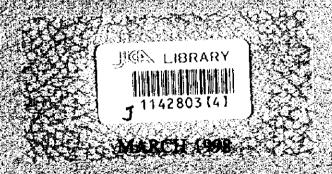
TARAN BUTERNATIONAL COOPERATION AGENCY

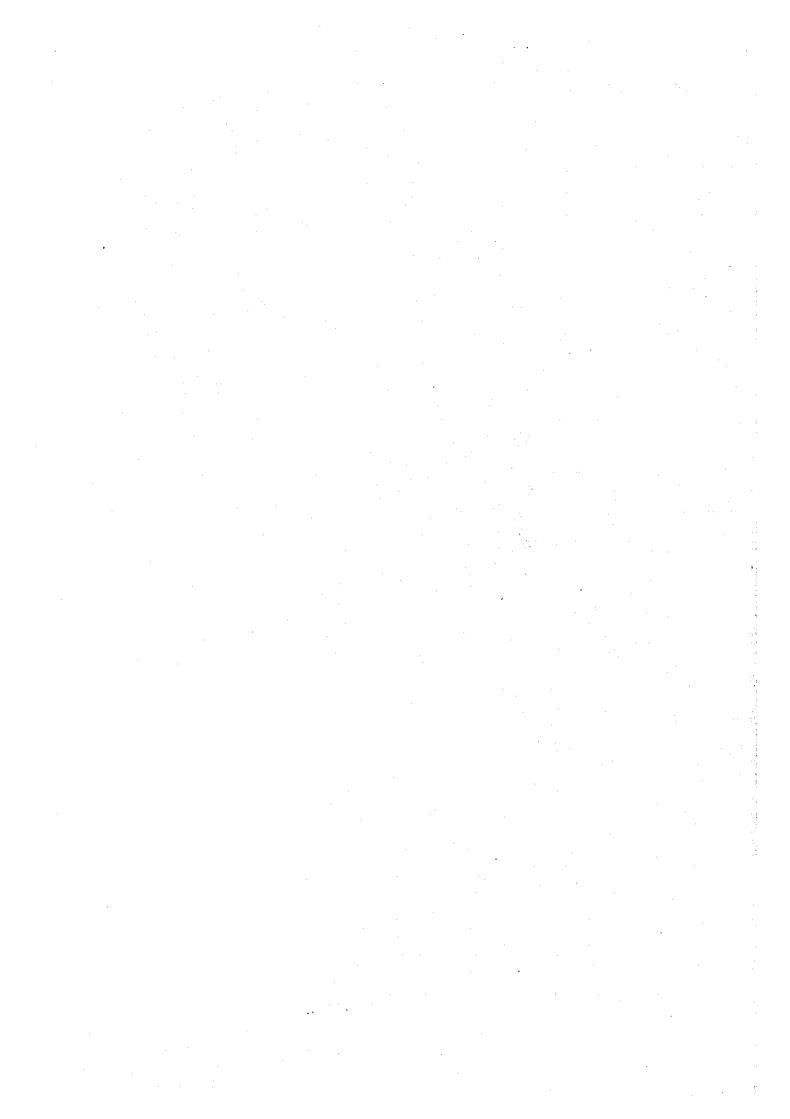
MINIOTE OF BURLE WERKS TOURISM AND THERE PROPERTY AND STREET HET THE REST OF BURNING

THE SEVERACE SYSTEM


IN

METROPOLITAN TRANA
IN

THE RESERVE OF ALBANIA


HRATETHER.

HOROGENE MENTEN

MIRKON ROGESERRO SERKER CO., LTD. TOHMATSU & CO.

> \$ \$ \$.1.8 98-031

JAPAN INTERNATIONAL COOPERATION AGENCY

MINISTRY OF PUBLIC WORKS, TOURISM AND TERRITORY ADJUSTMENT REPUBLIC OF ALBANIA

)

THE STUDY
ON
THE SEWERAGE SYSTEM
IN
METROPOLITAN TIRANA
IN
THE REPUBLIC OF ALBANIA

FINAL REPORT

SUPPORTING REPORT

MARCH 1998

NIPPON JOGESUIDO SEKKEI CO., LTD. TOHMATSU & CO.

 $(-\mathbf{y}_{i})_{i} = (-1)^{i} \mathbf{x}_{i} \mathbf{y}_{i} + (-1)^{i} \mathbf{y}_{i} + (-1)^{i} \mathbf{y}_{i} \mathbf{y}_{i} + (-1)^{i} \mathbf{y}_{i} \mathbf{y}_{i} + (-1)^{i} \mathbf{y}_{i} \mathbf{y}_{i} \mathbf{y}_{i} + (-1)^{i} \mathbf{y}_{i} \mathbf{y}_{i}$

1142803[4]

SUPPORTING REPORT

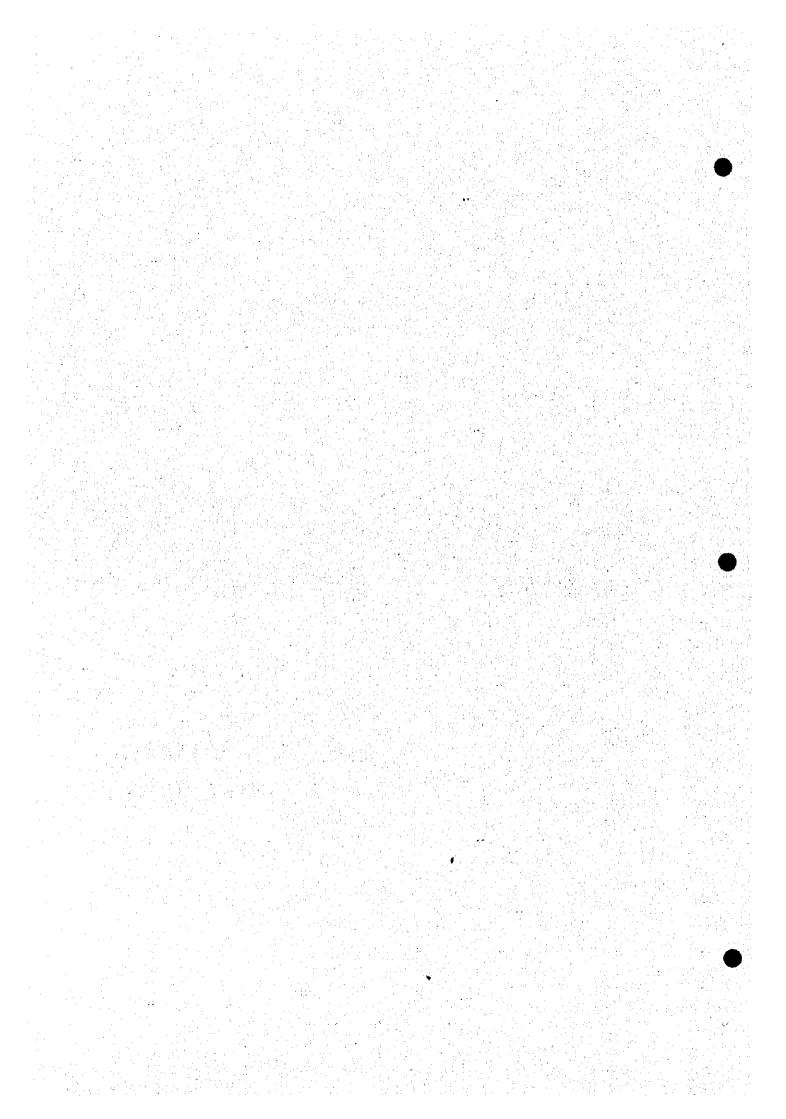
TABLE OF CONTENTS

СНАР	TER 1 INTRODUCTION	PAGE
	Minutes of Meeting on Exchanged between JICA and Albanian Side	1111
1.4.1	Minutes of Meeting on Exchanged between FeA and Albaman Side	
СНАР	TER 2 DESCRIPTION OF THE STUDY AREA	
СНАР	TER 3 POPULATION AND WATER DEMAND PROJECTION	
OII/II		٠.
СНАР	TER 4 EXISTING SEWERAGE SYSTEM	
4.1.1	Evaluation of Existing Sewage Collection System	4.1.1-1
4.1.2	Field Inspection Result on Interceptor Main	4.1.2-1
4.4.1	Resident's Awareness on Environmental Sanitation	4.4.1-1
СНАР	TER 5 SEWERAGE SYSTEM ORGANIZATION AND OPERATION	
5.1.1	Financial Accounting System in Albania	5.1-1
5.1.2	Enterprise of Water Supply of Tirana	5.1-3
5.1.3	Institute of Study and Design of Water Supply and Construction	5.1-7
5.1.4	Financial Statements	5.1-11
СНАР	TER 6 WATER QUALITY EXAMINATION	
6.2.1	Law on Environmental Protection	6.2.1-1
6.3.1	Results of Water Quality Analysis	6.3.1-1
6.3.2	Water Quality Field Observation Data	6.3.2-1
CHAI	TER 7 APPROACH TO SEWERAGE SYSTEM PLANNING	
701	Conserve Manager Annual Province	
7.2.1	Sewerage Planning Area and Population	*, *
7.2.2	Rainfall Data and Its Intensity Formula	The second secon
7.4.1	Flow Capacity Evaluation of the Lana River	
7.4.2	Storm Overflow Chamber Structure in Combined System	
7.4.3	Study on Improvement of Collection System	7.4.3-1
CHAP	TER 8 OVERALL PLAN AND PRELIMINARY DESIGN OF SEWERAC	SE SYSTEM
8.1.1	Sewage Collection System	8.1.1-1
8.2.1	Topographic Survey of Sewage Treatment Plant Site	8.2.1-1

)

8.2.2	Soil Investigation	8.2.2-1
8.2.3	Capacity Calculation	8.2.3-1
8.2.4	Hydraulic Calculation	8.2.4-1
8.5.1	Unit Construction Cost of Wastewater Facilities	8.5.1-1
8.5.2	Unit Construction Cost of Sewer Pipe Sewage Collection System Construction Cost	8.5.2-1
8.5.3	Sewage Collection System Construction Cost	8.5.3-1
8.5.4	Bill of Quantities of Sewage Treatment Plant	8.5.4-1
8.5.5	Construction Cost of Sewage Treatment Plant	8.5.5-1
8.5.6	Specification and Unit Price of Mechanical and Electrical F	acilities
	in Sewage Treatment Plant	8.5.6-1
СНАР	TER 9 PRIORITY PROJECT	
СНАР	TER 10 OPERATION AND MAINTENANCE PROGRAM	
10.4.1	Maintenance and Operation Cost	10.4.1-1
СНАР	YEER 11 MOUNTATION DOOCDAM	
11.3.1	•	11.3.1-1
СНАГ	PTER 12 LEGISLATIVE AND INSTITUTIONAL ARRANGE SEWER SERVICE AND URBAN SANITATION	MENTS RELATIVE TO
СНА	PTER 13 FINANCIAL ANALYSIS	
13.5.	1 FIRR Calculation	13.5.1-1
13.6.	1 Tariff Structure for Sewerage Services	13.6.1-1
СНА	PTER 14 MANAGEMENT FORM OF FUTURE SEWERAGE	SYSTEM
CHAI	PTER 15 PROJECT EVALUATION	
15.4.	1 Effect on Improvement of Water Quality in the Lana River	by Implementation
•	of Project	15.4.1-1
15.4.	2 Environmental Impact Assessment (EIA)	15.4.2-1
15.4.	• • •	
15.4.	·	
СНА	PTER 16 CONCLUSIONS AND RECOMMENDATIONS	

