到了那些心理的,并且还能够到**找的关系。** 注意的,这些我们是不可以不能要做你**们代表)**

Qu.

相對語時代對相關的社

创新

一般性的潮汕, 应该自己AU, DEWEEL, DEWEEL, DEWEEL, DE

<u>]</u>].]

PEACH BATTER BERRING TE, FREETER AD PROVINCES

HIMMAN, REPUBLICHE

1.31 相当的问题,但我们有关于这些问题。

HIMBRED STRATE HERES

、単本化列型、本体知識的化量で相比了が低出的なないた別的低いが当 、「「本社」、世界人民の相関に本とな知道的化量、いたな生までは、 したが生まれ、世界人民の相関に本とな知道的化量、いたな生までは、

5 F 5 1 R 98-10 .

.

THE SOCIALIST REPUBLIC OF VIET NAM MINISTRY OF AGRICULTURE AND RURAL DEVELOPMENT (MARD)

ł

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

THE STUDY

ON

MODEL RURAL DEVELOPMENT

IN

NAM DAN DISTRICT, NGHE AN PROVINCE

FINAL REPORT

SUPPORTING REPORT

FEBRUARY, 1998

PACIFIC CONSULTANTS INTERNATIONAL PASCO INTERNATIONAL INC.

.

THE STUDY ON MODEL RURAL DEVELOPMENT IN NAM DAN DISTRICT, NGHE AN PROVINCE

FINAL REPORT

SUPPORTING REPORT

Table of Contents

APPENDIXES

ľ

APPENDIX A	: METEOROLOGY AND HYDROLOGY
APPENDIX B	: AGRICULTURE
APPENDIX C	: IRRIGATION AND DRAINAGE
APPENDIX D	: AGRICULTURAL SUPPORTING SYSTEM
APPENDIX E	: AGRO-INDUSTRY AND MARKETING SYSTEM
APPENDIX F	: ORGANIZATION RELATED WITH AGRICULTURE
APPENDIX G	: HEALTH AND SANITATION
APPENDIX H	: EDUCATION
APPENDIX I	RURAL ROAD
APPENDIX J	: RURAL ELECTRIFICATION
APPENDIX K	RURAL WATER SUPPLY
APPENDIX L	: ENVIRONMENT
APPENDIX M	: RURAL SOCIETY AND FARM HOUSEHOLD ECONOMY
APPENDIX N	: COST ESTIMATION
APPENDIX C	
APPENDIX P	: HUMAN DEVELOPMENT INDEX
APPENDIX Q	

APPENDIX A: METEOROLOGY AND HYDROLOGY

THE STUDY ON MODEL RURAL DEVELOPMENT IN NAM DAN DISTRIAT, NGHE AN PROVINAE

FINAL REPORT

APPENDIX-A METEOROLOGY AND HYDROLOGY

TABLE OF AONTENTS

 A.1.1 Objective of the Study A.1.2 Summary of the Study A.2 Data collation and Data Availability A.2.1 Data collation A.2.2 Availability of Meteo-hydrological Data A.3.1 Rainfall A.3.2 Temperature 		P	ag	<u>e</u>
A.1	Introduction	Α	-	1
		Α	-	1
	A.1.2 Summary of the Study	A	-	1
A.2	 A.1.2 Summary of the Study Data collation and Data Availability A.2.1 Data collation A.2.2 Availability of Meteo-hydrological Data Meteorology A.3.1 Rainfall A.3.2 Temperature A.3.3 Other Parameters 	А	-	3
	A.2.1 Data collation	Α	-	3
	A.2.2 Availability of Meteo-hydrological Data	Α	-	4
A.3	Meteorology	A	-	4
	A.3.1 Rainfall	Α	-	4
	A.3.2 Temperature	A	-	4
	A.3.3 Other Parameters	A	-	4
A.4	Hydrology	A	-	5
	A.4.1 General	A	-	5
	A.4.2 Rainfall Analysis	A	-	6
	A.4.3 Runoff Analysis	Α	-	8
	A.4.4 Sediment Runoff Analysis	А	-	12

و. د

ļ

LIST OF TABLES

Page

Table A.2.1	List of Meteo-hydrological Stations	
	in and around Nam Dan district	A - 13
Table A.2.2	Summary of meteo-hydrological Data	A - 14
Table A.4.1	Correlation Coefficients of Monthly Rainfall	A - 18
Table A.4.2	Annual Runoff Pattern	A - 19

LIST OF FIGURES

Page 1

Fig. A.2.1	location of meteo-hydrological Stations	
U	in and around the Study Area	A - 20
Fig. A.2.2	Bar Chart of Data Continuity	A - 21
	Climate Condition in Vinh and Do Long	A - 26
	Annual Rainfall Pattern at 16 Stations	A - 27

APPENDIX-A METEOROLOGY AND HYDROLOGY

A.1 Introduction

A.1.1 Objective of the Study

The main objective of the meteo-hydrological study is to clarify the meteo-hydrological conditions in the Study Area for the Study on the Model Rural Development in Nam Dan District of Nghe An Province (hereinafter referred to as "the Study").

The existing meteo-hydrological data and information were collected, and the field survey and investigation were carried out. Some studies and analyses were also carried out based on the data and information collected and the field survey conducted to the extent that the principal meteorological and hydrological features of the respective basins and areas were clarified.

The results of the Study are presented below.

A.1.2 Summary of the Study

(1) Field Work

The works carried out during the Field Work are summarized below.

-	Data collection	Rainfall data	(14 stations)
		Meteorological data	(2 stations)
		Hydrological data	(15 stations)
	Dustining a data analysis	and tashnalagy transfer	

- Preliminary data analysis and technology transfer
- Other field investigations

(2) Summary of Meteorology

The meteorological parameters observed in the meteorological station at Vinh in Nghe An Province which is nearest station of the study area are summarized below.

-	Annual rainfall	2,133 mm
-	Mean Temperature	24 °C
-	Average Maximum Temperature	33 °C
	Average Minimum Temperature	17 °C
	Relative humidity	85 %
-	Wind velocity	1.9 m/s
-	Sunshine	4.7 hr/day
-	Evaporation	940 mm/year

(3) Summary of Hydrology

The correlation coefficients of monthly rainfall were calculated for every two stations as shown in Table A.4.1. Each station has a correlation coefficient of more than 75% with its neighboring stations.

Considering the data availability and locations, Nam Dan and Nam Phúc stations were selected for the rainfall analysis for the Study area. Rainfall Pattern at the stations are shown below.

	:											(unit :mm)		
Name of Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	
Nan Phú c	40	32	42	71	202	115	171	199	502	364	193	49	1,980	
Nam Dan	26	28	36	65	136	149	125	230	_ 431	409	130	45	1,811	

More than 85% of the annual rainfall is expected to occur during the period from June to November, and the rainfall at Southern part of the District is expected to be higher than Northern pat.

The probability analysis was carried out on the following items and the results are Summarized below;

		Station Nam Dar	1	Station Nam Phuc							
Return Period	Annual Rainfall (mm)	Maximum 24 hr Rainfall (mm)	Consecutive Days without Rainfall (less than 5.0 mm)	Annual Rainfall (nun)	Maximum 24 hr Rainfall (mm)	Consecutive Days without Rainfall (less than 5.0 mm)					
1/100	1,075.8	446.1	88	1,226.1	569.0	92					
1/50	1,143.9	406.7	82	1,263.6	494.5	81					
1/10	1,360.7	311.5	67	1,410.8	338.7	59					
1/5	1,502.2	266.5	59	1,531.8	277.0	50					
1/2	1,815.2	195.7	47	1,877.7	195.6	40					

River specific discharges at 12 stations which have discharge record were analyzed and their runoff pattern are summarized as below;

Name of Station	River	Catchment Area (km2)	Jan	Feb	Mar	Apr	May	յու	Jul	Aug	Sep	Oct	Nov	Dec	Annual
COCNA	LAM	417	20	15	15	14	19	26	31	40	90	82	54	28	435
CUA RAO	LAM	12,800	1	6	5	5	8	19	29	45	47	26	15	9	222
DUA	LAM	20,800	8	7	6	6	10	18	24	39	53	45	20	11	246
YEN THUONG	LAM	22,300	9	1	6	6	11	18	25	41	\$7	- 54	25	12	273
HUONG DAI	NGAN TRUOI	408	52	37	- 33	29	33	45	50	67	140	191	149	. 76	901
HOA DUYET	NGAN SAU	1,880	38	28	26	24	36	34	36	49	162	: 195	102	- 54	785
KHE LA	KHE THIEM	28	8	8	6	7	6	11	16	26	75	78	21	10	272
MUONG XEN	NAM MO	2,620	10	8	7	7	13	27	48	63	55	33	18	12	304
NGIIIA DAN	INEU	3,970	11	9	8	8	14	27	35	41	75	73	32	17	349
NGHIA KHANH	HIEU	4,000	16	13	12	12	20	28	29	49	84	84	33	19	400
QUY CHAU	HIEU	1,500	28	24	20	20	34	52	57	79	116	109	57	37	632
SON DIEM	NGAN PHO	790	39	30	28	28	39	42	41	55	171	149	97	53	771

Runoff Pattern (l/s/km²)

At Lam River, the amount of river discharge is rising up from July and the maximum discharge is observed in October. The low flow season starts from January and lasts until May. Comparing with rainfall pattern at Nam Dan district, the high and the low flow seasons occur with one (1) month delay from the rainy and the dry seasons, respectively. About 75% of annual runoff occurs during the period from July to November, and 50% during the period from September to November. Discharge during March and April are considered to be the lowest.

The relationship between catchment area and annual runoff, minimum and maximum were analyzed and following equation are expected as the relation between catchment area and annual runoff:

Runoff (mm/year) = 10773^{*} [Catchment Area (km²)]^{-0.285} Minimum Specific Discharge (l/s/km²) = 117.6^{*} [Catchment Area (km²)]^{-0.241} Maximum Specific Discharge (l/s/km²) = 3435^{*} [Catchment Area (km²)]^{-0.411}

Based on the 23 years of discharge record at the Yen Thuong station which is the nearest station to Nam Dan District at Lam river, mean, low and high flow were analyzed and the results are summarized as below;

STATION YEN TRUONG											
Return Period	Mean Discharge (m ³ /s)	Maximum Discharge (m ³ /s)	Minimum Discharge (m ³ /s)								
1/200	219.2	10,901.8	44.0								
1/100	235.9	9,785.0	46.6								
1/50	255.8	8,696.5	49.8								
1/10	323.3	6,241.3	61.0								
1/5	370.4	5,173.4	69.1								
1/2	482.5	3,626.9	89.2								

There are several tributaries in the Study area and the direct runoff from the rainfall is drained through these tributaries. The amount of the peak runoff should be varied depending on the scale of catchment area. Therefore, the peak runoff discharge was analyzed applying the Rational Formula.

