	0.09	7.5	170.1	125.6	16.1	219.0	172.9	22.1	240.8	202.9	25.1	108.4	98.3	11.7	
6.A	Ton/月	122.2	122.9	16.7	459.9	408.6	55.1	1103.7	885.1	110.2	82.5	47.6	6.0	121.2	84.8	10.9	151.6	112.5	14.4	169.5	134.4	16.6	74.2	62.9	7.5	
5月	Ton/B	3.9	3.8	0.5	16.3	13.6	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4月	Ton/ F	17.3	15.6	2.1	66.7	54.0	7.3	41.4	29.3	3.7	0.7	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3月	Ton/ A	46.7	39.5	5.4	171.1	134.2	18.1	482.2	322.2	40.1	45.1	14.2	1.7	52.6	27.3	80 80	64.7	36.9	4.7	65.5	41.0	5.1	29.4	18.5	2.2	
2.9	Ton/B	15.2	12.0	1.6	47.8	35.2	4.7	22.5	13.1	1.6	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
<u> </u>	Ton/B	14.5	10.8	- C	41.7	29.8	4.0	143.3	37.8	4.7	12.0	1.2	0.1	6.2	1.6	0.2	6.6	2.2	0.3	6.3	2.6	0.3	3.2		0.1	
海入金维专		COD	N.E	, A	COD	, T	, E	COD	Z	a. E	COD	Ë	d.	COD	Z.	<u>ρ</u>	COD	ZE	T.P	COD	Z.L	Ţ.P	COD	Z	T.P	
复		17			82	?		19)		20	i		21	 		66	1		23			24	i		

表 5.5.4 大湖接続河道の流入負荷盤: 1996 年 (4/4)

表5.5.5 太湖に接続する水域ブロックの水質形態別負荷量比率

	河川接続	T-C	<u>OD</u>	T:	N	· <u>T</u>	<u>.P</u>
	水域ブロック	S-COD	P-COD	1-N	O-N	I-P	O-P
	1-1 (梅梁湾奥部)	0.7	0.3	8.0	0.3	0.3	0.7
ブロック	2 (竺山湖)	0.7	0.3	0.8	0.3	0.3	0.7
ブロック	3 (西太湖北部)	0.7	0.3	8.0	0.3	0.3	0.7
ブロック	5 (質湖)	0.7	0.3	0.8	0.3	0.3	0.7
ブロック	6 (西太湖南部)	0.7	0.3	0.8	0.3	0.3	0.7
ブロック	8 (譚山)	0.7	0.3	0.8	0.3	0.3	0.7
ブロック	9 (胥湖)	0.7	0.3	8.0	0.3	0.3	0.7
ブロック 1	10 (南太湖)	0.7	0.3	8.0	0,3	0.3	0.7
ブロック 1	11 (東太湖)	0.7	0.3	0.8	0.3	0.3	0.7

プロック 1-2 (梅梁湾口部)、プロック4 (大太湖北部)、プロック7 (大太湖南部) は接続河川なし

表 5.5.6 生態系モデルの計算パラメータ (1/2)

記号	単 位	設定値	摘 要	根 拠
T	ဗ	4.9~29.9	水 温	太湖周辺気象データ
L	cal/cm² day	242~484	日射量	及び文献値
			· · · · · · · · · · · · · · · · · · ·	(表8.4.5(3),(4))
μο	day	0.4	珪藻の最大増殖速度	
μc	day - 1	1.2	珪藻以外の植物プランクトンの最大増殖速度	実測および文献値
р		0.2	珪藻の割合	
\mathbf{k}_{1}	℃_1	0.035	珪藻以外の植物プランクトンの増殖速度の温度	
			影響に関する定数	Į
k2	°C ·day	0.005	植物プランクトンの呼吸速度	
ks	°C ·day -1	0.003	動物プランクトンの呼吸速度	
kı	cal/cm ² day	86	日射量に関するミハエリス定数	文献值
kin	μgN/ <i>(</i>	25	無機態窒素に関するミハエリス定数	
k _{IP}	μgP/ /	2	無機態リンに関するミハエリス定数	
kpp	μ gchla//	60	飽食効果に関するミハエリス定数	
as		0.65	動物プランクトンの同化率	ļ
Cg	//mgC·day	0.2	動物プランクトンの周囲の水の濾過速度	
дь	day	0.06	植物プランクトンの沈降速度	実測値および感度
des	day - 1	0.50	デトリタスの沈降速度	試験により最適値
dsip	day	0.00	無機態リンの化学反応による沈降速度	を設定
Win	mgN/m²·day	$0.47 \sim 24.9$	20℃での無機態窒素の底泥溶出速度	
Won	mgN/m²·day	0.0	20℃での有機態窒素 #	実測値
Wip	mgP/m²·day	$0.04 \sim 5.5$	20℃での無機態リン ″	プロック別に設定
Wop	mgP/m²·day	0.0	20℃での有機態リン "	(表5.4.9)
Wsc	gCOD/m²·day	2.3 ~88.3	20℃での溶存態 COD #	
γ _{IN}	℃ 1	0.0367	無機態窒素の底泥溶出速度に係る温度定数	
γом	°C 1	0.0367	有機態窒素 //	文献値
γ _{IP}	°C 1	0.0367	無機態リン "	
Уор	°C 1	0.0367	有機態リン "	
γ _{sc}	°C 1	0.0367	溶存態 COD #	
f c,n	day - 1	0.020	20℃での有機態窒素の無機化速度	
f c,p	day	0.030	20℃での有機態リンの "	実測値
f c,sc	day	0.050	20℃での粒子態 COD "]
f e,pe	day - 1	0.030	20℃での溶存態CODの溶存化速度]

Ţ

表 5.5.6 生態系モデルの計算パラメータ (2/2)

