CTL

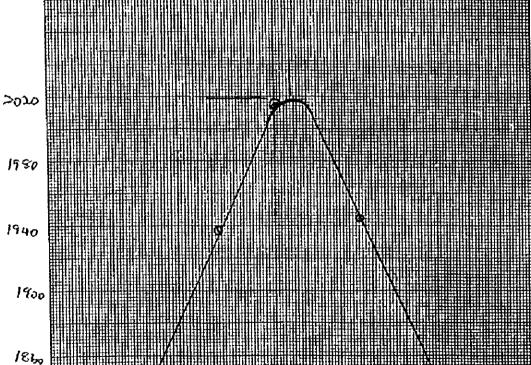
1820

CENTRAL TESTING LABORATORIES LTD.

PD801.18507 TEL: 791241 / 791242 / 791245 NAIROBI Hairabf M.D.D.10.M.C. Determination for soils,

Ge3 TP95-14, B1

Sample No. 1861


JOB NO. MOWLEM Location My TONGA Dale 18-10-95

TOS

M.D.D. 2018

kg/m) 0.M.C. 1215 ٧.

TEST No.		1	?	3	4	5	δ	7	8
moutd & soit g.	•	3266	8428	3536	3510	3446		. ·	
mould g.	σ	1500	1500	1500	1500	1500			
ડબા g.	c	1766	1926	2036	70/0	1945			•
$Dw = \frac{c}{0.9439} \text{kg/m}^2$	ם י	1958	2135	2257	2728	2157			
tin No.		. 438	712	Y21	48	22A			
Wt. of tin & wet soil g	e	105.00	144.44	12815	120160	118.8			
Wt. of tin & dry soil g	. 1	99.16	132.56	Han	1.7.93	102-42	G		
Wt. of moisture g	. 9	5.84	11.88	12:02	12.57	14.66			
Wt. of tin s	h	דביבג	16.12	15.64	2/13	16.13			1
Wt. of dry soil	J	76.89	116.44	100.38	\$6.80	\$7.29			
M.C. g/j	• k	7.6	1012	12:0	14.6	16.0			Γ
$Dd = \frac{100 d}{100 + k} kg/m$	31	1620	1937	2015	1944	1847.			1

ŧ

13

C 3 - 53

15

17-

Ĩ

CTL

CENTRAL TESTING LABORATORIES LTD.

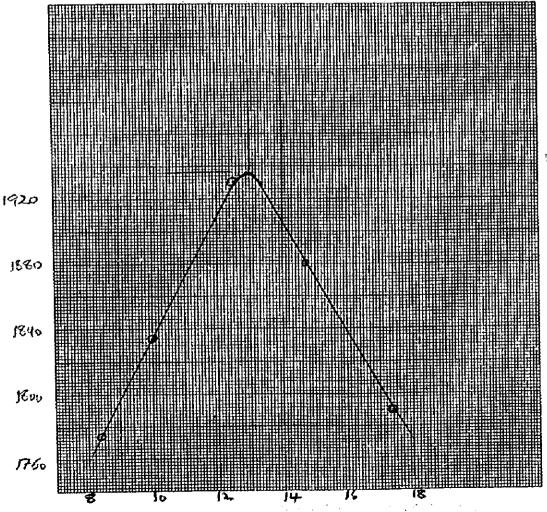
M.D.D./O.M.C. Determination for solls.

799

902,7895-10,BI 88,

FO8 0x. 16507 TEL: 791241 / 791242 / 791245 NAIROBI Nolrobi

Sample No. 1333 £ 1335 Bi \$B2


•/•

JOB NO MOWLEM Location MUTONGA

M.D.D. 1935 kg/m3

0.M.C. 12.0

TEST No),		1	?	3	4	5	6	7	8
mould & soil	9.	2	3235	3320	3458	3445	3396			
mould	g.	Ъ	1.500	1500	15.00	1500	1500			
Soil	9.	c	1735	1820	1958	1945	1896		· · ·	
$DW = \frac{c}{0.9439}$	kg/m)	٩	1923	2017	<u>ا</u> جاد	2156	101			
Tin No.			109	22	7	6	22			<u> </u>
WL of tin & wet	soil g.	e	129.09	145.65	183.77	174.52	162.00			
Wt. of tin 8 dry	soil g.	1	120.33	130-15	115-74	155.05	14-01.25		ļ	l
W1. of moistur	• 9	\$	876	j1:50	18.03	19.47	21.62			
Wt. of Lin	9	ħ	15.95	15:12	24.47	22.60	16-12	·	<u>_</u>	<u> </u>
Wt, of dry soil	l g.	J	104.39	115:03	144.27	132.45	124:26			
M.C. g/j	7	<u>k</u>	8.4	10.0	12.5	14.7	17.4	ļ		<u> </u>
$Dd = \frac{100 d}{100 + k}$	kg/m3	1	1774	1834	1930	1880	1790	<u> </u>		

C 3 - 54

3

ે

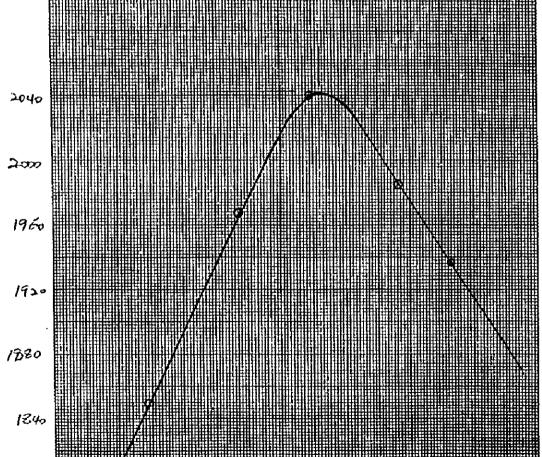
Gez, 7895-10, B2

CTL

CENTRAL TESTING LABORATORIES LTD.

P\$80x.18507 TEL: 791241 / 791242 / 791245 NAIROBI Nairobi M.D.D. 10.M.C. Determination for solls.

Sample No. 1335


JOB NO. MONLEM M.D

199

Location MyTonGA Date 23-10-95

M.D.D. 2042 kg/m3

							U.M.U.	10.2	· *f•
TEST No.		1	?	3	4	5	6	7	8
mould & soil g.		32.50	3410	2522	3516	3496			
mould g.	ь	ISOD	i≲∞	≤m	1500	0021			
Soit g.	c	1750	1911	2022	2016	1996			
$Dw = \frac{c}{0.9439} kg/m^3$	ð.	1941	2118	2242	2235	2213			
Tin No.		3101	58	142	323	भुगर			
Wi.oftin & wetsoit g.	e	10371	11872	115.50	los 71	159.58			
WL of tin & dry soil g.	1	99.61	111.87	107.10	95.16	12412			
Wt. of moisture g,	9	4.10	6.25	5.40	10.06	15:46			
WL of tin g	h	15.92	22.73	22:26	15.84	16:01			·
Wt, of dry soil g.	j	83.69	88.94	84.84	79.82	108:11			
	k	4.9	7:79	7.9	12.6	14-3			
$Od = \frac{100 d}{100 + k} kg/m^3$	lı	1850	1967	2040	1985	1936			

C 3 - 55

10

6

12

14

J

GO2,7895-10,81

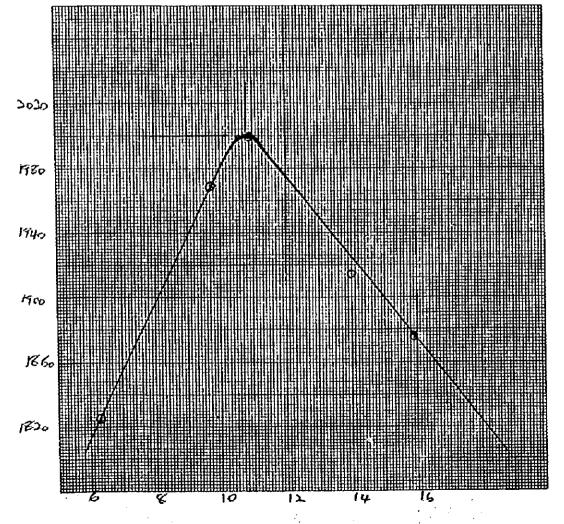
*/.

CTL

T

CENTRAL TESTING LABORATORIES LTD.

PG80x.18507 TEL: 791241 / 791242 / 791245 NAIROBI Halfobi Sample No. 1333


Job No. Mowlern. M.D.D. /O.M.C. Determination for soils.

Location MUTONGA Date 23-10-95 199

M.D.D. 2000 kg/m³

0.M.C. 101 8

									101.0	
TEST N	o .		1	2	3	4	5	6	. 7	8
mould & soil	9.	a	3250	3445	3500	34:68	3450			
mauld	g.	Ь	1500	1500	1500	1500	1500			
ડબા	g .	¢	1750	1948	2000	1968	1980			
$Ow = \frac{c}{0.9435}$	1 kg/m3	đ	1940	2160	7125	2182	2173			
tin No.			<u>Чз</u>	びら	711	3103	yn.			
Wt. of tin & we	tsoitg.	e	133.47	129.14	112.49	122.10	141-96			
Wt. of tin & dry	rsoit g	1	126:52	11924	103:25	109.02	12.4.72			
Wt. of moistu	re g.	9	6195	10.00	9.44	13.08	17:24			
Wt. of tin	9	ħ	16.34	16.02	16.19	15.77	16.07			
Wt. of dry so	il g.	j	110.18	103.12	86.86	93.25	100.65	-		
M.C. g/j	•14	k		. 9.7	10.9	14.0	15.9			
$Dd = \frac{100 d}{100 + k}$	kg/m3	1	1825	1919	1999	1714	1875			

Ge1,7805-2 BIAB2

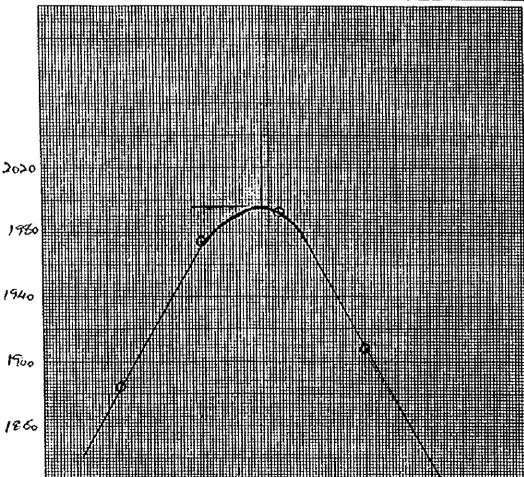
CTL

1820

CENTRAL TESTING LABORATORIES LTD.

PD80x 18507 TEL: 791241 / 791242 / 791245 NAIROBI Noirobi M.D.D./O.M.C. Determination for solls,

Sample No 1301 K 1303


JOB NO. MOWLEM Location MUTONGA Dale 18-10-95

799

M.D.D. 1996

kg/m³ 0.M.C. 11.8 */.

TEST No.	٦.	•	• 2 •	3	4	5			
		I					6	7	8
mould & soil g.		3324	3456	3518	3478	3430			
mould g.	Ь	1500	1500	1500	1500	1500			
Soil g.	c	1824	1956	2018	1978	1930	<,		
$Dw = \frac{c}{0.9439} kg/m^3$	đ	2022	2169	2237	2193	2140			
Tin No.		- tt	Z	Υ <u>s</u>	7102	89			
Wt.oftin & wetsoit g.	•	108.54	118.45	109-67	125.95	13352	·		
Wt. of tin & dry soil g.	+	102.71	109.78	9856	111-62.	117:02			F
Wt. of moisture g.	9	5.83	8.67	10.11	14.34	16.50		I	T
Wt.oftin g	h	22,83	2221	16.35	16.04	21.64			
Wt. of dry soil g.	j	79.83	87.57	£2.24	95.55	95.38		T	T.
M.C. g/j */•	k	7.3	9.9	12.3	15.0	17.3			1
$Dd = \frac{100 d}{100 + k} kg/m^3$	ı	1884	1974	1992	1937	1824			

12

C3-57


S

1

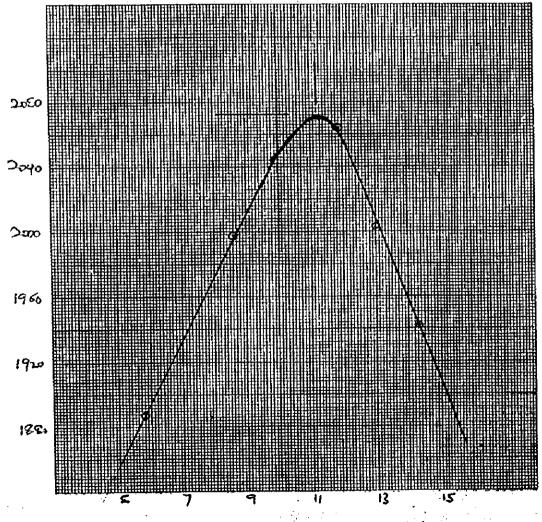
ул у Ул у

I

Ge1,7895-2, B2

Sample No. 1303

JOD NO MOWLEM Location My Ton 94. Dale 22-10-95


CTL

0.91

799

M.D.D. 2072 kg/m³

)ale	. 9	S				•	0.M.(1.2	•/•
TEST No.		1	. ?	3	4	- 5	6	7	8
mould & soil g.	2	3300	3456	3562	3540	2502			
mould g.	b	1500	1500	1500	1500	1500	_		
Soil g.	c	14500	1956	2082	2.040	2002		5.	
$Dw = \frac{c}{0.9439} \text{ kg/m}^3$	٥	1996	2169	2308	2262	2020		Hygnose	opic
Tin No.		46	456	829	713	721		AAI	
Wi.oflin & wetsoil g	•	142.36	13.31	138.40	1954	180:03		371.88	
Wt.oftin & dry soil g.	1	135.85	106113	126:02	107.66	15950		368.52	
WL of moisture g.	9	6.51	7.18	12:35	11-88	20:53		3.36	
Wt.of tin g	h	22.95	22.24	22-11	16.02	1575		131.34	·
Wt. of dry soil 9.	1	112.90	\$3.89	103.91	91.64.	14275		247.18	
M.C. g/j */e	×	5.8	8.6	11.9	13.0	12-13		1.4	
$Dd = \frac{100 d}{100 \cdot k} kg/m^3$	1	1887	1997	2053	2002	1942	l		

