
Japan International Cooperation Agency (JICA)

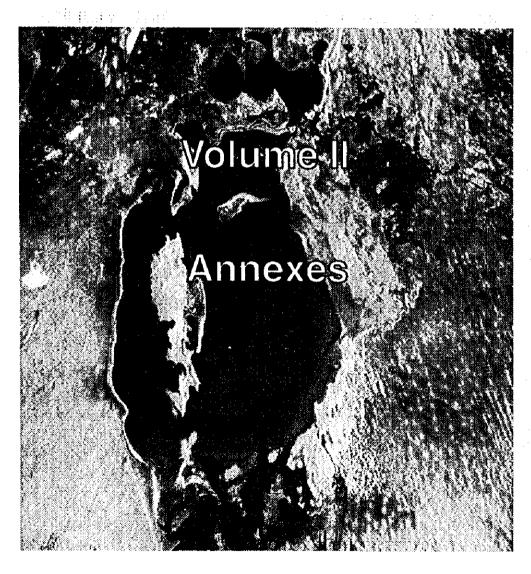
Ministry of Agriculture Government of Kazakstan

THE STUDY ON KZYL-ORDA IRRIGATION/DRAINAGE AND WATER MANAGEMENT PROJECT IN THE REPUBLIC OF KAZAKSTAN

March 1998

Nippon Koei Co., Ltd. Sanyu Consultants Inc. Aero Asahi Corporation

Α	F	Α
J	R	
98	•	14



1142935 [4]

Japan International Cooperation Agency (JICA)

Ministry of Agriculture Government of Kazakstan

THE STUDY ON KZYL-ORDA IRRIGATION/DRAINAGE AND WATER MANAGEMENT PROJECT IN THE REPUBLIC OF KAZAKSTAN

March 1998

Nippon Koei Co., Ltd. Sanyu Consultants Inc. Aero Asahi Corporation

List of Reports

Volume-I Main Report

Volume-II Annexes

Annex A Meteorology and Hydrology

Annex B Geology and Hydrogeorology

Annex C Soil and Salt Balance

Annex D Socio-economy and Rural Society

Annex E Agriculture and Agro-economy

Annex F Irrigation and Drainage

Annex G Water Management and O&M Project Facilities

Annex H Cost Estimate

Annex I Project Evaluation

Annex J Environment

Annex K Public Consultation

Annex L Topographic Mapping

Exchange Rate

US\$ 1 = T. 68.0 = J. Yen 110.0 (As of October 1996) US\$ 1 = T. 75.0 = J. Yen 115.0 (As of August 1997)

ANNEX - A METEOROLOGY AND HYDROLOGY

			the second of the second of the
	청마토 보통하여 결혼하는 것은		
기계는 과정하는 없는 호텔을 가냈다.			
			점하다 얼굴하다 않아 회사 살살이다.
10.00倍减少数40%。12.00%。			
네마노 맛들은 말라고 하지 않는 데 없다.			얼마나 그 왕생들은 하고 있다.
		막을 하는 것이 없는	
			1.동안 [집 : 1.] 이 얼룩 보기 않을까?
	신경하다는 살 그렇게 하면 말했다.		
그용하는 일을 살아. 그들의 문제 보고 있는데			
			50. : 기술학등 : (150 전인 : 기술 등 등)
생활 살아는 일반하면 고양 경험하다			
			그 하고 있을까 말라면 말을이 되다.
고에 보고하는데 이 회교 그런 독일을 다.			
그는 그들에 걸어 들어 모습니다고 하셨다.	하라 공장 시간 프랑스 경우였다.		문화를 통하는 학교 등학 발표가
	그는 사들이 작가 보냈다.		
이 시험을 하였다. 이 이 이 이 사람이 하는 중요?			
			이 관련되었다. 그는 그래프 원인
\$P\$ 1000 1000 1000 1000 1000 1000 1000 1			
근임 그 시간 실험되어 나는 경험하는			
	지를 보려하고 하지 않는 모양을		항송 홍보이 남고 한다가 하는데?
			생물 이 점심 아팠을까요
		机压力 经通过发出	

ANNEX - A

METEOROLOGY AND HYDROLOGY

Table of Contents

1	Gene	ral	A-I
2	Colle 2.1 2.2 2.3	cted data Meteorological Data Hydrological Data Sediment Data	A-1 A-1
3	Mete 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	orology Precipitation Precipitation Probability Air Temperature Relative Humidity Sunshine Hours Wind Speed Evaporation Potential Evapotranspiration Recommendations	A-2 A-2 A-3 A-3 A-3 A-3 A-3 A-4
4	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	ology National Water Resources Syr Darya River Basin Water Sharing of the Syr Darya Chardara Reservoir Kzyl-Orda Headworks Aral Sea River Discharge Kuvandarya River Sediment Load Recommendations	A-4 A-6 A-6 A-7 A-7 A-8 A-8 A-9
5	Avai 5.1 5.2	lability of Water Resource Available Water for the Study Area Available Water at the Chardara Reservoir	A-9
6	Irriga 6.1 6.2	Itrigation Area and Water Use	A-10
7	Wate 7.1 7.2	Water Balance of the Study Area Water Balance of the Priority Area Water Balance of the Priority Area	A-11 A-11 A-12
		List of Tables	
Tabl Tabl	e A.1 e A.2 e A.3 e A.4	List of Meteorological Stations in the Syr Darya River Basin List of Hydrometrical Stations on the Syr Darya Periods of Annual Precipitation Data Periods of Available Meteorological Data	A-14 A-14 A-15 A-16

Table A.5	Periods of Available Discharge Data of the Syr Darya	A-17
Table 4.6	and Its Tributaries Precipitation - Monthly and Annual (mm)	A-17
Table A.6	Precipitation - Monthly and Adduat (IRIR)	
Table A.7	One-Day Maximum and 3-Day Maximum Precipitation (mm)	A-18
Table A.8	Average Monthly Air Temperature (°C)	A-19
Table A.9	Average Maxima Temperature (°C) - Monthly and Annual	
	Average	A-19
Table A.10	Average Minima Temperature (°C) - Monthly and Annual	
	Average	A-20
Table A.11	Average Monthly Relative Humidity of Air (%)	A-20
Table A.12	Average Daily Sunshine Duration (hour)	A-21
Table A.13	Average Monthly Wind Velocity (m/s)	Λ-21
Table A.14	Summary of Monthly and Annual Climatic Data	A-22
		11-22
Table A.15	Summary of Monthly and Annual ETo in the Syr Darya River	4 22
	Basin	A-23
Table A.16	Aral Sea - Annual Water Level	A-23
Table A.17	Monthly Average Inflow Discharge into Chardara Reservoir	
	for period 1970-1996	A-24
Table A.18	Monthly, Seasonal and Annual Discharge of	
	the Syr Darya (Chardara)	A-25
Table A.19	Monthly, Seasonal and Annual Discharge of	
	the Syr Darya (Koktyube)	A-25
Table A.20	Monthly, Seasonal and Annual Discharge of	
	the Syr Darya (Tomenariyk)	A-26
Table A.21	Monthly, Seasonal and Annual Discharge of	11 20
radic A.21	the Syr Darya (Tomenariyk)	A-26
Table A.22	Monthly, Seasonal and Annual Discharge of	A-20
Table A.22	Morany, Scasonar and Amada Discharge of	A-27
Table A 02	the Syr Darya (Kzyl -Orda)	11-21
Table A.23	Monthly, Seasonal and Annual Discharge of	. 27
	the Syr Darya (Karaozek).	A-21
Table A.24	Monthly, Seasonal and Annual Discharge of	
	the Syr Darya (Karaozek Flow)	A-28
Table A.25	Monthly, Seasonal and Annual Discharge of	
	the Syr Darya (Zhusali)	A-28
Table A.26	Monthly, Seasonal and Annual Discharge of	
•	the Syr Darya (Kazalinsk)	A-29
Table A.27	Monthly, Seasonal and Annual Discharge of	
	the Syr Darya (Kerateren)	A-29
Table A.28	Summary of Monthly, Scasonal and Annual Discharge	
	in the Syr Darya	A-30
Table A.29	Water Discharge in the Kuvandarya River	Λ-31
Table A.30	Average Monthly Flow in the Kuvandarya River	A-31
Table A.31	Water Use in the Kuvandarya River Area	
Table A.32		
	Major Lakes in the Zhanadarya and Kuvandarya River Canals	W-31
Table A.33	Syr Darya - Suspended Load (Kergelmes)	A-32
Table A.34	Syr Darya - Suspended Load (Tomenariyk)	A-32
Table A.35	Estimated Discharge in the Syr Darya at the Upstream of the Kzyl	
	- Orda Headworks	A-33
Table A.36	Estimated Available Monthly Discharge for the Kzyl-Orda Left	
	Main Canal	A-34
Table A.37	10-day Probable Available Discharge at the Kzyl-Orda	
	Headworks	A-34
Table A.38	10-day Probable Available Discharge at the Head of Left Main	> = 4 · ·
1	Canal	A-3 4
Table A.39	Irrigation Area and Water Diverted from the Syr Darya	A-35
Table A.40	Crop and Irrigation Areas in the Irrigation Systems of the Syr	A-33
TAULU ALAU		A-35
Table A 41	Darya Basin (1995)	. A-33

	Year 1996	1
Table A.42	Difference of Syr Darya River Discharge Between Chardara and	_
	Kazalinsk Stations	1
Table A.43	Hay and Lake System in the Kzyl-Orda Oblast	I
Table A.44	Syr Darya Water Use in the Kzyl-Orda and South Kazakstan	
Table A.45	Oblast (1995)	I
Table A.46	Irrigation Area and Irrigation Water Use	Į
Table A.47	Crop Area in Ilyasov Farm during Year 1985-1996	I
Table A.48	Crop Area in Shagan Farm during Year 1985-1996	1
Table A.49	Water Balance of the Syr Darya Flow	
	List of Figures	
	List of Figures	
Figure A.1	Location Map of Meteorological and Hydrological Stations in the	,
Figure A.1 Figure A.2	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin	
	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin	ŧ
Figure A.2	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin	E E
Figure A.2 Figure A.3	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin Monthly Precipitation at the Kzyl-Orda Meteorological Station Annual Precipitation at the Kzyl-Orda Meteorological Station Summary of Meteorological Aspect Annual Discharges at the Chardara Reservoir	E E
Figure A.2 Figure A.3 Figure A.4 Figure A.5 Figure A.6	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin	E E
Figure A.2 Figure A.3 Figure A.4 Figure A.5 Figure A.6 Figure A.7	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin	
Figure A.2 Figure A.3 Figure A.4 Figure A.5 Figure A.6 Figure A.7 Figure A.8	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin Monthly Precipitation at the Kzyl-Orda Meteorological Station Annual Precipitation at the Kzyl-Orda Meteorological Station Summary of Meteorological Aspect Annual Discharges at the Chardara Reservoir Annual Water Level of Aral Sea Characteristic Curves of Small Aral Sea Annual Discharges at the Chardara, Kzyl-Orda and Kazalinsk	
Figure A.2 Figure A.3 Figure A.4 Figure A.5 Figure A.6 Figure A.7	Location Map of Meteorological and Hydrological Stations in the Syr Darya River Basin	

		,

ANNEX - A METEOROLOGY AND HYDROLOGY

1. General

This Annex describes the results of meteo-hydrological study made during the Phase I and Phase II of JICA Study on the Kzyl-Orda Irrigation/Drainage and Water Management Project. Investigations and studies were carried out to clarify the natural conditions in the study area in order mainly to assess the availability of surface water resources for the Project and water saving for Aral sea. The main activities of the Study were:

- (1) Collection of meteorological data for precipitation, air temperature, air relative humidity, wind speed, and sunshine records from several meteorological stations in and around the Study Area,
- (2) Collection of river discharge data from 12 discharge gauging stations,
- (3) Collection of sediment load data in the Syr Darya,
- (4) Collection of data on annual river water use in Kzyl-Orda Oblast,
- (5) Collection of data on annual water level of Aral sea,
- (6) Collection of information on the water share of the Syr Darya for Kazakstan,
- (7) Field survey to examine the working condition of meteorological and discharge gauging stations, and
- (8) Analysis of collected data.

2. Collected data

2.1 Meteorological Data

There are 12 meteorological service stations in and around the Study Area operated under the management of the Hydro-Meteorological Center. Their inventory and locations are shown in Table A.1 and Figure A.1, respectively. Periods of available meteorological data are shown in Table A.3 and Table A.4. Taking their location and recording periods into the consideration, the Kzyl-Orda station is selected to represent the study area. The Kzyl-Orda station is recording precipitation, air temperature, air relative humidity, and wind speed. The monthly data of these records from the year 1964 to 1995 at the station were obtained from the Kzyl-Orda Hydro-Meteorological Center. The sunshine records were not available at the station. Therefore, they were estimated from the nearest station of Chirikrabad. Average monthly climatic data at other stations in the Syr Darya basin were also collected. Precipitation intensity data were not available for the study in and around the study area. However, one-day maximum precipitation and three-day maximum precipitation data at the Kzyl-Orda Station were collected for the period from 1963 to 1996.

2.2 Hydrological Data

There are 12 discharge gauging stations in the Syr Darya river basin operated under the management of the Hydro-Meteorological Center. Their inventory and locations are shown in Table A.2 and Figure A.1 respectively. Monthly river discharge data were collected for 12 gauging stations, of which 9 stations scatter along the Syr Darya river course and 3 stations on its tributaries. Periods of available discharge data are shown in Table A.5. For the Kzyl-Orda gauging station, 10-day discharge data were also collected for last 20 years (1976-1995). The Syr Darya monthly inflow discharges into the Chardara reservoir are collected for the period from 1970 to 1996. The data on monthly drainage discharge of the Kuvandarya river were collected for last 6 years (1991-1996). The annual water stage levels at the Aral sea discharge gauging station near Aralsk city, were also collected from 1963 to 1996.

2.3 Sediment Data

The measurements of suspended sediment load in the Syr Darya are available at the Tomenariyk and Kergelmes gauging stations. Monthly suspended load data were collected at the Kergelmes station for the period from 1970 to 1995. The sediment load was measured at the several points in the irrigation and drainage canals and the Syr Darya during the Phase I of the Study.

3. Meteorology

The study area is located in the transition area of semi-desert and desert agro-climatic zone. It has a continental climate with hot and dry summers, and cold and snowy winters. The climate of the Study Area is represented by the Kzyl-Orda Meteorological Station (Latitude 44° 51' North, Longitude 65°30' East, and Altitude 128 m above Baltic mean sea level).

3.1 Precipitation

Monthly and annual precipitation at the Kzy-Orda Meteorological Station from the year 1963 to 1996 are shown in Table A.6. Annual precipitation varies from 80.7 mm to 310.6 mm during the 34 years period. Mean annual precipitation is estimated at 155 mm. Variation of monthly and annual precipitation are shown in Figure A.2 and Figure A.3, respectively. Rainy season is from November to May and about 80% of precipitation has been recorded during this period. The average precipitation during the cultivation period (April-September) is only 40 mm, or 25% of the annual precipitation. The precipitation during the crop growing period is in form of rainfall. During the winter season from November to February, the precipitation is mostly snowfall.

One-day maximum and 3-day maximum precipitation in the year from 1963 to 1996 are shown in Table A.7. The one-day maximum precipitation varies from 6.3 mm (1975) to 53.7 mm (1993) and three-day maximum precipitation varies from 7.7 mm (1975) to 61.0 mm (1993).

3.2 Precipitation Probability

For the irrigation and drainage planning of the Study Area, the precipitation probability is examined. Taking into the consideration the recording duration more than 30 years and its location in the Study Area, the Kzyl-Orda station was selected for this analysis.

The probability of annual precipitation was estimated by means of Gumbel method, which is considered to be best-fit, as shown in below table. The precipitation in a dry year is 114 mm and in a wet year 195 mm. The probabilities of one-day maximum and 3-day maximum precipitation are also shown in the following table.

Probable Annual Precipitation at the Kzyl-Orda Station

Year	Probability of Exceedance	Annual Precipitation	One-Day Maximum Precipitation	3-Day Maximus Precipitation		
	(%)	(mm)	(mm)	(mm)		
Wet	20	195	21.7	29.4		
Normal	50	149	15.5	19.6		
Dry	80	114	10.7	13.1		

Probable monthly precipitation at the Kzyl-Orda station is shown in the following table. The probable (dry year) precipitation 1 in 5 year return period during the cultivation period (May to August) is negligible.

Probable Monthly Precipitation at the Kzyl-Orda Station

Return	Month Precipitation (mm)													
period	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep		Oct	Nov	Dec	
1/10	4.39	2.38	3.88	0	0		0	0	0	0	0.0	2.55	3.53	
1/5	7.96	6.15	6.88	3.01	1.56		0	0	0	0	1.78	5.78	7.49	

3.3 Air Temperature

The monthly mean, monthly mean maximum, and monthly mean minimum air temperature are tabulated in Tables A.8 to A.10. The mean annual air temperature is 9.9 °C and mean annual maximum is 15.8 °C. From May to September is summer season, having a mean maximum air temperature over 25 °C. The highest temperature peak occurs in July, occasionally rises up to about 35 °C. April to September are warmer months, when the temperature is generally above 20°C. The mean monthly minimum varies from -11.0 °C in January to 20.7 °C in July, and mean annual minima is 4.3 °C. The coldest period is from December to February with average temperatures below 0°C, and that may decrease to at -8.2°C in January. Average duration of the period with average daily temperature above 0°C is about 220-250 days, and non-frost period is 175-185 days. Stable temperature above 12 °C is set in general from the middle of April, and this time is adopted as the beginning of rice sowing.

3.4 Relative Humidity

Table A.11 shows the average monthly air humidity at the Kzyl-Orda station. The average relative humidity is about 56% and varies from about 35% in the summer season to about 80% in the winter season as shown in Figure A.4.

3.5 Sunshine Hours

Sunshine duration data at the Kzyl-Orda station are not available. Therefore, sunshine duration was estimated from the nearest station of Chirikrabad. The monthly sunshine duration at the Chirikrabad station is shown in Table A.12 and illustrated in Figure A.4. During the year sunny weather prevails. Sunny months are from May to September, with duration, generally, from 10 to 12 hours/days; whereas in winter season sunshine duration decreases to around 5 to 6 hours/day. The annual mean sunshine hours is 8.6 hours. The mean monthly sunshine hour varies from 4.6 hours in December to 12.4 hours in July.

3.6 Wind Speed

The monthly mean wind speed data from year 1963 to 1995 are tabulated in Table A.13 and average monthly wind speed illustrated in Figure A.4. During the year there are mostly north-east winds with velocity of 3-4 m/sec. The mean wind speed at the Kzyl-Orda Meteorological station is 3.4 m/sec, varying from 2.8 m/sec in November to 4.2 m/sec in April. Usually the strong winds take place in spring and at the beginning of summer. At the Kzyl-Orda Station, wind speed is measured at the height of 11 m above the ground surface.

3.7 Evaporation

The mean monthly evaporation at the Chardara and Aral sea stations are shown in the following table. The annual evaporation from Aral sea is 995 mm and from the Chardara reservoir 1114 mm. The evaporation usually varies from day by day under the influence of air temperature, relative humidity and rainfall, etc. The mean monthly evaporation at Aral sea varies from 9 to 182 mm.

Monthly and Annual Evaporation

Station						Eva	n (mm)						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Chardara	8	15	21	55	119	191	245	208	130	78	32	12	1114
Aral Sea	20	9	18	40	98	144	169	182	142	91	47	36	995

3.8 Potential Evapotranspiration

Monthly potential evapotranspiration (ET_o) is estimated for 5 stations in the river basin using monthly climatic data as shown in Table A.14. The Modified Penman method was used for the calculation of ET_o. The estimated monthly and annual ET_o at 5 stations is shown in Table A.15. ET_o varies from 0.46 mm/day in December to 8.68 mm/day in July at the Kzyl-Orda station. Annual ET_o in the Study area (Kzyl-Orda) is estimated at 1557 mm.

3.9 Recommendations

At present, the Kzyl-Orda Meteorological station does not have sunshine recorder, and pan evaporation recorder. The installation of these instruments are recommended for the Kzyl-Orda station.

4 Hydrology

4.1 National Water Resources

There are 8 major river basins in Kazakstan. Total annual water resources in Kazakstan averaged 100.9 BCM (Billion Cubic Meter), of which only 56 BCM originate within boundaries of Kazakstan. The remaining water resources come from neighboring countries. After accounting for water committed for the release to Russia, domestic and ecological water supply requirements, reservoir dead storage and conveyance losses, the remaining flows available for irrigation are limited to 46.2 BCM per year. Due to the highly irregular flow of most of rivers, their development for economic uses is only possible through stream flow regulation by storage reservoir. Many rivers, especially the larger ones, have been provided with long-term and seasonal regulation by reservoirs and storage ponds. At present, Kazakstan has 204 reservoirs, with a total capacity of 95.5 BCM and a total area in excess of 10,000 km². Of the total, 23 have capacities of more than 100 MCM (Million Cubic Meter) and 41 have capacities more than 10 MCM. Potential annual yield of usable ground water is estimated at 15 BCM, mostly in southeast, of which 2.5 BCM has been developed. In Kazakstan, total regular irrigation is practiced on 2.38 million hectares, of which 95.6% are irrigated with surface water, 3.6% with groundwater and 0.8% with sewage water.

4.2 Syr Darya River Basin

The Syr Darya river is a major surface water source in the Study Area. The Syr Darya originates from the Tian Shan mountains in Kyrgzstan, where the river is called Naryn, then it flows down through Uzbekistan joining right-side tributary called Chirchick and takes the name of the Syr Darya till Aral sea. The catchment area of the Syr Darya is 240,000 km². The natural discharges of the Syr Darya are regulated by the Chardara reservoir and other reservoirs located in the drainage basin upstream as shown below.

S.N.	Reservoir & Hydroplant	River Basin	Year of Operation	Live Storage (BCM)	Installed Capacity (MW)	Yearly Avg Evaporation (BCM)
ı	Toktogul	Naryn	1974	14.07	1200	0.086
2	Chardara	Syr Darya	1965	4.24	100	0.719
3	Kayrakkum	Syr Darya	1956	2.57		0.333
4	Charvae	Chirchick	1970	1.60	600	0.024
5	Andghigian	Kara Darya	1980	1.60	100	0.035
6	Bugun	Bugun	1970	0.36		0.041
7	Chakir System	Chakir		2.08		0.038
	Total			26.52	2000	1.276

Remark: BCM= billion cubic meter, MW = mega watts

The Toktogul is the biggest reservoir in the drainage basin upstream, which regulates the river flow on a multi-annual basis. In the upstream part of the catchment, there are four main irrigation areas that are High Naryn, Fergana valley, Middle Syr Darya and Chakir which account for more than 2.7 million hectares. Shortly downstream of the inlet into the Kazak territory, the Syr Darya enters the Chardara reservoir from which its flows are regulated and released to feed a hydro power plant, an irrigation canal and downstream river course. Flow in excess is spilled from a separate outlet, controlled by gates, into the Arnasai depression, in Uzbekh territory. In the territory of Kazakstan, it flows in South-Kazakstan and Kzyl-Orda Oblasts.

The river flows a length of 1650 km from the Chardara reservoir to Aral sea. The river is flowing through meanders from bed elevation 225 to 50 m asl. For 920 km till Kzyl-Orda town, the river bed is well confined in both banks and the irrigation area is developed mainly in the left side of the river. Downstream Kzyl-Orda till Zhusali (220 Km), river morphology becomes very flat on both sides and the Syr Darya river branches into Karaozek (right side). From Zhusali till Aklak (400 km), the river has narrowed. The Syr Darya river width varies from 150 to 200 m and depth from 2 to 5 m. The flow speed is 0.8 m/sec and high water lasts for 6 to 7 months (September to March). The river freezes in December and is open in February-March. Along the Syr Darya river, mainly downstream of Kzyl-Orda, during winter season, in presence of very low temperature, there are ice formation obstructing the hydraulic section and limiting the discharge capacity of the river.