記号	単 位	設定値	摘 要	根 拠
k c.n	°C'1	0.0693	有機態窒素の無機化速度に係る温度定数	
k c,p	°C'1	0.0693	有機態リン "	文献值
k c,sc	°C-1	0.0693	溶存態COD "	
k c.pc	°C'1	0.0693	粒子態CODの溶存化速度に係る温度定数	
α	gC/mgchl-a	0.05	植物プランクトン中の C/chl·a 比	
β _P	μgN/μgchla	10.0	ル N/chl-a 比	
γр	μgP/μgchla	1.3	" P/chl-a 比	実測および文献値
δp	gCOD/mgchla	0.103	" COD/chl-a 比	
βι	μgN/mgC	200.0	動物プランクトン中の N/C 比	
γz	μgP/mgC	26.0	# , P/C 比	
δι	mgCOD/mgC	1.07	" COD/C 比	
η _N	•	0.6	植物プランクトンの呼吸に伴うO-N無機化率	i
η _P	•	0.6	n O-P無機化率	
ηе		0.0	" PCOD溶存化率	_
חו	•	0.6	ッ PCOD無機化率	
ζĸ	•	1.0	動物プランクトンの排泄に伴うO-N無機化率	
ζp		1.0	# O-P無機化率	文献値
ζc	•	1.0	" PCOD溶存化率	
ζ,	•	0.0	ッ PCOD無機化率	
Ø _N	•	0.6	動物プランクトンの呼吸に伴うOIN無機化率	3
θ.		0.6	" O-P無機化率	3
θс	<u> </u>	0.0	" PCOD溶存化率	_
θ,	·	0.6	PCOD無機化率	

なお、パラメータ設定の参考とした文献は以下のとおりである。

- ① 奥川光治・宗宮 功:「数理モデルによる富栄養化のシミュレーション解析」 土木学会論文報告集 Vol.377、P119~128、(1983)
- ② 有賀祐勝:「水塊植物群落の物質生産Ⅱ」生物学講座8 共立出版(1973)
- ③ DiToro,D.M.,O'Connor, .J.,Thomann,R.V.:"A dynamic model of the phytoplankton population in the Sacramento-San Joaquin delta" Advances in Chemistry Series,No.106、P 131-180、(1971)
- ④ 水利水電科学研究院水力学所·太湖流域管理局:「太湖富栄養化水質模型的初歩研究」 1994年4月
- ⑤ 岩佐義朗:「湖沼工学」 山海堂(1990)
- ⑥ 南京地理湖沼研究所:「太湖」 海洋出版社(1993)

表 5. 5. 7 太湖の有機物沈降速度

		接続水域 ロック	植物プランクトン (m/d)	デトリタス (m/d)
ブロック	1-1	(梅梁湾奥部)	0.06	0.60
ブロック	1-2	(梅粱湾口部)	0.06	0.10
ブロック	2	(竺山湖)	0.06	0.60
ブロック	3	(西太湖北部)	0.06	0.20
ブロック	4	(黄湖)	0.06	0.10
ブロック	5	(貢湖)	0.06	0.20
ブロック	6	(西太湖南部)	-0.06	0.20
ブロック	7	(大太湖南部)	0.06	0.10
ブロック	8	(譚山)	0.06	0.10
ブロック	9	(胥湖)	0.06	0.10
ブロック	10	(南太湖)	0.06	0.20
ブロック	11	(東太湖)	0.06	1.20

I

表 5.5.8 太湖水域別の底泥の汚染物質含有量及び溶出速度

		\$ 15	ų ķ		學者	主教のマイボ	が出すりの数王康原:木編25C	22C	軟泥当たり	軟泥当たりの溶出 <u>速度:水温20°C</u>	: 水温20℃	大坂7.97/当たりの裕田渓東:木龍20万	りの溶出液	7: 水焰200
Ja v y NO	数据数 Coder % %	CODer T-N %	N-1 %	q-T %	CODer (25)	T-N(25) mg/m2/d	T-P(25) mg/m2/d	CODmn (20) mg/m2/d	CODmn (20) mg/m2/d	T-N(20) mg/m2/d	T-P(20) mg/m2/d	全CODmn (20) mg/#2/d	全T-N(20) mg/m2/d	全T-P(20) mg/m2/d
	?	2											;	į
第日	100	2.5	0.24	0.082	294. 6	29, 90	11.090	89.7	74.6	24.88	9.231	74.6	24.88	9. Z31
7.5% [-] (権政漢典部)	24	6.7	0. 16	0.066	198.1	15.46	2,908	60.3	50.2	12.87	2. 421	12.0	3.09	0.581
7.4% 1-2 (権政院日報)	45	1.9	0.16	0.059	198.1	15.46	1.180	60.3	50.2	12.87	0.982	22.6	5, 79	0. 442
	88	1.5	0.10	0.055	134.8	7, 32	0.670	41.0	34.2	6.09	0,558	30. 1	5.36	0.491
	28	#	0.02	0.045	82.3	4.66	0. 133	25.0	20.8	3.88	0. 111	11.7	2. 17	0.062
7.6.0 4 (大大致北部)	17	8.0	90.0	0.049	45.6	3. 32	0.265	13.9	11.6	2.77	0.220	2.0	0.47	0.037
(製御) 5 (加久)	24	9.0	0.05	0,053	51.5	2. 72	0.498	15.7	13.1	2.27	0.414	3.1	\cdot	0.099
7.0% 6 (四大湖南部)	32	1.0	0.02	0.046	72.9	4.36	0.159	22.2	18.5	3, 63	0.132	5.9	1. 16	0.042
7,0,0 7 (大太湖南部)	. 46	8.0	0.0	0.049	45.6	3.32	0.265	13.9	11.6	2.77	0.220	5.3 8.3	1. 27	0, 101
	100	6.0	0.00	0.050	64.0	3, 32	0.311	19.5	16.2	2.77	0. 259	16.2	2.77	0.259
7*** 9 (香湖)	100	6.0	0.06	0.050	64.0	3, 32	0.311	19.5	16.2	2.77	0, 259	16.2	5.13	0, 259
7,0% 10 (萬太遠)	43	6.0	0.06	0.056	63.0	3.41	0.775	19.2	16.0	2.84	0.645	6.9	1.22	0.277
7*** 11 (東大湖)	100	2.2	0.12	0.059	249.9	9.73	1. 180	76.1	63.3	8, 10	0.982	63.3	8. 10	0.982