Based on the discharge and suspended sediment record at the Yen Thuong, suspended sediment runoff was analyzed and result are summarized as below;

	Jan	Feb	Mar	Apr	May	Jun	ไป	Aug	Sep	Oct	Nov	Dee	Annuat
Mean	1.1	0.7	0.8	0.9	3.8	6.7	17.2	33.1	45.1	31.3	6.3	1.8	148.8
Max.	7.5	5.0	2.9	3.2	26.8	25.2	70.6	109.6	184.3	81.6	28.3	6.9	365.4
Min.	0.2	0.1	0.1	0.1	0.5	0.6	0.4	2.4	2.3	1.0	0.1	0.0	51.6

A.2 Data Collection and Data Availability

A.2.1 Data Collection

There are 14 rainfall stations, 2 meteorological stations and 14 hydrological stations in and around the Nam Dan District as shown in Fig. A.2.1 and Table A.2.1. The monthly meteorological and hydrological parameters for those stations were corrected and those parameters are summarized as shown in Table A.2.2. Considering the locations and data availability, daily rainfall data at Nam Dan and Nam Phúc, daily water level at Nam Dan and Yen Thuong and daily discharge data at Yen Thuong were corrected.

A.2.2 Availability of Meteo-hydrological Data

The availability of meteo-hydrological data is shown in Fig A.2.2.

A.3 Meteorology

Summary of climate conditions at Vinh and Do Luong are summarized as shown in Fig. A.3.1.

A.3.1 Rainfall

While rainfall occurs throughout a year in the Nam Dan District, it is extremely variable and undependable. The seasonal rainfall pattern at 16 stations are shown in Fig. A.3.2.

The mean monthly rainfall is higher from June to November than that from December to May, and these two (2) periods are generally referred to as the rainy and the dry seasons, respectively. More than 60 % of annual rainfall is expected from August to October, and about 80 % of annual rainfall is observed from June to November.

A.3.2 Temperature

The monthly temperature data at Vinh is summarized as below:

Summary of Temperature in Vinh

[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Mean T (°C)	17.4	18.0	20.4	24.0	27.7	29.4	29.6	28.6	26.9	24.3	21.6	18.8	23.9
Max T (°C)		27.8	31.6	35.7	37.7	37.6	37.8	36.9	34.7	31.6	29.5	27.3	32.9
Mini, T (°C)	9.9	11.3	13.6	16.9	20.8	23.1	23.6	23.5	21.7	18.1	14.1	10.7	17.3

The mean, maximum and minimum annual temperature was estimated as 24 °C, 33 °C and 17 °C respectively. The temperature in May to September is quite high throughout the year.

A.3.3 Other Parameters

(1) Relative Humidity

The monthly average relative humidity (%) in Vinh was estimated as shown below.

Summary of Relative Humidity (%)

110

									_				
ſ	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
ľ	89.2	91.1	91.2	88.7	81.2	75.6	73.9	80.1	86.2	87.2	86.6	86.7	84.8

The mean annual relative humidity was estimated as 85%. The relative humidity at Vinh seems not vary throughout a year.

(2) Sunshine

The monthly average of sunshine duration (hr/day) at Vinh is shown below.

Summary of Sunshine (hr/day)

												·····
Jan.	Feb.	Mar.	Apr.	May	Jun.	յոլ	Aug	Sep.	Oct.	Nov.	Dec.	Annual
4' LAIR .												
25	1 7	24	4.4	75	68	2 2 2	6.6	5.6	52	3.5	3.1	4.7
2.3	1.7	2.4	4.4	1.3	0.0	1.4	0.0	2.0				

The mean annual duration of sunshine was estimated as 4.7 hr/day. The mean monthly duration of sunshine is generally higher during the period from May to October than other months.

(3) Wind Velocity

The average monthly mean wind velocity (m/sec) in Vinh is calculated as shown below.

Summary of Wind Velocity (m/s)

									1				······
ſ	Jan.	Feb	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.	Annuat
	Jan.	1.00.	1,101.										
- 6	1.0	10	17	1 0	2.0	24	25	10	15	18	17	1.7	1.91
	1.8	5.1	1.7	1.7	Z.V	Z,4	2.3	1.7	1.7	1.0			

The mean annual wind velocity was estimated as 1.9 m/sec. The wind velocity during the period from May to July is higher than that of other months.

(4) Evaporation

The annual mean monthly evaporation (mm/day) in Vinh is shown below.

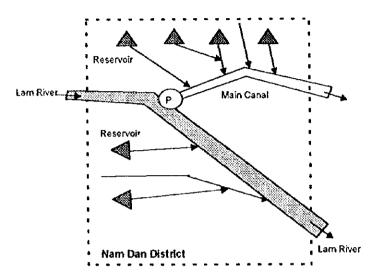
Summary of Evaporation (mm/day)

Jan. 1	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
1.3	1.0	1.2	1.8	3.5	5.0	5.7	3.9	2.2	2.0	1.8	1.7	2.6

The mean annual evaporation is estimated as 2.6 mm/day. The mean monthly evaporation is higher during the period from May to August than that from September to February.

A.4 Hydrology

A.4.1 General

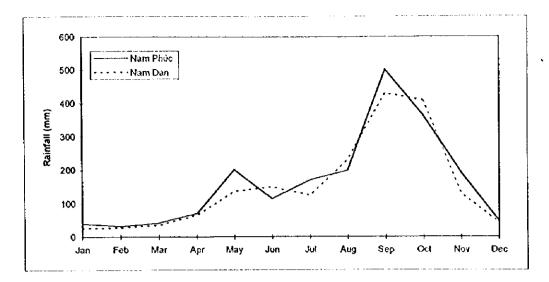

The Lam River which is one of main rivers in Nghe An Province is flowing down in the Nam Dan District from the central of western part to southern part. Approximately 500 m^3 /s of annual mean discharge of the Lam River is estimated based on the discharge record at the Yen Thuong hydrological station with 22,300 km² of its' catchment area. The highest flow season is observed at the period August to October with more than 800 m^3 /s of monthly mean discharge. The lowest flow season is occurred from February to April with less than 200 m^3 /s.

Nam Dan District is divided into two zones such as North-eastern and South-western part by the Lam River. All tributaries which originated at mountainous area of Western part of the District are flowing into the Lam River.

There is the main canal under the South Nghe An Irrigation Project supported by World Bank at the central part of the District and flowing from Nam Dan sluice to Ben Thuy Sluice with 33.2 m³/s of flow capacity. Most of all tributaries originated at mountainous area at North part of the District are flowing into this main canal.

There are several reservoirs at mountain foot of the Northern and Western parts of the District and total water storage capacities of reservoirs are more than 100,000 m³.

The drainage system of the Nam Dan District is illustrated as shown below.


A.4.2 Rainfall Analysis

(1) Correlation Coefficient of Monthly Rainfall among the Stations

The correlation coefficients of monthly rainfall were calculated for every two stations as shown in Table A.4.1. Each station has a correlation coefficient of more than 75% with its neighboring stations.

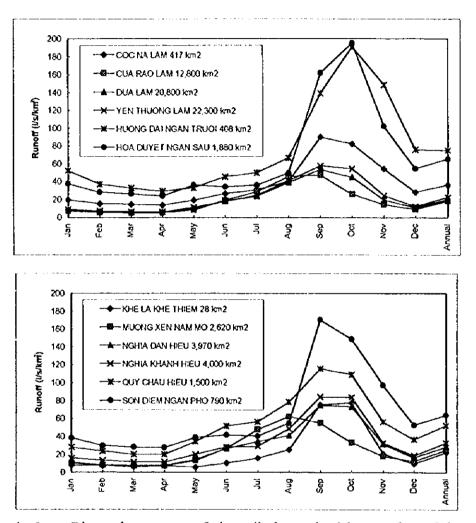
(2) Rainfall Pattern at Nam Dan and Nam Phúc Stations

Considering the data availability and Locations, Nam Dan and Nam Phúc Stations were selected for the rainfall analysis for the Study area. Rainfall Pattern at these stations are shown below.

More than 85% of the annual rainfall is expected to occur during the period from June to November, and the rainfall at Southern part of the District is expected to be higher than Northern pat.

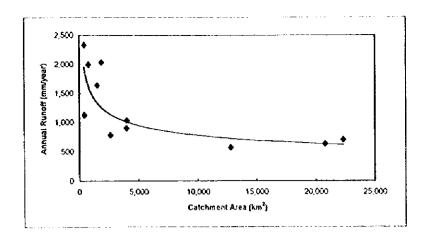
(3) Probability Analysis

The probability analysis was carried out on the following items and the results are shown below:


		Statio	on Nam Dan	· · · · · · · · · · · · · · · · · · ·	· - · · ·
Return Period	Annual Rainfall (mm)	Maximum 24 hr Rainfall (mm)	Maximum 3 days Rainfall (mm)	Consecutive Days without Rainfall (less than 0.1 mm)	Consecutive Days without Rainfall (less than 5.0 mm)
1/200	1,017.0	485.3	755.6	83	93
1/100	1,075.8	446.1	687.9	73	88
1/50	1,143.9	406.7	621.3	64	82
1/10	1,360.7	311.5	468.2	- 44	67
1/5	1,502.2	266.5	400.0	37	59
1/4	1,559.8	250.9	377.0	34	57
1/2	1,815.2	195.7	298.8	26	4
		Statio	on Nam Phuc		
Return Period	Annual Rainfall (mm)	Maximum 24 hr Rainfall (mm)	Maximum 3 dais Rainfall (mm)	Consecutive Days without Rainfall (less than 0.1 mm)	Consecutive Days without Rainfall (less than 5.0 mm)
1/200	1,196.9	648.5	1,161.6	69	10
1/100	1,226.1	569.0	1,021.0	65	9
1/50	1,263.6	494.5	889.1	60	8
1/20	1,332.8	403.2	727.2	53	
1/10	1,410.8	338.7	612.5	47	59
1/5	1,531.8	277.0	502.7	41	50
1/4	1,587.1	257.5	467.9	39	
1/2	1,877.7	195.6	357.4		41

A.4.3 Runoff Analysis

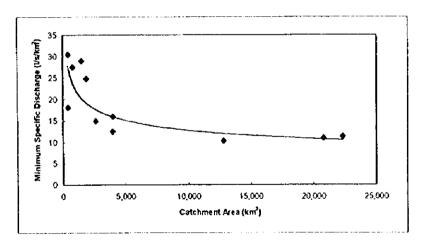
(1) Characteristics of Runoff


1) River Discharge at Selected Stations

River specific discharges at 12 stations which have discharge record are summarized in Table A.4.2, and their runoff pattern are summarized as below;

At Lam River, the amount of river discharge is rising up from July and the maximum discharge is observed in October. The low flow season starts from January and lasts until May. Comparing with rainfall pattern at Nam Dan district, the high and the low flow seasons occur with one (1) month delay from the rainy and the dry seasons, respectively. About 75% of annual runoff occurs during the period from July to November, and 50% during the period from September to November. Discharge during March and April are considered to be the lowest.

