Chapter 26

Section 2

୍ତ୍ର

RECOMMENDATIONS FOR FURTHER ENVIRONMENTAL ASSESSMENT

26. RECOMMENDATIONS FOR FURTHER ENVIRONMENTAL ASSESSMENT AND RESEARCH

26.1 HYDROLOGY AND RIVER MORPHOLOGY

9

T

More detailed quantification of inflows from tributaries to allow for the following flood release strategies:

- Strategy 1: Assessment of the range of floods resulting from fixed releases as inflows from tributaries downstream of Grand Falls vary, both during minimum normal flood periods, and during major floods (of say greater than once in 10 or 20 years).
- Strategy 2: Identification of rainfall thresholds necessary for effective flood release.

26.2 LEVELS OF SEDIMENTS AND POLLUTANTS

- 1. Further studies and specific monitoring of pollutant levels will be required, leading to a catchment management strategy. In particular, it is necessary to conduct a comprehensive sediment and water analysis programme over an extended period, with daily or more frequent measurements in the Kiambere outflow, the Mutonga and Kathita tributaries and at points downstream including Garissa. Only with comprehensive data will it be possible to evaluate the available options for management of flood waters and the sediments carried by flood waters in an optimum manner, to maximise both power production and benefits to downstream users.
- 2. Studies of land use in the catchment are required. These should be aimed at the construction of a soil erosion / sediment transport model, using the universal soil loss equation (or one of a number of similar approaches), as input to both sediment and runoff studies.
- 3. More general management of sediment load may be possible through sediment release or diversion structures, although the critical factor still remains as control of land use in the upper catchment. Further sampling of dry season and rainy season sediment loads over a longer time period would give a better indication of total and seasonal variations.
- 4. For a complete seasonal picture and for indications of trends in sediment load, further studies and a full monitoring programme will be necessary.
- 5. Further studies will be required to establish the downstream flood dynamics, including hydraulic modelling of the floodplain. Monitoring of rainfall and flow levels will be needed to ensure optimum management of the system, balancing flood requirements with maximised power output.

26.3 RESERVOIR MODELLING

- 1. The predictions of the model are sensitive to the factors affecting the growth of the specific species of algae in the Tana River reservoirs. These data are not currently available but could be obtained through new research commissioned to examine environmental and physical parameters controlling growth and population dynamics of algae in the existing Tana River reservoirs. There is also a lack of knowledge of the rates of recycling of nitrogen from silted mud and detrital matter. The coefficients used should be treated and verified by simulating conditions in the existing reservoirs, especially Kiambere.
- 2. There is a need to construct rating curves for the flux of suspended mud, organic matter and particulate and dissolved nutrients for the Mutonga and Kathita Rivers.
- 3. There is also a need for a daily record of meteorological conditions and synthesised sediment and pollution loads so that the models can be run for a number of years, including solar heating and wind effects. These studies will need to be coupled to detailed measurements of discharge and sediment loads, concentrating especially on the fine sediments within the Mutonga and Kathita Rivers, and a land use based analysis within these catchments facilitating the application of the universal soil loss equation (or similar approach). Finally, there is a need to study the detailed behaviour of the passage of sediment laden floods from the Mutonga and Kathita Rivers through the reservoirs, using a fine gridded 3-D model.

26.4 FLOOD FORECASTING

- 1. Investigations and research into the use of near real-time remote sensing combined with improved real-time climate monitoring from ground stations for rainfall/runoff forecasting in this area, coupled with a network of near real-time rainfall monitoring stations and real-time river gauging stations.
- 2. Based on the above, design of a suitable network of instrumentation and telemetry to guide the effective management of flood releases, in combination with data from remote sensing.
- 3. Design of a suitable system of a participatory management advisory service to maximise the benefits of controlled flooding to downstream users, and to provide a feedback mechanism on the effectiveness of such flooding.

26.5 MANAGEMENT OF ARTIFICIAL FLOOD RELEASE

The one aspect of improved management of the Mutonga-Grand Falls system that has not been reflected in any previous phases of hydropower development in Kenya is the need to support the multi-purpose objective of flood release to benefit downstream community needs and hydropower generation in a participatory management structure that extends beyond a notional consultative process.

ľ

The management decision making process, supporting the release of floods to the downstream systems, must include representation from the downstream communities, extending beyond consultation to active participation planning and management.

9

Given the critical demands for management that are defined by the release of floods rather than the traditional maximisation of power output, the structure of the management institution must reflect the multi-purpose objectives of the project and include representatives from the traditional pastoralist and arable farming and fishing communities, as well as the more established formal structures of the irrigation schemes. The concerns of the "conservation" bodies will also only be met by their direct inclusion in the decision making process, there will therefore be a need to incorporate representation from KWS, NMK and national and possibly international NGOs.

Again it needs to be stressed that this broadening of the institutional scope is more than a consultation process and provide the capacity to negotiate acceptable management decisions between users with potentially conflicting demands for timing and extent of flood release. Only if the communities can be assured that their views are incorporated will there be a possibility of avoiding conflict, this assurance must be given by their own representatives involved in the decision and negotiation process.

Mechanisms for establishing participatory management of the reservoir, and in particular the release of floods, must to be reviewed. As yet in Kenya there are few examples of true community participation in environmentally sensitive programme, or in major engineering programmes that have major effects on rural economies; as such the review process will have to look at institutional arrangements that are being developed in other countries within the region and elsewhere.

BIBLIOGRAPHY

BIBLIOGRAPHY

T

- Abdin, M.A. Salih and Ali, A.G. (1992). Water Scarcity and Sustainable Development. *Nature and Resources* Vol. 28 No. 1 1992
- Abu-Zeid, M. (1989). Environmental aspects of the Aswan High Dam. International Journal of Water Resources Development. Vol. 5: 3, 147–157 1989
- Ackers P and W.R. White, (1973). Sediment transport: new approach and analysis, J Hydraul Div, ASCE, 99, HY11, Nov, pp 2014-2060
- Acreman, M. (1994). The role of atrificial flooding in the integrated development of river basins in Africa. Pp. 35-44 in: Curby, C. & White, W.R., Integrated River Basin Development. John Wiley & Sons.
- Acres International Ltd, Canada, et al. (1967). Kenya: Survey of the Irrigation Potential of the Lower Tana River Basin.
- Acropolis Kenya Ltd and Otieno Odongo & Partners. (1995). Proposal of Environmental Impact Assessment for Mutonga/Grand Falls Hydropower Project. Volume 1: Environmental Impact Assessment Proposal. June, 1995.
- Adams, W.M. (1985). The Downstream Impacts of Dam Construction: A Case Study from Nigeria. Transactions, Institute of British Geographers. 10:3, 292-302.
- Adams, W.M. (1985). River Basin Planning in Nigeria. Applied Geography Vol. 5, 297-308 1985
- Adams, W.M. (1986). Traditional agriculture and water use in the Sokoto Valley, Nigeria. Geographical Journal. Vol. 152: 1, 30-43,1986
- Adams, W.M. (1989). Dam Construction and the Degradation of Floodplain Forest on the Turkwel River, Kenya. Land Degradation and Rehabilitation. Vol. 1: 189–198; 1989
- Adec, (1983). Kiambere Hydro-Electric Power Project: Pre-construction Environmental Impact Study. African Development and Economic Consultants (ADEC).
- Alegana, R.A. (1991). Report on the Special Committee on Tana Irrigation Scheme. District Commissioner's Office, Tana River District, Hola.
- Alila, P.O. (1990). Grassroots Participation in small and Large-scale Irrigation Agriculture: The Kenyan Experience. In Ruigu G.M. and Rukuni, M. eds. Irrigation Policy in Kenya and Zimbabwe. Institute of Development Studies, University of Nairobi.
- Anon (1995). Sunday Standard. April 6, 1995, Nairobi.
- Anon., (1994). Fisheries Department of Kenya: Statistics section.
- Arao, L.A. (1990). Types of Irrigation Systems in Kenya. In Riugu G.M. and Rukuri, M.eds. Irrigation Policy in Kenya and Zimbabwe. Institute of Development Studies, University of Nairobi.
- Autilla, L.S., Alakoski-Johansson, G.M., and Johannson S.G. (1993). Browse Preference of Orma Livestock and Chemical Composition of Prosopis juliflora in Nine Indigenous Woody Species in Bura, Kenya . East African Journal of Forestry, 58.

- Barica, J., (1975). Collapses of algal blooms in Prairie Pothole Lakes: their mechanisms and ecologicalimpact. Internationale Vereinigung fur Theoretische und Angewandte Linnnologie 19: 606-615.
- Barrow, C. (1988). The impact of hydroelectric development on the Amazonian environment: with particular reference to the Tucurui project. *Journal of Biogeography*. Vol. 51: 1, 67-78 1988
- Bastiaansen C., Knops J.AC. and Sichinga A.C., (1994). The Agricultural Potential along the Zambezi Flood Palin in Western Province Zambia., Sept. 1994. presented at SACCAR/GTZ sponsored regional MSC Programme Land Water Management, Morogoro, Zambia.
- Beckman, B. (1984). Bakalori: Peasants versus State and Industry in Nigeria. In: The Social and Environmental Effects of Large Dans, Volume 2: Case Studies. Wadebridge Ecological Centre, Cornwall, UK.
- Beentje, H., (1988). Atlas of the rare trees of Kenya. Utafiti (3): 71-124.
- Beentje, H., (1994). Kenya Trees, Shrubs and Lianas. National Museums of Kenya. Nairobi.
- Bettess R and WR White, (1983). Meandering and braiding of alluvial channels, Proc. Instn Civ Engrs, Part2,75,Sept,pp525-538
- Bouulenger, G.A. (1964). Catalogue of the Freshwater Fishes of Africa in the British Natural History Museum, Vol. 1. 373pp. Whetton & Wesley Ltd.
- Bouulenger, G.A. (1964). Catalogue of the Freshwater Fishes of Africa in the British Natural History Museum, Vol. II. 359pp. Whelton & Wesley Ltd.
- Bouulenger, G.A. (1964). Catalogue of the Freshwater Fishes of Africa in the British Natural History Museum, Vol. III. 526pp. Whelton & Wesley Ltd.
- Bouulenger, G.A. (1964). Catalogue of the Freshwater Fishes of Africa in the British Natural History Museum, Vol. IV. 392pp. Whetton & Wesley Ltd.
- Brabben, T.E. (1989). Environmental impacts of irrigation, Drainage and Flood Control Projects. ICID Bulletin 1989, Vol. 38 No 2.
- Brammer, H. (1990). Floods in Bangladesh. II. Flood mitigation and environmental aspects. Geographical Journal. 1990, 156: 2, 158-165; ref., fig., BLDSC.
- Bureau of Reclamation United States (1951). Analysis of Flow-Duration Sediment-Rating Curve Method of Computing Sediment Yield, Denver, Colorado.
- CADP (1991). Tana River Livestock Survey MRDASAW/Coast ASAL Development Programme.
- Campbell, K., Coe, C., & Sanders, M. (1986). A Survey of Fishes of the Tana River at Kora and a checklist of the Fishes of the Tana River. In M. Coe & N.M. Collins Eds, Kora. An Ecological Inventory of the Kora Nature Reserve, Kenya. London: Royal Geographical Society.
- CBS, (1994). Central Bureau of Statistics. Kenya Population Census 1989, Volumes I and II. Government Printer, Nairobi 1994.
- Chambers, R. and Moris, J. eds. (1973). Mwea: An Irrigated Rice Settlement in Kenya. Mucheni: Weltforum Verlag.

T

- Colony and Protectorate of Kenya (1961). Famine and Floods in Kenya. Government Printer, Nairobi.
- Dadzie, S and N. Odero. (Unpublished). Fish and fisheries of man-made lakes of the Tana River Basin, Kenya. 22pp.
- Defft Hydraulies. (1994). Possible impact of proposed Mutonga and/or Grand Falls reservoirs on the Lower Tana River. Exploring study, December 1994.
- DHV Consulting Engineers. (1986). Tana River Morphology Studies Final Report. Volume II Annex 1-2. Report to Tana and Athi Rivers Development Authority. August 1986.
- DHV Consulting Engineers/Delft Hydraulics Laboratory (1986). Tana River Morphology Studies.
- Dixon, L.M. & Le Moigne, G.J.M. (1989). Dams and the Environment : Considerations in the World Bank Projects. World Bank Technical Paper No. 110. Washington, D.C.
- Dodson, R.J., 1955. Geology of the North Kitui area. Government Printer, Report No. 33, Nairobi.
- Drijver, C.A. and Marchand, M. (1986). Taming the Floods: environmental aspects of floodplain development in Africa. Nature and Resources Vol. XXII. No. 4. October -- December 1986
- Dunne T. (1976). A New Estimate of Sediment Rates on the Upper Tana River, Department of Geological Sciences, University of Washington, Seattle, USA.
- EAWLS & IUCN (1994). Tana Delta Wetlands Steering Committee: Tana Delta Environmental Awareness Campaign Project Proposal
- Eccles, D. (1992). Field Guide to the Freshwater Fishes of Tanzania. 145pp. FAO
- ECE, Economic Commission for Europe (19??). Policies and Systems of Environmental Impact Assessment, ECE/ENVWA/15
- Fearnside, PM. (1988). China's Three Gorges Dam: "fatal" project or step toward modernization? World Development. Vol. 16: 5, 615-630 1988
- Forrest, R.A. (1991). Japanese Aid and the Environment. The Ecologist Vol. 21 No. 1. January/February 1991.
- Gaudet, J.J., (1979). Aquatic weeds in African man-made lakes. PANS 25 (3): 279-286.
- Gaudet, John J. (1992). Structure and Function of African Floodplains. Journal of the East Africa Natural History Society and National Museum 82 (199). March 1992.
- Goldsmith F.B. (1991) Monitoring for Conservation and Ecology, Chapman and Hall.
- Goldsmith, E and Hitdyard, N. (1985). The social and Environmental effects of large dams. 404pp. Sierra Club Books, San Francesco.
- Goldsmith, E. and Hildyard, N. (1984, 1986 and 1992). The Social and Environmental Effects of Large Dams: Volume I Overview (1984); Volume II Case Studies; Volume III A Review of the Literature. Wadebridge Ecological Centre, Cornwall, UK.
- Goodland, R.J.A (1992). Environmental Priorities for Financing Institutions. Environmental Conservation, Vol. 19 No. 1 Spring 1992
- Goodland, R.J.A. (1987). Hydro and the environment: evaluating the tradeoffs. Water Resources Journal. 1987, No. 153, 25-31; ref., 1 tab., BLDSC.
- Government of Kenya (1962). Trust Land Act, Chapter of the Laws of Kenya. Government Printer, Nairobi.

Ĩ

Bibliograhy-3

Government of Kenya (1962). Constitution of Kenya. Government Printer, Nairobi

- Government of Kenya (1968). Land Acquisition Act, Chapter 288 of the Laws of Kenya. Government Printer, Nairobi.
- Graham, M. (19??). The Victoria Nyanza and its Fisheries: A report of Fishing Surveys of Lake Victoria 1927-1928 and its Appendices. 255pp. Crown Agents.
- Grible, R.J., M. Ngunjiri, P. Nderitu, S. Johnson. (1989). A Study of Farming Systems in Lower Embu and Meru. EMI Programme Office, Embu.
- Haskoning and Mwenge, (1982). Tana Delta Irrigation Project.
- Hirji, R. And Ortolano, L. (1991). Strategies for Managing Uncertainties Imposed by Environmental Impact Assessment : Analysis of a Kenya River Development Authority . *EIA Review*, No. 11 pp 203-230
- Horowirz, M.M., Salem-Murdock, M. (1991). Management of an African Floodplain: a contribution to the anthropology of public policy. Landscape and Urban Planning 20 (1991). 215-221.
- Horowitz, M.M. and Murdock-Salem, M. (1991). Management of an African Flooding : A Contribution to the Anthropology of Public Policy. Landscape and Urban Planning, 20. Elsevier Science Publishers, B.V., Amsterdam.
- Horta, K. (1994). The World Bank s 50th Anniversary. A Tour of World Bank Projects on Kenya Tana River. Esco News Africa, Vol. 3, No. 13.
- Horta, K. (1994). Troubled Waters: World Bank Disasters along Kenyas Tana River. Multinational Monitor pp 12-16
- Hounam, C.E; Burgos, J.J; Kalik, M.S; Palmer, W.C. and Rodda, J. (1975). Drought and Agriculture World Meteorological Organization Technical Note No. 138 Geneva, Switzerland.
- Hughes, F.M.R. (1990). The Influence of Flooding Regimes on Forest Distribution and Composition in the Tana River Floodplain, Kenya. *Journal of Applied Ecology*. Vol. 27 475-491 1990.
- Hungwe, A. (1984). Soil Surveys for Small Irrigation: Some Observations from Zimbabwe. In Blackie M.J ed. African Regional Symposium on Smallholder Irrigation. Overseas Development Unit of Hydraulics Research Ltd, Wallingford, England.
- Ikiara, G.K. (1990). Increasing the Role of Small-scale Irrigation Projects in Kenya. In Ruigu, G.M. and Rukuni, M. eds. Irrigation Policy in Kenya and Zimbabwe. Institute of Development Studies, University of Nairobi.
- IUCN (1994). Tana Delta Wetlands Steering Committee: Report on the Environmental Assessment Planning Workshop held at YWCA, Minjila 7-10 February 1994.
- Jaetzold R. and H. Schmidt. (1983). Farm Management Handbook Vol. II/C. East Kenya (Eastern and Coast Province). Ministry of Agriculture and GTZ.
- Jactzold, R. & Schmidt, H. (1983). Farm Management Handbook of Kenya Vol. II: East Kenya. pp 369-382.
- Jewsbury, J.M. (1984). Small-scale Irrigation Projects and their Implications for Health. In Blackie, M.J. ed. African Regional Symposium a Smallholder Irrigation. Overseas Development Unit of Hydraulics Research Ltd., Wallingford, England.

- JICA (1992). The National Water Master Plan.
- JICA Nippon Koei (1994). EIA Draft Report on Economic Valuation of the Costs and Benefits on the Lower Tana Catchment Resulting from the Dam Construction.
- JICA Nippon Koei (1994). EIA Draft Report on the Farming Systems in the Middle and Lower Tana Basin.
- JICA Nippon Koei (1994). EIA Report on the Social and Community Impact Study.
- JICA -Nippon Koei (1995). Final Report of Environmental Impact Assessment, Stage 2: Grand Falls Hydropower Project. 155pp.
- JICA Nippon Koei (1995). Feasibility Study on Mutonga/Grand Falls Hydrpower Project. Final Report 1 Vol. 1. Main Report, Dec. 1995.
- JICA Nippon Koei (1995). Initial Environmental Impact Assessment Report on the Proposed Rehabilitation of the Bura and Hola Irrigation Schemes.
- Jisheng, C. (1994). Sedimentation studies at Three Gorges. International Water Power & Dam Construction August 1994.
- Junk, W.J., Welcomme, R.L. (1990). Floodplains. In P.C. Patten (ed.), Wetlands and Shallow Continental Water Bodies Vol 1: 491-524;
- Kimani, J.K. (1990). Towards an Irrigation Development Policy in Kenya: Institutional Aspects. In Ruigu G.M. & Rukuni, M. Irrigation Policy in Kenya and Zimbabwe. Institute of Development Studies. University of Nairobi.
- Kimani, J.K. (1984). Small holder Irrigation Schems: The Kenyan Experience. In Blackie, M.J. ed. African Symposium on Smallholder Irrigation. Overseas Development Unit of Hydraulic Research Ltd, Wallingford, England.
- Kimmage, K; Adams, W.M. (1992). Wetland agricultural production and river basin development in the Hadejia-Jama'are valley, Nigeria. *Geographical Journal*. Vol. 158: 1, 1-12. 1992
- Kortenhorst, L.F. (1984). A Summary Report on a Workshop on Small-scale Irrigation in Kenya. Ministry of Agriculture, Irrigation and Drainage Branch, Nairobi.
- Kumar, S (1995). Indian dam builders flout environmental rules. New Scientist 12 August 1995
- Leach, W.a. (1963). Disturbance on Compulsory Purchase. The Estate Gazette Limited, London.
- LeMarquand, D.G. (1990). International development of the Senegal River. Water International. Vol. 15: 4, 222-230; BLDSC 1990,.
- Leon, B. 1956. Eels: A Biological Study. 192pp. Clever-Hume Press.
- Lucas, G. and Synge, H. 1978. The IUCN Plant Red Data book. IUCN, Morges.
- Mac Donald and Partners, in association with Hunting Technical Services Ltd. and National Engineering Services Pakistan (Pvt). Ltd., Draft Final Report for Asian Development Bank, Contract number TA Nr. 1629 - PAK, June 1994.
- Maheshwari, B.L., Walker, K.F. and McMahon, T.A. (1995). Effects of Regulation on the Flow Regime of the River Murray. Regulated Rivers-Research and Management. Vol 10 (1). Apr 1995
- Mavuti, K.M., 1993. Tana River Project Development of Ecologically Sustainable Catchment Land Uses. Second Annual Report (1992-1993).

McCully, P. (1993). Time to Retreat. The Ecologist. Vol. 23. No. 5 September/October 1993

Michael, A. M. (1978). Irrigation Theory and Practice. Vikas Publishing House Pvt Ltd. New Delhi.

S.

T

- Microsoft (1995). Encarta. Multimedia Encyclopedia, Microsoft Corporation 1995.
- Millikan, M.F. & Hapgood, D. (1967). No Easy Harvest: The Dilemma of Agriculture in Undeveloped Countries. Little Brown and Co. Boston.
- Ministry of Agriculture and Livestock Development and Marketing (MALD&M). 1994. Annual Report: Livestock Development and Marketing, Tharaka South.
- Monitoring for Tana Delta Impact Monitoring for Tana Delta Irrigation Project (TDIP). Vol. I: Main Report. Tana and Athi Rivers Development Authority (TARDA). Republic of Kenya.
- Mounier, F. (1982). The Senegal River Scheme: Development for Whom? In: The Social and Environmental Effects of Large Dams, Volume 2: Case Studies. Wadebridge Ecological Centre, Comwall, UK.
- MOW, Ministry of Water Development. The Study on the National Water Master Plan Interim Report 1. JICA Tokyo/Nairobi 1991.
- MPND, Office of the Vice-President and Ministry of Planning and National Development. Embu District Development Plan 1994-1996. Government Printer, Nairobi 1994.
- MPND, Office of the Vice-President and Ministry of Planning and National Development. Kitui District Development Plan 1994–1996. Government Printer, Nairobi 1994.
- MPND, Office of the Vico-President and Ministry of Planning and National Development. Meru District Development Plan 1994-1996. Government Printer, Nairobi 1994.
- MPND, Office of the Vice-President and Ministry of Planning and National Development. Tharak Nithi District Development Plan 1994–1996. Government Printer, Nairobi 1994.
- Mwaniki, N. 1986. Social and Economic Effects of Tenure Reform in Mbeere. Ph.D Dissertation, Indiana University, USA.
- National Environment Secretariat (1985). Lower Tana River District Environment Assessment Report. National Environment Secretariat, Ministry of Environment and Natural Resources, Nairobi pp 65.
- Needham, J.G. & Needham, P.R. (1972). A Guide to the Study of Freshwater Biology. 108pp. Holden-Day Inc.
- Nippon Koei & Pasco International (1995). Feasibility Study on Mutonga/Grand Falls
- Nippon Koei (1993). A Report on Environmental Impact Monitoring for Tana Delta Impact.
- Nippon Koei Co. Ltd. (1995). Feasibility Study on Mutonga/Grand Falls Hydropower Project. Progress Report (1). Volume 1: Main report. Report to Japan International Cooperation Agency and Tana and Athi Rivers Development Authority. February 1995.
- Nkako, F.M. (1994). Issues of Concern to Kenya Wildlife Services (KWS). Initial Environmental Assessment Workshop, Nairobi.
- Noble, R.G. and Hemens, J., (1978). Inland Water Ecosystems in South Africa: A Review of Research Needs. South Africa National Scientific Programmes Report No. 34.