SUPPLEMENTAL REMARKS


•)

Reques	st of Report Revision from Albania	······································
	from the Study Team	
No. 1	Industrial Effluents	S-1
No. 2	Chlorine Disinfection of Treated Sewage Effluent	S-5
No. 3	Disposal and Reuse of Sludge	S-7
	Study on the Flow Reduction Problem of the Lana River	

()

()

CHAPTER 1
INTRODUCTION

Minutes of Discussion on the Inception Report for the Study on the Sewerage System in Metropolitan Tirana

for

The Republic of Albania

9 August 1996

Tirana, Albania

Kenji HORI

JICA Study Team Leader

Albert BROJKA

Minister

Ministry of Public Works,

Tourism and Territorial Adjustment

WITNESSED by:

Prof. Masataka SUGAHARA

Chairman

JICA Advisory Committee

(

()

Based on the results of the Preparatory Study, the Japan International Cooperation Agency (JICA) decided to conduct the Study on the Sewerage System in Metropolitan Tirana in the Republic of Albania (hereinafter referred to as "the Study") and sent to Albania a Study Team, headed by Kenji HORI (hereinafter referred to as "the Study Team"), from August 4 to August 11, 1996 in order to explain the Inception Report and confirm Scope of Work of the Study.

During their stay in Albania, the Study Team held meetings with the Directorate of the Project Management Unit, the Ministry of Public Works, Tourism and Territorial Adjustment, and other authorities concerning the Government of Albania and conducted a field survey in the study area.

In the course of the meetings and the field survey, both parties have discussed and agreed on the outline shown below. The Study Team will proceed to continue its work and to prepare the Study Report.

The list of those who attended these meetings are shown in Appendix-1.

Outline of Minutes of Discussion

1. The Study Area

Both the Study Team and the Albanian side confirmed that the Study covers Metropolitan Tirana, which has an area of 2,700 ha and is shown in Appendix-2.

2. The Category of Wastewater

Both sides agreed to include the wastewater from farming activities (the livestock industry) in the scope of the Study if this type of wastewater complies with the suitable effluent standards to be recommended under the scope of the Study.

3. Counterpart Agency

Directorate of Water Supply and Sewerage (DWSS), Ministry of Public Works, Tourism and Territorial Adjustment shall act as the counterpart agency for the Study at its own expense, in order to give full support to the counterpart activities.

Mont

TO TO

4. The Members of the Steering Committee

The Albanian side agreed the members of the Steering Committee will be decided by the end of August 1996.

The steering committee is to act advice and decision making at their own expense.

5. The Members of the Counterpart Team

The Study Team requested to the Albanian side to provide/nominate the members of the counterpart team for the Study so as to conduct the Study smoothly from the following sectors at their own expense.

- (1) Full-time coordinator from MOPWT
- (2) Planning engineer(s) for water supply and sewerage from MOPWT
- (3) Mechanical/Electrical engineer

The Albanian side replied to provide to the Study Team by August 15, 1996.

6. JICA Counterpart Training

The Study Team informed the Albanian side that JICA is ready to invite a member of the counterpart team to Japan for training to help facilitate the smooth conduct of the Study.

7. Provision of an Office for the Study Team

The Study Team reminded the Albanian side to provide a suitable office with equipment, desks, chairs, and tables for planning and drawing work. The Albanian side promised to provide a suitable office space to the Study Team by August 12, 1996.

8. Land for the Sewage Treatment Plant

The Albanian side showed the Study Team a candidate site for sewage treatment plant. The Study Team, however, will prepare alternative plans taking into account of technical and economical aspects.

Mory.

多多

9. Non-interference with the Other Projects in the Field of Water Supply and Sewerage System Both sides confirmed that the other projects do/will not interfere with the Study. The Albanian side agreed to inform the Study Team about the contents and scope of the work of the new project(s) concerning to the water supply and sewerage/sanitation, when this kind of project commences.

10. Arrangement of the Planning Fundamentals

Both sides agreed to arrange the planning fundamentals such as water consumption per capita per day as much as possible with other concerned projects.

11. Systematic Tariff Collection

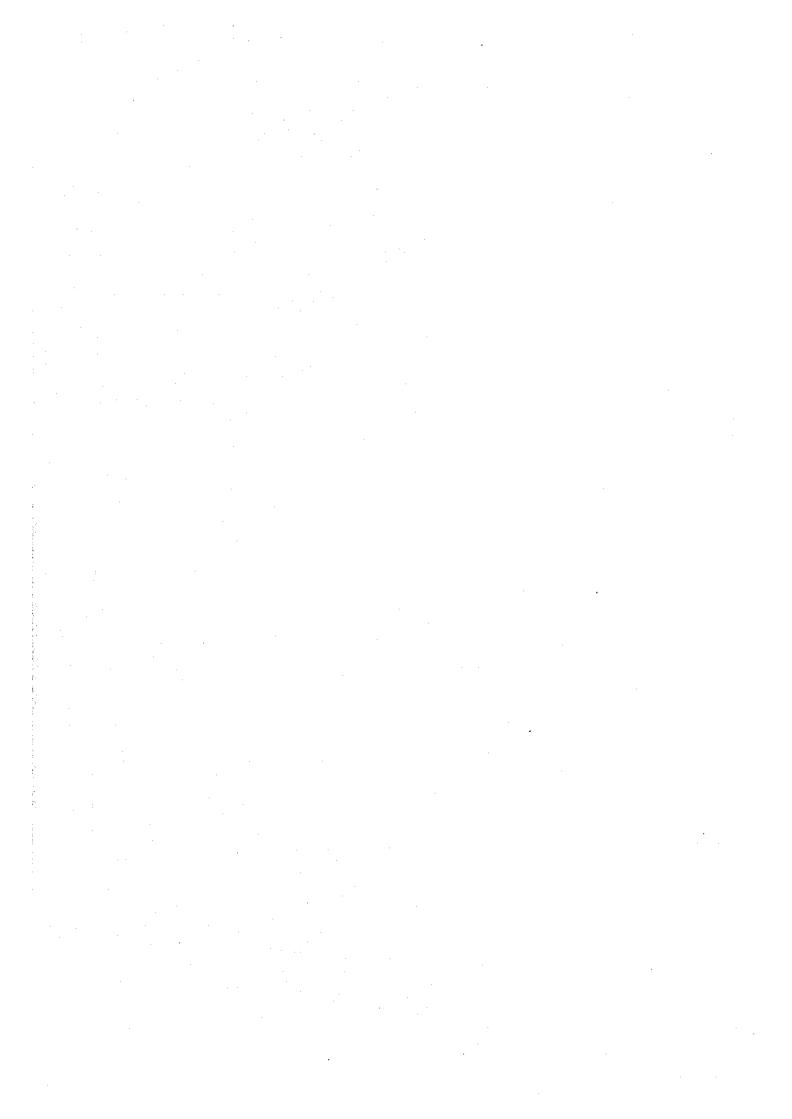
Both sides agreed that, regarding the tariff collection for the sewage works, the Study will aim to establish the most comprehensive system, which will be followed to the tariff of the water works.

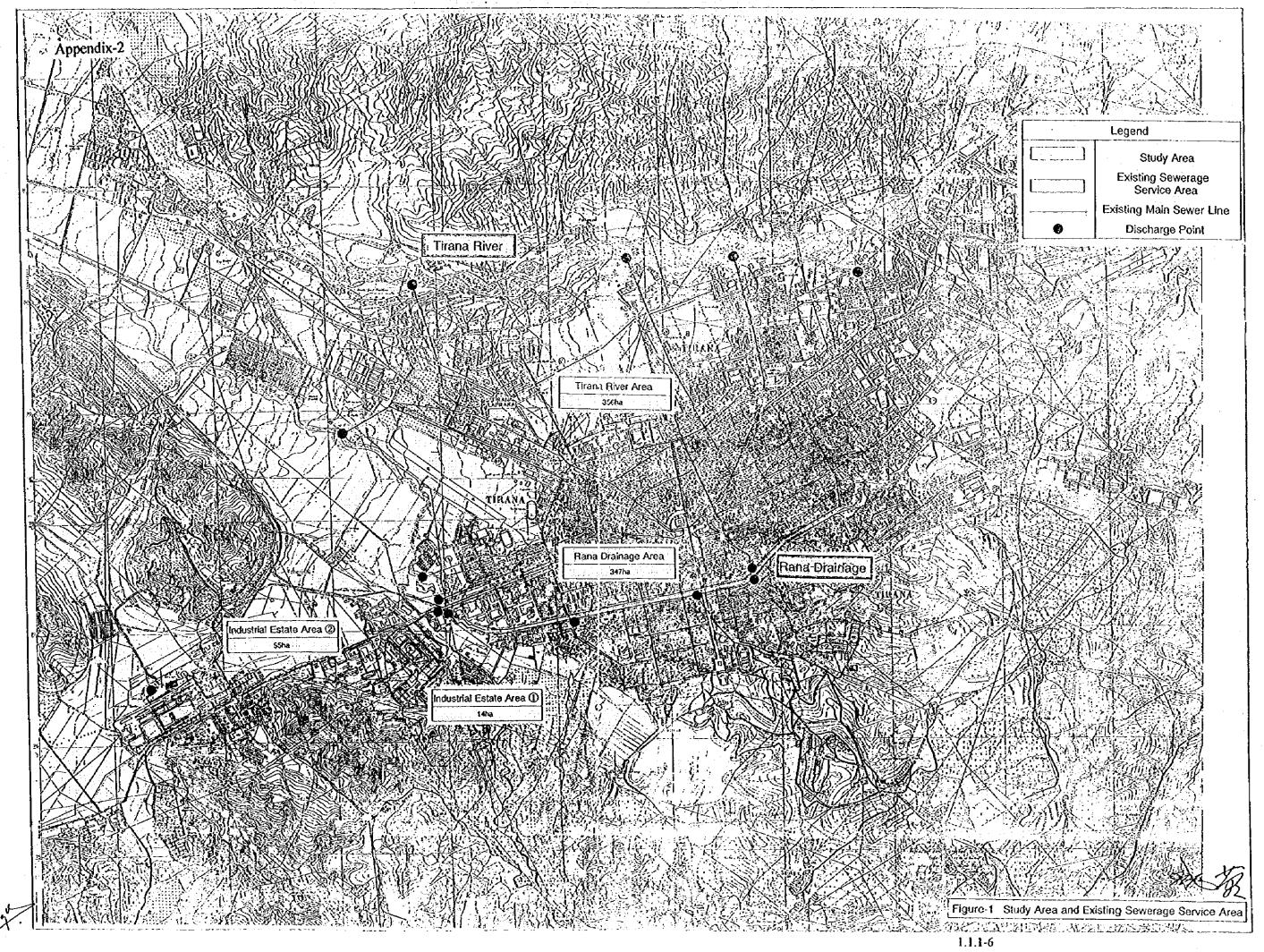
12. Related Organization Chart

The Study Team requested to Albanian side to provide related organization chart concerning water works/sewerage works of Albanian government, Tirana district and Municipality of Tirana. Albanian side provided the chart to the Study Team.

