8.2.2 Soil Investigation

ITA CONSULT Consulting Engineers Rr. Reshit Collaku Pll. 10/3/18, Tirana Phone (042) 303 46 Fax (042) 303 46

SOIL INVESTIGATION REPORT

OF THE PROPOSED SITE OF WASTEWATER TREATMENT PLANT OF TIRANA CITY

AUTHOR

Ing.Romeo Eftim

Tirana January, 1997

CONTENTS

I SCOPE OF	THE INVESTIGATION		ı
2 LOCATION	OF THE CONSTRUCTION SITE		1
3 CLIMATOI	LOGY		4
4 GEOLOGY			4
5 FIELD EXI	PLORATION AND LABORATORY TESTS		5
6 GEOTECH	NICAL CONDITIONS OF THE SITE		5
6.1 Layer 1 6.2 Layer 2 6.3 Layer 2a 6.4 Layer 3 6.5 Layer 3a 6.6 Layer 4		1 1	7 7 13 13 19
7 HYDROGE	COLOGICAL CONDITIONS	1	19
8 CONCLUS	IONS AND RECOMMENDATIONS ILLUSTRATIONS	. 2	20
DRAWING	1 Geological Cross - Section 1 - 1 2 Geological Cross - Section 2 - 2 3 Lithological and Geotechnical Description of the Borings		٠
FIGURE	1 General Location Map 2 Detailed Location Map, Scale 1:50 000 3 Plan Showing the Location of the Borings 4 Grafic of Size Distribution, Boring S1 (2,3-2,5m) 5 Grafic of Size Distribution, Boring S2 (3,3-3,5m) 6 Grafic of Size Distribution, Boring S1 (6,0-6,2m) 7 Grafic of Size Distribution, Boring S2 (4,8-5,0m)		2 3 6 9 10 15 16

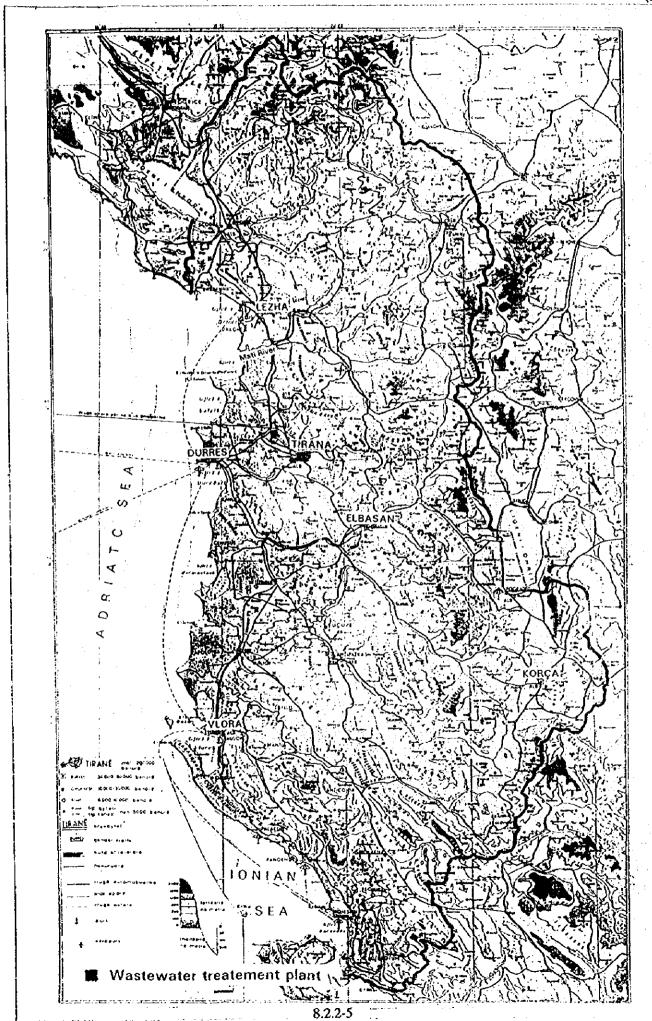
TABLE	 1 Monthly temperatures and rainfall, Tirana climatic station 2 Laboratory tests of the specimens, silty soil - Layer 2 3 The recommended representative values of geotechnical properties for Layer 2 4 Laboratory tests of the specimens of Layer 3, silty clay 5 The recommended representative values of geotechnical properties for Layer 3
РНОТО	 Lana River near the proposed wastewater treatment plant Tirana River near the proposed wastewater treatment plant The Chinese production rotary drilling machine, of Russian typ Zif-150, used for the performance of the borings The uger, 110mm diameter, used for the drilling of the lower part of the borings The cores of the boring S1 The cores of the boring S2 The outcrop of the upper and of the lowr soil layers A small temporary spring in the left bank of the Tirana River

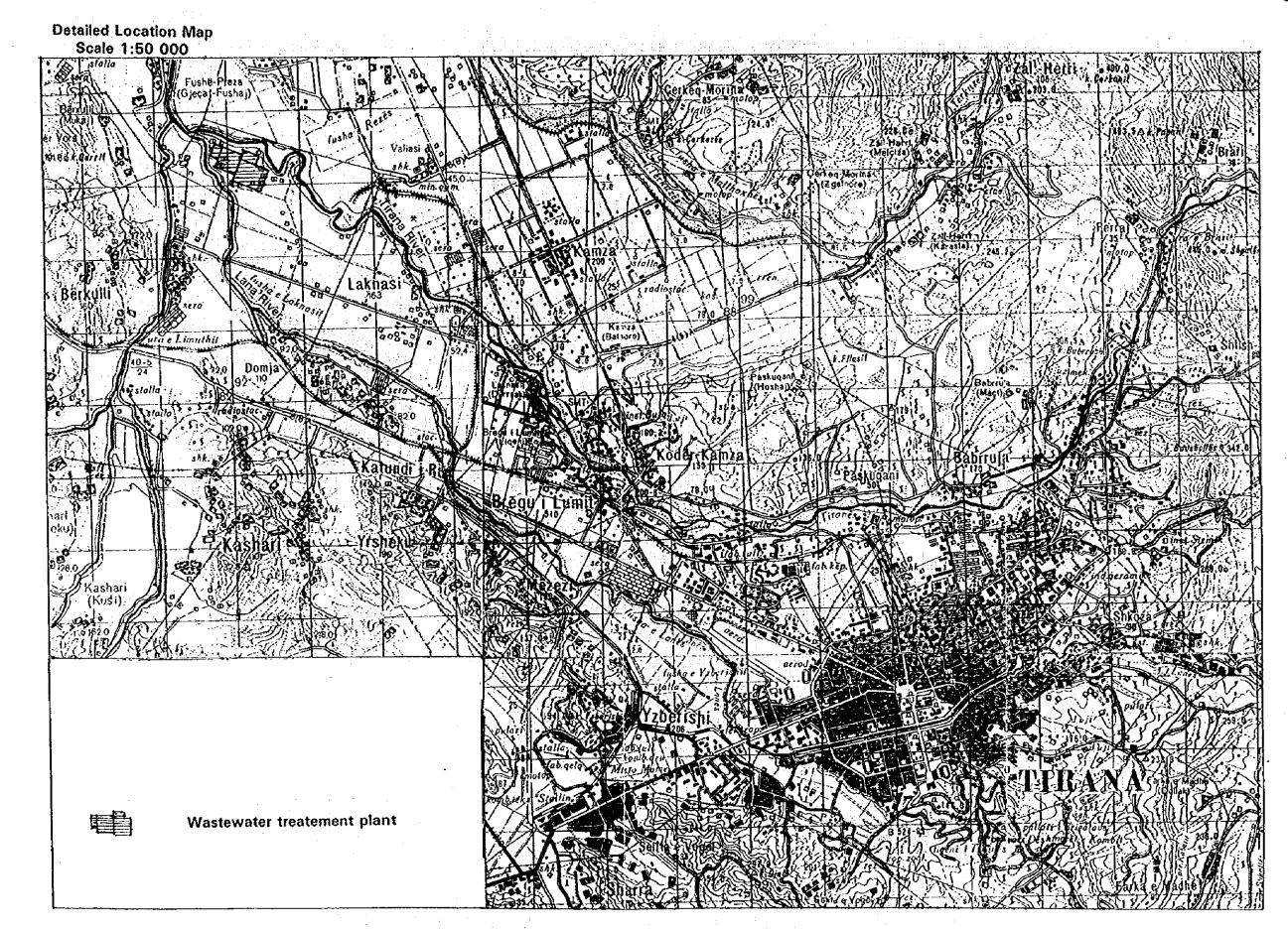
SOIL INVESTIGATION REPORT OF THE PROPOSED SITE OF WASTEWATER TREATMENT PLANT OF TIRANA CITY

1 SCOPE OF THE INVESTIGATION

This investigation is conducted by the request of NIPPON JOGESUIDO SEKKEI CO., LTD. (NJS)-Tokyo, JAPAN, according to the agreement achieved with the GEOCOMP COMPANY (GCC)-Tirana, Albania on December 1996.

For the planing and designing of foundation of facilities Tirana City Wastewater Treatment Plant data of soil conditions are necessary. In order to obtain the basic data of soil conditions, a soil investigation was conducted in which the following study subjects have been included:


- 1) Permeability
 - * Necessity of waterproof material for lagoon
 - * Availability of existing soil for waterproof
- 2) Strength of ground
 - * Stability for banking
 - * Stability for building
- 3) Stability for slope
- 4) Settlement
- 5) Groundwater level


2 LOCATION OF THE CONSTRUCTION SITE

The proposed wastewater treatment plant is located about 12km north-west to the center of Tirana City, and about 3 km south to Rinasi Airport (Fig 1). The approximative surface of this plant is about 58ha. In the Detailed Location Map (Fig 2), can be seen that the wastewater treatment plant is located just in the corner where Lana River join Tirana Rivers Tirana. The site and represents a part of the Tirana plain.

The plant is located near the Berxulli Village and this part of the plain is called Berxulli plain. Tirana plain dips gently to north-west, and while in Tirana City area the elevation is about 90 to 130m above sea level (a.s.l.), in Berxulli Village the elevation is about 40-43m a.s.l. The both channels of Tirana and Lana Rivers are about 8 to 10m deep, but while the Lana river bed is relatively narrow and filled with fine grained materials (Photo 1), the Tirana River bed is wide, good developed and filled with gravelly deposits (Photo 2).

The construction site consists a part the cultivated area of the Berxulli Village. Actually, in the area of the construction site, there are only some small one storied village buildings, but even so in some of them are verified damages like cracks of walls and settlement. These phenomenon is a consequence of the very shallow foundation of the village houses, which

usually are not more then 0,6m.

3 CLIMATOLOGY

The climate of Tirana area is temperate Mediterranean, characterized by a relatively dry and hot summer and by a wet and cold winter, the mean annual air temperature is around 15,2°C, in summer the mean is about 22°-24°C, and in winter the mean is about 6°-8°C. It is interesting to know the extreme values of the temperature reaching in summer up to 30-35°C, and in winter 0°C to 5°C.

The mean annual rainfall is around 1250mm, and about 70% of them are concentrated in a six-months period from October to March. Characteristic for Tirana area are the torrential (intensive) rains, so the maximal 24hours rainfalls reach up to 200-250mm.

Table I shows the average monthly temperature and monthly rainfall distribution according to the Tirana climatic station.

Table 1. Monthly temperatures and rainfall
Tirana climatic station

Months	Temperature, °C	Rainfall, mm
January	6,4	133
February	7,5	129
March	10,0	111
April	13,8	94
May	17,6	102
June	21,7	60
July	24,0	30
August	24,0	41
September	21,2	75
October	16,4	150
November	12,2	169
December	8,4	153

4 GEOLOGY

()

Tirana plain represents the central part of the big Tirana syncline, which is dipping in north-west direction to the Adriatic Sea. The upper part of this syncline is filled of Tortonian sediments like claystones, siltstones and sandstones. The central area of this syncline, the Tirana plain, mostly is filled of Quaternary deposits of Tirana and Lana rivers. In the area of Berxulli Village, where is situated the proposed wastewater treatment plant, is developed the first

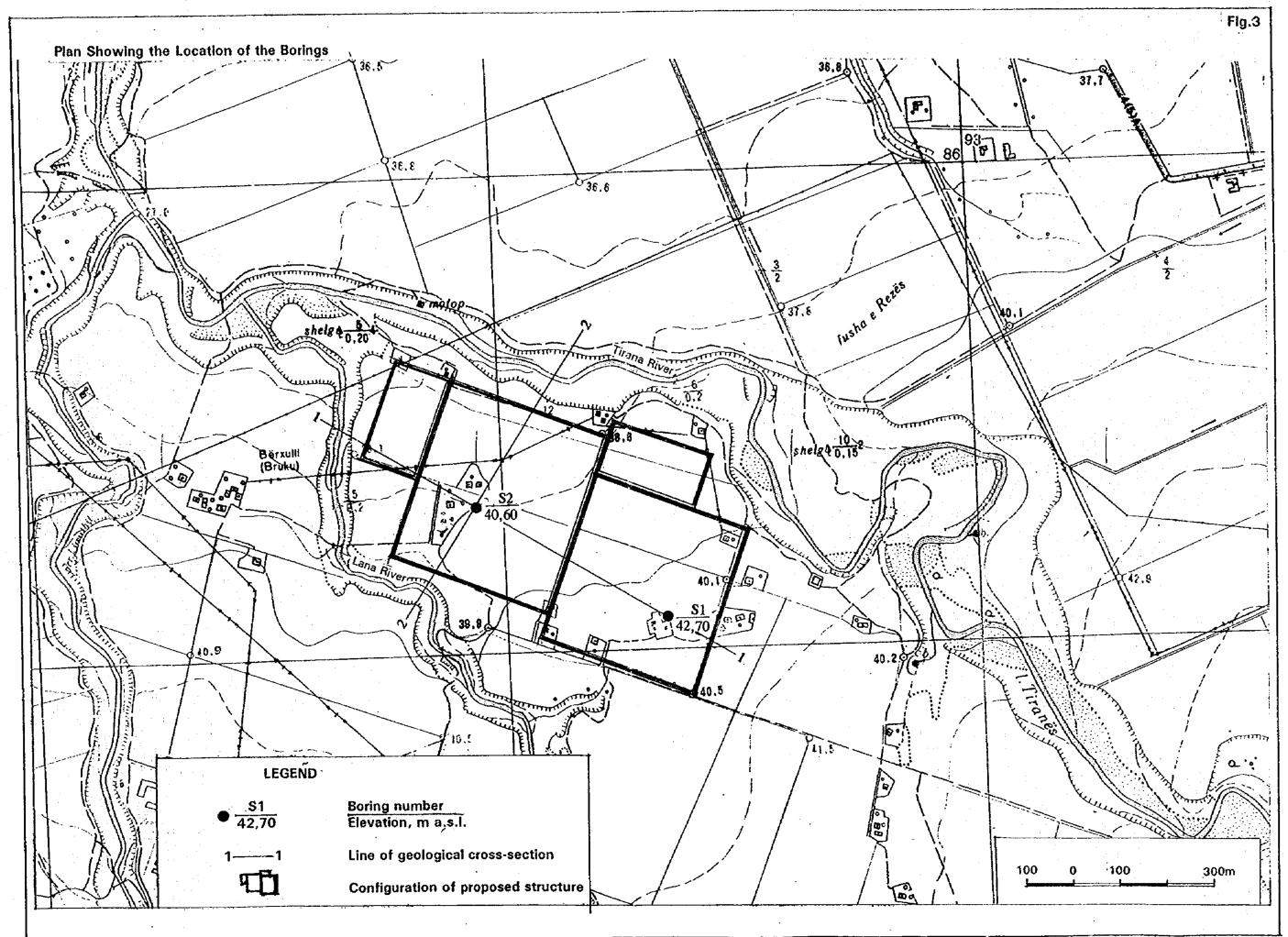
alluvional terrace of these rivers. The quaternary deposits here have a total thickness of about 45-50m, and in general are represented of two different facial layers: the upper layer is represented of fine silty and clayey materials with a total thickness of about 15-20m, while the lower facial layer is represented of some gravelly and clayey horizons with a total thickness of about 20-30m. The gravelly deposits are placed above the claystone-siltstone Tortonian deposits, representing the basement for the Quaternary deposits.