- Ntiba, M. J and V. Jaccanini. (1990). The spawning seasonality of Siganus sutor in Kenyan marine waters. J. Fish Biol., 37: 315-325.
- Obara, D.A. (1984). Irrigation Schemes in Arid Environments of Kenya with Special Reference to Perkerra Irrigation Scheme. In Blackie, M.J. ed. *African Symposium on Small holder Irrigation*. Overseas Development Unit of Hydraulics Research Ltd, Wallingford, England.
- ODA, Overseas Development Administration (1992). Manual of Environmental Appraisal. London 1992.
- Odero, A.N. (1992). A Socio-Economic Study of some Performance Aspects of the West Kano Irrigation Scheme, Kisumu District. M.Phil Thesis, Moi University.
- Oldale, J. And Hayata, N.R., (1993). An Assessment of Management Training Needs for the Local Regional NGO Community. Canadian International Development Agency, Dar-es-salaam, Tanzania.
- Ongwenyi, G.S. (1985). Problems of Land Use and water Resources Management in the Upper Tana Catchment in Kenya. In: Strategies for River Basin Management pp 123-130 ed Lundquist, J. Falkenmark, M. Reidel Publishing Company.
- Onyango-Ogembo, W. (1982). General Background of the Irrigation Development in Kenya. Lake Basin Authority, Kisumu.
- P. Bolton, Report No. OD64 (1985). Sediment discharge measurements: Analysis and results from Sagana, Kenya, Hydraulics Research, Wallingford.
- Paul, S. (1993). A Complete Guide of the Freshwater Fishes of Southern Africa. Southern Book Publishers. 388 pp.
- Pearce, F. (1994). High and Dry in Aswan. New Scientist 7 May 1994.
- Petr T. (1985). Inland fisheries in multiple-purpose river basin planning and development in tropical Asian countries. FAO Fisheries Technical Paper No 265.
- Pilditch, A.G. (1990). The Role of Irrigation in National Development. In Ruigu, G.M. & Rukuni M. eds. Irrigation Policy in Kenya and Zimbabwe. Institute of Development Studies, University of Nairobi.
- Poultney, C. (1992). Water Committees take Action. ILEIA Newsletter March 1992.
- R. Woodridge, Reports No. OD45 (1982). and OD61 (1984). Sedimentation in Reservoirs: Tana River Basin Kenya, Hydraulics Research, Wallingford.
- Range Inventory and Monitoing Project, June 1995 to May 1997, c/o Department of Crop Production and Forestry, Ministry of Agriculture, Gaborone, Botswana. Fax : 00 267 3070567.
- Rao, R.V. (1989). Large and small dams. International Journal of Water Resources Development. Vol. 5: 2, 136–142 1989.
- Republic of Kenya (1959). Upper Tana Catchment Water Resources Survey (1958-1959). Sir Alexander Gibb and Partners, Nairobi.
- Republic of Kenya (1979). Lower Tana Irrigation Development Proposal for Mnazini Village Scheme Vol. I. MOA - Land and Farm Management Division - Small Scale Irrigation Unit, Nairobi.

Republic of Kenya (1980). Agroclimatic Zone Map of Kenya. Ministry of Agriculture, National Agricultural Laboratory, Kenya Soil Survey, Nairobi.

Ĩ

- Republic of Kenya (1980). Tana River District Development Plan (1979-83). Government Printers, Nairobi.
- Republic of Kenya (1986). Sessional Paper No. 1 on Economic Management for Renewed Growth. Government Printers, Nairobi.
- Republic of Kenya (1989). Kenya Population Census. Central Bureau of Statistics. Government Printer, Nairobi.
- Republic of Kenya (1992). Sectoral Report(E). on Agriculture and Irrigation for the study on the National Water Master Plan. Japan International Cooperation Agency.
- Republic of Kenya (1993). Tana River District Annual Report for 1993. Ministry of Agriculture, Livestock Development and Marketing, Nairobi.
- Republic of Kenya (1994). Tana River District Development Plan (1994-1996). Government Printers, Nairobi.
- Republic of Kenya (1994). Seventh National Development Plan. Government Printers, Nairobi.
- Republic of Kenya (1994). Tharaka Nithi District Development Plan (1994-1996). Government Printers, Nairobi.
- Republic of Kenya. (1977). Integrated Rural Survey, 1974-75. Basic Report. Central Bureau of Statistics (CBS).
- Republic of Kenya. (1978). Reconnaissance Soil Survey. Machakos-Kitui-Embu Area. Nairobi.
- Roggeri, H. (1985). African Dams: Impacts in the Environment. The Social and Environmental Impact of Dams at the Local Level: A Case Study of Five Man-made Lakes in Eastern Africa. Environmental Liaison Centre International.
- Rowland, J.S.S. (1955). An Outline of Tana River History.
- Rowntree, K. (1990). Political and Administrative Constraints on Integrated River Basin Developments : An Evaluation of the Tana and Athi Rivers Development Authority, Kenya. *Applied Geography* 10: 21-41
- Royce W.F. 1984. Introduction to the Practice of Fishery Science, 428pp. Academic Press.
- RPS International. 1994. Mutonga/Grandfalls Hydroelectric Project: Phase I, Initial Environmental Assessment. Final Report. Nairobi.
- Ruigu, G.M. & Migot-Adholla, S. (1990). Experiences with Irrigation Farming in Kenya: The National Board Schemes. In Ruigu, G.M. and Rukuni, M. eds. Irrigation Policy of Kenya and Zimbabwe. Institute of Development Studies, university of Nairobi.
- Ruthenberg, H. (1976). Farming Systems in the Tropics. Claredon Press, Oxford p. 162
- Schliephake, K. (1987). Irrigation and Food Production: Experiences from North Africa and Applications to East Africa. *Applied Science and Development*. Vol. 30
- Schmidt-Kallert, E. (1990). The Volta reservoir in Ghana A Review. Applied Geography and Development. 1990, No. 35, 77-93; ref., fig., tab., BLDSC.
- Schoeman, J.J., (1951). A geological reconnaissance of the area between Embu and Meru. Government Printer, Report No. 17, Nairobi.

- Scudder, T. (1991). The Need and Justification for Maintaining Transboundary Flood Regimes: The Africa Case. Natural Resources Journal, Vol. 31.
- Sheppe, W.A. (1985). Effects of human activities on Zanbia's Kafue Flats Ecosystems. Environmental Conservation, Vol.12, No.1, Spring 1985
- Ssenyonga, J.W. (1990). Policy Implications of the Shift to Community Inigation. In Ruigu G.M. & Rukuni, M. eds. Irrigation Policy of Kenya and Zimbabwe. Institute of Development Studies, University of Nairobi.
- Stirling, A. (1993). Environmental Evaluation How Much is the Emperor Wearing. *The Ecologist*. Vol. 23 No. 3 May/June 1993.
- Sutherland A. and J. Ouma, (1995). (eds). Farming Systems in Tharaka. Report of an Informal Diagnostic Survey of the Farming Systems in the Tharaka North and Central Divisions of Tharaka-Nithi, Kenya. Dryland Applied Research Project (DAREP). KARI. Embu.
- Sutherland A. and J. Ouma, (1995). (eds). Farming in Kirie (AEZ 5: Livestock/Millet, Shallow Stony Soils). DAREP, KARI. Embu.
- Sutherland A. and J. Ouma, (1995). (eds). Farming in Kilia (AEZ 4: Settlement Area, Food and Cash Cropping, mainly Vertisols). DAREP, KARI. Embu.
- Sutherland A. and J. Ouma, (1995). (eds). Farming in Mbeere. Report of an Informal Diagnostic Survey of the Farming Systems of Lower Embu, Kenya. DAREP, KARI. Embu.
- Swynnerton, R.J.M. (1954). A plan to Intensify the Development of African Agriculture in Kenya. Government Printers, Nairobi
- Syagga, P.M. and W.H. Olima (1996). Impart of Land Acquisition on Displaced Households in Third Nairobi Water Supply Project, Habitat International, Vol. 19 NO.1.
- Syagga, P.M. (1994). Real Estate Valuation Handbook. Nairobi University press.
- Symoens J.J. Burgis M. and Gaudet J.J., The Ecology and Utilization of African Inland Waters., UNEP Reports and Proceedings Series 1, Nairobi, 1981.

TARDA (1993). TARDA Report 1993.

TARDA, Upper Reservoir Scheme Appraisal Report 1976.

- Tennant, D.L. Instream flow regimes for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4): 4-10.
- Thompson J.R., Hollis G.E. (1995). Hydrological modelling and the sustainable development of the Hadejia-Nguru wetlands, Nigeria. Hydrological Sciences Journal 40(1):97-116 1995

Tippetts-Abbett-McCarthy-Stratton (1980). National Water Master Plan, New York and Nairobi.

- Walker, H.H. (1984). Problems of the Organization of Irrigation Projects: A Systems-Oriented Study of Irrigation Projects in Developing Countries. *Applied Geography and Development* Vol. 23 Institute for Scientific Cooperation, Tubingen.
- Watermayer, Legge, Piesold and Uhlmann (1984). Kiambere Hydroelectric Project Feasibility Sturdy.
- Waters-Bayer and W. Bayer. (1994). Planning with Pastoralists: PRA and More. A Review of Methods Focused on Africa. German Agency for Technical Cooperation (GTZ). Eschborn, Germany.

Ţ

Welcomme, R. (1979). River Fisheries. FAO Fisheries Technical Paper 262, FAO, Rome, Italy

- Wesseling, J., Naah, E., Driver, C. & Ngantou, D. (1995). Rehabilitation of the Logone Floodplain, Cammeroon, through hydrological management. In Acreman, M. & Hollis G. (1995). Hydrological Management and Wetlands in Sub-Saharan Africa. IUCN, Gland Switzerland (in draft).
- White WR, H Milli, AD Crabbe, (1973). Sediment transport: an appraisal of available methods, Hydraulics Research Station Report INT119, Wallingford
- Wilcocks, C. And Mansor Bahr, P.E.C. Eds. (1972). Tropical Diseases. Baillier Tindall.
- Wolman, M.G. Miller, J.P. (1960). Magnitude and Frequency of Forces in Geomorphic Processes. Journal of Geology 1960 Vol. 68: 54–74.
- World Bank (1991). Environmental Assessment Sourcebook Volume I policies, Procedures and Cross-Sectoral Issues; Volume II Sectoral Guidelines; Volume III Guidelines for Environmental Assessment of Energy and Industry Projects. Washington 1991
- World Bank (1993). Environmental Screening. Environmental Assessment Sourcebook Update, Washington 1993
- World Bank (1995). Learning from Narmada. Operations Evaluation Department May 1995 on the Internet www.worlbank.org
- World Bank (1995). Nigeria: Impact Evaluation Report; Nigeria: Agricultural Development Projects. Public Information Department on the Internet www.worlbank.org

I

Annex A

SUPPORTING DOCUMENTATION

I

Annex to Chapter 1

(L

ANNEX
CHAPTER 1

District
β
Projections
Population
Basin]
Tana River B
Tana
Table A1-1

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		www.uuuuuuu											0000	5000	Ϋ́́ς	2005
District	Rates used	6861	1990	1661	1992	£661	1994	1995	1996	1997	1998	1999	2000	1002	7007	5007	5	
Embu	3.415	368194	368194 380768	393771	407218	42) 125	435506	450379	465759	481665	498114	515124	532716	\$50908	569722	321685	862609	630106
Garissa	0.436	36925	36925 37086	37248	37410	37573	37737	37902	38067	38233	38399	38567	38735	38904	39073	39244	39415	39587
Isiolo	4.624	6269	7302	7639	£661	8362	8749	9153	9577	10019	10483	10967	11475	12005	12560	13141	13749	14384
Kiambu	2.588	568		598	613	629	645	662	619	697	715	733	752	772	792	812	£03	855
, Yufi	4.020	13608	14155	14724	15316	15931	16572	17238	12621	18652	19401	20181	26602	21836	22714	23627	24577	25565
Kirinvaua	3.152	397492	410022	422948	436281	450034	464221	478855	493950	509521	525584	542152	559243	576872	595057	613816	633166	653125
Kitui & Mwingi	2.971	\$99694		635860	654753	674207	694239	714866	736106	757978	780499	803689	827568	852157	877477	903548	930395	958039
ونشاتها	5.449	10777	11364	11984	12637	13325	14051	14817	15624	16476	17374	18320	61661	20371	21481	22652	23886	25188
Lamu	6.819	020/	7499	8010	8556	9140	9763	10428	11140	11899	12710	13577	14503	15492	16548	17677	18882	59102
Machakos	3,000	132351	132351 136322	140411	144624	148962	153431	158034	162775	167658	172688	177869	183205	188701	194362	200193	206199	212385
Meru	2.901	667563	686929	706857	727363	748464	770177	792520	815511	8391668	863513	888564	914341	940866	968161	996248	996248 1025149 1054888	105488
Muraneo	2.849	833751		666188	907067	932911	959492	068986	986830 1014947 1043865 1073607 1104196 1135657 1168015 1201294	1043865	1073607	1104196	1135657	1168015		1235521 1270724 1306930	1270724	130693(
, Hithi	2.901	250510	250510 257777	265255	272950	280869	289017	297401	306029	314907	324042	333443	343116	353070	363312	373852	384697	395857
cureptexv	4.213	32121	33474	34884	36354	37885	39481	41145	42.878	44684	46567	48529	\$0573	52703	54924	57238	59649	62162
Ę, Ņ	2.442	576669	157062	605177	619956	635095	650604	666492	682768	699441	716521	734019	751944	770306	711687	<b>18£808</b>	821328	848351
Tana River	4.092		137696 143330 149195	561671	155299	161654	168268	175153	182320	189780	197545	205628	214042	222800	231916	241406	251283	261565
Bacin Total		4071918	4192381	4071918 4192381 4316500	444389 4576167 4711954 4851875 4996061	4576167	4711954	4851875	4996061	5144644 5297762		\$455559	\$618180	5455559 5618180 5785779 5958511 6136538 6320029 6509155	5958511	6136538	6320029	60059

Ţ

A1-1

# Annex to Chapter 6

ſ

Table A6.1 Population and Household Density within the Study Area: 1989 census data summarised by individual village area.

(Forest Reserves have been separated and are listed separately since these areas are without no population.)

# EMBU DISTRICT

CENSUS	NOISIVIG	LOCATION	SUBLOC	VILLAGE	POPU-	HOUSE-	POP. DENSITY	HOUSEHOLD AREA DENSITY (KM ² )	AREA (KM ² )
41311011	SIAKAGO	MUMINJI	KIRIE	NGIRU	1202	403	31.32	10.50	38.3831
41311021	SIAKAGO	Inumuni	KIRLE	CIERUA	642	121	19.32	3.64	33.2368
41311031	SIAKAGO	MUMINJI	KIRIE	MBARUARI B	322	2	38.87	7.73	8.2830
41311041	SIAKAGO	INIMUM	KIRE	MBARUARI A	465	8	62.62	12.79	7.4254
41311051	SIAKAGO	IIMIMIM	KIRIE	ITAMBARARIA	513	125	74.94	18.26	6.8457
41311061	SIAKAGO	INIMINI	KIRE	NGUTHI	177	144	38.44	7.18	20.0581
41311071	SIAKAGO	INIWIM	KIRE	MAREMBO	210	145	50.81	10.38	13.9735
41322011	SIAKAGO	KIANGOMBE	THAMBU	KIENIRE	1050	175	55.88	9.31	18.7917
41322021	SIAKAGO	KIANGOMBE	THAMBU	MANGOTE	016	184	30.09	6.08	30.2442
41322031	SIAKAGO	KIANCOMBE	THAMBU	KIGUAMBITI	377	82	66.46	14.45	5.6730
41322041	SIAKAGO	KIANCOMBE	THAMBU	KARAMBARI	574	103	115.94	20.81	4.9507
41322051	SIAKAGO	KIANGOMBE	THAMBU	KIAMBITI	747	143	104.77	20.06	7.1296
41323011	SIAKAGO	KIANGOMBE	IRIA-ITUNE	KAMIGUA EAST	265	49	32.66	6.04	8,1127
41323021	SIAKAGO	KIANGOMBE	IRIA-ITUNE	KAMWAA A	223	47	22.53	4.75	9.8976
41323031	SIAKAGO	KIANGOMBE	IRIA-ITUNE	KAMWAA B	221	43	20.60	4.01	10.7291
41323041	SIAKAGO	KIANGOMBE	IRIA-ITUNE	NGARIWERERI	342	12	14.50	3.01	23.5811
41323051	SIAKAGO	KIANGOMBE	IRUA-ITUNE	NGOCE B	270	51	32.67	6.17	8.2636

8

41323061 SIAKAGO	INKAGO	KIANGOMBE	IRIA-ITUNE	NGOCE A	290	62	21.66	4.63	13.3858
41323071 SI	SIAKAGO	KIANGOMBE	IRIA-ITUNE	MUTURIGURU	369	69	49.99	9.35	7.3817
1	SIAKAGO	KIANCOMBE	IRA-ITUNE	KIRIGO B	390	67	16.87	13.56	4,9421
41323091 SI	SIAKAGO	KIANGOMBE	IRIA-ITUNE	KIRIGO A	422	71	55.34	15.9	7.6252
41323101 SI	SIAKAGO	KIANGOMBE	IRIA-ITUNE	KAMIGUA WEST	326	80	58.98	10.85	5.5276
41332011 SI	SIAKAGO	EVURORE	KAMARANDI	KAMARINDO	338	61	48.00	8.66	7.0420
41332021 SI	SIAKAGO	EVURORE	KAMARANDI	NTHIGIRANI	749	611	32.18	5.11	23.2772
41332031 SI	SIAKAGO	EVURORE	KAMARANDI	MUTHANTHARA A	246	Ş	27.19	4.42	9.0487
41332041 SI	SIAKAGO	EVURORE	KAMARANDI	MUTHANTHARA B	489	78	60.57	99.66	8.0740
41332051 SI	SIAKAGO	EVURORE	KAMARANDI	KOGARI B	414	28	33.93	6.88	12.2013
41332061 SI	SIAKAGO	EVURORE	KAMARANDI	KOGARI A	414	88	43.46	60.9	9.5254
41332071 SI	SIAKAGO	EVURORE	KAMARANDI	KAMUTU	744	129	68.42	11.86	10.8739
41332081 SIAKAGO	IAKAGO	EVURORE	KAMARANDI	KLANTHENGE	489	96	168.18	33.02	2.9076
41332091 SI	SIAKAGO	EVURORE	KAMARANDI	KIBURU	381	69	71.42	12.94	5.3343

# KITUI DISTRICT (NOW MWINGI DISTRICT)

KUN	DISTRICT (NO	KITUU DISTRICT (NUW MANTATI VIA	ac1)						
CENSUS	CENSUS DIVISION ID	LOCATION	SUBLOC	VULAGE	POPU- LATION	HOUSE-	POP. DENSITY	HOUSEHOLD AREA DENSITY (XM ³ )	AREA (XM²)
43464011 KYUSO		KATSE	MUKONGAJIKONGA	MUGWUNI		FORES	FOREST RESERVE		16.3186
43464011 KYUSO	KYUSO	KATSE	MUKONGA/IKONGA	MUGWUNI	663	103	44.05	6.84	15.0498
43464021 KYUSO	KYUSO	KATSE	MUKONGA/IKONGA	MUKINDU		FORES	FOREST RESERVE		0.0725
43464021 KYUSO	KYUSO	KATSE	MUKONGAJKONGA	MUKINDU	580	501	34.99	6.33	16.5748
43464031 KYUSO	KYUSO.	KATSE	MUKONGA/IKONGA	MBONDO		FORES	FOREST RESERVE		22.9870

A6-2

ł

1

43464031	KYUSO 1	KATSE	MUKONGA/IKONGA	MBONDO	334	54	31.76	S.14	10.5148
		KATSE	MUKONGA/IKONGA	КІТНҮОКО		FOREST	FOREST RESERVE		0.2406
			MUKONGAJKONGA	КІТНҮОКО	420	73	28.78	5.00	14.5937
				IKONGO		FOREST	FOREST RESERVE		0.0750
42464051 K 1050				IKONGO	270	44	22.47	3.66	12.0165
ATAKADET KYTISO				KANGOMO		FORES	FOREST RESERVE		0.0795
414AAAA				KANGOMO	331	50	53.11	8.02	6.2321
43464071				NGAANI		FORES	FOREST RESERVE		41.3805
	KYUSO	KATSE	MUKONGA/IKONGA	NGAAN	301	45	43.62	6.52	6.9012
43464081 KYUSO	KYUSO	KATSE	MUKONGA/IKONGA	KIKUMINI	229	36	26.62	4.19	8.6015
43464091		KATSE.	MUKONGA/IKONGA	NGEUKYA	1830	303	75.71	12.53	24.1724
	KYUSO	THARAKA	GACIGONGO/KANYENGYA NTUMIRA	NTUMIRA	347	56	15.91	2.57	21.8159
43471021 KYUSO	KYUSO	THARAKA	GACIGONGO/KANYENGYA KAMANGARA	KAMANGARA	225	35	15.68	2.44	14.3452
43471031	KYUSO	THARAKA	GACIGONGO/KANYENGYA KAMAYAGI	KAMAYAGI	916	55	29.52	5.14	10.7064
	KYUSO	THARAKA	GACIGONGO/KANYENGYA MIRAABA IKAMBA	MIRAABA IKAMBA	332	63	12.79	2.43	25.9515
	KYUSO	THARAKA	GACIGONGO/KANYENGYA ITURAMURA	ITURAMURA	333	63	20.90	3.95	15.9317
43471061	KYUSO	THARAKA	GACIGONGO/KANYENGYA CLATUNGU	CLATUNGU	294	47	21.63	3.46	12.5898
43471071	KYUSO	THARAKA	GACIGONGO/KANYENGYA GATORONI	GATORONI	172	33	14.54	2.79	11.8263
43471081	KYUSO	THARAKA	GACIGONGO/KANYENGYA KANHOROKO	KANHOROKO	286	05	33.38	5.84	8.5682
43471091	KYUSO	THARAKA	GACIGONGO/KANYENGYA KANYENGYA	KANYENGYA	361	65	25.92	4.67	13.9293
43471101	KYUSO	THARAKA	GACIGONGOKANYENGYA NKARAKU	NKARAKU	284	43	14.93	2.26	19.0207
43472011	KYUSO	THARAKA	GAKOMBE	GAKOMBE	295	47	46.39	7.47	6.2908
43472021	KYUSO	THARAKA	GAKOMBE	NKORU	212	33	9.88	1.54	21,4479
								-	