底泥溶出速度 :1996年第二次現地補足調査より得た、底泥含有量と溶出速度の関係より

CODer = 70.67×(CODer含有量)^{1.595}

T-N=307.3×(T-N的首集)1.608

T-P=82.4×(T-P含有量)8.048

CODmn容出速度 : CODmn=CODcr/3.2

1

軟形域 : 1996年第二次現地補足調査の底泥層厚調査結果より

庇死舎有量: 以下の調査結果を基に、各水域プッパの庭質含有量を設定

1996年第二次現地補足調査の底質調査結果

1992年底質調查結果(丁BA提供資料)

1981年底質調查結果(出典:「太湖環境質量調查研究」上海的範学院)

表5.5.9 太湖の月別平均水温

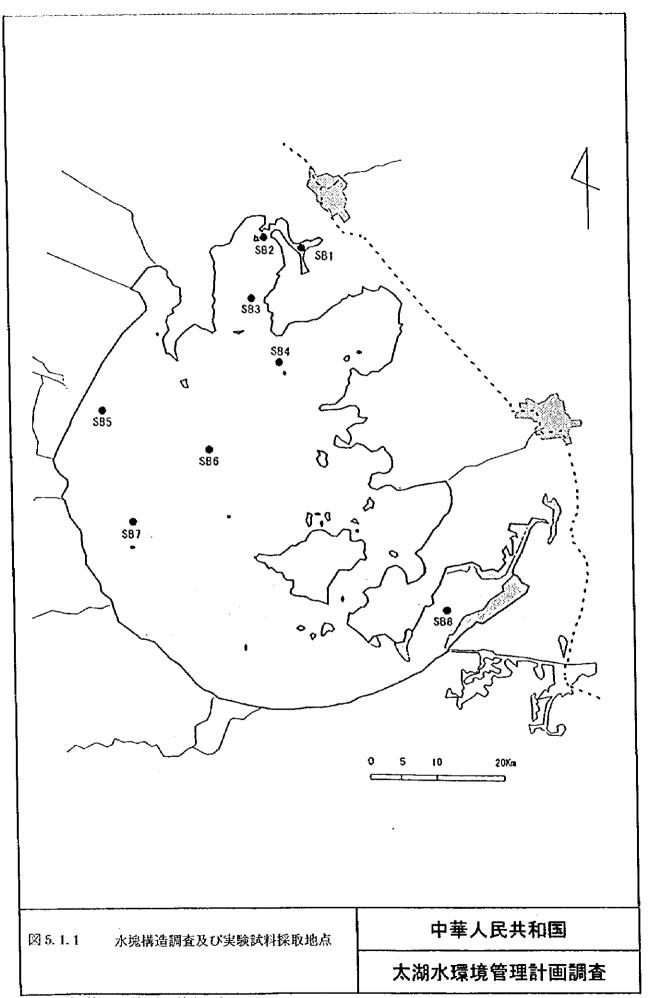
				•			7月					
							28.4					
水温 (℃)	4.9	6.4	11.9	15.1	20.7	24.3	29.4	29.9	25.3	9.2	11.9	6.2

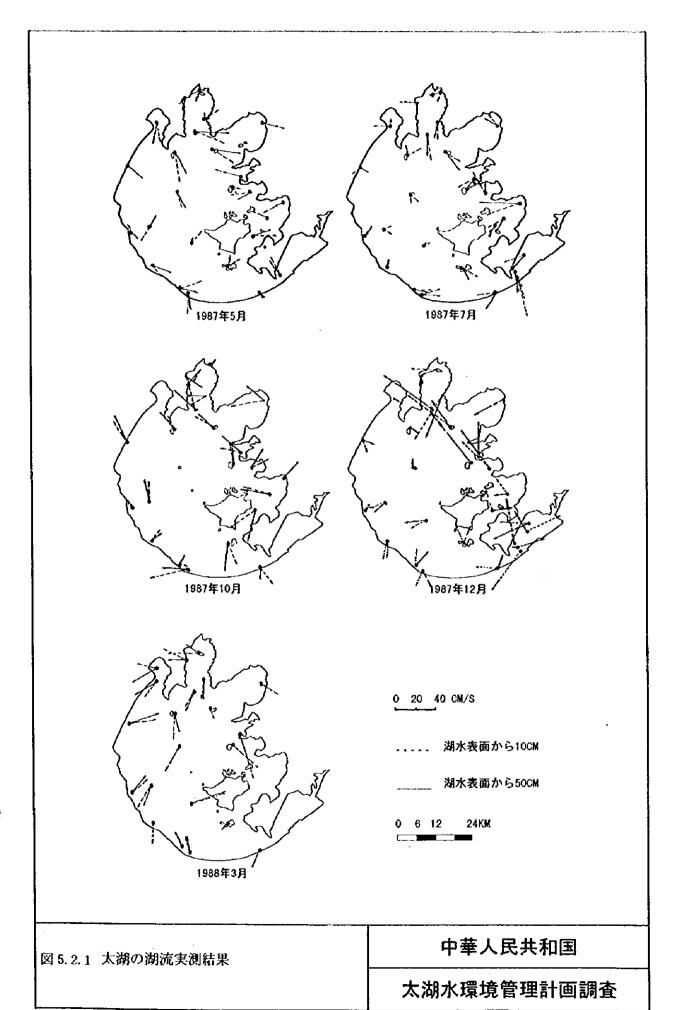
※:月別平均水温は、太湖の気温と表層水温の相関関係に関する報告値を基に算出した。 月別気温は太湖周辺の4箇所の気象観測データの平均値

参考文献;南京地理湖沼研究所:「太湖」 海洋出版社(1993)

表5.5.10 太湖の月別平均日射量

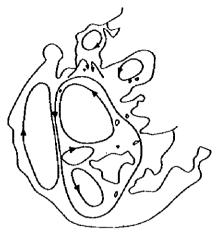
	<u>1987~</u>	1988年	1995年※				
月	日照時間 (時間)	輻射強度 (MJ/m2/d)	日照時間 (時間)	輻射強度 (MJ/m2/d)	日射量 (cal/cm2/d)		
1	880	6.25	1501	13.04	305		
2	726	6.32	1206	10.36	242		
3	1188	9.16	1728	15.11	353		
4	1877	15.16	1159	9.94	232		
5	1220	12.99	1569	13.67	319		
6	1284	12.09	1019	8.66	202		
7	265 7	•-	2137	18.84	440		
8	1903	18.86	2344	20.72	484		
9	1497	14.63	1511	13.14	307		
10	1873		1710	14.95	349		
11	2202	••	1735	15.18	354		
12	1557	9.39	1574	13.71	320		