C 3 - 58

401, TP95-2, BI

CT

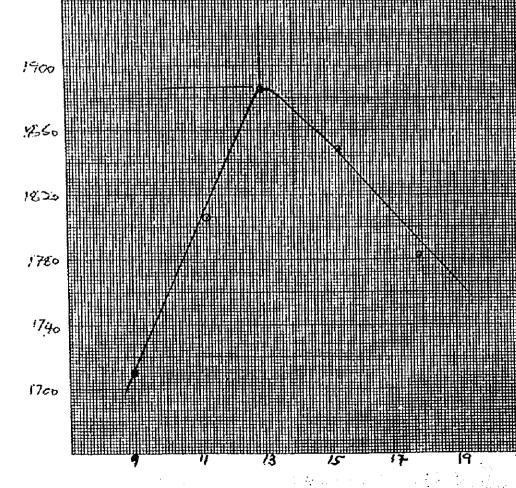
CENTRAL TESTING LABORATORIES LTD.

PD8 0x. 18507 TEL: 791241 / 791242 / 791245 NAIROBI Kalrabi

Sample No. 1301

kg/m³

JOD NO MOWLEM Location MUTON GA


Date 23-10-95

799

M.D.D./O.M.C. Determination for soils.

M.D.D. 1886

ate 23-10-9	<u>s</u>						0.M.C.	12.0	*/.
TEST No.		1	?	- 3	4	5	6	7	8
mould & soil g.		3181	33/3	3421	3424	3395			
mould g.	Ь	1500	1500	1500	1500	1500			
Soit g.	c	1681	1813	1921	1924	1895			
$Dw = \frac{c}{0.9439} kg/m^3$	9	1864	2010	2130	2/32	2101		ź	
Tin No.		22	AL	31	151	M43			
Wt.oftin & wetsoil g	e	120.25	131.97	140.08	168.53	162.35			
Wt. of tin & dry soil g	1	111.65	120.83	126.52.	14.8:18	140.96			
WL. of moisture g.	9	8.60	11.09	13.56	20.35	21.39			L
Wt. of tin g	h	16.01	22.66	22:19	16:01	21.46	·		
W1. of dry soit g	1	95.64	98.22	10433	132.17	119.50			
	k	· · · · · · · · · · · · · · · · · · ·	11.3	13.0	15.4	17.9			
$Dd = \frac{100 d}{100 + k} kg/m^2$	1	1710	1806	1885	1848	1782			L

C 3 - 59

Ĵ

Ţ

CENTRAL TESTING LABORATORIES LTD.

CTL

٩

Ĩ

DUNDORI ROAD

- INDEPENDENT SOILS AND MATERIALS TESTING. ---

P.O. BOX 18507 NAIROBI KENYA

26th February 1996

Fax:- 791244

TELEPHONE SCHARGE 791241

OUR REFERENCE: -96/1337-1388/JEE.

YOUR REFERENCE:

ATTENTION:

The Mowlem Construction Co.(E.A.) Ltd., P.O. Box 30078, NAIROBL.

Dear Sirs,

MUTONCA/GRANDFALLS HYDROPOWER SATGE 3 ALKALI AGRESSIVE CHEMICAL TEST RESULTS.

Lab.No.	<u>Site Mark</u>	Concentration of Silica as(SiO2 mmol/L	Reduction of Alkalinity mmol/L
1337	GS1,100m Gravel	22.311	115
1338	" 500m Sand	29.97	145
1339	" 100m Sand	49.284	60
1340	" 1500m Sand	6.327	115
1341	GS2,0.00m Sand	3.33	92.5
1342	" 800m Gravel	8,658	185
1343	" 1500m Sand	11.99	90
1344	"10m "	10.989	75
1346	" 1500 "	11.655	80
1385	MS 95-1	3.33	70
1386	" 95-2 .	13.32	65
1387	" 95-3	4.662	50
1388	" 95-4,500m	3.33	47.5

NB. Aggregates considered innocuous hence not reactive with cement.

Sample Location.

S/No.	1337-1340	- Ngoru River
	1341-1343	- Kalenge River Downstream
	1344 & 1346	- Kalenge River Upstream
н	1385-1387	- Makindu River
11	1388	- Kamunyoni River(Downstream from crossing point)

Yours faithfully,

llió

CENTRAL TESTING LABORATORIES LTD.

.

C3-60

CENTRAL TESTING LABORATORIES LTD.

. . .

CTL	DUNDORI ROAD	P.O. BOX 16507 NAIROBI KENYA
OUR REFERENCE: -96/1389-1394/Jean		TELEPHONE STRA2923 791241
YOUR AEFERENCE.		Fax:- 791244

ATTENTION:

Fax:- 791244

12th Hareb 1996

Mowlen Construction Co. Ltd., F.O. Box 30078, NAIROBI.

Dear Sirs,

HUTONGA/GRANDFALL HYDROPOWER STAGE 3 ALEALI AGGRESSIVE CHEMICAL TEST RESULTS.

			-	
Lab No.	Site Hark	Reduction in Alikalimity	Dissolved Silica (SiO2) mm/1	Aggregage Considered
1389	MS95-5,1000m	48	3.3	Innocuoua
1390	MS95-6,200m	50	7.3	n
1391	H895-7,750a	60 ·	10.0	
1392	MS95-8,250m	75	7.0	17
1393	11895-9,250m	50	11.0	81
1394	NS95-10,750m	75	11.7	ti

Location: - 1389- Komonyon's River (Downstream from crossing point) 1390- Kamonyoni River(Upstream from crossing point) 1391 & 1392- Konyu River (Downstream from crossing point) 1393 & 1394- Konyu River (Upstream from crossing point)

Yours faithfully,

- multing -----

.

CENTRAL TESTING LABORATORIES LTD.

T

C4 OTHERS

•

*

I

C4.1 Petrographic Microscope Study

Q

FOREWORD

The whole set of six, samples are all regional metamorphic rocks. They are largely gneisses, an amphibolite and a cale - granulite. They were all metamorphosed either in the amphibolite facies or in the granulite facies.

Some of the rocks show gneissic foliation planes while others are massive. One rock (M95-2; 22.50 m) has a foliation approaching a schist although is largely gneissic in its characteristics.

Because they are medium to high grade metamorphic derivatives, these rocks are medium to coarse grained and crystalline in nature. As a result, they are ideal rocks for engineering purposes. However, in terms of relative weakness, the amphibolite and the schistose gneiss are the weakest, the other gneisses are relatively stronger but the strongest rocks are granitoid gneiss and the calc-granulite. However, the calc-granulite has an appreciable amount of calcite and would not be ideal for use in acidic environments.

More comprehensive descriptions of each rock specimen are presented below:

Ŕ

SAMPLE G 95 - 2 (21.30 m)

A BANDED HORNBLENDE GNEISS

In hand specimen the rock is leucocratic and light grey in colour, granoblastic with a medium grained texture. The grains are approximately 0.1 mm to 1 mm in size.

It is a tough fresh, highly crystalline rock with well pronounced gneissic bands and laminae which define the gneissic foliation planes. The bands and laminae result due to alternation of mafic rich and felsic rich layers. The laminae are approximately 1 to 2 mm thick but the bands, especially of the felsic minerals, range from 0.5 cm to about 1 cm or more in thickness.

The major composing minerals in the felsic bands and laminae are quartz and feldspar, while in the mafic bands they include hornblende, quartz and feldspars. Some greenish hornblende gives a faint dark green coloration to the mafic rich laminae.

In this section, the rock portrays a highly interlocked matrix dominated by quartz and feldspars which have well formed polygonal grains of variable sizes. The rock composing minerals in their approximate volume percentages include:

Hornblende	-	10%
Quartz	-	30%
Feldspars (orthoclase)	-	56%
Sphene	-	3%
Iron oxide	•	<u><</u> 1%
Total	<u></u>	100%

The quartz and feldspar which dominate the rock matrix are unstrained and these felsic minerals have uniform extinction. This medium to high grade regional metamorphic rock, has therefore undergone complete recrystallisation which has removed strains in the rock. No secondary alteration occurs in the feldspar grains too. Surbodinate oligoclase and microcline make less than 2% of the rock matrix.

Sphene grains, scattered within the rock matrix, are however, often associated with the hornblende grains. They are reddish brown in hand specimen giving few reddish brown spots to the rock. These spots are easily confused for red garnet.

1

I

Both mafic and felsic minerals give the rock its characteristic banding, hence the name BANDED HORNBLENDE GNEISS. Due to the low content of mafic minerals and the high content of quartzo-feldspathic minerals, the rock is tough and ideal for engineering purposes.

SAMPLE G95 - 10

(16.00 m) (GRANITOID GNEISS)

This is a massive, leucocratic, medium to coarse grained rock with a weakly defined gneissose fabric orientation. Its composing grains range from less than 0.1 mm to approximately 3 to 4 mm in size. The coarsest grains however, are of quartz-feldspathic minerals which show incompletely developed porphyroblasts.

It is a tough fairly fresh and highly crystalline rock with the feldspars giving few light pinkish mottles. Biotite, quartz and feldspars are its major composing minerals, which are also easily discernible with a naked eye.

In thin section, the rock portrays a granoblastic texture with a highly interlocked matrix. The major composing minerals are:

Biotite	•	5%
Quartz	-	10%
Microcline	-	83%
Accessory minerals		
(magnetite and sphene)		2%
Total		100%

The biotite flakes however, define a weak preferred orientation. The biotite occurs as medium sized flakes that are scattered with the matrix that is dominated by quartz and feldspars. Both quartz and microcline are unstrained and portray a uniform extinction. However, few microcline grains portray a weak cloudiness possibly resultant from some partial alteration caused by metamorphic fluids.

Magnetite and sphene also occur as few grains scattered within the rock matrix. Both minerals also occur associated with each other. This is a tough rock, ideal for engineering construction purposes. Its mineralogy is typical of granitoid rocks, hence its name as GRANITOID GNEISS. If not faulted or fractured, it is an ideal foundation rock, even for dam sites.

Ĩ

Ĩ

SAMPLE G95.10 (19.30 m)

The rock is highly crystalline, mesocratic, showing alternated white felsic rich and black mafic rich bands and laminae which have heterogeneous textures. The entire rock texture is largely medium to coarse grained. The grains vary in size form approximately 0.5 mm to slightly over 3.0 mm. Largely non-weathered, the rock portrays a gneissic foliation usually defined by the alternated felsic and mafic mineral rich bands. Some of the felsic bands form veins which are spaced at about 0.5 cm to 1.0 cm apart and are about 1.0 mm to 3.00 mm thick. The major composing minerals identifiable with a naked eye are sodic plagioclase feldspars, some quartz, hornblende and biotite. The mafic minerals are however, concentrated in the mafic rich matrix and bands and vice verse for the felsic minerals.

In this section, the coarse texture of the rock portrays a strong preferred orientation particularly defined by the mafic minerals, especially by hornblende. The matrix is highly interlocked. The grains are unaltered, largely strain free as indicated by the uniform extinction of majority of them. However, some mineral grains indicate a moderate strain as depicted by the undulose extinction of some quartz and feldspar grains. The major composing minerals in their approximate volume percentages are:

Hornblende	-	25%
Biotite	-	7%
Quartz	-	7%
Feldspars (mainly plagioclase)		59%
Accessory minerals (mainly sphene)		2%
Total		<u> 10</u> 0%

The hornblende is commonly associated with quartz. The plagioclase is largely of oligoclaseandesine composition and is largely untwinned. subordinate microcline and perthite are occasionally present. Both quartz and the feldspars show heterogeneous textures varying from small to large interlocked grains. The deformed quartz grains occasionally portray Boehm lamellae. Sphene is usually colourless. Very few iron oxide minerals are present in the rock too.

The rock is only moderately tough for engineering purposes because of the high content of mafic minerals. The rock is a PLAGIOCLASE AMPHIBOLITE, which would grade into an amphibolite by increment of mafic minerals or into a hornblende gneiss, by the decrease of mafic minerals.

I

I

It was formed in the middle conditions of amphibolite facies. Its high content of mafic minerals suggests a derivation through metamorphism of mafic rocks such as diorite and gabbro.