The river bifurcates into two channels, namely the Syr Darya and Karaozek rivers, about 35 km downstream of Kzyl-Orda, and rejoins about 190 km downstream of the bifurcation point. Only two tributaries join the Syr Darya river from the right side; the Keles river, just before the Chardara reservoir inlet, and the Aris river, some 250 km downstream of the reservoir. The contribution of these rivers to the Syr Darya river is scarce, since their flows are mostly diverted for irrigation along their upstream reaches. The annual natural discharge of Aris river is 2.5 BCM and normally does not reach any more to the Syr Darya river, because they are used for irrigation and industrial needs in the region of Shimkent. For this reason, presently the Aris river forms a separate hydrological system and only marginally, during winter, it influences the discharge of the Syr Darya river.

The important permanent structures existing on the Syr Darya river are (i) Chardara multipurpose reservoir (ii) Kzyl-Orda headworks for irrigation diversion, and (iii) Kazalinsk headworks also for irrigation diversion. There are three temporary structures along the Syr Darya river for rising flows during the dry period. The temporary structures are Aitek diversion, Amanotkel and Aklak intakes in delta area of the Syr Darya river. All the temporary structures are located in the downstream of the Kzyl-Orda headworks.

4.3 Water Sharing of the Syr Darya

Monthly inflow to the Chardara reservoir is affected by the water uses in the upstream Republics (Kyrgyztan, Tajikistan, Uzbekistan) and the by the regulation of natural discharges operated by the upstream reservoirs. The Syr Darya river flow is used basically in accordance with the interstate agreement of the five Republics involved (Kyrgyztan, Tajikistan, Uzbekistan, Turkmenistan and Kazakstan). The interstate agreement between Republics of Kazakstan, Kyzgyzstan, Uzbekistan, Tajikistan and Turkmenistan for the use of the Syr Darya river water has been signed on February 18, 1992 at Almaty. According to this agreement, the annual share of Kazakstan is 10 BCM at 75% guarantee and 8.7 BCM at 95% guarantee. Average annual inflow to the Chardara reservoir was 13,668 MCM (1970-1996) that is higher than the internationally agreed volume. Figure A.5 shows the comparison between annual inflow to the Chardara reservoir and annual release from the reservoir into the Syr Darya river during 1970-1995.

The water share of the Chardara water release for the Kzyl-Orda and South Kazakstan Oblasts is according to the criteria shown in the following table.

Oblast	Annual Water Share (BCM)							
	75% guarantee	95% guarantee						
Kzyl-Orda Oblast	7.2	6.05						
South Kazakstan	2.8	2.75						

Every year, a month before the irrigation period, the Oblast Water Resources Committee decides the share of each irrigation system.

4.4 Chardara Reservoir

The Chardara is a multipurpose reservoir; irrigation, hydropower and flood protection, is located at the boundary with Uzbekistan about 250 km south-west of Shimkent. The main purpose of the reservoir is to provide irrigation to South Kazakstan and Kzyl-Orda Oblasts. The reservoir capacity is 5.22 km³, dead storage is 0.98 km³ and the useful volume for reservoir operation is 4.24 km³. The reservoir is formed by a 4.76 km long dam having average height of 12.5 m. It is a very shallow storage with the average depth of only 6.5 m, and has a surface area of 890 km². The dam crest is at 254.5 aBsl (above Baltic mean sea level) elevation and is 10-meter wide. The normal high water level of the reservoir is at 252 m aBsl and minimum water level is at 244 m aBsl.

The power house is located just at the dam toe in the Syr Darya river bed. The power house is installed with four units of generators with 25 MW (Mega Watts) each totaling 100 MW. The units can discharge an aggregate flow of 780 m³/sec with a head of 15.8 m. The minimum maintenance flow through turbines is 100 m³/sec. According to operating rule, yearly energy production should be 377 GWh (Giga Watts hour). The energy production during 1995 was 346 GWh and 453 GWh during 1996. In each lateral side of the power house, there is a bottom outlet, each one controlled by two gates of 5 m wide and 6 m high; maximum discharge capacity of the two outlets is 920 m³/sec at the normal high water level.

The overall discharge capacity of the Chardara complex is 3,975 m³/sec (Turbine 780 m³/sec, power house outlet gates 920 m³/sec, 200 m³/sec Kzylkumsk canal and Arnasay outlets 2,075 m³/sec). The Study Area is located in the lower course of the Syr Darya river, about 920 km downstream of the Chardara reservoir.

The flow, needed the downstream reaches for irrigation, is released through the four turbines. During summer, the needs exceed the maximum capacity of the turbines (from 500 to 780 m³/sec according to head), the lateral gates of the power house are opened till a

controlled release of around 1,200 m³/see that is the present maximum allowed discharge to the Syr Darya river.

Inflow to the Chardara consists of sanitary (maintenance) release from the Kaikakum reservoir, idle flow from the Chakir river and return flow from the middle stream of Chakir, river. From September to April, the Chardara reservoir is filling up along with water release for irrigation needs. In April, the reservoir should be filled up to full capacity. Then, it begins to release the stored water for the irrigation needs. At the time of the shallow critical period (less water season) when all water of useful volume used, the compensative flow from the Toktogul reservoir is foreseen in July-August. In order to release guaranteed outflow during the drought year, it is necessary to have 2.7 BCM of stored water in the reservoir at the beginning of critical period.

Monthly inflow to the Chardara reservoir is shown in Table A.17. The average annual inflow to the reservoir during 1970-1996 was 13,668 MCM, while the annual inflow during 1974-1977 was less than 8,000 MCM as the Syr Darya river water was used in the upstream for filling the dead storage of the Toktogul reservoir which started operation in 1974. The inflow during the summer season decreases due to water intakes for the upstream irrigation systems.

During 1969-70 to 1972-73, there was spilled water of 22,116 MCM in total from the Chardara reservoir to the Arnasai depression. During the period from 1973-74 to 1991-92, there was no spill to Arnasai depression. In last five year from 1992-93 to 1996-97, there was again spill to Arnasai depression totaling 17,922 MCM. Since 1992, the Toktogul reservoir operation rule has been changed to more power oriented operation. The Toktogul reservoir has been operated mainly for irrigation till 1987, producing in winter only 20-25% of the annual energy. Since 1992 the reservoir operation has been more power oriented producing more than 45% of the total annual energy during winter.

4.5 Kzyl-Orda Headworks

The Kzyl-Orda Headworks is located about 920 km downstream of the Chardara. It has been built for diverting water for the irrigation of both crops and pastures. The construction was started in 1941, but stopped during the world war. The construction work was resumed and completed in 1956. The weir is composed of a concrete ogee divided into 5 sluice ways with 16 m width. Each one presently surmounted by 6-m high radial gate. The overall dimensions are 170-m wide, 125-m long and 12-m high.

The normal high water level is set at 129 m asl; 6-m above the bottom of the approach channel at 123 m asl. The crest of the weir is at elevation 133.8 m asl. In normal condition, the weir can discharge 1200 m³/sec and it was designed for a return flood of 100 years corresponding to 1900 m³/sec. There are two irrigation intakes, one in each side of the weir. Both have front galleries to prevent bed load transportation to enter into the canals. The right bank intake has a capacity of 110 m³/sec and it is controlled by three sliding gates with 5-m width and 3.8 m height. The total width of the intake is 22 m. The left bank intake has a capacity of 218 m³/sec and it is controlled by six sliding gates with 5 m width and 3.8 m height. The total width of the intake is 41 m.

4.6 Aral Sea

Annual water level of the Aral sea is shown in Table A.16 and illustrated in Figure A.6. Figure shows that water level of the Aral sea has started lowering since the year 1960 and the sea was divided into two portion in the year 1990. At present the Aral sea is divided into two portions, namely: the Large Aral sea in the south, partially belonging to Uzbekh territory, and the Small Aral sea in the north. These two portions have separated since the beginning of the years 1990's by a natural edge of the sea bottom at around 40 m in elevation.

The small Aral sea, laying totally in Kazak territory, is fed by the Syr Darya, whereas the Large sea is fed by the Amu Darya, which flows in the Uzbekh territory.

The water level of the Aral sea was 52.63 m asl in 1963 and has dropped to the present level (end of 1996) of 36.5 m asl. Thus, the water level of the Aral sea has lowered for 16.13 m in 33 years. The water surface has been reduced by 50% (from 65,600 to 32,500 km²) during the last 33 years. The characteristics of the small Aral sea are shown in Figure A.7. The small sea in the north part, most pertinent to the present study, is presently separated from southern portion. This part has lost 55% of its original surface (from 6,500 to 2,900 km²) and 70% of its original volume (75 km³ to 22 km³).

The specific water inflow to the Small Aral sea is several times higher than that of the Big Aral sea, while the yearly evaporation is much higher in the latter. These factors have caused a sharp decrease of the water level in the Big Aral sea and the gap between the two portions, divided by the Berg strait, is presently around 3.0 m. Through the strait, the Small Aral sea is loosing a part of its incoming flows towards the Big Aral Sea declining further without improving the ecological balance of the latter. A dike (called Kokaral from the name of peninsula) built across the Berg strait could counter the declining regime of the Small Aral sea without causing any harm to the Big Aral sea and keep water level at 45 asl. A spillway releasing the excess flows to the Big Aral sea is foreseen in the west-south part of the Shevochenko Gulf providing periodic flushing operation to control the mineralisation of the waters.

4.7 River Discharge

The monthly river discharge of 10 stations is shown in Table A.18 to A.27. The average annual and monthly river discharges at three stations i.e., Chardara, Kyzl-Orda and Kazalinsk, are illustrated in Figure A.8 and A.9, respectively. The annual release from the reservoir was below 8,000 MCM during the period from 1974 to 1977 due to water use in the upstream for filling the dead storage of the Toktogul reservoir as discussed earlier. The river flows released from the Chardara reservoir are concentrated during the growing season from April to August, with about 70% of the annual total. The annual river flows released from the Chardara reservoir during the 26-year period (1970-1995), were 12,272 MCM (388 m³/sec) on an average, varying from 5,266 MCM (166 m³/sec) in 1975 to 21,453 MCM (678 m³/sec) in 1993. The annual river flows at the Kazalinsk station during the 26-year period (1970-1995), were 3,795 MCM (120 m³/sec) on an average, varying from 480 MCM (15.2 m³/sec) in 1977 to 10,048 MCM (371 m³/sec) in 1994. The discharge during the cultivation period in some years reduced below 25 m³/sec. The average monthly and annual river discharge at the various stations in the Syr Darya river are summarized in Table A.28.

4.8 Kuvandarya River

The Kuvandarya river is receiving drainage discharge from the Study Area. The two main drainage canals of the Project, the North Main Collector and South Main Collector, supply 297 MCM annually to the Kuvandarya river during the cultivation period (May-September). The annual discharge into the Kuvandarya river during the period from 1991 to 1996 is shown in Table A.29. The Kuvandarya river is receiving 61.4 MCM annually from the Zhanadarya river. The average annual drainage discharge from the Study Area (North and South Main Collectors) into the Kuvandarya is 297 MCM. The average annual discharge in the Kuvandarya river after the joining with the said collectors was 320 MCM during the period from 1991 to 1996. The monthly discharge in the Kuvandarya river at the downstream of the junction point with North and South Collectors is shown in Table A.30. It represents the drainage discharge from the Study Area, most of which comes during irrigation period. The annual water use of the Kuvandarya river is shown in Table A.31. The Kuvandarya water is mainly used for hay making and lake system. Table A.32 shows major lakes located in the Kuvandarya river basin.

4.9 Sediment Loads

The average annual suspended loads in the Syr Darya river was 153 mg/lit varying from 37 mg/lit in January to 390 mg/lit in May during the period from 1970 to 1989 at the Kergelmes gauging station located 85-km upstream of the Kzyl-Orda Headworks. The average monthly suspended load at the Tomenariyk and Kergelmes stations is shown in Table A.33 and A.34. In the present study, the measurements of suspended loads were conducted at the 3 points between Kzyl-Orda and Zhalagash during September-October, and the result showed that the average suspended loads at the three points was 104 mg/lit. In addition, the measurements were also conducted at 8 points in the irrigation canals and 8 points in the drainage canals at the end of irrigation period, which showed 91 mg/lit and 112 mg/lit of average sediment loads respectively.

4.10 Recommendations

The discharge gauging station in the upstream of the Kzyl-Orda headworks is damaged and not working. Therefore, repair of the station is recommended along with the installation of new automatic water stage recorder.

5 Availability of Water Resource

5.1 Available Water for the Study Area

The water flow at the Kzyl-Orda Headworks is diverted into the Left Main Canal (LMC) and Right Main Canal (RMC), and the remaining flows down and used for downstream irrigation areas and Aral sea. The LMC diverts river flow from the Kzyl-Orda Headworks into the Study Area. Therefore, water available for the Study Area is the amount of water which can be diverted into the LMC from the headworks, though the river flow is regulated by the Chardara reservoir and the amount of water for each canal is planned a month before irrigation starts.

The measured river discharge at the downstream of the Kzyl-Orda station is available. To determine the water availability for the Study Area, river discharge at the upstream of Kzyl-Orda Headworks is needed. Therefore, it was estimated using the discharge data of the Kzyl-Orda downstream station and inflow to the LMC and RMC. The discharge at the upstream of the Kzyl-Orda Headworks was estimated using following equation.

$$Q_{kzyl-up} = Q_{kzyl-down} + Q_{EMC} + Q_{RMC} + Losses$$

Where, $Q_{kzyl-down}$ is the discharge at the downstream of the Kzyl-Orda Headworks, Q_{LMC} is the discharge diverted into the LMC from the headworks, Q_{RMC} is the discharge diverted into the RMC from the headworks. Losses were neglected between two stations (upstream and downstream stations) as these stations are closely located each other..

The estimated discharge at the upstream of the Kzyl-Orda headworks is shown in Table A.35. The average annual discharge is 8,076 MCM (255 m³/sec), of which 5,412 MCM (342 m³/sec) is available during the cultivation period (April-September). The probable discharges were calculated in dry year (1 in 5 year return period) and normal year (1 in 2 year return period). The annual river discharge during the dry year (1 in 5 year return period) was estimated at 4,814 MCM, of which 3,481 MCM (72% of annual total) flows during the cultivation period. While the annual discharge during the normal year (1 in 2 year return period) was estimated at 7,760 MCM, of which 5,124 MCM (66% of annual) flows during the cultivation period. The monthly and seasonal discharges at the headworks are summarized in the following table.

Return	Drought Discharge (m³/sec)												Discharge Volume (MCM)		
Period	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Sep	Oct-Mar	Total
					7	(yz1-0	rda H	eadwor	ks						
5 Year (Dry)	56.0	55	95.6	110.	4 321.	338.	4 278.	7 175.9	55.3	3 43.	7 52.7	63.0	3481	1121	4814
2 Year (Normal)	148.5	155.7	206.3	250.	3 429.	3 437.	8 376.	6 289.6	5 155.5	5 H7.	4 131.6	5 154.7	5124	2488	7760
					Left	Main (Canal (Project	Area))					
5 Year (Dry)		•	·	TE	0 161.	9 174	3 152	0 86.2	2 -		-		1632		1632
2 Year (Normal)	•	-	-	40.	5 181.	2 190	9 176.	4 107.3	7 -	-	-	•	1852	-	1854

Remark: Dash (-) indicates no release of irrigation water from the headworks

The available water for the Study Area (LMC) was estimated based on the discharge at the upstream of headworks, water diverted into the RMC and discharge at the downstream of the Kzyl-Orda headworks. The water available for the Study Area (LMC) is shown in Table A.36. The average discharge during cultivation period is 1,858 MCM (119 m³/sec). The water available for diversion for LMC was estimated at 1,632 MCM in the dry year and 1,854 MCM in the normal year. 10-day probable discharges available at the Kzyl-Orda Headworks and Left main canal are shown in Table A.37 and Table A.38.

5.2 Available water at the Chardara reservoir

The Chardara reservoir is the main water resource for irrigation system in the Kzyl-Orda and South Kazakstan Oblasts. The average inflow of the Syr Darya river to the Chardara reservoir was 13,668 MCM during 1975-1994. The annual inflow in dry year (1 in 5 years return period) was estimated at 9,100 MCM. The Chardara reservoir supplies water to the Kzylkumsk canal and the Syr Darya river. The Kzylkumsk canal intakes the water directly from the Chardara reservoir by separate facility. Its average annual intake from the reservoir was 1,412 MCM during the period from 1985 to 1995. Meanwhile, the annual release from the reservoir to the Syr Darya river was fixed to be 8,150 MCM at 90% guarantee according to operation criteria of the reservoir. However, the release from the Chardara reservoir was 12,272 MCM during 1985-1995. The available discharges volume at several points along the river course are shown in the following table:

S.N.	Station	1	Availab	le Discharg	e Volume (MCM)	
		Avera	ige (1970-	1995)	L in 5	year return	period
		Apr to Sep	Oct to Mar	Annual	Apr to Sep	Oct to Mar	Annual
1	Inflow into Chardaca	1		13668			9100
2	Chardara (Release to Syr Darya)	8998	3274	12272	6697	1275	7972
3	Kzyl-Orda Headworks (upstream)	5412	2664	8076	3481	1121	4814
4	Left Main Canal (from Headworks)	1905		1905	1632	•	1632
5	Kazalinsk	1720	2069	3795	262	686	948

6 Irrigation Area and Water Use

6.1 Irrigation Area and Water Use in the Study Area

The irrigation area and river water use in the irrigation schemes of the Syr Darya basin during the period 1985-1995 are shown in Table A.39. The average irrigation area during this period in the two Oblasts was 342,635 hectares, of which 254,662 hectares was in the Kzyl-Orda Oblast. The average irrigation area of the Study Area was 80,353 hectares, however, it is decreasing in the recent years. The average river water use in the two Oblasts was 6,801 MCM, of which is 1,920 MCM in the Study Area.

The irrigation schemes along the Syr Darya river are shown in Figure A.10. The irrigation area and irrigation water use in these irrigation schemes during the year 1995 are shown in Table A.40. About 5,893 MCM river water was used for irrigating 323,500 hectares in the two oblasts (South Kazakstan and Kzyl-Orda). Table A.41 shows irrigation area and water use during the year 1996 in irrigation system of the Syr Darya river basin. It

also includes the information on developed area, cropping area, design discharge, length of main canal and construction date.

Table A.42 shows the monthly balances of river flow between the Chardara and Kazalinsk stations during the cultivation period (April to September). These balances represent the water use including losses and gains of the Syr Darya water between the Chardara station and the Kazalinsk station. The average water use during the cultivation period is 7,172 MCM (459 m³/sec).

The Syr-Darya water is also used in hay cultivation area and lake system. Table A.43 shows the hay area, number of lakes and volume of lakes in the LMC (Study area), RMC and Kzyl-Orda oblast during 1985-1996. Average hay cultivation area (1985-1996) in the Kzyl-Orda Oblast was 87,250 hectares of which 3,963 hectares (4.5%) was located in the Study Area.

The Syr Darya water use (plan and actual) during 1995 and 1996 for different sectors is shown in Table A.44 and Table A.45. The Syr Darya water use is divided into three categories: (i) industrial and domestic needs, (ii) fishing, and (iii) agricultural needs. The agricultural needs is further divided into irrigation needs, ecological needs (hay making and lake system), and losses in Canals (mainly Zhanadarya and LMC). The Chardara reservoir releases water into the Syr Darya river (downstream course) and into Kzyl-Kumsk canal (directly from the reservoir). Therefore, total water use from the Chardara is sum of the water use in the downstream Syr -Darya river course and in the Kzyl-Kumsk canal. Table A.45 shows water use only in the Kzyl-Orda Oblast.

6.2 Irrigation Area and Water Use in Priority Area

The priority area consists of two farms, Shagan and Ilyasov and these farms take water from the Left Main Canal. The irrigated area and water use in these two farms during the year 1985 to 1996 are shown Table A.46. The average irrigation area of two farms was 12,422 hectares during 1985-1996 period. The irrigation area in the two farms is sharply decreasing in recent years but irrigation water use does not show such trend. This may be due to poor operation and water management of the irrigation system. The average annual water use in the two farms is 240 MCM (from the Left Main Canal). The area of different crops grown in two farms is shown in Table A.47 and A.48.

7 Water Balance and Water Saving with the Project

7.1 Water Balance of the Study Area

The irrigation requirement in the Study Area "with Project" condition is estimated at 1,206 MCM for 87,000 hectares irrigation area, which is 714 MCM lower than the present irrigation requirement of 1,920 MCM during the period 1985-1995 for 80,350 hectares. Therefore, there is 37.2% water saving in the Study Area after implementation of the Project. The irrigation requirement in other irrigation systems of the river basin is estimated at 3,794 MCM assuming the similar conditions as the Study Area will be attained in future. Therefore, the total irrigation water requirement in two oblasts would amount to 5,000 MCM, of which 1,060 MCM is for the Kzylkumsk canal. After knowing these water requirements, the water balance study is made between the river discharge of the Syr Darya river and the water requirements, and its results are shown in the Table A.49. According to this table, the water release from the Chardara reservoir to the downstream reaches of the Syr Darya river can be increased by 352 MCM which can be saved in the Kzylkumsk canal under "with project" condition. The irrigation water demand in other irrigation areas in the Kzyl-Orda Oblast is estimated at 3,736 MCM, which is 1,449 MCM lower than present demand. The present irrigation water use is 38% of water release from the reservoir, which will decrease to 26.8% with the Project. The irrigation requirement and water saving "with project" condition in two Oblast are shown in the following table:

Oblast	Irrigation	Irrigation	Wate	r Use	Water Saving
	System	Area	Present	With Project	-
	4:	(ha)	(1985-1995) (MCM)	(MCM)	(MCM)
South Kazakstan	Kzylkumsk	66,500	1,412	1,060	352
	Others	21,500	204	204	0
	Sub Total	88,000	1,616	1,264	352
Kzył-Orda	LMC	87,000			714
_	Others	168,000	3,265	2,530	735
	Sub Total	255,000	5,185	3,736	1,449
Total		343,000	6,801	5,000	1,801

Remark: LMC = Left Main Canal (Study Area)

Under the "with project " condition, the annual irrigation water demand is estimated at 5,000 MCM for 343,000 hectares of irrigation area in the two oblasts, which is 1,801 MCM less than the present irrigation demand for the same irrigation area. Thus, there is 26.5% water saving for Aral sea under "with project " condition. The annual inflow into Aral sea will increase from 3,568 MCM to 5,369 MCM under "with project" condition applying to all projects of Kzyl-Orda and South Kazakstan Oblasts in the Syr Darya basin. The annual evaporation rate from Aral sea is estimated at 2,920 MCM for present water level (40.3 m) and 5,330 MCM at 50 m water level. As the estimated inflow to Aral sea under "with project" condition is more than present evaporation rate, the water level of Aral will rise in future. The annual inflow to Aral sea will increase 20% (714 MCM) under "with project" applying only to Study Area (LMC) as shown below.

Case	Present Water Use (1985-95) (MCM)	Future Water Use (MCM)	Water Saving (MCM)	Present Inflow into Aral Sea (MCM)	Future Inflow into Aral (MCM)	% Increase of Flow with Project Condition
With Project Condition LMC Only (Study area)	1,920	1,206	714	3,568	4,282	20
With Project Condition applying to all Projects of two oblasts	6,801	5,000	1,801	3,568	5,369	50

7.2 Water Balance of the Priority Area

The river discharge at the Kzyl-Orda Headworks is diverted into LMC and RMC, and the remaining flows down and is used for the downstream irrigation areas and Aral sea. LMC supplies irrigation water to whole Study Area of 87,000 hectares including the Priority Project Area of 13,690 hectares. The water available for the diversion to LMC is estimated at 1,632 MCM in dry year and 1,854 MCM in normal year. Since the future water demand for the Priority Project Area is estimated at 192.4 MCM, the available water is sufficient to irrigate the Priority Project Area.