J

A6-3

43472031	KYUSO	THARAKA	GAKOMBE	MURICANI	322	52	15.90	3.05	17.0381
43472041	KYUSO	THARAKA	GAKOMBE	NDIANI/THUMBI	334	47	30.11	4.24	11.0922
43472051	KYUSO	THARAKA	GAKOMBE	CIAIKURU	339	59	25.91	4.51	13.0828
43472061	KYUSO	THARAKA	GAKOMBE	KURUNDU	270	43	31.63	5.04	8.5363
43473011	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	GACIONGO K	259	43	44.44	7.38	5.8285
43473021	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	MUKURUNI	191	30	30.08	4.72	6.3507
43473031	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	NTHANGANI	189	05	39.30	6.24	4.8087
43473041 KYUSO	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	MAIKUME	195	32	23.54	3.86	8.2820
43473051	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	KAMWERINI	448	80	19.17	3.42	23.3734
43473061 KYUSO	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	IKIME/KAMAGITI		FOREST	FOREST RESERVE		6009:0
43473061	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	IKIME/KAMAGITI	579	93	29.53	4.74	19.6054
43473071	KYUSO	THARAKA	KANTHUNGUKAMAINDI	KONYO		FOREST	FOREST RESERVE		0.9565
43473071	KYUSO.	THARAKA	KANTHUNGU/KAMAINDI	KONYO	630	8	25.99	4.08	24.2430
43473081	KYUSO	THARAKA	KANTHUNGUKAMAINDI	KAMATUMOK	207	37	25.60	4.58	8.0849
43473091	KYUSO	THARAKA	KANTHUNGUKAMAINDI	UVETA	88	14	16.27	2.59	5.4082
43473101	KYUSO	THARAKA	KANTHUNGU/KAMAINDI	KANTHUNGU	211	27	35.58	4.55	5.9305

# MERU DISTRICT (NOW THARAKA-NITHI)

CENSUS	CENSUS DIVISION ID	LOCATION	SUBLOC	VILLAGE	POPU- LATION	HOUSE-	POP. DENSITY	HOUSEHOLD AREA DENSITY (KM ² )	AREA (KM ⁻ )
46311011	46311011 THARAKA	NORTH THARAKA	GATUNGA	GACIONGO G	105		22 18.10	0 3.79	5.8014
46311021	46311021 THARAKA	NORTH THARAKA	GATUNGA	KAGUCWANI	284	46	34.44		5.58 8.2473
46311031	46311031 THARAKA	NORTH THARAKA	GATUNGA	KAMATUMOG	330	57	47.25	8.16	6.9839

A6-4

J

100

46311041	THARAKA	NORTH THARAKA	GATUNGA	KARII KA MBURI	478	83	44.41	7.71	10.7629
46311051	THARAKA	NORTH THARAKA	GATUNGA	GITUGU		FOREST	FOREST RESERVE		0.0125
46311051	THARAKA	NORTH THARAKA	GATUNGA	arrugu	387	2	s0.06	8.28	7.7306.
46311061	THARAKA	NORTH THARAKA	GATUNGA	KARUGWARU	425	66	40.73	6.33	10.4342
46311071	THARAKA	NORTH THARAKA	GATUNGA	NKUNJU	428	80	42.08	7.86	10.1720
46311081	THARAKA	NORTH THARAKA	GATUNGA	KINUNKU EAST	323	55	30.75	5.24	10.5034
46311091	THARAKA	NORTH THARAKA	GATUNGA	KINUNKU WEST	362	65	45.89	8.24	7.8883
46311101	THARAKA	NORTH THARAKA	GATUNGA	GATUNGA	257	44	49.29	8.44	5.2137
46312011	THARAKA	NORTH THARAKA	GATUE	KAYURIAKITHUNGURU	227	33	15.73	2.29	14.4317
46312021	THARAKA	NORTH THARAKA	GATUE	KAYURIA	141	ន	25.96	4.05	5.4319
46312031	THARAKA	NORTH THARAKA	GATUE	MANDURU		FOREST	FOREST RESERVE		0.0083
46312031	THARAKA	NORTH THARAKA	GATUE	MANDURU		FOREST	FOREST RESERVE		0.9828
46312031	THARAKA	NORTH THARAKA	GATUE	MANDURU	311	50	31.92	5.13	9.7426
46312041	46312041 THARAKA	NORTH THARAKA	GATUE	MARAGWA		FOREST	FOREST RESERVE		4,4080
46312041	THARAKA	NORTH THARAKA	GATUE	MARAGWA		FOREST	FOREST RESERVE		3.4778
46312041	THARAKA	NORTH THARAKA	GATUE	MARAGWA	216	31	26.66	3.83	8.1012
46312051	THARAKA	NORTH THARAKA	GATUE	RWARUI		FOREST	FOREST RESERVE		1.8606
46312051	THARAKA	NORTH THARAKA	GATUE	RWARUI	182	31	20.07	3.42	9.0675
46312061	THARAKA	NORTH THARAKA	GATUE	KATHUURI		FOREST	FOREST RESERVE		3.3510
46312061	THARAKA	NORTH THARAKA	GATUE	KATHUURI	364	28	24.97	4.39	14.5799
46312071	THARAKA	NORTH THARAKA	GATUE	KAMAGUNA	293	50	16.05	2.74	18.2555
46312081	THARAKA	NORTH THARAKA	GATUE	NTHIMA	341	56	41.24	6.77	8.2677
46312091	THARAKA	NORTH THARAKA	GATUE	KIRIMBU	338	5	15.02	2.76	22.5029

A6-5

J

46312111	THARAKA	NORTH THARAKA	GATUE	KIIGAGAKA		FOREST	FOREST RESERVE		4.2261
46312111	THARAKA	NORTH THARAKA	GATUE	KIIGAGAKA	337	58	16.12	2.77	20.9055
46312121	THARAKA	NORTH THARAKA	GATUE	камwathu		FOREST	FOREST RESERVE		1.0406
46312121	THARAKA	NORTH THARAKA	GATUE	KAMWATHU	284	51	15.72	2.82	18.0630
46312131	THARAKA	NORTH THARAKA	GATUE	MUKENGU	290	54	33.51	6.24	8.6541
46312141	THARAKA	NORTH THARAKA	GATUE	NDURUKUNDIUNI	596	98	24.26	3.99	24.5692
46331011	THARAKA	SOUTH-THARAKA	CHIAKARIGA	GACERAKA B	532	66	74.17	13.80	7.1727
46331021	THARAKA	SOUTH-THARAKA	CHIAKARIGA	GACERAKA A	655	06	55.77	7.66	11.7437
46331031	THARAKA	SOUTH-THARAKA	CHIAKARIGA	NKARINI	732	127	80.43	13.95	1101.6
46331041	THARAKA	SOUTH-THARAKA	CHIAKARIGA	KAMATHURI		FOREST	FOREST RESERVE		2.8211
46331041	THARAKA	SOUTH-THARAKA	CHIAKARIGA	KAMATHURI	813	128	103.87	16.35	7.8270
46331051	THARAKA	SOUTH-THARAKA	CHIAKARIGA	KARUGUJUNI/KOMBO	1942	336	189.85	32.85	10.2293
46331061	THARAKA	SOUTH-THARAKA	CHIAKARIGA	CHIAKARIGA		FOREST	FOREST RESERVE		5.5655
46331061	THARAKA	SOUTH-THARAKA	CHIAKARIGA	CHIAKARIGA	636	166	148.67	38.80	4.2780
46331071	THARAKA	SOUTH-THARAKA	CHIAKARIGA	MITAANIMTANGANI		FOREST	FOREST RESERVE	• •	5.9799
46331071	THARAKA	SOUTH-THARAKA	CHIAKARIGA	MITAANINTANGANI	663	170	65.45	12.40	13.7056
46331081	THARAKA	SOUTH-THARAKA	CHIAKARIGA	MATERI	602	98	57.43	9.35	10.4820
46331091	THARAKA	SOUTH-THARAKA	CHIAKARIGA	KITHAGAMUTONGA	1096	204	202.13	37.62	5.4222
46332011	THARAKA	SOUTH-THARAKA	KAMANYAKI	KIRUKUMA		FOREST	FOREST RESERVE		6.7352
46332011	THARAKA	SOUTH-THARAKA	KAMANYAKI	KIRUKUMA	151	109	57.11	8.29	13.1499
46332021	THARAKA	SOUTH-THARAKA	KAMANYAKI	KATHIRANI		FOREST	FOREST RESERVE		2.0356
46332021	THARAKA	SOUTH-THARAKA	KAMANYAKI	KATHIRANI	313	52	108.31	17.99	2.8898
46332031	THARAKA	SOUTH-THARAKA	KAMANYAKI	KARIE/KANJERU		FOREST	FOREST RESERVE		2.1010

J

12021294	THARAKA	SOUTH-THARAKA	KAMANYAKI	KARIE/KANJERU	234	46	55.37	10.88	4.2262
46332041		SOUTH-THARAKA	KAMANYAKI	KAMUTHANGA	376	63	32.44	10.85	9.4010
46332051	THARAKA	SOUTH-THARAKA	KAMANYAKI	KAMANYAKUKARUNGARU		FOREST	FOREST RESERVE	,	6.8914
46332051	THARAKA	SOUTH-THARAKA	KAMANYAKI	KAMANYAKUKARUNGARU	391	73	37.34	6.97	10.4725
46332061		SOUTH-THARAKA	KAMANYAKI	KATHANDENI	464	83	80.16	16.29	5.0946
46332071	THARAKA	SOUTH-THARAKA	KAMANYAKI	KYUNGU	249	45	10.63	1.92	23.4184
46332081	THARAKA	SOUTH-THARAKA	KAMANYAKI	WPUNJA	421	70	40.91	6.80	10.2914
46332091	THARAKA	SOUTH-THARAKA	KAMANYAKI	NDURUKU	1040	180	118.49	20.51	8.7768
46332101	THARAKA	SOUTH-THARAKA	KAMANYAKI	KIAMAIRI	214	4	64.07	12.28	3.3399
46332111	THARAKA	SOUTH-THARAKA	KAMANYAKI	MBACACAKITHURI		FOREST	FOREST RESERVE		0.8026
46332111	THARAKA	SOUTH-THARAKA	KAMANYAKI	MBACACA/KITHURI	527	78	74.07	10.96	7.1153
46342011	THARAKA	MARIMANTI	MARIMANTI	KANGANTANKUNDI	471	78	51.70	8.56	01110
46342021	THARAKA	MARIMANTI	MARIMANTI	KARUMA	397	2	73.65	13.36	5.3905
46342031	THARAKA	MARIMANTI	MARIMANTI	MARORERIA	239	38	31.74	5.05	7.5295
46342041	THARAKA	MARIMANTI	MARIMANTI	GACHEE	379	67	59.93	10.59	6.3239
46342051	THARAKA	MARIMANTI	MARIMANTI	KARURUKUNNIGUMO	618	109	98.26	17.33	6.2894
46342061	THARAKA	MARIMANTI	MARIMANTI	NTHANGATHINIKAMATUNGU	661	119	86.98	12.06	9.8680
46342071	THARAKA	MARIMANTI	MARIMANTI	KAIGA KAMWENKOMARU	376	89	25.45	4.60	14.7761
46342081	THARAKA	MARIMANTI	MARIMANTI	KATHENGESA	298	50	31.00	5.20	9.6117
46342091	THARAKA	MARIMANTI	MARIMANTI	MAKOMANGO	264	43	37.98	6.19	6.9512
46342101	THARAKA	MARIMANTI	MARIMANTI	MURERERWAKINANGA	453	78	178.91	30.81	2.5320
46342111	THARAKA	MARIMANTI	MARIMANTI	NTHAARA	405	80	44.34	8.67	9.2240
46342121	THARAKA	MARIMANTI	MARJMANTI	νλολη	50	21	13.46	5.65	3.7160

A6-7

J

46342131	THARAKA	MARIMANTI	MARIMANTI	MAGUNDU	419	71	64.41	10.92	6.5047
46342141	THARAKA	MARIMANTI	MARIMANTI	GAMPUA	283	X	47.85	9.13	5.9137
46342151	THARAKA	MARIMANTI	MARIMANTI	MARIMANTI	605	149	146.38	42.85	3.4771
46343011	THARAKA	MARIMANTI	KANYURU	GACIGONGOONI/KANGOMBE	512	88	80.07	13.76	6.3947
46343021	THARAKA	MARIMANTI	KANYURU	KANOA	446	75	157.85	26.54	2.8255
46343031	THARAKA	MARIMANTI	KANYURU	IRURUMA/GAMPARE		FOREST	FOREST RESERVE		0.4598
46343031	THARAKA	MARIMANTI	KANYURU	IRURUMA/GAMPARE	439	11	68.67	12.04	6.3929
46343041	THARAKA	MARIMANTI	KANYURU	KITHIORI/MAGARINI		FOREST	FOREST RESERVE		3.8109
46343041	THARAKA	MARIMANTI	KANYURU	KITHIORI/MAGARINI	152	44	30.26	5.30	8.2960
46343051	THARAKA	MARIMANTI	KANYURU	MUGUKO/KATHITHI		FOREST	FOREST RESERVE		0.2002
46343051	THARAKA	MARIMANTI	KANYURU	MUGUKO/KATHITHI		FOREST	FOREST RESERVE		3.7088
46343051	THARAKA	MARIMANTI	KANYURU	MUGUKO/KATHITHI	350	63	21.47	3.86	16.3001
46343061	THARAKA	MARIMANTI	KANYURU	MUTUGUNI		FOREST	FOREST RESERVE		10.2540
46343061	THARAKA	MARIMANTI	KANYURU	MUTUGUNI	557	8	31.36	5.4?	17.7595
46343071	THARAKA	MARIMANTI	KANYURU	RUKENYA		FOREST	FOREST RESERVE		3.0016
46343071	THARAKA	MARIMANTI	KANYURU	RUKENYA	205	36	26.04	4.57	7.8715
46343081	THARAKA	MARIMANTI	KANYURU	NKURURUNI		FOREST	FOREST RESERVE	• • • • • • •	1.3060
46343081	THARAKA	MARIMANTI	KANYURU	NKURURUNI	756	128	102.02	17.27	7.4104
46343091	THARAKA	MARIMANTI	KANYURU	MUKINYANGO/NCHUKUUNI		FOREST	FOREST RESERVE		1.5016
46343091	THARAKA	MARIMANTI	KANYURU	MUKINYANGO/NCHUKUUNI	537	96	71.17	12.72	7.5456
92624202	THARAKA	NORTH THARAKA	GATUE	IRUMA	1160	210	53.19	9.63	21.8103

L

# Annex to Chapter 8

*

I

**ANNEX 8** 

)

### A-8.1 RESPONSES FROM THE GENERAL QUESTIONS ABOUT THE PROJECT

(note: responses are given in percentage terms)

ITEM B1 - Have you ever heard of Mutonga/Grand Falls hydropower project ?

	Yes	No
MWINGI	100	
EMBU	96	4
THARAKA NITHI	91	9
TOTAL		

Total Responses to B2-B7, whether B1 = Yes or No

ITEM: B3 - Has the idea of the project been clearly explained to you?

	1	2
MWINGI	27	74
EMBU	9	90
THARAKA NITH(	15	85
TOTAL	13	87
1 = Clear $2 = Not$	Clear	

ITEM: B4 - In your opinion, is the project acceptable ?

	Y	N
MŴINGI	61.8	38.2
EMBU	70.5	29.5
THARAKA NITHI	56.9	43.1
TOTAL	64.7	35.3

Y = Yes

.

Í

N = No

	1	2	3	4
MWINGI	19.0	61.9	19.0	
EMBU	34.5	34.5	23.0	8.0
THARAKA NITHI	35.1	45.9	13.5	5.4
TOTAL	32.7	40.4	20.5	6.4

ITEM: B5 - What are the perceivable benefits of the project ?

同語

I

1 = Irrigated Agriculture

2= Infra-structure Development

3= Employment

4 = Others

ITEM: B7 - What are reasons for not accepting the project ?

	1	2	3	4	5	6
MWINGI	1				-	
EMBU	8	7	17	9	27	25
THARAKA NITHI					-	-
TOTAL						

1 = Don't want to move

2= Don't see direct benefits

3= Project may be a danger to community around

4 = Reservoir may be breeding ground for water borne diseases

5 = Project may take land and cause problem of finding alternative land

6 = Other

Item C5 - Demographic Information- Sex

District		Response
	1	2
Mwingi	46.6	53.4
Embu	52.1	47.9
Tharaka Nithi	54.9	45.1
All	52.4	47.6

Key:

1. Male

2. Female

### Item C12 - Demographic Information- Religion

District		Re	sponse	
[	1	2	3	4
Mwingi	13.0	87.0	-	-
Embu	23.6	74.5	2.0	•
Tharaka Nithi	23.6	70.6	0.2	5.6
Ali	22.0	74.8	0.1	3.1

Key:

.

J

Ð

1. Catholic

2. Protestant

3. Muslim

4. Other (Specify)

	1	2	3	4	5	6	7	8	9	10	11	12	13
MWINGI	28	20		1	1	1	1	1	1		1	6	44
EMBU	24	1		1	$\overline{1}$	1	1	1		1	1	26	44
THARAKA NITHI	27	10	1	1	1	1	2.	1	1	1	1	1	57
TOTAL	25	6	<b> </b>	1	1	1	1	1	1	1		16	48

### ITEM: C 18 - Type of sickness experienced in past 2 weeks Percentage Responses

1 = Malaria

2 = Upper Respiratory Infection

- 3 = Skin Disease
- 4 = Intestinal Worm
- 5 = Accidents
- 6 = Eye Infection
- 7 = Diarrhoea
- 8 = Urinary Tract Infection
- 9 = Dental Disorder
- 10 = Ear Infection
- 11 = Schistomiasis
- 12 = Other
- 13 = Not Applicable
- 14 = Undefined

ITEM: D11 - How did you acquire this land?

	Inherited	Bought	Rented	Gift
MWINGI	64.7	17.6	8.8	8.8
EMBU	85.4	10.7		3.9
THARAKA NITHI	92.3	6.2		1.5
TOTAL	84	10	2	4

1

I

### Item D12B - What is your land tenure status

District		Respons	se				
	1	2	3	4	5	6	7
Mwingi	5.0	2.5	55.0	20.0	5.0	12.5	-
Embu	27.7	12.1	28.4	5.7	2.8	23.4	-
Tharaka Nithi	3.9	4.9	75.5	3.9	8.8	2.0	-
All	15.9	8.1	49.1	7.1	5.3	14.1	0.4

Key:

 $\left( \right)$ 

- 1. Absolute ownership/Freehold
- 2. Leasehold
- 3. Individual Ownership
- 4. Share Cropping
- 5. Joint Ownership
- 6. Communal Ownership/Trust Land
- 7. Other (Specify)

### Item D13 - Do You Rent Out any Land?

District		Response
	1	2
Mwingi	17.5	82.5
Embu	3.7	96.3
Tharaka Nithi	4.0	96.0
All	5.8	94.2

#### Key:

1. Yes

2. No

ł

Item D16 - In your opinion is the quality of the soils on this land good?

1

District	ct Response		
	1	2	
Mwingi	100	-	
Embu	74.8	25.2	
Tharaka Nithi	97.1	2.9	
All	86.3	13.7	

Key:

1. Yes

2. No

	Road	Railway	Animal of Burden	Human Labor	Bicycle
MWINGI	32		50	18	
EMBU	39	1	15	39	
THARAKA NITHI			54	43	3
TOTAL	25	34	37	1	3

# ITEM: D111 - What is your most common mode of transport for marketing your farm products ?

Item D112 - Do you produce enough for your substance needs on this farm?

District		Response	
	1	2	
Mwingi	95.0	5.0	
Embu	93.3	6.7	
Tharaka Nithi	98.0	2.0	
All	95.5	4.5	

Key:

1. Yes

2. No

(control)

### Item F3 - Access to Social Amenities Distance to Primary School

Response District 2 3 4 1 15 12 27 Mwingi 15 32 33 15 Embu 16 32 8 48 32 Tharaka 12 Nithi 3 All 37 32 13 15

5

Key:

٢

.

. . . . .

•

Ţ

1. Less than 1 km

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. Over 10 km

Item F4 -	Access to Social Amenities - Main Road
-----------	----------------------------------------

District		Respons	se		
	1	2	3	4	5
Mwingi	7.5	12.5	15.0	27.5	37.5
Embu	12.4	14.3	23.8	14.3	35.2
Tharaka Nithi	2.0	4.9	6.9	4.9	81.4
All	7.3	10.1	15.4	12.6	54.7

Key:

1. Less than 1 km

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. over 10 km

.

	0-9	10- 19	20- 29	30- 39	40 - 49	50- 59	60-69	70- 79	80- 89	90 and over	Not State d
MWINGI	31.9	18.8	15.2	14.1	4.7	2.1	2.6	1.0 -	3.7		5.8
EMBU	25.7	26.0	16.3	10.4	8.7	3.8	4.7	2.3	0.4	0.1	1.7
THARAK A NITHI	19.0	28.8	17.7	13.5	6.6	4.5	5.3	2.6	1.6	0.3	
TOTAL	24.6	25.7	16.6	11.9	7.5	3.8	4.6	2.2	1.3	0.2	1.8

ITEM: C6 - Demographic Information -- Age Brackets of Households

ITEM: C11 - Demographic Information - Ethnic/Tribe

	1	2	3	4	5
MWINGI	93.7		5.8		0.5
EMBU	2.7	.8	25.4	68.4	2.7
THARAKA NITHI	3.7	.5	95.5		.3
TOTAL	16.5	0.6	43.2	38.0	1.6

1 = Kamba

2 = Meru

3 = Tharaka

4 = Embu/Mbere

5 = Other

1

ļ

••		-	P	ercei	ntage	Res	pons	es					
<u></u>	1	2	3	4	5	6	7	8	9	10	11	12	13
MWINGI	28	20				1	1		1		1	6	44
EMBU	24	1		1	1	1	1	1	1	1		26	44
THARAKA NITHI	27	10	1	1	1	1	2		1	1		1	57
TOTAL	25	6		1	1	1	1	1		1	1	16	48

# ITEM: C 18 - Type of sickness experienced in past 2 weeks

1 = Malaria

٢

2 = Upper Respiratory Infection

3 = Skin Disease

4 = Intestinal Worm

5 = Accidents

6 = Eye Infection

7 = Diarrhoea

8 = Urinary Tract Infection

9 = Dental Disorder

10 = Ear Infection

11 = Schistomiasis

12 = Other

13 = Not Applicable

14 = Undefined

ITEM: D11 - How did you acquire this land?

······································	Inherited	Bought	Rented	Gift
MWINGI	64.7	17.6	8.8	8.8
EMBU	85.4	10.7		3.9
THARAKA NITHI	92.3	6.2		1.5
TOTAL	84	10	2	4

.

A8-9

# Item D17 - Do Own any Other Piece of Land?

1

1

District	Response		
······································	1	2	
Mwingi	37.5	62.5	
Embu	33.3	66.7	
Tharaka Nithi	22.5	77.5	
All	30.1	69.9	

Key:

I. Yes

2. No

Item D18A - If yes in D17, where?

District		Response
	1	2
Mwingi	100.0	-
Embu	60.0	40.0
Tharaka Nithi	95.2	4.8
All	71.6	28.4

Key:

1. Within

2. Outside

Item D19A - What farm implement do you use to break ground?