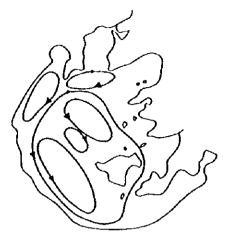

※: 1995年の輻射強度は1987~1988年の輻射強度の報告値と日照時間との相関式 より求め、以下の公式により日射量を算出した。


 $1 \text{ cal/cm} 2/d = 0.042789 \times 1 \text{MJ/m} 2/d$

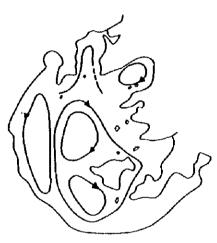
参考文献; 水利水電科学研究院水力学所・太湖流域管理局: 「太湖富栄養化水質模型

的初歩研究」1994年4月

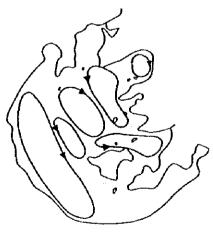

南京地理湖沼研究所:「太湖」 海洋出版社(1993)



国際航業(株) 十(株)建設技術研究所

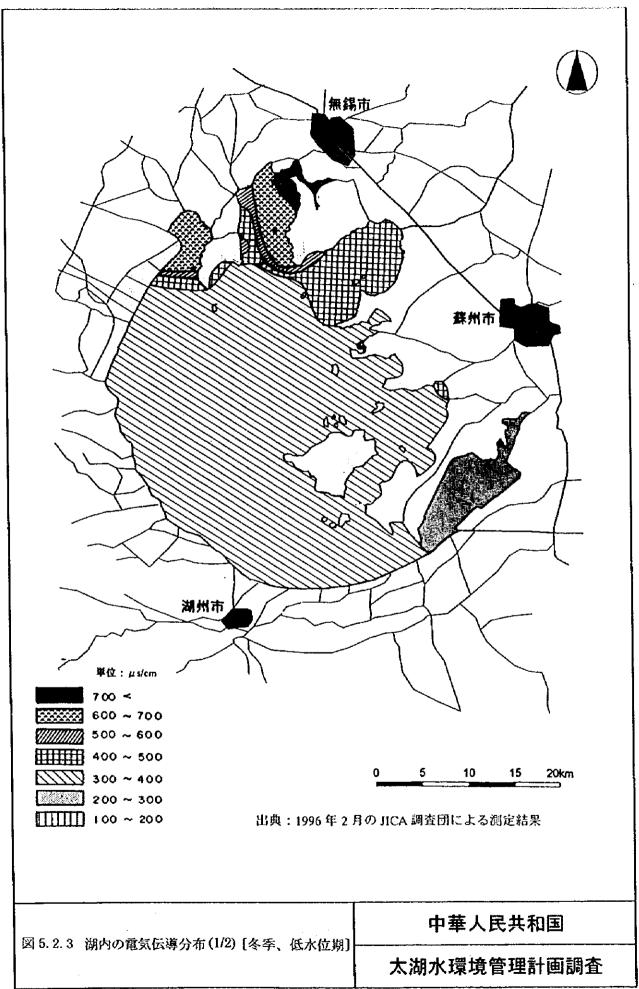

5 - 57

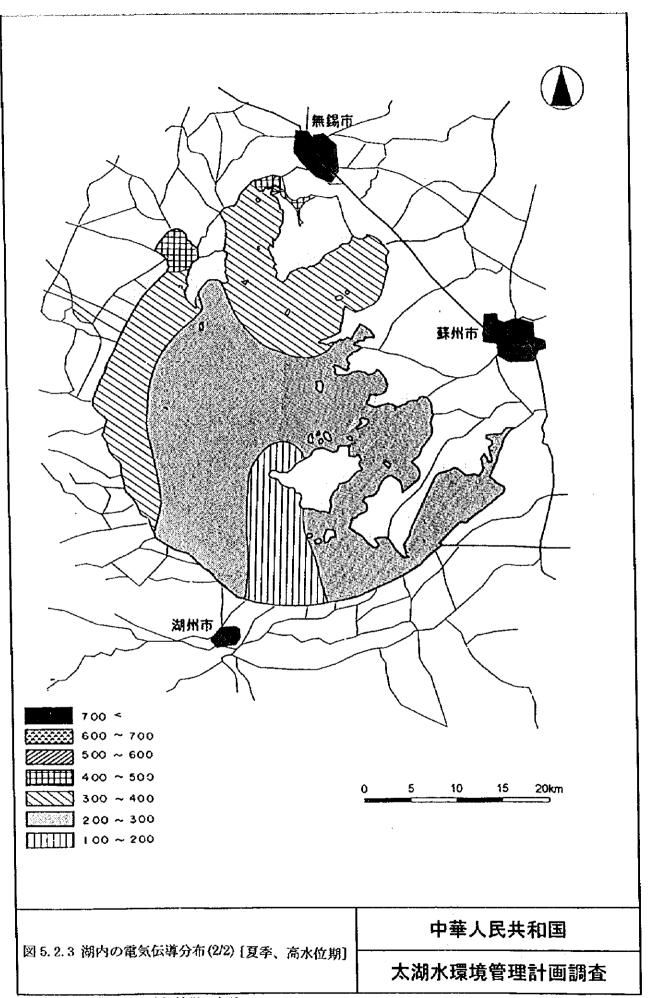
(1) 安定した南風時

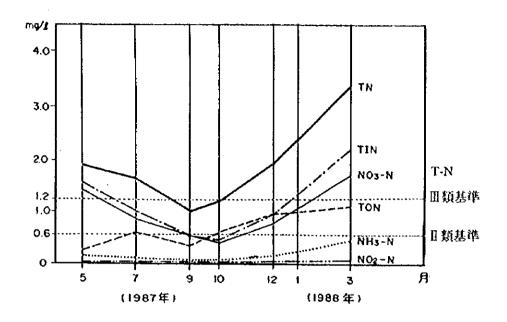

(4) 安定した西風時

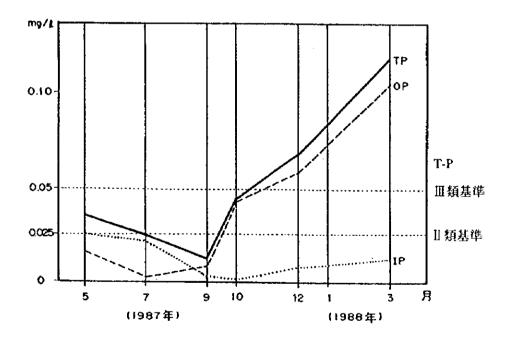
(2) 安定した北風時

(5) 安定した東風時

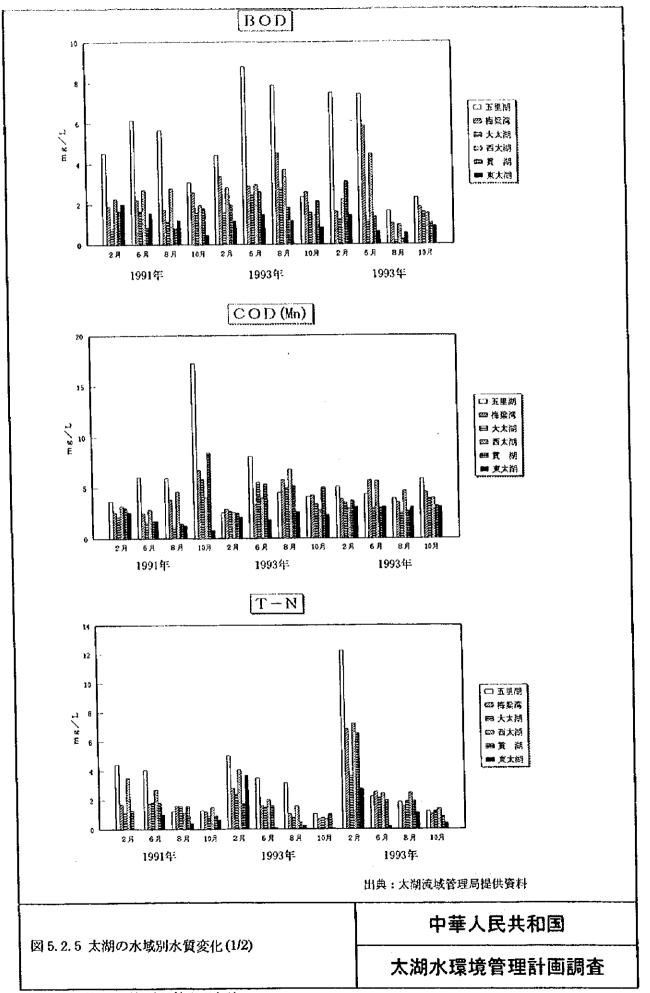

(3) 安定した南東風時

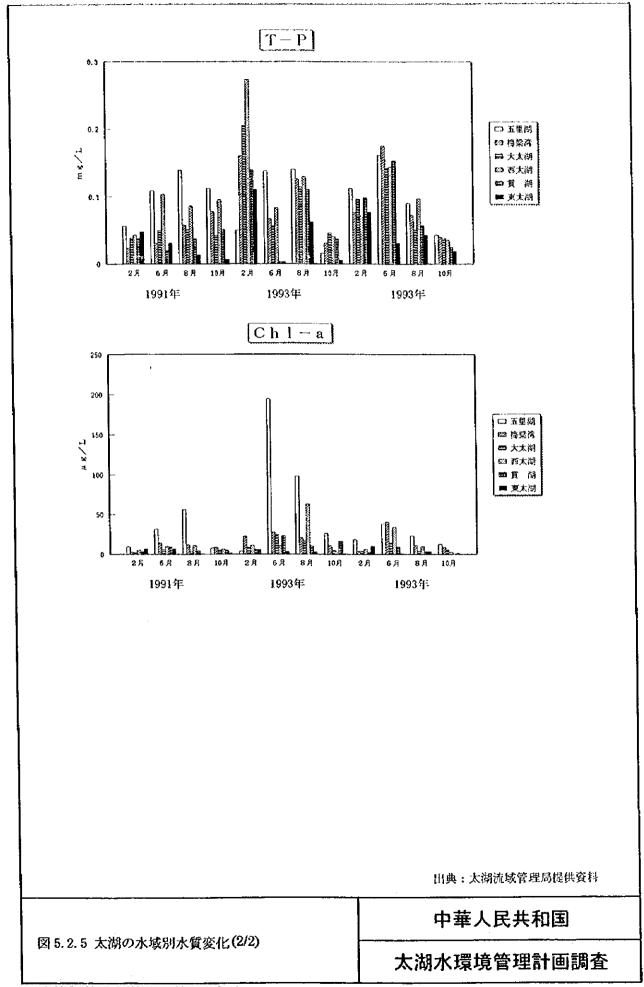

出典: 中国南京地理湖沼研究所 (1993)