The irrigation area and irrigation water use in the Priority Project Area during 1985-1996 is shown in the Table A.46. The irrigation water requirement in the Priority Project Area at the headworks under "with project" condition is estimated at 203 MCM for the irrigation area of 13,690 hectares, which is 80 MCM lower than the present irrigation water requirement of 282 MCM at the headworks during the period of 1985-1996 for 12,422 hectares. Therefore, about 28% water can be saved at the headworks for Priority Project Area after implementation of the Priority Project Area. The irrigation water requirement and water saving at the headworks with the implementation of Priority Project Area are shown in the following table.

Water Saving at the Headworks with Priority Project Condition

Farm	Irrigation Area		er Requirement at the Headworks Priority Project Area	Water Saving
	ı	Present	With Project	
	(ha)	(MCM)	(MCM)	(MCM)
Ilyasov	6,480	150	96	54.0
Shagan	7,210	133	107	26
Total	13,690	283	203	80

The water saving at the headworks will help increasing inflow into Aral sea. The annual inflow into Aral sea will increase from 3,568 MCM to 3,648 MCM under with project condition (priority area). Thus, there is 2.2% increase in flow into Aral sea with the implementation of Priority Project Area only. The inflow into Aral sea under "with project" condition is shown in the following table.

Case	Present Water Use (1985-95) (MCM)	Future Water Use (MCM)	Water Saving (MCM)	Present Inflow into Aral Sea (MCM)	Future Inflow into Aral (MCM)	% Increase of Flow with Project Condition
With Project Condition	283	203	80	3,568	3,648	2.2
Priority area (13,690 ha) Only With Project Condition Whole Study area (87,000 ha)	1,920	1,206	714	3,568	4,282	20

Tables

Table A.1 List of Meteorological Stations in the Syr Darya River Basin

S.N.	Station	Latititude	Longitude	Altitute			Reco	ords Ava	ilabl	e	Working
		North	East	aBsl	5	т	RH	Wind	SS	E	Since
						<u></u>		Speed			
<u> </u>	Chardara	41°20′	67°55'	271	1	V	٧	1		V	1928
2	Turkestan	43°16'	68°13'	206	√.	V	V	V	V		1886
3	Kzyl Orda	44°51'	65°30′	128	V	1	1	√			1883
4	Zhusati	45°31'	64°05'	101	1	V	1	V			1920
5	Kazalinsk	45°46'	62°07'	66	V	√	√	√	√		1882
6	Aralsk (Aral sea)	46°50′	61°41'	62	٧	V	1	V	1	V	1907
7	Shimkent	42°18	69°36	606	1						1920
8	Blinkovo	42°14'	70°09'	1212	1						1909
9	Zlika	45°13'	66°52'	138	1						1951
10	Syngirtek	46°09'	67°00'	230	V						1976
11	Barsakekmes	45°36'	59°48	80	٧						1950
12	Chirik Rabad	44°04	62°54'	88	1				V		1942

Remark: P=Precipitation, T= Temperature, SS=Sunshine and E=Evaporation

Table A.2 List of Hydrometrical Stations on the Syr Darya

S.N.	Name of Station	Rive/Lake	Distance	Working
			from Mouth	Since
			(Km)	
1	Chardara	Syr Darya	1633	1959
2	Koktube	Syr Darya	1281	1974
3	Tomen Ariyk	Syr Darya	996	1913
4	Kergelmes	Syr Darya	804	1962
5	Tasbuget/Kzyl-Orda	Syr Darya	718	1931
6	Karaozek	Syr Darya	684	1913
7	Zhusali	Syr Darya	494	1961
8	Kazalinsk	Syr Darya	181	1911
9	Karateren	Syr Darya	15	1993
10	Karaozek Flow	Karaozek Flow		
11	Keles Mouth	Keles		
12	Ariys Mouth	Ariys		

Table A.3 Periods of Available Precipitation Data

											<u>۵</u>	Prior	t of	Avail	Period of Available Precipitation Data	Prec	ictidi	tion	Data															
Stations															Year											-	<u> </u>		-	-			-	-т
	£961	1961	5961	9961	<i>L</i> 961	8961	6961	0/61	1/61	7 <i>L</i> 61	£161	<i>₹</i> /61	\$461	9/61	<i>LL</i> 61	8/61	6161	0861	1861	1982	1983	1984	\$861	9861	L861	8861	6861	0661	1661	7661	£661	1661	\$661	9661
Chardara																+	\dashv	十	1		1	1	-{-	_				+		+	-	-T	 -	
Turkestan			· 						1						-		_		-	_	1		_	\dashv			_		_					
Kzyl-Orda		\dashv				一十					-		+			_		1			1			1	1						-	-		T
Zhusali							+	-			$\neg +$					_	+	$\neg \vdash$			_	_	_	-	1		-	-						
Kazalinsk							1	_	\top	-	\dashv			$-\dagger$	-	\dashv	\dashv	-			丁	1	-	-	\dashv			-			<u> </u>			
Aralsk							\dashv		1		1					-	_	_	1	1	+		\dashv	+	\dashv						<u>I</u>			
Shimkent															<u>-</u>																			
Biincovo			······································	<u> </u>		<u> </u>		-				1	L																		· ·			
						1		1		ļ	1		[-	 -	ļ	<u> </u>										 -						
Syngilien														lacksquare		T	T	T	<u> </u>		1		1	1	1		T				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Zlika					•	1_	+	_	+	+	1	-	1	+	+	+		+	1	+	+		\top	1	╅	╅	1							
Barsakelmes																1			寸					1			1	·			·			
Chirikrabad																															······································		· ·	
					\dashv				1_	H	H	П		1		-	-				-		Н	H	H	Н	Γ	_		_	\dashv	-	\dashv	\neg

Table A.4 Periods of Available Meteorological Data

											Pe	poi	of A	vailal	ble N	Period of Available Meteorological Data	lolo.	gical	Data												
Stations		ļ									-	ļ		Year	ar	-	-	ł							Ì		1	ŀ	ŀ	}	ł
	t961 E961	\$961	9961		1961	8961	6961	0/61	1791	2161 2161	7/61	\$261	9/61		2261 2261	8791	6161	1861	7861 1861	£861	†861	\$861	9861	7891	8861	6861	0661	1661	7661	£661	\$661 \$661
		Ц	Ц	\square	Н	\dashv	Н	┟┤	H	Н	Ц			igdash	Ц	\sqcup	Н	\sqcup											\dashv	{	\dashv
											Σ	Monthly	ıly 4	\vei	Average	Air	Air Temperature	uper	atur	رو							ŀ		ł	ł	ŀ
,				Ц						Ц				_		_	\dashv	\perp	_	_											-
K.yi-Orda		_		_	<u> </u>				 		_		_		<u> </u>		Ц	H										-	-	-	
Zhusali																		L	 .	ļ	ļ	<u> </u>	<u> </u>								
		-			-	-	-	-	{	{	Σ	out	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ver	Monthly Average	Air	Air Relative Humidity	ativ	Hu	mid	ity					1		l			
			L	L	L		_	H	\vdash	H	\vdash		<u> </u>		\vdash	Н	Н	Ц	Ц	Ц	Ц										
NZy(-Orda							-					.	L			_				Ц											
Zhusalı					•												L	_													
											Σ	onth	ıly 7	Ver	age	Monthly Average Wind Speed	Spu	bee	_										}	ł	
Kand Orda		Ц			\mathbb{H}	Н	Н	Н	\vdash	Ц	Ц		Ц		Ц			Ц		Ц									\neg	-	_
May 1-Older		_				_	-	_		<u> </u>	_	_	_			<u> </u>						Ц				•	<u> </u>	<u> </u>			
Zhusalı																	L	<u> </u>	_	L	_										
											Σ	onth	ıly 4	Ver	аке	Monthly Average Daily	Jy S	sun	nne	집	Sunshine Duration								ŀ		
Chirikrahad]	Ц		Ц							Ц			\perp		_	4	4			_	_									
Vernit Newson			ļ			<u> </u>		<u> </u>	<u> </u>		<u> </u>	L	<u> </u>	<u> </u>														-			
Nazannsk																		L	L	L	L										

Table A.5 Periods of Available Discharge Data of the Syr Darya and Its Tributaries

	44	Period of Available River Discharge Data	ver Discharge	Data						
Stations		Year						-		
	2261 9261 5261 5261 5261 7261 1261 0261 6961 8961	1861 0861 6461	\$861 \$861	9861 \$861	8861 2861	6861	1661 0661	7661 7661	1661	\$661
Syr Darya				· · · · · ·						
Chardara						-	1	-	1	T
Koktyube								-		
Tomemamiyk						-		$\frac{1}{2}$		
Transport										
Nergeimes										
Kzyl-Orda						-				
Karaozek										
Zhusali										
Kazalinsk										
Kerateren					-			I		
Tributaries										
Karaozek Branch						<u> </u>				
Karaozek Kailway St. Keles River						···········				
Mouth of River						-		+	1	:
Arys River										 · · ·
Arys Railway Station								H		

Table A.6 Precipitation - Monthly and Annual (mm)

Station: Kzyl-Orda (128 m aBsl)

					Preci	pitatio	n (mm)					
Year	Jaa	Feb	Mar	Apr	May	Jon	Jul	Aug		Oct	Nov	Dec	Annoal
36.	100					11.8	31.5	00	0.0	13	7.0	11.0	101
1954	23.0						5 8	69	3.6	5.5	7.0	15.0	149
1965	45.0						0.2	0.7	1.7	23.5	16.0	10	86
1966	16.0								0.2	7.2	160	21.0	126
1967	13.0					6.5	3.9	0.0	6.0	26.8	25.0	11.0	153
1968	110					1.2	27.9	02	0.1			7.0	125
1969	0.0									129	4.0	410	188
1970	5.0				3.1		3.9	3.6	2.6	19	7.0	20.0	81
1971	2.0						0.0	07	0.0	11.9	5.0	48.0	92
1972	31.0						- 11	1.2	0.0	2 8	110	5.0	163
1973	180						0.0	0.0	11.7	25.3	8.0	7.0	150
1974	15.0					24	4 2	4.5	2 8	0.0	100	4.0	139
1975	110						16	0.0	0.0	3.4	14.0	17.0	95
1976	6,0							0.4	1.5	31.6	20.0	5.0	168
1977	15.0					3.2	19	4 8	6.1	11.3	110	12.0	. 96
1978	25 0						2.4	0.0	2.5	12.1	33.0	30.0	326
1979	3.0					2 1	0.0	1.9	2.9	13.3	2.0	26.0	115
(980)	22 0					0.0	0.0	4.0	0.4	9.3	35.0	20,0	190
1981	10.0						0.6	10.0	9.5	0.0	22.0	25.0	318
0982	14.0				41	0.4	6.0	0.3	17.1	25.0	(5.0	10.0	129
1983	28.0					. X S	0.0	64	0.6	15.0	28.0	45.0	
1984	16.0					1 12	0.0	0.3	0.6	7.9	44.0	2.0	182
1985	13.0						0.0	11.6	0.0	16.3	2.0	29.0	133
1986	20.0					0.0	6.2	21	5.6	5.0	20.0	40.0	144
1987	110					80	16.5	0.0	4.1	3,6	9.0	36.0	162
1988	20.0					111	13.5	2.8	18.2	6.7	6.0	23.0	170
1989	410		9.3	43.3	15.7	0.6	174	0.9	5.6	2.6	27.0	17.0	197
1990	29,0						0.8	0.0	0.0	27.6	20.0	35.0	195
1991	34.0			8.3	75.4	17,9	7.2	12	15.6	2.8	38.0	27.0	239
1992	27.0	26.0			16 8	0.7	0.0	20.1	0.0	0.6	3.0	23.0	154
(39)	F3.6					122	1.3	3.0	0.0	5.0	53.9	125	
1991	25.5					157	1 12	5.4	0.8	3.0	29,4	10.6	155
1995	3.5					167	1 8	5 2	3.2	34.8	7.0	8.4	121
1996	4 6										7.4	5.8	107
Avg	15.3									12.5	16.9		
Mar	410										53.9	48.0	310.6
Mia	0.0	(),3	3.5	0.3	0.0	0.0	0.0	0.0	0.0	0.0	20	10	

Table A.7 One-Day Maximum and 3-Day Maximum Precipitation (mm)

Station: Kzyl-Orda

Year	One-Day Maximum	Three-Day Maximum
	Precipitation (mm)	Precipitation (mm)
1963	16.0	29.4*
1961	17.0	17.8
1965	19.0	19.4
1966	12.4	13.3
1967	6.7	22.3
1968	13.9	27.9
1969	27.2	33.6
1970	7.9	9. I
1971	12.6	126
1972	25.8	55.9
1973	18.8	18.9
1974	18.0	18.0
1975	6.3	7.7
1976	11.7	18.9
1977	8.5	11.9
1978	14.2	17,4
1979	14.1	21.2
1980	15.8	22.5
1981	26.5	28.6
1982	11.1	13.9
1983	169	22.0
1981	17.1	27.0
1985	9.2	12.2
1986	14.9	26.9
1987	16.2	20.2
1988	145	17.8
1989	17.4	26.5
1990	17.4	19.0
1991	24.0	39.5
1992	120	12.4
1993	53.7	61.0
1991	15.7	15.7
1995	16.4	18.7
1996	15.0	21.0

Remark: * Estimated from 10-day Precipitation

Table A.8 Average Monthly Air Temperature (°C) - Monthly and Annual Average

Station : Kzyl-Orda

				Averag	e Mon	hly Air							
Year	Jan	Feb	Mar	Арг		Jun	Jul	Aug		Oct	Nov	Dec	Annual
1963	-3.8	1.0	3.6	10.8			26.8						10.9
1964	-8.6	-10.7	1.5	11.5	18.8		26.0					-	
1965	-8.6	-7.I	5.3	11.0						8.0			102
1966	-4.3	-1.5	6.2	12.1	17.4					7.3			10.3
1967	-12.7	-9.9	0.9	(3.7	20.1	24.5		24.4			1.0		9.1
1968	-5.2	-7.3	5.0	10.1	20.7					7.1	-7.0		
1969	-19.0	-16.4	-1.3	11.9	18.5	25.4							
1970	-10.8	-2.8	0.0	14.3									10.0
1971	-11.6	-7.6	1.0	10.7	19.2	24.7							9.01
1972	-15.4	-13.5	-3.2	12.0	19.2	24.1	25.1						
1973	-10.6	-5.7	1.5	13.4	19. 1	26.1	27.4			8.0			
1974	-13,0	15.3	0.6	11.6	20.9	25.2	28.4	23.5	18.3	11.1	1.3	-9.4	8.6
1975	-5.7	-8.8	2.1	15.3	19.8	26.3	29.5			7.9			
1976	-3.1	-11.5	-5.5	12.0	21.6	25.8	27.6	27.6	17.4	4.6	-3.9	-96	8.7
1977	-16.2	-8.7	3.4	15.8	22.6	28.5	27.5	24.1	18.9	8.0	3.4	-5.4	10.2
1978	-9.3	-10.3	0.4	12.7	17.7	24.7	28.0	23.2	20.3	8.4	2.3	-2.6	9.6
1979	-7.8	-2.0	3.3	11.8	18.8	23.9	28.4	25.1	19.0	11.8	7.0	-5.0	11.2
1980	-11.2	-12.1	-3.3	13.1	20.9	25.4	28.8			9.6			9.6
1981	-3.2	2 -3.5	4.8	11.8	17.6	22.7	28.0	25.4	1 17.8	9.4	1.0	-6.3	10.5
1982	-7.9	-8.7	-3.3	14.8	21.0	24.6	26.7			9.8	-6.0	-4.9	9.
1983	-3.0	-1.0	3.2	16.3	20.4								
1984	-7.0	-14.9	-22	10 2	19.7	26.0	29.5						8.5
1985	-8.8	3 -2.1	-24	14.0	19.5								
1986	-4.3	-8.0	-0.7	13.6	21.1								
1987	-3.8	8 -3.3	3 1.5	9.6	20.0	24.9	26.4						
1988	-5.2	3 -11.2	7 -0.7	14.6	18.1								
1989	-5.9	9 -5.5	5 1.6	9.4									
1990	-9.6	9 -3.1	l 5.2	13.8	3 20.8								
1991	-9.	4 -9.5	2 -3.6	[4.]	19.5								
1992	-3.1	6 -2.5	5 -1.3	128									
1993	-6.	4 -6.6	0.9	12.4	17.3								
1994	-9.3	8 -11.	3 -2.5	11.									
1995													
Mear	1 -8.												
Max													
Min	-193	0 -16.	4 -5.5	5 9.	17.	4 22.1	7 25.	1 22.	5 15	3 4.6	6 -8.0	0 -14.9	7.3

Table A.9 Average Maximum Temperature (°C) - Monthly and Annual Average Station: Kzyl-Orda

					Averag	e Maxi	ma Ter	operatu	re (°C)				
	Jan	Feb	Mar	Аря	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annua
1974	8.2	-9.1	7.7	17.6	27.9	32.2	34.9	30.1	25.6	19.5	7.5	-4.8	15.
1975	-0.9	-2.0	10.7	22.7	27.5	33.3	36.5	32.4	27.3	15.0	4.0	-1.0	17.
1976	-1.1	-5.6	0.9	18.3	28.4	32.3	33.8	34.9	24.3	10.2	1.6	-5.6	34.4
1977	-11.6	-2.9	10.0	23.6						14.6	8.3	-1.1	5.8
1978	-4.7	-5.0	6.3	19.4	23.9	31.5	34.8	30.1	28.6	16.0	6.8	1.5	F5.3
1979	-2.9	3.0	7.0	18.9	26.3	31.0	35.0	32.4	26.1	18.8	8.0	3.3	17.3
1980	-6.1	-6.9	3.4	19.2	28.2	32.0	35.0	30.2	25.0	15.6	8.8	2.5	15.6
1981	0.1	1.3	11.2	18.1	23.7	28.7	34.5	31.9	25.1	16.6	6.8	-3.0	16.
1982	-3.3	-26	3.0	22.7	28.4	31.4	33.4	31.2	25.7	16.0	3.3	0.7	15.3
1983	1.6	4.5	11.0	23.6	26.4	31.9	37.0	32.6	24.3	16.1	9.1	0.5	18.
1984	-3.5	-8.5	4.9	17.6	26.7	35.9	36.1	33.9	25.4	17.5	7.0	-10.3	15
1985	-4.4	1.8	3.1	22.1	27.2	33.7	33.8	30.4	26.2	13.6	5.4	0.7	16.
1986	-0.8	-22	4.0	21.2	28.6	31.4	34.0	31.1	27.5	16.3	4.7	-0.2	16.
1987	1.4	2.8	6.0	16.1	27.0	31.4	32.5	32.7	24.4	12.3	4.4	28	16.
1988	-1.0	-6.6	5.6	22.9	25.5	35.3	34.5	31.2	26.4	17.5	10.1	2.8	17.
1989	-1.5	-0.5	8.9	18.4	26.5	33.0	35.7	32.6	24.8	18.6	7.6	3.1	17.
1990	-4.1	-1.6	11.3	20.5	28.2	34.8	33.5	31.7	28.7	15.7	7.7	-0.9	17.
1991	4.3	-4.2	4.7	21.2	26.6	33.6	34.8	31.6	26.7	20.6	7.6	0.0	16.
1992	0.3	3 1.5	3.7	19.6	3 24.1	31.2	33.7	28.6	23.4	17.0	10.5	1.2	16.
1993	-2.1	-1.7	6.8	19.3	3 24.4	31.6	33.3	30.8	3 23.8	16.2	-2.6	-6.7	14.
1993	1 -5.7	7 -5.7	3.0	17.8	3 27.4	33.6	31.9	31.6	24,1	18.6	9.2	-0.2	15.
1995	-2.0	4,4	10,€	23.8	3 26.7	33.4	34.7	33.5	26.1	17.2	10.9	-1.0	18
Mean	-3.0) 2	6.5	20.2	26.6	32.5	34.4	31.	25.7	16.3	6.7	-0.7	15.
Max	1.6	5 4.5	11.3	23.8	3 28.6	35.9	37.0	34.9	28.7	20.6	5 10.9	3.3	18.
Min	-11.6	5 9.1	0.9	16.1	1 23.7	28.7	31.5	28.6	5 23.4	10.2	2 -2.6	-10.3	5.