()

()

5 FIELD EXPLORATION AND LABORATORY TESTS

In the field exploration program have been included the collection of the preliminary information, reconnaissance and site investigation. Important preliminary information have been obtained from the former geological and hydrogeological investigation, among which most important are the Geological and Hydrogeological maps of Albania scale 1;200 000 and some detailed hydrogeological investigation of the studied area. Reconnaissance investigation consists in detailed observation, including the observations of the existing village constructions in the studied area, and of the Tirana and Lana rivers banks.


The site investigations is based on two boring which are situated as is shown in Fig 3. The boring are performed from 4 to 10 of January 1997. The depth of the boring is 20m, and the distance between them is 464m. Both boring, after having penetrating the upper finer facial layer, they also have taped the lower facial layer of the alluvional deposits covering the studied area. The boring have been drilled with a Chinese production rotary drilling machine of the Russian typ Zif-150 (Photo 3). The upper 5m of each drilling is performed by the traditional procedure of rotating a serrated cutting shoe, and the lower part of the boring is drilled by the auger method (Photo 4). The drilling diameter of the upper part of the boring was 127mm, and 110mm for the lower part of the boring. The recovery ratio of the cores have been 80% to 100%, and they have been described in the field. With a hand penetrometer have been performed also the hand penetration measure tests on the core samples, and the results are shown in the descriptions of the boring (Drawing 3).

Four undisturbed samples, two for each boring, have been obtained using a special sampler. The sampling depth in boring S1 was 2,3-2,5m and 6,0-6,2m, while in boring S2 was 3,3-3,5m and 4,8-5,0m. Physical-mechanical laboratory tests like grain size analysis, determination of Ateberg's limits, specific gravity and bulk density of the soil solids determinations, consolidation and shear strength tests have been performed in the Laboratory of the Engineering Geological Enterprise of Tirana.

6 GEOTECHNICAL CONDITIONS OF THE SITE

As we have already noticed in the geological section, our construction site is part of the first alluvional terrace of Tirana and Lana rivers. In these deposits are identified four main soil layers, with quite different lithology and physical-mechanical properties, which are given below in downward direction:

()

Layer 1 - Top soil (cultivated land)

Layer 2 - Silt to sandy silt, (including the Layer 2a)

Layer 3 - Silty clay, (including the Layer 3a)

Layer 4 - Gravel

The distribution and the geometry of the soil layers is shown in the geological cross-sections 1-1 (Drawing 1) and 2-2 (Drawing 2), while the lithological and geotechnical description of the soil cores is shown in the geological columns of the boring (Drawing 3).

Below are given the geotechnical characteristics of the soil layers in downward direction.

6.1 Layer 1

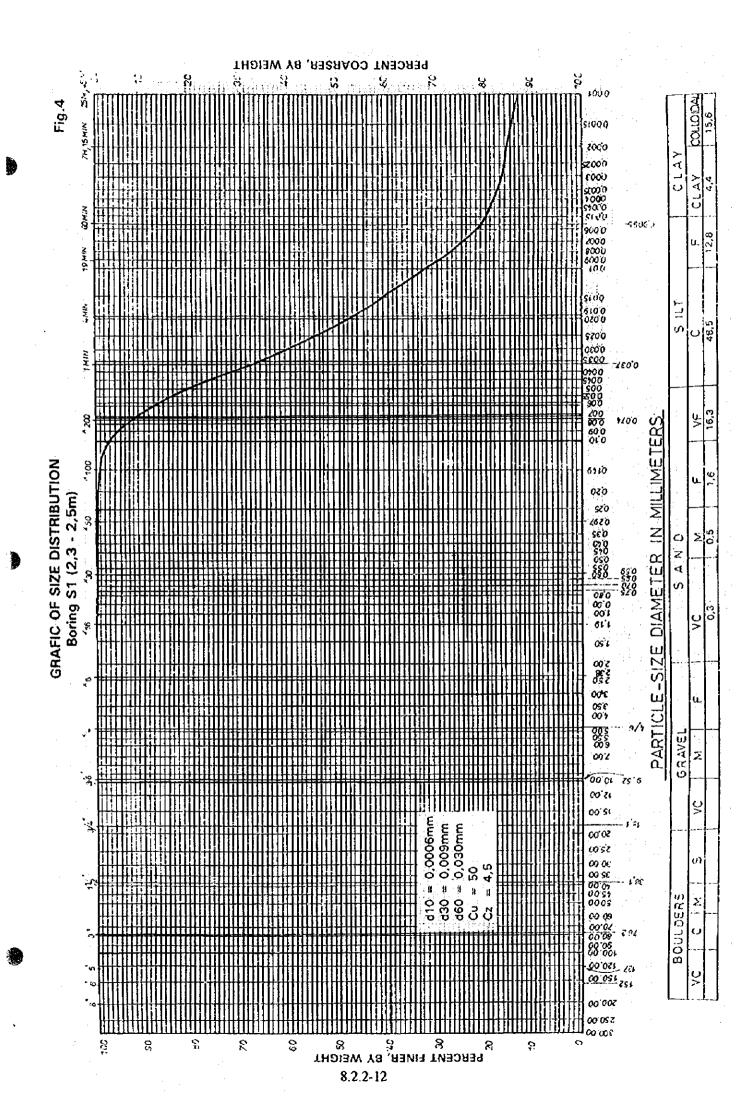
)

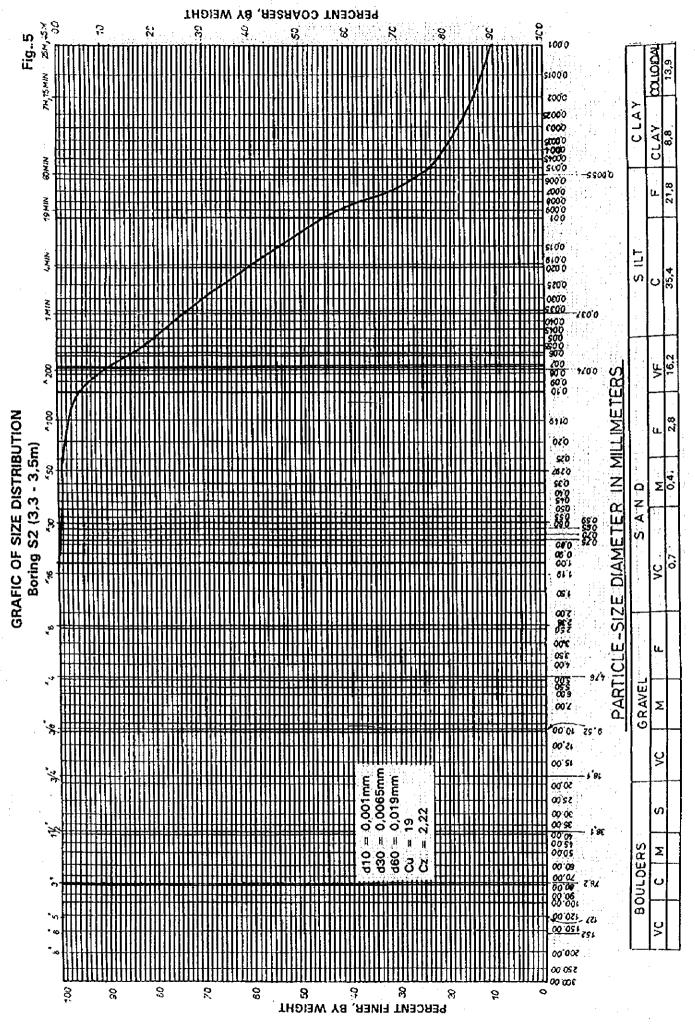
This layer represents the top soil, or the cultivated layer, covering the construction site, and having the thickness about 0,5-0,6m. It consists of clayer silty soil, yellowish to the broun colour. In this layer, plant roots and other organic remnants are present.

The cultivated land, being in direct contact with the atmospheric agents, is very sensible to them. So, during dry summer months, big dryness fissures deepening down to 0,5-0,8m below ground surface, are observed. In contrary, during the humid winter months, the expansion of the top soil layer happen. The both phenomenons demolish the structure of this layer. This is the reason that most of the small one storied village houses which have very shallow foundations are damaged by cracks of wells and settlement. Due to his small thickness and also due to the above mentioned poor geotochnical properties of the cultivated layer is not recommended as a good basement for the foundation of different constructions. This is the reason that this layer is exclude from the object of our detail investigations.

6.2 Layer 2

 \cdot


Layer 2 is extended under the cultivated layer and consists mainly of nonhomogeneous silty soil. The depth of the top of this layer is about 0,5-0,6m below the ground surface, while the his thickness is about 3,8-4,1m. This layer has a characteristic grayish yellow or bluish yellow colour, which can be observed very well in Photo 5 and 6, showing the cores of the boring \$1 and \$2.


This layer in the field is described, in boring S1 as "silt to clayey silt", "silt to sandy silt" and "silt", while in boring S2 is described as "sandy silt" and "silt" (Drawing 3). The silt is usually "very moist" to "water saturated", "soft", "medium soft" to "medium stiff". The result of the laboratory tests of two specimens from this layer are shown in Table 2.

Grain - size distribution of the Layer 2 is studied by two grain - size analyses, which graphics of size distribution are shown in Fig 4 and 5. According to these analyses the Layer 2 can be classified as silt. The clay fraction represents 13,9-15,6% of the material, the silt fraction represents 65,7-66,0% of the material, while the sand fraction represents 18,7-20,1% of the material.

Table 2. Laboratory tests of the specimens silty soil - Layer 2

Boring	S1	S2
Depth of the soil		
specimens, m	2,3-2,5	3,3-3,5
Grain size distribution	·	
in % (sieve opening, mm)		
1,0 - 0,5	0,3	0,7
0,5 - 0,25	0,5	0,4
0,25 - 0,1	1,6	2,8
0,1 - 0,05	16,3	16,2
0,05 - 0,01	48,5	35,4
0,01 - 0,005	12,8	21,8
0,005 - 0,002	4,4	8,8
0,002 - 0,001	2,8	3,6
< 0,001	12,8	10,3
Moisture content	36,0	33,1
Plasticity		
Liquid limit % - Ll	31,62	34,96
Plastic limit % - Pl	25,33	27,03
Plasticity index % - Pi	6,3	7,9
Specific gravity - Gs	2,70	2,70
Volume wight		•
Moist unit wight - 0	1,82	1,84
Dry unit weight - d	1,34	1,38
Porosity % - n	50,37	48,89
Void ratio - e	1,015	0,957
Degree of saturat S	0,96	0,93
Coef of permeab.cm/s- K	2,4*10*	6,2*10*
Compressibility		
Module of cp.kg/cm ² - E	52,46	56.02
Coef. of cp.cm ² /kg- a	0,036	0,033
Module of		
settlements mm/m - L	110,08	101,72
Shear strength		
Angle of friction $-\phi$	14°.	16°
Cohesion kg/cm ² - c	0,14	0,12

The plasticity is evaluated in the field and the Ateberg's limits are determined in the laboratory (Table 2). The average values of Ateberg's limits resulted; liquid limit - 33, plasticity limit - 26 and plasticity index - 7. According to the Maslov's Classification, which is based on the plasticity index values, the soils having the plasticity index within 7 and 10, like the Layer 2, are classified as sandy silts.

According to the Unified System of Soil Classification of Casagrande, which is based on the liquid limit and on the plasticity index values, the Layer 2 is classified as ML-OL soil which is mainly silt to silty clay.

The consistency of the clayey soils can be estimated from the following equation:

where:

•

W = natural moisture content

Pl = plastic limit Pi = plasticity index

In our case the B value of the Layer 2 is 1,46 and 0,77, classifying these layer as "very soft" or "soft".

Some other physical properties, like natural moisture content - W, specific gravity - Gs, moist unit weight - , dry unit weight - (δ), porosity - n, void ratio - e and the degree of saturation - S, are also shown in Table 2. The values of the specific gravity, moist unit weight and dry unit weight are typical for the silty soils. The values of the degree of saturation higher then 0.8 characterizes the Layer 2 as water saturated.

The filtration properties of the soil, are expressed through the coefficient of the permeability - K, which value are estimated by the well known Kosen equation:

$$K = 4000 - \frac{n^3}{1 - n^2} d_{10}^2$$

where:

n = porosity, fraction $d_{10} = effective diameter$, mm

The estimated values resulted of the order 10-4 cm/s (Table 2), being so typical values for the silty soils.

Mechanical properties. The values of the mechanical properties, like compressibility test's parameters, and also share strength tests parameters are shown in Table 2. The compressibility tests are made applying six different loads on the specimen, and the settlement readings for the specimen are taken for 24 hours.

The shear strength tests are conducted by placing the specimen in a share box that is split into two halves. A normal load is first applied to the specimen. After that, a shear force is applied to the top half of the shear box to cause failure in soil. The tests have been conducted in conditions of naturale moisture content. As can be seen I Table 2, the results of compressibility, settlements and shear strength obtained from both specimens are very comparable and can be representative for the concerned soil layer.

Concluding the presentation of the data for the Layer 2, in Table 3 are shown the recommended representative values of the geotechnical properties for Layer 2. In this table is included also the value of the allowable capacity of the soil. The value of this parameter is determined according to the field measurements with the hand penetrometer, shown in Drawing 3, and according to the standard values recommended from the literature of the speciality.