()

水石


Appendix-1 Attendance List


Name	Position	Place of Employment
Albert BROJKA	Minister	Ministry of Public Works, Tourism and Territorial Adjustment
Stavri RISTANI	Director	Ministry of Public Works, Tourism and Territorial Adjustment Directorate of Water Supply and Sewerage
Juli SHLLAKU	Director	Ministry of Public Works, Tourism and Territorial Adjustment Territorial Planning Department
Valdet KODRA	Desk of Japan	Council of Ministers Department of Economic Development and Foreign Aid Coordination
Kujtim HOXHA	Chief of the Sector for Public Services	Municipality of TIRANA
Merita MULLAJ	Chief Engineer	Enterprize for the Maintenance of Roads and Sewerage of TIRANA
Fahri MAHO	Specialist for Sewerage	Ministry of Public Works, Tourism and Territorial Adjustment Directorate of Water Supply and Sewerage
Mirand CAUSHI	Chief of the Sewerage Sctor	Ministry of Public Works, Tourism and Territorial Adjustment Directorate of Water Supply and Sewerage
Arben ZAJMI	Director	Ministry of Public Works, Tourism and Territorial Adjustment Project Implementation Unit for the Bovilla Part of Water and Sewerage of TIRANA
Xhorxhi BUCKA	Specialist for Water Spply	Ministry of Public Works, Tourism and Territorial Adjustment Directorate of Water Supply and Sewerage
Artan ZYLFI	Director	Water Work Company for the District of TIRANA

Mbig

为

()

Minutes of Meeting on the Interim Report for The Study on the Sewerage System in Metropolitan Tirana

in

The Republic of Albania

Agreed upon between

Ministry of Public Works, Territorial Adjustment and Tourism

and

Japan International Cooperation Agency

18 December 1996

Tirana, Albania

Ernest NOKA

Vice Minister

Ministry of Public Works,

Territorial Adjustment and Tourism

Kenji HORI

JICA Study Team Leader

WITNESSED by:

Prof. Masataka SUGAHARA

Chairman

JICA Advisory Committee

Based on the results of the Preparatory Study, the Japan International Cooperation Agency (JICA) decided to conduct the Study on the Sewerage System in Metropolitan Tirana in the Republic of Albania (hereinafter referred to as "the Study") and sent to Albania a Study Team, headed by Kenji HORI (hereinafter referred to as "the Study Team"), from 4 August to 27 September, 1996 as the 1st field work.

The Study Team had submitted the Progress Report (1) as the outcome of the field investigation and study on 23 September, 1996. On the basis of the discussion results on the Report, the Study Team had reviewed and developed it through a continuous home work in Japan and then submitted a report to the Government of Albania as the Interim Report on 13 December, 1996, and started the 2nd field work having a schedule for the work till 17 February, 1997 as to scrutinize the project conditions.

During their study in Albania, the Study Team held initial meetings with the Directorate of the Project Management Unit, the Ministry of Public Works, Territorial Adjustment and Tourism, and other authorities concerning the Government of Albania.

In the course of the meetings, both parties have discussed and agreed on the outline shown below. The list of those who attended these meetings are shown in Appendix.

The outline of minutes of the meeting are:

1. Fundamental Conditions for the Study

Both the Study Team and the Albanian side confirmed that the fundamental conditions for the Study mentioned in the Interim Report, such as planned sewerage area, planned population, demand for water in target year, planned target water quality and priority area to be improved urgently the current environmental situation are satisfactory.

2. Sewage Treatment Method

The Albanian side agreed that sewage treatment method, aerated lagoon system, recommended by the Study Team are acceptable to employ for the project.

SA

The Albanian side requested to submit a comparison regarding construction cost including land, operation & maintenance cost and advantage/disadvantage taking into account of the operation and maintenance.

3. The Land (as a candidate land) for Construction of the Sewage Treatment Plant

The Albanian side informed that the land around Laknasi for construction of the treatment plant proposed by the Study Team will be possible to be obtained and no land problem affected by the coal mining is considered, because the mining is closed at present and mining area is not in the candidated place of the plant.

4. Improvement of the Storm Drainage

The Albanian side agreed that an improvement of the existing sewer on purpose to storm drainage should not be treated in the scope of the Study because of the reason mentioned in the Interim Report. An emergency inundation countermeasures in the urgent improvement areas, however, will be provided under this project. In connection to this matter, both parties agreed that only preliminary computer-aid calculation will be carried out to indicate the required size of sewers for improvement of the existing sewer network.

5. Regulation on the Water Pollution Control

The Albanian side informed that draft new regulation on the water pollution control is preparing and will be published in January 1997. The target BOD value for discharge of the wastewater to the river will be regulated as 25 mg/l.

6. Counterpart Training in Japan

Mr. Fahri Maho, Specialist for Sewerage, Directorate of Water Supply and Sewerage, MOPWT was nominated as a participant for the training, and an application document will be given to the JICA through general route in the Government of Albania as soon as possible.

Appendix Attendance List

Name	Position	Place of Employment
Ernest NOKA	Vice Minister	Ministry of Public Works, Territorial Adjustment and Tourism
Stavri RISTANI	Director	Ministry of Public Works, Territorial Adjustment and Tourism Directorate of Water Supply and Sewerage
Mirand CAUSHI	Chief of the Sewerage Sector	Ministry of Public Works, Territorial Adjustment and Tourism Directorate of Water Supply and Sewerage
Mariana COKU	Chief of the Water Supply Sector	Ministry of Public Works, Territorial Adjustment and Tourism Directorate of Water Supply and Sewerage
Fahri MAHO	Specialist for Sewerage	Ministry of Public Works, Territorial Adjustment and Tourism Directorate of Water Supply and Sewerage
Arian JOVANI	Specialist for Water Supply	Ministry of Public Works, Territorial Adjustment and Tourism Directorate of Water Supply and Sewerage
Etleva MILKANI	Specialist for Sewerage	Ministry of Public Works, Territorial Adjustment and Tourism Directorate of Water Supply and Sewerage
Merieta KOCA	Specialist	Council of Ministers DEDAC
Bujar REME	Sanitary Engineer	Ministry of Health and Environment
Juli SHLLAKU	Director	Municipality of TIRANA Depertment of Urban Planning
Luljeta HOXHA	Specialist for Water Supply & Sewerage	Municipality of TIRANA Depertment of Urban Plannig

They

Name	Position	Place of Employment
Lulezim QENAMI	Director	Municipality of TIRANA Depertment of Public Work
Xhemal CECO	Specialist	Municipality of TIRANA Depertment of Road and Sewerage
Merita MULLAJ	Chief Engineer	Enterprize for the Maintenance of Roads and Sewerage of TIRANA
Faruk TORO	Director	Water Works Enterprise of Tirana
Nazmi RUDI	Director	Hydraugeology Enterprise
Fatlinda MURTHI	Specialist for Urban Planning	Urban Planning Institute
Thoma KORINI	Director	University of Geology and Mining Depertment of Mining

**

Minutes of Discussions on the Progress Report 2 for the Study on Sewerage System in Metropolitan Tirana in the Republic of Albania

The discussions on the captioned report was held at the Ministry of Public Works, Tourism and Territorial Adjustment from 11th to 12th February 1997 by the presence of officials from the Ministry of Public Works, Tourism and Territorial Adjustment, members of the project steering committee and the JICA Study Team.

The contents and each subject of the Progress Report 2 were explained by the Study Team to Albanian officials concerned and a series of discussions were held. Major subjects discussed and conclusions reached among others were given below.

1. What is the basis on revision of planned sewage quality from BOD 260 mg/l and SS 250 mg/l to 200 mg/l of both BOD and SS, respectively?

Two factors are considered in the adjustment:

- Technical leakage of sewage from sewer pipes and groundwater infiltration into sewer pipes are considered at 35 % and 15 % of the planed daily average sewage flow.
- Water quality examination results conducted during the Stage 1 field work, especially domestic sewage and industrial wastewater.
- 2. What is the reason of decrease on area requirement and power consumption of the aerated lagoon from Progress Report-1 to Progress Report-2?

This reduction owes to the revision of the planned sewage quality and quantity as mentioned above in view of BOD loading. In addition, the influence of wastewater temperature in lagoon and atmospheric temperature was reflected to decrease retention time required for the lagoon and the depth of lagoon and to decrease area requirement.

3. What is the source and basis of design criteria for aerated lagoon?

Several commonly known technical references, such as design manual issued by EPA (Environmental Protection Agency) of U.S.A, were referred. In the preliminary design, so-called "dual-power-level, multi-cellular aerated lagoon" is adopted as economical treatment process.

4. What was the outcome of water quality examination conducted during the Stage 2 field work?

The water sampling entailed to four consecutive weeks to obtain the required number of samples. The examination results will be submitted to the Study Team on February 13 from the Institute of Public Health, Ministry of Health and Environmental Protection, and will be incorporated in the Draft Final Report together with such results obtained during the Stage 1 field work.

5. Construction cost, operation and maintenance cost, and advantage/disadvantage in operation and maintenance are taken up in the comparison of aerated lagoon method and oxidation ditch method. More precise comparison of these two methods are desired to be incorporated in the Draft Final Report.

The method of comparison presented in the Progress Report 2 will be retained as it is. However, additional technical information on oxidation ditch method will be prepared and furnished separately. The counterpart training of JICA to be held in Japan is an another opportunity to learn more about the different engineering practices.

6. Application of PVC pipe to sewer system is desired to be considered. Quality of material and cost information can be furnished to the Study Team.

Applicability of PVC pipe will be studied and its result will be incorporated in the Draft Final Report.

 Please recommend final treatment and disposal of excess sludge from the sewage treatment plant.

Not only for technical measures, but also relevant actions to be taken up for this specific subject will be contained in the Draft Final Report.

8. The JICA Study has projected the future population in the Study Area at approximately 730,000 in 2010, while other projects/studies show approximately one million.

The said figure (730,000 persons) by the target year 2010 had been confirmed with officials concerned during the Stage I field work. It was also mentioned in our report that the future population of Metropolitan Tirana would reach one million during 2020s. It shall be noted that future population shall be projected not only in view of future land use, but also comprehensively taking into account industrial and economic development, and these frame values are subject to review prior to commence the implementation of the project.

9. Please prepare disbursement schedule by classification of foreign and local fund.

Any cost estimate presented in the Progress Report 2 is preliminary and detailed cost estimate with their foreign and local breakdown will be prepared during the Stage 2 domestic work to incorporate in the Draft Final Report.