Table A.10 Average Minima Temperature (°C)-Monthly and Annual Average

Station: Kzyl-Orda

Year					Average	Minim	a Tempe	rature (°	C)				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1974	17.2	-20.5	-4.7	6.7	13.7	17.2	21.5	16.3		3.5	-4.0	-13.2	2.5
1975	-10.3	-14.9	-1.6	7.7	11.3	17.8	21.0	17.3	11.3	0.8	-8.1	-9.3	3.6
1976	-4.9	-16.2	-8.0	6.4	14.4	17.8	19.6	18.9	10.1	-0.3	-7.6	-13.0	3.1
1977	-20.7	-13.8	-1.2	8 2	14.4	20.2	19.7	16.2	10.4	1.6	-0.3	-9.3	3.8
1978	-12.9	-14.3	-4.1	6.7	12 2	17.7	20.5	15.2	12.8	2.4	-1.2	-6.1	4.1
1979	-11.5	-5.6	4.0	5.6	11.9	16.2	20.8	17.1	11.8	6.6	-4.8	-3.1	5.1
1980	-15.6	-16.4	-8.0	7.3	13.8	17.8	21.1	16.2	9.4	4,4	2.0	-3.6	4.0
1981	-6.0	-7.1	0.4	6.5	12.1	16.9	21.0	18.5	11.2	2.9	-3.8	-9.0	5.3
1982	-122	-13,4	-5.2	-7.4	13.4	17.0	19.5	17.5	11.1	4.3	-3.9	-9.0	2.6
1983	-6.5	-3.5	-2.1	9.6	12.0	18.2	22.1	18.7	10.0	2.5	-0.5	-7.7	6.1
1934	1.01-	-20.3	-3.1	3.9	12.5	18.7	21.8	18.5	10.0	3.8	-3.1	-18.5	2.8
1985	-12.9	-5.2	6.4	6.7	11.8	18.5	20.3	17.1	10.5	2.6	-5.4	-7.9	4.1
1986	-6.7	-12.9	-4.6	5.9	13.0	16.7	19.6	16.9	12.3	2.0	-4.1	-7.2	4.2
1987	-7.6	-7.7	-1.7	4.1	12.5	18.0	20.2	18.2	11.2	-0.5	-6.0	-7.0	4.5
1988	-8.9	-15.7	-3.8	7.1	11.0	19.1	21.0	17.3	12.4	2.4	-0.6	-5.0	4.7
1989	-9.7	-9.3	-3.7	2.7	11.8	18 2	21.8	17.8	10.1	4.5	-1.9	-2.0	5.0
1990	-13.0	-10.1	0.7	7.5	12.9	20.3	20.4	17.5	11.8	3.2	-1.8	-9.2	5.0
1991	-13.7	-13.5	-5.8	7.8	12.8	19.9	21.4	17.5	11.5	5.0	-0.1	-7.2	4.6
1992	-6.8	-5.5	-5.2	7.3	11.5	17.9	19.6	16.6	10.0	1.7	-1.7	-5.3	5.0
1993	-10.0	-10.1	-3.4	6.2	11.0	19.0	21.3	18.1	10.1	2.1	-8.9	-15.0	3.4
1994	-13.5	-16.5	-6.4	4.8	14.3	19.8	19.7	19.4	10.8	4.2	0.3	-6.3	4.2
1995	-11.2	-5.2	-1.6	8.6	13.8	19.5	21.5	19.7	12.7	4.3	-0.3	-11.0	5.9
Mean	-11.0	-11.7	-3.8	5.9	12.6	18.3	20.7	17.6	11.0	2.9	-3.0	-8.4	
Min	-4.9	-3.5	0.7	9.6	14.4	20.3	22.1	19.7	12.8	6.6	2.0	-2.0	6.1
Min	-20.7	-20.5	-8.0	-7.4	11.0	16.2	19.5	15.2	9.4	-0.5	-8.9	-18.5	2.5

Table A.11 Average Monthly Relative Humidity of Air (%)

						Average	Relative	: Homid	ity (%)					
Year	Jan	Feb						lul .	Aug	Sep	Oct	Nov	Dec	Annua
1963		79	70	57	33	40	34	40	37				81	
1964		79	80	77	70	40	41	42	42	43	- 53	68	72	59
1965		77	74	70	50	29	34	36	35		60	76		
1966		74	65	58	40	31	34	35	38	36	42	67	71	49
1967		71	76	76	51	45	37	41	34					
1968		82	81	72	41	38	33	39	30	34	50	70	75	5-
1969		65	65	78	58	37	30	41	38	38	65	78	8.5	50
1970		79	76	61	42	31	29	3.1	38	42	49	58	80	57
1971		76	74	62	49	32	30	32	33	35	54	78	88	5-5-
1972		75	77	74	52	48	38	38	36	31	38	73	78	5.
1973		82	82	76	61	41	32	32	34	43	51	77	86	5
1974		18	74	68	63	44	30	37	36	36	34	69	62	. 5.
1975		82	79	78	38	25	24	27	26	36	49	69	82	2 5
1976		81	81	79	55	34	34	29	23	34	72	78	77	5
1977		78	76	68	34	31	3.2	32	37	37	56	82	83	5
1978		77	76	73	58	55	44	34	28	37	52	70	85	5
1979		69	79	71	50	40	35	33	30	43	57	55	85	5-
1980		79	79	73	62	47	42	32	36		63	83	- 88	- 6
1981		83	76	75	67	66	59	47	46	49	57	69	- 86	6
1982		82	88	78	50	35	33	37	40	55	72	83	87	6
1983		87	86	64	51	5 t		35	35					
1984		77	75	83	48	45	37	29	32	42	58	77	70	
1985		82	82	80	49	39	34	39	45	37	60	69	- 86	
1986		88	77	76	42	32	29	30	33					
1987		81	83	79	63	47	38	45	34	46	51	67	80	
1988		86	79	77	48	47	33	39	41					
1989		84	79	74	57	53	38	33	35					
1920		81	83	78	58	33	29	29	27					
1991		91	82	67	45	47	40	23			45			5
1992			73	65	47	42	32	30	40	39			73	
1993		71	68	62	40	38	36	34	37					
1994		80	73	75	46	45	39	43	41					
1995		75	77	63	36	42	43	38	35					
Mean		79	77	72	50		35	35	36					
Max		91	88	83	70		59	47	46					
Min		65	65	57	33	25	24	23	23					

Table A.12 Average Daily Sunshine Duration (hours)

Station: Chirikrabad

							Ducation						
Year	Jan	Feb	Mar	Apr	May	Jon	Jul	Aug		લ	Nov	Dec	Annua
1964	4.9									8.6			
1965	5.6									7.9			
1966	5.8									8.5			
1967	5.6									8.8			
1968	4 8									7.6			
1969	5.9									7.6			
1970	5.5									9.2			
1971	5.9	7 2	7.3	8 2	11.4	13.0	12.5	12.5	11.2	7.8	5.8	3.2	8.
1972	5.9	7.5	7.7	9.0	9.9	13.3	13.1	11.7	10.1	8.8	6.3	3.2	8 .
1973	5.0	6.9	7.6	8.0	10.9	127	13.2	12.6	9.6	8.9	5.8	5.0	8.
1974	5.6	6.9	7.0	61	H.9	12.9	12:2	11.7	9.9	9.0	6.0	4.6	8.
1975	9.5	6.0	6.3	10.6	12.3	13.5	129	120	10.3	8.7	6.0	4.5	9.
1976	6.3	6.9	6.0	7.5	11.3	12.7	120	10.4	9.4	5.0	6.0	46	8
1977	5.2	6.4	1 2	8.4	10.6	11.1	11.6	10.0	10.4	7.1	6.0	4.6	8
1978	5.2	7.4	7.9	6.8	8.3	11.4	13.0	12.4	10.0	7.8	46	3.9	8
1979	6.7	4.2	7.1	7.0	11.3	£1.8	12.9	12.2	9.4	6.7	7.2	3.9	8.
1980	5.1	6.6	8.8	7.7	10.6	11.5	33.3	12.1	10.8	7.4	3.9	5.3	8.
1981	4.4	5.2	7.8	6.5	8.	- 11.0	11.7	12.5	9.8	9.5	6.3	5.8	8
1982	48	7.3	6.4	8.7	11.2	12.	12.7			6.8	6.0	4.5	8.
1983			7.2	8.3	10.3	12.	11.6			7.4		4.6	. 8
1984	5.8	•	5.3							7.3			
1985	4 0	5.7								7.0			
1986	5.6									7.6			
1987	5.0	6.9								7.8			
1988	3.1	66								8.9			8
1989	3.7	64								7.4			
1920	5.									7.3			
1991	3.6	5.5			9.0					9.4		4.6	8 6
1992	4 (4 (7.8			
1991		6.2								7.7			
1994	4.8				10.8						•		9
1995	-	• • •											
Average			7 2	8 :	10	12	2 12 -	11.8	10.0	7.5	5.9	46	5 8
Max	9.5							12.6		9.5	5 7.9	6.1	
Min	3.1	1 47	2 45	6.6	8 .	10.9	9 11.6	100	8.7	5.0	3.2	2.5	8 (

Table A.13 Average Monthly Wind Velocity (m/s)

Station: Kzyl-Orda Average Wind Velocity (nVs) 52 60 4.5 3.9 3.3 4.3 1963 1964 3.8 6.4 3.0 4.4 1.6 1.5 5 4 16 3.1 3.0 3.6 3.4 41 2.8 3 8 3.9 1965 3.6 4.8 4.3 3.0 3.5 3.8 5.0 3.0 5.6 4.1 1967 1968 4.0 3.8 4.4 4.8 3.0 4.0 3.4 2.9 2.7 2.7 3.5 4.3 6.7 5.4 4.0 1969 3.2 1970 49 1971 2.4 1972 3.1 3.1 3.9 2.9 3.0 2.9 2.5 3.2 2.1 3.0 2.9 3.4 3.2 3.6 48 3.9 4.5 4.5 1973 1974 4.4 3.6 4.4 4.0 40 26 30 1975 1977 1978 1979 4.7 4.6 2.9 5.0 1980 3.0 2.3 2.6 1.8 18 39 3.0 2.0 3.0 2.1 1981 1982 3.0 1983 1.8 1984 1985 3.5 3.5 3.9 26 27 20 3.4 3.7 1986 2.8 2.7 3.9 3.7 1987 2.2 1.9 3.2 2.9 1989 1990 1991 2.9 3.7 3.8 3.3 27 20 1992 20 33 1993 1994 3.0 40 3.0 3.6 3.0 3.1 2.6 2.3 1.8 3.6 1995 Avg Max 6.4 5.0 66 88 48 Min

Table A.14 Summary of Monthly and Annual Climatic Data

Chardara Air Temperature Air Relative Humid Wind Speed Sunshine Duration Rainfall Turkestan Air Tempsrature	Air Temperature Air Relative Humidity Wind Speed	-													
_	tive Humidity	ပွ	.	0.5	6.9	15.2	21.4	26.7	29.0	27.1	21.1	13.1	9.9	0.7	0.41
	pəx	' %	83.0	78.0	72.0	61.0	52.0	40.0	40.0	40.0	45.0	56.0	70.0	81.9	59.7
		S/E	6	2.7	2.5	2.7	2.9	2.9	2.9	2.7	5; 4	2.3	2.5	2.6	2.7
	e Duration	Š	9.4	6.3	6.9	8.7	10.2	11.9	12.2	11.8	10.1	7.5	5.5	8.4	8.3
		e e	33.1	32.2	38.1	38.0	25.0	6.3	0.9	0.5	4.54	9.11	24.0	4.1.4	258.7
	perature	ပွ	2.5	4.	5.4	14.6	20.5	26.2	29.2	26.6	19.8	10.6	4.0	4.	12.6
	Air Relative Humidity	 %	78.0	72.0	65.0	49.0	44.0	33.0	32.0	33.0	38.0	54.0	69.0	79.0	53.8
Wind Speed	pase	s/w	2:2	5.6	2.9	4.0	3.7	3.6	3.7	3.6	3.5	2.7	2.4	2.3	3.1
Sunshine	Sunshine Duration	hrs	5.1	6.5	7.4	9.3	10.8	12.7	12.9	12.4	10.5	8.2	6.0	5.3	8.9
Rainfall		E	22.2	23.6	26.0	29.9	23.0	4.4	3.2	1.5	3.1	11.8	22.4	31.7	202.8
Kzyl-Orda Air Tem	Air Temperature	ပွ	6.2	-7.3	0.8	12.9	19.7	25.5	27.6	24.5	17.9	9.1	Ξ	4. ∞	6.6
Air Rela	Air Relative Humidity	×	79.2	77.3	7.1.7	50.1	41.0	35.4	35.3	35.7	40.4	53.5	72.1	80.3	56.0
Wind Speed	peed	s/e	3.2	3.6	3.9	4.2	3.6	3.0	2.5	3.2	3.1	0.4	6; 8	2.9	3,4
Sunshine	Sunshine Duration	hr.	5.3	6.4	7.2	8 8 1 2	10.7	12.2	12.4	11.8	10.0	7.9	5.9	4.6	8.5
Rainfall		m m	16.3	13.9	18.7	18.7	19.1	8.5	5.0	3.4	3.6	12.5	16.9	18.3	154.9
Zhusali Air Temperature	perature	ပွ	8.5 5.5	8.6	<u></u>	11.7	19.2	25.5	28.7	25.4	17.8	8.1	0.2	-5.5	9.3
Air Rela	Air Relative Humidity	ર્જ	83.0	81.0	79.0	51.0	42.0	33.0	31.0	34.0	41.0	57.0	76.0	83.0	57.6
Wind Speed	pood	e S	4.0	4.7	5.0	8.0	4.6	4.2	4.3	4.2	4.1	3.9	4.	4.1	4.4
Sunshine	Sunshine Duration	hrs	5.1	5.9	7.2	∞ ∞	10.7	12.0	12.2	11.7	9.6	7.3	5.1	4.8	8,4
Rainfall		e e	13.7	10.4	15.5	19.8	11.0	9.0	6.4	5.5	4.8	8.6	13.6	15.7	135.4
Kazalinsk Air Tem	Air Temperature	ပ	-8.4	-9.5	.i.	11.3	19.0	25.0	27.9	24.6	17.2	8.0	0.3	-5.3	9.0
Air Rela	Air Relative Humidity	ૠ	80.0	76.0	74.0	53.0	46.0	41.0	42.0	44.0	49.0	62.0	77.0	81.0	60.4
Wind Speed	peed	m/s	2.0	1.7	2.5	2.5	.i	<u></u>	4	1.4	1.5	1.5	 	0.5	1.9
Sunshine	Sunshine Duration	Z,	5.1	5.9	7.2	90 90	10.7	12.0	12.2	11.7	9.6	7.3	5.1	4 30	8,4
Rainfall		E	11.2	9.9	15.2	17.1	9.6	5.4	4.7	7.4	5.9	13.1	15.4	15.2	128.5

Estimated from nearest station

Table A.15 Summary of monthly and annual ETo in the Syr Darya River Basin

		ETo (mm/	day)			ETo (mr	n/Month)	
Month	Chardara	Kzyl-Orda	Zhusali	Kazaliosk	Chardara	Kzyl-Orda	Zhusati	Kazalinsk
Jan	0.73	0.49	0.45	0.35	22.6	15.28	13.92	10.97
Feb	1.23	0.85	0.73	0.68	35.54	24.77	21.21	19.63
Mar	2.37	2.05	1.72	1.5	73.46	63,47	53.33	46.59
Арг	4.46	5.2	5.36	4.06	133.72	156.09	160.8	121.74
May	6.51	7.29	7.8	5.89	201.96	226.07	241.78	182.61
Jun	8.42	8.55	9.7	7.15	252.75	256.43	290.91	214.39
Jul	8.71	8.68	10.41	7.06	270.09	269.22	322.64	218.88
Aug	7.64	7.75	8.81	5.89	236.78	240.17	273.16	182.59
Sep	5.41	5.38	5.93	3.87	162.38	161.51	177.88	116.0
Oct	2.92	3.19	2.82	1.81	90.51	99.01	87.35	55.99
Nov	1.45	1.01	1.04	0.68	43.42	30.31	31.3	20.4
Dec	0.66	0.46	0.46	0.32	20.61	14.39	14.14	9.93
Annual	4.21	4.24	4.60	3.27	1543.82	1556.72	1688.42	1199.73

Table A.16 Aral Sea - Annual Water Level

	Water I	_evel	Lake	Lake	Volume
Year	Aral/South Aral	North Aral	Surface	Volume	Changes
	(m a.s.l.)	(m a.s.ł.)	(km2)	(km3)	(km3)
1963	52.63	52.63	65,522	1020	
1964	52.30	52.30	64,811	1000	-20
1965	52.38	52.38	64,811	1000	0
1966	52.02	52.02	64,100	981	-19
1967	51.53	51.53	63,007	949	-32
1968	51.34	51.34	62,570	936	-13
1969	50.94	50.94	61,678	912	-24
1970	51.43	51.43	62,788	943	31
1971	51.16	51.16	62,133	924	-19
1972	50.69	50.69	60,969	893	-31
1973	50.18	50.18	59,788	863	-30
1974	50.07	50.07	59,552	857	-6
1975	49.30	49.30	58,116	816	-41
1976	48.47	48.47	56,387	764	-52
1977	47.85	47.85	55,294	731	-33
1978	47.17	47.17	54,065	693	-38
1979	46.70	46.70	53,387	671	-22
1980	45.91	45.91	52,037	629	-42
1981	45.39	45.39	50.980	598	-31
1982	44.90	44.90	50,277	578	-20
1983	43.74	43.74	48,150	519	-59
1984	43.11	43.11	47,025	490	-29
1985	42.16	42.16	44,716	444	-46
1986	41.39	41.39	42,862	409	-35
1987	40.47	40.47	40,778	372	-37
1988	39.71	39.71	39,161	344	-28
1989	39.33	39.33	38,243	328	-16
1990	38.46	38.46	36,030	295	-33
1991	37.49				
1992	37.18	40.3			
1993	36.93				
1994	36.88				
1996	36.5	40.5			

Table A.17 Monthly Average Inflow Discharge into Chardara Reservoir (m²/sec) for period 1970 -1996

						Molut	5 5 5 5 6 7 8 7 8 8 7 8 <p< th=""><th>Discussible (B./s)</th><th>.v.</th><th></th><th></th><th></th><th></th><th>5</th><th>TA'ON A CITIES ('A'O' A'O' I'I'</th><th>(14.7)</th></p<>	Discussible (B./s)	.v.					5	TA'ON A CITIES ('A'O' A'O' I'I'	(14.7)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Apr-Sep	Oct-Mar	Annual
1970*	1048	683	909	804	1008	831	475	309	584	616	658	541	089	10,551	10,887	21,438
1971	638	763	\$26	704	673	867	306	265	233	263	287	358	490	8,008	7,371	15,379
1972	306	\$12	712	830	829	683	355	299	337	375	437	328	200	8,767	7,025	15,792
1973	585	593	593	832	1139	296	563	442	368	391	356	253	290	11,359	7,229	18,589
1974*	281	379	313	300	18	191	136	62	111	117	133	146	196	2,578	3,557	6,135
*\$ 261	149	204	242	139	407	310	117	99	25	116	147	157	179	2,990	2,653	5.643
*9 261	174	234	254	591	471	398	143	115	136	150	186	155	251	4.869	3,032	7,900
1977	201	207	248	109	213	509	337	107	138	209	231	244	237	3,968	3,515	7,484
8261	262	330	351	357	\$72	640	318	223	219	215	274	265	336	6,133	4,436	10,569
1979	356	493	439	870	1000	634	384	337	287	206	279	283	4 4 4	9.252	5,355	14,607
*0861	218	716	709	528	687	286	257	319	218	193	176	130	370	6,058	5.598	11,656
*1861	195	267	534	534	657	394	490	402	212	238	217	242	365	7,104	4,447	11,550
1982*	448	763	800	297	363	459	358	236	170	203	295	408	375	4,963	6,786	11,750
1983	330	338	461	286	889	405	95	149	153	161	245	201	293	4,684	4,541	9,225
1984	165	436	158	421	490	281	199	154	152	181	500	281	318	4,471	5,593	10,064
5861	343	557	429	501	507	292	229	176	180	230	274	208	327	4,965	5.299	10,263
.9861	861	382	557	502	391	239	011	108	14	228	272	279	284	3,917	5.009	8,927
1987	171	357	548	292	639	548	364	205	237	286	350	298	423	7,261	6,064	13,325
8861	089	833	607	698	286	069	434	386	605	589	597	493	648	10,449	9,980	20,429
1989	365	581	615	241	603	426	484	275	281	324	407	452	421	6,105	7.16	13,269
0661	381	693	619	554	711	532	252	223	272	364	595	499	475	6,697	8,209	14,905
1991	622	826	664	383	533	391	372	235	306	311	366	509	460	5.853	8.588	14,440
1992*	169	681	750	489	324	588	330	214	244	287	639	757	200	5.749	10,018	15,767
1993*	\$10	826	1075	744	1248	1131	408	228	340	369	653	666	711	10,787	11,600	22,388
1994*	1250	1154	1373	1217	1100	729	399	207	311	482	698	886	831	10,419	15,734	26,153
1995*	586	1054	1028	433	196	153	229	156	168	290	360	200	479	3,511	11,526	15,037
* 9661	710	684	1042	\$67	376	461	235	143	193	417	526	754	518	5.184	11,169	16,354
Average	484	280	617	551	630	522	310	224	248	289	372	412	434	6,543	7,125	13,668
Max	1250	1154	1373	1217	1248	1131	563	442	605	616	869	666	831	11359	15734	26153
Ž	140	200	243	001	104	153	Ý	, YY	Yo	116	133	120	170	3256	2576	5643

Remark: * Average data

Table A.18 Monthly, Seasonal and Annual Discharge of the Syr Darya

Station: Chardara

	ĭ	<u>-</u> -			Mountly	Discharge	(m ³ /s)						Seasonal	Discharge (r	a'ss)	Discharge	Velunie (MC	MO
Year	Jan	Feb	Mar		May		Jul	Aug	Sip	Oct	Nov	Dec		OctoMir	Annoid		Octas Mar	Annual
1970	450.0	413.0	264.0	726.0	975.0	1060.0	845.0	677.0	378.0	328 O	378.0	359.0	776.8	370.3	573.6	12297.1	5803.9	18101 0
1971	525.0	6150	429.0	698.0	totae	900:0	866.0	738.0	296.0	141.0	4140	127.0	751.3	325.2	538.3	\$1910.6	5056.3	16966.9
1972	1280	1610	350.0	844.0	1070.0	975.0	867.0	739.0	2180	181.0	327.0	372 0	785.5	253.2	519.3	12417.3	4012.4	16459.7
1973	257.0	192 0	358.0	8730	1250.0	11300	1060.0	768,0	206,0	2200	201.0	191.0	8812	2,16.5	558.8	13269 8	3733.5	17703.4
1974	103,0	819	85.3	513.0	856.0	592.0	405.0	61.7	56.5	52.4	544	79.3	414.0	76.1	245.0	6553.3	1196.2	7749.6
1975	543	50.3	51.t	376.0	501.0	333.0	303.0	848	72 1	50.6	49.9	71.6	278.3	54.6	166.5	4405.2	860.6	5265.8
1976	48.9	52.3	53.3	369.0	6410	508.0	459,0	166.0	549	56.1	56.3	58.9	366.3	54.3	210.3	\$806.3	858.7	6665.1
1977	48.8	75.9	125.0	510.0	6110	5140	427,0	X2 3	73.2	66.3	84.4	76.6	369.6	79.5	224.5	5844.6	1249.9	7094.4
1978	497	50.1	149,0	515.0	704.0	6140	570.0	281.0	931.0	107.0	107.0	65.1	462.3	8830	275 2	7324.6	1391.7	87163
1979	64.5	65.2	125.0	739.0	1100.0	807.0	841.0	4100	(30.0	100.0	187.0	290.0	671.2	138.6	464.9	10641.1	21916	12835.7
1980	136.0	129.0	323.0	579.0	788.0	697.0	688,0	28539	8 06	103.0	105.0	113.0	521.3	151.7	336.5	8359,4	2405.9	10(65.3
1981	64.7	70-3	70,4	5450	\$18.0	749.0	680,0	262 0	94.7	98.8	100.0	100 0	524 K	84.0	304.4	8313.5	1323.6	9637.1
1982	100.0	163.0	227.0	477,0	813.0	706.0	6410	216.0	63 E	60.1	57.0	55.6	486.0	110.5	298.2	7702.8	1727.8	9430.6
1983	59 2	63.6	59.9	413.0	729.0	6610	6040	176 0	58.9	58.4	58.6	57.4	\$39.K	59.5	249.1	6970.4	9349	7905.3
1984	55.3	52.8	52.3	407.0	761.0	668.0	618.0	147.0	46.5	58.5	55.6	59 3	4(1.3	55.6	248 5	6994.4	880 t	7874.5
1985	521	54.3	1220	478.0	B34.0	679.0	638.0	141.0	56.3	56.8	59.8	56.4	4713	66.9	269.0	7465.1	1055.9	8521.0
1986	61.5	5930	62.4	398.0	666.0	616.0	508.0	106 0	628	63.8	54.5	55.3	3928	59.4	226.1	6219.4	934.8	7154.3
1987	53.6	55.0	66.3	5140	756.0	676.0	677.0	308.0	260.0	1500	227.0	284.0	531.8	139.3	335 6	8.121.5	2205.0	10626.5
1988	298.0	5360	703,0	775 0	923 0	776.0	788.0	421.0	408.0	375.0	488.0	4820	6818	480.3	581 1	10788.1	75844	183724
1989	3610	209.0	387.0	565.0	874.0	7680	7020	302.0	177.0	163.0	160.0	(62.0	564.7	246.3	402.5	8944.0	3794.3	12738 2
1990	1410	2170	528.0	634,0	842.0	786.0	768 0	519.0	291.0	287.D	289.0	300.0	640.0	292 8	466.4	10137.2	4626.0	14763.3
1991	318.0	379.0	545.0	619.0	844.0	746.0	709,0	313.0	159.0	197.0	267.0	292 ()	565.0	333.0	449.0	8948.1	5230.1	14178 2
3992	303.0	314.0	566.0	653.0	803.0	745.0	748.0	542.0	368.0	348 0	343.0	3850	643.2	377.3	510.3	10183.4	5979.6	161629
1993	446.0	429.0	7820	669.0	1230 0	1070,0	989.0	803.0	5120	483.0	352.0	380.0	877.2	478.7	677.9	13901.9	7550.8	21452.7
1994	3820	354.0	405.0	8924	1080.0	9380	705.0	654 ()	418.0	526.0	486.0	406.0	781.2	426.5	603.8	12359.4	6720.3	19079.7
1995	381.6	417.0	707.0	585.0	763.0	646 0	4720	143.0	100 0	107.0	243.0	364.0	451.5	369.8	410.7	7140.8	5814.3	12955.1
A۱g	190 (203.2	292.2	5910	855 1	7416	676 1	359.5	182 2	170.7	188.9	201.6	568.1	207.8	387.9	8998.1	3274.1	12272.1
Max	525.0	6150			1250.0	1130.0	1060.0	803.0	512.0	526.0	488.0	4820	8812	4803	677.9	13969.8	7584.4	214527
Min	48.8	50.0	51.1	3690	501.0	333.0	303.0	61.7	46.6	50.6	49.9	55.3	278.3	54.3	166.5	4405.2	858.7	5265.8