Table 3. The recommended representative values of geotechnical properties for Layer 2

Grain size distribution		
in % (sieve opening, m	<u>ım)</u>	
Clay		14 %
Silt		60 %
Sand		20 %
Plasticity		
Liquid limit	- Ll	33 %
Plastic limit	- Pl	26 %
Plasticity index	- Pi	7
Moisture content	- W	34,56 %
Specific gravity	- Gs	2,70 gr/cm ³
Moist unit wight	- <u>A</u>	1,83 gr/cm ³
Dry unit weight	- δ	1,36 gr/cm ³
Porosity	- n	49,63 %
Void ratio	- e	0,985
Degree of saturat.	- S	0,945
Coef of permeab.cm/s	s - K	5*10 ⁴ cm/s
Compressibility		
Module of compres.	- E	55,0 kg/cm ²
Coef. of compres.	- a	0,035 cm ² /kg
Module of		
settlements	- L	105,0 mm/m
Shear strength		•
Angle of friction	- φ	15°
Cohesion	- c	0,13 kg/cm ²
Allowable capacity	- σ	1,4 kg/cm ²

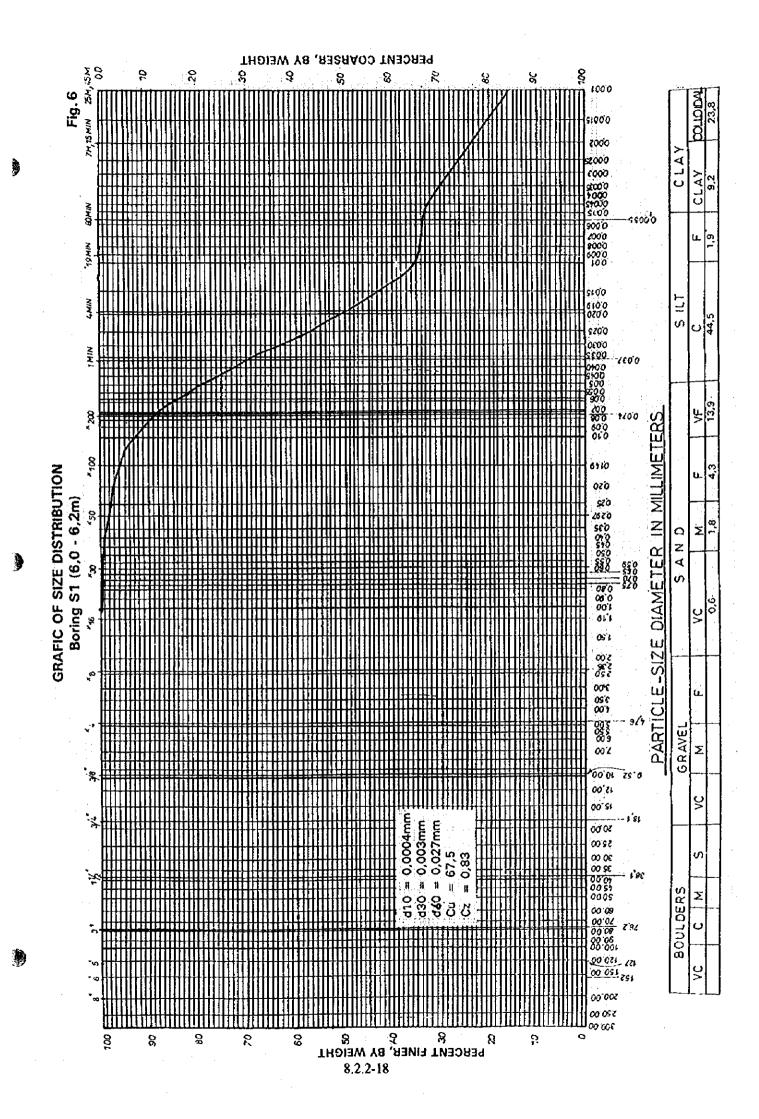
6.3 Layer 2a

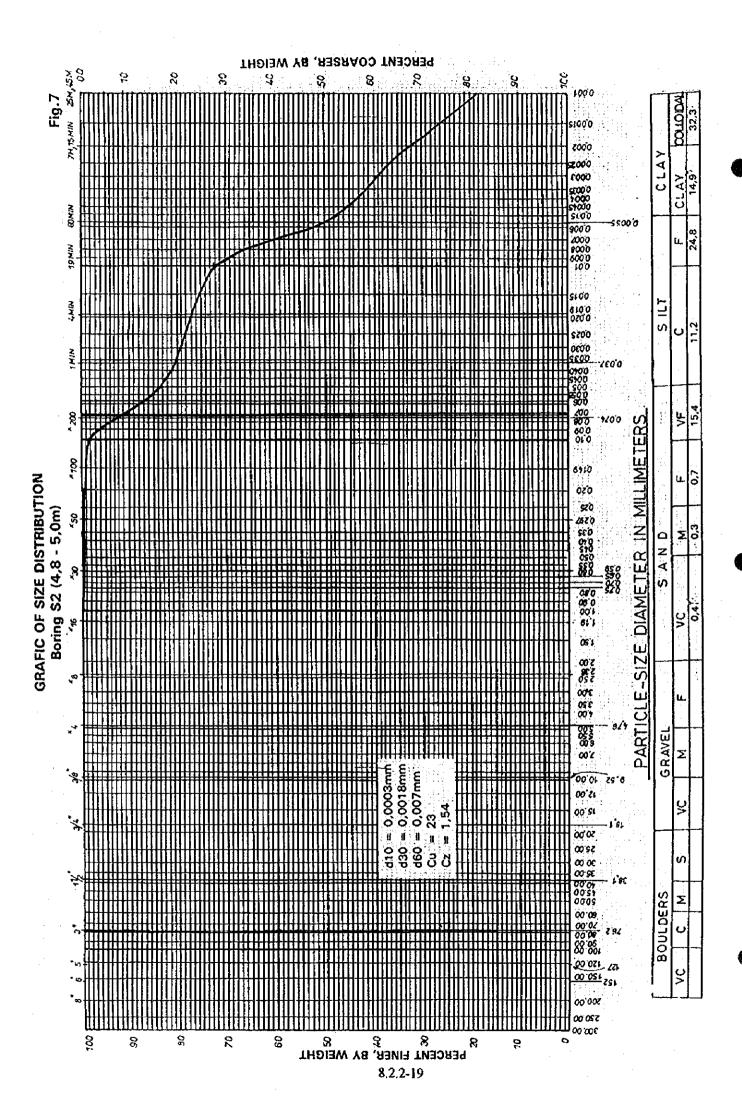
Layer 2a represents the thin sand layers which are found inside the above described silts soils (Layer 2). In both boring the sandy layer is taped in different depths; in boring S1 it is taped in the depth 4,2-4,7m b.g.s, while in boring S2 it is taped in the depth 2,3-2,7m b.g.s. So the thickness of the this layer results 0,4-0,5m. The sandy layer is observed to outcrop in right bank of the Lana River, in the western periphery of the wastewater treatment plant. It seams that this layer has more the character of separate lenses than of a real layer uniformly developed throughout the construction site.

The sands are greyish yellow, medium grained, well sorted and water saturated. The geotechnical properties of sandy layer are not studied with laboratory analyses. It is believed that this layer do not change sensibly the mechanical characteristics of the Layer 2, because of his small thickness, quite different is the problem of the filtration capacity which for the sandy layer is expected to by much more higher than these of the silts of Layer 2. During the future detailed studies of the wastewater treatment plant site must be clear up better the geometry and geotechnical properties of the sandy layer (or layers).

6.4 Layer 3

Layer 2 extends over all the construction site and everywhere is found to be below the Layer 2. It consists of homogenous silty clays, which in the upper part of the geological section, have a characteristic bluish colour, while in the lower part of this section they have a bluish yellow colour. The outcrops of this layer can be observed in the left bank of the Tirana River (Photo 7), while in the banks of Lana River this layer is covered by the cultivated land. In Photo 7 is shown a outcrop of Layer 3 (bluish) and the overlying silty layer (yellowish). The characteristic colour of this layer can be observed also in Photo 5 and 6, showing the cores of the boring S1 and S2.


In the drawings 1 and 2, the lower part of the clays is shown as a separate Layer 3a. The depth of the top of this layer is taped, 4,3m and 4,7m b.g.s respectively in the boring S1 and S2. In the field this layer is described as "silty clay", "medium stiff", "very plastic" and "water saturated" (Drawing 3). For the characterization of this layer have been obtained two specimens, but one of them resulted disturbed during the transport. The results of the laboratory tests of the both specimens of this layer are shown in Table 4.


Grain - size distribution of the Layer 3 is studied by two grain - size analyses, which graphics of size distribution are shown in Fig 6 and 7. The clay fraction represents in average 23% of the material, the solt fraction represents in average 58,5% of the material and the sand fraction represents 18,5% of the material. According to this analyses the Layer 3 can be classified as silty clay.

The plasticity of the Layer 3 in the field is evaluated as "very plastic", while the consistency is evaluated as "medium stiff". The average values of the Ateberg's limits as determined in the laboratory results:

Table 4. Laboratory tests of the specimens of Layer 3 - silty clay

Boring Depth of the soil		S1		S2
specimens, in		6,0-6,2		4,8-5,0
Grain size distribution				
in % (sieve opening, mm)				
1,0 - 0,5		0,6		0,4
0,5 - 0,25		1,8		0,3
0,25 - 0,1		4,3		0,7
0,1 0,05	•	13,9		15,4
0,05 - 0,01	:	44,5		11,2
0,01 - 0,005	•	1,9	•	24,8
0,005 - 0,002		9,2	• • • •	14,9
0,002 - 0,001 < 0,001		7,3 16,5		13,7 18,6
Moisture content				34,9
Plasticity	e e			. •
Liquid limit, %	- Ll	28,05		40,14
Plastic limit, %	- Pl	16,04		25,45
Plasticity index, %	- Pi	12,0		14,7
Specific gravity, gr/cm³	- Gs			2,72
Volume wight				
Moist unit wight, gr/cm ³	- Δ			1,86
Dry unit weight, gr/cm ³	- δ			1,38
Porosity, %	- n			49,26
Void ratio, fract.	- e			0,971
Degree of saturat. fract.	- S			0,98
Coef of permeab. cm/s	- K			5,7*105
Compressibility				
Module of comp. kg/cm ²	- E			48,68
Coef. of comp. cm ² /kg Module of	- a			0,038
settlements, mm/m Shear strength	- L			119,28
Angle of friction, °	- φ			12°
Cohesion, kg/cm ²	- φ - c	·		0,15

Liquid limit	- LI	34,1 %
Plastic limit	- Pl	20,7 %
Plasticity index	- Pi	13 7 %

According to the Maslov's Classification, the soils having the plasticity index within 10 and 14, like the Layer 3, are classified as silty clays.

According to the Unified System of Soil Classification, the Layer 3 in boring S1 is classified as CL soil, which is mainly silty clay, while in boring S2 is classified as ML-OL, which is mainly silt to silty clay.

The "B" value, for the evaluation of the consistency, estimated from the above-mentioned equation, resulted 0,64, classifying the Layer 3 as "medium stiff".

Some other physical properties, like natural moisture content - W, specific gravity - Gs, moist unit weight - , dry unit weight - δ , porosity - n, void ratio - e and the degree of the saturation - S, which values are shown in Table 4, results practically like the corresponding values of the Layer 2.

The filtration properties of the Layer 3, exprsed through the coefficient of the permeability - K, estimated by the Kosen equation resulted 5,7*10°cm/s, which is one order smaller then the corresponding value of the Layer 2.

The mechanical properties of the Layer 3, shown also in Table 4, resulted with very small differences comparing with the values of the Layer 2. The module of compressibility is a little smaller in the Layer 3, but the coefficient of the compressibility and the settlement of the Layer 3 are a little bigger then in Layer 2. With very small differences resulted also the angle of the friction and the cohesion of the layers 2 and 3. Because the Layer 3 is more clayey, have smaller angle of friction and bigger cohesion then the Layer 2.

In Table 5 are shown the recommended representative values of the geotechnical properties for the Layer 3.

Table 5. The recommended representative values of geotechnical properties for Layer 3

Grain size distribution in % (sieve opening, mm)		
Clay		23,0 %
Silt		58,5 %
Sand		18,5 %
Ganu		10,5 %
Plasticity		•
Liquid limit,	- LI	34,1 %
Plastic limit,	- Pl	20,7 %
Plasticity index,	- Pi	13,4
Moisture content	- W	33,1 %
Volume wight	•	
Specific gravity,	- Gs	2,72 gr/cm ³
Moist unit wight,	- Δ	1,86 gr/cm ³
Dry unit weight,	- δ	1,38 gr/cm ³
Porosity,	- n	49,26 %
Void ratio,	- e	0,971
Degree of saturation,	- S	0,98
Coef of permeability,	- K	5,7*10 ⁵ cm/s
Compressibility		and the second s
Module of compressibility,	- E	48,68 kg/cm ²
Coef. of compressibility,	- a	0,038 cm ² /kg
Module of		C
settlements,	- L	119,28 mm/m
Shear strength		
Angle of friction,	- φ	12°
Cohesion,	- c	0,15 kg/cm ²
Allowable capacity,	- σ	1,4 kg/cm ²

6.5 Layer 3a

Layer 3a represents the lower part of the silty clay section which has bluish yellow colour. This layer is taped in both boring; in boring S1 it is taped in the depth 10,0-16,8m b.g.s, while in the boring S2 is taped in the depth 10,3-18,5m b.g.s. The thickness of the Layer 3a resulted 8,5-9,0m.

Layer 3a consists also of silty clays, which by the field description are determined as "medium stiff", "plastic", and "water saturated". From the measurements with hand penetrometres results that the allowable capacity of Layer 3a is about 1,6-1,8 kg/cm². The other physical - mechanical parameters of the Layer 3a are expected to be practically the same as those of the Layer 3.

6.6 Layer 4

Layer 4 represents the gravelly deposits of the first terrace of Tirana and Lana rivers. The gravelly deposits are taped, by the boring \$1 in the depth 16,8m b.g.s., and by the boring \$2 in the depth 18,5m b.g.s. According to many groundwater wells drilled in the area of Berxulli village the gravelly deposits have a total thickness of about 20-30m. These deposits represent a very good aquifer of subartesian character. The piezometric surface of the gravelly aquifer in the our boring resulted about 10m b.g.s.

7 HYDROGEOLOGICAL CONDITIONS

In the area of the proposed wastewater treatment plant of Tirana, there are two types of groundwater; soil water of the upper silty covering layers (layers 1, 2 and 2a), and the real groundwater of the gravelly aquifer.

The soil water, which is stored in the small pores of the silty layers, have a temporary groundwater table. During the humid season of the year this table is just near the ground surface, but during the dry season this level is going down and even disappearing. The soil water of the silty layers is drained in three ways; by the evapotranspiration, by the natural drainage to the Tirana and Lana rivers, and by the exploitation from the local village people.

From the natural drainage in some cases are created small temporary springs. A such a temporary spring located near the Tirana River bed is shown in Photo 8. The very small groundwater resources of the silty layer is used for the water supply of the village by means of dug wells about 5-6m deep. In Photo 8 is shown a dug well located near the boring S1. During the dry season, the dug wells of the studied area become dry.

The real ground water is connected with the gravelly aquifer (Layer 4). This aquifer has a subartesian character. The piezometric surface of this aquifer is located about 10m b.g.s. (January 1997), and is not varying so much during the different seasons. The yearly amplitude of the piezometric surface variation is about 2m.

In the existing wells around the construction site have been recorded the following main hydrogeological characteristics:

Permeability 50 - 100 m/day
Transmissibility 500 - 100 m²/day
Specific capacity of the wells 5 - 12 l/s/m

The groundwater resources of the gravelly aquifer are considerable and are used widely for the Tirana City water supply, and also for the village water supply.

8 CONCLUSIONS AND RECOMMENDATIONS

1) The construction site of the proposed wastewater treatment plant of Tirana City is placed on the alluvional deposits of the first terrace of Tirana and Lana rivers. The site consists of four soil layers with different lithology and geotechnical properties. These layers in downward direction are as following:

Layer 1 Top soil (cultivated land), thicknes 0,5-0,6 m;

Layer 2 Silt to clayey silt (with sand lense), thicknes 3,8-4,1 m;

Layer 3 Silty clay, thicknes 12-14 m;

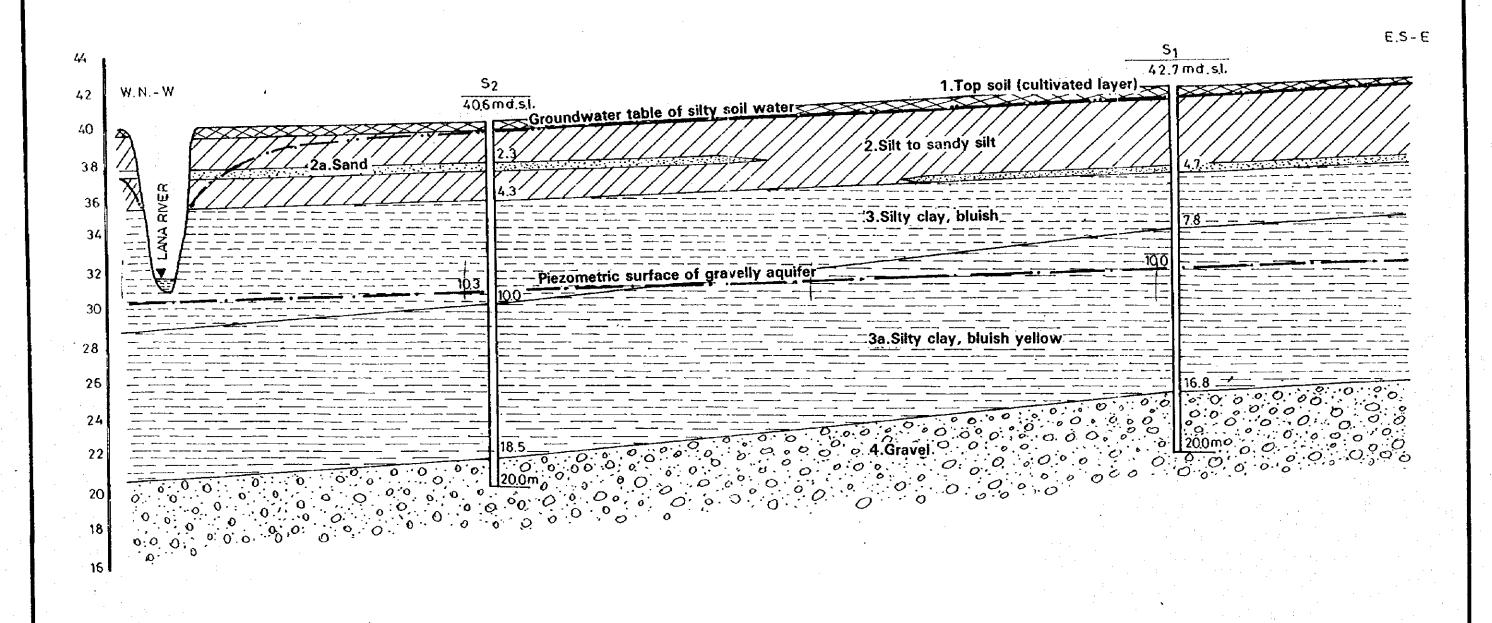
Layer 4 Gravel, 20-30 m.