The discussions on the Progress Report 2 was adjourned at 1:20 p.m. on 12 February 1997. It was agreed among attendees of discussions that the above mentioned results of discussions will be thoroughly taken into consideration during the Stage 2 domestic work and reflected on the Draft Final Report of the whole Study.

This minutes of discussions was noted and confirmed on 12 February 1997 by:

Mr. Emest NOKA

Vice Minister

Ministry of Public Works, Tourism and

Territorial Adjustment

Mr. Kenji HORI

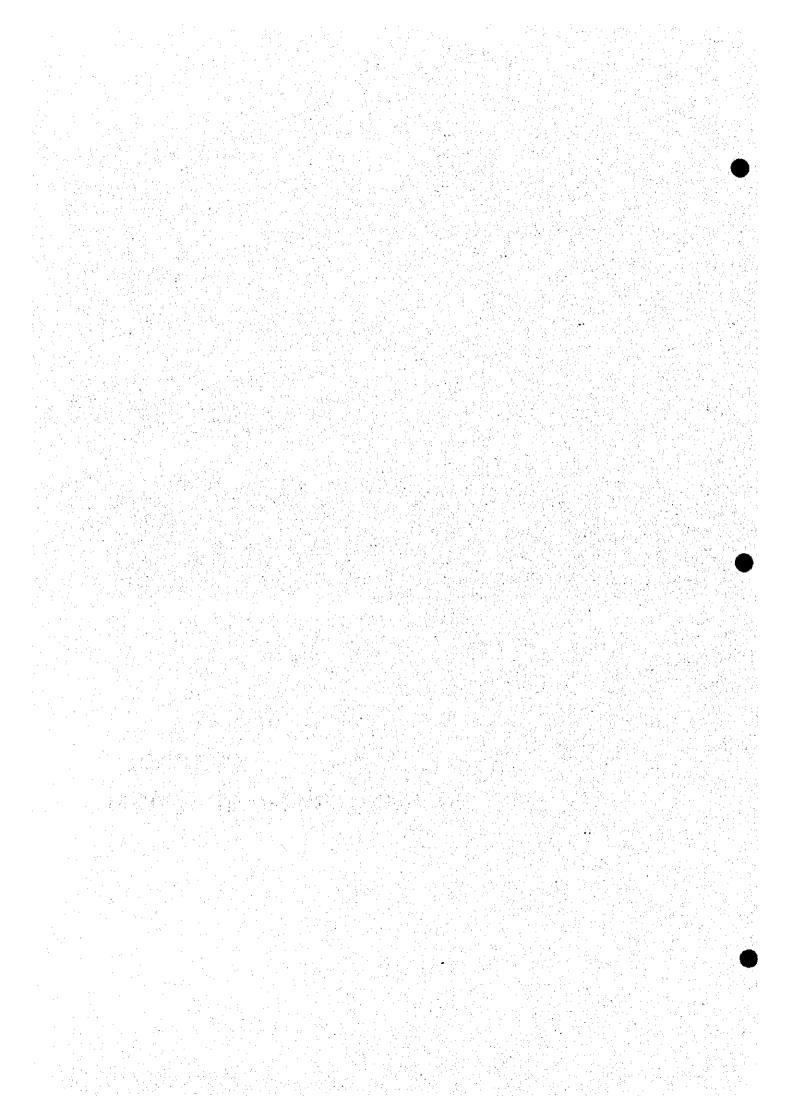
Team Leader

JICA Study Team

Attendants List

February, 11, 1997 10,00 AM

Nr	Name	Organisation / Position			
1	Fahri Maho	Chief of Steering Community of Study on Sewerage System in Tirana			
2		Technical Advision, Phare Water PMU			
3	Ermira Tase	Specialist of future PMU			
4	Nazmi Rudi	Director of Hydro-geology of Albania			
5	Miranda Çaushi	Chief of the Sector of Sewerage			
6	Eva Milkani	Specialist at the General Directory of Watersuuply and Sewerage			
7	Shpresa Leka	Director at the Directory of Planning and Regulation of Territory			
8	Xhemal Çeço	Municipality of Tirana (Directory of Sewerage and Roads)			
9	Arjan Jovani	Specialist at the General Directory of Watersuuply and Sewerage			


Attendants List

February, 12, 1997 10:00 AM

NR	Name	Organisation / Position		
1	Fahri Maho	Chief of Steering Community of Study on Sewerage System in Tirana		
2	Nazmi Rudi	Director of Hydro-geology of Albania		
3	Lorena Kostallari	Specialist DEDAC		
4	Mariana Çoku	Chief of the Sector of Watersupply		
5	Arjan Jovani	Specialist at the General Directory of Watersupply and Sewerage		
6	Bujar Reme	Sanitary Engineer, Ministry of Health and Environment		
7	Ermira Tase	Specialist of future PMU		
8	Eva Milkani	Specialist at the General Directory of Watersupply and Sewerage		
9	Xhemal Çeço	Municipality of Tirana (Directory of Sewerage and Roads)		

(

CHAPTER 4
EXISTING SEWERAGE SYSTEM

4.1.1 Evaluation of Existing Sewage Collection System

Table 4.1.1 exhibits breakdown of sewered area served by sewer lines having pipe diameter of 400 mm or larger.

Table 4.1.1 Breakdown of Sewered Area by its Catchment Area

Contents	Area (ha)	Tirana	Central	Lana North	Lana South	Kombinat	Total
Length	A < 10	8,095	6,135	18,105	10,373	2,008	44,716
(m)	A < 20	2,128	2,256	5,043	6,280	580	16,287
	A < 30	1,798	2,140	3,137	3,279	372	10,726
	A < 50	1,576	827	1,866	605	961	5,835
	A < 100	2,974	2,171	808	1,039		6,992
	A > 100	2,881	2,101	4,357	2,810		12,149
	Total	19,452	15,630	33,316	24,386	3,921	96,705
Percentage	A < 10	42	39	. 54	43	51	46
(%)	A < 20	11	14	15	26	15	17
	A < 30	9	14	9	13	9	11
	A < 50	8	5	6	2	25	6
	A < 100	15	14	2	4		7
	A > 100	15	13	13	12		13
	Total	100	100	100	100	100	100

Note : D≥ 400

It is verified from the above tables that about half of existing sewer lines, even having diameter of 400 mm or larger, have their respective service area of less than 10 ha, owing to its principal design as the combined system.

Evaluation procedure is as follows:

- a. Flow capacity (safe ratio) is calculated as F/C(%):
 F/C=(planned sewage quantity)/(full flow capacity of sewer line) x 100%
- b. Summation of total length and F/C(%) by pipe diameter as shown in each Table.

1) Flow capacity as combined system (C-1)

Sanitary Sewage Flow Sanitary Sewage per Capita 440 liter/day (Hourly Maximum) Storm Water Flow Rainfall Intensity Formula 2750 (Return Period: 4 Year) 17 t + For Main Pipe (D≥500) Rainfall Intensity Formula 2520 (Return Period: 2.5 Year) t + 17 For Small Pipe (D≤400) **Runoff Coefficient** 0.5 Inlet Time 5 min **Assumed Average Velocity** 1.5 m/sec

Table 4.1.2 Result of Existing Sewer Evaluation

	\					
	Dia (mm)	F/C ≦ 100%	F/C ≦ 150%	F/C ≦ 200%	F/C > 200%	Total
Length	400	3,423	2,990	3,226	20,056	29,69
(m)	500	2,877	1,419	1,236	9,837	15,36
	600	5,027	2,505	2384	11,507	21,42
	800	3,486	1,373	1,104	3,096	9,05
•	1000	1,042	227	868	3,702	5,83
	700x500	1	316			31
	1000x500			199		19
	1500x700		1,536	210	138	1,88
	Network Total	15,855	10,366	9,227	48,336	83,78
	600	2,170	1,204			3,37
	800	452	17 9	242	4,364	5,23
	1000		20	421	2,739	3,18
	1000x600				1,130	1,13
	Interceptor Total	2,622	1,403	663	8,233	12,92
	Total	18,477	11,769	9,890	56,569	96,70
Percentage	400	12	10	11	68	10
(%)	500	19	.9	8	64	10
•	600	23	. 12	11	54	10
	800	38	15	12	34	10
*	1000	18	4	15	63	10
:	700x500		100			10
	1006x500	1		100		10
	1500x700		82	11	7	10
÷	Network Total	19	12	11	,58	- 10
	600	64	36			. 10
	800	. 9	3	5	83	. 10
	1000		1	13	86	10
	1000x600				100	. 10
	Interceptor Total	20	11	5	64	10
	Total	19	12	10	58	10

2) Flow capacity as combined system (C-2) Design conditions is same as C-1.

Table 4.1.3 Result of Existing Sewer Evaluation (Combined: Case-2)

	Dia (mm)	F/C ≦ 100%	F/C≦150%	F/C≦200%	F/C>200%	Total
Lenth	400	3,777	3,418	3,382	19,118	29,695
(m)	500	3,054	1,419	1,236	9,660	15,369
Ī	600	5,027	2,505	2,384	11,507	21,423
	800	3,486	1,373	1,104	3,096	9,059
Ī	1000	1,042	227	868	3,702	5,839
•	700x500		316			316
	1000x500	1 1		199		199
Ì	1500x700		1,536	210	138	1,884
	Network Total	16,386	10,794	9,383	47,221	83,784
[600	2,170	1,204			3,374
	800	3,132	823	1,272		5,237
:	1000	2,118	1,062			3,180
	1000x600	1,130				1,130
:	Intercepter Total	8,550	3,099	1,272		12,921
	Total	24,936	13,893	10,655	47,221	96,705
Percentage	400	13	12	11	64	100
(%)	500	20	9	8	63	100
	600	23	12	11	54	100
,	800	38	15	12	34	100
	1000	18	4	1 15	63	100
	700x500		100)		100
	1000x500			100		100
	1500x700		82	2 11	7	100
	Network Total	20) 13	3 11	56	100
	600	64	3	6		100
	800	60) 10	6 24	1	100
	1000	6	7 3:	3		10
	1000x600	100	0	- 	<u> </u>	10
	Intercepter Total	60	6 2	4 10		10
	Total	2	6 1	4 1	1 49	10

3) Flow capacity as combined system (C-3)
As reference information, the flow capacity of existing sewer for the current sanitary sewage and storm flow was evaluated.