Table A.19 Monthly, Seasonal and Annual Discharges of the Syr Darya

Staion: Koktyube

					Discl	harge (m	Ys)						Disc	harge (mVs)	1	Discharg	ge Volume (!	(CM)
Year	Jan	Гев	Mar	Apr	May	Jun	Jul	Aug	Seo	Oct	Nov	Lvc	Apr to Sep	Oct to Nov	Annual	Apr to Sep	Oct to Nov	Anesat
1974									75.0	74.7								
1975				273.0	471.0	2910	245.0	127.0	67.9	60.4	61 2	83.4	246.3	683	157.3			
1976	643	65.5	62 6	2220	521.0	4340	400.0	227.0	80.6	59.9	60.1	56.2	314.1	61.4	187.8	4984.1	970.7	5954.8
1977	45.3	556	150,0	3340	528.0	463.0	405.0	145.0	94.3	80.3	70.7	98.0	328.1	818	204.9	5195.0	1294.3	6489.3
1978		57.5	1110	372 0	6970	647.0	535.0	346.0	178.0	116.0	112.0	98 6	454.2	93,4	273.8	7199.5	1475.9	8675.4
1979	140.0	225.0	152 0	569.0	1080.0	876.0	855.0	538.0	243.0	6.824	213.0	319.0	695 2	199.7	417.4	11025.8	3132.6	14157.8
1930			-	•		728.0	696.0	436.0	164.0	125.0	113.0	114.0	\$60.8	562.2	351.5	8889.0	2573.2	11462 2
1981		• • • • •				826.0	719.0	428.0		131.0	125.0			315.6	340.8	89732	18(8.9	10792 F
1982						699.0	-	334.0	144.0	9:5	75.4	73.0	486.0	141.5	313.7	3707.1	2216.6	9923.8
1583	1 -					611.0		271-0		75,4	68.6				241.8	6453.5	1207.4	7660.9
1984						658 0		270,0		913	89.4	89.4			265.3	6999.1	1410.6	8433,7
1985								271.0		80.7	628		1		270 6		1511.9	8563.9
1986								202 0		76.1	52 9				223.3	-		707.5.1
1987								382 ()		(84.0	217.0				351.2			11431.7
1989								476.0		377.0						10567.5	6987.9	17555.4
1985	1						•	326.0		147.0								(11210
1990	1							492.0		272.0				t .	407.3			12893.7
1991								369.0		1920			1				1 1	13423.0
140]		• • • • •						556 0							1	1		15328.U
199.	1	411,0						796 ()									7413.4	20350.6
Avg	1653							368.0		162.1	165.7			1	1			11353.6
Max	4361							796.0		-			,			1		20150.6
Mia	45.	\$ 55.1	\$ 59(5550	471.0	294.1	245,0	127.0	67.9	59.9	52.9	56.2	246.3	61.4	157.3	4984.1	970.7	5954 B

Table A.20 Monthly, Seasonal and Annual Discharge of the Syr Darya

Station: Tomenariyk

-	Γ				Monthly	Discha	rge (m'	/s)					Seasona	l Discharge	(mYs)	Discharg	ge Volume (MCM)
Year	Jon	Feb	Mar	Apr	May	Jun	jul	Aug	Scp	Oct	Nov	Dec	Apr to Sep	Oct to Mar	Anoual	Apr to Sep	Oct to Man	Annual
1970	369.0	487.0	370.0	510.0	725.0	791.0	712.0	611.0	324.0	303.0	318.0	351.0	612.2	366.3	489.3	9697,4	5733.4	15430.8
1971	353.0	601.0	456.0	465.0	742.0	615.0	590.0	578.0	361.0	139.0	110.0	106.0	558.5	294.2	426.3	8850.8	4562.1	13412.9
1972	77.1	123.0	251.0	753.0	832.0	793.0	708.0	651.0	348.0	222.0	243.0	306.0	680.8	204.5	442.7	10777.6	3244.0	14021.6
1973	282.0	251.0	3120	793.0	1010.0	849.0	807.0	699.0	390.0	251.0	220.0	200.0	758.0	252.7	505.3	12005.8	3976.4	15982.2
1974	128.0	139.0	170.0	282.0	627.0	416.0	265.0	113.0	70.9	77.1	58.5	60.3	295,7	105.5	200.6	4684 8	1654.3	6338.9
1975	90.1	85.2	115.0	169.0	324.0	181.0	164.0	100.0	53.5	54.8	54.7	69.5	165.3	78.2	121.7	2620.8	1230.2	3850.9
1976	65.3	55.3	43.4	132.0	411.0	3320	299.0	190.0	63.0	50.0	56.0	43.0	242.8	53.8	148.3	3856.9	850.7	4707.6
1977	57.3	55.3	133.0	224.0	320.0	323.0	281.0	91.6	59.6	65.7	56.1	85.3	228.2	75.5	151.8	3614.9	1193.3	4808.2
1978	62.4	57 2	93.5	269.0	520.0	436.0	334.0	253.0	108.0	98.8	105.0	102.0	328.3	87.3	207.8	5201.9	1379.3	6581.2
1979	98.8	176.0	(63.0	439.0	909.0	623,0	590.0	380.0	184.0	137.0	193.0	281.0	520.8	174.8	347.8	8262.3	2746.8	11009.2
1980	185.0	135.0	305.0	392.0	573.0	479.0	439.0	312.0	1410	128.0	118.0	119.0	389.8	165.2	277.5	6177.1	2620.6	8797.7
198t	95.4	100 0	113.0	324.0	648.0	640.0	469.0	323.0	165.0	1240	1220	119.0	428 2	112.2	270.2	6783.3	1767.2	8550.4
1982	124.0	129.0	238.0	208.0	556.0	508.0	451.0	234.0	125.0	89.3	76.3	67.0	347.0	120.6	233.8	5503.8	1893.1	7401.8
1983	104.0	97.3	77.3	140.0	461.0	428.0	380.0	214.0	83.7	67.2	70.9	66.6		80.6	182.5	4514.9	1263.1	5778.0
1984	82.9	69.1	98.6	187.0	491.0	415.0	382 0	179.0	74.8	54.8	57.1	68.7	293.1	71.9	182.5	4649.7	1138.1	5787.8
1935	77.3	116.0	130.0	233.0	515.0	441.0	3940	185.0	94.8	62.4	61.8	60 2	310.5	84.6	197.5	4922.9	1324.4	6247.3
1986	64.0	62.1	54.8	134.0	460.0	419.0	121.0	139.0	55.5	61.7	59.2	54.6		59.4	159.6	4119.1	933.4	5052.5
1987	60.9	67.6	60.8	230.0	585.0	500.0	504.0	288.0	296.0	173.0	213.0	300.0	400.5	145.9	273.2	6347.5	1	8656.0
1988	278.0	338.0	571.0	565.0	777.0	653.0	606.0	429.0	418.0	3920	460.0	476.0	574.7	419.2	496.9	9093.8	6638.0	15731.8
1989	415,0	264.0	329.0	326.0	597.0	543.0	470.0	276.0	170.0	155.0	149.0	144.0		242.7	320.3	6303.1	3818.4	10124.6
1990	124.0	171.0	.524.0	441.0	585.0	520.0	471.0	413.0	271.0	243.0	260.0	252.0	r .	229.8	340.0	7127.9	3626.7	10754.6
1991	258.0	323.0		407.0	586.0	555.0	160.0	281.0	167.0	176.0	215.0	263.0		276 2	343.0	1		10824.5
1993	307.0			455.0	560.0	536.0	445.0	493.0	305.0	309.0	3120	317.0		325.3	388.0	7130.1		12277.8
1993	673.0				769.0	924.0	722.0	715.0	498.0	461.0	346.0		5	476.8	5928	11211.8		18726.9
Avg	184.6	194 6	241.9	362.6	611.8	543.1	469.3		201.2	162.5	161.2	178.0		187.6	304.1	66615		96188
Max	673.0		571.0	793.0			807.0		498.0	461.0	460.0	476.0		476.8	592.8	1		18726.9
Min	57.3	55.3	48.4	132.0	324.0	181.0	164.0	91.6	53.5	50.0	51.7	48.0	165.3	53.8	121.7	2620.8	850.7	3850.9

Table A.21 Monthly, Seasonal and Annual Discharges of the Syr Darya

Station: Kergelmes

					Oischar	ge (mYs	•						Disc	harge (m'/s)		Dischar	ge Volume (MCM)
Year	Jan	Feb	Mar	Apr	May	Jun	Jol	Aug	Sep	Oct	Nov	Dec	Apr to Sep	Oct to Mar	Asnual	Apr to Sep	Oct to Mar	Annual
1970	368.0	611.0	435.0	419.0	635.0	768 0	620.0	548.0	372.0	325.0	318.0	358.0	555.3	492.5	478.9	8792 3	6282.5	15074.8
1971	340.0	513.0	522 0	155.0	683.0	593.0	536.0	525.0	372.0	172 0	136.0	130.0	527.3	302.2	414.8	8353.8	4711.2	13063.0
1972	93.0	1220	202.0	645.0	713.0	642.0	572.0	541.0	351.0	228 0	239.0	307.0	577.5	198.5	388.0	9139.0	3137.7	12276.7
1973	238.0	226.0	312.0	601.0	776.0	691.0	658.0	586.0	367.0	248.0	226.0	201.0	613.7	241.8	427.8	9718.3	3808.3	13526.5
1974	110.0	139.0	157.0	202 0	460.0	355.0	251.0	114.0	63.7	67.8	52.6	39.6	241.1	94,3	167.7	3821.4	1475.4	5296.5
1975	65.2	54.3	94.1	120.0	264.0	155.0	135.0	97.1	41.4	45.2	34.7	62.3	135.4	59.3	97.4	2143.9	935.9	3084 8
1976	76.1	55.8	61.0	71.1	327.0	280.0	235.0	169.0	51.5	38.9	46.2	36.5	189.4	52.4	120.8	3004.1	823.9	3828.0
1977	41.4	41.7	101.0	140.0	322.0	275.0	251.0	101.0	41.8	51.2	37.2	53.5	188.5	54.8	121.7	2989.3	866.4	3855.7
1978		38.2	65.8	1720	410.0	393.0	351.0	257.0	86.8	75.8	79.8	94.1	278.3	66.9	1726	4116.1	1058.0	5474.1
1979		127.0	165.0	253.0	647.0	558.0	520.0	384.0	207.0	139.0	158.0	203.0	428 2	143.7	288.4	67929	2342.6	9135.4
1980				316.0	461.0	131.0	398 0	316.0	140.0	H1.0	108.0	111.0			239.3	5454.0		7576.1
1981	98.3	88.6	100.0	173.0	477.0	\$35.0	443.0	3500	174.0	111.0	121.0	133.0	359.5	108.7	234.1	5700.7	1712.6	7413.3
1982	113.0	*		167.0	459.0	171.0	125.0	263.0	125.0	96.2	820	57.5			219.3	5049.8		6949.5
1983	L.	105.0	712	72.7	352.0	376.0	332.0	204.0	85.4	70.5	71.7	62.4	237,0		157.2	3762.8		4972.2
1981		73.6					326.0	187.0	78.7	57.7	66.9	39.6			155.8	3833.7		4932.4
1985		912	126.0	161.0	384.0	331.0	326.0	192.0	93.0	63.9	57.4	52.2			165.5	4061.8		5235.3
1986		55.1	59.0	75.4	329.0	360.0	266.0	139.0	51.1	52 3	44.8	46.5	203.4		128.2	3227.0		4060.6
1987				134.0		436.0				164.0	156.0	254.0			224,9	5109.4		7129.2
1988					617.0	566.0	511.0	393.0	315.0	347.0	381.0	411.0	488.7		430,4	7131.2		13600.3
1989			300.0				414.0			149.0					287.3	5683.0		9076 6
1990		171.0	294.0	370.0	524.0	475.0	411.0	371.0	252.0	230.0	241.0	245.0	400.5		308.6	6341.4	3416.5	9757.9
1991				382.0	485.0	490.0	397.0	293.0	196.0	202.0	231.0		373.8	72.2	334.5	5915.4	1139.8	7055.2
														L			L	
Avg	1	160.7	202.8	267.6	433.7	456.6	400.0	297.6	177.8	138.4		145.2			252.9			7834.8
Max	368.0			646.0	776.0	708.0	658.0	586.0	372.0	347.0	381.0	413.0		•	478.9			15074.8
Min	41.4	38 2	59.0	71.1	264.0	155.0	135.0	97.1	41.4	38.9	34.7	36.5	135.4	52.4	97.4	2143.9	823.9	3084.8

Table A.22 Monthly, Seasonal and Annual Discharge of the Syr Darya

Station: Kzyl-Orda

					Monthly	Dischar	ge (m.k	's)					Seasona	Discharge ((m3/s)	Discharg	ge Volume (MCM)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Seg	Oct	Nov	Dec	Apr to Sep	Oct to Mar	Annual	Apr to Sec	Oct to Mar	Annual
1970	4(10,0)	564.0	416.0	399.0	449,0	428.0	3610	383.0	337.0	301.0	336.0	\$110	393.3	464.7	399.0	6220.5	6327.9	12548.4
1974	268.0	397.0	448 0	359.0	450.0	320.0	265.0	333.0	3240	158.0	98.7	110.0	345.2	246.6	295.9	5460.3	3851.8	9312 I
1972	78.1	125.0	249.0	570.0	436.0	380.0	3420	374.0	313.0	221,0	235.0	270.0	410.3	196.4	303.3	6485.1	3113.5	95986
1973	200.0	184.0	294.0	462.0	610.0	4710	426.0	516.0	399.0	257.0	251.0	228 0	480.7	235.7	358 2	7609,4	3717.9	11327.3
3974	127.0	122 0	167.0	1440	262 0	1720	106.0	\$1.1	28.3	47.9	65.9	47.3	127.2	96.7	t11.7	2014.9	1508.4	3523.3
1975	77.0	63.4	96.4	66.3	104,0	57.7	35.4	40-2	36.0	33.5	42 0	48.4	56.6	60.1	\$8.4	895 8	946.0	1841.8
1976	842	47,0	68.0	43.5	145.4	1105	94.7	73.5	29.8	24.1	39.6	40.6	17.9	50.6	643		801.5	2037.6
1977	45.0	46.5	78.7	53.2	128.7	1180	108.0	\$5.5	30.3	41.9	41.8	74.2	#23	51.7	68.5	1304.7	863.2	2167.9
1978	519	46.9	72 6	102.2	181.3	185.3	139.3	123.3	79.4	68.3	80.7	146.7	135 2	71 2	103-2	2140.2	1124.8	3265.0
1979	82.9	1310	152 1	144.0	3947	327.0	2840	228 7	1143	88.7	139 2	183.7	253.8	129 6	191 7	4025.1	2036.7	6061.7
1980	132.0	99 2	199.0	220,0	213.0	187.0	158.0	177.0	97.6	90.5	93.0	136.0		1	150 2		1983,0	4758.7
1983	92.2	76.8	103.0	1310	212.0	269.0	183.0	187.0	161.0	117.0	108.0	103.0		K#1.9	L45.7	4	1592.4	4605.4
1982	96.2	127.7	1917	131.0	180.7	176 0	(483)	93.8	84.3	61.5	73.7	59.3		102.2	118.9		1602.5	3748.4
1983	91.8	99.5	65.3	54 B	133.7	1413	125.7	104.8	71.2	45.8	73.5	57.5			89.0	1676.3	1178 6	2804.8
1984	73.6	86.6	94 L	911	147.0	141.0	(17.0	82.4	40.1	35.8	56,4	41.1		64 6	83.8		1018.2	2651.6
1985	53.0	78.4	119.0	118.0	1520	150.0	127.0	67.9	726	58.7	52 2	52.9	1	1 1	91.8			2896.5
1986	53.4	57.7	58.9	52.8	124 0	128.3	103.4	55.4	35.6	52.9	44,4	26.9	1	1 !	65.9		769.1	2080-2
1987	44,4	47.6	63.2	87.4	173.7	199.3	179.3	109.3	169.7	102.7	U11.4	149.0		86.4	119.8		1366.2	3787.5
1988	175.7	257.3	360.7	307.7	237.0	273.7	216.3	230.0	278.3	289.0	327.0	385.7			278 2		4735.9	8794.4
1989	304.3	205.7	256.3	1953	216.3	230.0	1713	158.0	157,0	122.7	122.0	138.7			189.8	1		5986.3
1990	117.0	120.7	1913	208.0	2213	2327	177.0	2160	201.0	178.7	188.3	231.3			190.3	1	2704.1	6012.7
1991	242.0	264.7	3140	239.3	2163	229.0	149.3	139.7	143.3	157.7	195.0	268.0			i	1		6724.3
1992	325.0	345.3	299.3	2910	227.7	232.7	1430	190.3	2413	244.7	260.0	271.7	1				4594 3	8079.8
1993	317.0	3577	395.3	3707	307.3	411.3	310.0	379.0	492.3	393.0	339.0	2833		ı	358.8	P .	\$463,4	11305.4
1994	393.3	3443	408.7	4123	446.0	346.0	358.7	375.0	386.3	230.0		292.5			366.4	B.	5427.6	11554 2
1995	471.7	454.7	443.0	309 0	241.3	235.3	128.0	619 (847	63.8	133.5	100.7	278.7			231 3		4700,9	7257.8
Avg	169.3	183 t 564.0	215 6 418.0	213.9 570.0	254.9 610.0	4710	191.5 426.0	516.0	412.3	393.0	149.2	165 2	1		188.6	1	2663.6	5951 2 12548.4
Max	471.7				104.0	57.7	35.4	40.2	28.3			41L0		1	399.0		1	
Min	414	46.5	58.9	43.5	11,54.19	31.1	.55.4	412	26.3	34.1	39.6	26.9	56.6	1 49.0	58.4	895.8	769.1	1841.8

Table A.23 Monthly, Seasonal and Annual Discharges of the Syr Darya

Station: Karaozek

					Discharg	e (m/s)	,						Disch	arge (m'/s)		Dischar	ge Votame (MCM)
Year	Jan	Feb	Mar	Apr	May	Jen	Jul	Aug	Sep	Oct	Nov	Dec	Apr to Sep	Oct to Mar	Anoual	Apr to Sep	Oct to Mar	Annual
1970	162 0	268.0	180.0	3740	494 0	462 0	378.0	386.0	347.0	314.0	325.0	228 0	#1X/ E	246.2	326.5	64358	3858.5	10294.2
1971	167.0	226.0	224.0	285.0	460.0	335.0	306.0	362.0	385 0	1920	117.0	1120	355.5	173.6	264.3	5626.2	27(1.5	8337.7
1972	92 6	1320	238.0	581.0	485.0	393.0	362.0	384.0	310.0	206.0	172.0	168.0	419.2	168.1	293.6	6625.2	2663.8	9289.0
1973	139.0	110.0	157.0	439.0	538 0	417.0	391.0	473.0	383.0	231.0	221.0	2()4.0	440.2	173.7	306.9	6966.6	2743.3	9709.9
1974	103.0	1330	1#0:0	115.0	2310	154.0	123	38.9	17.1	19.0	14.7	27 2	1()6,4	72.8	89.6	1684.9	1134,4	2819.4
1975	57.8	49.4	74.4	52.9	79.8	40.7	23.2	216	22.0	18.9	22.7	429	40.0	44.4	42.2	633.4	698.0	1331.3
1976	62.3	39.9	419	23.5	1169	109.4	812	58.0	36.2	26.8	312	24 2	70.9	37.7	54.3	1124,0	596.2	1720 2
1977	36.1	26 I	35.3	39.4	1243	87 B	85.6	47.6	27.7	30.3	16.6	18.2	67.t	27.1	47.1	1064.5	4273	1491.8
1978	36.4	34.6	47.8	\$1.I	145.0	146.0	120.3	111.9	51.6	40.1	553	49.8	104.3	44.0	74 2	1655.0	693.6	2348 6
1979	77,7	80.5	114.9	84.7	337.7	308.0	268.0	228.7	1727	1327	167.3	136.0	233.3	(182	175.7	3200.6	1863.9	5564.0
1980	1153	967	200.0	145.0	178.0	169.0	158.0	150.0	82.5	74.5	820	51.0	[47,1	104.3	125.7	2329.4	1651.7	3981 2
1981	68.8	47.3	65.6	95 I	185.0	206.0	106.0	F22 O	166.0	1070	1210	73.3	146.7	79.8	£13.3	2316.9	1260.3	3577 2
1982	953	100.6	201.7	1071	1640	1723	143.3	85.8	70 2	55.6	840	76.0	123.8	103.7	113.7	1959 3	1630.6	3589 9
1983	93.6	105.0	53.2	39.3	137.0	148.3	1220	87 7	48.7	28.3	50.7	41 5	97.2	62,0	79.6	1540.9	965.5	2506.4
1984	59.7	577	80.4	96.7	1324)	135.0	117.0	82 I	41,7	305	32 8	316	101.2	1	75.0	1603.2	771 2	2374 3
1985	427	68.0	109.0	99 1	t42 O	1420	E20,0	68 1	63.1	45.3	31 2	22 8	195.7	53.2	79.4	1672.6	834.2	2506.8
1986	47.8	35 8	41.5	517	1287	135.7	104.5	57 2	33.2	49.6	193		85.1		64 3		1	1865.9
1987			26.5	79.8	144.7	178.7	171.7	1129	(99.7	14139	1320	55.4	147.9		124.2	1	939.3	3276.3
1988	159.7	250.3	448.7	307.3	328.7	363.7	255.0	273.0	327.7	327.3	360.3	282.7	309.2	298.2	303.7	4883.0	47173	9600,3
1989	303.3	190.7	252 0	221.3	236.0	232.7	177.0	132.0	151.7	131.0	121.3	8-1.0	191.8		186.1	3029.6	2839.0	5868.6
1990	89.5	139.3	188.3	209.0	2227	209.7	165.3	211.7	189.3	431.3	196.0	133.7	201.3	150.5	175.9	31821	2371.2	5553.3
1991	153.7	205.7	299.7	205.3	180,0	193.3	126.0	123.7	147.7	177.7	205.3	174,0	162 7	1	1X2.7			4
1992	186.0	199,0	235.0	209.0	185.0	197.0	132.0	178,0	249.0	258.0	258.0	176.7	1917	218.8	205 2	3023.6	3459 2	64817
1993	297.3	326.7	360.7	3400	293.7	395.3	317.7	(117	396.1	393.7			3411		342.5	1		8991.1
1991	412 ()	457.3	494 3	393.3	3910	326.0	319.3	325.3	3677	362.3	385.3	251.7	354.6	393.8	3742		1	11781.6
1995	375.7	410.7	3827	285.0	270.7	193.0	143.7	71.0	752	415	81.1	113.3	173.1	219.6	248.0	2733.7	3719.2	6453.0
Avg	136.6	152.4	179.1	189.8	243.1	225.0	183.7	172 9	167.9	138.5	132.1	107.9	197.1	137.0	170 2	3116.6	2155.2	5271.8
Max	4120	457.3	494.3	584.0	538.0	4634)	391.0	473.0	196.3	393.7	385.3	282.7	4402	1		6966 €	6177.2	117816
Min	36.1	26.1	76.5	23.5	79.8	40.7	23 2	21.6	17.1	18.9	117	18 2	40.0	271	42 2	633.4	427.3	1331.3