I

SAMPLE G95-14 (13.60 m)

(A CALC-GRANULITE)2

 $\left(\right)$

I

It is a massive, medium to coarse grained, light gray, leucocratic rock with the grains ranging from about 0.5 mm to about 3.0 mm. The rock is fairly fresh and tough because of its interlocked grain matrix and its massive crystalline nature.

The rock fairly reacts with dilute hydrochloric acid because of the presence of calcareous minerals. The major composing minerals discernible with a naked eye include mainly milky white feldspar and quartz, black pyroxenes, mainly augite and the olive green pyroxene, enstatite. These enstatite mineral grains give olive green spots to the otherwise, greyish rock matrix.

In this section, the rock portrays a medium to coarse texture. The composing minerals in their approximate volume percentage are:

Plagioclase feldspars	-	54%
Quartz	-	15%
Calcite	-	15%
Augite and hornblende	-	5%
Sphene (and iron oxide)	-	1%
Enstatite and olivine		10%
Total	• _	100%

The plagioclase is calcic and of andesine - labradorite composition and show broad albite twinning lamellae. The augite and hornblende are dark green and pleochroic to medium green. They occur associated with each other. Enstatite appears in light green pleochroic shades while olivine is pleochroic from very pale to olive green colour.

This rock was formed in extreme high grade conditions of regional metamophism in the granulite facies. Therefore it is a CALC-GRANULITE. As a result it is a coarsely crystalline and tough rock, essentially similar to igneous plutonic rocks.

For all engineering works, it is as good as granite except it would be etched by acid solutions due to the presence of appreciable amounts of calcite.

SAMPLE M 95 - 1

(6.30 m) (A BANDED BIOTITE GNEISS)

This is a leucocratic, well banded rock, which is closely similar to sample G 95-2. Its texture varies according to the two types of bands. The darker grey, mafic mineral rich bands are fine to medium grained, with grains ranging in size from slightly less than 0.1 mm to about 1 to 2 mm. The felsic mineral rich white bands vary in texture from medium to coarse gained with the grains ranging between 1.0 mm to 3.00 mm in size.

1

I

It is a quite tough rock, fairly fresh and crystalline in nature. The bands define the gneissic foliation planes characterising the rock. These alternating mafic and felsic mineral rich bands have an average thickness between 0.5 cm and 1.0 cm within the mafic rich bands, fine laminae, are also distinguishable, which on the average are 1 to 2 mm thick.

The major composing minerals in the felsic bands are quartz and feldspars. However, in the mafic bands, the major composing minerals include biotite, quartz and feldspars.

In thin section, the rock still portrays its strongly preferred fabric orientation, mainly defined by biotite flakes. The texture is heterogenous composed of fine to coarse grains which are also highly interlocked. The composing minerals in their approximate volume percentages are as follows:

Biotite	-	10%
Quartz	-	40%
Feldspars	-	46%
Muscovite	-	2%
Iron oxides	-	2%
(Magnetite mainly)	·	<u> </u>
Total		100%

The feldspars are largely untwinned potash feldspars (orthoclase and microcline). They have well formed polygonal grains. Large feldspar grains do however, show a weak secondary alteration resulting into some cloudiness and sericitation of the grains. On the whole, however, both quartz and feldspars are largely unstrained and portray a uniform extinction. Few weakly strained quartz grains do show faintly developed Boehm lamellae. Subordinate plagioclase of oligoclase composition is occasionally notable occurring interstitially between the large quartz and potash, feldspar grains. Muscovite flakes occur associated with biotite and so are the few iron oxide mineral grains, scattered within the rock matrix. The high content of felsic minerals coupled by the low content of mafic minerals makes the rock tough and ideal for engineering works. The mineral content and orientation gives it a banded nature, hence the name BANDED BIOTITE GNEISS. This banding, however, has not weakened the rock much and for all engineering purposes, it is almost as good as granitoid rocks.

SAMPLE M 95-2 (22.50 m)

BIOTITE SCHISTOSE GNEISS

This fine to medium grained crystalline rock is mesocratic and medium grey in colour. Its composing grains vary from approximately 0.1 mm to less than 1 mm in size. The high content of mafic minerals gives the rock a well defined foliation which approaches schistosity. Due to the high content of mafic minerals, the rock is only moderately tough. Its major composing minerals identifiable in hand specimen are predominantly biotite, sodic plagioclase feldspars and some hornblende.

1

Ĩ

I

In thin section, the preferred orientation of the composing minerals is quite evident. The identifiable major composing minerals in their approximate volume percentages are:

Quartz	-	10%
Mafic minerals		
(biotite and homblende)	-	25%
(biotite approx.	18%,	homblende 7%)
Plagioclase feldspars	-	60%
Iron ores and sphene	-	5%
Total		100%

Hornblende occurs associated with biotite. Plagioclase occurs in irregular granoblasts which are largely untwinned. It is largely oligoclase with a straight extinction. The accessory minerals iron ores and sphene, occur in scattered granules within the rock matrix. Hornblende and biotite are the minerals that define the strong preferred mineral grain orientation which is also enhanced by the irregular shaped quartz and feldspar granoblasts. The two felsic minerals have a uniform extinction which indicates that the grains are not strained or have recrystallized after straining.

The rock is a hornblende-biotite schistose gneiss. The fairly high mafic mineral content together with plagioclase feldspars suggests its derivation through metamorphism of mafic rocks such as diorites and dolerite dykes. The rock is interpreted to have been formed within the medium grade conditions of the amphibolite facies. It is moderately tough for engineering purposes but not as tough as the granites or granitoid gneisses because of the fairly high content of mafic minerals and its schistose nature.

ANNEX-D

DAM RESERVOIR SIMULATION RESULTS

Į

Ţ

~

٢

ANNEX-D1 EXISTING POWER PLANT

Ţ

Į.

I

	Max.	39-91 39-91	35.12	39.91	39-91	5 6 6	39.03	39.91	39-91 20-01	39.91	39.91	38.85	10.02	39.87	35.67	8.8 8.8	5000	39.91	39.17	19-92	39.95	33.66	39.91	39-91 20 00	20-50	39.91	39.91			:	59.91
(Unit:MW)	ily P.	88 88 88 88 88 88 88 88 88 88 88 88 88	55 55 55 55 55 55 55 55 55 55 55 55 55	29 76																				30.01 30.11						16.96	
	×	39.91 39.91	37, 74 35, 06	39.91	39.91	39.91	28 28 28	39.91	39.91	10.02 10.02	39.91	38.81	39,87 20,57	39.73	35.15	30.38 20.38	39.91 20.01	39.91	38.88	30.91 20.91	2020	33.57	39.91	39-91	20.95		39.91	30.38	38.96 39.91		
	AVE.	36.91 36.42	35 05 33 18 33	33.52	38.79 28.79	37.58	36.68	37.88	37-62	50 GS	35.90	34.47	32.55 25.55	3 5 5 5 5 5	32.43	26.03	32.31	28.62 28.62	36.36	37.69	20°/2	22.22	34.90	85 47 87	20.00	20.00	38.61	26.03	35.91 39.04		
(r		32.91 32.03																	31.97	34.99	32.07	32	29.02	30.50	32.47	27 AC	35.22	17.72	31.93 37.06		
Abstraction	Dec.	34.92 34.56	33.55 873	39-91 39-91	36.26	88 88 87 87 87 87 87 87 87 87 87 87 87 8	8 9 7 7 7	37.54	39.91	39.91 29.92	35.55	32.93	39.87	24 42 24 25	31.15														35.85 39.91	20.24	
(1995 Abs ⁻	Nov.	33.78 34.60																										1	34.78 39.91	20.59	
Results (1	Oct.	34.74 36.63																											34.90 38.18	21.84	
		37.53 38.85 38.85																											36.66		39.48
Simulation	Ån s																												37.73 39.76		39.91
a Power	[4]	3																											7 38.11 39.91		39.91
Masinga	ŝ																										10.03.91	I	38.07	-	39.91
e D-1	Kor																												36.77		16.62
Table D-	ļ	ž																											33.45		7 39.91
																													33.69		39.67
	, Ç	9			1															۰.									39.84	}	39.91
		æ.																											35.86 39.91 39.91	10 2	39.91
		195	1959	1961	33	1961	196	196	91 91 91 91 91 91 91 91 91 91 91 91 91 9	1961	23	20	191	19.	191	9	19,	19,	191	ň	361	191	16 1 7	<u>5</u> 2	6	61	19		Avg.	Daily	Max.

Masinga Power Simulation Results (1995 Abstraction)

Table D-1

, k)	Max.	0.97	0 8 0	0.96 0.96	0.97	60	0.95	0.97	0.97	200	0.96	8.0	0.97	8.0	9 <u>8</u> 5 C	0.43	0.97	0-97 0-97	6.0	0.97	0-97 0 96	0.76	0.37	2.6	16.0	0.97	22		0.97
(Unit:GWb/y)	Daily Mín. N	0.45	23	0.42	0.48	0.5 5	5 5 5 7 7 7	0.49	400	0.45	0.43	0.42	0.42	9 9 9	0.43	0.32	0.28	0 0 2 0 0	9.9	0.47	4.4	0.36	0.41	0.43	14-0	0.47	F.		0.28
	Max.	29.18 29.54																									}		
	Avg.	23.03 22.14	16.77	13.87	22.82	23.21	26.07	24.08	24.34	21-12	20.57	16.42	14.89	20.07	12.81	11.67	20.15	25.55 25.55	18.28	24.25	22.82 8.82 8.82	12.84	19.34 19.34	19.61	21,65	23.70	11.67	21.78	
	Min.	14.54 13.12	13.17	06.21 19.30	15.02	15.8	15.59	15.38	14.86	10.02	12.42	12.36	12.40	14.51	200	6.6	8.60	15.35	14.52	14.73	13,13	11.32	11.87	12.46	13.08	16.37	99. 99. 99.	20.61	
(uc	Ann.Tot	276.33 265.63	201.20	166.40 200 21	309.80	284.53	312.88	288.95	292-07	333.33	246.81	197.01	178.73	240.81	219-20	140.10	241.84	306.60	219.33	290.94	274.17	154.05	232.04	235.36	220-00 259-86	284.39	140.10	233.31 333.31	
Abstrauction	Dec.	14.64 14.54	14.25	14.27	15.02	16.61	15.59	15.38	28.22	29-58	14.37	14 06	24.30	14.51	5 5 8 2	10.13	26.20	15.35	15.78	14.73	28.69	13.21	14.33	14.75	4 8 2 8 2	20.94	10.13	1(.13 29.68	0.32
(1995 Abst	Nov.	14.54 16.64	14.79	13.68	19.37	18.09	20.65	20.28 20.28	28.45	20.61	19.55	15.24	19.96	15.35	19.46	10.0	22.15	19.47	19.04 16.11	17.11	27.13 16.25	12.01	14.89	2.2 2.2	16.80	17.72	9.97	17.75 28.72	0.33 0.96
Results (19	Ôct.	25.85 27.25	26.02	13.91	27.63	27.53	28.23	26.72	28.39	27.57	20.00 26.06	26.37	13.71	26.06	27.90	0.80	26.96	27.05	26.23	26.53	27.8 %	11.45	26.21	26.10 26.10	20.12	26.37	10.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	24.22 28.39	0.34
	Sen	27.05	19.75	13.67	28.15	28.05	28.54	27,64	28.55	28-08 28-08	77.12 27.12	27.23	13.31	18.79	28.37	2°-1	27.86	27.77	28.52	27.49	27.29	11.32	27.32	27.24	27.13	27.25	9 11.03	24.15 28.55	0-36 0.96
Simulation	Åltø	27.61 29 54	15.33	14.37	29.31	29.23	29.70	15.25 28.80	29.63	29.56	20.02	16.75	13.97	15.45	29.20	1. 2. 8.	29.32	29.29	14.62	28.79	28.46	12.28	28.55	28.54	16.78 20.27	27.41	288 11 8	53.90 53.70	0.38 0.97
Energy S	141									-																• • • •	12.36		0.40 0.97
Masinga f	E.I.	28.16 28.77	14.88	14.21	27-57	28.72	27.40	14.98 24.95	28.72	28.72	15.51 27 03	11.11	13.52	15.05	14,88	13.73	27.76	25.59	28.72	27.57	28.57	12.51	26.53	28.58	14.98	24.71	12.10	22.00 28.72	0.40 0.97
0-2	No.	1.16																									12.33		0.40 0.96
Table I	1	62	14.52	13.16	72.72 28 01	22.11	27.95	18.68 26.09	14.86	28.45	27.13	12.55	12.78	21.84	13.23	13.63	10.32	28.76	28.25	27.25	14.63	20.62	12.97	12.90	15.93	21.64	28,91 10,32	18.82 28.91	0.28 0.96
	s K	25.84 25.84	23.88	13.51	13.36	25.63	28.76	26.35 26.35	24.93	28.63	29.23	00-21 12-20	13.53	27.54	13.54	18.10	96-8	29.07	28.49	26.05 26.05	22.83	50°24	12.87	13.46	25.24	26.75	5.02 8.02	21.91 29.34	0.28 0.96
	4~0	5.29	13.17	12.50	12.39	19.63	26.77	25.34	17.10	25.93	26.77	28.21 12.42	24°21	26.25	12.58	12.96	8,60	26.40	26.00	25.07	13.13	26.10	11.87	12.46	19.28	25.59	26.77 8.60	18.69 26.77	0.30 0.96
	1 1 1	9.18 4.50	14.75	14.11	14.04 20.68	15.08	30.00	22.06 22.06	15.20	29.45	29.97	13.91		29.27	14.28	14.71	5.0	29.63	16.40	23.02	14.73	29.53 29	13.35	14.11	15.21	21.87	63.63 59.63	19.24 30.00	0.31
			1959	1960	1961	1963	1964	1965	1967	1968	1969	0/61	10121	1973	1974	19751	1977	1978	1979	1981	1982	1983	1985	1986	1987	1989		Avg. Max.	Daily Min. Max.
		I											ï	n '	r												E	< X	여보로

D-2

.