The relationship between catchment area and annual runoff is shown below;


Following equation is expected as the relation between catchment area and annual runoff:

Runoff (mm/year) = 10773* [Catchment Area (km²)]^{-0.285}

(2) Low Flow Analysis

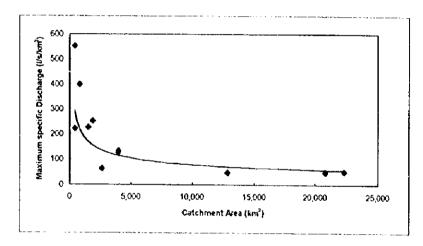
1) Relation between Low Flow and Catchment Area

Based on the discharge record at 12 stations around the Nam Dan District, relationship between specific discharge and catchment area for low flow was analyzed as below;

Following equation is expected as the relation between catchment area and annual runoff:

Minimum Specific Discharge (l/s/km²) = 117.6*[Catchment Area (km²)]^{-0.241}

2) Probability Analysis for Low Flow


Based on the 23 year of discharge record at the Yen Thong station which is the nearest station to Nam Dan District at Lam River, low flow was analyzed and the results are summarized as shown below;

	STATION YEN THUON	G
Return Period	Mean Discharge (m ³ /s)	Minimum Discharge (m ³ /s)
1/200	219.2	44.0
1/100	235.9	46.6
1/50	255.8	49.8
1/20	289.4	55.3
1/10	323.3	61.0
1/5	370.4	69.1
1/4	390.2	72.5
1/2	482.5	89.2

(3) High Flow Analysis

1) Relation between High Flow and Catchment Area

Based on the discharge record at 12 stations around the Nam Dan District, relationship between specific discharge and catchment area for high flow was analyzed as below;

Following equation is expected as the relation between catchment area and annual runoff:

Maximum Specific Discharge $(l/s/km^2) = 3435*[Catchment Area (km^2)]^{-0.411}$

2) Probability Analysis for High Flow

Based on the 23 year of discharge record at the Yen Thuong, high flow was analyzed and the results are summarized as shown below;

STATION	YEN THUONG
Return Period	Maximum Discharge (m ³ /s)
1/200	10,901.8
1/100	9,785.0
1/50	8,696.5
1/20	7,293.0
1/10	6,241.3
1/5	5,173.4
1/4	4,819.0
1/2	3,626.9

3) Direct Runoff from Rainfall

There are several tributaries in the Study area and the direct runoff from the rainfall is drained through these tributaries. The amount of the peak runoff should be varied depending on the scale of catchment area. Therefore, the peak runoff discharge was analyzed applying the Rational Formula described below;

Qf = f I A/3.6

Where Qf : Peak flood discharge (m^3/s)

- f : Flood runoff coefficient (considering the condition of the Study area, a coefficient of 0.7 was applied)
- I : Rainfall intensity on the duration time (mm/hr)
- A : Catchment area (km^2)

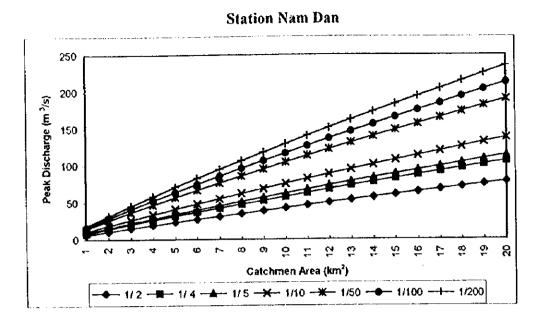
Due to a lack of hourly rainfall data, rainfall intensity was estimated using the following formula:

 $I = R_{24}/24 (24/T)^{n}$

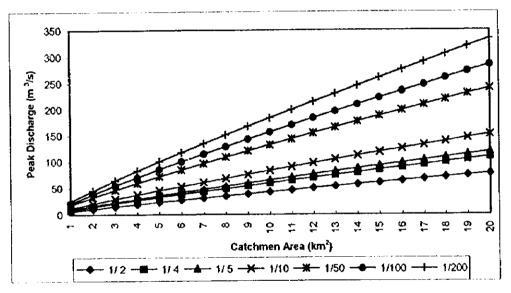
11110

Where R_{24} : Maximum 24 hr rainfall (mm)

- T : Duration time (hr)
- n : Coefficient (considering the condition of the Study area, a coefficient of 1/2 was applied)


The time duration should be varied depending on the condition of catchment area. Therefore, time duration was estimated using the following formula:

 $Tp = C A^{(0.22)} I^{(-0.35)}$


Where Tp : Time duration in minutes (min)

C : Coefficient (considering topographic and land use condition in the Study area, a coefficient of 350 was applied)

Using those formula and Maximum rainfall at Nam Dan and Nam Phúc, the peak runoff discharge for average year was estimated as shown below;

Station Nam Phúc

A.4.4 Sediment Runoff Analysis

Based on the discharge and suspended sediment record at the Yen Thuong, sediment runoff was analyzed and result are summarized as shown below;

		Sum	тагу о	n Susp	enaea	Seom	tent Ka	mon (OIVKII	17		
Jan	Feb	Mar	Apr	May	hm	Jul	Aug	Scp	Oct	Nov	Doc	Annual
1.148	0.727	0.810	0.888	3.769	6.662	17.248	33.091	45.091	31.303	6.256	1.777	148.770
7.484	4,964	2.927	3 205	26.836	25.175	70.579	109.638	184.284	81.609	28.343	6.872	365.436
		0.0%	0.078	0.495	0.637	0.375	2.355	2.347	1.000	0.099	0.024	51.644
		1.148 0.727 7.484 4.964	Jan Fob Mar 1.148 0.727 0.810 7.484 4.964 2.927	Jan Feb Mar Apr 1.148 0.727 0.810 0.888 7.484 4.964 2.927 3.205	Jan 1°8b Mar Apr May 1.148 0.727 0.810 0.888 3.769 7.484 4.964 2.927 3.205 26.836	Jan 1°8b Mar Apr May Jun 1.148 0.727 0.810 0.888 3.769 6.662 7.484 4.964 2.927 3.205 26.836 25.175	Jan Feb Mar Apr May Jun Jul 1.148 0.727 0.810 0.888 3.769 6.662 17.248 7.484 4.964 2.927 3.205 26.836 25.175 70.579	Jan Feb Mar Apr May Jun Jul Aug 1.148 0.727 0.810 0.888 3.769 6.662 17.248 33.091 7.484 4.964 2.927 3.205 26.836 25.175 70.579 109.638	Jan Feb Mar Apr May Jun Jul Aug Scp 1.148 0.727 0.810 0.888 3.769 6.662 17.248 33.091 45.091 7.484 4.964 2.927 3.205 26.836 25.175 70.579 109.638 184.284	Jan Feb Mar Apr May Jun Jul Aug Scp Oct 1.148 0.727 0.810 0.888 3.769 6.662 17.248 33.091 45.091 31.303 7.484 4.964 2.927 3.205 26.836 25.175 70.579 109.638 184.284 81.609	Jail Jail <th< td=""><td>Jan Feb Mar Apr May Jun Jul Aug Scp Oct Nov Doc 1.148 0.727 0.810 0.888 3.769 6.662 17.248 33.091 45.091 31.303 6.256 1.777 7.484 4.964 2.927 3.205 26.836 25.175 70.579 109.638 184.284 81.609 28.343 6.872</td></th<>	Jan Feb Mar Apr May Jun Jul Aug Scp Oct Nov Doc 1.148 0.727 0.810 0.888 3.769 6.662 17.248 33.091 45.091 31.303 6.256 1.777 7.484 4.964 2.927 3.205 26.836 25.175 70.579 109.638 184.284 81.609 28.343 6.872

Summary of Suspended Sediment Runoff (ton/km ²)	
---	--

APPENDIX A: TABLES

T

.

Table A.2.1 List of Meteo-hydorological Stations in and around Nam Dan District

	(I) LIST	OF RAINFA	LL STATIO	N
No.	Name of Stations	Latitude	Longitude	Period
1	Nghi Loo	18 ° 47 N	105 ° 39 E	1961-1994
2	Than Dong	18 ° 48 N	105 ° 20 E	1961-1994
3	Nghi Quang	18 ° 42 N	105 ° 40 E	1961-1994
4	Nghi Van	18 ° 53 N	105 ° 32 E	1961-1994
5	Cho Trang	18 ° 34 N	105 ° 38 E	1961-1994
6	Thanh Minh	18 ° 43 N	105 ° 22 'E	1961-1994
7	Dai Son	18 ° 50 N	105 ° 27 'E	1961-1994
8	Nam Phue	18 ° 36 N	105 ° 35 E	1961-1994
9	Linh Cam	18 ° 31 N	105 ° 34 Έ	1961-1994
10	Son Pho	18 ° 31 N	105 ° 25 E	1961-1994
11	Son Le	18 ° 34 N	105 ° 21 Έ	1961-1994
12	Yen Thuong	18 ° 41 N	105 ° 23 E	1961-1994
13	Nam Dan	18 ° 42 N	105 ° 29 'E	1961-1994
14	Nghi Lam	18 ° 48 N	105 ° 35 E	1961-1994

	(2) Lis	t of Meteorol	ogical Stations	L	
No.	Name of Stations	Latitude	Longitude	Period	
15	Vinh	18 ° 40 N	105 ° 40 E	1956-1989	
16	Do Lung	18 ° 54 N	105 ° 18 E	1956-1990	

• •

			(3)	List of Hyd	rological St	ations			
No.	Name of Stations	Latitude	Longitude	Period	Catchment Area (km²)	River	Water Level	Discharge	Suspended Sediment
	COC NA	19° 5 N	104 ° 45 E	1961-1976	417	LAM	0	0	0
h	CON CUON	19 ° 4 N	104 ° 48 Έ	1960-1976	-	LAM	0		
3	CUA RAO	19 ° 17 N	104 ° 51 Έ	1959-1994	12,800	LAM	0	0	0
4	DO LUONG	18 ° 54 N	105 ° 54 'E	1965-1976	-	LAM	0		
5	DUA	18 ° 59 N	105 ° 57 'E	1959-1981	20,800	LAM	0	0	0
6	YEN THUON	18°41 N	105 ° 91 E	1968-1994	22,300	LAM	0	0	0
7	NAM DAN	18 ° 42 'N	105 ° 76 E	1961-1994	-	LAM	0		
8	HUONG DAI	18 ° 23 'N	105 ° 60 E	1970-1985	408	NGAN TRUOI	0	0	
	HOA DUYEI			1969-1994	1,880	NGAN SAU	0	<u> </u>	0
10	KHE LA	19° 0 N	105 ° 66 E	1959-1972	28	KHE THIEM	0	0	
	MUONG XE	19 ° 24 N	104 ° 73 Έ	1972-1994	2,620	NAM MO	0	0	
·	NGHIA DAN	the second s		1961-1981	3,970	HIEU	0	0	0
_	NGHIA KHA		105 ° 82 E	1968-1994	4,000	HIEU	0	0	0
	QUY CHAU		105 ° 85 Έ	1961-1994	1,500	HIEU	0	<u> </u>	0
	SON DIEM	18 ° 30 N	105 ° 88 'E	1961-1994	790	NGAN PHO	0	0	0

Table A.2.2 Summary of Meteo-hydrological Data (1/4)