- 2) The wastewater treatement plant will be constructed above the deposits of the Layer 2, but it is directly implicated also the underlying Layer 3. The representative values of the geotechnical properties of the layer 2 and 3 are given respectively in Table 3 and 5.
- 3) The permeability of the layer 2 is of the order 10⁴ cm/s, whily these of the Layer 3 is of the order 10⁵ cm/s.
- 4) There are recomanded two possibilities for a secure construction of the lagoon; first, to apply a thin concrete cover of the lagoon, and second, to compress the silty soil laying the floor of the lagoon and of the bankings. The thickness of the compressed silty soil must by about 0.6m. The compression of the soil must by in 20 cm thick layers. The compression would be considered realised if the silty soil would obtain the following properties:

* Moisture content not more then 30 % 25-26%

- * Dray unit wight not less 1,50 gr/cm3
- 5) The slope of the banking is recomanded to be:

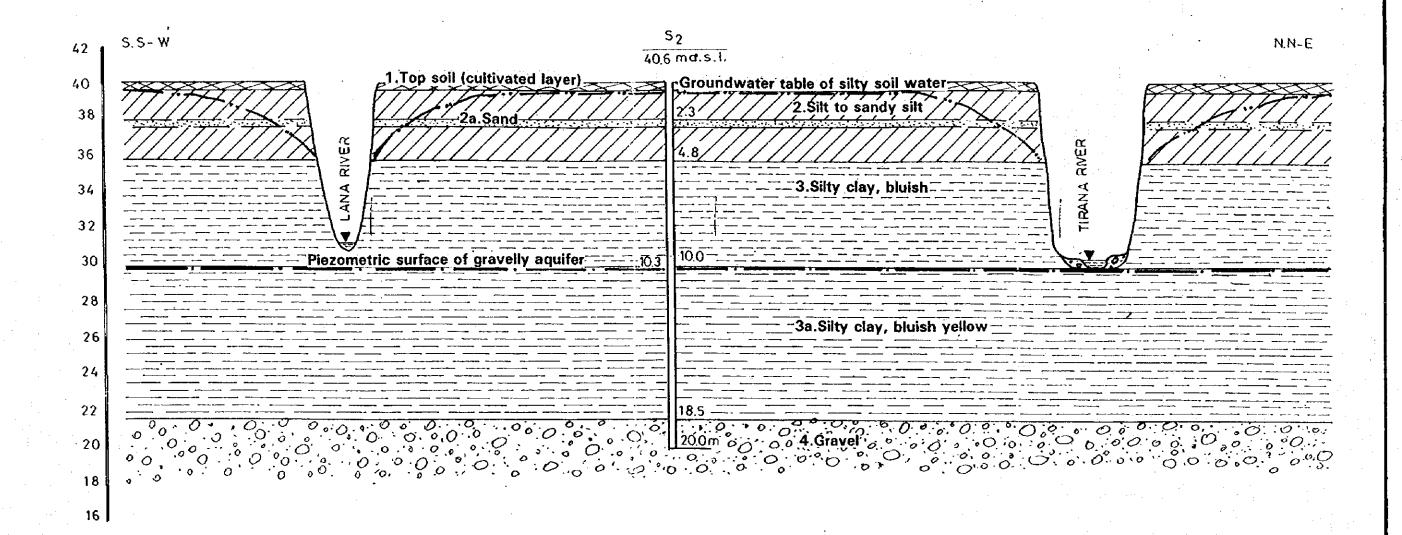
* In case of concrete cover, 1:1


- * In case of compresed silty soil, 1:2
- 6) The buildings foundation must be deeper then 1m and must rest on the silty soil of the Layer 2. The allowable capacity of the silty soil is evaluated to be 1,4 kg/cm².
 - 7) The water supply, necessary under construction and after completion of the treatment

plant, can be secured by one (or two) drilling wells about 30m deep, provided with the electric immersing pumps.

8) The above mentioned recomandations must be considered as preliminary; it is necessary to provide a detailed soil investigation for a final and more accurate evaluatation of the construction site.

GEOLOGICAL CROSS-SECTION 1-1


HORIZONTAL SCALE 1:2500 VERTICAL SCALE 1: 200

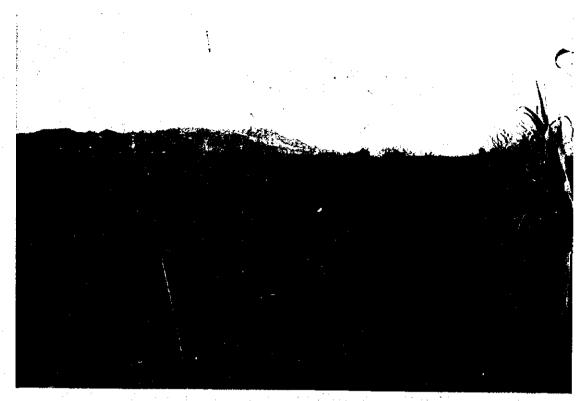
GEOLOGICAL CROSS - SECTION 2-2

HORIZONTAL SCALE 1:2500 VERTICAL SCALE 1:200

8.2.2-26

LITHOLOGICAL AND GEOTECHNICAL DESCRIPTION OF THE BORINGS

D	ATA	OF B	ORING: JAN	UARY	04 ⊧ 06, 1997			_
	GEODGICAL	DEPTHFROM SURFACE, m	BORING Nr. S ₁	THICKNESS OF LAYER, m	SOIL DESCRIPTION	SOIL SAMPLE AND NUMBER	GWLEVEL m.b.g.s.	DATE
Γ		0.6	$\otimes\!\!\otimes\!\!\otimes\!\!\!\otimes$	0.6	CLAEVE SILT, YELLOWISH, TOP SOIL.		▼ 0.5	
	Q4 INI	_				s 1·1	10.	07 JANUARY 1997
				1				
		16.8		9.0		-{	Н	
			0 0 0	0	GRAVEL, POORLY SORTED, GREISH WATER SATURATED			
. :		20.0	0.0.0	3.2				


X = 45 85 315 Y = 43 91 935 Z = 42.7m

DATA	OF I	BORING: JA	NUAR'	7 07÷09, 1997			
GEOLOGICAL INDEX	DEPTH FROM SURFACE,m	BORING Nr.S ₂	THICKNESS OF LAYER,m	SOIL DESCRITION	SOIL SAMPLE AND NUMBER	G.W.LEVEL m.b.g.s.	DATE
	0.5	$\times\!\!\times\!\!\times\!\!\times$	0.5	CLAEVE SILT. YELLOWISH, TOP SOIL		₩0.4	
	1.2 2.3		0.7	SANDY SILT, BLUEISH YELLOW, WITH ORGANE MATTER AND IRON OXIDE, MOISTY, MEDIUM STITE G= 2.0 kg/cm ²			
	2.7		1.1 0.4	SILT, GREISH YELLOW, WATER SATURATED, SOFT, PLASTIC 6:1.4Kg/cm²			
	4.3		1.6	OTATICATIA CITSATOTATES	m S ₂ -1		
				SILT, CREISH YELLOW, WATER SATURATED, SOFT TO VERY SOFT, PLASTIC G=1.4+1.6Kg/cm ²	■S ₂ ~2		
				SILTY CLAYBLUEISH, MEDIUM STIFF, VERY PLASTIC, WATER SATURATED G =1.4+1.6Kg/cm ²	:		۲ 1997
Q ₄	10.0		5 <i>.7</i>	3 - 1.4 · 1.019/01		10.3	11 JANUAR
				SILTY CLAY BLUEISH YELLOW, MEDIUM STIFF, PLASTIC, WATER SATURATED G=1.6+1.8Kg cm ²			
			-	G 2 1,04 1,019 cm			
			-				
1							
	18.5	0.000	8.5	GRAVEL, POORLY SORTED, GREISH WATER SATURATED.			
	200	0 00	1.5	.	1	1	

8.2.2-27

X = 45 85 420 Y = 43 92 385 Z = 40.6m PROJECT:-WASTEWATER TREATMENT
PLANT, TIRANA

COMPANY ITA CONSULT LTD - TIRANA
AUTHOR ROMEO EFTIMI LIFE DRAWING
DRAWER LEJLA VATHI OMB: No. 3

)

)

Photo 1. Lana River near the proposed wastewater treatment plant. The river bed is about 8m deep, and is filled with fine grained materials.

Photo 2. Tirana River near the proposed wastewater treatment plant. The river bed is about 9-10m deep, and is filled with gravelly deposits.

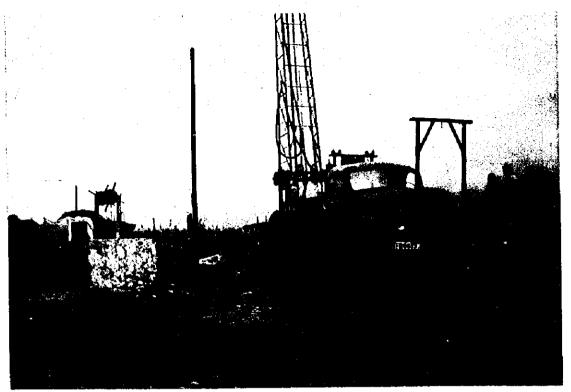


Photo 3. The Chinese production rotary drilling machine, of Russian typ Zif-150, used for the performance of the borings

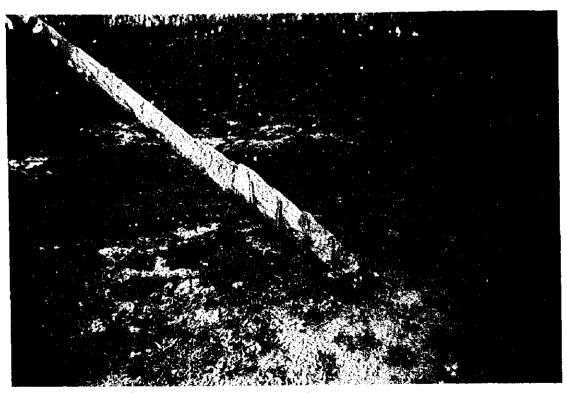


Photo 4. The auger, 110mm diameter, used for the drilling of the lower part of the borings.

()

Photo 5. The cores of the boring S1. Two different layers can be observed, the upper silty layer, greish yellow on the left, and the lower silty clay layer, bluish on the right.

Photo 6. The cores of the boring S2. Two different layers can be observed, the upper silty layer, greish yellow on the left, and the lower silty clay layer, bluish, on the center and on the right.

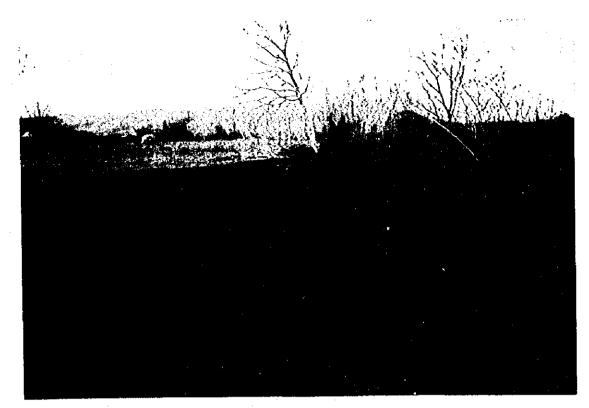


Photo 7. The outcrop of the upper silty layer, greish yellow, and of the lower silty clayey layer, bluish.

(

Photo 8. A small temporary spring in the left bank of Tirana River, in the northern periphery of the proposed wastewater treatment plant

8.2.3 Capacity Calculation

1. Design Condition

1.1 Basic Items

Name Tirane Wastewater Treatment Plant

Land Area 40.0 ha
Elevation 43.5 m

Collection System Combined System

Treatment Method

Wastewater Dual Power Acrated Lagoon
Sludge Pond Accumulation + Drying

Effluent Point Water Level 35.0 m

Lowest Lagoon Temperature 9.0 °C (January)

1.2 Design Wastewater Quantity

Flow		m³/day	m³/hour	m³/min	m³/sec
Daily Average	Qd-ave	106,000	4,417	73.611	1.227
Daily Maxmum	Qd-max	106,000	4,417	73.611	1.227
Hourly Maximum(Dry)	Qhd-max	232,000	9,667	161.111	2.685
Hourly Maximum(Wet)	Qhw-max	624,000	26,000	433.333	7.222

1.3 Design Wastewater Quality

)

Item	Influent	Effluent	Removal	Remarks
	(mg/l)	(mg/l)	Ratio(%)	
BOD ₅	200	25	87.5	
SS	200	35	82.5	150mg/l ¹⁾

¹⁾ Discharges from lagooning shall not exceed 150 mg/l.