I

	Hax.	2.25 2.25 2.25	26-64	88 87 87	88	88 22	88	88 22	8 8 8 8	8.8 7	85 25	74_01	72-08 77-02	88	3 3 3 3 3 3	8.8 2.2	38 38	83 26	.8 .8	85 23	8	88 2 2			83.04	
(Unit:MW)		31.24																							29.06	
	Max.	76.63 82.42	27.93 48.88	8 2 2	82.8	83.04 83.04	88.8 88.8	88 88	71 93	58.32 58.32	77.69	67.29	60 . 02 59.92	8.8	88 22	78.21	88 88 88	83	21.99 80.31	80.11 80	28 28	79.33	183 183	74.78 83.04		
	Avg.	56.99 56.02	37.45	84 87 83 83 83 83 83 83 83 83 83 83 83 83 83	58-60	62.67	40.21 59.62	63.72 71 33	54.21	52.74 41.97	44.65	57.57 10.28	42.38	59.43	62.39 52.59	50.43	61.22	59.15	40.69 52.14	52.81	8,95 88,95	62.45	87.45 37.45	54.30		
3	Min.	36.90 31.48	29.75	29.29	2 S S	40.61	12.52 13.23	34.16	36.38	87.82 87.82 87.82	31.96	37.31	34.66	8.8 8.5	42.36	36.89	40.70 25.70	8.8 8.8	8.8 8.9	35.36	8.8 8.8	40.30	20.04	36.51 60.65		
Abstraction	Dec.	48.99 36.36	36.96 36.57	83.04	36.79	40.61	43.69	72.82	37.18	36.20 24 83	67.37	42.42	38.42	75.84	42.36	52.39	40.70	38.86	47.34 38.96	47.67	41.50	65.59	47.83	48.61 83.04	30.31 83.04	
(1995 Abst	Nov.	50.66 44.89	39.96 45.59	83.64	49.00 46.20	52.90	56.57 56.37	81.93	41.27	44.06 38 50	77.69	48.49	39.01	38.95 78.36	80-83 81-82	c) - 00 78.21	49.20	47.35	51.99	48.36	45.08	66.81	62.21 20 60	82.82 82.92	33.07 83.04	
	0et.	55.43 59.16	57.89	75.59	62.28 57 50	65.87	57.05 51.05	74.26	64.49 60.06	60.28 57 03	54.04	59.59 60.71	35.73	37.14	63.40	59.80 59.19	60.97	27.27 29.88	41.83	58.43 58.43	58.98	65.10	64.29	58.88 58.88 75.59	29.38 83.04	
ion Results	Cen	54.96 59.78	46.58	45.82	60.67	59.23	29.61	66.58	62.52 60.58	60.22	34.52	43.26	34.66	34.28 58.60	58.64	59.44 58.00	59.14	59.43 59.28	33.81	38.51 58.51	63.17	58.64	59.25	53.66 53.66 66.58	29.06 83.04	
Simulation	0 I V	53.07 53.07 66.95	37.26	39.21	61.00	63.75	35.18	67 17	70.36	61.24	33.68 33.68	37.31	38.15	36.18 60.48	60.33	61.89 36.89	60.34	61.25 60.46	35.93	59.57 59.57	46.04	60.39 57.33	60.56	52.53 70.36	31.16 74.01	
Power	[""	36.90 75.69	40.73	31. 51 42. 67	46.62	61.76 47.69	35.26	43.75 64.42	72, 74 36, 38	43.84	41.68	40 74	37.18 39.88	40.38	44 01	67.40 20 14	43.93	46.95	38.35	41.53 46.41	41.70	43.35	43.84	35.26 46.24 75.69	33.50 83.04	
Kamburu	, •	릯																				+	- 1	37.26 62.16 83.04		
Table D-3 I	-	76.63 75.03 75.07	54-81	48.88 47.27	82 10	88 8 8 8 8	40°91	82.50 79.78	83 22	82.35	52.40 47.26	53.99	44 93 60.02	59-96	38 22	83. Q	83.04 83	78.91 83 04	44.54	80.31 77 87	56.60	83.04 79.33	83.04	40.91 68.89 83.04	33.89 83.04	
Tabl		58.55 58.55	43.10 10	42.14 38.30	66. O7	64.64 76.14	51.33	77.15 45.32	75.87	88.89 88	40,01 24 14	62 81	42.33 56.67	55.40	81.62	76.27	8.8 8.9	52.33 52.33	41.43	60.72 47 87	52.80	70 64 67 03	82.71	34.14 58.95 83.04	30.79 83.04	
		Mar. Api 55.49 55.57	52.55	32.68	62.50	56.57	56.54	59.58 54.87	65.38	33.41	29.88 21.06	51.30 60.86	36.30 44.97	35.38 35	52.05 86.05	62.87	57. 91 64. 97	54.24	39.42 39.42	36.82 25.36	57.93	51.58 59 95	70.12	29.88 50.91 70.12	29-06 80-96	
		Feb. 58.37 56.37	31.40 31.40	31.02	61.98	46.16	58.23	58.13 40.43	60.65	33.29	30.65	62.23	36.40	35.45	35.12 61.03	66.69	45.36 60.29	35.86	36.08	36.40	48.49	35.27	62.86 86	29.29 46.85 71.00	29.06 83.04	
		lan. 59.73																						32.95 47.74 82.95	31.33 83.04	
		1957	1959	1960	1961	1963	1365	1966	1968	6961 1970	1261	1973	1974	1976	1977	1979	1980	1982	1984	1985	1981	1988	1990	Min. Avg.	Daily Min. Max.	
		•										n	2													

Table D-3 Kamburu Power Simulation Results (1995 Abstraction)

I

D-3

رب ا	Мах.	1.98 1.98	33	1.99	1.39	5.1	500 L		1.99	1.99	1.99	1.99	1.99	56.1	22.1	29		1.99	1.99		7.5 - 1	66•1	66.1		1.99	8.	1.00	6	66 :			1.99
(Unit:GWb/y)	aily in.	0.75																														0-70
	Max.	57.01 59.34	43.07 36.36	61.78	61.72	19	07-10	¥ 2 8	59.63	61.78	53.52	61.27	43.10	22.87 23.87	22 22 22 22	20.00	4 1 1 1 1 1 1 1	61.78	61.78	61.78	29. 29. 29.	01.10	1.00	37.43	59.75	57.93	24°24	20.00	61.78	36.36 55.21	61.78	an a
		41.57 41.02																														
	Min.	27.45 21.15	21.10	19.68	27.37	27.46	20°21	27.12	25-41	40.76	27.07	22.37	20.60	23.05	91. JZ	5- 73 5- 72	58	23.60	31.52	8.7	27.45	87.95 77.95	2.5	24.25	24.46	23.81 23.81	29-62 29-62	20.00	32.62	19.68 26.07	40.76	
~	Ann.Tot	498.86 492.25	378.90	428.90	546.65	513.83	549.07	404.60 501.66	261.00	625.47	473.78	462,59	368, 18	391.59	455.50	441.50	365.01	521.41	546.24	557.10	441.60	22.02	11.00	356.71	457.29	463.27	441.86	07.07C	576.35	328.26	625.47	
AUS LI AC LIVIL	Dec.	36.45 27.05	26.83	61.78	27.37	34.99	30.21	32.50	00.02 81 13	61.19	27.66	26.93	25.91	50.13	31.56	27.12	20 02 20 05	56.42	31.52	31.08	38.98	20.28	22.12	35.22	28.99	35.47	30.87	40.01 A0.01	35.63	25.08 36.16	61.78	0.73
SUA VUS	Nov.	36.47 32.32	28.77 29.92	59.79	35.28	33.33	38 . 88	40.73	47. /4 52 00	51.40	29.71	31.72	27.78	55.94	34.91	50°.30	20.02 20.05	56.42	43.80	43.74	56.31	80.43 1	50°26	37.43	30.12	34.82	32.46 22.46	40°.70	44.79	27.78 40 47	59.79	0.79 1.99
r) shinsay	0rt.	41.24 44.02	43.07	56.24	46.34	42.85	49 . 01	42.44	85°.42	47.98	44.68	44.85	43.10	40.21	4 22	45. I7	20.20	44.30	47.17	44.49	44.04	45.36	24°70	31.12	43.70	43.47	43.88	47.64	47.83	26.58 43 81	56.24	0.71 1.99
	Ley	39.57 43.04	33.54	35-12	43.68	42.12	42.65	21.32	43.02	45.23	43.62	43.36	41.99	24.86	31.15	43.69	24.90	42.19	42.22	42.80	41.76	42.58	47. 74 10 EQ	24.34	42.29	42.13	45.48	42.63	42.66	21.32 38 64	47.94	$0.70 \\ 1.99$
SIEULALION	Åne	39.48 49.81	27.72	20 12	45.38	45.91	47.43	26.17	4 8 8	19 91 19 91	32.70	45.57	29.76	25.06	27.76	50.06	28.33	66 97	4	46.05	27.45	44.89	45.57	24 73 26 73	44.33	44.32	34.26	44.93	45.05	23.89 20.05	52,35	0.75 1.78
tnergy	Į II.	27.45 56.31	8.8	66 12 18	34,69	45.95	35.48	26.23	32-55	41 A2	27 07	32.62	31.01	28.63	30.31	42.54 22.54	29.67	22 SC 25 SC	32.75	50.14	29.12	32.69	34.93	26.30	30.90	34.53	31.02	32.25	32.62	26.23	56.31	0.80 1.99
Kamouru	r. I	54, 08 54, 08 59, 34	31.03	00 57 57 58	51.35	59 79	53.33	29.10	47 06	54°53	20 15	52 02	32 07	33.70	34.35	29.27	33.48	54 49 54 49	46.47	59.79	31.68	54.32	58.05	50.41	51.55	57.68	38.25	51.94	47.40 52.95	26.83	59.79	0.81
Table D-4	, con	57 01 56 48	40.78	89 89 87 87 87 87 87 87 87 87 87 87 87 87 87	61.08	61.78	61.78	30.44	61 38	59-36	AD 52	61.27	38 99	35,16	40.17	33.43	44 59 5	14 DI 61 72	61.78	61.78	37.31	61.78	58.71	61°/8	59.75	57.93	42.11	61.78	59.02	30.44	61.78	0.81
Tabl		42 16 33 37	31.03	30.34 27.64	47.57	46.54	54,82	36,96	55.55	32.63	24-00 20-4-00	29 P2	28.81	24.58	45.22	30.48	40.81	90°90	58.76	54,92	32.65	59.79	37.68	38	43. 71	34.43	38.02	50.86	48°.26	24.58	46.44 59.79	0.74 1.99
	1 T	41.28 41.47	39.09	24.31	46 50	42.09	45.45	42 07	44.33	40.83	10.01 11 01	40•14 24 86	22.23	23.78	45.28	27, 01	33 46	26 32	44 77	46.78	43.13	48.34	40.36	44 67	27.39	26.31	43.10	38.38	44 61 59 17	22.23	52.17	0.70 1.94
	, i F	39.23 39.23 21 15	21.10	20.84 29.95	45, 69	31.02	38.74	39.12	39.06	27.17	10 - 10 - 1	20 21	20.60	23 05	41.81	24.46	24.17		41.02	44 82	30.48	40.52	24.10	41.17	24 26 24 26	23.81	32.58	23.70	42,05	19.68	31 40 47.71	0.70 1.99
		3																				÷								24 51	39.32 61.72	0.75 1.99
		1957	1959	1961	1061	1963	1964	1965	1966	1961	1000	706T	1971	1972	1973	1974	1975	1976	LIGT L	1979	1980	1981	1982	1983	1984	1986	1987	1988	1989	Min.	Avg. Max.	Daily Min. Max.