Name of Station	Jan	Fcb	Mar	Apr	Mav	Jun	Jul	Aug	Scp	ы О	Nov	а С	Annual
Nehi Loc	34.7	33.4	37.1	52.4	151.3	112.2	114.1	238.2	488.9	480.2	130.6	55.4	1928.5
Then Dong	5 LF	44	45.6	96.4	184.9	152.1	115.9	225.6	427.9	504.8	127.3	78.8	2041.0
Nobi Onano	26.1	42.2	30.1	50.5	107.8	65.0	57.6	230.5	604.3	331.9	142.3	68.5	1756.7
Nohi Van	17.6	22.0	29.9	67.9	157.3	166.8	104.3	225.6	604.4	493.4	151.3	85.0	2125.4
Cho Trang	40.1	33.2	42.1	63.6	123.7	119.2	106.7	211.2	485.5	553.5	176.4	71.0	2026.1
Thanh Minh	58.0	41.6	63.9	92.7	194.3	157.1	107.2	235.3	522.4	291.8	153.0	80.1	1997.6
Dai Son	28.3	27.9	37.3	90.2	153.5	139.8	112.1	243.4	497.3	376.8	127.9	42.2	1876.7
Nam Phuc	40.3	32.2	42.0	70.9	201.7	115.2	171.2	198.5	501.8	363.8	193.5	48.9	1979.9
Linh Cam	34.5	27.8	39.9	64.8	150.0	133.2	136.9	209.1	471.9	474.4	147.5	57.1	1947.1
Son Pho	51.3	41.3	53.8	73.6	182.7	157.8	142.1	273.9	574.6	393.3	147.7	72.2	2164.3
Son I e	40.9	30.1	43.5	80.7	147.4	133.9	134.3	196.5	428.4	383.0	124.1	42.5	1785.3
Ven Thuong	39.3	38.7	41.8	85.5	170.0	149.2	118.7	252.7	436.5	539.4	131.4	60.8	2064.1
Nam Dan	25.9	28.2	35.5	65.5	136.3	149.2	124.9	229.9	430.8	409.1	130.3	45.1	1810.7
Nchi Lam	28.1	31.1	41.5	91.9	153.9	122.2	143.0	265.5	465.7	441.5	140.7	37.9	1963.0
Vinb	515	41.5	45.0	65.0	135.8	120.0	118.3	223.1	522.6	553.7	180.6	76.0	2133.1
Doling	29.4	313	38.0	83.2	156.7	150.6	158.7	250.7	402.2	383.3	106.6	39.7	1830.3
		1	>>>	!		T							

(1) Summary of Rainfall Data (mm)

Ĵ

Table A.2.2 Summary of Meteo-hydrological Data (2/4)

, ,

(2) Summary of Climate Conditions

, Z	STATION : VINH	Jan	Feb	Mar	Apr	May	Jun	Įuľ	Aug	Scp	Qet	Nov	Dec	Annual
1	I MONTHLY RAINFALL (mm)	52	41	45	65	136	120	118	223	523	554	181	76	2133
2	2 MAXIMUM DAILY RAINFALL (mm)	17.6	12.5	16.3	26.5	61.1	59.2	61.5	94.4	163.1	176.1	61.3	27.4	776.7
ື	3 MONTHLY AVERAGE AIR TEMPERATURE (°C)	17.4	18.0	20.4	24.0	27.7	29.4	29.6	28.6	26.9	24.3	21.6	18.8	286.6
4	4 HIGHEST AIR TEMPERATURE (°C)	26.2	27.8	31.6	35.7	37.7	37.6	37.8	36.9	34.7	31.6	29.5	27.3	394.4
w۱.	5 LOWEST AIR TEMPERATURE (°C)	9.9	11.3	13.6	16.9	20.8	23.1	23.6	23.5	21.7	18.1	14.1	10.7	207.4
6	6 MONTHLY AVERAGE RELATIVE HUMIDITY (%)	89.2	91.1	91.2	88.7	81.2	75.6	73.9	80.1	86.2	87.2	86.6	86.7	1017.6
1	7 MINIMUM RELATIVE HUMIDITY (%)	50.9	56.4	52.2	48.9	44.2	42.8	42.7	47.2	51.3	51.2	48.6	49.5	585.9
1 00	8 MONTHLY TOTAL HOURS OF SUN SHINE	74.9	49.7	71.9	132.2	223.7	204.3	229.6	198.4	168.6	154.5	104.9	93.1	1705.8
<u>م</u>	9 LOWER LAYER CLOUD COVER (10 scale)	7.8	8.7	8.2	6.5	4.6	4.4	3.6	4.5	4.9	6.0	6.8	7.1	73.1
2	10 CLOUD COVER (10 scale)	8.4	9.1	8.8	8.1	7.8	8.5	8.0	8.5	7.7	7.5	7.6	7.7	97.7
	11 MONTHLY EVAPORATION (mm)	39.4	28.8	37.2	54.3	104.9	151.3	172.2	118.1	67.4	59.5	54.6	51.0	938.6
10	12 MONTHLY AVERAGE WIND SPEED (m/s)	1.8	1.8	1.7	1.9	2.0	2.4	2.5	1.9	1.5	1.8	1.7	1.7	22.6
No	STATION : DO LUONG	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Scp	g	Nov	Dec	Annual
	MONTHLY RAINFALL (mm)	29	31	38	83	157	151	159	251	402	383	107	40	1830
104	2 MAXIMUM DAILY RAINFALL (mm)	10.5	12.6	16.6	32.4	53.0	55.6	70.3	91.8	128.1	139.4	48.0	19.2	677.5
[m]	3)MONTHLY AVERAGE AIR TEMPERATURE (°C)	17.5	18.3	20.6	24.3	27.5	28.9	29.1	28.0	26.6	24.3	21.4	18.7	285.3
4	4 HIGHEST AIR TEMPERATURE (°C)	27.5	29.4	32.6	36.0	37.7	37.5	37.8	36.7	34.8	32.6	30.5	28.3	401.3
S	SLOWEST AIR TEMPERATURE (°C)	9.6	10.9	13.5	16.9	20.6	22.9	23.5	23.3	21.6	17.8	14.2	10.5	205.2
9	6 MONTHLY AVERAGE RELATIVE HUMIDITY (%)	87.1	88.9	89.1	87.6	82.6	79.7	78.2	83.6	87.1	86.4	85.9	85.1	1021.4
1	7 MINIMUM RELATIVE HUMIDITY (%)	47.4	54.5	51.5	51.5	46.6	47.5	45.1	49.7	51.2	50.0	45.1	45.9	586.0
~ ~]	8 MONTHLY TOTAL HOURS OF SUN SHINE	73.9	52.8	71.2	116.4	189.6	184.7	203.3	167.8	151.2	133.1	102.9	101.7	1548.4
6	9 LOWER LAYER CLOUD COVER (10 scale)	8.0	8.7	8.5	7.3	5.9	5.8	5.1	5.9	5.9	6.6	7.0	7.3	82.1
0	10 CLOUD COVER (10 scale)	8.4	9.0	8.8	8.1	7.5	8.1	7.6	8.2	7.5	7.4	7.5	7.7	95.7
-	11 MONTHLY EVAPORATION (mm)	41.0	34.0	39.2	53.4	87.1	108.3	122.1	84.1	58.0	56.9	52.2	51.7	788.0
3	12 MONTHLY AVERAGE WIND SPEED (m/s)	1.3	1.3	1.3	1.3	1.3	1.4	1.5	1.3	1.3	1.3	1.2	1.3	15.9
					ĺ		ļ							

Table A.2.2 Summary of Metco-hydrological Data (3/4)

(3) Summary of Monthly Water Level Data (cm)

			Catchmen			Ī			.			-				
No.	Name of Station	River	t Area	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Qa	Nov	Dec	Annual
			(km2)							1	1.1.1					
1	COC NA	LAM	417	1,866	1,659	1,658	1,856	1,863	1,875	1,877	1,887	1,929	1,928	1,906	1,879	1,882
2	CON CUONG	LAM	-	1,562	1,554	1,549	1,551	1,569	1.613	1,646	1,708	1,731	1,679	1,607	1,575	1,612
3	CUA RAO	LAM	12,800	4,351	4 342	4,338	4,339	4,362	4,417	4,462	4,532	4,532	4,462	4,397	4,367	4,408
4	DOLUONG	LAM		996	996	994	994	1,001	1,012	1.029	1,067	1.119	1,098	1,009	994	1,026
5	DUA	LAM	20,800	1,138	1,126	1,119	- 1,119	1,148	1,206	1,244	1,325	1,388	1,347	1,223	1,163	1,212
6	YEN THUONG	LAM	22,300	227	208	1%	195	234	284	321	403	471	462	333	257	299
7	NAM DAN	LAM	-	172	152	142	142	179	233	262	328	399	387	279	206	
8	HUONG DAI	NGAN TRUOI	408	781	769	763	757	. 760	769	769	781	820	850	838	801	788
9	HOA DUYET	NGAN SAU	1,880	241	223	218	212	232	228	219	243	348	419	339	275	269
30	KHELA	KHE THIEM	28	4,430	4,430	4,428	4,428	4,427	4,427	4,426	4,431	4,442	4,4%	4,437	4,431	4,432
11	MUONG XEN	NAM MO	2,620	6,894	6,888	6,883	6,885	6,903	6,939	6,980	7,004	6,990	6,951	6,919	6,903	6,928
12	NGHIA DAN	HIEU	3,970	3,620	3,609	3,604	3,604	3,631	3,677	3,687	3,721	3,793	3,790	3,697	3,646	3,673
13	NGHIA KHANH	HEU	4,000	3,452	3,443	3,437	3,435	3,460	3,485	3,483	3,525	3,590	3,588	3,506	3,466	
14	QUY CHAU	HNEU	1,500	5,332	5,317	5,311	5,311	5,336	5,359	5,362	5,390	5,432	5 426	5,368	5,340	5,357
15	SON DIEM	NGAN PHO	790	495	486	484	480	493	493	490	502	566	601	557	518	514

(4) Summary of Monthly Maximum Water Level Data (cm)

			Catchmen]										
No.	Name of Station	River	t Area	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1			(km2)			11			1.1							
1	COC NA	LAM	417	1,879	1,880	1,882	1,899	1,987	1,987	2,020	2,113	2,238	2.109	2,017	1,900	1,993
2	CONCUONG	LAM		1,571	1,566	1,566	1,575	1,653	1,750	1,833	1,934		1,872	1,669	1,589	1,712
3	CUARAO	LAM	12,800	4,361	4,351	4,358	4,365	4,444	4,579	4,700	4,796	4,753	4,609	4,436	4,381	4,511
4	DOLUONG	LAM		1,002	1,002	1,003	1,004	1,039	1,091	1,186	1,290	1,377	1,352	1,075	1,004	1,119
5	DUA	LAM	20,800	1,153	1,138	1,140	1,148	1,255	1,359	1,464	1,593	1,676	1,630	1,318	1,190	1,339
6	YEN THUONG	LAM	22,300	250	229	228	237	344	421	496	631			453	299	
7	NAM DAN	LAM		196	172	170	179	283	362	425	527	594	593	392	248	345
8	HUONG DAI	NGAN TRUOI	408	821	795	802	823	867	905	900	1,014	1,149	1,184	1,079	881	935
9	HOA DUYET	NGAN SAU	1,\$80	288	252	263	270	401	360	348	498	745	852	578	387	437
10	KHE LA	KHE THIEM	28	4,434	4,436	4,435	4,446	4,450	4,463	4,459	4,495	4,541	4,579	4,465	4,443	4,470
1 II	MUONG XEN	NAM MO	2,620	6,901	6,894	6,899	6,910	6,965	7,028	7,121	7,167	7,119	7,017	6,939	6,910	6,989
12	NGHIA DAN	HIEU	3,970	3,636	3,618	3,632	3,667	3,7%	3,879	3,950	4,035	4,234	4,329	3,883	3,689	
13	NGHIA KHANH	HIEU	4 000	3,469	3,458	3,464	3,473	3,585	3,607	3,619	3,791	3,924	3,907	3,587	3,488	3,614
14	QUY CHAU	HIEU	1,500	5,341	5,333	\$,340	5,366	5,476	5,543	5,572	5,728	5,832	5,806	5,486	5,364	5,516
15	SON DIEM	NGAN PHO	790	526	509	517	531	661	615	617	712	974	1,039	767	588	676