Table A.24 Monthly, Seasonal and Annual Discharge of the Syr Darya

Station: Karaozek Flow

				Mor	ihly Disc	harge Ve	iume (m	J/s)					Seasonal Di	scharge Volu	me (m³/s)	Dischar	ge Volume (N	4CM)
Year	Jua	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep (Oct	Nov	Dec	Apr-Sep	Oct-Mar	Annuai	Apr-Sep	Oct-Mar	Aanual
1971	128	218	292	88.3														
1972											57.87	128						
1973	nı	125	165												1			
1974										11/3	42.7	6 83						
1975	119	9.31	13.8	3.17	4).47		0.17	0.45	1.37	5.32	4.83	3.59	1.126	8.125	4 6	14.7	127.7	142.4
1976	8.1	11.0	22.9	129	18	0.8	0.8	0.1	0.0	0.0	5.0	27	2.7	8.3	5.5	427	130.8	173.5
1977	4.1	13.5	43.2	27	2.8	0.9	0.5	0.3	13	10.3	319	8.0	1.4	18.5	10.6	22.5	291.3	3138
1978	5.1	4.5	14.5	24.5	7.3	19.7	4 2	3.8	17.4	22 1	5.8	3.5	12.8	9.4	11.1	200.8	149.3	350.1
1979	3.2	15.5	36.3	415	56.7	19.7	14.0	9.2	6.9	4.4	6.2	6.2	25.1	12 1	18.6	391.9	190.1	588.0
1980	17.0	4.6	8.3	35.0	23.7	10.7	7.0	18.9	13.4	160	7.0	39,0	24 %	153	20.0	389.5	244 8	634.3
1981	28.9	29.5	34.1	42.6	27.0	630	77.0	65.0	9.3	17.3	10.9	4.3	47.3	20.8	34.1	7505	326.4	1076.9
1982	10.5	16.4	26.4	124	10.8	3.5	2.5	2.9	4.4	4.1	0.0	0.0	6.1	89	7.5	96.3	138 1	234,4
1983	1		97	118	3.4	3.9	3.5	5.5	9.1	12.6	9.8	9,7	6.2	7.0	7.9	97.4	1111	208.5
1984	126	11.5	14.5	189	7.6	3.4	3.3	28			158	15.0	7.2	U 5	(0.5	91.4	1823	276.7
1985	23.8	28.9	33.0	23.1	45	4 2	36	3.3	141	16.3	21.9	162	8.8	23.2	16.0	137.7	363.9	501.6
1986	24.6	25.8	216	6.4	3.7	4.3	3 6	3.2	3 2	10.2	31.5	28 2	4.1	23.6	13.8	61.4	369.1	
1987	43.6	49.5	37.7	135	123	18.5	11.7	10.0	10.7			149	11.6	24.3	21.5	183.5	3776	
1988	16.0	11.3	163	35.7	12.6	23.2	7.6	5.7	14.4	16.4	15.7	26.4	16.5	17.0	16.8	259 2	270 2	529.4
1989	59.1	35.9	31.2	16.9	9.3	9.3	6.6	6.3	6.1	5.7	13.0	15.9	9.0	26.8	17.9	1425	420.8	563.3
1990	22.0	32.6	53.2	22.2	8.7	8.8	8.7	8.9	9.4	9.7	7.5	6.9	1111	220	16.5	175.2	344.2	519.3
1991	41.7	50.4	69.2	49.2	18.7	17.9	15.4	13.9	LJ.3	0.0	0.0	0.0	21.1	26.9	24.0	331.8	419.0	750.8
1992	1390	146.3	643	65.3	427	44.0	16.0	30.3	10.3	13.0	117	10.0	34,8	64.1	49.4	548.6	1003.1	1551.7
1993	47.8	71.7	727	54.9	17.4	56.2	32 2	33.4	56.4	45.1	45.4	43.0	417	54.5	48.1	656.3	852 5	
1994	51.0	56.5	50.5	92.7	95.4	50.2	36 2	39.8	523	53.0	67.9	52.0	61.3	56.8	59.0	965.1	892 6	1857.7
1995	90.4	1140	911	47.6	108	9.8	8.2	5.6	10,7	415	37.1	29.0	15.4	67.2	413	242.2	(047.2	1289.4
A۱g	40.8	49 2	53.5	34,7	18.0	18.2	12.5	128	13.1	155	26) 5	20,4	176	25.1	21.6	276.8	393 0	642 3
Max	139,0	218.0	292 (92.7	95.4	63.0	77.0	65.0	55.4	53.0	67.9	128.0	64.1	67.2	59.0	965.1	1047.2	1857.7
Min	3.2	4 5	83	2.7	0.5	0.8	0.2	0.1	0.0	0.0	0.0	0.0	1.1	1.0	46	14.7	1114	142,4

Table A.25 Monthly, Seasonal and Annual Discharges of the Syr Darya

Station : Zhusali

					Discharg	e (m'/s))						Disch	arge (m'/s)	-	Discha	rge Volume	(MCM)
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr-Sep	Oct-Mar	Annual	Apr-Sep	Oct-Mac	Annual
1970	252 0	449.0	534.0	473.0	4320	400.0	339.0	351.0	349.0	319.0	322.0	₹220	390.7	349.7	370.2	61726	5475.1	13647.7
1971	210.0	364.0	494 0	396.0	373.0	274.0	250.0	305.0	346.0	195.0	121.0	110.0	324.0	249.0	285.5	5119.0	3896.7	9015.8
1972	69.7	127.0	206.0	499.0	468 0	3420	290,0	327.0	317.0	219.0	1840	167.0	373.8	162 t	268.0	5207.6	2556.5	8454.1
1973	134.0	177.0	365.0	499.0	460,0	400.0	362.0	463.0	421.0	2100	258 0	217.0	435.2	226.8	331.0	6878 7	3577.3	10455.9
1974	122 ()	137.0	163.0	129.0	209.0	1240	68.1	41.3	29.5	31.3	22.4	26.9	100.2	83.8	92.0	1585.0	1308.7	2893.B
1975	67.0	65.8	95.1	56.3	52.2	25.6	11.3	11.5	23.5	226	24.2	41.8	30.1	52 8	41 4	474.1	₽28 6	1302.6
1976	62.2	42 B	38.0	26.0	65.5	63.7	50.1	43.7	28.5	20 E	20.7	30.9	46.3	35 8	410	733.0	562.2	1295 2
1977	40,4	35.2	26.8	41.9	69.0	55.1	55.5	26.2	21.9	24 2	13.8	27.3	45.0	27.5	36.2	7121	430 8	11429
1978	57.0	42.8	55 2	46.3	87.0	94.8	66.7	64.7	53.0	41.8	53.7	62.0	58.8	52 1	60.4	1088.1	820.3	1909 3
1979	53.8	318	108.0	51.8	245.0	230.0	191.0	174.0	£41.0	103.0	0.611	138.0	1726	98.4	135 5	2737.5	3553.2	4290.7
1980	\$18.0	718	177.0	200.0	133.0	124.0	971	119.0	84.9	77.0	84.9	80.2	125.0	191.5	133.2	1973.7	1604.9	3578.7
1981	83.9	74.7	840	80.7	139.0	185.0	128.0	154.0	123.0	115.0	121.0	300,0	135.0	96.4	135.7	2135.1	1519.9	3655.0
1982	94.3	104.0	159.0	111.0	108.0	117.0	99.0	77.5	67.3	57 2	23.4	65.9	96.6	923	945	1526.9	1450.0	2976.9
1883	101,0	119,0	79.3	28.6	87.0	102.0	80.2	\$0.R	53.9	29.3	51.0	50.9	72 1	316	71.9	1142.5	3117.8	2260.3
1381	56.0	58.9	78.3	69.8	96,6	101.0	76 ()	56.0	38.0	29.8	33.2	20.7	729	46.2	59.5	1153.5	223.5	1877.0
1985	320	54.6	919	97.8	1(x)()	106.0	81.4	49.4	46 3	33.7	325	34.6	80.5	46.6	63.5	12718	731.1	2(4)2.9
1986	47.6	43.3	16.8	36.7	82.0	913	63.5	36.3	17.1	39 2	28 2	26.4	55.0	38.6	46.8	870.8	606.7	1477.5
1987	0.3	0.3	8.1	58.0	86.6	145.0	(10.0	845	172 0	135.0	101.0	1416	(01.4	64.3	84 3	1647.1	1024.2	2671.4
1988	153.0	1740	247.0	285.0	228.0	223.0	167,0	2010	270-0	307.0	327.0	372.0	228.3	263.3	245.8	3602.5	4158.5	7761 1
1989	346.0	208 0	213.0	195.0	163.0	159.0	U4. 0	89.8	1230	106.0	100.0	120.0	6.041	182.2	161.4	22188	2864.9	5083.8
1990	71.5	97.4	154.0	1450	153.0	1400	98.5	138.0	168.0	139.0	160.0	128.0	[40.4	125.0	132.7	2217.4	1969.5	4185.9
1991	1010	149.0	197.0	179.0	135.0	154.0	90.2	816	1320	126.0	150.0	\$75.0	125.3	150.2	1,7.7	1975 2	2361.7	4336.8
1992	E350	163.0	183.0	196.0	156.0	174.0	91.6	1320	2190	227.0	240,0	248.0	163,4	199.3	180.4	2543.4	3/40.4	5683.8
1993	198.0	216,0	312.0	293.0	200,0	353.0	259.0	317.0	395.0	363.0			3028	181 5	290.6	4776.7	2860 R	7637.5
Avg	108,7	126.9	171.5	1716	180.3	173.1	134.8	1427	151 2	123.6	1147	113.3	559.4	124.9	1432	2519.3	8843	4483.6
Max	346,0	419.0	5340	499.0	458.0	400.0	362.0	4633	427,0	363.0	327.0	3720	435.2	349.7	370.2	68787	5175.1	11647.7
Min	0.3	0.3	8.1	26.0	52.2	25.6	11.3	11.5	17.1	20.1	13.8	20.7	30,1	27.5	36.2	434.1	43(1)	11429

Table A.26 Monthly, Seasonal and Annual Discharge of the Syr Darya

Station: Kazalinsk

					Discharg	e (mYs)	. .						Disch	rge (m'/s)		Dischar	ee Volume (MCM)
Year	Jan	1eb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Apr to Sep		Anoual	Apr to Sep		Annual
1970	264 0	383.0	485 0	436.0	332()	267.0	248.0	264.0	214.0	268.0	257.0	233.0	293.5	315.0	301.3	4637,4	4940.7	9578.1
1971	299 D	326.0	414.0	415.0	3120	180.0	164.0	2290	3160	194.0	125.0	104.0	274.5	243.7	259 [4329.9	3820.5	8150.5
1972	74.4	117.0	165.0	442 ()	336.0	231.0	201.0	2524	314.0	191.0	166.0	165.0	296.0	146.4	221 2	4674.6	23181	6989.7
1973	115.0	159.0	2940	478.0	378.0	278.0	263.0	37.1 t)	3820	242 0	240.0	1940	358.8	207.3	283.1	5668.3	3270.0	8938.3
1974	132.0	153.0	165.0	1150	69.9	29 1	3.7	12.3	16.7	147	15.4	8.0	41.4	813	61.2	646.8	1256.3	1913.2
1975	45,4	48.4	60.9	92	3.9	39	1.6	1.4	4.0	10.8	16.6	21.4	3.9	344	19.4	618	547.3	608.9
1976	56.7	43.5	35.4	14.8	5.7	9.2	8. t	7.6	6.9	6.6	7.7	13.1	8.7	27.2	17.9	137.1	428.4	565.6
1977	39,4	28.6	36.6	6.3	10.0	4.4	46	3.8	6.7	13.1	172	32.2	6.0	24.5	15 2	94.6	385.1	479.7
1978	45.0	31 8	41 0	15.8	13.6	21 %	13.9	14.6	24.7	\$5.5	18.3	39.0	17.4	32 3	24.8	274 2	508.2	782.4
1979	52.9	63.3	6× 1	10.7	131.0	170.0	1220	127.0	140.0	96 8	720	1410	£15.8	82.4	39.8	1849.0	1301.6	3150.6
1980	1210	69.9	1350	1310	25.3	28 R	1420	85.3	87.1	75.5	87.1	84.3	83.3	95.5	89.4	1316.5	15146	28314
1981	85.5	55.1	48.2	189	32.8	97.0	43.8	106.0	152.0	109.0	84.1	89.6	75 I	78.6	76.8	1483.5	1241.3	2424.8
1982	108 O	109 (1	120.0	66.6	86	212	91	29.8	49.2	41.8	527	45.9	30.8	396	55 2	4K2 4	12459	1728.3
1983	79.6	76 1	43.4	5.8	72	6.9	5.5	20:4	24.9	17.5	30.7	39.8	10.8	47.9	29.8	186.5	746.6	933.0
1984	43.6	37.4	42.2	29.5	7.5	5.9	4.9	5.3	10.3	17.6	13.4	15.1	90.6	27.4	19.0	165.9	432.4	598.4
1985	E8.1	34 1	(41.8	35.2	7.4	128	6.5	12.0	16.6	130	11.5	30.8	15 1	28.1	21.6	236.8	441.2	678.0
1986	430	37.5	22 B	86	89	9.1	6.4	45	72	8.8	13.9	24.8	7.5	25.0	162	117.8	390.3	508.1
1987	22 1	20.2	9.7	140	11.5	17.3	248	36.4	119.0	139.0	829	125.0	37.2	663	51.8	584.3	1056.0	1640.3
1988	178.0	221.0	252 ()	237.0	156.9	173 0	89.5	1710	242 ()	272.0	511.0	345.0		256.5			4060.5	6866.8
1939	220.0	258.0	195.0	160.0	847	110.0	59.1	73.5	136,0	115.0	105.0	138.0	1	1718	137.9	1	2685.5	4320.1
1990	325.0	120 0	90.5	108.0	79.0	50.8	41.8	84.7	206.0	124.0	125.0	ER6 ()	100.1	128.4	•	_	2021.8	3595.5
1991	166 0	0.81	1410	• • • • • • • • • • • • • • • • • • • •	67.4	93.5	39.0	38 3	100,0	127.0	153.0	1820		1,52 8				3692 6
1992	199.0	226.0	186.0	128.0	857	89.5	21.5	53.0	156.0	230.0	226.0	103.0					3055.6	4452 8
1993	2001.0	240.0	280.0		180.0	220.0	160.0	280 0	350,0	330.0	300.0	350.0	4,7 -	283.3			1	8238.2
1994	3/00	390.0		•	286 0	220.0	197.0	220,0	320.0	319.0	363.0	340.0		3312	l			10048.1
1995	375.0	380.0			180.0	88.2	34.9	25.5	420	33.9	38.8	B.5.0		248.8	158.6	1		4965.7
Avg	133.7	145 3	162.2		108.5	94.9	73.7	97.4	132.4	116.2	111.3	120.8		1316	Į.			3795 3
Max	390.0	390.0	485.0		378.0	278.0	263.0	374.0	382.0	330.0	363.0	350 0		1	3	_		E0045.1
Man	18.1	20-2	9.7	5.8	3.9	3.9	16	11	4.0	6.6	7.7	8.0	3.9	24.5	15.7	61.8	385.1	479.7

Table A.27 Monthly, Seasonal and Annual Discharges of the Syr Darya

Station: Kerateren

	Ĺ				Monthly	Dischar	ee (m	s)					Seasona	d Discharge	(n)'/s)	Discharg	e Volume (MCM)
Year	Jan	l eb_	Mar	Apr	May	Jun	<u>.</u>	Aug	Sep_	Oct	Nov	Dec	Apr to Sep	Oct to Mar	Annual	Apr to Seg	Oct to Mar	Annual
1993	260.0	300.0	300.0	200 0	157.0	1780	150.0	168.0	360.0	328.0	349.0	320.0	202.2	309.5	255.8	3(85.1	4855.9	8051.0
1994	360.0	360.0	410,0	310.0	230,0	187.0	396.0	236.0	286.0	280.0	280.0	307.0	239.2	332.8	286,0	3775.9	5231.3	9007.1
1995	327.0	260.0	280.0	285.0	217.0	96.0	11.0	8.0	50.0	63.0	410	80 0	1112	175.7	143.4	1749.3	2751.8	4501.1
1995	260.0	230,0	279.0	170.0	97.5	28.7	249	73 2	164.0	236.0	282.5	279.6	93.1	259.7	176.4	1464 0	4109.6	5573.0
Avg	36)1.8	287.5	315.0	2413	1729	1224	95.5	121.3	215.0	226.7	238.9	246.7	161.4	269.4	215,4	2543.6	4239.5	6783.0
Max	360.0	3600	410.0	310.0	220.0	187.0	196.0	236.0	360,0	328.0	349.0	320.0	239.2	332.8	285.0	3775.9	5231.3	9007.1
Stin	260.0	230 0	270 0	17610	97.5	28.7	11.0	8.0	50.0	63,0	410	80.0	93.1	175.7	133.4	1464.0	2751 8	4501.3

Table A.28 Summary of Monthly, Seasonal and Annual Discharges in the Syr Darya

	Γ-1	_				Monthly	Discharg	e (mYs)						Seasonal	Dischar	ge (mYs)	Discharge	Votume (MCM)
Station		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			Annual		Oct-Mar	Annual
Chardara	A٧g	190.1	203.2	292.2	591.0	855.1	7446	676.1	359.5	183.2	170.7	188.9	201.6	568.1	207.8	387.9	8998.1	3274.1	12272 [
(1970-1995)	Max	525.0	615.0	782.0	892 0	1250.0	11300	1060.0	803.0	5120	526 0	488 0	482 0	881.2	480.3	677.9	13969.8	7584 4	21452.7
	Min	48 8	50.1	51.I	169.0	501.0	333.0	303.0	61.7	46 6	50.6	49.9	55.3	278.3	54 3	166 5	4405.2	853.7	5265 8
Para.		145 3	120.3	346.3	1103	241.4	(3) 0	(010	368.0	202.6	1634	165.7	179.6	502.3	181.9	342.1	9105.1	20/4.2	111516
Kokiyube (1976-1993)	Avg Max	165.3 436.0	178.3 441.0	256.3 681.0	693.0	741.4	671.9 1030-0	607.0 865.0	796.0	200.6 536.0	162.1 491.0	468.0	471.0	804.7	470.5	637.6	8185.4 12737.3	2968 2 7413.4	13153.6 20150.6
(127(2122.9)	Mic	46.3	55.6		222.0	471.0	2940	245.0	127.0	67.9	59.9	52.9	56.2	246.3	61.4	157.3		970.7	5954.8
		70.,		• • • •		7,7,0		21,		5 .,,-	• • • • •		77 -				1701.1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Tomenariyk	Avg	184.6	1946	241.9	362 6	6118	543.t	469.3	335.9	201.2	162.5	164.2	178 1	420.7	187.6	304.1	66615	2954-4	9618.8
(1970-1993)	Max	673.0	601.0	571.0	793.0	1010.0	924.0	807.0	715.0	498 0	461.0	460 0	4760	758.0	476.8	592.8	12095.8	7515.1	18726.9
	Min	57.3	55.3	48.4	132.0	3240	181.0	164.0	91.6	53.5	50.0	54.7	48.0	165.3	53.8	121.7	2620.8	850.7	3850.9
				222.0	7/7/	433.0		433.0				120.0				353.6		6333.0	
Kergelmes (1970-1991)	Avg. Max	134.3 368.0	160.7 611.0	202.8 535.0	267.6 646.0	483.7 726.0	456 6 708 0	400.0 658.0	297.6 586.0	177.8 372.0	138.4 347.0	138.0 381.0	411.0	347.2 613.7	148.4 402.5	252.9 478.9	5502 0 9718 3	2332 8 6282 5	7834 8 15074 8
(1970-1971)	Min	41.4	38.2	59.0	71.1	264.0	155.0	135.0	97.1	41.4	38.9	347	36.5	135.4	52.4	97.4	2143.9	823.9	30348
		.,,,				201.0	*	11.7.0						11.5.7	3.2.1	2	2.00	0.5	
Kzyl-Orda	Avg	169.3	183.1	215.6	213.9	254.9	235.3	191.5	1847	166.9	133.5	149.2	165.2	207.9	169.3	183.6	3287.6	2663.6	5951.2
(1970-1995)	Max	471.7	554.0	443.0	570.0	6100	471.0	426.0	516.0	412.3	393.0	404.0	411.0	480.7	404.7	399.0	7609.4	6327.9	12548.4
	Min	44.4	46.5	58.9	43.5	104.0	57.7	35.4	40.2	28.3	24.1	39.6	26.9	56.6	49.0	58.4	895.8	769.1	1841.8
					100.0		22.0						.02.0				21144	3144.0	5371.0
Karaozek (1970-1995)	Avg Max	136 6 412.0		179.1 494.3	189.8 581.0	243.1 538.0	225.0 462.0	183.7 391.0	172.9 473.0	167.9 396.3	138.5 393.7	132.1 385.3	107.9 282.7	197.1 440.2	137.0 393.8	170 2 374 2	3116.6 6966.6	2155.2 6177.2	5271.8 11781.6
(1970-1993)	Min	36.1	26.1	26.5	23.5	79.8	40.7	23.2	21.6	17.3	18.9	14.7	18.2	40.0	27.1	42.2		427.3	

Zbusali	Avg	108.7	126.9	171.5	174.6	180.3	173.1	134.8	142.7	151.2	123.6	114.7	П3.3	159.4	124.9	144.2	2519.3	1964.3	4483.6
(1970-1993)	Max	346.0	449.0	534.0	499.0	468.0	400.0	362.0	463.0	427.0	363.0	327.0	372.0	435.2	349.7	370.2	6878.7	5475.1	11647.7
	Min	0.3	0.3	8.1	26.0	52 2	25.6	11.3	11 5	17.1	20-1	13.8	20.7	30.1	27.5	36.2	474.1	430.8	1142.9
Kazalinsk	Ave	133.7	145.3	162.2	149.6	100 €	949	727	97.4	132.4	116.2	B1.3	120.8	109.4	131.6	120 5	1725.9	30/0.5	2705 2
(1970-1995)	`	3900		485.0	478.0	108.5 378.0	278.0	73.7 263.0	374.0	382.0	330.0	363.0	350.0		371.2	319.2		2069.5 5832.3	3795.3 10043.1
(1719 1775)	Min		20.2	9.7	5.8	3.9	3.9	1.6	1.1	40	66	7.7	8.0		24.5			385.1	479.7
Karataren	Avg	301.8	287.5	315.0	241.3	172.9	122.4	95.5	121.3	2150	226.7	238.9	246.7	161.4	269.4	215.4	2543 6	4239.5	6783.0
(1993-1996)	Max	360.0	360.0	4100	310.0	220.0	187.0	196.0	236.0	360 0	328.0	349.0	320.0	239.2	332 8	286 0	3775.9	5231.3	9007.1
	Min	260.0	230.0	270.0	170.0	97.5	28.7	11.0	8.0	500	63.0	44.0	80.0	93.1	175.7	143.4	14510	2751.8	4501.1
Karaozek-	Avg	40 8	49.2	53.5	34.7	18.0	18.2	125	128	13.1	15.5	20.5	20.4	17.6	25.1	23.6	276.8	393.0	642.3
Flow	Mak	139.0	218.0	292 0	92.7	95.4	63.0	77.0	65 0	56.4	53.0	67.9	1280	61.1	67.2	59.0	965.1	1047.2	1857.7
(1975-1995)	Min	32	4.5	8.3	2 7	0.5	0.8	02	0.1	00	0.0	0.0	0.0	1.8	7.0	4.6	14.7	111.1	142.4
														}		i			
Keles-Mouth	1 `			17.2	25,4	218			86		129	12.7	12.6	ı				,	l
(1971-1994)	1			28.3		43.0		16.2			24.3	24.9	26.9	Į.		l .	1	i	l
	Min	5.1	4.4	9.0	5.5	3.0	1.0	1.5	2.1	5.3	4.5	5.2	5.0	3.1	5.5	4.3	62.4	106.5	177.8
].					3.0.					•] ,,,		,,,,		
Ariys-Rail S	1 -	l .						6.9			81	10.1	15.0	[l		i	637.4
(1970-1994)				133.0						25.1	146		53.7	1	}			ł	
	Min	7.4	8.1	10.9	9.0	1.8	5.1	1.5	1.7	4.5	4.3	6.2	6.9	6.5	10.2	8.7	102.7	159.0	273.5
		L												L	i	L	L	l	L