Table D-4 Kamburu Energy Simulation Results (1995 Abstraction)

Ľ

Ţ

D-4

	Max.	143.01	143.01	143.01	145-01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	143.01	163.01	126.26	143.01	143.01	143.01	143.01	143.01			143.01	
(Unit:MW)	1	67.84 67.84	64.41 64.41	64.41	20.02	74.67	64.47	66.75	00.40 70.47	68.91	67.61	64.41	1.5	74.00	69.84	71.51	27.53	78.17	72.08	76-58	10.11	72.25	72.57		69.12	74.91	78.31			64.41	
		139.64	124.12	143.01	143.01	143.01	124.93	143.01	143.01	142.92	143.01	125.64	192.04	139.43	128.08	128.00	143.01	143.01	143.01	143.01	142. /o	109.38	142.96	142.91	143.01	141.84	143.01	127.62	143.01		
	Avg.	116.38	90.35 78.60	95.17	125.46	125.35	97.03	120.02	123.96	112.27	105.80	88.33 19.33	90 B	10°601	87.20	82.85 28.85	116.78	126.48	104.00	121.84	120.52	8.9	105.50	106.75	118.00	127.30	129.50	78.60 109.76	138.17		
	÷.	76.21							71.13								<u>.</u>											24-85 25-83 25-83	129.71		
raction	Dec.																											71.74	143.01	66.75 143.01	
(1995 Abstraction	Nov.																												143.01	69.55	
Results (19	Oct.																													65.00 143.01	
	Ven	116.82 128.24	98.31 25	94.25	130.15	125-79	121 13	127.92	139.28	120.54	129.15	125.04	71.08	8.8	130 CT	72.21	126.11	126.17	124-55	127.08	127.62	92 92 12 1	126.31	125.84	134.31		128.08	65.42		5 64.41 143.01	
Simulation	4110	113.47 139.43																												2 67.96 1 143.01	
l Power	[tr]																												94.44	3 69.22 1 143 01	
Gitaru	<u>,</u>	137.70																												9 69.83 1 143 01	
Table D-5	r T	139.64		·											÷.,															9 69.95	
Ца	-	<					÷.			÷																			0 116-23 9 143-01	1 67.39	
		2		~ ~	~ ~		1												+									1	7 107.60 4 138.99	Ì	
		reb. 3 125.05	88.34 88.34	67.73		98.72	123.7	0 124.9	3 124-01 3 86-72	5 129.7	2 142.6	10.02 21.02	72.0	1 132.9	9 74.3	9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		4 131.0	0 140.6	5 95.1	9 73 1	1 131.1	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.2	5 102.3	6 71.9	9 133.6	0 64.8	22 98.97 01 142.64	5 64.41	
		Jan. re 57 127.88 1	959 71.36	21.2		63 75.4	64 137.0	65 106.4	67 71.13	68 135.9	69 142.9	01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		73 138.0	74 80.4	75 78.8	10 128	78 139.4	79 84.9	80 78.8	82 79.1	83 137.0	84 79 8	86 77 92	87	88 78.2	89 126.6	70.2			
		61	61 61	61	50	n đ	61	61 61	A GI	19	51	SI -		61	6I	57 -	<u>7</u>	19	51	225		2	22			12	*:	Hin.	Avg. Max.	Daily Min.	Max.

Table D-5 Gitaru Power Simulation Results (1995 Abstraction)

('n)	Max.	3.43 3.43			3.43		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3.43	2 7 7 7 7	3.43	9 9 9	3.54 54 54	3.43		3.43	3.43		3.43	3.43		3.45		2 C	3.43	3.43		3.43	
(Unit:GWh/y)			1.59	1.55	1.68	1.64	1 79		1.59	1.65	1.62	រះ រះ	312	1.78	1.68	1.71	1.79	38	2.25	1.75	35	1.74	1.73	22	1.85	1.88		1.55	
		103.89	92.35	106.40	106.40	106.40	106.40	106.40	105.24	106.34	106.40	92.36	102.47	103.74	95.29	106-40	106.40	106.40	106.40	105.77	106.40	106.36	106.32	30. 10	105.53	106.40	101.83 106.40		-
	Avg.	84,89 81,92	60 ⁻⁹⁹	57.41 69 63	91.47	85.47	91.48 20.30	87.49	90.67	100.91 81 80	77.32	64.54	66.25 79 73	73.10	63.72	82.38	91.45	92.18 71 00	23-30 88-85	87.47	88.18 88.18	77.10	78.06	14.17	92.88 98.88	94.46	57.41 80.15 100.91		
	5															40.33	65.17	63.17	50.08 62.08	49.17	59.12	49.93	48.56	61.12	5 92 19 9 19	68.41	43.57 54.23 87.16		-
	Ann.Tot	1018.63	793.06	688.85 25 EV	1097.69	1025.63	1097.82	046.33 1049.89	1088.00	1210.92	927.86	774.52	794.93	877,18	764.61	1024.53	1097.46	1106.21	1066.19	1049.65	1058,18	925.24	936.68	928.92	1114.32	1133.57	688.85 961.75 1210.92		_
Abstraction	Dec.	5.77														61.39 105 79	65.17	63.89	50 50 50 50	102.58	59.12	72-35 59-28	73.60	87.38 87.38	20-11 02 62	74.95	53.38 72.23 106.40	1.60	0.40
(1995 Abst	Nov.	76.19 66.04	59.66	67.31	12-21	69.99	79.53	82-27 80 60	102.97	96.27 59.00	65.40	57.61	102.47	77.10	57.46	57.36	85.86	89.59	73 53	100.54	70.41	78.75	72.68	67.15	102.97	92.62	57.36 80.00 102.97	1.67	0.4.0
Results (19	0et	87.67	92.35	59.52	100.34	91.97	101.72	90.09	105.24	98-22 56-57	95.85	92.36	82.52	20°-11	54.23	56.42 06 13	98.41 98.41	95.49	94.60 07 01	103.01	95.59	64.51 93 99	93.49	94.31	97.41	98,90	54.23 91.43 105.24	1.56	04.0
	(an	84.11 84.11	70.78	47.25	67-86 00-70	90.57 90.57	91.58	47.10	100.28	96.43 26.73	92°58	90.03 90.03	51.18	11.00 03.61	50.88	51.99	90.85	91.91									47.10 82.56 100.28		0.40
Simulation	611d	84.42	56.77	51.63	59.74 06 00	97.97	100.65	55.08	94.94 104.23	105.91	69.43	61.13	53.00	56-70 102-74	58.00	54.94	96.05	98.28	56.04	97.01	95.97	54.54 ov 58	65.56 57	70.65	96.17	30.32 96,84	51.63 82.34 165 91	1.63	5.43
Energy	[1]	. 70 10																									53.67 70.26 105 22		3.43
Gitaru	1	9.14	102.97 63.82	61.36	54.79	102.97	100.07	59.76	95.39 102.97	102.97	57.73	56.37 66.37	69.87	71.27	60°.01	72.38	100.22	102.97	65.21	100.08	95.84	56.71	30.00 102.86	80.71	98.40 28.40	12-26	54.79 85.24 102.97	1.68	3.43
Table D-6	,	103.89	101.58 85.25	75.42	73.23	106.40	106.40	62.44	105.08	106.40	84.65 106 40	₽ 9 9 9	72.58	85.03 85.03	95.29	95.23	106.40	106.40	77.74	106.40	106.40	68.25	106.32	90.02	106.40	105.53	62.44 95.12 56.44	1.68	3.43
Tab		Apr. 83.54	69.07 64.96	63.07	57.25	99.12 00 41	100.62	77.94	102.17	102.81	101.12	34.01	51.70	94.89 50.50	82.06	81.05	93.67 102 07	102.14	67.86	102.97	90.68	61.48	30-31 70-47	79.80	98.73 5	97.49 102 07	51.70 83.68 83.68	1.62	3.43
	2	727. 88.02	88.13 82.76	51.89	51.14	99-64 00 03	96.09	89.92	93.72 86.66	102.65	102.22	53.19 AG 03	51.22	96.99 11	50.12 70,13	53.68	53.16 00 04	99.74	92.73	98.80 98.80	95.81 95.81	60.54	53.65	92.64 92	81.52	95.77 103 A1	49-03 80-05	1.55	3.43
	-	reo. 84.03	45.99	45.52	43.57	95.14	83.13 83.13	83.95	83.77 58.23	87.16	95.85 26.85	41.44 11	48.45 44.85	89.32	49.93	48.59	48.12	85	63.94	86.87 86.87	49.17 88.12	49.48	49.93	68.79	48.34	89.83 12	43.57 66.51	30.00 1.55	3.43
		Jan. 95.15	57.12	52.99	52.23	106.40	50-14 101 98	79.16	74.43	101.15	106.34	26°36	54.74	102.70	59°83	57.84	58.11	51.5 11	58.66	83.68 83.68	58.92 101 93	59.40	61.69 57 02	61.12	58.22	94.26	22.23 27.23	1.64	3.43
			1958	1960	1961	1962	1964	1965	1966	1968	1969	1970	1972	1973	1974	1976	1970	1979	1980	1981	1982	1984	1985	1987	1988	1989	Min. Avg.	Max. Daily Min.	Max.
														D	-6												-		

Table D-6 Gitaru Energy Simulation Results (1995 Abstraction)

I

A MAR

	Max.	42.93 42.93	42.15 41.18	52.93 52.93	43.93	5. 3 2 2 2	43.93	43.93	43.93 13.93	42.53	43.93	43.93	42.95 40.25	39.59	42.74	41.43	42.93	43.93	43.93 47.93	43.93	43.93	31.48 10 00	43.93	38.06	43.93	43.93 43.93			43.93
(Unit:MW)	ily P.	17.01																								20.55			15.99
	x.	40.62 43.69	30.41 25.61	43.93	43.93	43.93	31.14	43.75	43.87	45.35 38.76	43.67	31.16	41.39	58 58 58	32.04	31.98	43.93	43.93	41.72	42.78	43.93	27.26	3.5	33.75	43.93	42-68 43-93 93-93	25.61	39.70 43.93	
	AVG.	30.13 29.83	22.87 19.95	25.91	33.37 2	31.14	24.54	31.76	8.8	8.8 8 8	28.09	22.40	23.77	25.38	22.47	23.08 57.08	31-50 31-50 31-50	33.89	26.69	32.41 32.41	31.41	21.46	20.12	26.65	31.90	8.8 8.8	19.95	28.89 38.64	
(uo		19.59 17.12																									1		
Abstraction		25.27 19.35																								36.54 25.54		25.78 43.93	16.63 43.93
(1995 Ab	Nov.																								42.29	38.03 28.03		29.86 43.93	17.85 43.93
Results (0ct.	1																								34.93		31.47 39.99	16.14 43.93
	Sen	Š.																									1	28.75 35.53	15.99 43.93
· Simulation	Ano	28.26 35.72	19.81	20-66	32.70	32.95	34-01	18.81	35.81	37.61	22-52 29-52	21.18	18.13	19.81	20.20												Í	28.05 37.61	16.97 39.59
ia Power	Įu)	1																										24.37	18.05 43.93
indaruma	u.,	립																										32.86 43.93	18.22 43.93
D-7 K	Vou	40.62	28.76	22.61 10.62	43.67	43.93	43.93	21.44	42.30	43.93	28.96	28.03	24.76	28-20 59-50	32.04	31.98	43.93	43.95	25.93	43.93	42.01	22.95	42.63	41.62	50-02 43-93	42.68	43.93	36.45 43.93	18.22 43.93
Table D-7		30.95 24.53	22.69	22.21	35.55	34,35	40.46	27 18	23.83	40.44	37.38	21.34	18.34	33.65	21.96 30.20	29.49	36.04	43.22	23.76	43.93	27.36	21.84	32.34	25.11	37 57	35.82	43.93	31.32 43.93	16.80 43.93
		29.38 29.38 29.44	27.61	17.67	33 20	30.05	32.67	30.05	31.78 28.92	34.93	34.67	16.37	17.34	32.55	19.34 00	18.90	18.74	33.70	31.05	34.86	29-02	21.02	19.57	18.90	51.U3	32.14	39.24	27.26 39.24	15.99 43.93
		1 17 31.17 17 19	17.08	16.91	36 70	24.67	30.81	31 14	31.06 21.68	32.47	38. 28. 28.	18.00	18.42	33.23	19.39	18.94	18.78	32.81 24.61	24.23	32.26	19.13 20 76	19.24	19.39	18.93	06.07 20.02	33.51	34.24	25.14 38.04	15.99 43.93
		Jan. 31.97																										25.42 43.93	17.07 43.93
		1957	1959	1960	1061	1963	1964	1965	1961 1967	1968	1969 1960	10.61	1972	1973	1974 1975	1976	1977	1978	1980	1981	1982	1984	1985	1986	1987	1989		lur. Ivg. fax.	Daily Min. Max.
		•												n	~												1.		