District		Respons	se	
	1	2	3	4
Mwingi	69.4	1.	30.6	•
Embu	67.6	1.0	30.5	1.0
Tharaka Nithi	88.2	2.0	9.8	-
All	76.5	1.2	21.8	0.4

Key:

1. Ox-plough

2. Tractor

3. Hand implements

4. Other (Specify)

# Item D19B - What farm implement do you use for sowing?

District Response 2 3 4 1 100 Mwingi ---1.0 Embu 41.0 57.1 1.0 2.9 Tharaka 1.0 95.1 1.0 Nithi All 18.1 1.6 79.4 0.8

Key:

 $\bigcirc$ 

•

:

. .

I

_

1. Ox-plough

2. Tractor

3. Hand implements

4. Other (Specify)

## Item D19C - What farm implement do you use for Weeding?

District		Respons	se	
	1	2	3	4
Mwingi	5.0	-	80.0	15.0
Embu	1.0	1.9	96.2	1.0
Tharaka Nithi	4.9	-	91.2	39
All	3.2	0.8	91.5	4.5

Key:

1. Ox-plough

2. Tractor

3. Hand implements

4. Other (Specify)

Item D110 - Do you use any water and/or soil conservation techniques?

District	District				
	1	2			
Mwingi	70.0	30.0			
Embu	95.2	4.8			
Tharaka Nithi	65.7	34.3			
All	78.9	21.1			

Key:

1. Yes

2. No

-

		District			
		Mwingi	Embu	Tharaka Nithi	All
	1	2.1	6.3	9.3	6.9
	2	19.7	16.8	17.4	17.5
	3	21.3	22	21.1	21.5
	4	19.7	21.6	17.2	19.4
	5	10.1	1.3	2.7	3.4
	6	-	.2	•	.1
Response	7	1.6	-	5.6	2.7
	8	-	.6	-	.3
	9	3.7	1.3	2.3	2.1
	10	•	.4	2.7	1.3
	11	1.1	•	1.4	.8
	12	0.5	•	1.4	.7
	13	13.8	17.2	16.1	16.2
	14	6.4	6.5	1.9	4.5
	15	-	-	-	-
	16	+	3.9	.2	1.7
	17	-	1.5	.6	.9
	18	-	.2	-	.1

District

# Key:

- 1. Cotton
- 2. Maize
- 3. Millet
- 4. Sorghum
- 5. Beans
- 6. Groundnuts
- 7. Vegetables
- 8. Sweet Potatoes
- 9. Cassava
- 10.Sugar cane
- 11.Fruits
- 12.Sunflower
- 13.Green Grams
- 14.Pigeon Peas
- 15.Sisal
- 16.0ther
- 17.Cowpeas
- 18.Bananas

I

# Item D200 - Livestock

District		Response											
	1	2	3	4	5	6	7	8	9				
Mwingi	20.3	.6	15.8	20.9	24.7	7.6	-	9.5	.6				
Embu	19.6	.9	14.4	21.5	21.7	5.2	•	16.7	-				
Tharaka Nithi	20.9	.2	18.3	21.4	18.3	10.4	-	10.6	-				
All	20.3	.6	16.3	21.3	20.7	7.8	-	12.9	.1				

#### Key:

٢

• • •

J,

. .

÷

I

1

- 1. Indigenous Cattle
- 2. Grade Cattle
- 3. Sheep
- 4. Goats
- 5. Poultry
- 6. Donkey/Ass
- 7. Pigs
- 8. Beehive
- 9. Other

Item E6

## - Distance to Water Source

#### District

#### Response

	1	2	3	4	5
Mwingi	27	41	12	18	3
Embu	20	17	32	19	12
Tharaka	24	44	21	3	8
Nithi					
All	22	29	26	14	9

## Key:

1. Less than 1 km

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. Over 10 km

# Item E8 - Source of Cooking Fuel

District	Response						
	1	2	3	4	5		
Mwingi	97		3				
Embu	90	2	3	2	4		
Tharaka Nithi	96		3	2			
All	93	1	3	1	2		

Key:

1. Firewood

2. Charcoal

3. Kerosene

4. Electric

5. Others

# Item E9 - Source of Lighting

District		Response							
	1	2	3	4	5	6			
Mwingi	82	12	3		3				
Embu	74	7	2	1	16	1			
Tharaka Nithi	70	5	2	2	23				
All	74	7	2	1	16	1			

Key:

1. Kerosene

2. Firewood

3. Solar

4. Electric

5. Candle

6. Other

I

# Item E04

-

Housing - Source of Water - Wet Season

٢

~

;

.

:

•

÷

.

Ţ

2

District		Response								
	1	2	3	4	5	6	7	8		
Mwingi	2.5	7.5	42.5	-	15.0	2.5	30.0	-		
Embu	-	11.3	41.7	4.3	27.0	.9	14.8			
Tharaka Nithi	-	5.8	22.3	•	51.5	-	18.4	1.9		
All	.4	8.5	34.1	1.9	34.9	.8	18.6	.8		

# Key:

1. Piped

2. Spring

3. River

4. Dam

5. Well

6. Pond

7. Rain Water

8. Other

Item E05

-

# Housing - Source of Water - Dry Season

District 1	Response								
	1	2	3	4	5	6	7		
Mwingi	2.5	2.5	60.0	-	35.0	-	-		
Embu	-	12.2	75.7	2.6	9.6		•		
Tharaka Nithi	-	-	92.2	-	2.9	-	1.9		
All	.4	5.8	79.8	1.2	10.9	-	1.2		

Key:

I. Piped

2. Spring

3. River

4. Dam

5. Well

6. Pond

7. Rain Water

# Item E06 - Housing - Source of Water - Distance

District	Response					
	1	2	3	4	5	
Mwingi	25.0	42.5	15.0	15.0	2.5	
Embu	20.0	16.5	32.2	19.1	12.2	
Tharaka Nithi	23.5	44.1	24.5	2.9	4.9	
All	22.2	31.5	26.5	12.1	7.8	

Key:

1. Less than 1 km

2. to 2.99 km

3. to 5.99 km

4. to 9.99 km

5. over 10 km

District		Respons	se		
	1	2	3	4	5
Mwingi	2.5	-	-	87.5	10.0
Embu	.9	.9	5.2	87.8	5.2
Tharaka Nithi	1.0		1.9	82.5	14.6
All	1.2	.4	3.1	85.7	9.7

Key:

1. Main Sewer

2. Cess Pool

3. Bucket Latrine

4. Pit Latrine

5. Bush

I

#### Item F1 Access to Social Amenities - Health Facility -

19.8

22.3

51.0

District		Respons	se		
	1	2	3	4	5
Mwingi	-	5.0	12.5	25.0	57.5
Embu	1.0	1.0	10.5	15.2	72.4
Tharaka	-	12.7	32.4	28.4	26.5

6.5

Key:

Nithi All

1. Less than 1 km

.4

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. over 10 km

#### Item F2 Access to Social Amenities - Market Place -

District	Response						
	1	2	3	4	5		
Mwingi		7.5	17.5	20.0	55.0		
Embu	-	1.9	8.6	12.4	77.1		
Tharaka Nithi	-	2.0	8.8	10.8	78.4		
All	-	2.8	10.1	13.0	74.1		

Key:

1. Less than 1 km

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. over 10 km

٢

I

ł

#### Access to Social Amenities Item F5 -Distance to Electric Supply

District			Response			
	1	2	3	4	5	
Mwingi			9	6	85	
Embu		8	4	9	80	
Tharaka Nithi					100	
All		4	4	6	87	

Key:

1. Less than 1 km

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. Over 10 km

Access to Social Amenities - Cattle Dip Item F6 -

District					
	1	2	3	4	5
Mwingi	2.5	-	5.0	40.0	52.5
Embu	6.7	15.2	26.7	27.6	23.8
Tharaka Nithi	-	6.3	12.5	6.3	75.0
All	3.3	9.1	17.4	21.2	49.0

Key:

1. Less than 1 km

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. over 10 km

Ĩ

# Item F7 - Access to Social Amenities - Administration Centre

. . .

District	Response						
	1	2	3	4	5		
Mwingi	27.5	25.0	10.0	7.5	30.0		
Embu	1.0	1.0	11.4	15.2	71.4		
Tharaka	2.9	14.7	55.9	9.8	16.7		
Nithi							
All	6.1	10.5	29.6	11.7	42.1		

Key:

1. Less than 1 km

2. 1 to 2.99 km

3. 3 to 5.99 km

4. 6 to 9.99 km

5. over 10 km

Item H1 - In your opinion, how much should you be paid for all the buildings on this holding?

District		Respons	se					
	1	2	3	4	5	6		
Mwingi	15	7.5	12.5	20	10	35		
Embu	12.4	22.0	14.3	7.7	9.6	29.5		
Tharaka Nithi	7.9	4	10.8	9.8	5.9	62.7		
All	7.6	12.1	12.5	10.5	8.1	44.1		

Key:

1. 0 - 40,000

2. 40,001 - 80,000

3. 80,001 - 150,000

4. 150,001 - 300,000

5. 300,001 - 500,000

6. 500,001 Plus

. .

.

I

Item H2 - How much would you require to replace all your buildings on another piece of land?

T

I

District		Respons	se			
	1	2	3	4	5	6
Mwingi	27.5	7.5	7.5	5.0	17.5	35.0
Embu	13.4	13.4	7.7	10.5	4.8	43.8
Tharaka Nithi	5	1	6.8	9.8	10.8	66.7
All	8.4	7.2	7.2	9.4	9.3	51.8

Key:

- 1. 0 40,000
- 2. 40,001 80,000
- 3. 80,001 150,000
- 4. 150,001 300,000
- 5. 300,001 500,000
- 6. 500,001 Plus

Item H3 - How much would you ask for per acre (hectare) of your land?

District	Response						
	1	2	3	4	5		
Mwingi	60	15	20	5	-		
Embu	39	29.5	27.7	2.0	1.0		
Tharaka Nithi	24.6	30.3	30.4	5.9	8.8		
All	31.5	27.5	27.5	4.0	4.0		

# Key:

1. 0 - 30,000

2. 30,001 - 80,000

3. 80,001 - 200,000

4. 200,001 - 500,000

5. 500,001 Plus

Item H5

-

# What Type of Fencing ?

• ..

. -

• -; .

Ĩ

• •

1

District			Response				
	1	2	3	4	5		
Mwingi	3	52	6	40			
Embu	3	81		17			
Tharaka Nithi	2	34	2	49	14		
All	2	59	2	33	5		

### Key:

1. Barbed wire

2. Live hedge

3. Timber / bamboo

4. Others

In case of being resettled in another area, you would Item H7 prefer to ...

# District

Response

	1	2	3	4
Mwingi	15	85		
Embu	34	64	3	
Tharaka Nithi	8	90	2	2
All	22	75	2	1

# Key:

1. Move with village people

2. Move with family/ relatives

3. Move alone

4. Other

Please choose one for resettlement area. Item H8 -

District				Response				
	1	2	3	4	5			
Mwingi	27	53	3	15	3			
Embu	39	49	6	6	1			
Tharaka Nithi	14	79	2	6				
All	29	59	4	7	1			

Key:

- 1. Near reservoir
- 2. Neighboring village
- 3. Neighboring town
- 4. Neighboring district
- 5. Other

Item H9 For your answer in H8, which of the following would you prefer?

I

## District

District	Response							
	1	2	3	4	5	6		
Mwingi		27	12	6	44	12		
Embu	3	31	11	34	20			
Tharaka Nithi	2	69	2	12	15			
All	2	43	8	23	23	2		

Key:

- 1. Hill area
- 2. Plain
- 3. Government area
- 4. Planned irrigation area
- 5. Where relatives are
- 6. Other (specify)

Item H10 - What would be your most preferred employment opportunity in the resettlement area?

District Response 1 2 1 3 5 6 4 7 8 9 10 11 17.5 67.5 5.0 2.5 Mwingi 5.0 -2.5 -_ --Embu 2.9 91.3 -1.0 1.9 -1.0 1.9 ---Tharaka 10.8 87.3 1.0 1.0 ------. Nithi All 8.5 .8 .8 85.8 .4 1.6 .4 .8 --.8

#### Key:

()

•

•••

i le j

I

.

:

- 1. Farming only
- 2. Farming with animal husbandry
- 3. Animal husbandry alone
- 4. Hired labor
- 5. Operating a store
- 6. Manufacturing
- 7. Fishing
- 8. Farming with fishing
- 9. Bee keeping
- 10.Fishing and part time work
- 11.Other (define)

Item H11 - Is there any security problem in this area?

District	Respo	onse
	1	2
Mwingi	44	56
Embu	37	63
Tharaka	31	69
Nithi		
Total	36	64
Sample		

Key:

1. Yes

2. No

#### Item H12 Do you think security will be a constraint for resettlement?

# District

District	Response				
	1	2			
Mwingi	62	38			
Embu	56	44			
Tharaka Nithi	83	17			
All	66	34			

Key:

1. Yes

2. No

Item H17 **Resettlement Options** -

District		Response			
	1	2	3	4	
Mwingi	55	7.5	35.0	2.5	
Embu	19.4	29.1	25.2	26.2	
Tharaka Nithi	52.5	5.9	13.9	27.7	
All	38.9	16.0	22.1	23.0	

# Key:

- 1. Prefer Cash Compensation
- 2. Prefer Alternative Land
- 3. Prefer not to move
- 4. Prefer Land and Cash Compensation

1

T

Item H001

.

Ţ

•

-

what is your total acreage of your piece of land in hectares?

Response District 3 5 2 4 6 7 12 1 8 9 10 11 2.5 12.5 2.5 2.5 17.5 12.5 12.5 10.0 15.0 12.5 Mwingi • -12.9 24.8 12.9 11.9 7.9 6.9 14.9 5.9 2.0 Embu . -_ 2.9 5.9 7.8 18.6 4.9 5.9 Tharaka 12.7 5.9 5.9 29.4 • -Nithi 8.2 9.1 7.4 13.6 15.6 10.3 5.3 4.5 2.5 16.9 All 6.6 -

Key:

1. Less than 1

2. Between 1 & 5

3. Between 5 & 10

4. Between 10 & 15

5. Between 15& 20 6. Between 20 & 30

7. Between 30 & 40

8. Between 40 & 50

9. Between 50 & 60

10.Between 60 & 70

11.Between 70 & 80

12. Over 81

.

# A-8.2 DATA DICTIONARY: HOUSEHOLD QUESTIONNAIRE

age 1	E	ata Dictic	onary:	MUTO	NGA	IMPS Version
3.1	Cı	reated: 08,	/02/96	10:	44:18	
	Re	cord Lengi	h:	70		
The following r	ecords	have been	defin	ed:		
Record	Red	cord Type V	/alue			Max.
. Name		(RECTYPE)			Required	Records
HH-HHOLD-NUMBER		01			N	1
B-HEARD-PROJ		02			N	1
C-DEMOGRAPHY		03			N	30
D-LAND-INFORM		04			N	1
D1-FARM-INCOM		05			N	17
D2-LIVESTOCK		06			N	5
E-HOUSING		07			N	1
F-ASS-SOCIO-AME	N	08			N	1
G-HH-INCOM-EXPE	N	09			N	30
G1-EXPENDITURE		10			N	30
H-RESTTLEMENT		11			N	1
.tem (occurs) . Subitem (occurs)	Data Type	Position	Item Len.		Value Name	Values
 (record type)	А	1-2	2			
 (record type)	А	1-2	2			41
 (record type) A01-DISTRICT	A N N	1-2 3-4 5-6	2 2			
(record type) A01-DISTRICT A02-DIVISION	A N N	1-2 3-4 5-6	2 2 2			41
(record type) A01-DISTRICT	A N N	1-2 3-4 5-6	2 2 2			41 03
(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION	A N N	1-2 3-4 5-6	2 2 2			41 03 01:10
(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE	A N N	1-2 3-4 5-6	2 2 2			41 03 01:10 01:15
(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE	A N N N N N	1-2 3-4 5-6 7-8 9-10 11-13 14	2 2 2 2 3 1			41 03 01:10 01:15 011:991 1:9
(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE	A N N N N N HOLD-NU	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER	2 2 2 2 3 1	R	ecord Type:	41 03 01:10 01:15 011:991 1:9
 (record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HM	A N N N N N HOLD-NU	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER	2 2 2 2 3 1	R	ecord Type:	41 03 01:10 01:15 011:991 1:9
(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HI 	A N N N N HOLD-NU	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER	2 2 2 2 3 1	R	ecord Type:	41 03 01:10 01:15 011:991 1:9
<pre> (record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HHtem (occurs) . Subitem (occurs)</pre>	A N N N HOLD-NU Data Type	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER 	2 2 2 3 1 Item Len.	Ra Dec.	ecord Type: Value Name	41 03 01:10 01:15 011:991 1:9 01 Values
 (record type) A01-DISTRICT A02-DIVISION A03-LOCATION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HI  .tem (occurs)	A N N N HOLD-NU Data Type	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER 	2 2 2 3 1 Item Len.	Ra Dec.	ecord Type: Value Name	41 03 01:10 01:15 011:991 1:9 01 Values
(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HH 	A N N N HOLD-NU Data Type	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER Position	2 2 2 3 1 Item Len.	Re Dec.	ecord Type: Value Name	41 03 01:10 01:15 011:991 1:9 01 Values
(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HH 	A N N N HOLD-NU Data Type N	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER Position	2 2 2 3 1 Item Len.	Re Dec.	ecord Type: Value Name	41 03 01:10 01:15 011:991 1:9 01 Values MBER 001:999
<pre>(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HH</pre>	A N N N N HOLD-NU Data Type N ARD-PRC Data	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER Position 15-17	2 2 2 3 1 Item Len. 3 Item	Re Dec. 0 R	ecord Type: Value Name HOUSEHOLD NU ecord Type:	41 03 01:10 01:15 011:991 1:9 01 Values MBER 001:999
<pre>(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HH</pre>	A N N N HOLD-NU Data Type N ARD-PRC Data Type	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER Position 15-17	2 2 2 2 3 1 Item Len. 3 Item Len.	Re Dec. 0 R	ecord Type: Value Name HOUSEHOLD NU ecord Type: Value Name YES	41 03 01:10 01:15 011:991 1:9 01 Values MBER 001:999 02 Values 1
<pre>(record type) A01-DISTRICT A02-DIVISION A03-LOCATION A04-SUB-LOCATION A05-VILLAGE A06-ZONE Record Name: HH-HH</pre>	A N N N HOLD-NU Data Type N ARD-PRC Data Type N	1-2 3-4 5-6 7-8 9-10 11-13 14 MBER Position	2 2 2 3 1 Item Len. 3 Item Len. 1	Ra Dec. 0 R Dec. 0	ecord Type: Value Name HOUSEHOLD NU ecord Type: Value Name	41 03 01:10 01:15 011:991 1:9 01 Values MBER 001:999 02 Values 1 2

.

					NEIGHBOUR/FRIEND	2
					NEWSPAPERS	3
					TELEVISION	4
					RADIO	5
					OTHER	6
B03-IDEA-CLEAR	N	17	1	0	VERY CLEAR	1
B03~IDEA-CEEAR	N	17	T	v		2
					QUITE CLEAR	_
					CLEAR	3
					NOT QUITE CLEAR	4
					NOT CLEAR	5
					NEVER BEN EXPLAI	6
					OTHER	7
804-OPION-ACCEPT	N	18	1	0	YES	1
					NO	2
B05-BENEFITS	N	19	1	0	IRRIGATE AGRICUL	1
_ • • • · · • • • • • • •					INFRASTRURE DEV.	2
					EMPLOYMENT	3
					OTHER	4
BAC DYDED IDDIG	N	20	1	0	YES	1
B06-EXPER-IRRIG	N	20	1	v		2
				-	NO	-
B07-REAS-NOT-PRO	N	21	1	0	DONT WANT TO MOV	
					DONT SEE DIR BEN	_
					PROJECT DANGER	3
					BREED WATER BORN	4
					LAND TAKE NO LAN	5
					OTHER	6
					NOT APPLICABLE	7
B08-ANY-MEM-FARM	N	22	1	0	YES	1
					NO	2
B09-ACT-OF-GROUP	N	23	1	0	SOIL CONSERVATIO	_
B03-ACI-OF-GROOP	14	23	-	v	COMMUNAL WORK	2
						2
					CEREMONIES	
					MARKETING	4
					OTHER	5
					NOT APPLICABLE	7
B10-MEMBE-WGROUP	N	24	1	0	YES	1
					NO	2
	C	reated: 08,	/02/96	10	:44:18	
.ecord Name: B-HEA	RD - PRO	J		R	ecord Type: 02	
.tem (occurs)	Data		Item			
. Subitem (occurs)	Туре	Position	Len.	Dec.	Value Name	Values
B11-ACTIS-WGROUP	N	25	1	0	SELF-HELP	1
					DANCING	2
					FARMING	3
					TRADI/BUSINESS	4
					SAVING/CREDIT	5
					TREE NURSER	6
					OTHER	3 7
		24	-	~		, 1
B12-ANY-DISPLACE	N	26	1	0	YES	-
					NO	2
B13-ANY-PERS-MOV	N	27	1	0	YES	1
					NO	2
B14-THEY-LIV-NEA	N	28	1	0	YES	1
					NO	2
Record Name: C-DEM	IOGRAPH	Y		Ŕ	ecord Type: 03	
.tem (occurs)	Data		Item			
. Subitem (occurs)		Position		Dec.	Value Name	Values
CO1-SERIAL-NUMBE	N	15-16	2			
CO3-RELATIONSHIP	N	17-18	2		HEAD	01
		_• <b>-•</b>	_	-		-

()

L

A8-27

					SPOUSE	02
					SON	03
					DAUGHTER	04
					BROTHER	05
					SISTER	06
					FATHER	07
					MOTHER	08
					OTHER RELATIVE	09
005 ABV		10	•		NON-RELATIVE	10
CO5-SEX	И	19	1	0	MALE	1
006 100			<u> </u>	~	FEMALE	2
C06-AGE C08-OCCUPATION	N	20-21	2	0 0	DADADD / DAOGODAL L	
CUB-OCCUPATION	N	22	1	0	FARMER/PASTORALI	
					REGULAR-WAGE-EAR	
					CASUAL EMPLOYEME	
					HOMEMAKER/HOUSEW STUDENT	4 5
					OTHER	5
C09-EDUCA-STATUS	N	23	1	0	NONE	0
CUP-EDUCA-BIAIOS	14	23	Ŧ	v	AT SCHOOL	1
					LEFT SCHOOL	2
C10-EDUCAT-LEVEL	N	24-25	2	0	NONE	∠ 00
CIO-EDOCAL-DEVEL	N	24-25	2	U	STANDARD 1	01
					STANDARD 1 STANDARD 2	02
					STANDARD 3	03
					STANDARD 4	04
					STANDARD 5	05
					STANDARD 6	06
					STANDARD 7	07
					STANDARD 8	08
					FORM 1	11
					FORM 2	12
					FORM 3	13
					FORM 4	14
					FORM 5	15
					FORM 6	16
					UNDER GRADUATE	17
					POST GRADUATE	18
C11-ETHNIC-TRIBE	N	26	1	0	KAMBA	1
····			-	•		-
.ecord Name: C-DEM	OGRAPHY	Y		R	ecord Type: 03	
.tem (occurs)	Data		Item			
. Subitem (occurs)	Туре	Position	Len.	Dec.	Value Name	Values
MERU 2						
					THARAKA	3
					EMBU/MBERE	4
					OTHER	5
C12-RELIGION	N	27	1	ð	CATHOLIC	1
					PROTESTANT	2
					MUSLIM	3
					OTHER	4
C13-BIRTH-PLACE	N	28	1	0	WITHIN PROJECT A	1
					WITHOUT PROJECT	2
					other	3
C14-PREVIO-RESID	N	29	1	0	WITHIN PROJECT A	. 1
					WITHOUT PROJECT	2
					OTHER	3
C15-DURAT-STA-AR	N	30-31	2	0		
C16-REAS-MIGRATI	N	32	1	0	SEARCH PASTURE	1
					SEARCH LAND	2

Ţ

Ţ

					MOVED FRO PROJ A FOR EMPLOYMENT FISHING NO REASON OTHER NOT APPLICABLE	4 5 6 7 8
C17-SICK-2-WEEKS	N	33	1	0	YES	1 2
C18-IFY-SICK-TYP	N	34-35	2	0	MALARIA	01
					UPPER-RES-INFECT	
					SKIN DISEASE INTENSTINAL WORM	03
					ACCIDENTS	05
					EYE INFECTION	06
					DIARRHOEA	07
					URINARY TRAC INF	° 08
					DENTAL DISODER	09
					EAR INFECTION	10
					SCHISTOSOMAISIS	11
					OTHER NOT APPLICABLE	12 13
					NOT APPOICABLE	13
Record Name: D-LA	ND-INFO	RM		R	ecord Type: 04	
.tem (occurs)	Data		Item			
. Subitem (occurs)		Position			Value Name	Values
D11-HOW-LAND-ACQ	N	15	1	0	inherited Bought	1 2
					RENTED	3
					GIFT	4
					OTHER	5
D12A-AMOUNT-PAID	м	16-22	7	0	0000	000:9999999
D12B-LAND-TENURE	N	23	1	0	ABSO. OWNER/FRE	
					LEASEHOLD	2
					INDIVIDUAL OWNE	R 3 4
					SHARE CROPPING JOINT OWNERSHIP	•
					COMMUN OWN/TRUS	
					OTHER	7
D13-RENT-OUT-LAN	N	24	1	0	YES	1
					NO	2
D14 - LAND - RENT - OU	N	25-29	5	0		00000:99999
D15-REN-OPERERAT	N	30-34	5		VEO	00000:99999
D16-QUALITY-SOIL	N	35	Ţ	0	YES NO	1 2
D17-OWN-ANY-LAND	N	36	1	0	YES	1
DI /-ORN-ANI-IAND		20	-	•	NO	2
D18A-YES-OWNLAND	N	37	1	0	WITHIN	1
					OUTSIDE	2
D18B-ACREAGE-LAN	N	38-42		0		00000:99999
D19A-BREAK-GROUD	N	43	1	0		1
					TRACTOR HAND IMPLEMENTS	2 3
					OTHER	4
D19B-SOWING	N	44	1	0		1
DIDE OVNING	••		-	-	TRACTOR	2
					HAND IMPLEMENTS	33
					OTHER	4
D19C-WEEDING	N	45	1	0		1
					TRACTOR	2 5 3
					HAND IMPLEMENT: OTHER	5 3 4
					¥ 6 11.013	•

I

٢

A8-29

.