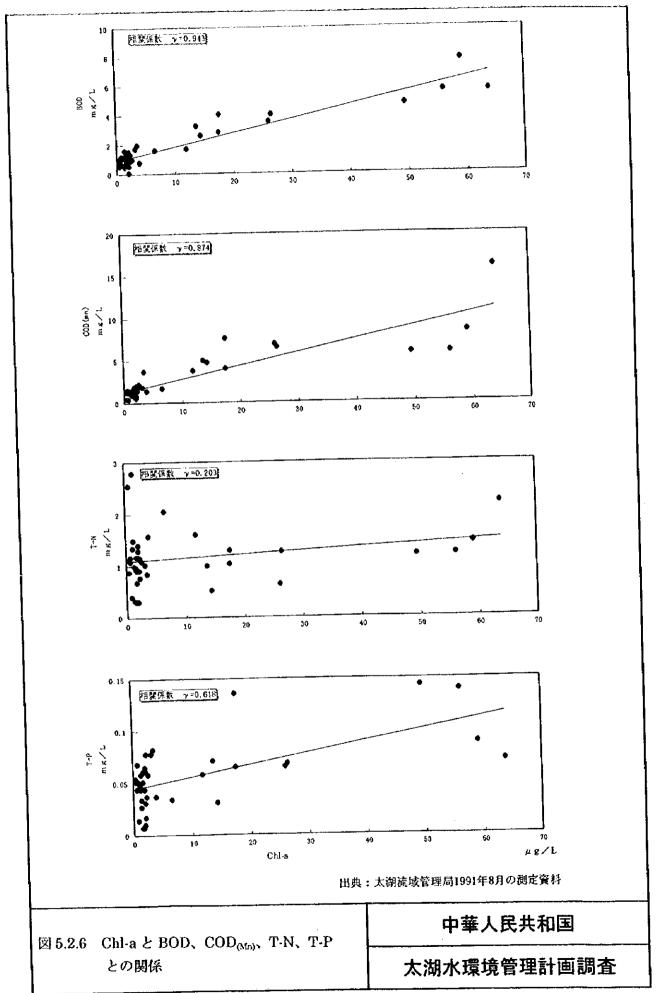

図 5.2.2 数値シミュレーションで再現された 太湖の湖流パターン

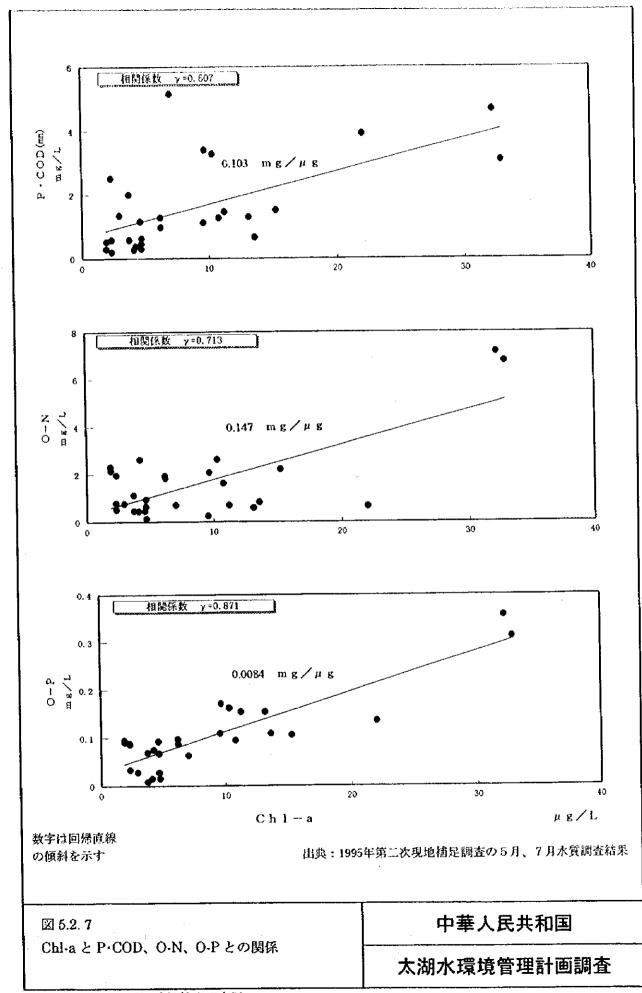

中華人民共和国

太湖水環境管理計画調査

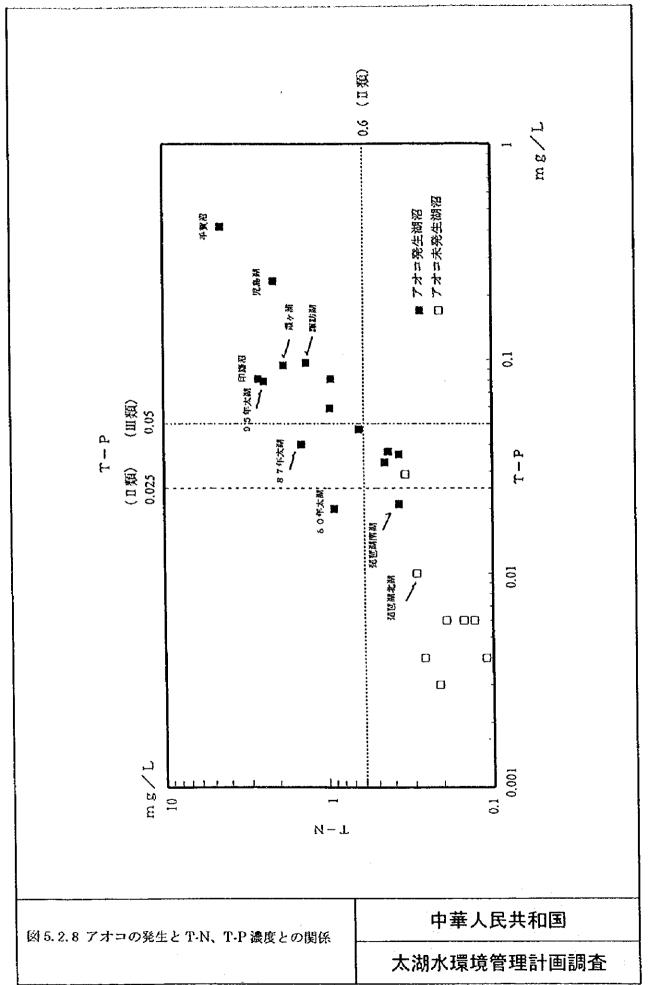


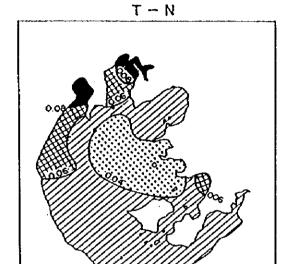

出典: 中国科学院南京地理湖沼研究所(1995)、太湖

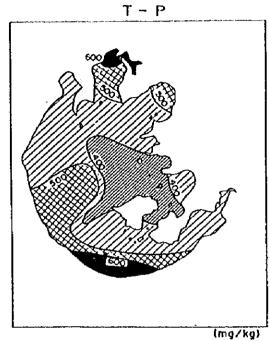