(5) Summary of Monthly Minimum Water Level Data (cm)

No.	Name of Station	River	Catchmen L Area (km2)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1	COCNA	LAM	417	1,860	1,855	1,853	1,850	1,849	1,856	1,854	1,859	1,872	1.886	1,882	1,870	1,862
2	CONCUONG	LAM		1,556	1,549	1,544	1,542	1,547	1,565	1,585	1,619	1,638	1,613	1,584	1,566	1,576
3	CUA RAO	LAM	12,800	4,337	4,337	4,331	4,328	4,334	4,360	4,388	4,428	4,418	4,408	4,377	4,357	4,370
4	DOLUONG	LAM	-	988	989	987	983	985	992	99 3	998	1,019	1,007	990	986	993
5	DUA	LAM	20,800	1,129	1,119	1,10	1,107	1,112	1,142	1,163	1,202	1,254	1,224	1,181	1,148	1,158
٤	YEN THUONG	LAM	22,300	211	195	18)	173	183	216	233	277	346	314	278	232	237
7	NAM DAN	LAM	-	153	139	126	119	129	162	183	218	269	260	226	179	
8	HUONG DAI	NGAN TRUOI	408	764	758	751	745	743	744	74)	744	757	782	791	778	
9	HOADUYET	NGAN SAU	1,880	219	210	203	195	193	195	184	188	214	256	260	238	213
10	KHE LA	KHE THIEM	28	4,428	4,428	4,427	4 425	4,423	4,422	4,420	4,422	4,429	4,432	4 433	4,429	4,426
11	MUONG XEN	NAMMO	2,620	6,889	6,884	6,879	6 877	6,883	6,905	6,932	6,949	6,949	6,927	6,909	6,898	6,907
12	NGHIA DAN	HIEU	3,970	3,611	3,602	3,595	3,591	3,590	3,615	3,617	3,635	3,665	3,683	3,655	3,631	3,624
13	NGHIA KHANH	HIEU	4,000	3,414	3,437	3,430	3,424	3,427	3,441	3,441	3,451	3,493	3,492	3,476	3,453	
14	QUY CHAU	INEU	1,500	5,319	5,311	5,304	5,300	5,302	5,319	5,323		5,359		5,347		
15	SON DIEM	NGAN FHO	790	481	476	473	468	466	469	463	466	484	506	509	495	480

Table A.2.2 Summary of Meteo-hydrological Data (4/4)

(7) Summary of Monthly Mean Discharge (m3/s)

No.	Name of Station	River	Catchmen 1 Area (km2)	Jan	Feb	Mar	Apr	May	ງໄປກ	Jul	Aug	Sep	Oct	Nov	Dec	Annual
ł	COCNA	LAM	417	8	6	6	6	8	11	13	17	38	34	23	12	15
2	CUA RAO	LAM	12,800	91	74	66	67	106	245	369	582	604	333	186	120	237
	DUA	LAM	20,800	170	138	123	122	201	379	497	\$08	1,109	932	408	231	426
	YEN THUONO	LAM	22,300	205	161	141	139	252	402	\$54	915	1,282	1,211	548	276	507
5	HUONG DAI	NGAN TRUOI	408	21	15	13	12	14	19	20	27	57	78	61	31	31
6	HOA DUYET	NGAN SAU	1,880	21	53	50	45	68	64	67	93	305	367	192	102	123
7	KHE LA	XHE THIEM	28	Ő	0	0	0	0	Ô	0	1	2	2	1	0	1
8	MUONG XEN	NAM MO	2,620	26	21	19	20	- 35	71	126	164	145	88	48	33	66
9	NGHIA DAN	HIEU	3,970	44	34	31	31	57	107	137	164	298	291	126		
10	NGHIA KHANH	HIEU	4,000	64	54	48	47	80	114	137	196	338	336	131	76	133
	OUY CHAU	HIEU	1,500	43	36	31	30	52	78	ذه	118	173	164	85	55	19
12	SON DIEM	NGAN PHO	790	30	24	22	22	31	33	32	43	135	118	<u>71</u>	42	51

(8) Summary of Monthly Maximum Discharge (m3/s)

No	Name of Station	River	Catchmen 1 Area	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Armunt
			(km2)	,	10			72	63	107	183	316	183	103	19	93
1	COCNA	LAM	417	12	10	13	28									
2	CUA RAO	LAM	12,800	105	132	200	113	309	744	1,283	1,706	1,490	721	291	219	610
3	DUA	LAM	20,800	207	167	177	193	552	931	1,586	2,164	2,819	2,529	733	363	1,035
4	YEN THUONG	LAM	22,300	266	209	221	231	664	976	1,462	2,319	2,851	2,878	1,121	419	
5	HUONG DAI	NGAN TRUOI	408	44	28	32	56	90	173	179	353	547	654		99	
6	HOA DUYET	NGAN SAU	1,880	300	78	100	114	294	228	290	591	1,404	1,349	636	317	
7	KHELA	KHE THIEM	28	0	1	1	2	2	4	9	21	46	66		2	13
8	MUONG XEN	NAMMO	2,620	32	26	32	40	87	196	397	494	399	186		39	
9	NGHIA DAN	HIEU	3,970	56	42	80	89	246	396	683	742	1,465	1,669			
10	NGHIA KHANH	HIEU	4,000	85	11	91	98	316	353	563	1,045	1,651	1,722		-	
11	QUY CHAU	HIEU	1,500	57	49	57	85	231	338	446	723	943		and the second s		.
12	SON DIEM	NGAN PHO	790	\$0	35	41	58	197	178	163	541	1,186	812	419	102	315

(10) Summary of Monthly Minimum Discharge (n3/s)

No.	Name of Station	River	Catchmen L Area (km2)	Jan	Feb	Mar	Apr	May	Jun	ไป	Aug	Sep	Oct	Nov	Dec	Annual
1	COC NA	LAM	417	7	6	5	5	4	6	5	7	10	15	12	9	8
		LAM	12,800	79	66	57	52	59	109	161	253	317	194	141	102	133
	DUA	LAM	20,800	146	122	104	95	105	182	237	352	522	413	279	189	229
4	YEN THUONG	LAM	22,300	167	135	112	101	119	185	219	351	624	469	347	214	
5	HUONG DAI	NGAN TRUOI	408	14	. 11	9	8	7	8	7	8	11	21	25	19	12
6	HOA DUYET	NGAN SAU	1,880	49	41	35	31	31	32	23	25	51	88	88	65	47
7	KHE LA	KHE THIEM	28	0	0	0	0	0	0	0	0	0	0	0	0	0
8	MUONO XEN	NAM MO	2,620	23	i 9	16	15	19	34	61	79	82	56	38	28	39
9	NGHIA DAN	HIEU	3,970	36	30	24	22	22	40	41	58	\$6	410	76	52	50
10	NGHIA KRANH	HIEU	4,000	54	47	4 0	36	38	53	53	65	116	116	90	62	64
11	QUY CHAU	HIEU	1,500	37	31	25	23	23	37	40	51	74	73	62	46	43
	SON DIEM	NGAN FHO	790	22	19	17	16	16	17	14	15	23	39	36	28	22

(11) Summary of Suspended Sediment Data (g/m3)

No.	Name of Station	River	ment Area	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	No /	Dee	Annual
	COCNA	LAM	417	8	6	6	6	8	11	13	17	38	34	23	12	15
2	CUA RAO	LAM	12,800	20	22	36	45	212	476	499	528	521	165	43	21	215
	DUA	LAM	20,800	31	35	40	41	146	217	283	353	338	244	106	36	156
	YEN THUONG	LAM	22,300	46	41	48	56	105	134	226	273	247	190	96	52	127
5	HOA DUYET	NGAN SAU	1,880	36	37	39	40	87	66	70	117	120	169	92	43	76
	NGHIA DAN	HUEU	3,970	30	28	32	40	88	129	122	198	264	228	102	32	801
<u> </u>		HUEU	4,000	51	51	52	62	125	157	171	249	402	382	83	49	153
	OUY CHAU	HIEU	1,500	27	26	31	62	- 111	123	125	192	207	133	53	30	93
	SON DIEM	NGAN PHO	790	29	33	33	42	79	59	62	95	125	112	53	31	63

16	TATION : DO LUONG	83.45%a	319	75.13%	370	82.73%	8	91.24%	63	PU-22-08	402	88.75%	227	92.82%	262	73.56%	124	84.26%	401	85.02%	218	82.11%	352	85.ZZ %	210	86.10%	297	\$5.80%	110	407
15	STATION : STATION : DO VINH LUONG	93.76%	319	78.90%	369	86.45%	100	93.04%	63	95.20%	401	80.19%	<u>я</u>	84.02%	261	78.62%	727	93.23%	400	\$8.10%	218	87.91%	351	94.11%	210	91.96%	396	90.34%	855	
14	STATION NGHI NAN	91.69%	250	85.77%	301	89.26%	8	93.36%		88.	334	86.87%	210	93.13%		,ér		5		801		\$8	331	93.37%	162	969716	328			
13	STATION : DAUSON NAM NAM 2000 PHO SON LE THUONG NAM DAN LAM	92.21%	315	79.25%	359	15.29%	8	%\$6,95%			392	86.31%	220	.68		79.	i			91.68%		.68		96,79%	207					
12	STATION : YEN THUONG			75.						6		94.95%	1	92.7		Ľ	63			95		92.34%	156							
11	STATION : SON LE	30.36%		178 178		79.6		92.33%		68		82.88%		88.31%	260	-84	222	92		ğ	216									
10	: NOITATS	XX.52%		3		80.15%		%10'06		-16	215	82.86%		89.03%	216	78	185	94.30%	214											
6	STATION : LINH LINH	00 07%		9		78.91%		93.43%		2		85.		88.		82	219													
×	STATION : NAM Duric			Y.		76.37%			57			74.		22	22															
7	STATION : DAI SON	47 70°.	C81			l.	8			85.79%	259	X7.07%	225																	
9	STATION : HANHT	MVIM AV	1951	1040 30	261	80.24%	76	91.06%	50	80.46%	727																			
ş	STATION : STATION : CHO THANH	1XANG	215	Sur OFF	992	NO 55%	66	01.58%	63																					
4	STATION : NGH VAN	10.00	BC70*+8	20	00.000 77		63	5																						
er.			04.47.58	70	10.1 C.K.	:										T														
2	STATION : THANH		81.01%	200																										
-	STATION : STATION : STATION : NGHI LOC THANH NGHI																-													
			0 0	2		1	ر 3 ز		ر زز		ر ز ز	1	ບ. ບໍ່:	20	ן. ני	2	5 5 5	20	ບ : ບ :	2	0. 07	20	י קינ			Z	ບ ບີ	2 c	5 2 5 2	<u>5 2</u>
			I STATION : NGHI LOC		2 STATION : THANH DONG IC.C	CONTRACTOR AND	NUMBER OF STATION		4 STALLON : NOR VAN		SIAILON : CHU IKANG		ANIM HARAFI : NOTTATA 3		7 STATION : DALSON		8 STATION : NAM PHUC		9 STATION : LINH CAM		10 STATION : SON PHO		STATION : SON LE		12 STATION : YEN THUONG		STATION : NAM DAN		STATION : NGHI LAM	HNIV : NOTIATS 21
			1 STATION : NGHI I		2 STATION : THAN	A MARKAN AND AND A MARKAN A	A NUMBER OF STATION : NOTION		4 STATION : NUML V		SIVILON: CHO I		NAHT : NOTTATS 3		7 STATION: DAUSC		& STATION : NAME		9 STATION : LINH C		10 STATION : SON P		IL STATION : SON.		12 STATION : YEN T			13 STATION : NAM DAN	13 STATION : NAMI	13 STATION : NAM DAN