1.4 Number of Unit and Capacity of Treatment Facilities


Facilities	Total	Duty	Stand-by	Capacity
Grit Chamber/Screen	8	6	2	Qhw-max
Complete Mix Lagoon	8	8	0	Qd-ave
Partial Mix Lagoon	24	22	2	Qd-ave
Storm Water Settling Tank	8	6	2	Qhw-max - Qhdmax
Disinfection Tank	2	2	0	Qhw-max

1.5 Design Criteria for Dual Power Aerated Lagoon

	<u>ITEMS</u>	UNIT	Formula or Value	<u>Application</u>
(1)	Grit Chamber			
	Water Surface Load	m ³ /m ² /day	> 1800	1,800
	Average Velocity	m/sec	> 0.3	0.3
(2)	Complete Mixing Aerated Lagor	on		
	Retention Time	day	1.5 - 2.5	1.75
	Water Depth	m	3.0 - 4.0	3.0
	Power Requirement for Mixing	W/m^3	> 6.0	6.0

(3)	Partial Mixing Aerated Lagoon			
	Retention Time	day	1.5 - 2.0	2.0
	Water Depth	m	2.0 - 4.0	4.0
	Power Requirement for Mixing	W/m ³	> 1.0	1.0
	Number of Cell	Cell/Basin	1 - 3	3
(4)	Storm Water Settling Tank			
	Water Depth	m	1.5 -3.0	1.5
	Retention Time	hour	> 0.5	0.5
	Water Surface Load	m³/m²/day	75 - 150	150.0
(5)	Disinfection Tank			
	Retention Time	min.	> 15	15.0
	Dosage	mg/l	2.0 - 4.0	3.0

1.6 Flow Diagramm

2. Capacity Calculation

2.1 Grit Chamber and Screen Type

Туре	•	Paralici Flow Type			
Design Flow	Qhw-max =	$624,000 \text{ m}^3/\text{day} =$:	7.22 m ³ /sec	
Water Surface load		$1,800 \text{ m}^3/\text{m}^2/\text{da}$	ıy		
Required Surface Area	A =	346.7 m ²			÷
Nos. of Basin (total)	BNS =	8 basins	-		
Nos. of Basin (stand-by)	BNT =	2 basins			
Average Velocity	V =	0.30 m/sec			
Depth	D =	1.50 m			
Width	W =	Qhw-max/(VxD)	/(B	NT - BNS)	
	=	2.67 m	`	,	
	say =	3.00 m			
Length	L =	A/D/(BNT-BNS)		
	=	19.26 m			
	say =	22.00 m			
Dimension	W =	3.00 m			
	L=	22.00 m			
	D =	1.50 m			
Nos. of Basin	BNS =	8 basins			•
	BNT =	2 basins		***	
(Check)					
Water Surface load	1,576	m ³ /m ² /day	< 1	,800 m ³ /m ² /day	ок
Average Velocity	•			0.30 m/sec	OK
•		•			

2.2 Complete Mixing Aerated Lagoon

Туре		Rectangular Type	
Design Flow Influent BOD Quality	Qd-ave =	$106,000 \text{ m}^3/\text{day} = 200 \text{ mg/l}$	1.23 m ³ /sec
Retention Time	T1 =	1.75 day	• •
Required Volume	V =	185,500 m ³	A A Company of the Co
Nos. of Basin	BN =	8 basins	
Volume per Basin	VB =	23,188 m ³ /basin	
Depth	D =	3.00 m	
Area per Basin	A =	7,729 m ²	
Width	. W =	75.00 m	
Length	L =	A/W	
	<u>.=</u>	103.06 m	
	say =	104.00 m	
Dimension	W =	75.00 m	
	. L=	104.00 m	
	D =	3.00 m	
Nos. of Basin	BNS =	8 basins	•
Maximum Oxygen Deman	d Rate =	4.16 * 10-5 * r * Q * S	So
	=	1,323 kg/h	
	where,	r = 1.5	
Aeration Power Level	=	R02/N	• •
	==	696 kW	

```
or, p = T1 * Q * up / 1000
                                                         1,113 kW
                                                =
                                                                      6.00 W/m<sup>3</sup>
                                           where.
                                                           up=
                                                         1,120 kW
                                          say
        (Check)
                                                                               1.75 day
                                                                                                 OK
                                              1.77 day
        Retention Time
2.3 Partial Mixing Aerated Lagoon
                                                   Rectangular Type
        Type
                                                                               1.23 m<sup>3</sup>/sec
                                                       106,000 \text{ m}^3/\text{day} =
                                        Qd-ave =
        Design Flow
                                                           1.50 day (before cleaning)
         Retention Time
                                             T1 =
                                                           2.00 day (after cleaning)
                                             T2 =
         Retention Time
                                              V ≃
                                                       212,000 m<sup>3</sup>
         Required Volume
                                                              8 basins
                                            BN =
         Nos. of Basin
                                            CN =
                                                              3 cells
         Nos. of Cell (per basin)
                                                               2 cells
         Nos. of Cell (stand-by)
                                            CN =
                                                          9.636 m<sup>3</sup>/basin
                                             VB =
         Volume per Cell
                                                           4.00 m
                                              D =
         Depth
                                                          2.409 \text{ m}^2
                                              A =
         Area per Basin
                                                          72.00 m
                                              W =
         Width
                                              L = A/W
         Length
                                                          33.46 m
                                                          47.00 m
                                                =
                                           say
                                                          72.00 m
                                              W =
          Dimension
                                               L=
                                                          47.00 m
                                              D =
                                                            4.00 m
                                            BNS =
          Nos. of Basin
                                                               8 basins
                                                               3 cells
          Nos. of Cell (per basin)
                                             CN =
                                             CN =
                                                               2 cells
          Nos. of Cell (stand-by)
                                                  = T1 * Q * up / 1000
          Acration Power Level
                                                             212 kW
                                                                        1.00 W/m<sup>3</sup>
                                             where,
                                                            up=
                                                             220 kW
                                           say
                                                  = 365 * Qd-ave * Xi/(x * 10 ^ 6)
          Sludge Accumulation
                                                          53,199 m<sup>3</sup>/year
                                                           2,217 m<sup>3</sup>/year/cell
                                                            Xi=
                                                                          55 mg/l
                                             where,
                                                              x =
                                                                        0.04
                      Accumulated sludge in each cell will be removed every 4 years.
                      Then, 6 cells should be cleaned every year.
                                                         132,997 m<sup>3</sup>/cell (before cleaning)
          Average Sludge Accumulation
                                                          79,798 m<sup>3</sup>/cell (after cleaning)
          (Check)
           Retention Time
                                                1.55 day
                                                                                 1.50 day
                                                                                                   OK
           - before cleaning
                                                                                                   OK
                                                2.06 day
                                                                                 2.00 day
           - after cleaning
```

1.9 kgO2/kWh

N =

where,

2.4 8	Storm Water Settling Tank				
	Туре	}	Rectangular Type		
	Design Flow Qhw-max	Qhd-max =	16,333 m ³ /hour	$r = 4.54 \text{ m}^3/\text{sec}$	
	Retention Time	T =	0.50 hour		
	Required Volume	. V =	8,167 m ³		
	Nos. of Basin (total)	BNS =	8 basins	•	
	Nos. of Basin (stand-by)	BNT =	2 basins		
	Volume per Basin	VB =	1,361 m ³ /basi	n	
	Depth	D =	3.00 m		
	Width	W =	15.00 m	•	
	Length	$\mathbf{L} = \mathbf{r}$	VB/(D*W)		
		=	30.25 m	•	
	•	say =	38.00 m		
:	Dimension	W =	15.00 m		
		L =	38.00 m		
		D =	3.00 m		
	Nos. of Basin	BNS =	8 basins		
	(6) 1)	BNT =	2 basins		
	(Check)				
	Retention Time	0.63 1		> 0.50 hour	OK
	Water Surface load	115	m³/m²/day	$> 75 - 150 \text{ m}^3/\text{m}^2/\text{s}$	day OK
) 5 I	Disinfection Tank				
1	Type	1	Rectangular Type		
	Design Flow	Qhw-max =	- ••	400.00 34 1	
	Retention Time	Qnw-max =	024,000 m /day	= 433.33 m ³ /min	
	Required Volume	V =	6,500 m ³		
	Nos. of Basin (total)	BN =	2 basins		
	Volume per Basin	VB =	3,250 m ³ /basi	n	
	Depth	D =	3.00 m		
	Width	W =	9.00 m		
	Length	L=	VB/(D*W)		
	·		120.37 m		
	Dimension	say = W =	121.00 m 9.00 m		
	Dimonsion	n = L =	9.00 m 121.00 m		
		D =	3.00 m		
	Nos. of Basin	BN =	2 basins		
	Required Chlorine		Q * D / 1000		
	,	=	624 kg/day		
		=	26 kg/hour		
		where,	-	00 mg/l	
	(Check)	,	_ *•		
	Retention Time	15.08 ı	ni n	> 15.00 min	OK

8.2.3 Capacity Calculation (Siphon)

Item	Sign	Unit	Unit Calculation		Result		
Phase				Phase1	Phase2		
Name of Trunk Main				Lana River	Tirana River		
Inlet Pipe							
Diameter	D	m		1.65	1.35		
Gradient	Ī	•		0.0025	0.0030		
Actual Flow Rate	Q-act	m3/sec		4.383	2.834		
Actual Flow Velocity*2	V-act	m/sec		2.289	2.246		
Full Flow Rate	Q-full	m3/sec		4.557	2.923		
Full Flow Velocity	V-full	m/sec		2.131	2.042		
Siphon							
Design Flow	Q1	m3/sec		4.383	2.834		
Siphon Pipe Number	PN			2	2		
Length of Siphon	L	m		22.8	22.8		
Required Flow Velocity	V1	m/sec	V=1.3*V-act	2.975	2.920		
Therefore	V2	m/sec	• •	3.000	3,000		
Required Cross-sectional Area	Ai	m2	A1=(Q1/PN)/V2	0.7305	0.4723		
Required Diameter	D1	m	$D1=(4*A1/\pi)^0.5$	0.964	0.775		
Therefore	D2	m		1.000	0.800		
Full Flow Velocity	V3	m/sec	V=(Q1/PN)/(π *D2^2/4)	2.790	2.819		
Hydraulic Gradient	11	-	I1=(Q1/PN/(N*C*(D2/4)^ β))^(1/ α) Where N=0.84935,C=110,	0.00756	0.01000		
Head Loss'	Н	m	α=0.54, β=0.63 H=11*L+β*V3^2/(2*g)+α	0.81	0.88		
	1		Where $\alpha = 0.03 - 0.05$, $\beta = 1.5$	<u> </u>	· .		

Note: *1- Head loss of siphon pipe is calculated by using Hazen Williams' Formula as follows:

 $Q = A \cdot V$ $V = 0.84935 \cdot C \cdot R^{963} \cdot I^{934}$

where Q: Flow rate (m3/sec)

A: Cross-sectional area of flow (m2)

V: Flow velocity (m / sec)

C: Flow velocity coefficient (C = 110)

R: Hydraulic mean depth (m) = A/P

P: Wetted perimeter (m)

1: Hydraulic gradient (h / L)

h : Friction head loss

^{*2-} Actual flow vilocity of inlet pipe is referred to "Appendix A Calculation for Flow Velocity of Inlet Pipe".

Appendix A Calculation for Flow Velocity of Inlet Pipe

1. Manning's Formula

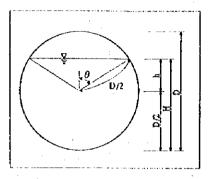
$$Q = A \cdot V$$

$$V = \frac{1}{n} \cdot R^{\frac{2}{3}} \cdot I^{\frac{1}{2}}$$

where

 $Q: Flow rate (m^3/sec)$

A: Cross-sectional area of Flow (m^2)


V: Flow velocity (m/\sec)

n: Roughness coefficient

R: Hydraulic mean depth (m) = A/P

P: Wetted perimeter (m)

I: Gradient

2. Inlet Pipe Flow Vilocity of Lana River Trunk Main

	D =	1.650	m	Vfull =	2.1313	m/sec		
	I =	0.0025		Qfull =	4.5572	m3/sec		0.4
No.	H	h	0	A	P	R	V	Q
	(m)	(m)	(radian)	(m2)	(m)	(m)	(m/sec)	(m3/sec)
1	1.505	0.680	0.6019	1.9211	4.1904	0.45844	2.2867	4.3930
2	1.504	0.679	0.6041	1.9199	4.1869	0.45856	2.2871	4.3911
3	1.503	0.678	0.6062	1.9188	4.1834	0.45867	2.2875	4.3892
4	1.502	0.677	0.6083	1.9177	4.1799	0.45878	2.2879	4.3873
5	1.501	0.676	0.6104	1.9165	4.1764	0.45889	2.2882	4.3854
6	1.500	0.675	0.6126	1.9154	4.1729	0.45900	2.2886	4.3835
7	1.499	0.674	0.6147	1.9142	4.1694	0.45911	2.2890	4.3816
8	1.498	0.673	0.6168	1.9131	4.1660	0.45922	2.2893	4.3797
9	1.497	0.672	0.6189	1.9120	4.1625	0.45933	2.2897	4.3778
10	1.496	0.671	0.6209	1.9108	4.1591	0.45943	2.2900	4.3758

3. Inlet Pipe Flow Vilocity of Tirana Trunk Main

1.350 m

 $\mathbf{D} =$

	I =	0.0030		Qfull =	2.9234	m3/sec		
No.	Н	ħ	0	A	P	R	V	Q
	(m)	(m)	(radian)	(m2)	(m)	(m)	(m/sec)	(m3/sec)
1	1.180	0.505	0.7255	1.2684	3.2617	0.38887	2.2447	2,8470
2	1.179	0.504	0.7278	1.2674	3.2587	0.38894	2.2449	2.8453
_ 3	1.178	0.503	0.7300	1.2665	3.2557	0.38901	2.2452	2.8436
4	1.177	0.502	0.7322	1.2656	3.2527	0.38909	2.2455	2.8419
5	1.176	0.501	0.7344	1.2646	3.2497	0.38916	2.2458	2.8401
6	1.175	0.500	0.7366	1.2637	3.2467	0.38923	2.2461	2.8384
7	1.174	0.499	0.7388	1.2628	3.2437	0.38930	2.2463	2.8366
8	1.173	0.498	0.7410	1.2618	3.2408	0.38937	2.2466	2.8348
9	1.172	0.497	0.7432	1.2609	3.2378	0.38943	2.2468	2.8331
10	1.171	0.496	0.7454	1.2600	3.2349	0.38950	2.2471	2.8313

Vfull =

2.0424 m/sec

8.2.4 Hydraulic Calculation

1. Design Condition

1.1 Design Wastewater Quantity

Phase	Flow	m³/day	m³/hour	m³/min	m³/sec	
	Daily Average	Qd-ave	57,380	2,390.8	39.85	0.664
	Daily Maximum	Qd-max	57,380	2,390.8	39.85	0.664
Phase1	Hourly Maximum(Dry)	Qhd-max	126,236	5,259,8	87.66	1.461
	Hourly Maximum(Wet)	Qhw-max	378,708	15,779.5	262.99	4.383
	Daily Average	Qd-ave	47,660	1,985,8	33.10	0.552
	Daily Maximum	Qd-max	47,660	1,985.8	33.10	0.552
Phase2	Hourly Maximum(Dry)	Qhd-max	104,852	4,368.8	72.81	1.214
	Hourly Maximum(Wet)	Qhw-max	244,772	10,198.8	169.98	2.833
•	Daily Average	Qd-ave	105,040	4,376.7	72.94	1.216
	Daily Maximum	Qd-max	105,040	4,376.7	72.94	1.216
Total	Hourly Maximum(Dry)	Qhd-max	231,088	9,628.7	160.48	2.675
	Hourly Maximum(Wet)	Qhw-max	623,480	25,978.3	432.97	7.216

1.2 Unit and Capacity of Treatment Facilities

Phase	Facilities Pacilities Pacilities	Total	Duty	Stand-by	Capacity
	Grit Chamber/Screen	4	3	1	Qhw-max
	Complete Mix Lagoon	4	4	0	Qd-ave
Phase1	Partial Mix Lagoon	4	4	0	Qd-ave
	Storm Water Settling Tank	4	3	1	Qhw-max - Qhdmax
	Disinfection Tank	1	1	0	Qhw-max
	Grit Chamber/Screen	F 4	3	1	Qhw-max
	Complete Mix Lagoon	4	4	0	Qd-ave
Phase2	Partial Mix Lagoon	4	4	0	Qd-ave
	Storm Water Settling Tank	4	3	1	Qhw-max - Qhdmax
	Disinfection Tank	1	1	0	Qhw-max
	Grit Chamber/Screen	8	6	2	Qhw-max
	Complete Mix Lagoon	8	8	0	Qd-ave
Total	Partial Mix Lagoon	8	8 .	0	Qd-ave
ŀ	Storm Water Settling Tank	8	6	2	Qhw-max - Qhdmax
	Disinfection Tank	2	2	0	Qhw-max