図 5.2.4 太湖の栄養塩類濃度の経年変化


中華人民共和国

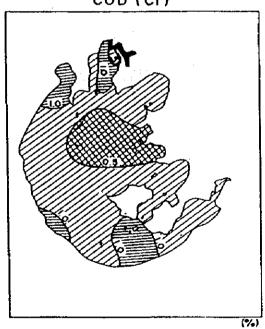
太湖水環境管理計画調査





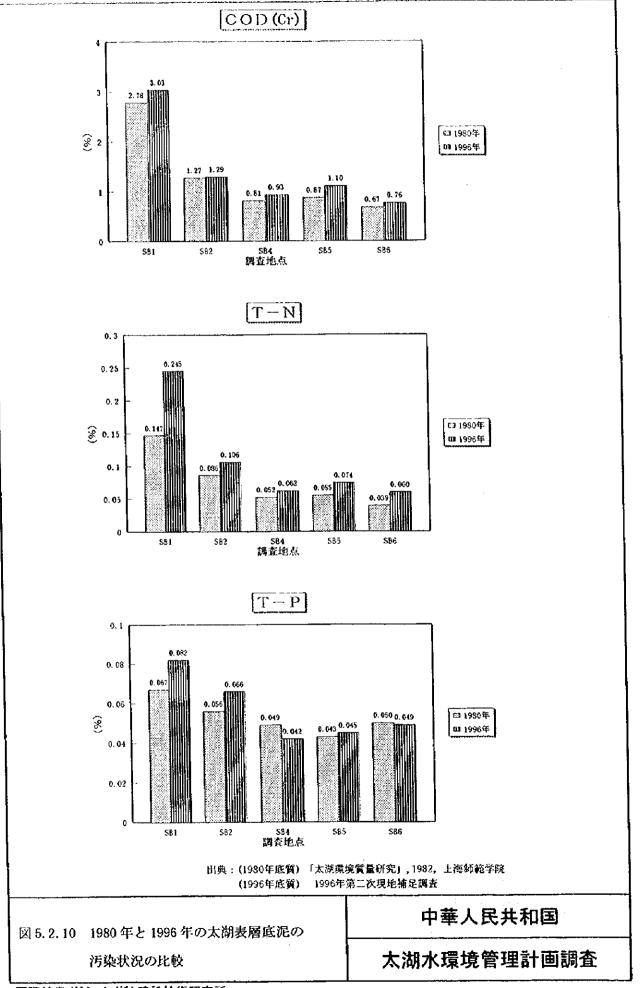


I



COD (Cr)

(%)

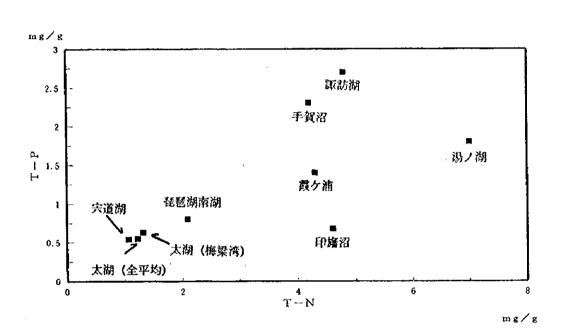
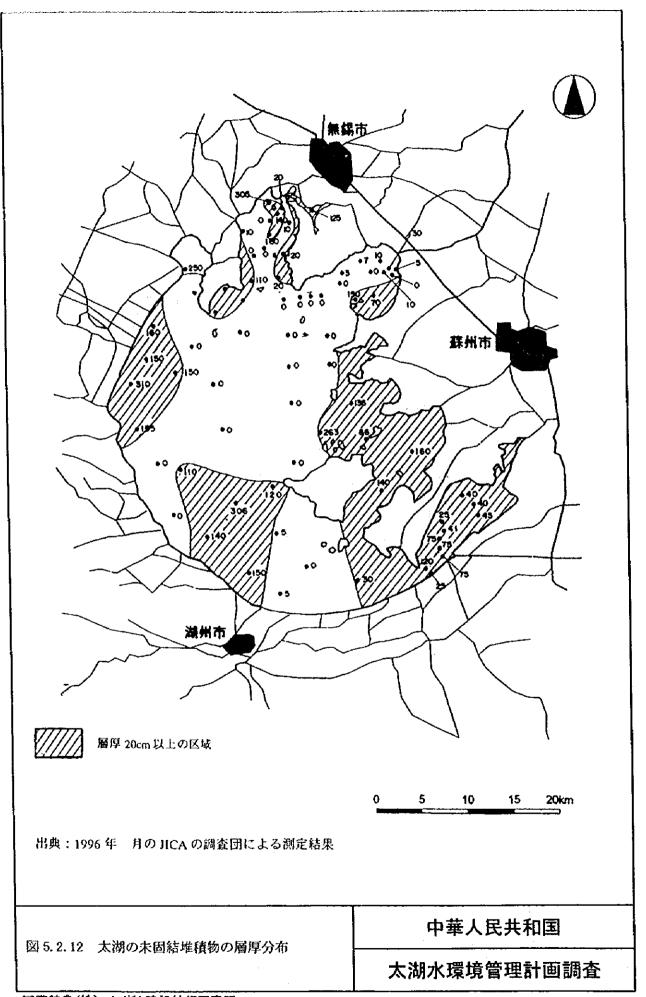
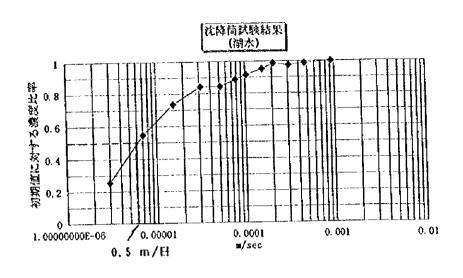