Table A.4.1 Correlation Coefficient of Monthly Rainfall among the Stations

Note : C.C Correlation Coefficient (%), Nd Number of Data

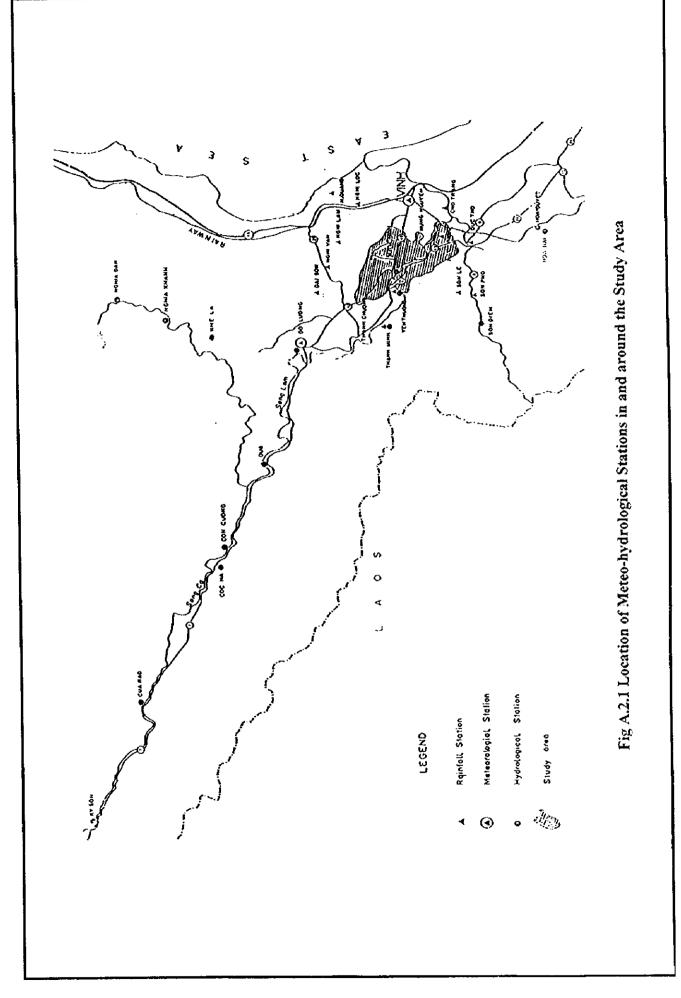
Table A.4.2 Annual Runoff Pattern

No	Name of Station	River	Catchment Area (km ²)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oa	Nov	Dec	Annuał
1	COC NA	LAM	417	19.7	15.4	14.8	13.7	19.5	26.4	30.9	49.1	90 1	82 3	54.2	28.3	363
-	CUA RAO	LAM	12,800	21	5.8	5,1	5.3	83	19.2	28.8	45.5	47.2	26.1	14.5	9.4	18.5
3	DUA	LAM	20,800	8.2	5.6	5.9	5.9	9.7	18.2	23 9	38 8	53.3	41.8	196	<u> </u>	20.5
4	YEN THUONG	LAM	22,300	9.2	7.2	63	62	113	18.0	24.8	41.0	57.5	54.3	24.6	12.4	
5	HUONG DAI	NGAN TRUOI	408	520	35 9	32.6	29.2	33.2	45.4	49.8	66.5	139.5	190.9	148.9		75.1
6	HOA DUYET	NGAN SAU	1,880	37.6	28 2	26.4	24.0	36.2	34.1	35.8	49.5	162.0	195.2	102.1	54.4	
7	KHELA	KHE THIEM	28	8.2	7.6	6.4	7.5	6.0	10.6	16.1	256	75.5	71.9	20.7	9.9	
h	MUONG XEN	NAM MO	2,620	10.1	82	72	7.4	13.3	272	48.0	62.6	55 3	33 5	18 2	12.5	
	NGHIA DAN	HIEU	3,970	11.0	8.6	7.8	7.9	143	26.8	34 5	41.4	75.1	73.4	31.7		
10	NGHIA KHANH	HIEU	4,000	15.9	135	11.9	11.7	20.1	28.4	29.3	49.0	84,4	840	32.9		
_	OUY CHAU	HIEU	1,500	28.4	23.7	20.4	20 2	34.4	52.0	55.5	78 5	115.5	109.1	56.6		
1	SON DIEM	NGAN PHO	790	385	29.8	28.4	27.8	39.0	41.8	40.7	55.0	170 5	149.0	97.4	529	64.2

(1) Summary of Monthly Mean Specific Discharge (l/s/km²)

(2) Summary of Monthly Maximum Specific Discharge (Us/km ²)

			_													·
No.	Name of Station	River	Catchment Area (km2)	Jan	કિલ્ઇ	Mar	Apr	May	Jun	Jut	Aug	Sep	Oct	Nov	Dec	Annual
1	COC NA	LAM	417	28.9	24.8	30.8	67.5	173.1	150.1	257.5	440.0	758 2	439.9	246 2	45.8	
	CUA RAO	LAM	12,800	82	10.3	15.6	8.9	24.1	58.1	100.3	133.3	116.4	55.4	22.7	17.1	
	DUA	LAM	20,800	9.9	8.0	85	9.3	26.6	44.7	76 2	104.0	135.6	121.6		17.5	£ ł
_	YEN THUONG	LAM	22,300	13.9	9.4	9.9	10.4	29.8	43.8	65.6	104.0	127.9	129.1	50.3		
5	HUONG DAI	NGAN TRUOI	408	108 3	68 3	79.2	135.8	221.8	423.9	439.6	865.4	1340.8	1602.3	1099.1	2436	552.4
6	HOADUYET	NGAN SAU	1,880	159.5	41.4	533	60.7	156.6	121.5	154.4	314.2	746 8	717.4	338.4	168.4	
7	KHE LA	KHE THIEM	28	15.1	19.7	21.1	59.0	83.3	153.8	326.9	751.5	1665 3	2383.0	158.5	67.6	475.8
8	MUONG XEN	NAM MO	2,620	123	10.0	122	15.2	33.4	74.8	151.7	188.6	152.4	71.0	272	14.8	
- s	NGHIA DAN	HIEU	3,970	14 2	10.6	20 2	22 3	619	99.6	172.0	186 9	369.0	420.3	110.8	26.9	126 2
10	NGHIA KHANH	HIEU	4,000	21 2	17.8	22.6	24.6	789	88 2	140.7	261.2	4128	430.5	759	<u> </u>	
1 ii	OUY CHAU	HIEU	1,500	38.0	329	38.3	55.6	153.9	225.3	297.2	482.2	628 3	577.1	135.8		
	SON DIEM	NGAN PHO	790	63 2	44.4	523	732	249.1	225.6	206.9	684.5	1501.2	1028.0	529.8	129.1	398.9


(3) Summary of Monthly	y MinimumSpecific	Discharge (Us/km [*])

No.	Name of Station	River	Catchment Area (km2)	Jan	Feb	Mar	Арг	Мау	Jun	ોન	Aug	Sep	Qu	Nov	Dec	Amust
1	COCNA	LAM	417	15.8	13.4	123	10.9	10.6	139	128	16 2	25.1	35.1	29.4		
2	CUARAO	LAM	12,800	62	5.1	4.4	4.1	4.6	8.5	126	19.7	24.8	35.1	11.0		10.4
5	DUA	LAM	20,800	7.0	5.9	5.0	4.6	5.1	8.7	11.4	15 2	25.1	19.9	13.4		11.0
	YEN THUONG	LAM	22,300	7.5	6.1	5.0	4.5	5,4	83	9.8	15.7	28.0	21.0	15.5		
5	HUONG DAI	NGAN TRUOI	408	34.0	27.9	232	19.8	18 2	19.3	173	19.0	276	515	61.5	-461	30,4
6	HOA DUYET	NGAN SAU	1,880	25.8	22.0	18.4	16.6	166	17.0	124	13.3	272	467	47.0	345	24.8
7	KIE LA	KHE THIEM	28	6.3	5.4	4.6	3 5	25	2.4	1.7	32	118	148	11.4		6.1
	MUONG XEN	NAMINIO	2,630	8.7	72	62	5.7	7.1	13.1	23.4	30.3	31.4	213	14.4	10.8	
5	NGHIA DAN	HIEU	3,970	9.0	7.5	6.1	5.7	56	10.1	10.4	146	21.8	27.6			
Ē	NGHIA KHANH	HIEU	4,000	13.6	118	10.0	8.9	9.6	13 2	13 2	163	29.1	289	22.4		
Ti	OUY CHAU	HIEU	1,500	24.7	20.4	16.4	15.0	15.5	243	26.5	33.7	49.4	487	41,4		
12	SON DIEM	NGAN PHO	790	276	24.0	21.2	200	20,1	21.2	172	191	29.3	49.2	457	34.9	27.4

APPENDIX A: FIGURES

.

È

	1000
(1) Rainfall Data	
(1) Raini	

-																
1949 1970 1971 1972														•		
																= = = = = = = = = = = = = = = = = = =
1960 1961 1962 1963 1964																
1 636 1 6361 1 6361 1 6361 1 6361																
No Name of Station	Nghi Leo	Than Done	Nebi Ouany	Nchi Van	Cho Trane	Thanh Minh	Dai Son	Nam Phuc	Linh Cam	Son Pho	Son Le	Yen Thuong	Nam Dan	Nebi Lam	╏	Do Lune

				1										-		
			ţ			╏	╉			:						
1.00										:						
			-				 			_	_			_		
											:					
2																
ŝ				- Ji												
383																
_			-	-		_	-									
1987			-	4												
19x6																
1985																
19%4								_								
_	Ō															
1983																
19X2																
1981																
0%61			H													
64.61				_											5	
1978																
1977								0								
9761			ľ	:		Thanh Minh						ſ				
tation		T	•	្ន	Cho Trang 🔳 🖷 🖷 🖷	l g		3	Linh Cam		1	-	Nam Dan		Γ	
No. Name of Station	Nobi Loo	Than Done	Nohi Quang	Nahi Ven	Cho Ta	Thanh M	Dan Son	Nam Phuc	U Linh C	Son Pho	Soule	Yen Thurne	Nan D	Nohi Lam	4ur/	2
6	-	- 0		4	~	0	~	×	6	Ģ		5	1	: <u>-</u>	Ē	

note :
Data Complete Data not Complete

Fig. A.2.2 Barchart of Data Continuity (1/5)

1

A - 21

Data
rological
Mcteo
3

10 a.c.