Sanitary Sewage Flow **Population Density Exisiting Density** Sanitary Sewage per Capita 150 liter/day (Hourly Maximum) Storm Water Flow Rainfall Intensity Formula 1970 (Return Period: 0.5 Year) For Main Pipe (D≥500) t + 18 Rainfall Intensity Formula 1970 (Return Period: 0.5 Year) = For Small Pipe (D≤400) t + 18 **Runoff Coefficient** 0.4 = Inlet Time = 10 min **Assumed Average Velocity** 1.5 m/sec

Table 4.1.4 Result of Existing Sewer Evaluation

			* **			·
	Dia (mm)	F/C ≦	F/C ≦	F/C ≦	F/C >	Total
	400	100%	150%	200%	200%	.00 .00
Length	400	9,639	3,788	4,105	12,163	29,695
(m)	500	5,587	3,085	2,099	4,598	15,369
	600	9,916	713	3,420	7,374	21,423
	800	5,963	1,619	638	839	9,059
	1000	2,137	656	970	2,076	5,839
:	700x500	316				316
	1000x500	. 199				199
	1500x700	1,746	138			1,884
	Network Total	35,503	9,999	11,232	27,050	83,784
	600	3,374				3,374
	800	2,015	763	476	1,983	5,237
	1000	441	678	447	1,614	3,180
	1000x600			1,130		1,130
	Interceptor Total	5,830	1,441	2,053	3,597	12,921
i	Total	41,333	11,440	13,285	30,647	96,705
Percentage	400	32	13	14	41	100
(%)	500	36	20	14	30	100
	600	46	3	16	34	100
	800	66	18	7	9	100
	1000	37	11	17	36	100
	700x500	100				100
	1000x500	100				100
	1500x700	93	7			100
	Network Total	42	12	! 13	32	106
1	600	100				10
!	800	38	15	9	38	10
	1000	14	21	14	51	10
	1000x600		†	100		10
	Interceptor Total	45	11	16	28	10
	Total	43	12	2 14	32	10

This evaluation indicated that about half of existing sewer has flow capacity against the present swage flow.

4) Flow capacity as storm sewer of separate system

Storm Water FlowRainfall Intensity Formula=
$$2750$$
 (Return Period : 4 Year)For Main Pipe (D \geq 500)t + 17Rainfall Intensity Formula= 2520 (Return Period : 2.5 Year)For Small Pipe (D \leq 400)t + 17Runoff Coefficient=0.5Inlet Time=5 minAssumed Average Velocity=1.5 m/sec

Table 4.1.5 Result of Existing Sewer Evaluation

	Dia (mm)	F/C ≦	F/C ≦	F/C ≦	F/C >	Total
		100%	150%	200%	200%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Length	400	3,423	2,990	3,544	19,738	29,695
(m)	500	2,877	1,419	1,291	9,782	15,369
	600	8,640	2,638	2,012	11,507	24,797
	800	5,156	1,718	1,104	6,318	14,296
	1000	1,062	648	868	6,441	9,019
•	700x500		316			316
	1000x500			199		199
	1000x600				1,130	1,130
٠	1500x700		1,536	210	138	1,884
	Total	21,158	11,265	9,228	55,054	96,705
Percentage	400	12	10	12	66	100
(%)	500	19	9	8	64	100
	600	35	11	8	46	100
	800	36	12	8	44	100
	1000	12	7	10	71	100
	700x500		100			100
	1000x500	·		100		100
	1000x600		-		100	100
	1500x700		82	11	7	100
	Total	22	12	10	57	100

This evaluation revealed that only 22% of the existing sewer could accommodate the planned sewage flow with only for storm sewer of separate system in the year 2010.

5) Flow capacity as sanitary sewer of separate system

Sanitary Sewage Flow

Sanitary Sewage per Capita

440 liter/day (Hourly Maximum)

Table 4.1.6 Result of Existing Pipe Evaluation

	Dia (mm)	F/C ≦	F/C ≦	F/C ≦	F/C >	Total
		50%	100%	150%	150%	
Length	400	29,252	443			29,695
(m)	500	15,369				15,369
	600	24,797				24,797
	800	12,370	1,926			14,296
	1000	8,785	234			9,019
	700x500	316				316
	1000x500	199				199
	1000x600	1,130	,*			1,130
	1500x700	1,884				1,884
	Total	94,102	2,603			96,705
Percentage	400	99	1			100
(%)	500	100	:	11.00		100
	600	100				100
	800	87	13		, · · · · · · · · · · · · · · · · · · ·	100
	1000	97	3			100
	700x500	100				100
	1000x500	100			-	100
·	1000x600	100				100
	1500x700	100	·			100
	Total	97	3			100

This evaluation revealed that almost all existing sewer could accommodate the planned sanitary sewage flow in the year 2010.

Table 4.1.7 Evaluation of Existing Sewer Capacity (For Combined Sewer : Case-1)

Sanitary Sewage Flow

Sanitary Sewage per Capita = 440 liter/day (Hourly Maximum)

Storm Water Flow

Rainfall Intensity Formula = 2750 (Return Period: 4 Year)

For Main Pipe ($D \ge 500$) t + 17

Rainfall Intensity Formula = 2520 (Return Period: 2.5 Year)

For Small Pipe (D \leq 400) t + 17

Runoff Coefficient = 0.5
Inlet Time = 5 min
Assumed Average Velocity = 1.5 m/sec

No.	Down	Length (m)	Area	(ha)		Sewage	Quantity		Exis	ting Pipe	Specifica	tion	Cap	acity
	1.7		· ·	1	Sanitary	Storm	Remain	2 (31)						
	Stream	Increment	Increment	Total	Sewage	Water	Sewage	Q ₂ (m ³ /s)	n (mm)	1(‰)	V (m/s)	Q₂(m³/s)	Q_1/Q_2	Judge
1001	1004	826	9.80	9.80	0.013	1.200		1.213	600	12.4	2.42	0.684	177%	NG
1002	1003	94	. 4.10	4.10	0.006	0.624		0.629	300	17.0	1.78	0.126	500%	NG
1003	1004	295	6.60	10.70	0.014	1.424		1.438	400	19.1	2.29	0.288	500%	NG
1004	1009	355	5.47	25.97	0.035	2.826		2.861	600	22.0	3.22	0.910	314%	NG
1005	1006	450	7.60	7.60	0.010	1.075		1.085	600	18.6	2.96	0.837	130%	NG
1006	1008	249	8.30	15.90	0.021	2.038		2.059	600	2.0	0.97	0.274	751%	NG
1007	1008	205	2.88	2.88	0.004	. 0.415		0.419	400	20.9	2.40	0.302	139%	NG
1008	1009	252	3.03	21.81	0.029	2.555		2.585	600	16.6	2.80	0.792	326%	NG
1009	1011	360		54.15	0.073	5.290		5.363	600	27.2	3.58	1.012	530%	NG
1010	1011	564	4.03	4.03	0.005	0.544		0.549	600	21.9	3.21	0.908	61%	OK
Out-11		1, 1						-5.676						
1011	1012	824	0.97	59.15	0.080	0.119	0.157	0.356	600	18.0	2.91	0.823	43%	OK
1012	. 1021	. 491	0.00	59.15	0.080	0.101	0.157	0.338	600	6.3	1.72	0.486	70%	OK
1013	1014	247	1.33	1.33	0.002	0.206		0.207	600	17.2	2.85	0.806	26%	OK
1014	1015	163		5.58	0.008	0.734		0.742	400	2.0	0.74	0.093	798%	NG
1015	1016	268	7.90	13.48	0.018	1.745		1.763	500	2.0	0.86	0.169	1044%	NG
1016	1017B	708	7.90	21.38	0.029	2.001		2.030	400	12.8	1.87	0.235	864%	NG
1017A	1017B	186	1.20	1.20	0.002	0.190		0.192	500	41.3	3.91	0.768	25%	OX
1017B	1020			23.88	0.032	2.351		2.383	500	2.6	0.98	0.192	1238%	NG
1018	1019			4.59	0.006	0.657		0.663	600	2.0	0.97	0.274	242%	NG
1019	1020			7.44	0.010	1.022	1	1.032	800	1.9	1.15	0.578	179%	NG
1020	1021	895				2.456	1	2.499	800	5.6	1.97	0.990	252%	NG
Out-12		1	i	1				-2.470		: '	1			
1021	1060	855	0.00	90.47	0.122	0.000	0.244	0.366	600	5.2	1.57	0.444	83%	ок
1022	1023			0.77		0.117		0.118	400	5.9	1.27	0.160	74%	ОК
1023	1024			1.46		0.212		0.214		14.0	1.96	0.246	87%	OK
1024	1025		·	2.27		0.317	+	0.320	400	9.8	1.64	0.206	155%	NG
1025	1027		0.83	3.10	0.004	0.447		0.451	500	- 20.4	2.75	0.540	84%	OK
1026	1027				0.000	0.043		0.044	400	1.9	0.72	0.090	48%	ОК
1027	1028					0.576		0.582		11.8	2.09	0.410	142%	NG
1028	1035		4			0.669		0.676	600	6.1	1.70	0.481	141%	NG
1029	1031		<u> </u>			0.338	*	0.341	400	8.2	1.50	0.188	181%	NG
1030	1031	209		1.80	0.002	0.283		0.285	600	15.3	2.69	0.761	38%	ок
1031	1034	227	2.35	6.62	0.009	0.900		0.909	500	7.6	1.68	0.330	275%	NG.
1032	1034					0.203		0.204	400	2.0	0.74	0.093	220%	NG
1033	1034					0.241]	0.243	400	2.0	0.74	0.093	261%	NG
1034	1035					1.373	T	1.387	500	12.5	2.15	0.422	329%	NG
1035	4 — - —			+		<u> </u>		2.190	4·	* • • • • • • •			498%	NG
1036								0.293	400	9.4	1.61	0.202	145%	NG
1037								2.633			4		1559%	
1038							· · · · - · - · -	0.259		•	·	/* /··· · · -		
1039								0.443		÷	*	· }	4	·
1040	-			*·			+	0.589		* - · · · · · · · · · · · · · · · · · ·				
1041		- 	÷	· i — — — · ·		f	*	3.027		•				
1042				4	I	f · ·	· · · · · · · · · · · · · · · · · · ·	0.366			d		· · · · · · · · · · · · · · · · · · ·	
1043	+			- t		4		0.082						4
1044	+			+	4	L	+	3.243				+		1
L	1	1	1	1	J) <u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	. *	1) <u></u>	1	1		J