Kindaruma Power Simulation Results (1995 Abstraction) Table D-7

)

Multi Mar. Sp. 0ct. Not. Dec. Multi Mar. Sp. 0ct. Multi Mar. Mar. <thmar.< th=""> Mar.</thmar.<>	y)	Max.	1.05	1.0 8 8	1.05	1.05	1.05	201	1-02	56	1.05	1.05	1.05	1.05	1.05	0.97	5. 5	30	- 22	1.05	1.05	1.05	1.05	1.05	1.05	00 - 0	1.05	16.0	1.05	1.05	c0.1		1.05
Main Fib Main	(Unit:GWh/		0.41	0.39	0.38	0.44	0.41	0.47	200	9 C	4	0.41	0.41	0.38	0.38	0.45	0.46		2 2 2 2 2 2 2 2		0.49	0.45	0.48	0.46	0.48	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.45	0.46	0.45	0.47	0.43		0.38
Main File Main Main <thmain< th=""> Main Main <thm< td=""><td></td><td></td><td>30.22 31.46</td><td>23.00</td><td>32.69</td><td>32.69</td><td>32.69</td><td>32.69</td><td>22 61</td><td>31.58</td><td>32.69</td><td>28.84</td><td>32.49</td><td>23.00</td><td>29.80</td><td>25.94</td><td>26-69</td><td>50 60</td><td>22-22 23-26</td><td>30.69</td><td>32.69</td><td>30.04</td><td>32.69</td><td>31.26</td><td>32.69</td><td>20.51</td><td>30 96</td><td>24.30</td><td>32.69</td><td>31.75</td><td>22.03</td><td>58.88 58.88 58.88</td><td></td></thm<></thmain<>			30.22 31.46	23.00	32.69	32.69	32.69	32.69	22 61	31.58	32.69	28.84	32.49	23.00	29.80	25.94	26-69	50 60	22-22 23-26	30.69	32.69	30.04	32.69	31.26	32.69	20.51	30 96	24.30	32.69	31.75	22.03	58.88 58.88 58.88	
Jan. Fab. An. Mar. Mar. <thm< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></thm<>																																1	
Jan. Fab. Mar. Mar. Jan. Jan. <thjan.< th=""> Jan. Jan. <thj< td=""><td></td><td>÷</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>13.92 21.82 21.82</td><td></td></thj<></thjan.<>		÷																														13.92 21.82 21.82	
Jan Feb. Mar. Mar. Mar. Jun.	(uo	Ann.Tot	263.76 262.07	200.78	227.58	292.09	273.05	291.85	214.62	CO 112	333 56	253 93	246.39	196.43	208.48	241.14	222.74	197.01	143.38	17-617	206 45	233.69	284.25	284.57	275.01	188.07	20.242	233.32	279.84	294.97	311 10	174-83 253-20 333-56	_
Jan Feb. Mar. Mar. Mar. Jun.	stracti	Dec.	18.80 14.40	14.36	32 69	14.58	18.45	15.95	91 28 28 5	28.00	32.44	15.14	14.35	14.00	26.68	16.36	15.37	15.12	15.76	16.00	16 20	20.38	15.81	30, 32	15.27	18,13	02.01 10.01	16.05	24.49	27.19	19.11	13.57 19.18 32.69	0.40
Table D-8 Kindaruma Locry Simulation Kesu SSI 23:78 Table D-8 Kindaruma Locry Simulation Kesu SSI 23:78 Col 386 13.71 11.50 21.96 22.23 21.91 31.6 21.02 20.74 386 13.71 11.50 21.96 22.23 21.91 31.6 32.94 37.74 386 11.50 21.19 17.75 11.50 21.74 11.53 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.75 31.74 31.75 31.74 31.75 31.74 31.75 31.74 31.75 31.74 31.75 31.74 31.75 31.74 31.75 31.76	(1995 At	Nov.	18.94 17.15	15.26	31.0	18.80	17.69	20-20	21.32	25 42	24 52	16.05	16.84	14.86	29.80	18.11	19.36	14 83	14.81	00-00	22.25	30.04	18.43	28.14	17.62	19.63	10,01	16.82	30.45	27.38	24 44	14.81 21.50 31.63	0.43 1.05
Jan. Feb. Anr. May. Jun. Jul. Aur. Jul. Jul. Aur. Jul. Jul. Jul. Aur. Jul. Jul. Jul. Aur. Jul. Sep. Zin. Sep. Zin. Zin. <thzin.< th=""> Zin. Zin. <thz< td=""><td>Results (</td><td>Oct.</td><td>21.77 23.55</td><td>23.00</td><td>14 92 29 76</td><td>24.84</td><td>22.90</td><td>26.18</td><td>22 EI</td><td>24.54</td><td>25 70</td><td>23.88</td><td>24.01</td><td>23.00</td><td>21.42</td><td>23, 74</td><td>24 16</td><td>14.19</td><td>14 68</td><td>23.13</td><td>00 CC</td><td>23.61</td><td>24.28</td><td>29.14</td><td>23.85</td><td>16.50</td><td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td><td>23.52</td><td>25.48</td><td>25.99</td><td>25.88</td><td>14. 19 23. 41 29. 76</td><td>0.39</td></thz<></thzin.<>	Results (Oct.	21.77 23.55	23.00	14 92 29 76	24.84	22.90	26.18	22 EI	24.54	25 70	23.88	24.01	23.00	21.42	23, 74	24 16	14.19	14 68	23.13	00 CC	23.61	24.28	29.14	23.85	16.50	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23.52	25.48	25.99	25.88	14. 19 23. 41 29. 76	0.39
Jan. Feb. Mar. Mar. Mar. Mar. Jun. Jun. <thjun.< th=""> Jun. Jun. <thj< td=""><td></td><td>Sep.</td><td>20.87 23.04</td><td>17.87</td><td>22 C</td><td>23.42</td><td>22.58</td><td>22.84</td><td>11 70</td><td>23.03</td><td>00.02</td><td>23.36</td><td>23.21</td><td>22 43</td><td>13.33</td><td>16.66</td><td>23 37</td><td>13.37</td><td>13,25</td><td>50 22</td><td>20 27</td><td>22.33</td><td>22.82</td><td>22.92</td><td>22.87</td><td>13.09</td><td>10.22</td><td>56.32 24 30</td><td>22.94</td><td>22.65</td><td>23.15</td><td>25.58 25.58</td><td>0.38 1.05</td></thj<></thjun.<>		Sep.	20.87 23.04	17.87	22 C	23.42	22.58	22.84	11 70	23.03	00.02	23.36	23.21	22 43	13.33	16.66	23 37	13.37	13,25	50 22	20 27	22.33	22.82	22.92	22.87	13.09	10.22	56.32 24 30	22.94	22.65	23.15	25.58 25.58	0.38 1.05
Table D-8 Kindaruna Jan. Feb. Mar. Mar. Jun.		Aug.	21.02 26.58	14.74	12.95	54.37	24.51	25.31	13.98	23.68	50°07	17.56	24.35	15.76	13.49	14.74	26.69	15.03	14.35	24-08	10 42	11 59	23.98	24.32	24.02	14.26	23.00	12.01	24.04	22 81	24.44	12.95 20.87 27.98	0.41 0.95
Jan. Feb. Apr. Mar. Apr. Jun. 955 13.71 11.46 23.78 20.95 23.49 21.86 22.29 31.4 956 13.77 11.48 21.36 22.29 30.22 23.65 956 13.77 11.48 20.54 13.74 11.48 31.4 956 13.77 11.48 20.54 13.74 11.48 31.4 956 13.77 11.48 11.46 13.74 11.48 31.4 956 13.75 11.48 11.46 13.74 11.48 31.4 957 13.24 11.46 13.75 14.48 14.57 21.48 957 13.24 13.24 13.47 31.47 31.47 31.47 956 13.26 21.48 11.25 14.57 31.47 31.47 957 13.66 12.73 21.48 31.47 31.47 31.47 971 13.66 21.49 </td <td>a Energy</td> <td>Jul.</td> <td>14.58 30.12</td> <td>15.94</td> <td>14.83</td> <td>101</td> <td>24.31</td> <td>18.36</td> <td>14.03</td> <td>16.95</td> <td>KC*C2</td> <td>14.44</td> <td>17.05</td> <td>16.16</td> <td>15.11</td> <td>15.90</td> <td>22.56</td> <td>15.62</td> <td>15.75</td> <td>18.53</td> <td>1/ 00</td> <td>20.02</td> <td>10 21</td> <td>18.29</td> <td>16.78</td> <td>15.10</td> <td>16.14</td> <td>16.11</td> <td>16.83</td> <td>15.78</td> <td>17.44</td> <td>14.03 18.13 30.12</td> <td>0.43 1.05</td>	a Energy	Jul.	14.58 30.12	15.94	14.83	101	24.31	18.36	14.03	16.95	KC*C2	14.44	17.05	16.16	15.11	15.90	22.56	15.62	15.75	18.53	1/ 00	20.02	10 21	18.29	16.78	15.10	16.14	16.11	16.83	15.78	17.44	14.03 18.13 30.12	0.43 1.05
Jan. Feb. Mar. Apr. May. 955 Jan. Feb. Mar. Apr. May. 956 13.71 11.50 21.95 33.2 39.2 956 13.71 11.50 21.96 31.4 30.2 956 13.77 11.56 21.96 31.4 32.6 961 13.77 111.56 13.15 11.65 21.96 31.4 965 13.77 111.56 21.96 31.4 32.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 24.67 23.6 23.	Kindarum	, mil	28.68 21.46	16.10	15.61	14. CO	31.63	28.39	15.35	25.03	31-55 51 55	14.84	27.70	16.69	17.58	17.72	15.38	17.34	17.97	28.96	24.02	01 00 16 36	20.00	30.80	26.73	14 67	27.33	20.02 00.02	27 65	25.17	28.48	14.25 23.66 31.63	0.44
Jan. Feb. Apr. 955 Jan. Feb. Mar. 956 13.71 11.50 21.86 956 13.71 11.50 21.86 956 13.71 11.50 21.86 956 13.77 11.48 20.54 966 13.77 11.46 21.96 967 13.77 11.50 21.86 967 13.77 11.46 20.54 967 13.77 11.36 13.15 967 13.66 14.57 21.86 970 13.66 14.57 21.86 971 13.66 14.57 21.86 973 15.44 13.03 14.36 973 15.44 13.03 14.36 974 15.86 20.87 23.56 973 15.17 12.88 23.65 973 15.18 12.19 13.24 974 15.17 12.86 23.56		Mav																															
Jan. Feb. Ma 955 Jan. Feb. Ma 955 Jan. Feb. Ma 955 Jan. Feb. Ma 955 Jan. Feb. Ma 956 13.71 11.50 966 956 13.71 11.50 966 956 13.71 11.50 966 957 13.75 11.48 11.50 956 13.75 11.48 11.50 957 13.64 12.38 957 970 13.64 12.38 956 971 13.66 14.57 958 973 15.17 12.88 957 973 15.17 12.88 956 986 15.05 12.58 957 973 15.17 12.88 956 987 15.17 12.88 956 988 15.05 12.98 958 956 1	Table	4nr	Ĩ																														
Jan. Jan. 957 Jan. 958 955 956 13.71 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.77 956 13.76 957 13.66 970 13.65 970 13.65 970 13.65 988 15.73 988 15.73 988 15.73 988 15.73 988 15.73 988 15.73 988 15.73 988 15.73 988 15.73 988 15.73 988		Ley Ley	2																														
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			5																														
Max. Max. Max. Max. Max. Max. Max. Max.			5	•																												13.24 18.91 32.69	0.41
D Q			195	195	196	5	961 961	196	961 1961	196	196	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101	101	5	• -			191	191	197	190	061 100	261 261	198	198	198	198	001	198	199	Min. Avg. Max.	Daily Min. Max.

Table D-8 Kindaruma Energy Simulation Results (1995 Abstraction)

D-8

June

(M)

J

	Max.	140.38	140.38	140.38	140.38	140.38	140.38	140.38	140.38	140.38	140.38	140.38	140.38	140.38	80-92 140-88	88-81 88-81	140.20	00-041	140.38	140.38	140.38	140.38	140.38	140.33		140.38	140.38	140.38	140.38	140.35			140.38	
(Unit:MW)		135.93	134.64		13.81	135.38	138.95	136.17	137.50	2 2 2 2 2 2	137 32	134,66	134.29	134.12	136.55	23-62	82	32	128	23 E	135.33	137.98	135.10	137.62		22	135.72	135.16	138.91	140.19			134.12	
		140.37	140.36	140.25	38	140.38	140.38	139.68	140-35 25 25 25 25 25 25 25 25 25 25 25 25 25	140.58 8 9 9 1	140.38	140.38	140.37	140.37	140.38	140.38	140-38	140.30	140.38	140.38	140.37	140.38	140.38	140.33	140.01	140.38	140.37	140.38	140.38	140.38	140.32	140.38		
	Avg.	138.89 138.64	137.69	5.101	140.17	138.93	140.04	138.00	139.63	129.20	139.85	138.87	137.61	137.14	139.32	138.37	137.90	151.00	140.12		128.57	139.68	139.13	139.70	131.42	128 64	139.69	139.17	140.07	140.36	138.88	140.36		
ਰਿ	Mîn.	136.58	135.01	18.41	139.28	136.36	139.21	136.64	137.80	135.33	132.22	135.62	134.71	134.38	137.18	135.10	135-74	12.25	120.01	5.02	135.72	138.49	135.96	138.15		195 10	136.36	135.91	139.07	140.30	136.67	140.30		
Abstraction	Dec.	139.77 137.97	137.43	137.54	139.28	139.52	140.01	139.47	140.28	140.37	140.14	137.90	136.30	140.37	138.85	139.20	136.45	136.63	140.35	140.25	140.37	139.06	140.37	138.59	140.37	101.00	138.70	140.37	140.38	140.38	139.29	140.38	136.23 140.38	
1995 Abs	Nov.	137	136.36	136.70	120.55	137.83	139.88	137.46	140.31	140.38	130.05 131 21		136.50	139.43	137.18	138.95	135.96	135.96	139-071	10°20'	139.56	138.49	140.37	138.15	137.93	151.41	18.161	140.34	140.33	140.30	135.59	140.38	135.79 140.38	
\sim	0ct.	136.58 139.17	137.19	136.60	126.91	138.70	139.65	136.64	139.18	140.38	120.021	130.30	137.48	136.94					138.69						•••						136.57 138.50	140.38	135.83 140.38	
Simulation Results	Sep.		138	5				137.29										138.10	139.5	100.04 100.04	138 59	139.75	139.90	139.77					. –			140	136.68 140.38	
	Ang.	1						138, 19	140.19	140.38	14038	140 95	130 65					139.63	140.21	140.23	140.02			140.28					140.19		137.85 139.85	Ţ	137.78	
e Power	lul.									140.37			••		140.38						•••		140.37		-				140.37		137.77		137.52 140.38	
Kiambere	mı".													•••	140.37				• • •			•	140.38					·	•••	-	5 137.29 1 139.89		2 136.53 3 140.38	
Table D-9	N N	139.70	137.52	137.47	136.42	140.38	140.39	137.45	140.38	139.52	140.38	00° 00° 00° 00° 00° 00° 00° 00° 00° 00°	127 45	134.85	139.57	136.98	139.00	2 138.89	140.25	140.33		10.101 10.01	139.24	140.3	136.64	139.45	139-22		140.3	3 140.35	3 134.85 1 139.14	3140.35	1 134.12 3 140.38	
Tab	744	137.17	135.01	1 134.91	134.96	140.35	120 06	136.66	138.77	135.33	140.38	2 140.33	151.0		139.72	135.10	135.84	1 135.62	136.36	140.3	140.20	150.12	135.96	139.12	1 134.80	136.00	135.1		140.04	140.36	0 134.30 1 137.24	3 140.3	3 134.14 3 140.38	
	, cy	Ξ																													4 134.90 5 137.31	1	2 134.53 8 140.38	
	10 40 40	ž.																													9 135.84 6 138.35			
		1957 140.21	•••			• • •		• •															82 139 21						00 130 06 08			140.3	136.04 140.38	
		19	5	61	5	6	50	50	đ	đ	19	61	51		n n		61	19	19	19	61	51		5	19	19	61	51	20	19	Min.	Max.	Daily Min. Max.	