1.3 Discharge

Discharge Point

Tirana River

HWL

28.50 m

1.4 Formula for Hydraulic Calculation

Hazen & Wiliams' Formula

C =

2. Hydraulic Calculation (Phase1)

2.1 Water Level of Disinfection Tank Effluent Chamber (WL1)

Design Flow

 $Q = 378,708 \text{ m}^3/\text{day} =$

4.383 m³/sec

Pipe Diameter

1,350 mm 200.0 m

Pipe Length No. of Pipe

1 sets

Velocity

V = 3.06 m/sec

Hydraulic Gradient

 $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$

= 0.634 %

Hydraulic Loss

h1 = WL0 + 1.267 m h1 = 29.767 m

say,

32.10 m

2.2 Water Level of Disinfection Tank (WL2)

WL1 =

Design Flow

 $Q = 378,708 \text{ m}^3/\text{day} =$

4.383 m³/sec

Weir Width

W = 9.0 m

No. of Pipe Overflow height 1 sets h2 = $(Q/(1.8 * W))^{(2/3)}$

= 0.418 m

WL2 = WL1 +

h2 = 32.518 m

say, 32.80 m

2.3 Water Level of Partial Mixing No.3 Effluent Chamber (WL3)

Design Flow

 $Q = 57,380 \text{ m}^3/\text{day} =$

0.664 m³/sec

Pipe Diameter Pipe Length 1,500 mm 400.0 m

No. of pipe

1 sets

Velocity

V = 0.38 m/sec

Hydraulic Gradient

 $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$

0.012 %

Hydraulic Loss

h3 = 0.046 m

WL3 =

h3 =

32.846 m

say, 36.75 m

2.4 Water Level of Partial Mixing Lagoon No.1 (WL8)

(3 sets of Weirs)

Design Flow

 $Q = 57,380 \text{ m}^3/\text{day} =$

0.664 m³/sec

Weir Width

W =

WL2 +

5.0 m

No. of Lagoon

4 sets

Overflow height

 $h4 = (Q/(1.8 * W))^{(2/3)}$

= 0.070 m

say, 0.20 m

(2 sets of Connection Pipes)

Design Flow

 $Q = 57,380 \text{ m}^3/\text{day} =$

0.664 m³/sec

Pipe Diameter

500 mm 20,0 m

Pipe Length No. of Lagoon

4 sets

Velocity

V = 0.85 m/sec

```
Hydraulic Gradient
                                       i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)
                                               0.186 %
         Hydraulic Loss
                                               0.037 m
                                     h5 =
                                     say,
                                                0.05 m
                                                                Water Level
         Partial Mixing No.3 Effluent Chamber
                                                     (WL3)
                                                                    36.75 m
         Partial Mixing Lagoon No.3
                                                     (WLA)
                                                                    36.95 m
         Partial Mixing No.2 Effluent Chamber
                                                                    37.00 m
                                                     (WL5)
         Partial Mixing Lagoon No.2
                                                                    37.20 m
                                                     (WL6)
         Partial Mixing No.1 Effluent Chamber
                                                     (WL7)
                                                                    37.25 m
         Partial Mixing Lagoon No.1
                                                                    37.45 m
                                                     (WL8)
2.5
     Water Level of Complet Mixing Lagoon (WL9)
         Design Flow
                                                                    0.664 m<sup>3</sup>/sec
                                              57,380 \text{ m}^3/\text{day} =
                                      Q =
         Pipe Diameter
                                                500 mm
         Pipe Length
                                                20.0 m
         No. of Lagoon
                                                   4 sets
         Velocity
                                      V =
                                                0.85 m/sec
         Hydraulic Gradient
                                       i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)
                                               0.186 %
         Hydraulic Loss
                                     h6 =
                                               0.037 m
                     WL9 =
                                  WL8+
                                                h6 =
                                                        37.487 m
                                                         37.50 m
                                               say,
     Effluent Water Level of Distribution Chamber for Dry Weather Flow (WL10)
```

Design Flow	Q =	$126,236 \text{ m}^3/\text{day} =$	1.461 m ³ /sec
Pipe Diameter		800 mm	
Pipe Length		150.0 m	
No. of Lagoon		4 sets	
Velocity	V =	0.73 m/sec	
Hydraulic Gradient	i = (V / (0.84935 * C * (d	/4)^0.63)) ^ (1/0.54)
	=	0.081 %	
Hydraulic Loss	h7 =	0.122 m	
WL10 =	WL9 +	h7 = 37.622 m	1
		say, 37.7 m	ı

2.7 Water Level of Distribution Chamber for Dry Weather Flow (WL11)

Design Flow	Q =	126,236 n	n ³ /day =	1.461 m ³ /sec
Weir Width	W =	2.0 n		
No. of Lagoon		4 s	ets	
Overflow height	h8 = (Q/(1.8 * V	W))^(2/3)	
	=	0.218 n	n	
WL11 =	WL10 +	h8 =	37.918 m	
		Cav	38 075 m	

Effluent Water Level of Distribution Chamber for Wet Weather Flow (WL12)

Design Flow $252,472 \text{ m}^3/\text{day} =$ 2.922 m³/sec Pipe Diameter 1,800 mm Pipe Length 600.0 m

No. of Chamber 1 sets 1.15 m/sec Velocity $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ Hydraulic Gradient 0.074 % h9 =0.442 m Hydraulic Loss h9 =WL12 =WL20 + 37.392 m 37.4 m say,

2.9 Water Level of Distribution Chamber for Wet Weather Flow (WL13)

 $252,472 \text{ m}^3/\text{day} =$ 0 = Design Flow 6.0 m Weir Width W = No. of Chamber 1 sets $h10 = (Q/(1.8 * W))^{2/3}$ Overflow height 0.418 m WL11 + h10 =38.493 m WL13 =38.800 m say,

2.10 Water Level of Parshall Flum Effluent Chamber (WL12)

4.383 m³/sec $378,708 \text{ m}^3/\text{day} =$ Design Flow Q =1,800 mm Pipe Diameter Pipe Length 30.0 m 1 sets No. of Pipes 1.72 m/sec Velocity $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ Hydraulic Gradient 0.156 % Hydraulic Loss h11 = 0.047 m h11 = 38.122 m WL14 = WL11 + 38.90 m say,

2.11 Water Level of Parshall Flum Influent Chamber (WL13)

Design Flow $Q = 378,708 \text{ m}^3/\text{day} = 4.383 \text{ m}^3/\text{sec}$ No. of PF 1 setsHead loss h12 = 0.30 mWL15 = WL12 + h12 = 39.200 msay, 39.20 m

2.12 Water Level of Grit Chamber Effluent Chamber (WL14)

4.383 m³/sec $378,708 \text{ m}^3/\text{day} =$ Design Flow O =Pipe Diameter 1,800 mm 30.0 m Pipe Length No. of Pipes 1 sets **V** = 1.72 m/sec Velocity $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ Hydraulic Gradient 0.156 % h13 =0.047 m Hydraulic Loss WL16 =WL15 + h13 =39.247 m 39.30 m say,

2.13 Water Level of Grit Chamber Influent Chamber (WL15)

Design Flow $Q = 378,708 \text{ m}^3/\text{day} = 4.383 \text{ m}^3/\text{sec}$ No. of Screens 4 sets including 1 stesHead loss h14 = 0.20 mWL17 = WL14 + h14 = 39.500 msay, 39.50 m

2.14 Water Level of Storm Water settling Tank (WL20)

Design Flow Q = $252,472 \text{ m}^3/\text{day} =$ 2.922 m³/sec Weir Width W = 5.0 m No. of Lagoon 4 sets $h20 = (Q/(1.84 * W))^{2/3}$ Overflow height 0.185 m WL20 =WI.2 + h20 =32.985 m 36.95 m say,

3. Hydraulic Calculation (Phase1+Phase2)

3.1 Water Level of Disinfection Tank Effluent Chamber (WL1)

Design Flow

 $623.480 \text{ m}^3/\text{day} =$ **O** =

7.216 m³/sec

Pipe Diameter

1,350 mm 200.0 m

Pipe Length

2 sets

No. of Pipe Velocity

V = 2.52 m/sec

Hydraulic Gradient

 $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$

0.442 %

Hydraulic Loss

h1 = WL0 +

0.884 m h1 =

29.384 m

32.10 m say,

Water Level of Disinfection Tank (WL2) 3.2

WLi =

Design Flow

 $623.480 \text{ m}^3/\text{day} =$ 0 =

7.216 m³/sec

Weir Width

W = 9.0 m

No. of Pipe

2 sets

Overflow height

 $h2 = (Q/(1.8 * W))^{2}$

0.367 m

WL2 =

WL1 +

h2 = 32,467 m

32.80 m say,

Water Level of Partial Mixing No.3 Effluent Chamber (WL3) 3.3

Design Flow

 $105,040 \text{ m}^3/\text{day} =$ Q =

1.216 m³/sec

Pipe Diameter

1,500 mm 400.0 m

Pipe Length

2 sets

No. of pipe Velocity

V = 0.34 m/sec

Hydraulic Gradient

 $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$

0.010 %

Hydraulic Loss

h3 =0.039 m

say,

WL3 =

WL2 + h3 = 32.839 m 36.75 m

Water Level of Partial Mixing Lagoon No.1 (WL8) 3.4

(3 sets of Weirs)

Design Flow

Q = $105,040 \text{ m}^3/\text{day} =$ 1.216 m³/sec

Weir Width

W = 5.0 m

No. of Lagoon

8 sets

Overflow height

 $h4 = (Q/(1.8 * W))^{2}(2/3)$

0.066 m

0.20 m say,

(2 sets of Connection Pipes)

Design Flow

 $105,040 \text{ m}^3/\text{day} =$ Q =

1.216 m³/sec

Pipe Diameter

500 mm

Pipe Length No. of Lagoon 20.0 m

8 sets

Velocity

V = 0.77 m/sec

Hydraulic Gradient $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ 0.158 % Hydraulic Loss h5 =0.032 m0.05 m say, Water Level Partial Mixing No.3 Effluent Chamber (WL3) 36.75 m Partial Mixing Lagoon No.3 (WIA)36.95 m Partial Mixing No.2 Effluent Chamber (WL5) 37.00 m Partial Mixing Lagoon No.2 (WL6) 37.20 m Partial Mixing No.1 Effluent Chamber (WL7) 37.25 m Partial Mixing Lagoon No.1 (WL8) 37.45 m 3.5 Water Level of Complet Mixing Lagoon (WL9) Design Flow $105,040 \text{ m}^3/\text{day} =$ Q = 1.216 m³/sec Pipe Diameter 500 mm Pipe Length 20.0 m No. of Lagoon 8 sets Velocity V = 0.77 m/sec Hydraulic Gradient $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ 0.158 % Hydraulic Loss h6 = 0.032 m WL9 =WL8 + h6 = 37.482 m 37.50 m say, Effluent Water Level of Distribution Chamber for Dry Weather Flow (WL10) 3.6 Design Flow $231.088 \text{ m}^3/\text{day} =$ 2.675 m³/sec Q =Pipe Diameter 800 mm Pipe Length 150.0 m No. of Lagoon 8 sets Velocity V =0.67 m/sec Hydraulic Gradient $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ 0.069 % = Hydraulic Loss h7 =0.104 m WLi0 =WL9+ h7 = 37.604 m say, 37.7 m Water Level of Distribution Chamber for Dry Weather Flow (WL11) 3.7 Design Flow $231,088 \text{ m}^3/\text{day} =$ O = $2.675 \text{ m}^3/\text{sec}$ Weir Width W = 2.0 m No. of Lagoon 8 sets Overflow height $h8 = (Q/(1.8 * W))^{2/3}$ 0.205 m WL11 = WL10 + h8 = 37.905 m 38.075 m say, Effluent Water Level of Distribution Chamber for Wet Weather Flow (WL12) 3.8

0 =

Design Flow

Pipe Length

Pipe Diameter

 $392,392 \text{ m}^3/\text{day} =$

1,800 mm

600.0 m

4.542 m³/sec

No. of Chamber 2 sets Velocity 0.89 m/sec V = Hydraulic Gradient $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ 0.046 % h9 = 0.277 m Hydraulic Loss WL20+ h9 = WL12 =36.227 m 37.4 m say,

3.9 Water Level of Distribution Chamber for Wet Weather Flow (WL13)

O = $392.392 \text{ m}^3/\text{day} =$ 4.542 m³/sec Design Flow Weir Width **W** = 6.0 m No. of Chamber 2 sets Overflow height $h10 = (Q/(1.8 * W))^{2/3}$ 0.354 m h10 = WL13 = WL11 + 38.429 m 38.800 msay,

3.10 Water Level of Parshall Flum Effluent Chamber (WL12)

 $623.480 \text{ m}^3/\text{day} =$ 7.216 m³/sec Design Flow O =1,800 mm Pipe Diameter 30.0 m Pipe Length No. of Pipes 2 sets Velocity V = 1.42 m/sec Hydraulic Gradient $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ 0.109 % 0.033 m Hydraulic Loss hii =WL14 =WL11 + h11 =38.108 m 38.90 m say,

3.11 Water Level of Parshall Flum Influent Chamber (WL13)

Design Flow $Q = \frac{623,480 \text{ m}^3/\text{day}}{2 \text{ sets}} = \frac{7.216 \text{ m}^3/\text{sec}}{7.216 \text{ m}^3/\text{sec}}$ No. of PF $\frac{2 \text{ sets}}{12 \text{ m}^3/\text{sec}} = \frac{0.30 \text{ m}}{12 \text{ m}^3/\text{sec}} = \frac{0.3$

3.12 Water Level of Grit Chamber Effluent Chamber (WL14)

 $623,480 \text{ m}^3/\text{day} =$ Design Flow 7.216 m³/sec Q =1,800 mm Pipe Diameter Pipe Length 30.0 m No. of Pipes 2 sets Velocity V = 1.42 m/sec Hydraulic Gradient $i = (V/(0.84935 * C * (d/4)^0.63))^(1/0.54)$ 0.109 % Hydraulic Loss h13 =0.033 m WL16 =**WL15** + h13 =39.233 m 39.30 m say,

3.13 Water Level of Grit Chamber Influent Chamber (WL15)

Design Flow $Q = \frac{623,480 \text{ m}^3/\text{day}}{8 \text{ sets including 2 stes}} = \frac{7.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}}$ Head loss $\frac{114}{4} = \frac{0.20 \text{ m}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets including 2 stes}} = \frac{1.216 \text{ m}^3/\text{sec}}{8 \text{ sets$

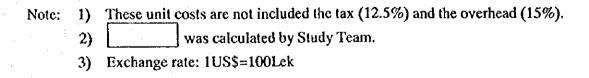
3.14 Water Level of Storm Water settling Tank (WL20)

 $392,392 \text{ m}^3/\text{day} =$ 4.542 m³/sec Design Flow Q = 5.0 m Weir Width **W** = 6 sets No. of Lagoon $h20 = (Q/(1.84 * W))^{(2/3)}$ Overflow height 0.189 m W1.20 = h20 = WL2 + 32.989 m say, 35.95 m

8.5.1 Unit Construction Cost of Wastewater Facilities

1. Wastewater Collection Facilities

-	-	- , -	,	
200	mm		6.30	US\$/m
250	mm		7.15	US\$/m
300	mm		8.00	US\$/m
350	mm		9.50	US\$/m
400	mm'		11.00	US\$/m
450	mm		12.00	US\$/m
500	mm		13.00	US\$/m
600	mm	reinforced	25.00	US\$/m
700	mm	reinforced	36.50	US\$/m
800	mm	reinforced	48.00	US\$/m
900	mm	reinforced	81.00	US\$/m
1000	mm	reinforced	114.00	US\$/m
1100	mm	reinforced	129.20	US\$/m
1200	mm	reinforced	144.40	US\$/m
1300	mm	reinforced	159.60	US\$/m
1400	mm	reinforced	174.80	US\$/m
1500	mm	reinforced	190.00	US\$/m
1600	mm	reinforced	204.00	US\$/m
1700	mm	reinforced	218.00	US\$/m
1800	mm	reinforced	232.00	US\$/m
1900	mm	reinforced	246.00	US\$/m
2000	mm	reinforced	260.00	US\$/m
2100	mm	reinforced	274.00	US\$/m
2200	mm	reinforced	288.00	US\$/m
2300	mm	reinforced	302.00	US\$/m