Table A.29 Water Discharge in the Kuvandarya River

Year	Annual Discharge at the Head of the	Annual Discharge in the Kuyandarya river	Inflow from the South Collecte		Flow in the Ku Junction Pe	vandarya Riv int with Coll	
	Kuvandarya River	before Junction point with Collectors	Kuvandary	a River	Annual Discharge Volume	Average Discharge	Maximum Discharge
	(MCM)	(MCM)	Date of Flow	(MCM)	(MCM)	(taVs)	(m ¹ /s)
1991	37.9	14.6	21 May -31 Aug	210.8	225.4	19.2	33.4
1992	34.1	12.4	24 May -10 Sep	255.5	267.9	19.0	35.3
1993	79.6	33.7	21 May -11 Sep	362.0	395.7	22.7	41.6
1994	96.9	35.7	25 May -12 Sep	413.7	449.4	30.0	48.6
1995	49.1	16.8	21 May - 10 Sep	290.7	307.5	21.7	36.3
1996	70.9	25.9	26 May -10 Sep	246.8	272.7	20.4	35.5
Average	61.4	23.2		296.6	319.8	22.2	38.5

Source: Zhanadarya Water Management Office, Kzyl-Orda

Table A.30 Average Monthly Flow in the Kuvandarya River

	Average Monthly Disc	harge (m/s) in the Kuy	andarya River After	Meeting of North ar	d South Collector	Annoal
Year	May	Jun	Jul	Aug	Sep	(MCM)
1991	17.5	26.9	23.4	27.3		220.8
1992	4.2	29.9	26.5	27.8	6.8	255.5
1993	12.5	35.8	34.0	39.8	(0.5	362.0
1994	21.7	38.8	45.5	39.2	12.0	413.7
1995	11.5	29.1	33.4	25.1	5.6	290.7
1996	8.5	22,7	25.2	31.7	4.4	246.8
Average	12.7	30.5	31.3	31.8	7.9	298.3

Source: Zhanadarya Water Management Office, Kzyl-Orda

Table A.31 Water Use in the Kuvandarya Area

Year	Hay Making Area	Water Use for	Lakes	System	Area of	Water Use fo
	(ha)	Hay Making (MCM)	Area (ha)	Volume (MCM)	Other crops (ha)	Other Crops (MCM)
1991	12,300	36.6	460	5.1	255	4.9
1992	7,400	19.2	380	4.2	820	13.8
1993	8,100	20.9	400	4.6	857	14.1
1994	26,300	79	540	6.5	403	6.7
1995	18,610	56.1	410	5.0	790	13.4
1996	12,000	35.8	450	5.5	460	7.9
Average	14,118	41	440	5.2	598	10.1

Source: Zhanadarya Water Management Office, Kzyl-Orda

Table A.32 Major Lakes in the Zhandarya and Kuvandarya River Canals

Name of Canal	Name of Lake	Storage Capacity (MCM)	Area (ha)
Zhanadarya	Ala-Kashor	5.67	
Kuvandarya	Airport	2.2	1
	Karatai Karakot	6.8 5.83	
	Zanger Akkol	6.21 2.93	
	Mariamkol Altynkol	8.25 3.3	
Total		41.19	

Source: Zhanadarya Water Management Office, Kzyl-Orda

Table A.33 SYR DARYA - Suspended Load (mg/l)

Station: Kergelmes

					Suspe	ended Lo	ad (mg	2/1)					
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
1970	150	260	380	630	660	520	430	280	290	200	240	270	359.2
1971	39	92	250	450	470	370	360	240	230	130	75	120	235.5
1972	33	110	110	720	480	350	230	180	140	220	170	150	241.1
1973	38	47	280	500	560	310	220	130	130	150	88	110	213.6
1974	34	34	90	230	420	200	110	74	53	100	100	51	124.7
1975	26	18	110	340	400	98	39	31	40	38	83	69	107.7
1976	18	33	47	160	340	170	68	80	32	30	27	19	85.3
1977	17	19	160	180	230	150	150	55	33	33	19	35	90.1
1978	18		77	280	230	230	120	100	33	49	56	27	
1979	25	59	180	400	500	270	200	230	91	50	120	180	192.1
1980	64	40	85	390	410	230	210	150	59	54	47	45	148.7
1981	44	81	71	440	340	220	190	150	62	45			
1982	21	28	190	190	430	230	180	100	60	35	43	31	128.2
1983	30	53	68	43	430	270	200	130					
1984	26	27	130	180	330	150	140	98	38	13	6.4	33	97.6
1985	27	56	46	220	340	260	180	110	63	45	31	30	117.3
1986	20	25	34	290	450	290	120	52	36	42	34	43	119.7
1987	28	18	33	200	420	230	200	110	99	52	95	25	125.8
1988	38	41	160	240	130	82	170	170	220	190	230	200	155,9
1989		110	160	150	240	190	90	69	55	150	150	190	141.3
AVG.	36.6	60.6	133.1	311.7	390.5	241.0	180.4	127.0	92.8	85.6	89.7	90.4	153.3
MAX.		260	380	720	660	520	430	280	290	220	240	270	359.0
MIN.	17	18	33	43	130	82	39	31	32	13	6.4	19	85.3

Table A.34 SYR DARYA - Suspended Load (mg/l)

Station: Tomenariyk

					Suspe	ended Lo	ad (mg	z/l)			· · · · · · · · · · · · · · · · · · ·		
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
1970	270	520	230	410	520	440	450	320	240	230	210	200	336.7
1971	110	260	450	510	430	410	360	270	220	87	74	82	271.9
1972	49	93	660	620	460	350	330	330	140	83	140	160	284.6
1973	70	200	250	530	480	430	370	240	130	67	60	54	240.1
1974	44	28	85	120	320	230	140	21	51	20	25	65	95.8
1975	73	60	46	440	210	72	45	13	20	25	56	60	93.3
1976	18	75	32		210	310	160	29	4.9	6.3	14	5.6	ļ
1977	7.7	12	120	210	580	170	130	47	18	24	11	9	111.6
1978	7.4	20	100	320	240	66	87	77	21	3.4	53	120	92.9
1979	15	130	230	380	76	33	11	46	14	72			
1980	25	56	300	150	110						22		ŀ
1981	32	44	67	180	94	130	40						
1982	14	34	72	170	110	160	130		40	9.9	17	57	İ
1983	45	35	18	12	48		19						İ
1984	17	130	74	240	110	130	61	23	5.2	26	32		
1985	41	21	70	210	91	88	54	38	84	84	26		
1986	17	16	14	230	210	160	130	47	19	38	23	31	77.9
1987	30	53	55	420	240	130	55	28	59	79	150	140	119.9
1988	110	190	280	200	110	90	120	270	110	97	82	51	142.5
1989	48	160	210	210	280	120	180	120	80	43	54	61	130.8
AVG.	52.2	106.9	168.2	292.7	246.5	195.5	151.2	119.9	73.9	58.5	61.7	78.5	133.8
MAX.		520	660	620	580	440	450	330	240	230	210	200	337.0
MIN.	7.4	12	14	12	48	33	Ш	13	4.9	3.4	- 11	5.6	77.9

Table A.35 Estimated Discharge in the Syr Darya at the Upstream of the Kzyl-Headworks

اے	ខ្ម	33	4.S	4.5 2.	9.0	ნე 4	5.2	e: 6	2.5	3.2	6. 6.	9. 8.	55	5.2	6.5	c) ()	8.5	3.7	7.7	5.7	6.6	5.0	Ci	6.7	7.9	9.6	2.1	8.9	7.3	3.7
CMCN	Annua	15087.	•	•																			8562.2	• •	~	13959.6	923		15087.3	363
Volume	Oct-Mar	6327.9	3851.8	3113.5	3717.9	1508.4	946.0	801.5	863.2	1124.8	2036.7	1983.0	1592.4	1602.5	1128.6	1018.2	1084.6	769.1	1366.2	4735.9	3015.4	2704.1	3775.0	4594.3	5463.4	5427.6	4700.9	2663.6	6327.9	769.1
Discharge	Apr-Sep	8759.3	7892.8	9061.0	10342.7	3965.0	2689.2	2900.4	3211.3	4248.3	6602.2	5175.6	5400.1	4402.7	3727.9	3584.0	3623.9	2864.6	4271.4	6167.8	4774.5	5128.0	4787.2	5713.5	8364.6	8532.0	4531.2	5412.4	10342.7	2689.2
(8)	Annual	478.9	372.4	384.4	444.2	173.1	114.8	116.6	128.4	169.5	272.7	225.7	220.7	189.9	153.5	145.1	148.8	114.8	177.9	344.6	246.5	247.5	271.4	326.1	438.2	442.1	293.5	255.4	478.9	114.8
arge (m3/s)	Oct-Mar	404.7	246.6	196.4	235.7	96.2	60.1	9.09	54.7	71.2	129.6	125.0	100.9	102.2	72.2	64.6	0.69	49.0	86.4	299.2	191.6	171.2	240.2	291.0	347.6	345.5	300.6	169.3	404.7	49.0
Disch	Apr-Scp (553.1	498.2	572.4	652.7	249.9	169.5	182.7	202.2	267.7	415.9	326.4	340.5	277.6	234.7	225.7	228.5	180.5	269.4	390.0	301.3	323.8	302.5	361.3	528.9	538.8	286.5	341.6	652.7	169.5
	Dec	411.0	110.0	270.0	228.0	47.3	48.4	40.6	74.2	106.7	183.7	136.0	103.0	59.3	57.5	41.1	52.9	56.9	149.0	385.7	138.7	231.3	268.0	271.7	283.3	292.5	278.7	165.2	411.0	26.9
	Nov	336.0	98.7	235.0	251.0	62.9	42.0	39.6	41.8	80.7	139.2	93.0	108.0	73.7	73.5	56.4	52.2	4.4	111.4	327.0	122.0	188.3	195.0	260.0	339.0	404.0	100.7	149.2	404.0	39.6
	Oct	301.0	158.0	221.0	257.0	47.9	33.5	24.1	41.9	68.3	88.7	90.5	117.0	8.5	45.8	35.8	58.7	52.9	102.7	289.0	122.7	178.7	157.7	244.7	393.0	230.0	44.7	133.5	393.0	24.1
	Sep	338.0	324.9	314.0	400.1	29.1	36.7	34.4	36.4	86.1	158.5	97.6	164.3	89.6	76.9	42.0	73.0	36.8	170.3	279.3	157.0	201.0	149.4	241.3	412.3	386.3	63.8	169.2	412.3	29.1
	Aug	528.0	472.0	518.1	672.1	162.5	142.6	168.0	158.4	246.9	401.1	325.2	350.3	262.5	222.9	190.6	185.1	133.3	224.1	330.4	264.3	314.2	237.6	326.6	553.0	519.8	154.7	310.2	672.1	133.3
c (m ³ /s)	Jul	601.0	512.0	582.4	681.1	288.0	202.8	237.3	289.2	324.5	522.8	387.5	431.7	387.8	329.9	312.9	302.8	255.2	358.0	425.3	345.2	334.1	323.8	339.1	543.3	589.2	294.7	392.4	681.1	202.8
Discharge (m3/s	Jun	686.6	567.7	642.4	749.4	370.6	240.4	286.3	326.6	408.2	563.4	425.2	503.5	425.8	371.4	360.3	354.5	330.5	412.9	489.2	421.2	408.3	412.1	433.4	655.1	567.1	372.7	453.3	749.4	240.4
	1	694.5	685.2	735.1	874.3	450.6	277.4	284.2	324.7	409.3	629.8	442.4	428.2	343.9	344.8	351.7	331.7	272.4	360.9	424.5	411.0	422.0	397.2	429.9	515.7	90.099	419.7	458.5	874.3	272.4
	Apr	470.5	427.5	\$42.5	539.0	198.9	116.8	85.7	77.9	131.3	219.8	280.3	165.0	155.7	62.5	96.7	123.7	54.9	90.3	391.6	209.4	263.0	294.9	357.5	493.9	510.4	413.5	265.9	642.5	54.9
	Мэг	416.0	448.0	249.0	294.0	167.0	96.4	68.0	78.7	72.6	152.1	199.0	103.0	191.7	65.3	94.1	119.0	58.9	63.2	360.7	256.3	191.3	314.0	299.3	395.3	408.7	443.0	215.6	448.0	58.9
	H S	0.49 0.40	397.0	125.0	184.0	122.0	63.4	47.0	46.5	46.9	131.0	99.2	76.8	127.7	99.5	86.6	78.4	57.7	47.6	257.3	205.7	120.7	264.7	345.3	357.7	344.3	464.7	183.1	564.0	46.5
	Tan	400.0	268.0	78.1	200.0	127.0	77.0	84.2	45.0	51.9	82.9	132.0	7.76	96.2	91.8	73.6	53.0	53,4	4.44	175.7	304.3	117.0	242.0	325.0	317.0	393.3	471.7	169.3	471.7	44.4
	Vent	1970	1071	1972	1973	1974	1975	1976	7761	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	Avg	Max.	Min

Table A.36 Estimated Available Monthly Discharge for the Kzyl-Orda Left Main Canal

		D	ischarge (m ¹ /s	i)			Discharge (MCM)
Year	Apr	May	Jun	Jul	Aug	Sep	Apr-Sep
1976	40.1	158.6	162.9	132.0	85.1	0.0	1532.4
1977	24.0	185.1	192.2	166.8	91.9	0.0	1749.1
1978	23.9	210.4	203.8	171.8	111.2	0.0	1911.5
1979	70.3	212.9	211.5	216.2	152.8	6.9	2306.8
1980	45.8	207.9	218.3	211.0	130.7	0.0	2156.9
1981	28.3	199.0	213.2	224.5	144.6	0.0	2147.4
1982	17.8	143.6	224.4	217.4	152.4	3.8	2012.6
1983	4.7	194.8	206.7	186.7	104.7	1.0	1852.4
1984	5.6	187.4	199.3	177.8	95.9	0.0	1766.3
1985	3.3	162.8	183.2	156.2	103.3	0.0	1614.7
1986	0.8	137.2	184.2	137.4	67.4	0.0	1395.4
1987	0.0	169.1	195.1	159.4	100.6	0.0	1654.7
1988	71.0	166.1	191.7	186.2	86.5	0.0	1856.3
1989	10.7	172 5	169.0	152.9	94.5	0.0	1590.4
1990	47.9	180.7	158.1	139.2	87.1	0.0	1624.3
1991	46.9	163.5	162.7	154.8	83.9	0.0	1620.4
1992	99.0	180.0	180.3	177.2	124.3	0.0	2013.5
1993	114.5	188.8	187.8	206.8	155.7	0.0	2260.2
1994	89.7	193.4	198.2	206.7	129.2	0.0	2161.0
1995	95.8	163.0	187.1	152.6	84.1	0.0	1803.9
1996	68.9	208.0	172.0	182.2	116.7	1.0	1984.5
Average	43.3	180.2	190.6	176.9	109.6	0.6	1858.0
Max	134.5	212.9	224.4	224.5	155.7	6.9	2306.8
Min	0.0	137.2	158.1	132.0	67.4	0.0	1395.4

Table A.37 10-day Probable Available Discharge at the Kzyl-Orda Headworks

Return								Drou	ght Dis	charge	(m³/s)							
Return Drought Discharge (m³/s) Period Apr May Jun Jul Aug Aug 1 2 3 1 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 <													Sep					
		2	3	1	2	3	1	2	3	1	2	3	1	2	3	<u>i</u>	2	3
1/5 Year	59.7	61.5	135.7	277.6	330.2	355.3	368.9	345.0	318.2	300.4	284.0	263.4	236.2	189.1	96.7	51.7	49.7	49.0
1/2 Year	186.9	199.1	226.5	351.6	395.6	427.6	444.1	411.9	381.7	360.4	352.7	339.8	315.1	273.3	189.1	126.6	128.3	124.1

Table A.38 10-day Probable Available Discharge at the Head of Left Main Canal

Return							Disc	harge (mVs)						
Period	od Apr				May			Jun			Jul			Aug	
	_	2	3	I	2	3	-	2	3	1	2	3	1	2	3
1/5 Year	0.0	0.0	32.9	128.5	173.5	179.3	183.7	173.4	163.1	158.6	153.4	142.2	130.3	99.9	22.3
1/2 Year	11.9	30.7	72.2	153.4	194.5	201.0	200.7	189.0	184.0	179.4	177.7	172.7	158.9	121.4	42.1

Table A.39 Irrigation Area and Water Diverted from the Syr Darya

Year			Irrigated /	Area (ha)				Syr Da	nya Wate	r Use for	Irrigati	on (MCM)	
	Kzy	d-Orda (Oblast	South	Total	Kzy	-Orda (Oblast	South	Kazakhs	tan	Total	ા
				Kazakh.	of						<u>:</u>	Two Ob	asts
	LMC	RMC	Total	KzylK	Two	LMC	RMC	Total	KzyłK	Others	Total	D/S A	Incl.
			Oblast	& D/S A	Oblasts			Oblasi	Canal	D/S A	Oblast	Chardara	Kzylk
1985	79,611	8,856	251,710	81,500	333,210	1780	208	4987	1520	310	1830	5297	6817
1986	81,394	8,054	248,410	83,300	331,710	1569	163	4159	1350	225	1575	4384	5734
1987	83,980	8,642	258,490	85,500	343,990	1870	194	5150	1418	275	1693	5424	6842
1988	85,010	9,318	262,680	87,000	349,680	2121	269	5594	1712	[37]	1848	5730	7442
1989	83,562	8,944	264,190	87,700	351,890	1796	213	4992	1410	216	1625	5208	6618
1990	81,868	8 874	258,390	88,700	347,090	1878	195	4869	1381	124	1505	4994	6375
1991	83,658	8,893	261,430	90,400	351,830	1846	212	5314	1567	182	1749	5495	7063
1992	68,887	8,338	257,170	90,400	347,570	2010	243	5071	1464	299	1763	5370	6834
1993	81,691	8,050	264,250	90,200	354,450	2258	276	5669	1357	268	1625	5936	7294
1994	78,958	5,269	243,100	91,000	334,100	2163	219	6457	1345	104	1449	6561	7906
1995	75,269	7,304	231,460	92,000	323,460	1830	173	4779	1007	107	1114	4886	5893
Mean	80,353	8,231	254,662	87,973	342,635	1920	215	5185	1412	204	1616	5390	6801

Remark: LMC =Left Main Canal, RMC = Right Main Canal, KzylK = Kzylkumsk Canal,
D/S A = Area Down Stream of Chardara in South Kazakhstan Irrigated by the Syr Darya

Source: Water Resources Committee, Kzyl-Orda

Table A.40 Crops and Irrigation Areas in the Irrigation Systems of the Syr Darya Basin (1995)

Oblast	Name of Irrigation	Design	brigation	Total			Crop Area	(ha)		
	System	Discharge	Water .	Imigation		Cereal				
	1		Volume	Area	Paddy	Other	Total	Fodder	Cotton	Other
		(m'/s)	(MCM)	(ha)		Cereals				Crops
South Kazakhstan	Kzylkumsk Canal	200	1,077.70	66,500	9,000	19,800	28,800	25,600	9,100	3,000
	Others		36.30	25,500	0	9,000	9,000	11,500		5,000
	Total		1,114.00	92,000	9,000	28,800	37,800	37,100	9,100	8,000
Kzyl-Orda	Sumagar	15	19.96		350		980	240		366
	Kelintube	80	408.03		7,940		13,730]	8520		524
	Zadarya	12	5.00			220	220	260		41
	Kandi-Aral	12	11.73			220	220			65
	Sunak-Ata	40	62 28		1,280	1,040	2320	710		3.5
	Taipakkol	15	4.9€					300		46
	Novochilisky	120	608.40		10,593		19,159			821
	Kamisti-Kak	28	66.16	3,294	1,050	950	2000	917	i	30
	Botabai	35	9.20	1,365		958	958	195		2
	Zbetikul-Zharma	40	109.02	5,187	100	1,941	2041	2751	1	35
	Novoselotubinsky	4	39.64	2,041		531	531	820	1	6
	Zhana-Arik	12	8134	2,855	1,100	380	1480	760	ł	6
	Zhana-Darya	50	224.35	2,826		752	752	1755	į	3.
	Kzył-Orda RMC	110	173.10	7,304	1,650	1,743	3,398	1574	1	23:
	Kzyl-Orda LMC	230	1,829.80	75,269	28,050	17,793	45843	25557	1	384
	Aitek	60	304 25	13,584	5,500	2,601	8101	4649	1	8.
	Kazalinsk RMC	8.5	1920	10,239	3,920	1,655	5,575	3928	l	7.
	Kazatinsk LMC	100	393.59	15,731	5,810	2,735	8,545	6024	l l	111
	Baskaza	15	39.99	1,488	180	120	300	839	, <u>t</u>	3
	Kok-Su	12	15.08	365		100	100	150	Į.	١,
	Kara-Uzyak	50	2.70	200	l	:			l	20
	Others		175.5-	17,297	673	2,488	3161	3315	1	108
	Total		4,778.60	5 231,460	68,196	51,218	119,414			38.8
	Grand Total		5,892 60	323,460	77,196	80,018	157,214	110,309	9,100	46,8

Table A.41 Irrigation Area of the Irrigation Systems in Kzyl-Orda Oblast in Year 1996

Name of Irrigation	Construction	Design	Length of	Developed	Im	Irrigation Water Volume (MCM)	Volume (N	(M)		Total	Paddy	Springs	Winter	Marze	Maize Lucerne	Other
System	Date	Discharge	main Canal	Irrigation	Cultivatio	Cultivation Period (Apr-Sep)	П	During		Imgation		Wheat	Wheat			Crops
•		ı		Area	Imgation	Ecology	Total	F100d	Total	Area		_				,
		(m'/s)	(Km)	(ha)	Use	Purposes	Use			(F)	(Ja)	(ha)	(F)	(ju	(P)	î
South Kazakhstan Oplast	N Colast										0			900	0000	00000
1 Kzyl-Kumsk	1961	200	911	73,600	22	91	1218		1218	0000	3	3	3 3	3 6	3 6	3.5
2 Small Systems		25		20,000	143	77	220		220	8180		1000	2000	2000	70XX	3
Total				93,600	1245	193	1438		1438	73100	0006	000	8	8	8	39100
Kzyl-Orda Oblast	- 51-					,	-									
Sumagar	1975	15	31.7	2.522	35.00		35.00		35.00	2,442	350		099	170	8558	407
2 Kelintube	1966	8	86.4	31,940	530.50	24.60	\$55.10		555.10	24,181	7.095	102	5.320	817	7.118	3729
3 Zadarva	1965		20.5	35	9.80		08'9		6.80	442	30			42	8	360
4 Kandi-Aral	1943	12	26.8	905	4.30	1.30	5.60	2.6	8.20						230	35
5 Sunak-Ara	1946	9	30.4	90£'9	75.70	10.10	85.80		85.80	3,853	90,1	8	832	8	98	873
6 Taipakkol	1953	15	10.0	154	3.50	20.60	24.10	20	44.10	230				55	150	S
7 Novochilisky	1961	52	20.4	38,628	614.30	46.60	06:099		06:099	30,550	9.119	380	6.807	25	7,659	6014
8 Kamisti-Kak	1946	۲۱ عو	42.5	3,060	06 \$6	3.10	68.00		68.00	2,832	930		1.057		703	142
9 Botabai	1972	æ	67.9	2.509	11.90	06:1	13.80	4.5	16.20	485	3	8	9	20	8	165
10 Zbetikul	4461	Ç	33.6		62.50	9.60	72.10	2. 8.	74.90	71	35	150		150	1,215	551
11 Novosolotubinsky	1942	5	11.5		29.70	4.60	34.30	2.5	36.80	920		150	:20		200	55
12 Zhana-Arik	1983	51	28.0	4,932	62.40	9.70	72.10	-	73.10	4,620	1,150	2,300	202	0,	480	3
13 Zhana-Darya	1972			5,466	26.80	132.10	158.90	42.2	201.10	1,691	8		280		1.180	171
14 Kzyl-Orda LMC	8561	CS	85.2	90,024	1462.80	392.90	1855,70	59.7	1915.40	64,478	27,375	4,316	8,500	1,871	19,827	2589
15 Kzyl-Orda RMC	1951		15.4	10,323	146.30	22 30	168.60	12.1	180.70	5,821	2:000	1,300	150	8	1.065	1276
16 Aitek	1945	9	50.7	15,679	317.70		317.70		317.70	11,312	\$.150	1,131	8	8	2,990	3
17 Kazalinsk LMC	1970	001	53.9	19,372	397.80	29.80	427.60		427,60	12,677	6,370	400	843	0.	4,021	893
18 Kazalinsk RMC	1970	ç	2.5	14,289	05.85	12.80	199.30	3.4	202.70	7,837	3.830	200	165	\$	2,804	768
19 Baskara	1970	\$2	46.3	2,990	22.30	4.80	27.10	29.8	56.90	1,319	8	8			ŝ	491
20 Others				29,547	110.20	27.30	137.50	2	139.50	16.935	1.115	1,095	28	202	3.801	10617
Total				285,963	4171.90	754.10	4,926	181	5106.50	195,430	65.969	11.822	25.924	4.623	56,156	30.936
Total in Two Oblasts				379,563	5,417	72	6,364	18.	6,545	268,530	74,969	15.822	32,924	8.623	96.156	70.036