.ecord Name: D-LAN		RM		R	ecord Type: 04	
.tem (occurs)	Data		Item			
. Subitem (occurs)	Туре	Position	Len.	Dec.	Value Name	Values
D110-USE-CONSERV	N	46	1	0	YES	1
					NO	2
D111-TRANSPORT	N	47	1	0	ROAD	1
					RAILWAY	2
					ANIMAL OF BURDEN	3
					HUMAN LABOUR	4
					BICYCLE	5
					OTHER	6
D112-ENOUGH-SUBS	N	48	1	0	YES	ĩ
		10	-	v	NO	2
						2
Record Name: D1-F/	ARM-INC	OM		R	ecord Type: 05	
.tem (occurs)	Data		Item			
. Subitem (occurs)	Туре	Position	Len.	Dec.	Value Name	Values
D100-CROP	N	15-16	2	0	COTTON	01
			**	Ŭ	MAIZE	02
					MILLET	03
					SORGHUM	04
						05
					BEANS	
					GROUNDNUTS	06
					VEGETABLES	07
					SWEET POTATOES	08
					CASSAVA	09
					SUGAR CANE	10
					FRUITS	11
					SUN FLOWER	12
					GREEN GRAMS	13
					PIGEON PEAS	14
					SISAL	15
					OTHER	16
					COW PEAS	17
					BANANAS	18
D101-ACREAGE	N	17-20	4	0		
D105-TOT-PRO-UNI	N	21	1	0	KILOGRAMMES	1
					BAGS	2
					DEBES	3
					OTHERS	4
D106-PROD-AMOUNT	N	22-24	3	0		
D109-VALUE-PUNIT	N	25-28	4	0		
D113-TOT-SOL-12M	N	29-31	3	0		
D116-HARV-PER-YR	N	32	1			
D117-TYPE-SEED	N	33	1		CERTIFIED SEED	1
			-	-	LOCAL SEEDS	2
					OTHER SEEDS	3
D118-USE-FERTILI	N	34	1	0	YES	1
			-	•	NO	2
D119-USE-PEST-HE	N	35	1	0	YES	ĩ
		55	+	Ŷ	NO	2
						2
Record Name: D2-L	IVESTO	אר		D	ecord Type: 06	
.tem (occurs)	Data		Item		cond Type: 00	
. Subitem (occurs)		Position			Value Name	Values
D200-LIVESTOCK	iype N	15	ьеп. 1		INDIGEN CATTLE	varues 1
PEGO BIODOLOCK	t4	10	1	0	GRADE CATTLE	2
						_
					SHEEP	3
					GOATS	4 c
					POUTRY	5

(**3**85)

J.

•

					o ottime of the o	6 7
						8
						9
DAAL DEBLE HEAL	N	16	1	0	0	1
D201-BREAD-METHO	N	T0 .	1	U		2
					DON'T KNOW	3
						4
					OTHER	*
D202-ACREAGE	N	17-20	4	0		
D206 - NUMBER	N	21-23	3	0		
D209-VAL-PER-UNI	И	24-28	5	0		
D214-PRODU-UNIT	N	29	1	0	MILK-BOTTLES	1
					EGGS- NUMBER	2
					HONEY-KG	3
					PIGLETS NUMBER	4
					KIDS (NUMBER)	5
					LAMBS (NUMBER)	6
					MEAT (KG)	7
					OTHER	8
D215-PRICE-UNIT	N	30-32	3	0		
D0218-MARKET-PLA	N	33	1	0	LOCAL MARKET	1
					NEAREST URBAN	2
					NEAR MAJOR URBAN	3
					OTHER	4
Record Name: E-HO	JSING			y	Record Type: 07	
.tem (occurs)	Data		Item			
. Subitem (occurs)	Туре	Position	Len.	Dec	. Value Name	Values
E01-FLOOR-TYPE	N	15	1	0	CEMENT	1
					WOODEN	2
					EARTH	3
					STONE	4
					TILES	5
					OTHER	6
E02-WALL-TYPE	N	16	1	0	CEMENT	1
		- •			WOODEN	2
					MUD	3
					IRON SHEET	4
					STONE	5
					OTHER	6
E03-TYPE-OF-ROOF	N	17	1	0	TILES	1
E03-TIPE-OF-KOOP	45	17	-	•	ASBESTOS	2
					IRON SHEETS	3
					GRASS	4
					OTHER	5
E04-WATER-WET-SE	N	18	1	0	PIPED	1
EU4-WATER-WEI-SE	7.	10	-	v	SPRING	2
					RIVER	3
					DAM	4
					WELL	5
					POND	6
					RAIN WATER	2
					OTHER	8
DAG DDV 0930AM	NT	19	1	0	PIPED	1
E05-DRY-SEASON	N	13	1	v	SPRING	2
					RIVER	3
					DAM	3
						5
					WELL	5 6
					POND DAIN WATER	° 7
					RAIN WATER OTHER	8
					VINER	•

Ì

I

A8-31

PAC DION NO DIMPR						
E06-DIST-TO-WATE	N	20	1	0	LESS THAN 1KM	1
					ONE TO 2.99 KM	2
					THREE TO 5.99 KM	3
					SIX TO 9.99 KM	4
					OVER 10 KM	5
E07-EXCRET-DISPO	N	21	1	0	MAIN SEWER	1
					CESS POOL	2
					BUCKET LATRINE	3
					PIT LATRINE	4
.ecord Name: E-HOL	JSING			Re	ecord Type: 07	
.tem (occurs)	Data		Item			
. Subitem (occurs)	Туре	Position	Len.	Dec.	Value Name	Values
, -						
					BUSH	5
					OTHER	6
E08-SOU-COOK-FUE	N	22	1	0	FIREWOOD	1
					CHARCOAL	2
					KEROSINE	3
					ELECTRIC	4
					OTHERS	5
E09-SOURCE-LIGHT	N	23	1	0	XEROSINE	1
					FIREWOOD	2
					SOLAR	3
					ELECTRIC	4
					CANDLE	5
					OTHERS	6
	S-SOCIO	-AMEN		R	ecord Type: 08	
.tem (occurs)	Data		Item			
. Subitem (occurs)	Түре	Position	Len.	Dec.	Value Name	Values
F01-HEALTH	N	15	1	0	LESS THAN 1KM	1
					ONE TO 2.99 KM	2
					THREE TO 5.99 KM	3
					SIX TO 9.99 KM	4
					OVER 10 KM	5
F02-MARKET-PLACE	N	16	1	0	LESS THAN 1KM	1
					ONE TO 2.99 KM	5
					ONE TO 2.99 KM THREE TO 5.99 KM	-
						-
					THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM	3
F03-PRIMA-SCHOOL	N	17	1	o	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM	3 4
F03-PRIMA-SCHOOL	N	17	1	o	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM	3 4 5 1 2
F03-PRIMA-SCHOOL	N	17	1	o	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM	3 4 5 1 2
F03-PRIMA-SCHOOL	N	17	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM	3 4 5 1 2
					THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM	3 4 5 1 2 3 4 5
F03-PRIMA-SCHOOL F04-MAIN-ROAD	N	17 18		0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM	3 4 5 1 2 3 4 5 1
					THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM	3 4 5 1 2 3 4 5 1 2
					THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM	3 4 5 1 2 3 4 5 1 2 3
					THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4
F04 - MAIN - ROAD	N	18	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM	3 4 5 1 2 3 4 5 1 2 3 4 5
				0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1
F04 - MAIN - ROAD	N	18	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM SIX TO 9.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2
F04 - MAIN - ROAD	N	18	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM THREE TO 5.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 3 4 5 5 5 1 2 3 4 5 5 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
F04 - MAIN - ROAD	N	18	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM THREE TO 5.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 2 3 4 5 5 1 2 3 5 1 2 3 4 5 5 2 3 4 5 5 2 3 4 5 5 2 3 4 5 5 5 5 5 5 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
F04-MAIN-ROAD F05-ELECTR-SUPPL	N N	18 19	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 2 3 4 5 5 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 5 1 2 3 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
F04 - MAIN - ROAD	N	18	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM THREE TO 5.99 KM THREE TO 5.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 4 5 1 2 3 1 2 3 3 1 2 3 3 4 5 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 3 3
F04-MAIN-ROAD F05-ELECTR-SUPPL	N N	18 19	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 3 4 5 1 2 3 4 5 1 2 3 3 5 1 2 3 2 3 5 1 2 3 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
F04-MAIN-ROAD F05-ELECTR-SUPPL	N N	18 19	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 3 5 1 2 3 3 5 1 2 3 5 1 2 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 3 5 1 2 3 3 2 3 5 1 2 3 5 1 2 3 5 1 2 3 3 5 1 2 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 5 1 2 3 5 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 2 3 5 1 2 3 5 2 3 3 5 2 3 3 5 2 3 2 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 3
F04-MAIN-ROAD F05-ELECTR-SUPPL	N N	18 19	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 3 5 1 2 3 5 1 2 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
F04-MAIN-ROAD F05-ELECTR-SUPPL	N N	18 19	1	0	THREE TO 5.99 KM SIX TO 9.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM THREE TO 5.99 KM OVER 10 KM LESS THAN 1KM OVER 10 KM LESS THAN 1KM ONE TO 2.99 KM THREE TO 5.99 KM	3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 3 5 1 2 3 3 5 1 2 3 5 1 2 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 3 3 5 1 2 3 3 2 3 5 1 2 3 5 1 2 3 5 1 2 3 3 5 1 2 3 5 1 2 3 3 5 1 2 3 3 5 1 2 3 5 1 2 3 5 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 2 3 5 1 2 3 5 2 3 3 5 2 3 3 5 2 3 2 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 5 2 3 3 3 3

C.S.

I

F07-ADMINST-CENT	N	21	1	0	LESS THAN 1KM	1	
					ONE TO 2.99 KM	2	
					THREE TO 5.99 KM	3	
					SIX TO 9.99 KM	4	
					OVER 10 KM	5	
F08-CHURCH-MOSQU	N	22	1	0	LESS THAN 1KM	1	
F08-CR0KCH-M05Q0	14	E L	•	Ŷ	ONE TO 2.99 KM	2	
					THREE TO 5.99 KM	-	
					SIX TO 9.99 KM	4	
					OVER 10 KM	5	
					CARY TO 104	5	
Record Name: G-HH-	INCOM-	PYDEN		p,	ecord Type: 09		
	Data	BACEN	Item		cora type: v		
.tem (occurs)		Position	-	Dec	Value Name	Values	
. Subitem (occurs) G00-SOURCE-INCOM	n N	15-16	2 2	0	SALARY	01	
GUU-SOURCE-INCOM	и	13-10	4	0	WAGES	02	
					CASH CROPS	03	
					FOOD CROPS	04	
					FISH	05	
					BEE KEEPING	05	
					GIFTS/HAND-OUTS	07	
					BUSINESS	08	
					LIVESTOCK SALES	09	
					LIVESTOCK PRODUC		
					OTHERS	10	
	N	17-24	8	0	OTHERS.		
G01-AMOUNT	11	17-24	0	v			
Record Name: G1-E)	PENDIT	agu		R	ecord Type: 10		
.tem (occurs)	Data	OKE .	Item	••	ccord rypo. 20		
. Subitem (occurs)	Туре	Position		Dec.	Value Name	Values	
GHO-HH-EXPEDN	N	15-16	2	0	EDUCATION	01	
GRU-AR-BAFBON		10 10		•	FOOD	02	
					MEDICAL	03	
					TRANSPORTATION	04	
					FUEL	05	
					CLOTHING	06	
					AGRO-CHEMICAL	07	
					MACHINERY	08	
					DONATION	09	
					WATER	10	
					WAGES	11	
					ANIMAL FEEDS	12	
					OTHERS	13	
GH1 - AMOUNT	N	17-24	8	0			
Record Name: H-RE	STTLEME	ENT		5	lecord Type: 11		
.tem (occurs)	Data		Item				
. Subitem (occurs)	Туре	Position	Len.	Dec.	Value Name	Values	
H001-ACREAGE	N	15-18	4	0			
H005-LAND-CULTIV	N	19-22	4	0			
H009-LAND-GRAZE	N	23-26	4	0			
H013-WOOD-FALLOW	N	27-30	4	0			
H017-RESET-OPTIO	N	31	1	0	PREFER-CASH-COM	P 1	
					PREFER-ALTER-LA		
					PREF-NOT-TO-MOV		
					PREF-LAND & CAS		
					OTHERS	5	
H018-LUGGAGE-WGT	N	32-33	2				_
H1-OPION-PAY-BLD		N		34-	40 7	0	AMOUNT
0000000:9999999							

A8-33

H2REQU-REP-BLD		N		41-4	7	7	0	AMOUNT
0000000:9999999 H3-ASK-PER-ACRE		N	48-	53	6	0	AMOUN	-PER-ACRE
000000:999999		14	-10-		0	U	AHOON	T TUN ACAG
H4 - LAND - ENCL - FEN	N	54	1	0	YES		1	
					NO		2	
H5-TYPE-FENCING	N	55	1	0	BARBED W	IRE	1	
					LIVE WIR	Е	2	
					TIMBER/B.	AMBOO	3	
					ANY OTHE		4	
		-			NOT STAT		5	
H6-ESTIM-COST-FE	N	5	6-63		8 C	)	ESTI-O	OST-OF-FEN
00000000:999999999	N	64	1	0	MONDE MIL			
H7-INCAS-RES-PRE	ы	64	1	U	MOVE WIT MOVE FAM			
					MOVE ALO		3	
					OTHER	IN ES	4	
H8-RESETTLE-AREA	N	65	1	0	NEAR RES	ERVOIT	-	
			-	•	NEIGHBOR			
					NEIGHBOR			
					NEIGHBOR	DIST	RIC 4	
					OTHER		5	
H9-ANS-H8-PREFER	N	66	1	0	HILL ARE	A	1	
					PLAIN		2	
					GOVERNME	NT AR	EA 3	
	STTLEME	NT			ecord Typ	e:	11	
.tem (occurs)	Data		Item				••- •	
. Subitem (occurs)	Туре	Position	Len.	Dec.	Value Na			ues
					PLAN IRF WHERE RE			
					OTHER	SURL A	нль э б	
H10-MOS-PRE-EMPL	N	67-68	2	0	FARMING	ONLY	01	
HIO NOS IND BIND	••	0, 00	-	v	FARM WIT			
					ANIM HUS			
					HIRED LA	ABOUR	04	
					OPERATIN	IG STO	RE 05	
					MANUFACI	<b>URING</b>	06	
					FISHING		07	
					FARM WIT	FH FIS	HIN 08	
					BEE KEE		09	
					FISH & I	PART - T		
			_	_	OTHER		12	
H11-SECUR-PROBLE	N	69	1	0	YES		1	
		20	-	~	NO		2	
H12-SEC-CONS-RES	N	70	1	0	YES NO		1 2	
					NO		2	

Contraction of

-

# Annex to Chapter 12

L

Ċ

. . . .

Annex 12

 ${}$ 

•

# A-12,1. FLORA OF THE STUDY AREA

(PROPOSED RESERVOIRS AND SURROUNDINGS)

#### PTERIDOPHYTA (Ferns)

ADIANTACEAE Actiniopteris radiata (Sw.) Link

Pellaea longipilosa Bonap

#### GYMNOSPERMAE (Cone-bearing plants)

ZAMIACEAE

Encephalartos powysiorum Beentje

CUPPRESACEAE Juniperus procera Endl. Cuppressus arizonica C. lusitanica

#### SPERMATOPHYTA (Seed-bearing plants)

- 8 ANNONACEAE Antabotrys sp. Uvaria lucida Benth. ssp. lucida
- 23 MENISPERMACEAE Chasmanthera dependens Hochst. Cissampelos pareira L. Tiliacora funifera (Miers) Oliv.

#### **36 CAPPARACEAE**

- Boscia coriacea Pax Cadaba farinosa Forssk Capparis tomentosa Lam. Cleome allamanii chiov. C. hirta (Klotzsch) Oliv. Gynadropsis gynadra (L.) Briq. Maerua crassifolia Forssk. M. edulis (Gilg. & ened) De Wolf M. triphylla A. Rich. Thylaclium africanum Lout.
- 39 CRUCIFERAE Farsetia stenoptera Hochst. Rorippa micrantha (Roth) Joasell
- 42 POLYGALACEAE Polygala erioptera DC. P. sphenopteri Fresen.
- 53 CARYOPHYLLACEAE Polycarpaea eriantha A-Rich
- 54 AIZOACEAE Gisekia pharnaceoides L. Mollugo cerviana L. Trianthema triquetra Wild.

Zaleya pentandra (L.) Jeffrey

- 56 PORTULACACEAE Portulaca foliosa Ker-Gawl, P. oleracea L. Talinm potulacifolium Schweint
- 57 POLYGONACEAE Oxygonum sinuatum (Meisn.) Dammer Polygonum salicifolium Willd. P. senegalensis Meisn Securidaca longepedunculata Fres.
- 59 PHYTOLACACEAE Phytolaca dodecandra L'Herit
- 61 CHENOPODIACEAE Chenopodium procerum Moq.
- 63 AMARANTHACEAE Achyranthes aspera L.
  - Aerva lanata (L.) Juss Alternanthera pungens H.B. & K. Amaranthus graecizans L. A. spinosus L. Cyathula coriacea Schinz Digera muricata (Hochst.) Schinz. Psilotrichum ellioti Baket Puppalia lappacea (L.) Juss. Sericocomopsis hildebrandiii Schinz
- 66 ZYGOPHYLACEAE Tribulus cistoides L. T. terrestris L.
- 72 LYTHRACEAE Lawsonia inermis L.
- 77 ONAGRACEAE Ludwigia abyssinica A. Rich
- 81 THYMELEACEAE Gnidia latifolia (Oliv.) Gilg Synaptolepis kirkii Oliv.
- 83 NYCTAGINACEAE Boerhavia coccinia Mill. Commicarpus plumbagineus (Car.) Standl.
- 84 PROTEACEAE Grevillea robusta A. Cunn.

1

ġ.

#### 95 CANELLACEAE Warburgia ugandensis Spraque

101 PASSIFLORACEAE Adenia gummifera (Harv.) Harms

#### **103 CUCURBITACEAE**

()

Cucumis dipsaceus Spach Kedrostis foetidissima (Jacq.) Cogn. K. gijef (J.F. Gmel.) C. Jeffrey Lagunaria sphaerica (Sond.) Nand. Zehneria scabra (L.F.) Sond.

#### 114 OCHNACEAE

Ochna inermis (Forssk.) Schweinf. Ochna insculpta Sleumer

#### **118 MYRTACEAE**

Eugenia taxon B (probably a new species) Syzygium guineense (Willd.) DC.

#### **121 COMBRETACEAE**

Combretum aculeatum Vent. C. hereroense Schinz C. molle G. Don C. paniculatum Vent Terminalia brownii Fresen T. prunioides Laws T. spinosa Engl.

### 126 GUTTIFERAE

Garcinia livingstonei T. Anders

#### **128 TILIACEAE**

Corchorus aestuans L. Corchorus trilocularis L. Grewia bicolor Juss G. plagiophylla K. Schum Grewia tembensis Fresen G. tenax (Forssk.) Fiori G. villosa Willd. T. tomentosa Boj Triumfetta flavescens A. Rich

#### **130 STERCULIACEAE**

Dombeya dawei Sprague D. rotundifolia (Hochst) Planch Hermania alhiensis K. Schum Hermania exappendiculata (Mast) K. Schum Melhania ovata (Car.) Spreng Sterculia stenocarpa H. Winkler

#### 131 BOMBACACEAE

Adansonia digitata L.

#### **132 MALVACEAE**

Abutlon fruticosum Guill. & Perr. A mauritianum (Jacq.) Medic. Azanza garckeana (F. Hoffm. Exel and Hillcoat Gossypium somalense (Guerke) J.B. Hutch Hibiscus aponeurus Sprague & Hutch H. diversifolius Jacq. H. fuscus Garcke H. micranthus L.f. H. palmatus Forssk. Pavonia patens (Andr.) Chiov. Sida ovata Forssk. Thespesia danis Oliv.