No.	Down	Length (m)	Area	(ha)		Sewage	Quantity		Fyis	ting Pine	Specifica	tion	Capa	icity
-No.			1		Sanitary	Storm	Remain	0 (-3()	I					
	Stream	Increment	Increment	Total	Sewage	Water	Sewage	Q ₁ (m ³ /s)	D (mm)	1 (%,)	V (m/s)	Q ₂ (m³/s)	Q ₁ /Q ₂	Judge
1045	1046	283	3.12	3.12	0.004	0.435		0.439	400	12.7	1.87	0.235	187%	NO
1046	1048	125	1.70	4.82	0.007	0.695		0.701	500	10.9	2.01	0.395	178%	NG
1047	1048	123	2.35	2.35	0.003	0.384	: ::::::::::::::::::::::::::::::::::::	0.387	500	16.2	2,45	0.481	80%	OK
1048	1049	156	1.80	8.97	0,012	1.211		1.223	500	4.4	1.28	0.251	487%	NG
1049	1053	274	0.90	44.10	0.060	3.837 0.135		3.896	800 500	2.0	1.18	0.593 0.169	657%	NG
1050	1051 1052	56		0.80 3.45	0.001	0.133		0.136 0.547	600	2.0 2.0	0.86 0.97	0.169	81% 199%	OK NG
1051 1052	1052	149 157	0.85	4,30	0.005	0.632	i	0.637	800	1.8	1.12	0.563	113%	NG
1053	1057	121	1.08	49.48	0.067	4.172		4.239	800	2.0	1.18	0.593	715%	NG
1054	1056	325	2.64	2.64	0.004	0.394	i	0.397	600	16.6	2.80	0.792	50%	OK
1055	1056	373	3.30	3.30	0.004	0.483		0.487	600	12.0	2.38	0.673	72%	ок
1056	1057	296	1.30	7.24	0.010	0.941		0.950	800	2.0	1.18	0.593	160%	NG
1057	1060	444	6.15	62.87	0.085	4.783	1	4.868	1000	2.0	1.37	1.076	452%	NG
1058	1059	300	3,29	3,29	0.004	0.455		0.460	400	17.6	2.20	0.276		NG
1059	1060	945	7.30	10.59	0.014	1.130		1.144	600	2.0	0.97			NG
Out-13]					-5.715	4 4 4		0.00	<u> </u>		
1060	1061	722	0.00	163.93	0.221	0.000	0.442			8.6	2.01	0.568		NG
1061	1062	482	0.00	163.93		0.000			600	7.8	1 92			NG
1062	1063	280		200.13		3.591			800	17.4	3.47			NG
1063	1065					3.649	0.442			3.3	1.51			NG
1064	1065		·	3.83		0.617	0.443	0.622		3.3	1.75			OK
1065	To STP	1130	6.20	213.61	0.288	3.649	0.442	-3.803	1000x600	3.8	1.93	1.042	420%	NG
Out-14 To STP			 -	<u> </u>	0.288		0.576						-	
	2002	480	14.95	14.95		1.917		1.939		5.8	1.26	0.158	1225%	NG
2001 2002	2002	4				<u> </u>		2.532		26.2	3,11			NG
2002	2005			23.07		2.736		2.772		18.5	2.95			
2003	2005					1.018		1.028		9.1	2.07			
2005	2007							3.543		8.2	1.97			
2006								0.224		5.0				
2007								3.688		12.5				
2008								0.297						
2009							1		1500x700					
2010A	2010E	3 50	0.54	0.54	0.001	0.08-	1	0.08-	300	11.9	1.49	0.10	80%	ОК
2010B	2011			2.2				0.319	400	2.0	0.74			
2011									5 15 00 x700					
2012								0.754						
2013	· · ·								1500x700	+				
2014	4					·		0.20						
2015			·			- }			\$ 1500×700		+			
2016			+					0.15			-1			
2017				· • · · · · ·					71500×700					
2018							- 	0.25 4.04					-	
2020								0.42		+				
2021							·	4.12		+				
202								0.88						
202								0.37		<u> </u>				
2024								1.36						
202				~ 		-4	~- <u>•</u> ~	4.86						
2020								0.44						
202	7 202			- i	7 0.00	8 0.64	4[0.65	-1	 -				
202								0,41		13.	3 1.9		0 171%	NG
202							_ · · · · · · · · · · · · · · · · · · ·	1.13						
203									3 1500x700					
203				4				0.24						
203	- •		· · · · · · · · · · · · · · · · · · ·			·		0.62				-t		
203			5 0.8				·	5.58						
203			e distribution to the second				·	5.50						
203				t-				0.14						
203	6 203	7 11	1 1.4	0 1.4	0.00	2 0.21	11	0.21	3 40	0 7.	2 1.4	1 0.17	7] 120%	6 NG

				4		O	O		Cylo	tina Dina	Specifica	tion	Сара	city
No.	Down	Length (m)	Area	(na)			Quantity Remain			=	r	F		
	Stream	Increment	Increment	Total	Sanitary	Storm Water	Sewage	$Q_1(m^3/s)$	D (mm)	l (% _o)	V (m/s)	Q ₂ (m ³ /s)	Q _i /Q ₂	Juoge
2037	2040	438	3.80	6.10	Sewage 0.009	0.823	Sewage	0.833	600	23.0	3.29	0.930	90%	ОК
2038	2040	187	3.08	3.08	0.003	0.447		0.452	400	2.0	0.74	0.093	486%	NG
2039	2040	145	0.80	0.80	0.001	0.129		0.131	500	27.5	3.19	the same and the same of the same of	21%	OK
2040	2042	538	9.90	19.88	0.030	2.214		2.244	800	8.1	2,37		188%	NG
2040	2042	451	2.14	2.14	0.003	0.277		0.281	400	15.7	2.08	0.261	107%	NG
2042	2044	47	0.08	22.10	0.034	2.426		2.459	1000	2.0	1.37		229%	NG
2042	2044	102	16.60	16.60	0.034	2.745		2.770	800	16.6	3.39	1.704	163%	NG
2044	2052	302	0.00	130.75	0.023	7.259		7,458	1000	4.0	1.93	1.516	492%	NG
2045	2046	269	2.27	2.27	0.003	0.318		0.321	400	24.9	2.62		98%	ок
	2049	272		6.57	0.010	0.896		0.906	600	9.9	2.16	0.611	148%	NG
2046	2048	196		5.50	0.008	0.795		0.804	300	2.0	0.61		1864%	NG
2047	2049	208		8.90	0.014		 	1.189	400	2.0	0.74		1279%	NG
2049	2051	618		23.67	0.036			2.627	600	6.7	1.78		522%	NG
2050	2051	130		1.10		0.165		0.166		4.6	1.12		118%	NG
	2052	365		25.07	0.002			2.500	800	4.6	1.78		279%	NG
2051	2053	469			0.038			8.280		6.1			1723%	NG
2052							 	7.585	1000	4.8	2.11	1.657	458%	NG
2053	2062	930	+	162,15		0.124		0.126		2.0			135%	NG
2054	2055	48						0.120	500	5.3		<u> </u>	190%	NG
2055	2056	151			0.005			0.542		28.3	3.65		52%	OK
2056	2057	67			0.005						}	+	972%	NG
2057	2058	115				2,626		2.653		5.2 31.5	1.39 3.41		372%	NG
2058	2059	152			0.027			2.493 1.971	500 600	6.5	1.75		372%	NG
2059	2061	676			0.027					2.0	+	1	294%	NG
2060	2061	117		<u></u>				0.496					168%	NG
2061	2062	868						1.811		2.0			t	
2062	To STP	400	0.00	183.16	0.280	7.878	·	8.158		2.0	1.37	1.076	758%	NG
Out-21			ļ	_	0.000	.	0.00	-7.319		<u> </u>	 	 		
To STP	31.30		1		0.280		0.559			100	1 224	1 0001	10079/	
3001	3008							2.833		18.2				NG
3002	3004					1		0.819		17.8	+			NG
3003	3004							0.053		12.9				OK
3004	3007					0.851		0.869		57.1			175%	NG
3005								0.209		9.8			219%	NG
3006	3007							0.259					56%	OK
3007								1.113					1197%	NG
3008	 			·				4.210						NG
3009								4.860						NG
3010								0.170						
3011			- <u>!</u>					4.914						
3012				-1				0.13						
3013	3017							5.09			1			
3014								0.32		+			•	+
3015								0.84	- 					4
3016								1.139						
3017								6.27		<u>+</u>				
3018					0.004			0.382		<u> </u>				
3019	3020	55	8 15.6	3 18.10	0.032			2.28						
3020				20.60				2.34		·				4
3021	302	5 13	2 0.6	83.4	0.149		<u>.</u>	8.100	600					
3022	302	3 12	0 1.0.	5 1.0.	0.002	0.15	8	0.160		·				
3023	302	26	8 1.9.	3 2.9	8 0.00	0.43	3!	0.43		1			· 	
3024	302	5 9	3 0.1.	3 3.1	0.000	0.43	51	0.44						
3025							4	8.28	600	7.9				
3026	+						9	8.11	8 800	24.			391%	NG
3027							0	7.99	600	18.	2.9	0.831	961%	NG
	302		4.0			-+		0.00	7			1	<u> </u>	1
3028						- I	5	0.97	5 800	14.	3.19	9 1.603	61%	ОК
Out-3			T	T		T		-9.50	2]	1	1		1	L
3029	4	2 25	6 3.2	0 103.8	4 0.18	5 0.49	0.35	1.03	6 800	15.	3.2	1.629	64%	OK
3030								0.79	1 400	11.4	4 1.7	7 0.222	356%	NG
303				·		-4	9	1.44	9 600	19.0	0 2.9	9 0.84	171%	NG

No.	Down	Lange (m)	Area	(ha)	1 1 1	Sewage	Quantity		Exis	ting Pipe	Specifica	tion	Capa	city
140.		Length (m)			Sanitary	Storm		A (3/3						
1	Stream	Increment	Increment	Total	Sewage	Water	Sewage	Q ₁ (m ⁻ /s)	D (mm)	1(%,)	v (m/s)	Q ₂ (m ³ /s)	Q_1/Q_2	Judge
3032	3039	370	3.85	118.88	0.212	2.402	0.358	2.972	800	7.2	2.23	1.121	265%	NG
3033	3035	142	0.92	0.92	0.002	0.149	:	0,151	500	2.0	0.86	0.169	89%	OK
3034	3035	83	0.81	0.81	0.001	0.124		0.125	400	2.0	0.74	0.093	135%	NG
3035	3036	85	0.94	2.67	0.005	0.381		0.386	400	10.7	1.71	0.215	180%	ŊG
3036	3038	169	1.35	4.02	0.007	0.582		0.589	500	8.2	1.74	0.342	172%	NG
3037	3038	278	1.60	1.60	0.003	0.243		0.246	500	10.4	1.96		64%	OX
3038	3039	166	1,15	6.77	0.012	0.917		0.929	600	28.9	3.69		89%	OK
3039	3041	113	0.65	126.30		3.245	0.358	3.829	800	10.9	2.75		277%	NG
3040	3041	155	1.46	1.46		0.216		0.218		27.7	2.76		63%	OK
3041	3062	365	2.30	130.06		3.276	0.358	3.866		2.8	1.39		553%	NG
	3044	410	5.20	5.20		0.747		0.756		13.4	2.51	0.710	107%	NG
3042			0.77	0.77	0.001	0.117		0.118		2.0	0.74		127%	NG
3043	3044	98	2,45	8.42		1.109	: :	1.124		9.9			300%	NG
3044	3045	221		19.93		2.232	 -	2.268		12.3	2.41	0.681	333%	NG
3045	3052	454				0.665		0.673		2.0	0.74		724%	NG
3046			4.73	4.73						4.7			297%	NG
3047	3048		2.87	2.87		0.420		0.425						
3048			+	8.30		1.135		1.150		2.0				NG
3049				1,83		0.256		0.259		9.5			127%	NG
3050		173		11.55		1,470		1.491		2.0				NG
3051				11.84		1.598		1.619		2.0				NG
3052			 	33.23				3.585		2.0				NG
3053	- 3054	118	0.43	0.43		0.065		0.065		2.0				OK
3054	3055	98	0.35	0.78	0.001	0.122		0.123		6.7				ОК
3055		12	0.01	34.02	0.061	3.599)	3.660		2.0				NG
3056	·		2.82	2.87	0.005	0.427	7	0.432		13.2	2.21	0.434	100%	OK
3057		203	1.29	1.29	0.002	0.203	3	0.20:	5 500	17.2	2.52	0.495	41%	
3058				0.40	0.001	0,069)	0.070	400	2.0	0.74	0.093	76%	OK
3059						0,790)	0.800	600	8.8	2.04	0.577	139%	NG
3060					0.072	4,10	7	4.17	9 600	2.0	0.9	7 . 0.274	1524%	NG
3061						4.50.	3	4.59	600	6.7	1.7	0.503	912%	NG
3062				+				9.04	800	3.6	1.5	0.794	1138%	NG
3063							- 	0.20					38%	
3064								0.20						
3065				<u> </u>				0.50						
3066								0.31						
306								0.98						
								0.67						
3069 3069								0.45		· •				
								1.21						
307								0.10						
307								1.31						
307				~						+				
307			- h	<u> </u>	_+			0.13						
307			_4					1.53						
307				-						<u> </u>				1
307		7 22	0 1.93	3 1.9	3 0.00	3 0.30		0.30		9.	0 1.8	2 0.35	7 86%	OK
Out-3		<u>.</u>		1		1		-9.28		╅╌~			0640	1.3.0
307			- -	-1									 -	
307								0.67					3 1570%	
307														-
308			-4					0.07						
308			0 1.4					0.22						
308	2 308	34 4	7 0.2					0.31						
308	3 308	34 21	2 1.6	8 1.0	0.00	3 0.26	3	0.26	56 50	· -				NG
308			0.2		0.00	7 0.60	9	0.61	6 50	2.	0.8			NG NG
308				-1										-1
308								0.38						
308			5 0.3					0.40						
308			0.3					0.0						
308								0.23			- -			
309								0.75			0.7		3 14289	- 4
			4.6			_ 1		1.85			9 1.3			
309	41 30	7017 34	4.0	_i	0.02	<u></u>	<u> </u>			<u>~~ </u>		0.20		<u> </u>