													1000 1001 1000 1000 1000 1000 1000 100											
No Parameter	1 MANTHEY BAINEALL (mm)	- T	MONTHLY AVERAGE AULTEMPERATURE FOR	4 HIGHEST AIK TEMPEKATURG (SC)	> (DOWENT AUX TRANSPORTICION (OC)	6 MONTHELY AVERAGE RELATIVE HUNDRY (*)	7 MUNITIM RELATIVE HUMBITY (%)	K MONTHELY TOTAL HOURS OF SUN SHINE	9 LOWER LAYER CLOUD COVER (10 schle)	10 CLOUD COVER (10 Male)	11 MONTHLY EVAPORATION (mm)	(MONTHLY AVERADE WIND SPPED (MW)	No. Parameter	1 MONTHLY RAINFALL (mm)	2 MAXEMUM DAELY RAINFALL (mm)	3 MONTHUY AVERAGE ALK TEMPERA	4 HIGHEST AIR TEMPERATURE (oC)	LOWEST AIR TEMPERATURE (oC)	6 MONTHLY AVERAGE RELATIVE HUMBITY	7 MINIMUM RELATIVE HUMIDITY (**)	9 LUDWER LAYER CLOUD COVER (10	10 CLOUD COVER (10 scale)	1 MONTAL VANDORATION CHART	12 MONTHEL AVENNER WEND SEDAN

STATION: DO LUONG													19x4 19x5 19x6 19x7 19xX 19x9 1990 1991 1972 1973													its not Complete
	1965							2 2 2 2 2 2					1945									-				note : E Data Complete 🛛 Data not Complete
	Parameter	MOVING KADARALL (mm)	2 (MANDADADY RADVALL (MM)	HOHEST AR TEMPERATURE (AC)	LOWEST AR TENDERATURE (6 MONTHLY AVPRAGE RELATIVE HUMBITY (>)	7 MONANA RELATIVE HUMBHY (*)	X MONTHLY TOTAL HOURS OF SUN SHINE	9 ILOWER LAYER CLOUD COVER (10 Male)	10 CLOUD COVER / 10 scale)	MONTHLY EVAPORATION (mm)	12 MONTHLY AVENAGE WIND SPEED (ms)	Paramoter	MONTHLY RAINFALL (mm)	MAXEMUM DAILY RAINFALL (mm)	MONTHLY AVERAGE AD TEMPERATURE (oC)	HOHERT AUR TIENPERATURE (AC)	LOWEST AIR TEMPERATURE (CO)	A MONTHEY AVERAGE RELATIVE HUMBLY (**)	2 NUMBRICK RELATIVE HUNDRITY (*)	X MONTHLY TOTAL HOURS OF SUN SHEWE	9 [LOWER LAYER CLOUD COVER (10 vale)	10 CLOUD COVER (10 wate)	11 MONTHEY EVAPORATION (mm)	1 MONTHALY AVERAGE WIND SPEED (m/s)	

Fig. A.2.2 Bar Chart of Data Continuity (2/5)

Level
Vater
Ξ

T	w l		<u>s</u> ľ				<u>.</u>					-	i	Ĩ	<u>s</u>
2	8			Ē		è	-								
2			1	R			1		E						
1						<u> </u>	-			•		_	•		
		•	Ļ		_	-					P	-	-		
2		-	9				-		-			-			
1		-			8			8				-			
	1					2		ī					-		
ł									Π						
						ĩ									
	1														
												_			
	-									9					
		9	-			-				Ц		-		9	
-			-		-		-		=		-			H	
			-		Н				ē	Η	÷,				Ħ
Š				٠	đ					Π	٥	-	Ē		
					α		•							۳.	
				٠											
2		•											-		
-												•	-		
		-	4					-			-				9
<u> </u>		9		H		-				P	-	P	$\left \cdot \right $		
2/2						Π				H					
		H										Ē			
					8								•		
202					٦					•	٥				
2					٠		8								
_						M	•								
	_	•	-												
ĉ			Р								-				
~			H	-	H	H		H		H		H	Ĺ	H	-
-			H			-		-		\vdash		H		H	i
		F	Η	ī		-	Ħ			Н	-	Н	•	Ē	F
9					÷,	-				Π					
					q										
8						_								Ë	
-				-					-						-
• -	L											H	\vdash		
				÷	-	-	-				-	H		ri	
1965			S.			H					Η				
											Π				
			8				9								
3			ŝ												
~			8		n		1						L		8
						_				L			L		•
.								-					┡		
205	F	-		F	F	\vdash		┝╌	F	+-	┢╌┥	╞	⊢		88
i	F		Ē	-			F		Ē	┢╌			┢─	F	Ē
	Ī	t				H		1		Í	H	Ē	F		
1961								Γ	-	[t-		
Ž.			8					E		Γ			L		
_		Ē	8					Ĺ			Ĺ		Ĺ		
	E	┡		Ĺ				-		L			1_	1	
ŝ	F	┢╌		┝	Ļ			┣	╞	-	H	Ľ	⊢	F	ŀ
-	F	⊢		┡	F	-	-	┞-	F			ŀ	┝	ł	ŀ
	F	t	F	+-	÷				╞	┢─		H	⊢	f	┢┛
2	F	t⊷	t	1-		F	t	⊢	Ē	⊢	H		⊢	t	┢
ŝ	F	t		t	ĩ		1-	t	Ē	t-	┢	Ē	┢	ϯ	t
	F	F		t-			1	t			1		ſ	t	t
	L			Ľ			Ľ						Γ	Γ	Γ
5	L	Ĺ						Ĺ			Γ		L		L
2	Ľ	Ĺ	•	Ľ			Ĺ	Ĺ	Ĩ		Ĺ		Ĺ	Ĺ	Ĺ
		Ĺ	•	L	1		Ĺ	Ľ	1		Ĺ	Ē	Ĺ	Ļ	Ĺ
Ę				ĺ		c		Í	1		1 MUONG XEN		Þ	1.	1
tatic.		CON CUONG		ç		6 YEN THUONG		Ĭ	9 HOA DUYET	1	Ø	12 NGHIA DAN	13 NGHIA KHANH	HOUY CHAU	4
ŝ	1	13	CUA RAD	DO LUONG		Ę	7 NAM DAN	X HUONG DAI	ß	10 KHE LA	6	P	12	Ę	NSISON DIEM
Tec.	COC NA	2	Ĩź	B	<	2	5	ō	2	긆	ß	Ē	Ē	Ŗ	ß
<u>د</u>	lğ	18	E	8	S IDUA	ž	2	Ę	ĝ	E	ß	12	Įĝ	ß	ļĝ
ž		÷	<u>۴</u>	-	÷	÷	÷		1	₩÷	+		•	4	+ -
No. Name of Station	F	14	۲.	4	ŝ	۱v	5	~	P	ł۵	12	[I≘	17	12

Ţ	1		•												
§.			-		-			_					•		•
ř,	_			-		Ē				Ľ		÷	•		
-	-		_	-				-				÷.		Д	
1	-	_		-	-			-	-	Ļ.		19		Ц	
8	-		-1		H	H	-	-		-	-	2.1			
~	+		H	븝	H	H		-		-	-	0			
-	-				H	H		-		-					
c, l	-		=		Ħ	H	H	-	-			÷			
8	-			-	H	Ħ							-		
ł	-	-				Ħ		÷		$\left \cdot \right $			П		-
-	-		Ĩ	-	Ť			-		-	-		٦	-	
a l	-1	-					Ē	-1			Ē				
661	-									:	ŏ	-	đ		
	1					Π	ā		Ō		Ξ	-			
			Π						٥	÷					
8								1		1					
2[i,												
. 1								-	a						
		D								1					
686									•		8	1			
ž,										Ľ	é	Ŀ.			
			•				Ľ			\square	•	Ļ			
										4		1.1			
<u>886</u>			Н				H			H		-			
~					-			Ŀ		-					
			Н		-			H	H	÷	H	+			
	_		F					-	H	H	E	-			
5					H	H	H	\vdash	H	\vdash	H	-	H	ŀ	
-	_		H		H	H	H	\vdash	ŀ		H			•	
	-				H	H		~			H	H	÷	1	
	-					H	H		T		H			g	-
1986								-	-			-		-	
	-							Η	-		Ē	H	-	-	
Η			-	Ē	Ĩ							-			
3			Ē		Ē	F		Η		Ē		1			
1985		ī	٦		Í	F		\square					Ē	ī	Ē
					•			1		Ē					
											a				
9%4										•					
5															
						Ē			ŧ.						
										•		Ľ			۰
1983			B		•			Ц							
-								Ц		1			1		-
	Щ		Ē	-		L	L	니							2
							L					_			
9%2	-				E		Ŀ	\square	•	1					
1	Н	╞	╞	H	F			-		E	H	-			F
\vdash	Н	H	Ë	H			╞	H		ŀ			-	F	Ē
_	Н	2 CON CUONG E E E E E E E E E						μ	8			1	13 NGHLA KHANH # # # # # # # # #	F	
1981	\vdash		F	F		E	I-	\vdash					E	F	E
	H	F		F	f	F	F	F	F			ŀ	╞	5	F
-	⊢	Ē		Ē			f	⊢			f	-	Ē		Ē
õ	Γ	Ē	Ē	Ĩ	Ĩ	Ē	t	h	t	t			ī	tī	tē
1980	<u> </u>	ī	Ē	Í	tī	Ī	t	F	F	tē	t	-	Ē	Ē	Ē
	_	Ĩ	E			Ē	Ĩ			Ī					
		Ĩ			Ē	-						Ľ			
6261	Ē	Ň													
≏.								Ē				_			
	L			Í	Ĩ	Ē	Į	Ĺ	Ē	Ĩ		3	×	Ű	
	_		L			e	Į.	ļ		Į.				•	Ĩ
3461	-	•	Ľ	[Į.	(ª	1	∟	■			L	1	-	1
É	L		Ľ	Į.	Į.	1	Ļ	 		I.		L	1		ľ
\vdash	-			Ļ	E	Į.	Ł	⊢			Į.	-	1		
~		Ļ	Ľ	Ł	Ľ	ľ	Ļ	-	Ļ	Ľ		L			
1772	-	-	ŀ	ŀ	E	╞	╞	<u> </u>		Ľ		1	Ē	Ē	Ļ
		ŀ	╞	ł	┞╴	╞	╞		Ľ	F	E	┣	Ē	-	╞
H	-		┦╸	F	┍	┨╴	•	⊢	F	┞	┣	-	1	ſ	F
No. Name of Stanon		ļ.,	L	۱.	Γ	ģ	1.		1	 .		12 NGHIA DAN	陋		1
Ĝ		Іž	~	b	1	Įĝ	z	١Z	E	11	Ø	Z	Į	13	5
N.	.≤	ğ	Ĭ	Įΰ	E	١Ę	K	15	١Ş	4	Į6	9	P	Ę	1
ě	COCINA		3 CUA KAO	4 DOLUONG	5 DUA	E	7 NAM DAN	X HUONG DAI	12	10 KH0: LA	ß	Ē	Ŷ	14 OUY CHAU	15 SON DIEM
Z	g	8	B	18	B	E	Ľ	Ę	P	뎡	ß	1S	Ş	5	Įĝ
	_	<u> </u>			4	4 ⁽									

Data not Complete

Fig. A.2.2 Bar Chart of Data Continuity (3/5)