#### **136 EUPHORBIACEAE**

Acalypha fruticosa Forssk. Antidesma venosum Tul. Bridelia cathartica Bertol f. Bridelia taitensis Pax Vatke Croton macrostachyus Del. C. megalocarpus Hutch Erythrococca bongensis Pax Euphorbia candelabrum Kotschy E. crotonoides Boiss E. cuneata Vahl E. hirta L. E. nyikae Pax E. pseudograntii Pax E. scheffleri Pax E. tirucalli Jatropha spicata Pax Phyllanthus guineensis Pax Ricinus communis L. Securinega virosa (Willd.) Pax & K. Hoffu Spirostachys africana sond. S. venenifera (Pax) Pax

# 141 PLUMBAGINACEAE

Plumbago zeyalanica L.

#### 143 ROSACEAE

Rubus pinnatus Willd. R. scheffleri Engl.

#### 146 CAESALPINIACEAE

Bauhinia taitensis Taub. B. tomentosa L. Caesalpinia trothae Harms Cassia longiracemosa (Eng.) C. occidentalis L. C. singueana Del. Delonix elata (L.) Gamble Piliostigma thonningii (Schumach) Milne-Redh. Prosopis chilenis Tamarindus indica L. Tylosema humifusa (Pich. - Serm. and Rot Mich.) Brenan

#### 147 MIMOSACEAE

Acacia ataxacantha DC. A. brevispica Harms A. bussei Sjostedt A. elatior Brenan A. mellifera (Vahl) Benth. A. nilotica (L.) Del. A. polyacantha Willd. A. robusta Burch. A. senegal (L) Wild. A seyal Del. A. thomasii Harms A. tortilis (forssk.) Havne Albizia harveyi Fourn Dichrostachys Cinerea (L.) Wight and Arn. Entada leptostachya Harms Mimosa pudica L. Newtonia hildebrandtii (Vatke) Torre

#### **148 PAPILIONACEAE**

Abrus specatorius L. Aeschynomeme abyssinica (A. Rich.) Vatke Aeschynomeme schimperi A. Rich. Calpurnia aurea (Ait) Benth. Canavalia ensiforms Thouars Clitoria ternatea L. Colutea abyssinica Kunth and Bouche Crotalaria cleomiifolia Bak. Dalbegia melanoxylon Guill. and Perr. Erythrina abyssinica DC. E. burtii Bak.f. Indigofera arrecta A. Rich I. hochstetteri Bak. I schimperi Junb, and Spach I spinosa Forssk. I trita L. I volkensii Taub. Milletia dura Dunn M. tanaensis Gillett Ormocarpum trachycarpum (Taub.) Harms

Platycelyphium voense (Engl) Wild Rhynchosia elegana A. Rich R. minima (L.) DC. Sesbania sesban (L.) Merrill) Tephrosia Villosa (L.) Pers. Tephrosia pumilla (Lam.) Pets. 165 ULMACEAE Chaetacme aristata Planch. **167 MORACEAE** Ficus exasperata Vahl F. ingens (Miq.) Miq. F. sur Forssk. F. sycomorus L. F. vallis - choudae Del. **169 URTICACEAE** Urtica massaica Mildbr. **171 AQUIFOLIACEAE** Hex mitis (L.) Radik. **173 CELASTRACEAE** Hippocratea africana (Wild.) Loes. Maytenus senegalensis (Lam.) Excell Mystroxylon aethiopicum (Thunb.) Loes. **179 ICACINACEAE** Apodytes dimidiata Arn. Pyrenacantha sp. **180 SALVADORACEAE** Azima tetracantha Lam Dobera glabra (Forssk.) Poir Salvadora percica L. 182 OLACEAE Ximenia americana L. Opilia amentacea Roxb. **183 OPILIACEAE** Opilia copressa Engl. **185 LORANTHACEAE** Phrogmanthera dschallensis (Engl.)Balle Osyris lanceolata Hochst. & steudel Tapinanthus aurantiacus (Engl) Danser 185/A.VISCACEAE

Viscum schimperi Engl.

Ţ

T

<u>Ş</u>oj

#### 190 RHAMNACEAE

Berchemia discolor (Klotzsch)

#### Hemsl.

Helinus mystacinus (Ait.) Stend. Scutia myrtina (Burm.f.) Kurz Ziziphus mucronata Willd Ziziphus pubescens Oliv. Z. spina-christi (L.) Desf.

#### **193 VITACEAE**

Cissus rotundifolia (Forssk.) Vahl. Cissus quadrangularis L. Cyphostemma sp. Rhoicissus tridentata (L.f.) Wild & Drummond

#### **194 RUTACEAE**

Clausena anisata (Willd.) Benth Teclea simplicifolia (Engl.) Verdoorn Toddalia astatica (L.) Lam. Zanthoxyzllum usambarense Engl. Kokwaro

#### 195 SIMAROUBACEAE Harrisonia abyssinica Oliv

Kirkia tenuifolia Engl.

#### 195A. BALANITACEAE

Balanites glabra Mildor, and Schlecht. B. pedicellaris Mildbr, and Schlecht.

#### **196 BURSERACEAE**

Boswellia neglecta S. Moore Commiphora africana (A. Rich.) Engl. C. boiviniana Engl.

C. campestris Engl.

C. holtziana Engl.

C. mildbraedii Engl.

#### **197 MELIACEAE**

Elkebergia capensis Spartm. Lepidotrichilia volkensii (Guerke) Leroy Melia volkensii Gutke

#### 198 SAPINDACEAE

Allophylus ferrugineus Taub A. rubifolius (A. Rich.) Engl. Deinbollia barbonica Scheff) Haplocoelum foliolosum (Hiern) Bulloch Lecaniodiscus flaxinifolius Bak. Pappea capensis Eckl. and Zeyh.

#### 202 MELIANTHACEAE Bersama abyssinica Fres.

205 ANACARDIACEAE Lannea alata (Engl.) Engl. L. fulva (Engl.) Engl. L. rivae (Chior) Sacl. L. schimperi (A. Rich.) Engl. L. triphylla (A. Rich.) Engl. Ozoroa insignis Del. Pistacia aethtopica Kokwaro Rhus longipes Engl. R. natalensis Krauss R. vulgaris Meikle Sclerocarya birrea (A. Rich.) Hochst.

### 206 CONNARACEAE Agelaea pentagyna (Lam.) Baill

#### 210 ALANGIACEAE Alangium salviifolium (L.f) Wangerin

#### 212 ALALIACEAE Cussonia holstii Engl.

C. Spicata Thunb. Schefflera abyssinica (A. Rich.) Harms

#### 213 UMBELLIFERAE Steganotaenia araliacea Hochst.

Trachyspermum aethiisifolium Chiov.

#### 221 EBENACEAE

Diospyros abyssinica (Hiem) F. White D. consolatae Chiov. Euclea divinorum Hiem

#### 222 SAPOTACEAE

Aningeria adolfi-friedericii (Engl.) Robyns and Yilb. Chrysophyllum gorungosanom Engl.

# 223 MYRSINACEAE

Maesa lanceolata Forssk. Myrsine africana L.

#### 228 LOGANIACEAE Nuxia congesta Fres.

Strychnos lenningsii Gilg

#### 229 OLEACEAE

Jasminum fleminense Vell

T

#### Olea europaea L.

#### 230 APOCYNACEAE

Acokanthera schimperi (A.DC.) Schweinf. Adenium obesum (Forssk.) Roem and Schult Carissa edulis (Forssk.)

#### 231 ASCLEPIADACEAE

Calotropis procera (Ait) Ait. f. Cerepegia sp. Dregea abyssinica (Hochst.) K. Schum. Kanahia laniflora (Forssk.) R.Br. Secamone punctulata Decne.

#### 232 RUBIACEAE

Breonadia microcephala (Del.) Ridsdale Carphalea glaucescens (Hiern) verdc. Conostomium quadrangulare (Rendle) Cufod Galium aparinoids Forssk. Gardenia volkensii K. Schum. Kohautia caespitosa Schnizl. Meyna tetraphylla (Hiern) Robyns Oldenlandia corymbosa L. Pauridiantha paucinervis (Hiern) Brem. Psychotria kirkii Hiern Pentas parvifolia Hiern. Psydrax schimperiana (A. Rich.) Bridson Rothmannia urcelliformis (Hiern) Robyns Spermacoce filituba (K. Schum.) Verdc. Tarenna graveolens (S. Moore) Brem. Tennantia sennii (Choiv.) Verdc. and Bridson Vangueria madagascariensis Gmel.

#### 238 COMPOSITAE

Acanthospermum hispidum DC. Bidens pilosa L. Blepharispermum lanceolatum Chiov. Conyza aegyptiaca (L.) L. Eclipta prostrata (L.) Gutenbergia cordifolia Oliv. Helichrysum glumaceum DC. Kleinia kleinioides Sch. Bip.) M.R.F. Taylor Melanthera scandens (Schum. and Thonn.) Roberty Pluchea dioscoridis DC. Senecio discifolius Oliv. Sphaeranthus ukambensis Vatke and O. Hoffm. Tithonia divesifolia (Hemsl) A. Gray Tridax procumbens L. Vernonia amygdalina Del. Xanthium pungens walltoth

#### 249 BORAGINACEAE

Cordia monoica Roxb. Cordia sinensis Lam. Ehretia cymosa Thonn. Heliotropium albohispindum Bak. H. steudneri Vatke H. subulatum (DC.) Martelli

#### 250 SOLANACEAE

Datura stramonium L. Lycium europaeum L. Solanum arundo Mattei S. aculeastrum Dunal S. incanum L. S. nigrum L. S. renschii Vatke Withania somnifera (L.) Dunal

#### 251

CONVOLVULACEAE Astraipomoea hyoseyamoides (Vatke) Verdc. Convolvulus rhyniospermus Choisy Cuscuta sp. Evolvulus alsinoides L. Ipomoea bullata Oliv. I. cairica (L.) Sweet I. cicatricosa Bak. I. kituiensis Vatke

#### 252 SCROPHULALIACEAE Craterostigma sp. Halleria lucida L.

Halleria lucida L.

# 257 BIGNONIACEAE

Kigelia africana (Lam.) Benth. Markhamia lutea (Benth) K. Schum. Spathodea campanulata P. Beauv

#### **258 PEDALIACEAE**

Sesamothamnus rivae Engl. Sesamum calycinum Welw.

#### **259 ACANTHACEAE** Anisotes parvifolius Oliv. Barleria acanthoides Vahl. B. submollis Lindan B. taitensis S. Moore Blepharis hildebrandtii Lindau B. linariifolia Pers B. maderaspatensis (L.) Crabbea velutina S. Moore Crossandra stenostachya (Lindau) C.B.CI) Duosperma eremophilum Milne-Redh Dyschoriste thunbergiiflora (S. Moore) Lindau Ecbolium revolutium (Lindau) C.B.Ch Hypoestes verticillaris (L.f.) Roem. and Schult Justicia diclipteroides Lindau J. flava Vahl. J. odora (Forssk.) Vahl. Ruellia prostrata (Nees) T. Anders Thunbergia guerkeana Lindau

#### **263 VERBENACEAE**

60.70 70

Clerodendrum myricoides (Hochst.) Vatke Lantana camara L. Lantana trifolia L. Premna holstii Gurke P. resinosa (Hochst.) Schauer Priva cordifolia (L.) Vitex doniana Sweet

#### 264 LABIATAE

Basilicum polytachion (L.) Moench Becium obovatum (E. Mey) N.E. Br. Erythrochlamys spectabilis Gurke Hoslundia opposita Vahl Leonotis sp. Leucas glabrata (Vahl) R. Br. L. tomentosa Gurke Ocimium basilicum L. Orthosiphon somalensis Vatke Plectranthus barbatus Andr. Pycnostachys umbrosa Vatke Perkins Tetradenia riparia (Hochst) Codd. Tinnea aethiopica Hook

293A ALOEACEAE Aloe sp.

293B DRACAENACEAE

Dracaena laxissima Engl.

**314 PALMAE** Hyphaene compressa H. Wendl. Phoenix reclinata Jacq. Rophia farinifera (Gaertn.) Hyland **319 VELLOZIACEAE** Xerophyta spekei Bak. COMMELINACEAE Commelina benghalensis L. Commelina latifolia A. Rich. LILIACEAE Asparagus africanus Lam. Gloriosa minor Lindl. Gloriosa simplex L. Anthericum whytei Bak. AGAVACEAE Sansevieria sp. **CYPERACEAE** Cyperus articulatus L. Cyperus immensus C.B.Cl. Cyperus alternifolius L. Cyperus compessus L. Fimbristylis hispindula (Vahl.) Kyllinga alba Nees Mariscus macropus C.B.Cl. Pycreus pelophilus (Ridley) C.B.Cl. **332 GRAMINEAE** Aristida kenyensis Henr. A. mutabilis Trin. and Rupr. Brachiaria deflexa (Schumach) Robyns B. leersioides (Hochst) Stapf Cenchrus ciliaris L. Chloris roxburghiana Schult Chrysopogon plumulosus Hochst. Dactyloclenium aegyptium (L.) Willd. Dichanthium insculptum (A. Rich.) Clayton Digitaria milanjiana (Rendle) Stapf D. velutina (Forssk.) P. Beauv. Diheteropogon amplectus (Nees) Clayton Echinochloa colona (L.) Link Eragrostis superba Peyr. Heteropogon contortus (L.) Roem.

and Schult

Leptochloa obtusiflora Hochst

Leptothrium senegalense (Kunth) Clayton Microchloa kuuthii Desv. Oropetium capense stapf Panicum coloratum L. P. denstum Thunb. P. maximum Jacq. Paspalidum geminatum (Porssk.) Stapf Pennisetum sphacelatum Fresen Paspalum desertorum (A. Rich.) Stapf Perotis hildebrandtii Mez. Phyragmites karka (Retz.) Steud. P. mauritianus Kunth Rhynchelytrum repens (Willd) CE. Hubb. Sporobolus fibriatus (Trin) Nees S. ioclados (Trin) Nees Tetrapogon bidentatus Pilg. Tragus berteronianus Schult

Ś

Ĩ

### A-12.2. DISTRIBUTION OF SPECIES BY FAMILIES

0

I

Family	No. Species	(%)	Family	No. species	(%)
Adiantaceae	2	0.5	Olacaceae	2	0.5
Zamiaceae	1	0.2	Opiliaceae	1	0.2
Cuppressaceae	3	0.7	Loranthaceae	3	0.7
Annonaceae	2	0.5	Viscaceae	1	0.2
Menispermaceae	3	0.7	Rhamnaceae	б	1.3
Capparaceae	10	2.3	Vitaceae	4	0.9
Cruciferae	2	0.5	Rutaceae	4	0.9
Polygalaceae	2	0.5	Simaroubaceae	2	0.5
Caryophyllaceae	1	0.2	Balanitaceae	2	0.5
Aizoaceae	3	0.7	Burseraceae	б	1.4
Portulacaceae	3	0.7	Meliaceae	3	0.7
Polygonaceae	4	0.9	Sapindaceae	6	1.4
Phytolacaceae	1	0.2	Melianthaceae	1	0.2
Chenopodiacea	1	0.2	Anacardiaceae	12	2.8
Amaranthaceae	10	2.3	Connaraceae	1	0.2
Zygophylaceae	2	0.5	Alangiaceae	1	0.2
Lathraceae	1	0.2	Alaliacea	3	0.7
Onagraceae	1	0.2	Umbelliferae	2	0.5
Thymeleaceae	2	0.5	Ebenaceae	3	0.7
Nyclaginaceae	2	0.5	Sapotaceae	2	0.5
Proteaceae	1	0.2	Myrsinaceae	2	0.5
Canellaceae	1	0.2	Loganiaceae	2	0.5
Passifloraceae	1	0.2	Apocynaceae	2	0.7
Cucurbitaceae	5	1.2	Oleaceae	2	0.5
Ochnaceae	1	0.5	Asclepiadaceae	6	1.4
Myrtaceae	2	0.5	Rubiaceae	17	3.9
Combretaceae	7	1.6	Compositae	16	3.7
Guttiferae	1	0.2	Boraginaceae	6	].4
Tiliaceae	10	2.3	Solanaceae	8	1.9
Sterculiaceae	6	1.4	Convolvulaceae	8	1.9
Bombacacea	j	0.2	Scrophulaliaceae	2	0,5
Malvaceae	12	2.8	Bignoniaceae	3	0.7
Euphorbiaceae	21	4.9	Pedaliaceae	2	0.5
Plumbaginacea	1	0.2	Acanthaceae	18	4.2
Rosaceae	2	0.5	Verbenaceae	7	1.6
Caesalpiniaceae	л.	2.5	Labiatae	13	3.0
Mimosaceae	17	3.9	Aloeacea	1	0.2
Papilionaceae	26	6.0	Dracaenaceae	, I	0.2
Ulmaceae	Ĩ	0.2	Palmae	3	0.7
Moraceae	5	1.2	Velloziaceae	1	0.2
Urticaceae	Ĭ	0.2	Commelinaceae	2	0.5
Aquifoliaceae	,	0.2	Liliaceae	4	0.9
Celastracea	3	0.7	Agavaceae	1	0.2
Icacinaceae	2	0.5	Cyperaceae	8	1.9
Salvadoraceae	3	0.7	Gramineae	33	7.7
TOTAL	<u>~</u>	v.r	TOTAL		
FAMILIES	90		SPECIES	431	

#### A-12.3. SPECIES DISTRIBUTION IN THE STUDY AREA

Plant Growth Form:	Habitat
H - herb	R - Riverine
S - shrub	B - Bushland
C - climber	F - Forest
T - tree	
L - liana	
st - shrub or tree	

Plant Species	Form	R	В		F	
Actiniopteris radiata	Н				 †	Amaranthus graecizans
Pellaea longipilosa	អ				ł	A. spinosus
Encephalartos powysiorum	S			-	ł	Achyranthes aspera
Ntabotrys sp.	S	+				Aerva lanata
Uvaria lucida	S	t				Cyathula coriacea
Chasmanthera dependens	L				+	Digera muricata
Cissampelos pareira	С				+	Psilotrichum elliotii
Tiliocora funifera	L	+				Puppalia lappacea
Boscia coriacea	S		+			Sericocomopsis hildebrand
Cadaba farinosa	S		+			Tribulus cistoides
Capparis tomentosa	S		÷			T. terrestris
Cleome allamanii	S		+		+	Lawsonia inermis
C. hirta	н		+		+	Ludwigia abyssinica
Gynadropsis gynadra	Н		-1-			Gnidia latifolia
Maerua crassifolia	S		+			Synaptolepis kirkii
M. edulis	Š		+			Boerhavia coccinia
M. triphylla	Š		+	-		Commicarpus plumbagine
Thylaclium africanum	Š	+				Gravillea robusta
Farsetia stenoptera	Ĥ		+			Warburgia ugandensis
Rorippa micrantha	н				+	Adenia gummifera
Polygala erioptera	н		+			Cucumis dipsaceus
P. sphenopteri	н		+			Kedrostis foetidissima
Polycarpaea eriantha	н		+			K. gijef
Gisekia pharnaceoides	н	+				Lagunaria sphaerica
Mollugo cerviana	н	+				Zehneria scabra
Trianthema triquetra	н Н	-	-	-		Ochna inermis
Zaleya pentandra	н		-			Ochna insculpta
Portulaca foliosa	н		-	_		Eugenia sp.
P. oleracea	н	+				Syzygium guineense
Talinum portulacifolium	н	•	-	F		Combretum aculeatum
Oxygonum sinuatum	н		4			C. hereroense
Polygonum salicifolium	н	+				C. molle
P. senegalensis	н	+				C. paniculatum
Securidaca longipeduncula				⊦	+	Terminalia brownii
Phytolaca dodecandra	st St			, F	+	T. prunioides
Chenopodium procerum	S			+	+	T. spinosa
Alternanthera pungens			4		•	Garcinia livingstonei

Н

Н

н

Н

Н

Н

Н

Н

H H H

st +

H +

S

Ŧ

Н

Н

T T

LHCCCLSSST

st T T

Т

T T T T +

+ + +

++

+

+ + +

ŧ

ł

+

ł

ł

ŧ

+ +

÷

t

++

+ +

ł

÷

+ + +

+

I

Corchorus aestuans	н	Ŧ				B. tomentosa	S		÷	
Corchorus trilocularis	н	ŧ				Caesalpinia trothae	Н	ŧ		
Grewia biclor	S		+			Cassia longiracemosa	S		+	
G. Plagiophylla	S		ł			C. occidentalis	S		+	
Grewia tembensis	S		4	-		C. singueana	S		+	
G. tenax	S		+	-		Delonix elata	Т		Ŧ	*
G. trichocarpa	S		4			Piliostigma thonningii	Т		÷	
G.villosa			+	-		Prosopis chilenis	S	Ŧ		
Triumfetta flavescens	S S	Ŧ				Tomarindus indica	T	+		
T. tomentosa	S				ŧ	Tylosema humifusa	S	ł		
Dombeya dawei	Т		-1	ŀ		Acacia ataxacantha	S	ŧ		÷
D. rotundifolia	Ť		4	┝		A. brevispica	S		+	
Hermania alhiensis	Ĥ		4	⊦		A. bussei	S		+	
Hermania exappendiculata	H		4	F		A. elatior	Т	+		
Melhania ovata	н		4	F		A. mellifera	S		+	
Sterculia stenocarpa	Ť		4	F		A. nilotica	st		+	
Adansonia digitata	Ť		-	ł		A. polyacantha	Т	+		
Abutilon fruticosum	Ĥ	+				A. robusta	Т	+		
A. Mauritianum	S				ŧ	Acacia senegal	st		ł	
Azanza garckeana	Ť	Ŧ			•	A. seyal	т		+	
Gossypium somalense	s	•		ŧ		A. thomasii	Š		+	
Hibiscus aponeurus	Š				+	A. tortilis	Ť	+	ŧ	
H. diversifolius	S	+				Albizia harvey	Ť			+
H. fuscus	S	•			+	Dichrostachys cinerea	ŝ		+	
H. micranthus	Š				+	Entada leptostachya	Ľ	+	+	
H. palmatus	Š				+	Mimosa pigra	s	+		
Pavonia patens	Š				+	Newtonia hildebrandtii	Ť	+		
Sida ovata	Š				+	Abrus specatorius	ċ	-		+
Thespesia danis	S			Ŧ	•	Aeschynomene abyssinica	ň			+
	S			•	ŧ	Aeschynomene schimperi	н			+
Acalypha fruticosa Antidesma venosum	T				+	Calpurnia aurea	н			+
Bridelia cathartica	Ť				+	Canavalia ensiformis	н		+	
Bridelia taitensis	T				+	Clitoria ternatea	c		•	+
	Ť				+	Colutea abyssinica	Ĥ			+
Croton macrostachyus	Ť				+	Crotalaria cleomiifolia	s		+	-
C. megalocarpus	st				+	Dalbergia melanoxylon	st		+	
Erythrococca bongensis Euphorbia candelabrum	St T				+	Erythrina abyssinica	T		+	
Euphoroia canaeiaorum E. crotonoides	н				+	E. burtii	Ś		+	
	S			+	•	Indigofera arrecta	Š		+	
E. cuneata	H			+		I. hochstetteri	Š		+	
E. hirta	T T			י ד		I. schimperi	S		+	
E. nyikae E. maudaarantii	л Н			•		I. spinosa	Š		+	
E. pseudograntii E. schoffieli	S S			т +		1. spinosu 1. trita	st		•	÷
E. scheffreli E. tirucalli	S			+	+	I. volkensii	H		÷	
	S			+	1	Milletia dura	st	4		+
Jatropha spicata Phyllanthus guineensis	S			, +		Minena dala M. tanaensis	st			+
Recinus communis	S		ł	'		Ormocarpum trachycarpum	S		+	
	S			ŧ		Platycelyphium voense	T		•	
Securinega virosa Szivesteckus ofiicana	S T		+	۴		Rhynchosia elegans	н		+	
Spirostachys africana	T		т †			R. minima	H		, +	
S. venenifera	-		Ŧ +			k. mmmu Sesbania sesban	S	4	-	
Plumbago zeyalanica	S					Tephrosia villosa	S			+
Rubus pinnatus	S	-	+				S			+
R. schefferi	S				+	Tephrosia pumilla Chaetacme aristata	s S	4	F	Ŧ
Bauhinia taitensis	S				+	Unaelacme aristala	3	1		