No.	Down	Length (m)	Агса	(ha)	. :	Sewage	Quantity		Exis	ting Pipe	Specifica	ation	Cap	city
	Stream	Increment		Total	Sanitary	Storm	[=======]	O (m³/n)	D (mm)	1(%)		Q ₂ (m ³ /s)		Judge
					Sewage	Water	Sewage						1	
3093	3095	327	1.95	1.95	0.003	0.267		0.270	300	2.0	0.61	0.043	626%	NG
3094 3095	3095 3096	290 267	2.15 0.30	2.15 4.40	0.004	0.299 0.538	ļ	0.302 0.546	300 400	6.8 5.4	1.13 1.22	0.080	379% 356%	NG NG
3096	3097	191	0.38	19.22	0.034	2.280	ļ	2.314	600	9.9	2.16		379%	NG
3097	3100	30	0.02	19.24	0.034	2.254		2.288	600	2.0	0.97	0.274	834%	NG
3098	3099	91	0.34	0.34	0.001	0.052		0.052	300	2.0	0.61	0.043	121%	NG
3099	3100	251	1.24	1.58	0.003	0.234		0.237	600	8.8	2.04	0.577	41%	OK
3100	3103	93	0.78	21.60	0.038	2.455		2.494	800	2.0	1.18		420%	NG
3101	3102	230		1.92	0.003	0.273	!	0.277	300	2.0	0.61	0.043	641%	NG
3102 3103	3103 3104	239 101	2,20 0.82	4.12 26.54	0.007 0.047	0.579 2.921		0.586 2.969	600 800	8.9 2.0	2.05 1.18		101% 500%	NG NG
3104	3107	257	2.41	257.00		4,891		6.104	1000	2.0	1.37	1.076	567%	NG
3105	3106	187		1.49		0.236		0.239	800	2.1	1.21	0.608	39%	OK
3106	3107	210		3.31				0.485	500	2.0	0.86		287%	NO
3107	3109		11.60	271.91	0.484	5.380		6.619	1000	3.1	1.70		496%	NG
3108	3109	193	2.23	2.23		0.353		0.357	500	5.1	1.37		133%	NG
3109	3113	456	4.93	279.07		5.378		6.630	1000	2.0	{		616%	NG
3110	3112 3112	491 181	2.69 4.18	2.69 4.18		0.374 0.610		0.378 0.617	600 400	5.2	1.57		85% 339%	OK
3111 3112	3112		·	11.28				1.330	600	7.7 2.0	1.45 0.97		485%	NG NG
Out-33		† 		1	1-0.020	1.310		-6.408	300		} <u></u>	V.214	-70378	170
3113	3127	20	0.50	290.85	0.518	i	1.034	1.552	1000	2.0	1.37	1.076	144%	NG
3114	3116	579	3.68	3.68		<u> </u>		0.501	500	4.6			196%	NG
3115	3116					0.068		0.069	400	8.9			35%	OK
3116	3118							0.589	600	10.2	2.19		95%	OK
3117	3118							0.217		2.0			234%	NG
3118	3121								1000×500	2.0	L		171%	NG
3119 3120	3120 3121			3.27 6.43	The second second second	0.458	A TT	0.464 0.911	400 500	6.3 7. 9	L		279% 271%	NG NG
3121	3125							1.946		9.7			524%	NG
3122	3124							0.367		9.4			181%	NG
3123	3124			}				0.272		3.2			231%	NG
3124						1		0.675	400	2.0	0.74		726%	NG
3125								2.426		10.3			1149%	NG
3126	3127	1009	0.00	26.84	0.048	2.022		2.070		3.2	1.23	0.348	595%	NG
Out-34	3152	<u> </u>	0.00	2122	1 000	 	1 121	-1.925 1.697			-	<u> </u>	- :	
3127 3128			1				1.131	0.324		8.2	1.24	0.088	370%	NG
3129								0.499		2.0				
3130			+				· f	0.146		8.9			1	
3131	3136	122	**************************************				- 	0.859		2.0		· }		<u> </u>
3132						+	·	0.091		9.6				
3133								0.145		9.4	4			
3134								0.173		2.6				
3135 3136							· •	0.317		2.0	!	-	341% 265%	# ~ ~ · · · · · · · ·
3137					4			0.456		9.4 8.5	+			
3138								0.430		2.0				
3139								0.621		7.3				<u> </u>
3140	3141	68						1.125		2.0				
3141				4				2.565		2.0	· · · · · · · · · · · · · · · · · · ·			
3142								2.479			+		225%	
3143								0.207						
3144								0.412		8.9				
3145 3146				·				1.183					389%	·
3140								0.112		4.3 4.6			28% 456%	ł –
3148							-t	3.994		4.6	· t			
3149							· · · · · · · · · · · · · · · · · · ·	0.102		15.1				
3150	3151	404						0.512						
3151			- +			+	#	4.139					Ferrimon a au	<u></u>
					·									<u></u>

No.	Down	Length (m)	Area	(ha)		Sewage	Quantity		Exis	ting Pipe	Specifica	tion	Cap	acity
1	Stream	Increment	Increment	Total	Sanitary	Storm	Remain	Q ₁ (m³/s)	D (mm)	1(%,)	V (m/s)	Q ₂ (m ³ /s)	Q _I /Q ₂	Judge
Out-35					Sewage	Water	Sewage	-3.887			· · ·			
3152	3154	43	0.06	364.83	0.650		1.299	1.949						
3153	3154	464	1.32	1.32	0.002	0.170		0.172	400	2.0	0.74	0.093	185%	NG
3154	3157	22	0.01	366.16		0.170	1.299	2.121						
3155	3156	537	3.38	3.38	0.006	0.423		0.429	300	8.3	1.25	0.088	485%	NG
3156	3157	480	3,45	6.83	0.012	0.718		0.730	400	2.0	0.74	0.093	785%	NG
3157	3164	181	0.70	373.69	0.665	0.888	1.299	2.852		· · · · · · · · · · · · · · · · · · ·			<u> </u>	
3158	3159	175	1.41	1.41	0.003	0.206		0.209	300	2.8	0.72		411%	NG
3159	3161	149	0.81	2.22	0.004	0.304		0.307	400	3.3	0.95		258%	NG
3160	3161	169	1.25 5.50	1.25 8.97	0.002 0.016	0.183 1.232	ļ	0.185	400 600	2.0	0.74		199%	NG
3161 3162	3163 3163	194 150	2.50	2.50		0.369	ļ	0.374	400	2.0 2.0		+	455% 402%	NG NG
3163	3164	189	0.80	12.27		1.567	 	1.589		4.2	1.41	+	399%	NG
Out-36	3104		0.00	12.20	- 0.022	2.007		-2.380		7,2	8,72	0,333	39970	ING
3164	3170	439	3.70	389.66	0.694	9.534	1.374				, , ,			
3165	3166	479	4.05	4.05		0.519		0.526		9.1	1.31	0.093	569%	NG
3166	3167	106	0.56	4.61	0.008	0.566		0.574		2.0	0.61		1332%	NG
3167	3168			5.79		0.735		0.745		4.3	1.73	0.870		ОК
3168	3169		0.97	6.76		0.817		0.829		2.0	1.18		140%	NG
3169	3170	392	0.00	6.76	0.012	0.717		0.729		13.0	3.00	1.508	48%	OK
Out-37		l			L	· · · · · · · · · · · · · · · · · · ·		-0.680					<u> </u>	
3170	To STP		0.00	396.42		2.000	1.412							18.6
4001	4002			5.70				0.904		41.6				
4002	4003			8.60				1.323		46.8	2.96			
4003	4004		·	21.60 21.95		2.341 2.342		2.377		8.0				
4004	4006		10.78		0.038		ļ	2.380 0.018		73.1	3.70	0.262	910%	NG
4005	4006						 	0.580		17.5	1.81	0.128	453%	NC
4005				26.80	+	2.825		2.890		11.7	1.48			
4007	4011	295	·	29.22				2.878		8.1	+			
4009	—·—-		-}	0.72		0.107		0.108		10.2				
4010	·		. 			1.478		1.499		15.7				
4011	4012							0.506		7.6				
Out-41	T		Ī			Γ		-0.317	1		1			
4012	4013	162	2.25	46.6	0.098	0.331	0.189			9.2	1.59	0.200	309%	NG
Out-42			ļ		1	 	<u> </u>	-0.421				Í		1.01
4013										5.1				
4014								0.294						
4015				+	~ •	1		_						
4016	·}			· •				1.545			-		1	
4017						+				*				
4018 4019	· [-		· · · · · · · · · · · · · · · · · · ·					0.731						-
4020								0.13						
4021	1					+		1.030						
4022			·					1.08		+	_	· f		·
	402		4.01		0.007			0.00		† 	1		†- <u></u>	1-:-
4023	402			12.7	7 0.029	1.414	4 .	1.44	3 400	9.1	1.5	0.199	727%	NO
4024	402	170	0.88	80.3	9 0.163	4.25.	0.19	· • • — · • — · - — · -		10.5	2.70	0 1.357	340%	NO
Out-43	- -			<u> </u>	ļ	ļ		-4.28						Ī
	402		7.30		0.017	·		0.01			į			1
402		** ** ** ** * * * * * * * * * * * * * *	-+					- +		4	- · · · · ·			
4020	. •							1.32				L		
402		_ 🖁 🕳		4			ν <u>;</u>	1.47		7.5	1.6	7 0.328	8 449%	NC
100	402		14.00		0.024		0 000	0.02		ļ <u>.</u>		<u>.l</u>	1-,	,
4028	. 4			-+			1							
4029								0.22						
4030							- 1	0.47						
403		· • · · · ·	- •	- i		+·		0.10						
403.	403		- L			-	 	0.10						