Table D-9 Kiambere Power Simulation Results (1995 Abstraction)

Í,

~	X.	8.9 8.9	5.5 5 5 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7	3.38	3.36	5 5 5 5 5 5 5 5 5 5 5 7 5 7 5 7 5 7 5 7	38	3.36	3.36	38.5	3.36		38.5	3.36	89 89 89	3.36	3.36	55 55 55 55 55 55 55 55 55 55 55 55 55		3.36	85	3.36	3.36	5.8 ~~~	3.38 9.59	3.36		3.36
(Unit:GWh/y)	Daily Min. Max		88	1.85	1.92	200		1.93	1.8 3,88	38	1.86		38	1.88	8 •	8.8	1.92		1.90	1.86	1.90	- - - - - - - - - - - - - - - - - - -	 8.	10°1	2.01	1.94		1.85
	Max.	103.70 104.12																104.12									69.37 100.60 104.12	
	Avg.	89.17 86.30	69.02 59.36	70.80	53	82-58 58-58	73.56	92.79	92.33 107 13	86.87	84.54	88-03 53-03	07.74 83 56	75.31	69.74	8-22 25 25	8.8	95.74 70.74	92.23	89.57	92-59 5	82.67	82-00 81-00	61-09 62	97.60	<u>99-66</u>	59-36 83-71 102-12	
	Min.	59.77 59.01	52.94 52.88	52.58	59°26	62.79 eo ee	56.82	61.19	61.46	20°20	58.97	52.92	50.41 28.38	8.38 8.38	56.66	27-20 28-22 28-22	69.38	68.27 57 21	59.47	64.78	59.27	20.03 58.95	56.37	54-50 54-50	67.11	81.97	52.47 60.65 93.95	
) a	Ann.Tot	1069.99 1035.64	828.17	849.62	1137.22	1071.45	882.76	1113.48	1108.01	1042.49	1014.43	816.39	800-31 1002 71	903-67	836.91	785.35	1137.77	1148.93 056.03	330.80 1106.80	1074.88	1111.04	932.04	983.96 19	972.57	1171.15	1195.93		
ADSUFACTION	Dec.	66.23 59.01	58.71 58.83	104.12	59.56	62.79	59-64	61.79	103.15	58-67 68-67	58.97	58.29	100.35	59.53	58.35	58.43	69.38	68.27	44.00	99.27	59.27	80.41 58.95	80.09	59.35	104.12	98.92	58.29 73.77 104.12	3.36
SOV CAAT)	Nov.	59.77 76.15	62.02 57 07	100.76	86.77	73.49	83.42 83.83	99.07	100.76	1 M	77.58	63.78	100.19 64 71	82.96	56.66	56.65 100 45	91.88	93.93	07-001 78-49	100.06	75.48	60.75 69.54	69.72	69.63 100 21	100.76	100.20	56.65 81.22 100.76	1.87 3.36
r) sinsər	Oct.	99.26 103.37	102.12	99°99	103.86	103.07	103.67 95 04	103.37	104.12	103.20	103.45	102.30	87.80	103.62	69.54	70.31	103.22	103.33	76.201	103.80	103.26	17.68 163.06	103.10	103.07	103.30	104.09	69.37 98.63 104.12	1.88 3.36
	Sep.	98.32 100.55	81.37	80.18	100.69	100.35	100.53	100.22	100.76	100-75	100.50	99.69	59.99 70.05	100.61	67.04	66.46 100.22	100.31	100.44	97.45 100.32	100.48	100.40	56.91 100.29	100.35	100.12	100.29	100.76	56.82 91.55 100.76	1.89 3.36
Simulation	Alle.	94.90 104.12	72.72	60.39	102.19	102.64	102.95	100.66	102.95	104.12	101,98	73.72	59.19 70 64	103.10	71.83	71.13	101.67	102.75	70.90	100.83	100.73	58.95 100 60	100.78	83.21	97.40 97.40	102.05	58.95 83.86 104.12	$1.90 \\ 3.36$
tnergy	Tul.		64.88	58.98 58.98	77.49	92.83	76.49 50.15	70.28	99.47	104.00 60 06	70.81	68.43	59-27	78.29	65.87	66.35	71.35	97,37	62.26 71 £7	76.38	70.37	58.92	77.67	68-01	70.00 67.11	81.97	58.92 73.04 104.00	1.90 3.36
Kiambere	шĮ	98.46 100.76	60.01	56.82	99.49	100.76	99.51 57 16	95.23	100.76	100.76	97.90	60.71	57.01	57.13	72.91	74.23	92.79	100.76	57.81	39.20	95.56	56.89 05.07	100.76	82.06	98.19 92.00	100.76	56.82 83.91 100.76	1.88 3.36
able D-10 K	Mau	103.70	58.81	58.34 58.34	104.12	104.12	104.12	30. /0 104. 12	92.37	104.12	30.73 104.12	58.78	57.67	86.40 58.58	87.37	74.77	104.12	104.12	58.81	100.40	104.10	58.43 101 76	102.29	69.81	104.12	104.12	57.67 87.90 104.12	1.85 3.36
Table		.8.68 14	58.37	57.24	100.76	84.47	100.51	90.00 90.79	61.46	100.76	89.90	56.09	56.40	100.35	72.84	64.89	80.34 100.76	100.66	68.48 00.77	65.04 65.04	100.00	58,60 76 31	56.37	73.17	90.48 100.57	100.76	56.09 80.18 100.76	1.85 3.36
	ne M	2.76	97.26	66.U5 57.69	104.12	101.60	103.39	102 50	101.35	104.08	104.12 69 11	62.79	57.83	103.88 60 84	81.64	70.87	70.93	103.71	101.76	95.18	103.77	73.45	71.23	101.92	92.54 103.80	104.12	57.69 90.12 104.12	$ \begin{array}{c} 1.86 \\ 3.36 \end{array} $
	40	3.63 15	52.94	52-58 52-58	94.05	79.26	93.80 93.80	87.78 63.17	72.39	93.95	00 96 84 34	52.92	52.47	94.01 85.57	64.95	52,80	54,89 94,05	93.46	75.60	93.52 64.78	93.98	65.11 22 51	62.52	79.95	64.45 02 02	94.05	52.47 75.65 94.05	$1.87 \\ 3.36 \\ 3.36$
	, ,	i 76 74 74	58.90	58.53 58.53	104.12	66.07	104.12	92.18 23.28	68.47	104.12	104-12 75 77	58.89	58.24	102.92 69 A6	67.91	58.46	58.63 104 12	80.13	75.65	91.97 67.90	104.12	63.94 53.94	59.08	82.27	65.59 102 70	104.12	58.24 79.75 104.12	1.88 3.36
		1957	1959	1961	1962	1963	1964	19651	1967	1968	19921	1971	1972	1973	1975	1976	1977	1979	1980	1381	1983	1984	1986	1987	1988	1990		Daily Min. Max.
													I.	• •	^													

Table D-10 Kiambere Energy Simulation Results (1995 Abstraction)

D-10

Î

Ţ

ANNEX-D2 MUTONGA DAM

1

·

~	ax.	550-00	550-00 550-00	550.00	550.00	550.00	550.00		550.00	550.00	550.00	550.00	550.00	550.00		20 02 00 02 00 02	550.00	550.00	550.00	550.00	550.00	550.00		550 M	550.00	550.00	550-00	550.00	550.00	~~~~~			550.00
(Unit:EL.m)	Jaily fin.	549.59 549.65	549.50 548 90	549.55	549.66	549.68	549.60	540 23	549.63	549.79	549.55	549.46	549.60	560.55 560.55	20.02	140 040 E40 00	540 K7	549 43	549.68	549.66	549.53	549.24	10.950	3.073	549.45	549.65	549.37	549.60	240.52	10.000		548.90	
	lax.	550.00 550.00	550.00	550.00	550.00	550.00	550.00	550.00	550.00	550.00	550.00	550.00	550.00	550.00	550.00	200.00	0100 000 000 000 000 000 000 000 000 00		550.00	550.00	550.00	550.00	550.00	230.00	550.00	550.00	549.99	550.00	550.90	229.99	550.00 550.00		***
tion)	Avg.	549.99 549.98	549.97	549.96	549.99	549.99	549-99	56° 53'	06 675	549.99	549-98	549.98	549.98	549-96	260-82 570-82	- n-	50 07 U	00 082	549.98	549.98	549.98	549.98	549.99	061,240 540 05	549.98	549.98	549.96	549.98	549.98	549.85	549.98 549.99		
Abstraction		549.97																													1		
(1995	Dec.	549.98 549.98	549.99	550.00	550.00	549.99	549.99	549.98	540 00 540 00	550.00	549.97	550.00	549.98	549.92	549.98	549.97	50. 40 100 00		549.96	549.98	549.97	549.98	549,99	00 07 07 0 0 0 0 0	270-070 570-075	549.95	549.36	549.97	550.00	249.31	549.98 549.98	549.37	550,00
Results	Nov.	549.98 549.98	549.92	550,00	549.98	549.98	549.97	549.98	247.98 270.00	549.99	549.95	549.97	549.96	549.94	549.95	549.95	549-93	さんでい	520-00	549.97	549.99	549.92	550.00	249°44	540 94	549.94	549.94	549.99	550.00	00,000	549.97 549.97	549.24	550.00
Simulation Results	Oet.	550.00 550.00	550.00	549.09	550.00	550.00	550.00	550.00	549.99 540.00	540 00	549.99	549.99	549.99	549.99	549.99	549.98	549.98	10.940	540 08	549.98	549.98	549.98	549.99	549.98	549.90 540 08	549.98	549.99	549.96	549.90	049.33	549.97 549.97 550.00	548.90	550.00
	Sep.	550.00 550.00								540 00 540 00	550.00	550.00	550.00	549.90	549.99	550.00	549.99	275. CO	80.00 80.00	00.005	549.99	550.00	549-99	550.00	549.89 660.00	549.99	549.99	549.99	549.99	549.53	549.97 549.97 550.00	548.97	550.00
Water Level	Aug.	550.00 549.99	549.98	549.71 549.95	550.00	550.00	549.99	550.00	550.00	00 000 240 00	549.99	550.00	549.99	550.00	549.99	549.99	549-99	549.99	550.0U	00-000 549 99	549.99	550.00	550.00	550.00	549.91 550 00	550.00	549.99	550.00	550.00	549.99	550.00	549.51	550.00
Reservoir Wa	Jul.	549.98 549.96	549.93	549.98 540.00	549.96	549.95	549.98	550.00	549-98	540 07	549.99	549.97	549.99	550.00	550.00	549.98	549.99	549.99	549.94	343-31 540 94	550.00	549.98	549.98	549.98	549.94	549-985	549.99	549.98	549.98	549.97	549.98 549.98 550.00	549.63	550.00
e. Resei	Jun.	549.97 549.99	549.99	550.00 540.00	549.96	550.00	549.97	549.99	549.94	550.VU	549.98	549.95	549.98	549.98	549.98	549.99	549.98	549.98	549.97	550 00	549,99	549.98	549.99	549.97	549.95	16.945	549.98	549.97	549.95	549.93	550.00	549.45	550.00
Mutonga Av	Mav																														550.00		550.00
	ånr.									Ξ.																				- 1	550.00		550.00
Table D-11	Мат	-																												1	549.76 549.98 550.00		550.00
	reh																														549.98 549.99 550.00		550.00
		1 549.99 549.99	549.99	549.99	550.00	549,99	1 549.99	549.97	549.99	7 549.99 7 549.99	248-88 248-88	549.98	550.00	549.99	549.99	1 549.99	549.98	550.00	7 549.99	549.38	200 000 10	549.99	2 549.99	3 549.98	1 549.39	249.30	7 540 07	549.97	549.96	0 549.99	549.96 549.99 550.00	540 63	550.00
		1957	1951	1961	95	1961 1961	1961	1961	1961	1961		1201	161	197	197	197.	197.	1970	197	197	1901	198	198.	198.	861	198	001	1981	198	1661	Min. Avg. Max.	Daily	Max.