Ś

Ţ

Ficus exasperata	т	Ŧ		· <del>†</del>	Lannea alata	st		+	
F. ingens	st	+			L. fulva	st		÷	
F. sur	Ť	+			L rivae	st		+	
F. sycomorus	Ť	+			L. shimperi	Т			+
F. vallis choudae	Ť	+			L. schweinfurthii	Ť		Ŧ	ŧ
Urtica masaica	Ĥ		+		L. triphylla	S		+	
llex mitis	s			+	Ozoroa insignis	Ť		+	
Hippocratea africana	ŝ	+			Pistacia aethiopica	st			+
Maytenus senegalensis	Š			ł	Rhus longipes	S			+
Mystroxylon aeithiopicum	š			+	R. natalensis	S		+	
Apodyles dimidiata	Ť			+	R. vulgaris	S		+	
Pyrenacantha sp.	Ē			+	Sclerocarya birrea	T		≁	
Azima tetracantha	S		+		Agelaca pentagyna	S			+
Dobera glabra	Š		Ŧ		Alangium salviifolium	st	4		
Salvadora percica	st		+		Cussonia holstii	Т		ł	
Ximenia americana	st		+		C. spicata	Ť			Ŧ
Opilia amentacea	L	+			Schefflera abyssinica	T			+
Opilia copressa	ŝ		+		Steganotaenia araliacea	st		+	
Phragmanthera dschallensis	Š		+		Trachyspermum aelhiisifolium	Н		+	
Osyris lanceolata	st	+	+		Dispyros abyssinica	Т	+		
Tapinanthus aurantiacus	й		+		D. consolatae	Ť	+		
Viscum schimperi	н		+		Euclea divinorum	S			+
Berchemia discolor	Ť		+	÷	Aningeria adolfi-friedericii	T			+
Ziziphus pubescens	s			+	Chrysophyllum gorungosanom	Ť			•
Scutia myrtina	Š			÷	Maesa lanceolata	st			+
Ziziphus mucronata	S			+	Myrsine africana	S			+
Z. spina-christi	š	+			Nuxia congesta	Ť			+
Cissus rotundifolia	č	•		+	Strychnos henningsii	ŝ	+		+
Cissus quadransgularis	č			+	Jasminum fluminense	č	·		÷
Cyphostemma sp.	й		Ŧ		Olea europaea	st			+
Rhoicissus tridentata	s			÷	Acokanthera schimperi	S			+
Clausena anisata	š			+	Adenia obsesum	Š		ŧ	•
Teclea simplicifolia	Š			+	Carissa edulis	Š		+	
Toddalia asiatica	Ľ			+	Calotropis procera	ŝ	+	·	
Zanthoxyllum usambarense	Ť			+	Ceropegia sp	č		+	
Harrisonia abyssinica	ŝ			+	Dregea abyssinica	č		•	+
Kirkia temfolia	Š		+		Kanahia laniflora	Š	Ŧ		•
Balnites glabra	Ť		+		Pergularia daemia	Ř			Ŧ
Balanites pedicellaris	Ť		+		Secamone punctulata	Ċ	+		+
Boswella neglecta	Ť		+		Breonadia microcephala	Š	+		•
Commiphora africana	st		+		Carphalea glaucescens	š	•	+	
Commiphora boiviniana	Ť		+		Conostomium guadrangulare	Ř		+	
Commiphora campestris	S		+		Galium aparinoides	н		-	+
Commiphora hottziana	Ť		+		Gardenia volkensii	T	+		-
Commiphora mildbraedii	S		+		Kohautia caespitosa	Ĥ		ł	
Ekebergia capensis	Ť			+	Meyna teiraphylla	L			+
Lepidotrichilia volkensii	Ţ			+	Oldenlandia corymbosa	Ĥ		+	•
Melia volkensii	Ť		+		Pauridiantha paucinervis	s			Ŧ
Allophylla ferrugineus	st			+	Pentas parvifolia	ŝ		+	
Allophylla rabifolius	st			+	Psychotria kirkii	š		•	+
Deinbollia barbonica	Ť	ŧ			Psydrax schimperiana	Š		+	
Haplocoelum foliolosum	Ţ	+			Rothmannia urcelliformis	Ť		•	+
Lecaniodiscus flaxinifolius	st	+			Spermacoce filituba	н	+		-
Bersama abyssinica	S	•		+	Tarenna graveolens	T	+		
seround hoyoundd				-	Contraction Contraction	•	•		

l

A12-12

Tennantia senni	s		÷			B. maderaspatensis	Н		ł	
Vangueria madagasscariensis	Ť			+		Crabbea velutina	Н		+	
Acanthospermum hispidum	Ĥ	ŧ				Crossandra stenostachya	H		+	
Bidens pilosa	н		+			Duosperma eremophilum	S		+	
Blepharispermum	S		÷			Dyschoriste thunbergiifolia	Н			+
lanceolatum	•					Ecbolium revolutum	н			+
Conyza aegyptiaca	н		+			Hypoestes verticillaris	н		t	
Eclipta prostrata	н		+			Justicia diclipteroides	Н		+	
Gutenbergia cordifolia	Н		+			J. flava	н			+
Helichrysum glumaceum	H		+			J. odora	н		Ŧ	
Kleinia kleinioides	S			ł		Ruellia prostrata	H		+	
Melanthera scandens	Ĥ	ŧ				Thunbergia guerkeana	С			+
Pluchea dioscoridis	н	+				Clerodendrum myricoides	S		+	
Senecio discifolius	Н		+			Lantana camara	S		ŧ	
Sphaeranthus ukambensis	Н	ŧ				Lantana trifolia	S		+	
Tithonia diversifolia	н		+			Premna holstii	S		ŧ	
Tridax procumbens	Н		+			P. resinosa	S		+	
Vernonia amygdalina	S	+				Priva cordifolia	Н		+	
Xanthium pungens	Н	+				Vitex doniana	Т			ŧ
Cordia monoica	S		+			Basilicum polytachion	н	+		
Cordia sinensis	Ŝ		+			Becium obovatum	Н		ŧ	
Ehretia cymosa	S			H	F	Erythrochlamys spectabilis	S		+	
Heliotropium albohispidum	H		ŧ			Hoslundia opposita	S		+	
H. steudneri	Н		ŧ			Leonotis sp	S		+	
H. Subulatum	Н	+				Leucas glabrata	H		ŧ	
Datura stramonium	н	+				L. tomentosa	н		ł	
Lycium europaeum	S		÷	-		Ocimum basilicum	Н		Ŧ	
Solanum arundo	S	+				Orthosiphon somalensi	Н	÷		
Solanum aculeastrum	Š			-	+	Plectranthus barbatus	S			+
S. incanum	S		+			Pycnostachys umbrosa	н	+		
S. nigrum	Ĥ				ŧ	Tetradenia riparia	S		Ŧ	
S. renschii	S		ł			Tinnea aethiopica	S		÷	
Withania somnifera	Ĥ		+	-		Aloe sp.	S		+	
Astraipomoea hyoseyamoides	S		-+	_		Dracaena laxissima	S	+		
Convolvulus rhyniospermus	Ĥ		+	÷		Hyphaene compressa	Т	+	t	
Cuscuta sp.	Н					Phoenix reclinata	Т	ŧ		
Evolvulus alsinoides	Н		+	F		Raphia farinifera	Т	÷		
Ipomoea bullata	н		4	F		Xerophyta spekei	S			Ŧ
I. cairica	н		+	<b> -</b>		Commelina benghalensis	Н			+
I. cicatricosa	S				+	Commelina latifolia	Н			+
I. kituiensis	S		4	F		Asparagus africanus	Н		ŧ	
Craterostigma sp	Н		-	ŀ		Gloriosa minor	H		+	
Halleria lucida	S		4	⊦		Gloriosa simplex	н			+
Kigelia africana	Т	4	F			Anthericum whytei	Н			Ŧ
Markhamia lutea	Т	4	ŀ			Sanserieria sp	S			+
Spathodea campanulata	Т				ł	Cyperus articulatus	н	+		
Sesamothamnus rivae	st			ł		Cyperus immensus	Н	+		
Sesamum calycinum	Н		-	ŧ		Cyperus alternifolius	Н	ŧ		
Anisotes parvifolum	S		-	ł		Cypeus compessus	н		ł	
Barleria acanthoides	Н		-	ŧ		Fimbristylis hispidula	Н	+		
B. submollis	Н		-	ł		Kyllinga alba	Н		+	
B. taitensis	Н			ŧ		Mariscus macropus	Н		ŧ	-
Blepharis hildebrandtii	Н		-	t		Pycreus pelophilus	Н	÷	-	
B. linariifolia	Н			+		Aristida kenyensis henr	н		÷	
2										

I

J

A12-13

A. mutabilis	н		+	
Brachioria deflexa	н		+	
B. leersioides	н		+	
Cenchrus ciliaris	Н	Ŧ		
Chloris roxburghiana	Н		4	
Chrysopogon plumulosus	Н		+	
Daciyloclenium aegyptium	Н		4	
Dichanthium insculptum	н		+	
Digitaria milanjiana	н		ł	
D. velutina	н		+	
Diheteropogon amplectus	н		+	
Echinochloa colona	Н	÷		
Eragrostis superba	н	÷		
Heteropogon contortus	н		+	
Leptochloa obtusiflora	н	÷		
Microchloa kunthii	Н		+	
Oropetium capense	н		+	
Panicum coloralum	н		Ŧ	
P. denstum	н			÷
P. maximum	н	Ŧ		Ŧ
Paspalidum geminatum	н	+		
Pennisetum sphacelatum	н	+		
Paspalum dersertorum	н	ł		
Perotis hildebrandtii	н			+
Phragmites karka	н	ŧ		
P. mauritianus	н	+		
Rhynchelytrum repens	н		÷	
Sporobolus fibriatus	н		+	
S. ioclados	н		+	
Tetrapogon bidentatus	н		+	
Tragus berteronianus	Н		+	
••••••••••••••••••••••••••••••••••••••	*******	*******	******	*******

N. C.

### Annex to Chapter 13

1

I

 $\bigcirc$ 

	Kindaruma Plunge Pool	Kiambere Taitrace End	Mutonga	4EA7	Kazita 4F19 Grand Falls		Gariss	a 4G1		
	Q	Q	н	Q	н	Q	н	Q	н	Q
Date	m³/sec	m³/sec	m	m ³ /sec	m	m ³ /sec	m	m³/sec	m	m³/sec
7-9-95	117.00	73.1	0.56	14.18						
8-9-95					0.58	7.06	2.08	101.00		1
9-9-95	70.50	77.5	0.32	16.39						
10-9-95					0.57	7.06	2 22	104.00		
11-9-95	99.00	75.0	0.28	15.70					1.64	94.20
12-9-95					0.57	6.91	2.26	103.00		
13-9-95	111.00	75.0	0.24	14.70					1.63	91.60
14-9-95	{				0.56	6.76	2.21	102.00		
15-9-95	114.00	75.0	0.23	14.36					1.64	93.40
16-9-95					0.56	6.01	2.05	100.00		
17-9-95	75.00	80.6	0.21	14.16					1.64	93.40
18-9-95					0.56	5.75	2.02	97.70		
19-9-95	72.00	74.4	0.19	13.70					1.58	88.90
20-9-95					0.54	5.83	2.04	98,60		
21-9-95	72.00	78.1	0.18	12.92					1.57	87.00
22-9-95					0.53	5.44	2.04	99.50	1	i
23-9-95	84.00	83.8	0,19	12.69					1.53	84.70
24-9-95					0.52	5.40	2.00	97.70		
25-9-95	90.00	78.8	0.17	11.77					1.56	88.10
26-9-95	5				0.53	5.40	1.99	96.40		
27-9-95	5 111.00	83.8	0.16	11.93					1.56	86.40
28-9-95					0.52	4.76	2.04	100.00	1	
29-9-95		75.0	0.16	11.26					1.53	83.10
30-9-96					0.52	5.17	1,98	96.80		
1-10-95	ł	83.1	0.21	11.44	1	<b>.</b>		<b>0</b> • • • •	1.56	87.90
2-10-95					0.52	5.21	1.54	91.30	1	74.45
3-10-9€	1	83.1	0.20	11.37				400.00	1.52	78.80
4-10-95				** **	0.51	5.17	2.09	102.00		70.70
5-10-95		75.0	0.64	22.50		<b>- - - -</b>	<u> </u>	400000	1.46	72.70
6-10-95		1			0.53	5.30	2.09	102.00		<b>65 0</b>
7-10-9	- <b>I</b>								1.55	85.2
8-10-9										074
9-10-93	5	1	<u> </u>		1		<u> </u>		1.6	87.1

Table A13-1 Dry Season Flow Discharges at Sampling Time

A13-1

	Kindaruma Plunge	Kiambere Tailrace End	Mutonga	4EA7	Kazita 4	F19	Grand F	alis 4F13	Garissa	4G1
	Pool									
	Q	Q	H	Q	H	Q	н	Q	н	Q
Date	m³/sec.	m³/sec.	m	m'/sec.	m	m ³ /sec.	m	m³/sec.	m	m ³ /sec.
27-10-95			255	184.00						
28-10-95					0.88	21.00	3.80	330.00		
29-10-95	120.00	84.40	1.18	51.00						
30-10-95					1.42	68.80	4.03	362.00	2.39	194.00
31-10-95	120.00	75.60	2 28	153.00						
1-11-95					0.91	21.60	3.68	269.00	2.67	245.00
2-11-95	114.00	75.60	1.25	52.00						
3-11-95					0.84	14.60	3.78	280.00	2.88	294.00
4-11-95	120.00	85.20	1.38	55.10						
5-11-95					0.76	11.80	3.36	236.00	2.57	232.00
6-11-95	105.00	76.20	1.24	52.00						
7-11-95					0.78	11.10	3.22	217.00	2.59	235.00
8-11-95		96.30	1.08	46.20	1					
9-11-95		(00.00		~~ ~	0 78	9.90	3.17	212.00	2.49	210.00
10-11-95	1	102.00	1.08	38.80						
11-11-95 12-11-95	1	00.5%	100	50.00	0.78	35.00	3.27	225.00	2.43	202.00
13-11-95		77.30	1.08	52.90	1.26	50.50		0.40.00		407.00
14-11-95		111.00	2.29	165.00		59.50	3.39	242.00	2.34	187.00
15-11-95		111.00	2.29	100.00	1.26	53.40	4.63	443.00	0.00	100.00
16-11-95	1	112.00	1.40	69.00		55.40	4.03	443.00	2.35	189.00
17-11-95		112.00	1.40	05.00	1.03	29.70	3.90	303.00	3,33	425.00
18-11-95			1.47	81.30		20.10	3.90	335,00	3.33	420.U
19-11-95		150.00		V1.VU	1.00	24.10	3.94	312.00	2.92	300.00
20-11-95	1		1.34	64,40		4.7.IV	0.04	V12.00	2.36	
21-11-95		158.00	1		0.90	22,10	3.80	260.00	2.83	280.00
22-11-95	1		1.41	74.20				200.00	2.00	
23-11-95		182.00			0.94	22,10	4.48	415.00	2.84	283.00
24-11-95	106.00		1.39	54.40						
25-11-95		190.00			0.90	21.20	4.32	391.00	3.15	360.00
26-11-95	114.00									
27-11-95		194.00							3.09	340.00

Table A13-2 Wet Season Flow Discharges at Sampling Time

I.

Estimated	Sediment	Dry	Wt. of Water	Discharge	Date
Daily Load (mt)	Conc. ppm	Sediment	& Sediment	m³/sec	
373	37	0.02	498,90	117.00	7-9-95
206	34	0.02	496.90	70.50	9-9-85
326	38	0.02	501.80	99.00	11 <b>-9</b> -95
408	42	0.02	501.20	111.00	13-9-95
370	38	0.02	500.80	114.00	15-9-95
237	37	0.02	501.00	75.00	17 <del>-9-9</del> 5
204	33	0.02	507.20	72.00	19-9-96
340	55	0.03	498.00	72.00	21-9-95
370	51	0.03	498.80	84.00	23-9-95
247	32	0.02	498.00	90.00	25-9-95
363	38	0.02	499.20	111.00	27-9-95
367	36	0.02	504.20	114.00	29-9-95
306	36	0.02	500.00	99.00	1-10-95
234	38	0.02	499.00	72.00	3-10-95
333	36	0.02	504.80	108.00	5-10-95

# Table A13-3 Laboratory Suspended Sediment Analysis Dry Season Sediment Concentration: Kindaruma Plunge Pool

#### Wet Season Sediment Concentration: Kindaruma Plunge Pool

Estimated	Sediment	Discharge	Date of
Daily Load (mt)	Conc. ppm	m³/sec	Sampling
643	62.00	120.00	29/10/95
684	66.00	120,00	31/10/95
394	40.00	114.00	2/11/95
394	38.00	120,00	4/11/95
254	28,00	105.00	6/11/95
236	24.00	114.00	8/11/95
290	28.00	120.00	10/11/95
485	48.00	117.00	12/11/95
344	34.00	117.00	14/11/95
622	60.00	120.00	16/11/95
290	28.00	120.00	18/11/95
332	32.00	120,00	20/11/95
489	46.00	123.00	22/11/95
250	28.00	106.00	24/11/95
315	32.00	114.00	26/11/95

Ì

A13-3

Estimated	Sediment	Dry	Wt. of Water	Discharge	Date of
Daily Load (mt)	Conc. ppm	Sediment	& Sediment	m³/sec	Sampling
249	39	0.02	496.90	73.10	7-9-95
227	34	0.02	501.00	77.50	9-9-95
224	35	0.02	501.00	75.00	11-9-95
219	34	0.02	500.90	75.00	13-9-95
204	31	0.02	499.80	75.00	15-9-95
223	32	0.02	499.90	80.60	17-9-95
192	30	0.01	499.80	74.40	19-9-95
200	30	0.01	502.30	78.10	21-9-95
215	30	0.01	501.90	83.80	23-9-95
209	31	0.02	500.80	78.80	25-9-95
283	39	0.02	502.00	83.80	27-9-95
218	34	0.02	498,90	75.00	29-9-95
212	30	0.0147	498.10	83.10	1-10-95
230	32	0.0161	502.20	83.10	3-10-95
206	32	0.0161	501.90	75.00	5-10-95

# Table A13-4Laboratory Suspended Sediment AnalysisDry Season Sediment Concentration: Kiambere Tail Race End

#### Wet Season Sediment Concentration: Kiambere Tail Race End

Estimate	Sediment	Dry	Wt. of Water	Discharge	Date of
Daily Load (mt	Conce.ppm	Sediment	& Sediment	m ³ /sec	Sampling
13	18	0.009	497.100	84.400	29/10/95
14	22	0.011	497.000	75.600	31/10/95
19	30	0.015	499.000	75.600	2/11/95
19	26	0.013	496.000	85.200	4/11/95
14	22	0.011	495.100	76.200	6/11/95
25	30	0,015	498,600	96.300	8/11/95
37	42	0.021	499.000	102.000	10/11/95
25	38	0.019	496.000	77.300	12/11/95
37	38	0.019	496 000	112.000	16/11/95
49	38	0.019	498.000	150.000	19/11/95
43	32	0.016	498.600	158.000	21/11/95
53	34	0.017	496.000	182.000	23/11/95
72	44	0.022	499,000	190,000	25/11/95
53	32	0.016	499.000	194,000	27/11/95

Ľ

Į

Estimated Daily Load (mt	Sediment Conc. ppm	Dry Sediment	Wt. of Water & Sediment	Discharge m ³ /sec	Date of Sampling
40	31	0.02	498.00	14.80	9.9.95
5	37	0.02	498.20	16.39	11-9-95
4	31	0.02	496.30	15.70	13-9-95
4	33	0.02	499.60	14.70	15-9-95
4	33	0.02	497.60	14.36	17-9-95
3	30	0.01	497.40	14.16	19-9-95
3	32	0.02	499.00	13.70	21-9-95
3	31	0.02	498.30	12.92	23-9-95
3	35	0.02	499.20	12.69	25-9-95
5	52	0.03	497.20	11.77	27-9-95
3	34	0.02	497.70	11.93	29-9-95
3	35	0.02	499.60	11.26	1-10-95
3	35	0.02	499,60	11.44	3-10-95
3	31	0.02	496.30	11.37	5-10-95

## Table A13-5Laboratory Suspended Sediment AnalysisDry Season Sediment Concentration: Mutonga 4EA7

### Wet Season Sediment Concentration: Mutonga 4EA7

Estimated	Sediment	Dry	Wt. of Water	Discharge	Date of
Daily Load (mt)	Conc. ppm	Sediment	& Sediment	m³/sec	Sampling
663,244	41720	44.686	1071.100	184.000	27/10/95
1,002	227	0.223	961.000	51.000	29/10/95
58,068	4392	4.564	1039.000	153.000	31/10/95
1,573	304	0.152	500.200	59,900	2/11/95
1,488	313	0.155	496.000	55.100	4/11/95
1,449	323	0.160	496.000	52.000	6/11/95
1,280	321	0.161	502.000	46.200	8/11/95
948	283	0.142	502.000	38.800	10/11/95
996	218	0.109	500.000	52.900	12/11/95
100,635	7067	3,548	502,000	164.800	14/11/95
6,497	1090	0.546	501.000	69.000	16/11/95
110,194	15687	7.883	502.500	81,300	18/11/95
102,903	349	9.173	496.000	64,400	20/11/95
2,382	371	0.185	498.000	74.200	22/11/95
2,200	469	0.233	497.300	54,500	24/11/95

(}

A13-5

Date of	Discharge	Wt. of Water	Dry	Sediment	Estimated
Sampling	m³/sec	& Sediment	Sediment	Conc. ppm	Daily Load (mt)
8-9-95	7.06	498.10	0.01	27	16
10-9-95	7.05	497,20	0.01	29	18
12-9-95	6.91	497.20	0.01	26	16
14995	6.76	496.00	0.01	29	17
16-9-95	6.01	497.10	0.02	39	20
18-9-96	5.75	498.90	0.02	30	15
20-9-95	5.83	498.90	0.01	24	12
22-9-95	5.44	497.60	0.02	37	18
24-9-95	5.40	496.20	0.01	28	13
26-9-95	5.40	500.00	0.01	21	10
28-9-96	4.76	496.30	0.01	22	9
30-9-95	5.17	500.20	0.01	21	9
2-10-95	5.21	498.20	0.01	30	13
4-10-95	5.17	497.60	0.02	47	21
6-10-95	5.30	498.90	0.01	21	10