No.	Down	Length (m)	Area	(ha)	. 4	Sewage	Quantity		Exis	ting Pipe	Specifica	tion	Capo	ecity
.,,,					Sanitary	Storm	Remain	Q ₁ (m³/s)		1(%)		Q ₂ (m³/s)		Judge
	Stream		Increment	Total	Sewage	Water	Sewage							
4034	4035	169	4.18	5.71	0.010	0.757	ļ	0.767	400	20.1	2.35	0.295	260%	NG
4035	4036	55	0.27	5.98	0.010			0.856	500	12.7	2.17	0.426	201%	NG
4036	4045	343	2.64	12.73	0.022	3.574	ļ	1.595	500	29.5	3.30	0.648	246%	NG
4037	4038	175	2,49	2.49	0.004	0.365	·:	0.369	300	18.2	1.85 2.72	0.131 0.342	282% 132%	NG NG
4038	4041	89	0.67	3.16		0,444 0.132	ļ	0.450	400 300	26.9 47.0	2.72	0.342	64%	OK.
4039	4040	119	0.88 0.10	0.88	0.002	0.132		0.134	400	2.0	0.74	0.093	156%	
4040 4041	4041 4042	50 210	0.76	4.90	•	0.628		0.637	400	19.5	2.31	0.290	219%	
4041	4042	10	0.01	4.91		0.684		0.693	500	3.4	1.12	0.220	315%	
4042	4044	119	0.55	0.55		0.083		0.084	300	42.5	2.82	0.199	42%	
4044	4045	259	0.81	1.36		0.182		0.184	400	16.9	2.15	0.270	68%	
4045	4053	231	1.43	20.43	0.035	2.141		2.176	400	4.3	1.09	0.137	1588%	NG
4046	4047	168	1.02	1 02		0.149		0.151	300	2.3	0.66	0.047	324%	
4047	4048		1.24	2 26		0.308		0.312	400	2.0	0.74	0.093	335%	
4048	4050		9,14	11.40				1.452	500	30.2	3.34	0.656	221%	
4049	4050		0.88	0.88				0.140		31,4	3.41	0.670	21%	
4050		253	2.78	15.06	4			1.613	400	7.1	1.40		917%	
Out-44							†	-1.562						
4051	4052	354	6.88	21.94	0.037	0.930	0.051	1.019	400	2.8	0.88	0.111	921%	NG
	4052	 -	21,39	•	0.037			0.037				ļ <u></u>		1.
4052	4053		8.05				3	1.964	600	9.9	2.16		322%	
4053	4054	70	0.30	50.72	0.123	4.365	5	4.489	600	4.2	1.41		1126%	NG
4054	4056	115	0.31	146.98	0.349	7.157	0.377	7.883		2.0	1.18		1329%	
4055	4056	265	2.53	2.53	0.004	0.388	3	0.392	500	8.6	1.78		112%	NG
4056	4060	99								2.0	1.18		1348%	
4057	4059							0.078		2.0	0.74		84%	
4058							9	0.191	400	2.0	0.74		205%	
4059								1.402	500	14.9	2.35		304%	
4060							_			2.0	1.18		1547%	NG
4061		712	4.94	4.94	0.008	0.578	3	0.587		5.7	1.25	0.157	374%	NG
Out-45		1		<u> </u>	11		<u> </u>	-9.329				<u> </u>	2.00	-
4062										2.0			199%	
4063	<u> </u>							0.321		2.0				
4064										2.0			263%	
4065	+	3 461	3.64	3.64	0.000	0.513	3	0.519		3.6	1.30	0.368	141%	NG
Out-46		 	0.00			0.50	0.000	-1.303			1 10	0.593	219%	NC
4068										2.0				
4069								0.059						
4070								1.497 0.187		t				
4071								0.044		4	·			
4072 4073								0.397		+	1		102%	
4074						·		0.069						
4075								0.509						~~
4076				+				0.180						
4077								0.741			<u>i — — — — — — — — — — — — — — — — — — —</u>		¥ ~	
4078					+					· -				
4079								0.209		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
4080								0.558						
4081			+					0.154			4			
4082	·+		· •					0.859		J				
4083								0.099		Acres and a second	· · · · · · · · · · · · · · · · · · ·			
4084							·····	0.579		<u></u>				
408								1.424					519%	NG
4086								0.579		·				
408			- 4					1.86		-	·	0.593	314%	NG
4090								0.200		2.0	1.18	0.593	35%	OK
409							4	2.017	800	2.0	1.18	0.593	339%	NG
4092			- +					0.189	800	*	2.50	1.287	15%	OK
409						0.05	2	0.05				1.190		<u> </u>
409						- +		0.290	800	2.0	1.18	0.593	49%	OX

No.	Down	Length (m)	Area	(ha)		Sewage	Quantity	 .	Exis	ting Pipe	Specifica	tion	Capa	city
No.			T		Sanitary	Storm	Remain	O (m ³ /o)	D (mm)	I (%)		Q ₂ (m ³ /s)		Judge
1	Stream		Increment	Total	Sewage	Water	Sewage							3 34
4095	4096	87	0.24	0.24	0.000	0.040	·	0.040	800	2.0	1.18	0.593	7%	OK
4096	4097	178	1.28	3.38	0.006	0.482		0.487	500	2.0	0.86	0.169	289%	NG
4097	4099	215	2.23	22.18	0.038	2.470		2,508	600	5,9	1.67	0,472	531%	NG
4098	4099	190	2.50	2.50	0,004	0.396		0.400	500	7.3	1.64	0.322	124%	NG
4099	410)	68	0.35	25.03	0.043	2.724		2.766		2.9	1.64	1.288	215%	NO
4100	4101	177	1.10	1.10	0.002	0.160		0.162	400	11.2	1.75	0.220	74%	OK
4101	4102	174	1.27	27.40	0.047	2.828		2.875	1000	2.0	1.37	1.076	267%	NG
4102	4104	73	0.29	207.46	0.453	4.906		6.137	800	11.6	2.83	1.423	431%	NG
4103	4104	361	2.90	2.90	0.005	0.390		0.395		2.4	0.81	0.102	388%	NG
Out-47	· · ·			010.16	0.460	-0.601	0.016	-5.617			1.00	0.014	0100/	330
4104	4110		2.80	213.16	0.462	0.401	0.915	1.778		3.8 12.9	1.62	0.814	218%	NG
4105	4106		0.54	0.54	0.001	0.091	 	0.092			2.18		21%	OK OK
4106	4107	243	4.91	5.45	0.009	0.820 1.209		0.829 1.227		18.5 4.7	2.95 1.80			NG
4107	4110		4.81	10.26	0.018			0.838		2.3	0.92		464%	NG
4108	4109		5.70	5.70	0.010			0.886		2.0	0.92		323%	NG
4109	4110			6.37	0.011	0.875				2.0	1.37			
4110	4118			230,14	0.492			3.925						NG
4111	4112			1.46	0.002	0.235	 	0.238		34.2	4.87	2.448	10%	OK
 	4112		8.38	11 34	200		ļ	0.000 1.597		13.9	3.10	1.558	103%	NG
4112	4113	358	9.88	11.34	0.034	1.564				13.9	3.10	1.556	10376	NO -
Out-48	 _	ļ <u></u>	1 30	14 72	0.020	0.539	0.067	-1.530 0.646		2.2	0.90	0,177	366%	NG
4113	4114			14.73	0.039					11.9				
4114	4115			23.41				1.725			0.86			
4115	4117			24.15				1.720		2.0	0.51			
4116	4117					0.23		0.236			1.37			
4117	4118					1.872								
4118			. }			4.739 0.12		0.122						
4119				0.82										
4120								0.393						
4121											+			
4122				+			~+				4			
4123								0.168			+			
4124								1.340						
4125								0.896						
4126													1962%	
4127								1.650						
4128								2.89						<u> </u>
4129				+				0.78		+				
4130							-4	3.36		+			3616%	
4131		2 21:	3 0.90	35.1	0.000	3.30	-	-8.29		2.0			301076	ING
Out-49 4132		D	0.00	310.5	9 0.650		1.30			2.0	1.3		181%	
500								0.07			-	-4.6		
5007								0.78						
500				-				0.78						
5004	- }							0.42						
500	· • - · - ·	· 		+				0.97						
500								1.77						
Outfal	- •	`			V V.V.			-1.72		 	+		1	T
To ST					0.02	i†	0.04			1	+	t, and i		†
600		2 8	7] 0.3	0 0.3				0.04			<u></u>	 		
600								0.61						
600				- +				1.09		+	* {			
600								0.34						
600								0.86						
600	T							2.03		- 				
600	_ 2							0.16		+				
600		and the second second						0.16						
600	- +		8 0.2					2.39					3 55629	
	. d							0.41		{-				
601				. 4			· · · · · · · · · · · · · · · · · · ·	0.41						
601	1 601	[2] 26	0 4.5	0 7.5	0.01	1 0.9	11		0د رد.	0 13	<u> </u>	6 0.11	0 8379	6 NG

No.	Down	Length (m)	Area	(ha)		Sewage	Quantity		Exis	ting Pipe	Specifica	tion	Сар	acity
	Stream	Increment	Increment	Total	Sanitary	Storm	Remain	O.(m³/s)	D (mm)	I (%)	V (m/s)	Q ₂ (m ³ /s)	Q₁/Q₂	Judge
	Caronii			10441	Sewage	Water	Sewage	Qi(in is)	2 ()	- (/-0/	* ()	22(11.10)	1	
6012	6013	215	1.30	8.80	0.013	0.987		1,000	400	5.5	1.23	0.155	647%	NG
6013	To STP	961	0.00	31.10	0.046	2.491		2.537	400	2,0	0.74	0,093	2728%	NG
Outfall			1					-2.444						
To STP					0.046		0.093	0.139						
7001	7002	451	4.08	4.08	0.006	0.529		0.535	200	23.9	1.61	0.051	1058%	NG
7002	7003	100	3.50	7.58	0.011	0.944		0.955	200	12.0	1.14	0.036	2668%	NG
7003	7004	160	3.10	10.68	0.016	1.364		1.380	600	21.8	3.21	0.908	152%	NG
7004	To STP	250	14.90	25.58	0.038	2.988		3.026	600	12.8	2.46	0.696	435%	NG
Outfall								-2.950					I	
To STP					0.038		0.076	0.114						