(2) Earth Works

Sand		5.00	US\$/m ³
Gravel		1.00	US\$/m ³
Excavation	(Backhoe)	1.70	US\$/m ³
Excavation	(Manpower)	3.40	US\$/m ³
Backfilling	(Backhoe, Original Soil)	0.35	US\$/m ³
Backfilling	(Manpower, Sand, Dump Truck 10km)	7.03	US\$/m ³

		filling ment	(Manpowe	er, Grave	el, Dump Truck 10km))	US\$/m ³ US\$/m ³
(3) Ma	nhole						
(-)		1.00m	H=	2.0m	334.71	US\$/pc	
	D=	1.00m	H=	2.5m	366.28	US\$/pc	
	D=	1.00m	H=	3.0m	413.98	US\$/pc	
	D=	1.25m	H=	2,0m	400.01	US\$/pc	
	D=	1.50m	H=	3.0m	658.30	US\$/pc	
	D=	2.00m	H=	3.0m	1,010.20	US\$/pc	

2. Wastewater Treatment Plant

Excavation	(Bulldozer)	0.60	US\$/m ³
Backfilling	(Bulldozer)	0.12	US\$/m ³
Concrete	Beam M200 (excl. steel bar)	120.00	US\$/m ³
do	Column M200 (excl. steel bar)	126.00	US\$/m ³
do	Foundation M200 (excl. steel bar)	75.00	US\$/m ³
Reinforcing Bar		1.00	US\$/kg
Formboard		3.50	US\$/m ²
Concrete	Reinforced Concrete	226.00	US\$/m ³
Road	Pavement	9.00	US\$/m ²
do	Gravel	5.00	US\$/m ³
do	Gravel $(t = 0.3m)$	1.50	US\$/m ²
Architecture		140.00	US\$/m ²
Removal of Surplus Soil	(Dump Truck)	0.15	US\$/t/km
Removal of Surplus Soil	(Bulldozer + Dump Truck 5km)	1.01	US\$/m ³

8.5.2 Unit Construction Cost of Sewer Pipe

Table 8.5.1 Unit Construction Cost of Sewer Pipe (No.1)

EATH COVETING DEPLIE = 1.0m																					ŀ		
Diameter (mm)		200	250	300	350 4	400 45		200 600	700	88 0	0 0	1000	1100	1200	1300	1400	1500	1600	1700	1800	1980 081	2000	2100
(1) Quantity			-																				12-12-
Excavation (Backboe)	(m3)	220 2	2.41	2.63	38	3.10 3		3.60			48 6.25	5 7.08	7.95	8.88	9.85	10.88	11.96	13.09	14.27	15.50	16.79	18.12	19.50
Excavation (Manpower)	(m3)	0.34	0.36	0.38	0.40	0.41 0					0.56 0.5		_	0.70	0.74		0.81	0.85	0.88	0.92	0.95	8	1.03
Concrete Foundation	(E)	0.12 0	0.14	0.16	0.18	0.21 0	0.23	0.26	0.31 0.				0.82	0.96	1.10	1.26	1.43	1,61	1.79	1.89	220	242	2.65
Gravel Foundation		0.11 0	0.11	0.12	0.13	0.13 0				0.17 0.	0.18 0.19	070		0.23	0.24	0.25	0.26	0.28	0.29	0.30	0.31	0.32	9 4
Concrete Pipe (0.05	0.07	0.10	0.14 (0.18 0	0.23	0.28								2.22	2.54	8	327	3.66	4 08	4.52	8
Backfilling (Manpower, Sand)	(m3)	0.83	0.94	1.0	1.14	1.25		1.48 1.71	•	_			3.34	3.72	4.14	4.55	5.00	5,44		6.43	Ž	7.47	8.01
Backfilling (Backhoe, Original Soil; (m3)	_	0.69	0.73	0.77	0.81				1.01	1.10		4		1.54	1.62	1.71	1.80	1.89	1.98	5.08	2.15	47.	233
Pavement ((£m)	0.74 0	0.78	0.82	0.85	0.89	,	0.96	1.03	1.11 1.	1.11			1.50	1.58	1.66	1.74	1.82	1.90	1.98	2.06	2.14	57
Surplus Soil	(m3)	1.11	1.26	1.42	1.59	1.77		2.16 2.5	2.59 3.0		3.67 4.31		5.75	6.54	7.39	8.28	9.23	10.23	11.28	12.38	13.53	4.73	15.99
				_																			
(2) Construction Cost (US\$/m)					:																		
Excavation (Backboc)	1.70	3.74 4.	4.09	4.47	4.86	5.27 5.	5.69 6.	6.12 7.05	35 8.09	9.31	31 10.62		13.51	15.09	16.74	18.49	20.33	22.25	24.25	26.35	28.54	30.80	33.15
Excavation (Manpower)	3.40	1.15 1.	1.22	1.29	1.36	1.39 1.		1.53 1.66	56 1.76	76 1.90				2.38	2.51	2.61	2.75	5.89	2.99	3.12	3.23	336	3.50
Concrete Foundation 7	75.00	9.00 10.	10.50	12.00 1:	13.50 15	15.75 17.	17.25 19.	22.52 05.61	28.50		4	51.75	61.50	22.8	82.50	94.50	107.25	120.75	134.25	149.25 1	65.00 18	181.50	198.75
Gravel Foundation	333	0.35 0.	0.35	0.38	0.41 0	0.41 0.		0.45 0.51		52 0.58			0.71	0.74	0.77	0.80	0.83	0.9	0.93	8.0		1.03	8:
Backfilling (Manpower, Sand)	3.23	2.68	3.03	3.35	3.68	4.03 4.	4.39 4.	4.78 5.3	52 6.39		8.46		_	12.01	13.37	14.69	16.15	17.57	19.15	20.76	-		25.87
Backfilling (Backhoe, Original Soil,	0.35	0.24	25.0	0.26	0.28	0.29 0.		0.32 0.35	35 0.38			4 0.47	0.50	0.53	0.56	0.59	0.63	99.0	0.69	0.72	0.75	0.78	0.81
Pavement	1.40	1.03	1.09	1.14	1.19	1.24		1.34 1.44	1.55					2.10	2.21	2.32	2.43	2.54	2.66	2.77	2.88	38	3.10
Removal of Surplus Soil	1.02	1.13	1.28	4	1.62	1.80	1.99	2.20 2.64	3.14				5.86	6.67	7.53	8. 44.	9,41	10.43	11.50	12.62	13.80	15.02	16.30
Concrete Pipe Laying	1 15	6.30	7.15	8.00	9.50 111	11.00 12.00	00 13.00	00.25.00	36.50	50 48.00	81.00	114.00	129.20	144.40	159.60	174.80	190.00	204.00	218.00	232.00 2	246.00 22	20.00	274.00
Manhole (1pcace per 50m)		6,69	69.9	6.69	6.69	6,69 6.	6.69	6,69 6,69	59 6.69	99 6.69	69.9	69.9	69.9	6.69	6.69	6,69	69.9	699	69.9	6.69	699	699	6.69
Total	3.	32.31 35.	35.65 35	39.02 43	43.09 47	47.87 51.51	51 55.93	93 74.11	11 93.54	74 114.85	159.47	7 204.31	233.00	197297	292.48	323.93	356.47	388.68	421.11	455.24 490.30		5 62.925	563.26
Total (including tax etc.)	-	45.98 50.	50.73 55	55.53 6	61.32 68	68.12 73.	73.31 79.60	60 105.47	133.12	163.45	15 226.95	290.76	331.59	373.73	416.24	460.99	507.30	553.14	599.29	647.86 6	697.76 748.98		801.59
						-8			١														

Table 8.5.2 Unit Construction Cost of Sewer Pipe (No.2)

Earth Covering Depth = 2.0m					1					ŀ	ŀ	ł	ŀ	ŀ	ŀ					1	ŀ	ŀ	3
Diameter (mm)	-	200	2.50	300	350	904	450	200	009	700 800	200	2000	3	1200	1300	34.00	DOS.Y	3	3,7	Ne.	3	2007	3
(1) Quantity			-		_			<u>.</u>											;				,
Excavation (Backhoe)	(m3)	2.	4.95	5.27	5.60	5.94	6.29	2.	39 8	_	_					15.87	17.17	18.52	22	21.57	18.27		50.63
Excavation (Manhower)	(£	0.34	0.36	0.38	0.40	0.41	0.43	0.45	0.49	0.52 0.		59 0.63	_			0.7	0.81	0.83	83.0	8	0.95	8	1.03
Concesse Foundation) (E	0.12	0.14	0.16	0.18	0.21	0.23	0.26			0.47 0.58	58 0.69	•			1.26	1.43	1.61	5.1	8:	2.20	4	3.65
Gravel Roundation		0.11	0.11	0.12	0.13	0.13		0.14					0.22	0.23		0.25	0.26	87.0	0.29	030	0.31	0.32	9,34
Concrete Pipe) (E	0.05	0.07	0.10	0.14	0.18		0.28	0.41 0	0.55 0.						H H	2,54	8	3.27	3.66	4.08	452	8,4
Backfillian (Mannawer Sand)	(E)	830	8,0	8	1.14	-		1.48			30 2.62	62 2.98				4.55	2.00	۰ 4	5.93	6.43	6.94	7.47	8.01
Backfilling (Backhoe Original Soil) (E	2.89	3.03	3,17	331	3.45		3.73			4.61 4.92					6.46	6.77	7.07	7.38	7.69	8.00	8.31	8.61
Davement) (E	86.0	1.02	8:	1.09	1.13	<u>:</u>	1.20		<u>.</u>		50 1.58	-	5 1.74		1.8	1.98	206	2.14	E E E	8		3
Sumbs Soil	(EE)	1.11	1.26	1.42	1.59	1.77	1.96		2.59 3		3.67 4.31	_		6.54	7.39	8.78 26.78	8,33	10.23	11.28	12.38	13.53	14.73	8.5
	-																						
(2) Construction Cost (US\$/m)					_						_				_		7.						
Excavation (Backhoe)	1.70	7.88	8.41	8.95	9.52	10.09	10.69	1.28	12.56	(3.95 15.2	_	_			. 24.85	26.97	29.18				_	-	252
Granding (Namoure)	3.40	1.15	ij				1.46		_	1.76		-			2.51	2.61	2.75	2.89	8,	3.12	ຄູ		ନ
	75.00	8	10.50		_				-		_			•	82.50	ያ ያ	107.25	120.75	134.25		65.00	_	98.75
	33	0.35	0.35	•											0.77	0.80	0.83	0.90			1.00	1.03	3.0
Backfilling (Mannower Sand)		2,68	3.03							6.39		9.62			13.37	14.69	16.15	17.57		20.76	·		5.87
Backfiling (Backhoe, Original Soil		1.01	1.06		1.15	1.20		130	1,40	1.61	1.72		3 1.93	7.05	2.15	2.26	236	2.47	2.58	5.69		88	3.01
Pavement	1,40	1.37	1,42		1.52	1.58			1.77			0 221			254	2.66	7.7 7.7	288					34
Removal of Sumins Soil	1.43	1.58	1.80				2.80		3.70	4.40 5.2			_		10.56	11,84	13.19	14.62	16.13	17.70	1934	21.06	288
Concrete Pine Laving		6.30	7.15				_	-	<u></u>	4	81.00	0 114.00	129.20	144.40	159.60	174.80	190.00	204.00	218.00: 2	232.00 2	246.00 26	260.00	274.00
Manhole (1piece per 50m)		7.33	7.33				7.33	_	7.33 7	7.33 7.33	33 7.33	3 7.33	7.33	7.33	7.33	7.33	7.33	_	-	-	-		733
Total	۲	38.65	42.27	45.91 S	50.24 5	55.31 59	59.24 6	63.93	82.70 102.76	76 124.77	77 170.11	1 215.67	7 245.13				_	.,		47323 5	*		584.10
Total (including tax etc.)	~			65.34	71.50	78.71 84	84.31 90	90.98	117.69 146.24	24 177.56	56 242.09	9 306.93	348.85	392.06	435.73	481.67	529.13	576.21 6	623:63 6	673:47 7	724.66 77	777.25 83	83125
Note: Tax is 12.5%, overhead is 15.0% and site management cost is 10%. (January 1997)	15.0% ao	d site m	anageme	at cost is	10%. (Ja	muary 15	(166						:							1.34, 1.3			111
																		•					

Table 8.5.3 Unit Construction Cost of Sewer Pipe (No.3)

Earth Covering Depth = 3.0m					,				ŀ	-		ŀ	ŀ										
Diameter (mm)		200	250	300	350	8	450	200	88	28 8	966 968	967 2	\$ 2	1200	200	\$	<u>8</u>	3	1700		3	988	3
(1) Quantity																			i i	8	9		8
Excavation (Backhoe)	(m3)	7.75	8.16	8.58	10.6	9.45	68.6	10.35			-					_	.4	74.01	707	8.73	30.57	37.45	21
ਜ਼ਿ	(m3)	80	98	98.0	0.40	0.41	0.43	0.45	0.49									28.0	88.0	0.92	26.0	66.0	1.03
	(Em.)	0.12	0.14	0.16	0.18	0.21	£ 0	0.26	0.31									1.61	82.7	8	22	2.42	265
	(Em.)	0.11	0.11	0.12	0.13	0.13	0.14	0.14	0.16									87	0.29	80	0.31	0.32	7,
	(m3)	0.05	0.07	0.10	0.14	0.18	0.23	0.28	0.41	0.55 (0.72	0.92 1.13	3 1.37	1.63	1.91	2.22	22.	2,80	3.27	3.88	80.4	4.52	8;
(annower, Sand)	(m3)	0.83	8,0	2.8	1.14	1.25	1.36	1.48	1.71					•				2. 4.	5.93	6.43	\$.0	7.47	8.01
Soil	(£m)	5.76	8.9	6.24	6.48	6.72	96.9	7.20	2.68					_	_		12,40	12.93	13,46	13.98	14.51	15.04	15.57
	(m3)	1.22	1.26	1.30	1.33	1.37	3.4	4.	151	1.59		.74 1.82	27					230	238	248	42.	262	5
oj.	(m3)	1.11	1.26	1.42	1.59	1.77	1.96	2.16	2.59	3,08				6.54	7.39	8.28	9.23	10.23	11.28	12.38	13.53	14.73	35.88
	-																						
(2) Construction Cost (US\$/m)		-	•																	!		:	
Excavation (Backboe)	1.70	13.17	13.87	14.58	15.31	16.06	16.81	7.59	19.19	20.92	22 24		(4	(1)		۲,	39.16	83.	44.59	47.43	5037	53.38	56.47
न्न	3.40	1.15	1.22	1.29	1.36	1.39	1.46			1.76			2.27	738		2.61	2.75	2.89	2,8	3.13	ន្ត	338	3.50
•	25.00	9.00	10.50	12.00	13.50	15.75	17.25		23.23	28.50		_	5 61.50	2,8			107.25	120.75	13425	149.25	165.00	181.50	198.75
	3.23	0.35	0.35	0.38	0.41	0.41	0.45		_		0.58 0			0.74	0.7	<u>.</u>		8.0	0.93	96.0	97:	1.03	8
ower, Sand)	3.23	2.68	3.03	3.35	3.68	4.03	4.39	4.78	5.52			8.46 9.62	2 10.78	_	13.37	14.69	16.15	17.57	19.15	20.76	12.41	21.21	25.87
Soil	0.35	2.01	2.10	2.18	2.26	2.35	2.43	2.52	·		<u>.</u>							4.52	4.71	4.89	2.07	\$26	2. 2
Pavement	3.40	1.70	1.76	1.82	1.86	1.91	38:1	2.01	2.11	222						58	3.10	3,23	3,33	3.4	3.55	3.66	3.78
Removal of Surplus Soil	1.43	1.58	1.80	2.03	2.27	2.53	2.80	3.08	3.70	4,40	524 6	16 7.15			10.56	11.84	13.19	14.62	16.13	17.70		21.06	23.86
Concrete Pipe Laying	1 15	6.30	7.15	8.00	9.50	00.11	12.00		25.00	36.50	48.00 81	81.00 114.00	0 129.20	144.40	159.60	174.80		204.00	218.00	232.00			274.00
Manhole (1piece per 50m)		13.12	13.12	13.12	13.12	13.12	13.12	3.12	13.12	13.12 12	13.12 13	13.12 13.12	2 13.12	13.12	13.12	13.12	13.12	13.12	13.12	13.12	13.12	13.12	13.12
Total		51.06	8.8	58.75	63.27	. 55.89	72.67		96.74	117.23 139	139.68 185.48	48 231.50	0 261.41	292.23					457.20				604.88
Total (including tax etc.)				83.61 90.04		97.56 10	103.42	0.41	137.67 16	166.83 198	198.78 263.96	96 329.45	5 372.02	415.88	460.20	\$06.75	554.86	602.58	650.65	701.13	752.96	806.19	860.82
The second secon																				:			