Table A.42 Difference of Syr Darya River Discharge Between Chardara and Kazalinsk Stations

		Di	scharge (m/s)				Discharge (m/s)	Volume (MCM)
Year	Apr	May	Jun	Jul	Aug	Sep	Aprito Sep	Apr to Sep
1970	290.0	643.0	793.0	597.0	413.0	1640	483.3	7659.6
1971	252 0	698.0	720.0	702 0	509.0	00]	476.8	7580.6
1972	402 0	7340	7440	666 0	487.0	0.0	489.5	7775.7
1973	395.0	8720	852 0	797.0	394 0	0.0	522.3	8301.6
1974	398 0	786.1	562.9	401.3	49.4	,39.8	372.9	5906.5
1975	366.8	497.1	129.1	301.4	83.7	68.1	274.4	4343,4
1976	354.2	635.4	498 8	450.9	158.5	480	357.6	5669.2
1977	503.7	6010	509.6	422.4	78.5	66.5	363.6	5749.9
1978	499.2	690.4	592 2	556.1	266.4	65.3	414.9	7050.3
1979	7283	969.0	637.0	719.0	283.0	0.0	554.4	8792.1
1980	448.0	762.7	663 2	546 0	199.7	3.7	438.1	6942.9
1931	526.1	785.2	652.0	636 2	156.0	0.0	449.7	7130 0
1982	410.4	804.4	634.8	631.9	186 2	13.9	455.3	7220.4
1983	407.2	721.8	654.1	598.5	355.6	31.0	428.0	6783.9
1984	377.5	753.5	662.1	613.1	141.7	36.3	430.7	6828.5
1985	412.8	826 6	666.2	631.6	129.0	39.7	456.0	7228.3
1986	389.4	657.1	606.9	501.6	101.5	55.6	385.3	6101.6
1987	500.0	744.5	658.7	652.2	271.6	141.0	494.7	7837.2
1988	538.0	767.0	603.0	698 2	250.0	166.0	503.7	7981.7
1989	405.0	789.3	658.0	642.9	228.4	41.0	460.8	7309.3
1990	526.0	763.0	705 2	726 2	434.3	85.0	540.0	8563.5
1991	470 0	776.6	652.5	670.0	274.7	59.0	483.8	76728
1992	525.0	717.3	655.5	726.5	439.0	2120	554.2	8786 2
1993	424 0	1040.0	850.0	829.0	523.0	1630	638.0	10128.8
1994	532.0	794.0	7180	508.0	434 0	98.0	514.0	8143.7
1995	365.0	583.0	557.8	437.1	117.5	58.0	353.1	5589.2
Avg	441.4	746.6	649.7	602.4	262.1	63.6	458.7	7272.2
Max	728.3	1040.0	852 0	829.0	523.0	2120	638.0	10128.8
Min	252.0	497.1	329.1	301.4	49.4	0.0	274.4	4343.4

Table A.43 Hay and Lake System in Kzyl-Orda Oblast

	<u> </u>	MC Kzyl-	Orda	F	MC Kzyl-	Orda	Total Kzy	1-Orda (Dolast
	Hay area	No of	Volume of	Hay area	No of	Volume of	Hay area	No of	Volume of
Year	(ha)	Lakes	Lake (MCM)	(ha)	Lakes	Lake (MCM)	(ha)	Lakes	Lake (MCM)
1985	1,733	12	6.5	165	4	44.6	65,000	143	810
1986	1,080	11	3.6	300	4	31.0	65,000	83	290
1987	3,960	13	11.0	490	4	420	95,900	112	960
1988	8,500	13	17.0	1,500	4	54.0	100,300	143	1,520
1989	3,950	13	7.0	1,000	4	41.6	600,101	122	330
1990	3,600	13	8.3	1,250	4	41.6	110,000	124	423
1991	3,680	13	6.3	670	4	31.5	97,000	119	296
1992	8,500	13	5.8	670	4	35.4	91,000	124	310
1993	3,300	13	5.7	1,080	-4	34.6	90,800	126	360
1994	3,250	В	46	470	4	29.0	90,000	143	265
1995	3,805	12	6.4	805	4	25.0	69,000	108	200
1996	2,200	. 13	7.2	900	4	54.0	72,000	122	320
Average	3,963	13	7.5	775	4	39.2	87,250	120	507

Table A.44 Syr Darya Water Use in the Kzyl-Orda and South Kazakstan Oblasts (1995)

				Syr Darya	Water Us	e (MCN	1)	
S.N. Hem	Kzyl-Ord	a Oblast		South K	azakstan			Total
	Plan	Actual	Pian		Actual			
	ŀ	ĺ		Kaylkumsk	Others	Total	D/s of	Total Incl.
		·	ļ	Canal	D/S Char		Chardara	Kzylkumsk
1 Domestic and Industrial Needs								
April to August	130	130	102		110	110	240	240
September to March	130	130	68	. !	75	75	205	205
Total	260	260	170	-	185	185	445	415
2 Fishing	90	90	140	1	68	68	158	158
3 Agricultural Needs								
Irrigation	4620	3917	1593	1007	107	1114	4024	5031
Ecology Needs (Hay, Lake system	400	470	160	71	77	148	547	618
Losses in Canals	400	392		45	-	45	392	437
Total	5120	4779	1753	1123	184	1307	4963	6086
Grand Total	5770	5129	2063	1123	437	1560	5566	6689

Remark: D/S = Syr Darya River Downstream of Chardara

Source: Water Resources Committee

Table A.45 Syr Darya Water Use in Kzyl-Orda Oblast

i.	Syr Dary	ya Water Use in	Kzyl Orda Ot	dast (MCM
Item [1995	5	1996	
	Plan	Actual	Flan	Actua
Domestic and Industrial Needs				
April to August	130	130	130	120
September to March	130	130	130	123
Total	260		260	243
2 Fishing	90	90	83	83
Agricultural Needs			1	
Irrigation	4620	3917	4321	4172
Ecology Needs (Hay, Lake system)	400	471	240	396
Losses in Zhandarya and LMC	400	392	396	358
Total	5420	4779	4957	4926
Grand Total	5770	4869	5300	5252

Table A.46 Irrigation Area and Irrigation Water Use

Year		Irrigation Area (ha)	Imigatio	on Water Use	(MCM)
Γ	Shagan	Hyasov	Total Area	Shagan	llyasov	Total Use
	Farm	Fann	of Two Farms	Facin	Farm	in Two Fanns
1985	6733	6286	13019	137	123	260
1986	7013	5763	12776	107	98	205
1987	7104	5811	12915	133	118	251
1988	7295	6015	13310	130	117	247
1989	6948	5901	12849	120	106	226
1990	7139	5931	13070	138	117	255
1991	7047	5969	13016	135	113	248
1992	7378	6088	13466	132	112	244
1993	6849	5894	12743	128	122	250
1994	6560	5499	12050	131	115	246
1995	6081	4977	11058	121	101	222
1996	5205	3585	8790	120	168	228
Average	6779	5643	12422	128	113	240

Source: Water Resource Committee, Kzyl-Orda

Table A.47 Crop Area in Ilyasov Farm during Year 1985-1996

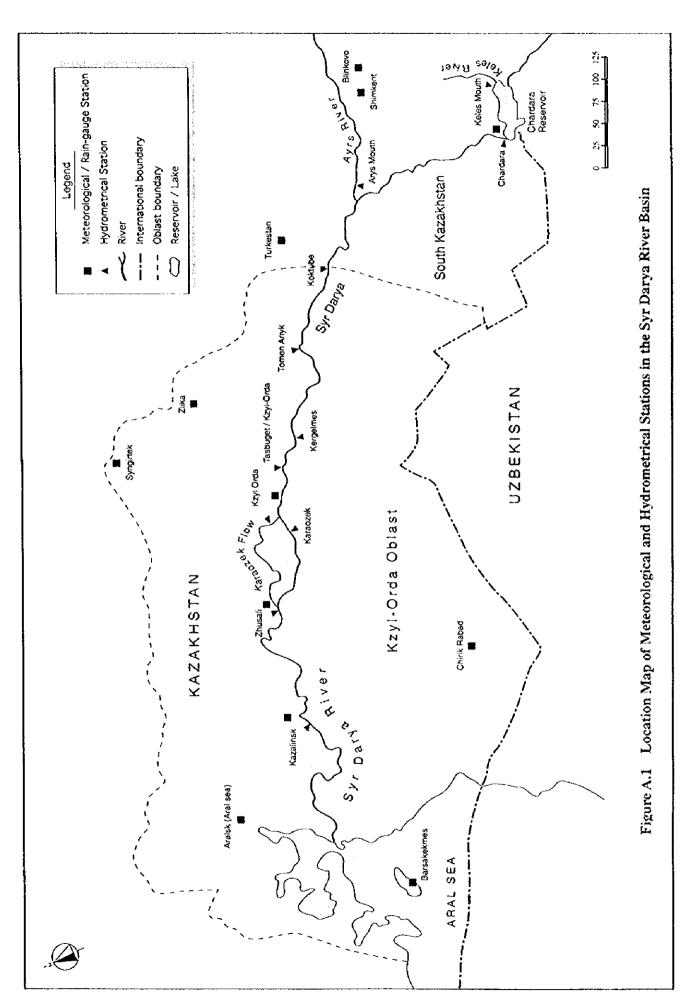
Year			Crop Area (ha)			
	Paddy	Lucerne	Spring Wheat	Winter Wheat	Maize	Others	Total
1985	3350	1980	450		360	146	6286
1986	3000	1230	860	300	240	133	5763
1987	3060	1292	620	300	370	169	5811
1988	3200	1215	547	390	390	363	6015
1989	3000	1215	500	380	488	318	5901
1990	2700	1230	700	475	500	326	5931
1991	2470	1519	700	500	500	280	5969
1992	2470	1300	800	500	800	218	6088
1993	2670	1200	800	500	500	224	5894
1994	2470	1300	400	800	400	120	5490
1995	1900	1500	400	800	250	127	4977
1996	1500	1000	500	490	100	85	3585
lverage	2649	1332	606	478	408	207	5643

Source: Water Resource Committee, Kzyl-Orda

Table A.48 Crop Area in Shagan Farm during Year 1985-1996

Year			Crop Area (h	a)			
	Paddy	Lugerne	Spring Wheat	Winter Wheat	Maize	Others	Total
1985	3750	1982	450		413	138	6733
1986	3134	1704	1030	490	289	156	7013
1987	3570	1926	630	300	370	308	7101
1988	3700	1623	712	300	410	520	7295
1989	3500	1495	620	400	462	471	6918
1990	3100	1621	800	400	600	618	7139
1991	2700	1821	800	620	600	506	7047
1992	2700	2120	800	550	800	408	7378
1993	2800	1900	760	600	500	349	6849
1994	2700	1900	500	800	400	260	6560
1995	2400	1900	560	800	200	281	6081
1996	2000	1500	500	1000	100	105	5205
verage	3030	1791	670	561	431	343	6779

Source: Water Resource Committee, Kzyl-Orda


Table A.49 Water Balance of the Syr Darya Flow

S.N.	Item	Description	Discharge Vo	tume (MCM)	Water Balance
		,	1985-1995	With the Project	(MCM)
1	Release from Chardara	Irrigation Water Use	1412	1060	-352
	to Kzylkumsk Canał				
2	Release from Chardara to Syr Darya-river	Discharge at Chardara Station	14182	14534	352
3	3 Other Inflows	Inflow from Ariys River	600	600	0
		Return Flow from Irrigation	770	770	0
		Sub Total	1370	1370	0
					0
á	Water Use	Irrigation Water Use			
		a) Kzyl-Orda Oblast	5185	3736	1449
		b)Remaing Area of South-Kazakhstan'	_205	205	0
		Sub Total	5390	3941	-1449
		Domestic Use	445	445	0
		Fishing	150	150	0
		Ecology	694	694	0
		Losses in Canals	500	500	0
		Total	7179	5730	-1449
				1	0
	5 Losses	Other Uses & Losses in Rivers	4805	4805.0	0
	6 Flow to Aral Sea	Discharge at Karateren Station**	3568	5369	1801

^{*} Irrigation area of the South Kazakhstan excluding the Kzylkumsk canal area ** Estimated Value

Figures

그는 어느 사람들에 있는 사람들이 이 말았는데 된 전 전 전 시간 사람들이 가고를 보려고 하는데, 하는데	
그리고 얼마나 하다 나는 사람들은 그 사람들은 사람들은 사람들은 사람들이 살아왔다. 그렇게 되었다.	
그는 그렇게 되었다. 그는 그 이 사람들은 이 사람들은 이 그를 하고 있다. 그는 그들은 그를 가는 것이 되었다.	
어느의 회사는 이 도달 보고 한 어떤 경험 가격되고 하는 일을 하는 사람들은 경험 그를 보고 있는데 한밤되고 되었다.	
그리는 사람들 보이지 않는 사람들은 사람들은 사람들이 가는 사람들이 되는 사람들이 되었다. 그리고 있었다.	
그 없는 그 일도 그렇게 하시는 사람은 사람들이 가는 사람들이 하지 않는 전환 경험을 받는 것은 것 같습니다. 그는 것	
그러는 그리고 하고 있는 이 물에서 이 사람들이 되는 사람들이 하는 것이 되었다. 그리고 있는 것이 되었다. 그리고 있는 것이 되었다. 그런 것이 되었다. 그런 사람들이 있는 것이 되어 있는 것이 있는 것이 되었다. 그런 하는 것이 되었다. 그런 것이 되었다. 그런 것이 되었다.	
그렇는데 지역들도 아이들만 보이 먹는 것이 그는데 그리고 있는데 얼마나 있다. 그리를 느릿하는 살을 다고 있다고	
그리지도 하고 있는데 이러, 이번 이번 내가 되는 어떤 사고 그는 말을 하는 어떤 때문을 가는 내려가 되었다.	
그러나는 문 이 그림을 하면 결혼이 하고 있었다. 이번 나는 그는 그 학생님, 그는 그 본 학생들이 가는 것은 사람들이 없는 그 학생들이 없는 것이다.	
이번 이후에 되었는 사람들은 사람들이 가는 이 사람들이 되었다. 그리는 방에 되었다면 살았다.	
그는 외에는 그는 것이 그는 말이 있는 것이라고 있다. 하는 그를 하고 말이 가운 것을 그리고 말이 불어나면 하는데	

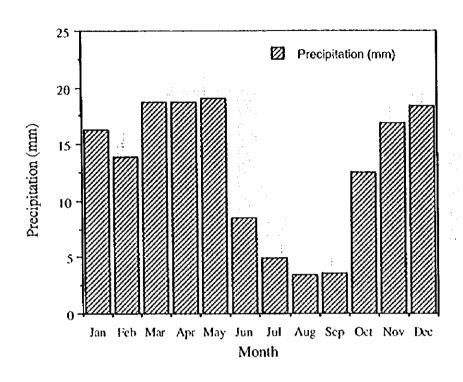


Figure A.2 Monthly Precipitation at the Kzyl-Orda Meteorological Station

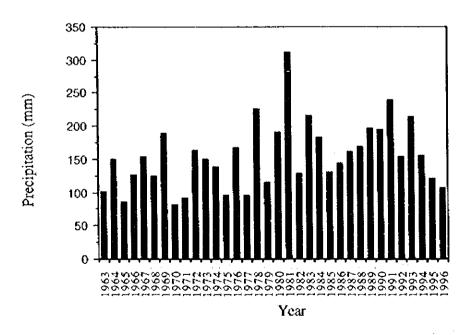


Figure A.3 Annual Precipitation at the Kzyl-Orda Meteorological Station

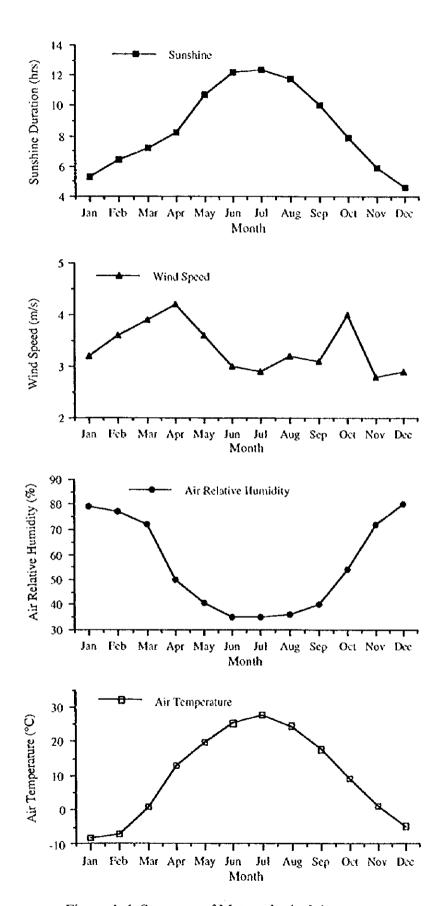


Figure A.4 Summary of Meteorological Aspect

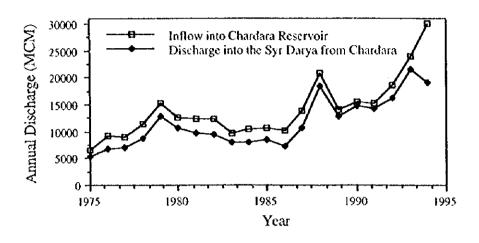


Figure A.5 Annual Discharges at the Chardara Reservoir

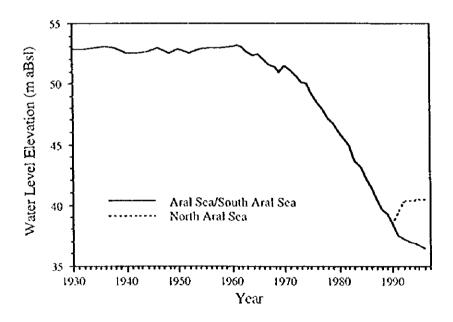


Figure A.6 Annual Water Level Of Aral Sea

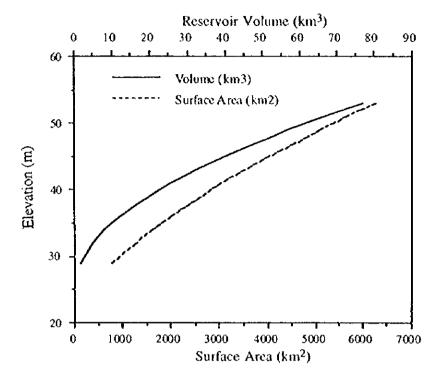


Figure A.7 Characterstic Curves of North Aral Sea

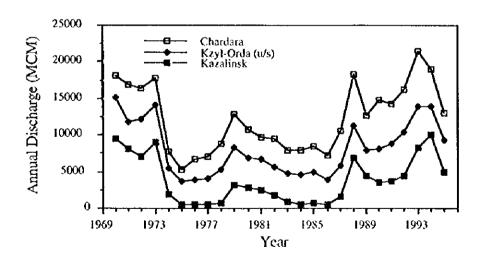


Figure A.8 Annual Discharges at the Chardara, Kzyl-Orda and Kazalinsk

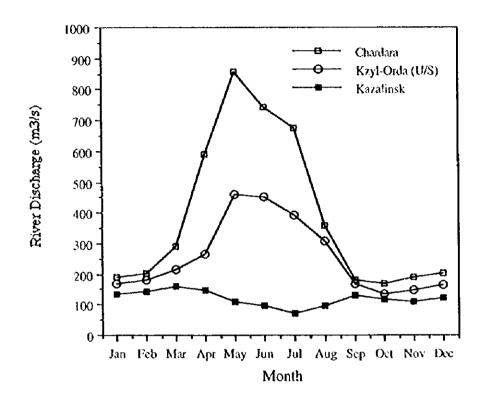
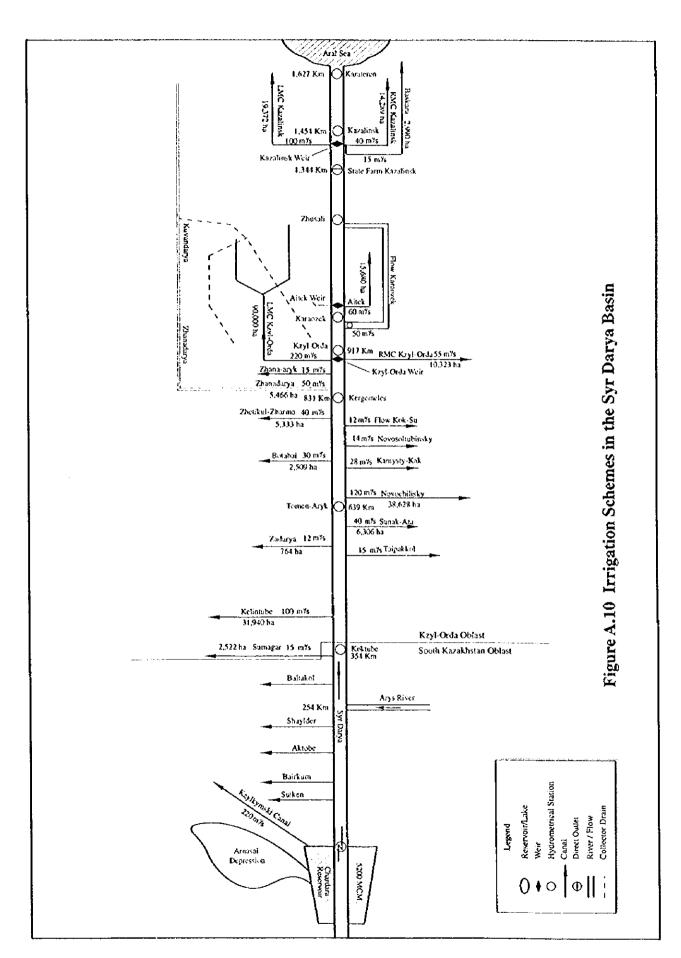



Figure A.9 Monthly Discharge in the Syr Darya