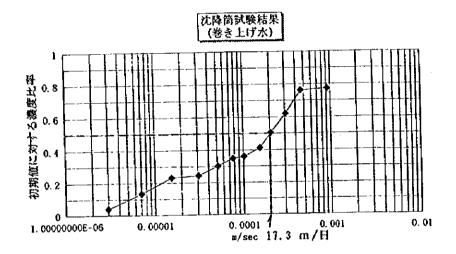
出典: 「太湖環境質量研究」、1982、上海師範学院

図 5.2.9 1980 年における太湖表層底泥の汚染状況

中華人民共和国

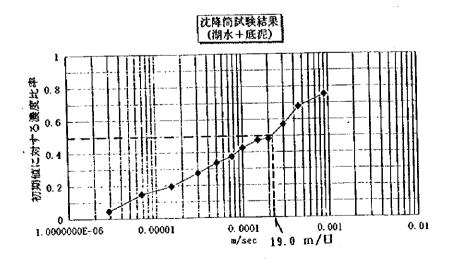
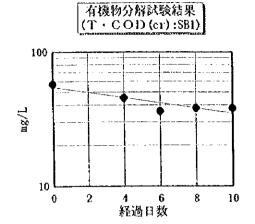
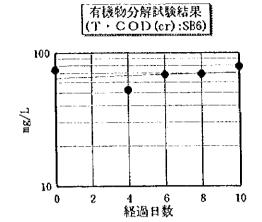
太湖水環境管理計画調査

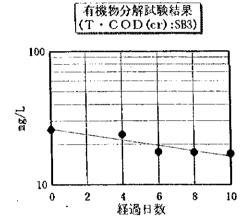




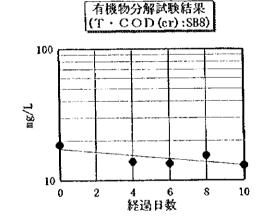

図 5.2.11 湖沼底泥の T-N、T-P含有量

中華人民共和国

太湖水環境管理計画調査


図 5.3.1 沈降筒実験結果


中華人民共和国

太湖水環境管理計画調査

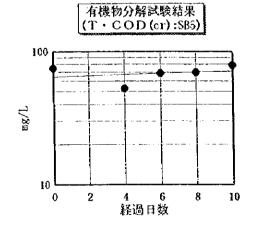
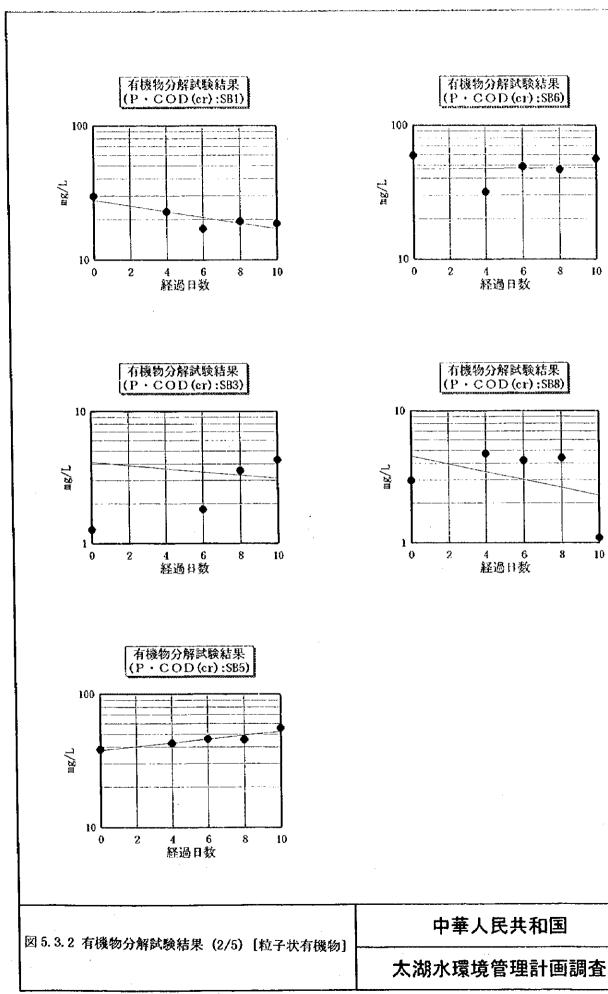
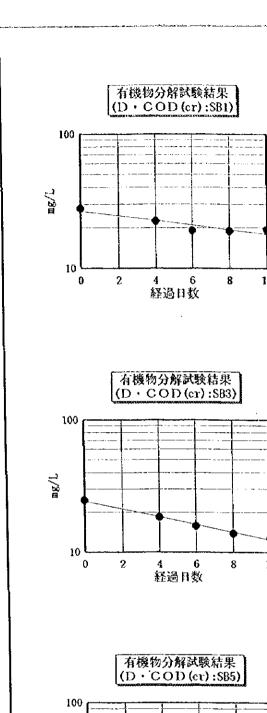



図 5.3.2 有機物分解試験結果 (1/5) [全有機物]


中華人民共和国

太湖水環境管理計画調査

10

I

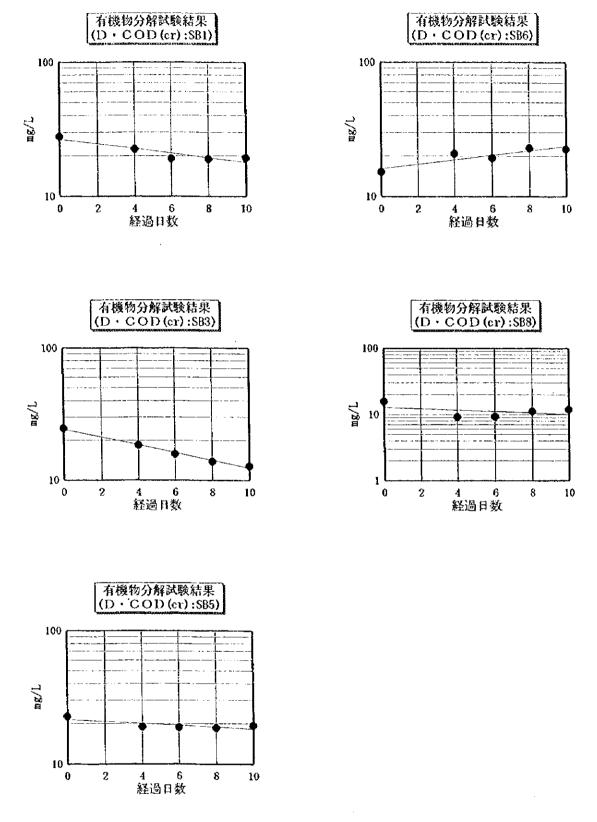


図 5.3.2 有機物分解試験結果 (3/5) [溶解性有機物]

中華人民共和国

太湖水環境管理計画調査