Table D-11 Mutonga Ave. Reservoir Water Level Simulation Results (1995 Abstraction)

(s)	Max.	494.85 545.44	122.46	145.22 2101.52	698.24	1061.93	1015.43	179-30	579.86 606.80	1360.23	276.62	510.41	176.88	201.03	224-02 258 11	223.51	142.28	518.58	1038.73	785-01	200.01	007-000	408-88	189.53	451.99	393.27	10.011	577,88	712.31			2101.84	
(Unit:m3/s)	Daily Min.	82.00 82.00	65.80 85.80	8°.8	65.00	65.00	65.00	65.00	68.32 68.32	13.5	65.00	65.00	65.00	65-00 65-00	38	65.00	65.00	65.00	81.21	11.35	85.00	27.02 27.02	20 20 20	65.00	65.00	65.00 66.00	20.00	20.02	87.86			65.00	
	Max.	263.51 295.34	107.69	142.701	412.46	630.87	455.36	147.37	309.31	413-34 643 14	194.07	236.98	123.96	168.16	20.101	132.19	101.34	325.85	606.50	498.12	200-17	420.00	2002	130.01	260.37	245.34	20 CTT	302.00	555.80	101.34	1481.70		
	AVG.	127.14 137.96	89.80 89.80	78.37	159.99	175.98	173.00	101.59	152.92	120.01	130.58	127.67	91.60	80.08 80.08	10.01		82.28	157.71	208-02	198.32	110.51	10, 20, 20,	130.09	89.30	128.09	130.78	103.45	168 31	226.35	78.37	268.08		
(u	Min.	71.22	71.81	65-00 55-00	33.80	76.54	8.83	67.06	82.68 62.08	00-00 124-26	81.99	76.29	67-01	20 - 22 29 - 22	22.5	26. 32	65.81	74.60	97.45	105.08	71.42	20.22	14.10 14.10	65.81	91.52	78.61	02.30 22.30	20.02 87 00	102.77	65.00 51.21	124.26		
Abstraction	Dec.	127.18 135.34	106.85	81.95	23°50	150.88	128.32	104.91	96.68	643 14 643 14	105.71	76.29	82.97	144.69	20.02	10.00	89°53	244.76	159.82	105.08	128.96	50.93	24. PS	130.01	92.77	167.49	82.30	927 45	223.75	73.80	723.43	65.00 1360.23	
1995 Ab:	Nov.	102.98 112.36																													1481.70	65.00 2101.84	
Results (Oct.	105.90	107.63	79.85	00 767	110.57	112.04	105.71	129.86	171.46	120.83	120.34	114.47	38.08	115.62	110-11	81.05	113.08	132.17	120.83	115.74	121.63	121.19	113.63	120.72	118.24	111.74	150-35 161 24	148.47	79.85	292.66	65.00 707.08	
	Sep.	105.51 107.67	89.07	65.00 20	90°28	110.78	111.50	67.06	115.74	126.58	117.49	117.03	114.83	67.34	89.26	00.611 26 72	74.94	112.30	117.88	117.09	111.48	119.34	118.20	65.81	116.72	113.63	112.35	115 02	116-07	65.00	104.37 126.58	65.00 139.45	
v Simulation	Aug.	$\frac{99.46}{116.27}$	76.71	65.00 65.00	00.30 111 22	112.07	113.96	67.73	116.07	128.88	01.36 97.36	119.17	90.01	70.81		80°071	5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	115.21	121.83	121.36	8,57	120.60	119.42	66.60	116.71	113.84	36.6 3	117.44	123.14	65.00	144.79	65.00 152.59	
Outflow	Jul.	71.22	72.81	65.30 27 20	67.73	117-59	88.83	69.94	89.78	133.86	102.30 81 99	92.14	86.61	77.69	77.42	101.01	10.01	76 66	97.45	142.96	77.42	60°66	102.97	20-05 68-02	91.52	97.48	83.70 1	90.17	102.77	65.30	93.34 162.35	65.00 211.52	
Mutonga	Tisn.	194.19	79.44	69.07	79.03	283 45	163.52	79.34	139.93	305.40	280.00	161.89	93.36	84.71	95.97	79.38	47.05 10	20.0%	151.85	370.23	85.11	214.77	258.09	100.73	179.15	226.29	111.4	173.76	197 51	69.07	161.25 370.23	65.00 631.67	
Table D-12	Mav	263.51 205 24	105.14	86.09	115.22	412.40 620 87	455.36	110.13	309.31	473.52	500-80 164 91	236.98	123.96	91.86	116.54	102.05	101 24	325 85	483.97	498.12	107.52	495.68	259.97	11.882	260.37	245.34	96,91	607.76	02.661	76.84	271.27 630.87	65.00 1061.93	
Table		1																									:				179.94 606.50	65.00 1038.73	
	r.N.	107.54	107,69	78.52	65.00	124.09	120.69	113.48	125.15	113.50	182.70	50°68	69.74	68.10	114.55	8.8	91.33 77	10.01 00.00	164,88	144.27	116.11	137.69	107.14	116-35 20-24	56° 56	86.38	115.29	114.12	127. UU	65.00	112.10 204.23	65.00 301.99	
	ЦФ. Д	110.32	11 81	66.80	65.42	143.05	30-02 124 56	119.00	117.81	92,90	130.02	52 50 58 70	67.01	70.34	121.30	88.11	83.18	10.00 74 60	126.37	181.91	101.75	117.99	87.41	124.20	84.64	82.98	107.60	84.24	12.121	65.42	102.66	65.00 323.19	
		2																													118.79 314.13	65.00 549.68	
		1957	195	1961	1961	196	р З З	1961	961 1961	1961	1961	0.7	197	1972	197.	197.	197	1051	161	1975	1980	1981	198	138	108	198	1981	198	1981	Min.	Avg. Max.	Daily Min. Max.	

Table D-12 Mutonga Outflow Simulation Results (1995 Abstraction)

D-12

100

Ţ

	aX.		59.21
(Unit:MW)		88888888888888888888888888888888888888	57-62
		22222222222222222222222222222222222222	
	Avg.	91-92 91	
(u	Min.	88.57 88.58 88	
Abstraction	Dec.	55.13 55.13 55.13 55.13 55.13 55.13 55.14 55.14 55.15 55	
(1995 Abs	Nov.	59.10 59	
Results (1	Oct.		i
	Sep		
Simulation	Åne		ļ
a Power	["]		
Mutonga			
Table D-13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50-10 50	40 58.54 21 59.21
Tat	1		
	:		
	1		
		1957 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 959 59.20 1966 59.20 1966 59.20 1966 59.20 1977 59.19 1977 59.19 1977 59.19 1977 59.19 1977 59.19 1977 59.19 1977 59.19 1977 59.19 1977 59.19 1977 59.19 1977 59.20 1986 59.20 1987 59.20 1988 59.10 1988 59.10 59.15 59.10 <tr< td=""><td></td></tr<>	
			Max. Daily Max.

Table D-13 Mutonga Power Simulation Results (1995 Abstraction)

٢

(y)	Max.	1.42	0.35 1,18	1.42	1.42	25.1	1.42	1.42	1.42	76-1	1.42	14.1	1.42	17.1	31	1 14		1.42	99 	79-1	1.42	1.42	1.42	22.1	24.1 21.15	1.42	1.42	1.42			1.42
(Unit:GWh/y)	aily in.	222 0-25	00	0	9	00		0	0	່	; c	0	0	ò		se	0	õ	റ്റ	3 c	ŝċ	0	0	00		6	0	0.		ů C	10.0
	Max.	43°97	26.27	44.05	44.05	4, 5	5-7- 5-7-	43.91	43.75	4 : 3 : 3 :	3 4 2 8	30.02	35.18	33.35	30.42	21.11	44,05	44.05	44.05	40, 80 7 2 2	43 54 73 54	44.05	31.75	43.21	4	44.05	44.05	44.05	24.35 39.37 44.05		
																													18.83 28.13 38.39		
	Min.	17.42	15.81	14.63	17.91	18.36	3 S 17 F	21.86	20.20	28.33	12.24 10.24	14.92	15.51	18.64	17.75	17.03 28.71	16.22	23.29	25.90	18.61	10.02	22.04	15.71	20.65	10.79	18-02	20.97	25.29	14.63 18.99 28.39		
(ਸ	Ann.Tot	340.45 347.38	260.45	293.82	370.71	366.09	5/6.13	368.57	393.33	460.62	309.04 286.26	261.43	251.83	297.97	288.67	20.002	370.22	416.48	416.94	311.23	30.00	360.67	253.78	337.37	339.81	375 46	408.90	439.79	225.93 337.53 460.62		
Abstraction	Dec.	30.71 33.02	26.78	44.05	17.91	36.24	30°44	23.62	43.75	44.05	50.04 18.30	06.61	33.33	18.89	19.71	18.48 5.48	21.12	38.54	25.90	32.13	10°27	22.54	31.75	22.31	39.29	12.10	44,05	42.38	17.91 30.07 44.05	i d	1.42
1995 Abs	Nov.	24-42 26-26	22.51	42.63	26.12	31.13	25-41 24 01	12 27	42.63	42.05	26.67	20.34	35.18	22.95	30.42	60°1Z	41.20	40.92	37.06	40.86	60 87 57 07	20.24 28 16	29.57	24.89	29.61	A0 04	40 E3	42.63	20.34 31.76 42.63		0.51 1.42
Results (1	Oct.	26.41 27.33	27.41	34.75	29.81	28.24	28,56	200	37.18	31.64	28.95 28.95	00 62 00 80	23.34	28.24	29.20	20-02 20-03	84 0 0 0 0	30,46	29.41	28, 77	29.66	20°13 28 95	26.43	29.45	28-98 28-98	21.33	38 11 28 11	33.52	18.94 28.79 37.18		0.51 1.42
	Sep.	25.91 26.54	20.86	21.45	27.40	27 38	27.54	00°01	29.57	29.12	27.20	PC 12	15.96	20.86	27, 63	17.83	17.43 27 60	12.72	27.27	26.90	27.64	14.12	15.71	27.39	27.58	21.12	21.13	27.47	15.31 24.98 29.57		0.51
Simulation	Aug.	24.88 28.62	18.30	16-16	28.00	28.16	28.21		31.12	36.06	23.05	14.82	16 11	19.83	30.20	20.09	18.91	51.12	29.08	20.22	28.91 28.91	28-22	16.41	27.69	27.34	23 12	00-12 26 45	29.49	16.00 24.95 36.06		0.51
Energy	Jul.	17.42 33.60	17.50	16.17	22.01	29.01	21.35	17.12	32.19	39.79	19.51 19	17 77	18 67	18.64	24.16	18 85	18.72	23.22	33.98	18.61	24.52	22.25	16.68	22.25	23.74	20.20	21.33	25, 29	16.17 22.61 39.79		0.52 1.42
Mutonga	. Jun.	37.17 41.69	18.54	16.40	36.14	42.58	36.15	18.59	32. IU 42. 62	42.63	22.54	8-95 95	10 22	22.72	18.39	22.64	22.93	80.72 80.72	42. 63	19.95	39.77	41.64	33. 30 16. 26	37 03	40.89	26 41	2 6	20.00	16.26 31.07 49.63		0.52
•†	Mav.	43.97	25.81	21-04	44.05	44.05	44.05	27.41	43.91	44.05	39 49	44.05	30.02	28.24	24.72	31.11	24.35	4.02 20	4	25.67	44.05	13 56 13 26	50 - 24	43.21	43 54	22.97	4 0 2 2	50 FF	18.30 36.61	~~~	0.52
Table D-1	4 1 1	27.63 20.03	17.27	26.27	35	31.46	39.06	24.98	29.73 21.32	42.40	36.69	40.18	08.12	20 43 20 43	27.81	26.22	19.20	36.95	40.31	22.29	42.54	28.42	31. 70 18 60	34, 16	21.83	22.64	39-25	27 JS	16.33 30.16	14.00	0.51
	r cy	27.36 27.36	26.94	18.78	70°01	28.23	28.83	28.91	30.42 28.69	43.67	39.45	20.76	16.95	20.07 28 51	19.74	22.02	18.19	20.21	35.47	28.90	33.55	26.49	28.45	22.19	20.38	28,58	26 81	22 23 23	16.02 27.02	10.01	0.52
	t tot	25.44 16.71	15.81	14.89	14.00	21.25	27.27	25.77	22.52 29.66 29.68	28.39	35.71	19.30	14.92	10.01	17.75	17.91	14.66	16.22	20. 35 28. 35	22.04	25.75	19.06	20-12	20.65	17.79	23.43	18.02	21. 92	14.63 14.63 22.45	00.00	0.52
		۲ <u>۲</u>								_																			16.79 27.06	S	0.52
		1957 1959	1959	1960	1961 1961	1963	1961	1961	1966	1965	1965	1970	1971	7791 7791	1974	1975	1976	1977	0201 1070	1980	1981	1982	1981	1985	1986	1987	1986	1989	Min. Avg.	Daily	Min. Max.

Table D-14 Mutonga Energy Simulation Results (1995 Abstraction)

D-14

I