8.5.3 Sewage Collection System Construction Cost

Table 8.5.4 Trunk Main Construction Cost

Dia	Cost	Pha	se-1	Pha	se-2	Te	tal
(mm)	(US\$)	Length	103 US\$	Length	103 US\$	Length	103 US\$
1200	415.88			3,200	1,331	3,200	1,331
1350	483,48	30	15	4,200	2,031	4,230	2,045
1650	626.62	10,170	6,373			10,170	6,373
El 1400	602.58			3,270	1,970	3,270	1,970
□ 1700	752.96	3,270	2,462			3,270	2,462
To	tal	13,470	8,849	10,670	5,332	24,140	14,181

Table 8.5.5 New Main Sanitary Sewer Construction Cost

Zone	Area		Pha	se-1			Pha	se-2		To	tal
		Dia	Cost	Length	103 US	\$ Dia	Cost	Length	103 US\$	Length	103 US\$
Tirana	Tirana-1					450	68.42	2,085	143	2,085	143
	Tirana-2	i				206	55.00	210	12	210	12
	Tirana-3					200	55.00	615	34	615	34
	Tirana-4					250	57.58	1,105	64	1,105	64
Lana-	Shkoza	300	60.16	730	4	4			1	730	44
South	Student					300	60.16	1,475	89	1,475	89
	Selita	350	62.75	1,780	11	2				1,780	112
	Kombinat	400	65.34	750	4	9			1	750	49
USAID	USAID-1					400	65.34	3,500	229	3,500	229
	USAID-2					700	84.31	15,000	1,265	15,000	1,265
	Yzberishi-1					250	57.58	825	48	825	48
	Yaberishi-2					200	55.00	165	9	165	. 9
To	tal			3,260	20	5]		24,980	1,890	28,240	2,095

Table 8.5.6 Intercepting Sewer Improvement Cost

Dia	Cost	Lana-	North	Lana-	South	Tirana	River	Cei	nter	To	tal
(mm)	(US\$)	Length	103 US\$	Length	103 US\$	Length	103 US\$	Length	103 US\$	Length	103 US
600	176.54										
700	219.36					1,204	264		:	1,204	264
800	266.34									· # - #=5	
900	363.14	370	134	73	27					443	161
1000	460.40	365	168	553	255					918	42
1100	523.28	648	339	910	476	/				1,558	815
1200	588.09	1,061	624	776	456					1,837	1,080
1300	653.60			,, , , , , , , , , , ,		280	183	428	280	708	463
1400	722.51	1,123	811	447	323					1,570	1,134
1500	793.70			234	186					234	186
1700	935.45							130	122	130	122
1800	1010.21					267	270	930	939	1,197	1,209
1900	1086.99							771	838	771	838
То	tal	3,567	2,077	2,993	1,722	1,751	717	2,259	2,179	10,570	6,695
					3,799				2,896		

Table 8.5.7 Stormwater Overflow Chamber Improvement Cost

Ite	ms	Lana-	North	Feeda aver little	South		River	Ce	nter	To	otal
L		No.	103 US\$	No	10' US\$	No.	103 US\$	No.	103 US\$	No.	10 ³ US\$
Unit Cost	7,000	14	98	19	133	4	28	3	21	40	280
То	tal				231				49		

Table 8.5.8 Storm Water Inlet Construction Cost

Ite	ms	Lana	North	Lana-	South	Tiran	a River	Ce	nter		tal
		No.	103 US\$	No.	103 US\$	No.	103 US\$	No.	103 US\$	No.	103 US\$
Unit Cost	2,500	17	43	19	48					36	90
To	(al				90						i 1

8.5.4 Bill of Quantities of Sewage Treatment Plant

Table 8.5.9 Bill of Quantities of Sewage Treatment Plant	Sewage Trea	tment Plai	ıt								
Items	Present Da	Design Grand Level	Area	First Excavation	First Second Excavation	Backfilling	Finishing Slope	Plain Concrete	Reinforced Concrete	Gravel	Architecure
	M	Σ	т2	m3	m3	m3	m2	m3	m3	m3	m2
Grit Chamber	42.00	42.00	487	0	2,652	6 <i>LL</i>	•	54	547	107	•
Distribution Chamber	42.00	42.00	69	0	099	297	,	∞	143	15	•
Complete Mixing Aerated Lagoon	41.40	39.90	52,138	78,207	93,924	•	41,196	2,364	,	•	•
Partial Mixing Aerated Lagoon No.1	41.20	39.85	27,064	36,536	49,152	•	20,520	1,656	•		•
Partial Mixing Aerated Lagoon No.2	40.50	39.60	27,064	24,358	49,152		20,520	1,656	1	•	•
Partial Mixing Aerated Lagoon No.3	39.60	39.35	29,054	7,264	49,152	•	20,520	1,656	•	•	•
Storm Water Settling Tank	39.80	39.35	11,060	4,977	7,164	1	5,656	852	ŧ	1	•
Disinfection Tank	38.90	35.20	8,060	29,822	2,241	•	2,037	321	16	•	8
Outfall	31.50	31.50	121	0	455	182	,	196	103	77	•
Outfall Sewer (1350mm, H=1.0m)	1	•	,	•	ā	•	ı	•	ı		,
Lulet Sewer(1700*1700mm, H=1.0m)	•	,	,	•	•	•	,	•	•	•	•
Connection Pipe (800mm)	•	•	•	,	•	•	,	,	ı	ı	•
Connection Pipe (1800mm)	•	,	f .		1	•	•	•			
Administration and Elec. Building	•	•	1 2 •			•	,	1	•	1	
Drain and Connection Pipe (500mm)	•		•	•	•	,	•	,	,		,
Connection Pipe (1500mm)	,	•	•	1	1	•	1		1		ı
Road	1	•	: '	•	*	•		1	,	1	,
Total	•	-	155,117	181,164	254,552	1,258	110,449	8,763	608	193	06

Table 8.5.9 Bill of Quantities of Sewage Treatment Plant (Cont'd)

TADIC O.C. Dies of Comments						Г	William I amine I Damen Com	Towns of the		Personal of
Items	Pipe Laying Pipe Laying	Pipe Laying	Pipe Laying Pipe Laying	Pipe Laying 1800mm	Fipe Laying 500mm, H=3.0	500mm, H=1.0	1500mm	Road	Pavement	Surplus Soil
	ACCOUNT	1	8	Ε	E	E	E	æ	. w	m3
	E	111				•				1,874
Grit Chamber		ı	•	1	ı					272
Distribution Chamber		•	•	•	•	•	ı	•	•	
Commission Mining Agreeted Lagren	•	,	•	•	1	1	•	•		172,131
Complete Mixing Area area area area area area area area							•	•	1	889'58
Partial Mixing Acrated Lagoon No.1	•	•	1		i					73 510
Partial Mixing Aerated Lagoon No.2	,		•	•	•	•	•	•	1	7447
Partial Mixing Agrated Lagoon No.3	'	ı	ı	,	•	•	•	•	•	20,410
Control Control		ı	,	,	4	•	·	•	•	12,141
Storm Water Setting Lank	•	ı				1		,	,	32.063
Disinfection Tank	•	•	1	•	1	•				27.7
Outfall	1	•	•	•	1	•	•	,	•	C/7
Outfall Sewer (1350mm, H=1.0m)	200		ı	,	ŀ	ı		•	1	•
Inlet Sewer(1700*1700mm, H=1.0m)	•	50	٠	1		*	,	•	1	•
Connection Pipe (800mm)	•	•	570	•	1	1	1	•	•	•
Connection Pipe (1800mm)	•	•	ı	1100	1	ı	ı	•	•	,
Administration and Elec. Building	•	•	•	ı	•	•	1	•	,	•
Drain and Connection Pipe (500mm)	,	•	,	•	322	999		ı	•	1
Connection Pine (1500mm)	,		ı		1	1	292	r	•	,
	1		*	•	,	•	١	200	22,010	
Total	86	05	570	1.100	322	999	292	200	22,010	434,459
Toran	207	*								

8.5.5 Construction Cost of Sewage Treatment Plant

490.30 Pipe Laying | Pipe Laying 24,515.00 24,515.00 34,887.90 1700mm 308.21 61,642.00 61,642.00 87,724.27 1350mm Gravel Architecure 140.00 12,600.00 12,600.00 17.931.37 274.66 107.00 15.00 193.00 123,622.00 182,834.00 260.195.63 Reinforced 32,318.00 3,616.00 23,278.00 Concrete 4,050.00 600.00 657,225.00 124,200.00 124,200.00 24,075.00 935,313.32 177,300.00 124,200.00 63,900.00 14,700.00 Concrete Plain 7,182.00 7,182.00 712.95 Finishing 14,418.60 7,182.00 1,979.60 38,657.15 55,013.95 Slope 0.35 Backfilling 440,30 272.65 103.95 626.60 773.50 1,122.00 4,508.40 3,809.70 10,213,60 14,535,22 Second Excavation 212,225,50 56,354.40 29,491.20 149,126,40 29,491.20 29,491.20 4,298.40 0.60 Excavation 108,698.40 46,924.20 21,921.60 154.691.41 14,614.80 4,358.40 2,986.20 17,893.20 Total (Including Tax and Overhead) Partial Mixing Aerated Lagoon No.2 Partial Mixing Aerated Lagoon No.3 Partial Mixing Aerated Lagoon No.1 Orain and Connection Pipe (500mm) falet Sewer(1700*1700mm, H=1.0m) Connection Pipe (1800mm,H=2.0m) Connection Pipe (1500mm,H=3.0m) Connection Pipe (800mm, H=3.0m) Complete Mixing Aerated Lagoon Outfall Sewer (1350mm, H=1.0m) Storm Water Settling Tank Yotal (US\$) dministration Building Juit Cost Items Distribution Chamber Disinfection Tank Grit Chamber Road

Table 8.5.10 Construction Cost of Sewage Treatment Plant

Note1: Bill of quantities are shown in supporting report 8.5.3.

Note2: Unit cost of pipe laying was calculated as shown in supporting report 8.5.4.

Note3: Unit cost except pipe laying are shown in supporting report 8.5.1.

Table 8.5.10 Construction Cost of Sewage Treatment Plant (Cont'd)

					1 - 3	Tomography		Domovol of	
Items	Pipe Laying	Pipe Laying Pipe Laying	Fipe Laying	500mm, H=1.0	1500mm Road	Road	Pavement	Surplus Soil	Total
I'nit Cost	139.68	1	77.58	55.93	li	1.50	9.00	1.01	(USS)
Grit Chamber				•	,			1,892.74	134,452.79
Dietribution Chamber	•	•	•		•	•	•	366.63	34,525.58
Complete Mixing Acrated Lagoon	•	•	•		•			173,852.31	468,849.51
Partial Mixing Aerated Lagoon No.1	•	•	•	•	,	•	•	86,544.88	269,339,68
Partial Mixing Aerated Lagoon No.2		•	•	1	•	•		74,245.10	249.733.10
Partial Mixing Aerated Lagoon No.3	•		•	ı	,	•	•	56,980.16	222,211.76
Storm Water Settling Tank		1	•	•	•	,	•	12,262.41	85,426.61
Disinfection Tank	,	•	ı	1	•	,	f	32,383.63	95,090.48
Outfall	•	,	•	1	1	•	•	275.73	39,161.93
Outfall Sewer (1350mm, H=1.0m)		1	•	ì	•	•	•	•	61,642.00
Inlet Sewer(1700*1700mm, H=1.0m)	•		,	•	•	,	•	1	24,515.00
Connection Pipe (800mm, H=3.0m)	79,617.60			1	•	ı	•	1	79,617.60
Connection Pipe (1800mm, H=2.0m)	•	520,553.00	•		•		•	•	520,553.00
Administration Building	•	•	,	•		,	•	•	0:00
Drain and Connection Pipe (500mm)	•	ı	24,980.76	37,249.38	•	•	ı	1	62,230.14
Connection Pipe (1500mm,H=3.0m)		•	ı	•	113,847.88			•	113,847.88
Road	•	•	1	1	•	750.00	198,090.00	•	198.840.00
Total (US\$)	79,617.60	520,553.00	24,980.76	37,249.38	113,847.88	750.00	198,090.00	438,803.59	2,660,037.06
Total (Including Tax and Overhead)	113,305.79	740,811.98	35,550.74	53,010.52	162,019.76	1,067.34	281,906.83	624,472.35	3,785,565.24

Note1: Bill of quantities are shown in supp Note2: Unit cost of pipe laying was calcult Note3: Unit cost except pipe laying are sho

8.5.6 Specifications and Unit Price of Mechanical Electrical Facilities in Sewage Treatment Plant

	Facilities	Phase 1	Phase 2	Unit Price (US\$)
1 Grit Chamber and Screen	n			
1) Screen				
Туре	Bar screen			
Dimension Widt	h 3.00 m			
Number		4	4	4,00
2 Complete Mixing Aerate	d Lagoon			
1) Aerator				
Туре	Floating surface aerator		•	
Motor output	30 kW		•	
Number	(4 sets/basin)	20	20	55,90
3 Partial Mixing Aerated I	agoon		÷	
1) Aerator				
Туре	Floating surface aerator			•
Motor output	5.5 kW			•
Number	(2 sets/basin)	24	24	22,00
4 Disinfection Tank				,
1) Chlorinator - A	•			
<u> </u>	mounted type			
Capacity	4.0 kg/hour			
Number		2	1	3,50
2) Chlorinator - B			·	. 0,0
•	mounted type			
Capacity	70 kg/hour	*		
Number	, v 1811021	2	- -	14,10
3) Gas Evaporator		-		, - \
-	mounted type			
Capacity	2700 kg/day	and the second		
Number	2700 kg/day	2		32,10
4) Chlorine Gas Cy	lindar	.		32,10
Capacity	1.0 ton			
Number	1,0 (0)1	8	0	2.50
5) Pressure Water I	Du	0	8	3,50
•		•		
* -	rifugal type			
Motor output Number	18.5 kW	2		
		L ,		4,60
5 Other Mechanical Equip	ment			02.7
Number		. 1 .	-	83,60
CDI (1 ID W)			1	67,90
6 Electrical Facilities		_		
1) Sub-station		1	•	270,30
			1	120,30
Control panel		1	1	804,70
Monotoring pane		1	1	69,70
4) Power transmiss	ion line	1	-	125,00
5) Others		1		63,50
•		-	1	49,70

()