# Table A13-6Laboratory Suspended Sediment AnalysisDry Season Sediment Concentration: Kazita 4F19

#### Wet Season Sediment Concentration: Kazita 4F19

Estimated	Sediment	Dry	Wt. of Water	Discharge	Date of
Daily Load (mt)	Conc. ppm	Sediment	8 Sediment	m3/sec	Sampling
36,664	20208	20.256	1002.400	21.000	28/10/95
29,149	4904	4.914	1002.100	68.800	30/10/95
1,329	712	0.354	497.000	21.600	1/11/95
692	548	0.274	499,600	14.600	3/11/95
203	212	0.106	500.800	11,100	5/11/95
155	144	0.072	500.800	12.500	7/11/95
249	297	0.148	497.600	9.700	9/11/95
107	122	0.061	501.600	10.200	11/11/95
147,170	28437	14.480	509.200	59,900	13/11/95
14,429	3500	1.754	501.000	47.700	15/11/95
4,117	1604	0,799	496.000	29.700	17/11/95
1,62	701	0.350	499.400	26.900	19/11/95
2,10	1149	0.572	498.000	21.200	21/11/95
4,181	2095	1.050	501.200	23,100	23/11/95
46	254	0.126	496.000	21.200	25/11/95

I

C. S.

Estimated	Sediment	Dry	Wt. of Water	Discharge	Date of
Daily Load (mt	Conce.ppm	Sediment	& Sediment	m ³ /sec	Sampling
27	31	0.02	498.50	101.00	8-9-95
39	44	0.02	498.30	104.00	10-9-95
31	36	0.02	501.00	103.00	12-9-95
38:	43	0.02	497.90	102.00	14-9-95
44	52	0.03	499.70	100.00	16-9-95
32	39	0.02	500.00	97.70	18-9-95
34	41	0.02	498.90	98.60	20-9-95
32	38	0.02	498.20	99.50	22-9-95
33	39	0.02	497.10	97,70	2 <b>4-9-9</b> 5
34	42	0.02	498.40	96.40	26-9-95
30	35	0.02	496.30	100.00	28-9-95
29	35	0.02	496.80	96.80	30-9-95
29	38	0.02	496.80	91.30	2-10-95
27	31	0.02	496.80	102.00	410-95
86	98	0.05	497.60	102.00	6-10-95

# Table A13-7Laboratory Suspended Sediment AnalysisDry Season Sediment Concentration: Tana Grand Falls 4F13

### Wet Season Sediment Concentration: Tana Grand Falls 4F13

te of	Discharge	Wt. of Water	Dry	Sediment	Estimated
pling	m3/sec	& Sediment	Sediment	Conc. ppm	Daily Load (mt)
0/95	330.000	1003.600	1.506	1501	42,785
0/95	362.000	1002.600	1.988	1993	62,017
1/95	269.000	497.100	0.491	968	22,956
1/95	280.000	500.200	0.084	168	4,063
1/95	236.000	496.200	0.081	163	3,315
1/95	217.000	498.000	0.422	847	15,888
1/95	212.000	500.000	0.068	176	3,224
11/95	225,000	498.000	0.160	321	6,246
11/95	242,000	499.000	0.146	293	6,118
11/95	443,000	500,800	0.278	555	21,247
11/95	303.000	501.000	0.245	489	12,802
11/95	312,000	498,000	0.332	667	17,971
11/95	280,000	496.000	0.056	113	2,731
11/95	415.000	497.000	0.074	149	5,339
11/95	391.000	496.000	0.086	173	5,857

# Table A13-8Laboratory Suspended Sediment AnalysisDry Season Sediment Concentration: Tana Garissa 4G1

Estimated	Sediment	Dry	Wt. of Water	Discharge	Date of
Daily Load (mt)	Conc. ppm	Sediment	& Sediment	m³/sec	Sampting
2,893	365	0.18	498.00	94.20	11-9-95
<b>690</b>	112	0.06	496.00	91.60	13-9-95
2,119	263	0.13	499.00	93.40	15-9-95
1,674	208	0.10	501.20	93.40	17- <del>9</del> -95
1,095	143	0.07	498.00	88.90	19-9-95
829	110	0.06	498.80	87.00	21-9-95
733	499	0.05	499.00	84.70	23-9-95
1,679	220	0.11	499.80	88.10	25 <del>-9-9</del> 5
1,186	159	0.08	497.10	86.40	27-9-95
960	136	0.07	498.30	83.10	29-9-95
1,007	133	0.07	498.00	87.90	1-10-95
890	131	0.07	497.30	78.80	3-10-95
691	110	0.06	500.00	72.70	5-10-95
1,280	175	0.09	498.00	85.20	7-10-95
2,880	383	0.19	499.10	87,10	9-10-95

#### Wet Season Sediment Concentration : Tana Garissa 4G1

Estimated	Sediment	Dry	Wt. of Water	Discharge	Date of
Oaily Load (mt)	Conc. ppm	Sediment	& Sediment	m³/sec	Sampling
43,669	2605	1.299	496,600	194.000	30/10/95
97,833	4622	2.297	497.000	245.000	1/11/95
72,460	2853	1.428	500.600	294.000	3/11/95
51,470	2568	1.279	498.100	232.000	5/11/95
67,639	3331	1.661	498.600	235.000	7/11/95
40,085	2209	1.098	497.000	210.000	9/11/95
45,384	2600	1.295	498.000	202.000	11/11/95
28,404	1758	0.879	500.000	187.000	13/11/95
47,907	2936	1.461	498.000	189.000	15/11/95
299,968	8169	4.078	499.200	425,000	17/11/95
68,878	4661	1.326	499.000	300.000	19/11/95
73,055	3020	1.509	499.700	280.000	21/11/95
82,017	3366	1.673	497.000	282.000	23/11/95
148,913	4788	2.389	499.000	360.000	25/11/95
87,43/	2976	1.487	499,600	340.000	27/11/95

I

Sampling	Load	Total	Particle Sizes	Particle Sizes	Particle Sizes
Station		Sampte (gm)	> 0.25mm	> 0.025mm & < 0.25mm	< 0.025mm
Mutonga River	Bed Load gm	176.300	157.800	17.860	0.045
4EA7	Bed Load %		89.510	10.130	0.030
	Suspended gm	0.362	Undetected	eserT	0.362
	Load %			Unrecoverable	100.000
Kazta River	Bed Load gm	173.900	159.700	14.023	0.064
4F19	Bed Load %		91.830	8.060	0.030
	Suspended gm	0.216	Undetected	Trace	0.215
	Load %	Į		Unrecoverable	100.000
Tana Grand	Bed Load gm	157.200	131.000	25.977	0.080
Falis	Bed Load %		83.330	16.520	0.050
4F13	Suspended gm	0.320	0.014	Trace	0.305
	Load %		4.400	Unrecoverable	95.300
Tana Garissa	Bed Load gm	151.800	95.600	54.785	1.312
4G1	Bed Load %		62,960	36.090	0.860
	Suspended gm	1.365	0.033		1.122
	Load %		2.418	15.240	82.200
Kiambere	Suspended gm	0.246	Undetected	Undetected	0.239
Tail Race End	Load %				97.200
Kindaruma	Suspended gm	0.290	Undetected	Undetected	
Plunge Pool	Load %				97.000

### Table A13-9 Dry Season Suspended & Bed Load Particle Size distribution

3

I

### Table A13-10 Wet Season Suspended & Bed Load Particle Size distribution

Sampling	Load	Total	Particle Sizes	Particle Sizes	Particle Sizes
Station		Sample (gm)	> 0.25mm	> 0.025mm & < 0.25mm	< 0.025mm
Mutonga River	Bed Load gm	86.8	46.877	39.181	0.59
4EA7	Bed Load %		54.01	45.1	0.68
	Suspended gm	61.767	14.858	43.749	2.938
	Load %		24.05	70.83	4.76
Kazita River	Bed Load gm	134.8	121.111	13.337	0.102
4F19	Bed Load %		89.84	9.89	0.08
	Suspended gm	41.117	33.702	7.147	0.05
	Load %		81.97	17.38	0.12
Tana Grand	Bed Load gm	124.6	85,901	38.285	0.244
Falls 4F13	Bed Load %		68.94	30.73	0.2
	Suspended gm	10.398	3.479	6.837	0.036
	Load %		33.46	65.75	0.35
Tana Garissa	Bed Load gm	111	10.365	92.881	7.399
4G1	Bed Load %	1	9.34	83.68	6.67
	Suspended gm	24.254	4.99	18.734	0.283
	Load %		20.57	77.24	1.17
Kiambere	Suspended gm	0.223	Trace	Trace	0.201
Taitrace End	Load %				90
Kindaruma	Suspended gm	0.297	Trace	Trace	0.288
Plunge Pool	Load %			<u> </u>	97

# Table A13-11Bacterial & Coliform Concentration No. Col/100ml in the River<br/>Stations during the Dry Season: A, 7/8 Sept. 1995; B, 27 Nov.<br/>1995 and C, 6 Dec. 1995;

	Station	A	В	С	
		No. Col/100ml	No. Col/100ml	No. Col/100ml	Remarks
Loi	ver Catchment River Sta	tions			
1	Irira	>2400	>2400	>2400	Remarkably Polluted
2	Thuci	>2400	>2400	1800	'n
3	Ruguti	>1800	>2400	>2400	"
4	Mara	1800	>2400	>2400	۹I
5	Muton	>2400	>2400	>2400	W
6	Thing	1100	1800	>2400	12
7	Kazita	>2400	1800	1800	n
8	Tana	>2400	>2400	>2400	br
9	G. Falls	>2400	>2400	>2400	91
Up	per Catchment River Sta	tions			
	Kazita	>2400	>2400	1800	12
11	Mara	>2400	>2400	1800	u
12	Thing	>2400	>2400	>2400	*1
13	Irura	>2400	>2400	>2400	41
14	Muton	>2400	>2400	1800	10
15	Nithi	>2400	>2400	1800	н
16	Thuci	1100	>2400	1800	48
17	Ena	>2400	>2400	>2400	26
18	Mara	>2400	>2400	>2400	И
19	Ruguti	>2400	>2400	>2400	. 14
20	-	>2400	>2400	>2400	n

I

I

Lower C: Stations	atchment		1	2	3	4	5		6	7	8	9
	°C		25	21	20.5	20.5	21.5	2	0	20	20	25
ໂemp	-U	1	7	7.5	7.5	7	7		7	7	7	7
H Turb	NTU		60	40	30	25	20		0	15	20	50
DS			70	60	40	50	57		5	56	60	70
00	mg/l		9	8.5	9	9.5	10.2			9	9.5	.9
BOD	mg/l		4.5	3.1	· 2.1	2.1	2.8		2	2.2	2.3	5
Cond	mg/l uS/cm		100	98	90	90	95		3	90	90	100
103			0.1	0.11	0.01	0.02	0.01			0.01	0.01	0.01
NO2	mg/i ma/i		0	0.11	0.01	0.02	0.01		ò	0	0	Ċ
NUZ NH4	mg/l		0.3	0.2	0.1	ŏ	0.1			0.1	0.1	0.01
	mg/l		0.01	0.01	0.01	0.01	0.01			0.01	0.01	0.01
PO4	mg/l		2.4	2.6	2.7	2.3	2.4		.6	2.9	2.9	0.0
SO4	mg/l		0.01	0.01	0.02	0.05	0.05			0.09	0.04	0.04
Vin De	mg/l		8.9	0.01	0.02	0.03	6.5		6	5.6	5.6	-0.0-
Ca	mg/i	-		0.9	0.8	0.9	1.1		.2	1.2	2.4	2.4
Mg	mg/l		2.1	0.9	6.9	6.9	6.8		.2	5.9	3.6	8.9
Na	mg/l		7.1 2	2.1	0.9 2.3	1.8	1.9		. <i>c</i> .5	2.1	2.3	0.3 1.1
К	mg/l		60 60	2.1 52	2.3 60	60	59		.5 46	34	2.3 60	4
CaCO3	mg/l	1				2.2	2.2		10 .3	2.1	2	4
CI	mg/l		2	2.1	2.2	2.2 0.1	0.2		.2	0.1	0.1	0.3
F	mg/)		0.8	0.3	0.1							20
SiO2	mg/l		19	18	18.5	18				16.1	18.9	0.5
Fe	mg/l		0.6	1.2	0.3	0.4	0.5		1.4 10	0.7 20	8.0	
Hard	mg/i		30	24	21	19	18	»	19	_20	21	20
Upper Catchm Stations		10	11	12	13	14	15	16	17	18	19	2
Temp	<u>oc</u>	18.5	18.5	19		19.5	19	20.5	19.5	19	18,5	1
pH		6,4	7.3	6.9	7	7.2	7.1	7.2	6.9	7.2	7.3	6
Turb	NTU	20	19	10	15	10	10	8	9	10	13	
TDS	mg/l	67	64	58	60	50	55	22	22	43	30	
DO	mg/l	9.9	9.2	9.3	9.5	9.6	9.1	9.3	8.8	9.4	9.7	9
BOD	mg/l	1	1.1	1.2	2.4	2.5	1	3	2.5	1.1	2	1
Cond	uS/cm	95	93	82	85	70	78	32	32	62	42	
NO3	mg/l	0.55	1.33	3.3	1.34	0	0.67	0.55	0.89	1.111	0	
NO2	mg/l	0	0	0	0	0	0	0	0	0	0.1	
NH4	mg/l	ō	Ō	ō	Ō	0	0	0	0	0	0	
PO4	mg/l	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.
<b>SO4</b>	mg/l	2	0	1.5	1.6	0.5	1	0.5	1.5	2	0	
Mn	mg/l	0.01	0.01	0.01	0.01	0.01	0.03	0.01	0.05	0.02	0.01	0.
Ca	mg/l	4	2.8	3.2	4	3.2	1.6	3.2	1.6	2.4	2.4	C
Mg	mg/l	2.4	1.2	1.9	1.8	1.6	1	0.01	1.9	1.9		0,
Na	mg/l	14.7	17.5	13	14.5	16	16	6.6	5	12	7.2	8
	mg/t	4	3.6	4.1	5	4.5	13.8	2.2	1	2.7		2
I.K.		50	50	42	40 40	48	46	24	16	36		
K CaCO3			2	4	2.5	2	3	0.01	3	3		
CaCO3	-	1			- · · ·							
CaCO3 Cl	mg/l	1				04	0.2	0.2	0.3	0.1	0.2	- C
CaCO3 Cl F	mg/l mg/l		0,4	2.2	0.3	0.4 30	0.2 25	0.2 10	0.3 20	0.1 20		
CaCO3 Cl	mg/l	1 40 1.6				0.4 30 1.11	0.2 25 0.41	0.2 10 0.34	0.3 20 0.08	0.1 20 1.11		0 1.

Table A13-12Dry Season Physicochemical of Lower and Upper Catchment<br/>Stations on 7/8 Sept. 1995

 $\langle \rangle$ 

A13-11

Lower Ca Stations	atchment		1	2	3	4	5	e	6	7	8	9
Temp	oC		25	20.1	20.5	20	21	25		23	26.5	25
p <b>H</b>	00		7.1	6.5	20.0	6.8	6.9			.8	6.8	7.1
Turb	NTU		40	35	30	30	35			32	33	45
TDS	mg/l		70	57	56	30	70			BO	85	70
DO	mg/l		10.3	10.2	9	8.7	9.4			.7	8	8.55
BOD	mg/l	ł	4.5	3.2	2.5	3.4	4.3			.5	- Ă	3.8
Cond	u\$/cm		100	50	80	42	100			15	120	110
NO3	mg/l		1.67	1.01	1.01	1.01	1.55				1.11	1.01
NO2	mg/l		0	0	0	0	0.03		0.0		0.03	0.03
NH4	mg/l		ŏ	0.03	0.05	ō	0		D 0.	Õ	0	0
PO4	mg/l	1	0.01	0.01	0.01	0.01	0.01				0.01	0.01
SO4	mg/i		6	5	3	0	0			5	5	4
Mn	mg/l		0.02	0.01	0.04	0.02	0.03			03	0.04	0.01
Ca	mg/l		6.4	3.2	4	1.6	6			5,6	8	11.2
Mg	mg/l		1.9	2.4	2.4	1	2.6			.3	4.8	1.9
Na	mg/i	ļ	11	8.3	12	6.9	14			14	4	12
K	mg/l	1	2.7	4.3	4.6	2.4	3.8		5 ∡	1.5	6	4.5
CaCO3	mg/i		44	24	40	18	46			56	56	48
CI	mg/l		6	5	3	3	3.5		5	2	4	6
F	mg/l		0.4	0.2	0.4	0.2	0.3			).2	0.2	0.3
SiO2	mg/l		15	40	10	25	40			50	40	10
Fe	mg/l		1.01	0.5	5.83	1.41	2.21			76	3.55	0.03
Hard	mg/l		24	16	20	8	26			32	40	35
Upper Catchm	ent	10	11	12	13	14	15	16	17	18	19	20
Stations	;											
Temp	00	16.5	18	18.1	19	18	18.1	18	20	18	18,1	18
рН		7.5	7.5	7	7.5	7.5	7	7.5	7.5	7.5	7	7.5
Turb	NTU	10	12	14	15	18	15	20	16	18	19	18
TDS	mg/l	16	18	11	12	15	18	20	20	21	19	19
00	mg/l	10.2	9.9	8.9	9.9	9	9.5	10.6	10.2	10	9.3	9.8
800	mg/i	2.2	1.1	1.4	1.6	1.8	1.8	1.9	1.4	1.3	2.1	
Cond	uS/cm	10.5	98	85	93	96	100	110	98	95	96	90
NO3	mg/l	0.85	0.6	0.51	0.42	0.11	0.21	0.31	0.24	0.22	0.25	0.3
NO2	mg/l	0.8	0.01	0.1	0.1	0,1	0.1	0.08	0.05	0.1	0.1	0.
NH4	mg/l	0.05	0	0	0	0	0	0.05	0	0	0	
PO4	mg/l	0.05	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
\$04	mg/l	2	2.6	2.6	2.5	0.1	0.8	0.5	0.4	2.4	2.1	1.
Mn	mg/l	0.01	0.03	0.01	0.01	0.02	0.03	0.02	0.01	0.01	0.01	0.0
Ca	mg/l	6.8	5.4	5.6	5.6	5.4	3.2	2	5.2	6	6	6.
Mg	mg/l	2	1.9	1.5	1.6	0.9	0.9	0.8	1	1.2	2.1	2.3
Na	mg/l	12	10	11	9	14	12	10	12	13	: 14	1
ĸ	mg/t	4.9	4	3.9	3.9	4.7	4.2	4.2	4.3	4.5	4.3	1
CaCO3	mg/l	50	43	34	38	50	51	35	38	33	-30	2
CI	mg/l	5	5.2	5.5	5.5	6	4.6	4.8	4.3	4.6	4.5	4.
F	mg/l	0.4	0.5	0.5	0.4	0.3	0.6	0.7	0.4	0.4		0.
SiO2	mg/l	18	30.1	40	20.1	14	18	21.2	19.2	21	23.6	2
Fe	mg/i	1.8	1.2	1.3	1.2	4.5	3.2	3.2	3.5	3.2		
Hard	mg/i	25	26.8	20.1	22.1	26	27.5	28	22	25		

Table A13-13Wet Season Physicochemical of Lower and Upper Catchment<br/>stations on 27-28/10/1995

Ĵ.

Ţ

ower Ca	atchment		1	2	3	4	5	(	5	7	8	9
remp	oC		25	20.2	20.6	20.2	20.8	2	5	24	25.6	25.5
H	00		7	7	7.2	6.8	7	7	D	7.2	7	7.2
urb	NTU		40	30	35	30	38	3	0	33	35	- 45
DS .	mg/l		46	40	48	49	48	4	9	40	48	60
00	mg/l		9.2	8.5	8.3	9.6	9.8	9.		9.2	8.3	9.9
BOD	mg/l		2	2.2	2.3	3.4	3,6		3	2	2.6	3.9
Cond	uS/cm		105	95	98	96	90	9	6	98	99	110
103	mg/l		0.4	0.5	0.1	0.2	0.1	0.		0.1	0.2	0.3
102	mg/l		0.01	0.01	0.01	0.01	0.01	0.0	1 (	0.01	0.01	0.01
NH4	mg/l		0	0	0	0	0		0	0	0	0
204	mg/l		0.03	0.01	0.01	0.01	0.01	0.0		0.01	0.01	0.04
304	mg/l		2	1.5	1.5	1,9	1.8			1.9	2	2.6
Mn	mg/l		0.01	0.02	0.01	0.01	0.03			0.01	0.01	0.02
Ca	mg/l		4.6	4.8	2.1	2.2	2.2			2.2	2.4	4.7
Vig	mg/l		2.6	2	1.9	1.1	1.2			1.3	1.4	1.4
Na	mg/l		10.1	10.2	12.1	13.1	12.2			12.6	11.1	14.1
κ.	mg/l		5	6	7.2	7.5	5	5	.2	5.5	4.5	0.6
CaCO3	mg/l		55	50	30	40	42		32	38	40	60
CI	mg/l		1.2	1.3	1.4	1.2	2.4		.2	2.2	2.3	2.2
F	mg/l		0.2	0.1	0.1	0.1	0.3		.2	0.3	0.3	0.4
SiO2	mg/l		45	40	42	34	38		36	33	32	- 48
Fe	mg/l		2.3	1.2	1.3	1.1	1.1	1	.3	1.4	1.6	3.4
Hard	mg/l	]	30	32	29	25	28	· · · ·	20	22	23	4(
Upper Catchmo Stations		10	11	12	13	14	15	16	17	18	19	2
	oC	16.5	17.8	18	18	19	18.5	18.2	20.4	18.4	18.4	1
pH		7.5	7.5	7.5	7	7	75	7	7	7	7.5	
Turb	NTU	25	10	15	16	18	16	17	18	18	19	2
TDS	mg/l	10	9	10	10	11	12	15	16	11	12	1
DO	mg/l	9.2	10.1	10	10.5	9.3	8.6	8.9	9.2	9.1	9.2	9
BOD	mg/i	2	2.1	1.6	2.3	1.4	1.6	2	2	2.3	1.3	1
Cond	uS/cm	9.5	80	86	89	85	80	82	80	83	84	1
NO3	mg/l	0.85	0.11	0.12	0.11	0.1	0.12	0.14	0.11	0.11	0.13	0.1
NO2	mg/l	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
NH4	mg/l	0	Ō	0	0	0	0	0	0	0	0	
PO4	mg/l	-	-									
SO4	mg/l	2.6	2.2	2	1.6	1.8	1.8	1.1	2			1
Mn	mg/l	0.01	0.02	0.01	0.01	0.01	0.03	0.04	0.03			0.0
Са	mg/l	5	4	3.2	4.2	3.4	3.5	6	4.2			
Mg	mg/l	3.2	3.3	2.6	1.1	1.3	1.6	1.7	1.8			
Na	mg/l	10.4	9	9.8	9.3	8,9	8.7	7.2	7.9			
ĸ	mg/l	4.2	4.3	4.2	4.3	4.3	4.4	3.2	4.1			
CaCO3		26	28	30	40	32	34	26	28			:
CI	mg/l	1.3	1.3	1.3	1.5	1.6	1.1	1.1	1.2			
F	mg/l	0.3	0.2	0.1	0.3	0.3	0.2	0.3	0.2		0.3	(
siO2	mg/l	30	40	18	16	18	19	19	20			
Fe	mg/l	1.1	1.6	1.4	1.1	0.9	0.8	0.9	1.1			
Hard	mg/l	10	8	29		10	11	12	14			

Table A13-14MidWetSeasonPhysicochemicalofLowerandUpperCatchment River Stations on 6/11/95

A13-13

### ()