Ţ

A - 23

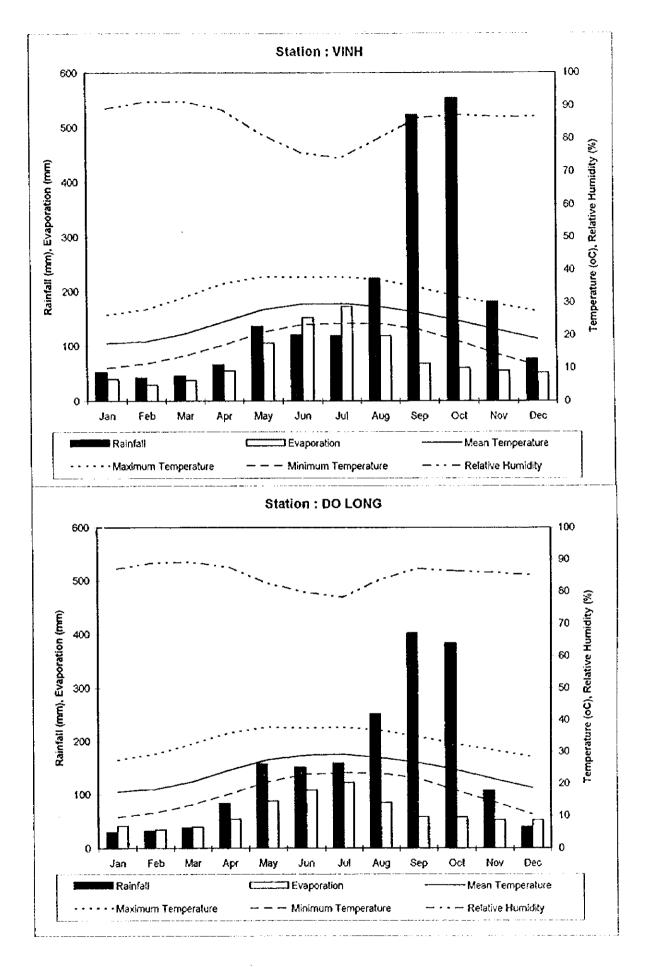
ŀ			9		Ţ	Ţ			Ţ	Ţ		1			~
ł		-	*								ł			385	-
Ì	-	Ū	1	Ì					T						
Ţ			1	_	-	1	_		Ţ	1		1	1		
	-	-	ŀ	_	4				1	-	4			1983	ŀ
۰.		-	1	+					╞	╉	-	╢		Ĩ	┞
t	긑	ī	i					T	T	1				÷	ŀ
			Ē						J	Ţ	1			180	
ļ		1	ŀ	_			<u>i i</u>			4				2	
Į	릠		+					-		-				-	
	=			_						╉		٦ł		-	ŀ
ł			-	-		_				Ť		-		1661	ľ
		8	l					-			_			Ц	
			Ľ							-#					
			ľ						+					000	ŀ
			fi							=†		Ī	Ę		ŀ
1			I					5							ľ
			ľ								_	•		6861	
			+-	1	-		***				+			ĥ	
			ł	╂	計	計		÷	H		┥	딁	긝	\vdash	ł
~			t								┨			1984	ŀ
1			Ī								1			N.	ļ
_	_		4	4										<u> </u>	ļ
		F	+					-		-	-		4	~	
			t											1987	ł
i	ē		t	_									Ξj		
			1	2	-	•								ſ	ļ
ŝ								_	4			-	륀	1986	ļ
	╞	H			-		-	-	-	╂	-	•			ł
-			t		-		-	-1	t						İ
1201			ľ					-	1		-			1985	
						•			_			•	<u>_</u>	۳	
-	₽	ŀ	4		_	-	믝	_	•	-				┢	
5	╞		+		-	-	∃	-1	-		-				
8	Ē	t	t			Ē	-				-			1984	
			ľ											L	
		ļ	-				•		_	•	-		-		
8	Ľ		-	# #	_		╞		_	-			-	19X3	
	E	t				8				ī	-				
		t	_	,											
ç		ŀ	1											280	
-			4	-				-		-			-	Ĩ	
	ł	ł	+	-			H		_	-			4	⊢	
2		t	1		-			-					H.	=	
ĝ		ŀ												1981	
														L	
.,			ļ		\vdash	\vdash		$\left - \right $	μ	-	<u> </u>		H.		
2	ŀ		1			Η		Н		-	-		H	0001	
	h	t		-			П	\square			\vdash	Ē	Ē		1
		ŀ										Π		Γ	
ç		ŀ												1070	
		+					H	-	Η		_	F	H	ľ	
	ŀ	+		-	⊢	\vdash		H				F	H	┢	
2	H				┢				F	Ē	-	ſ	Η	×	2
2	L	t			Γ				ŀ			Γ		107X	
	ſ	Į			ſ	Ĺ		Ľ	Ĺ		Ĺ		μ	Ļ	_
>	\mathbf{F}	╀	_		-	┣		\vdash	┝		┡	┢	H		
ŝ	$\left \right $	╀			┢─	ł	F	\vdash	-	븝	┝	┢╌	Н	1077	
	┢	t			┢┈	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F	-			1-	H.		
_	t	t				1		h	F	F	I	ſ	TI '	Ŀ	
ALO: N		1			ž	2	5		N H	3	N S	5	L.		5
2	.	ł	Ş	Í	Įž	ß	3	4	ÿ	À	Ż	Ŧ	E		1
C S F	1		Ž	<	Ę	Ĭð	2	E I	õ	Ħ	¥₽ H	2			1
		}	2 CUA KAO	3 DUA	A YEN THUONG	S HUONG DAI	6 HOA DUYET	V KHELA	N MUONG YEN	9 NGHLA DAN	TO NGHIA KHANH	1 OUY CHAU	12 SON DIEM	NA Nema of Vision	j
-	T.	-t	1	e*,	17	1	<u>ہ</u>	1~	×	5	0	-	64	- F	ĩ

66	1	_			1	1	1		T		+	_
-	1	1			-	1	1		Ţ			_
<u>8</u>	-				1	1	1		Ţ			_
	-	-			Ţ	-	1		_[!	•]•		-
100	1				1				_			
		_				1	- [1		-			
966		ļ			-	1	T					
						1				_		-
6861		ļ			-	-	-1	•				_
					-							
X86				9 8 	1							-
-										s [
1987												
-		~					-				•	
19%6	Ц							ė]	-			
7				1		-		-				•
1985											-	
i	Н	-				_		-			-	
1984	H				•							_
ž	Н							-	÷			
19X3	H			Ĩ					-	-		
51					-	-			_	B		-
1980	Н											-
Ĕ	H		2 2		\vdash						B	
1981	\vdash		# # E #									1
2	$\left \right $				-							L
0%61												-
ŝ	\square	_										2
64.61	Н											
ľ	Н	H			Ē				Ц			
1978	H	\square	2		F			_	•			
Ê	H	\square			F	•						
1977	F				F			-				1
²	F				F				-			
8				ÿ	_				. N		Γ	Ī
No. Name of Station	COCINA	2 CUARAO		A YEN THUONO	HUONG DAI	ž	7 KHELA	50	9 NGHIA DAN	A K F	11 QUY CHAU	
	4	1	3 DUA	IC.	Iź	15	13	6	ι÷	ΕŦ	12	Ľ

note : 🔳 Data Complete

Fig. A.2.2 Bar Chart of Data Continuity (4/5)

.


(5) Suspended Sediment

		I	_	ŀ			1		ł	_	!			ł		
		ł	-	ľ		t	ł	_	t	_	ť	ï				
		ļ	_	Ŧ		ľ	4		Į	-	ļ		-	1		
,				ł				-	ł	•	f			ľ	-	
2121				t				ľ	t		Ī		1	Ĭ	Ē	
-				ł	-	Ļ	-		ł	_	ŀ	-		4		
				ł		ŀ	1	-	ł		t			i		
	l	Ĩ		1					1		l			1	1	
-				1		ł			$\frac{1}{1}$	-	ľ		F		1	
17/4			5						t		Ī					ij
2	I	ł			3	ŀ		1	Į	_	ŀ	Z			9]
-				1		ł					ľ				È	
2		1		ı					İ				i	ł		i
2	2		-		2	1		1	4		ļ		1			1
	h		ŀ								ł		f			ł
11	Ē	•				ļ			l		1		ŀ		1	
-	ŀ		ŀ			ł				_	-	D	ľ			
•	t		t	Ì		ť		h	1	•	j	_	t		t	3
2	ſ					I		L			Į	_	ŀ			
-	ŀ		ł					ŀ			+	-	ť	ì	ľ	3
		Ĩ	t			ţ					Ì				ŀ)
1970	ŀ		ŀ			ļ	١	ŀ				_	ł		ŀ	
	ł	-	t			ł		t			ł		ť		t	
~	ŀ		ľ			1		ŀ			ļ		ļ		ŀ	
200	ł		ľ			4		ŀ					1	ļ	ł	
	ł		t	Ē	ŀ	ł	i	t					t	Í	t	1
~	ľ		ŀ	-		1		L	-				I		ŀ	
ŝ			ł				-	ŀ							ł	
			t	ļ	l			t			•		İ		İ	ĩ
~	Į		ſ		ŀ	ļ	_					ŀ	ł		ļ	
ŝ	•		ł	-	f		••	ť		ľ		-	╉			
	ţ	ē	ļ	P				þ		ľ			1		ţ	
ć	ļ	e	1					ł		ľ		╞	1		ł	
5001	3	Ē	ł		t		_	f		t		ŀ	J	_	t	
_	l		Į		ŀ			Į	-				ļ	_	Į	
2	ł				ŀ			ł		ť	-	┝	┥		╉	2
220	Ĭ	ī	1		t			t		t		t	1	-	1	
_	-		ļ		ŧ		-	ł		ŀ		ŀ		_	4	
3	ţ		1		ť		┝	┨		ł		┞	┨	-	┨	
104.4	Ĕ.	1	1		ţ			1		t		L	ļ		1	
-	-				ŀ		Ļ	┦	-	ł		ŀ		-	┦	
ç	3	Î	i		ţ		F	t		ł		t		-	┨	
0.4141	-		l		Ī			ļ	ä	ļ		L		_	ļ	_
┞	-	1	1				┝	┨		ł		┢	-			
Ş	-	ł	ı		ţ		Ľ	1		t		ſ		Ľ		
1	-		4		ł		Ļ	-		ł	ال	┞	-	╞	_	
┝	-	Ē			ť		F			ł	-	f		╞		-
5	8		8			•	Ľ	1		ļ		L		Ľ	1	
ľ	-	1					┡	-		-	*	┞	-	┡	-	-
ŀ	~	F			t	_	t			ţ	Ī	ţ	-	F		F
2	ŝ	F			ļ	_	ſ	1	_	1	8	I		L	_	-
ľ	-	┝	-	-	╉	_	┞	-		ļ	*	╁		┡	-	┝
ŀ	_	ŀ	-	ŀ	t	-	t	-			-	t	E,	ŀ		ŀ
	Name of Mation				ļ			DYDDET NEL	14		3	ľ	ビスイビス イゴエリスト	:	اد	Ļ
	22			ç	ŝ		ļ	Ì	HOA DUVET	Ś	NACI ALLONIA		2		VUT CHAV	101
	ě	ç	1000	4	Ś	<u>م</u>		z	L V	ŝ	H		Ŧ	ŀ	5	ŀ
ŀ	0 0	č	5		1	AUDIE	Ň	1	ž I		ž	ł	ž	Ķ	ź	1011110-0
£.	ġ	Ľ		E.	1	• •	Ľ	*	Ľ	1	~	ľ		Ľ	1	1

					l		
1981 1982 1983 1984							
1 0361 6261						= = = = = = = = = =	
No. Name of Station 1978	COC NA	CUARAO IIII		HOA DUYET	NGHIA DAN	<pre>Image: Image: re>	

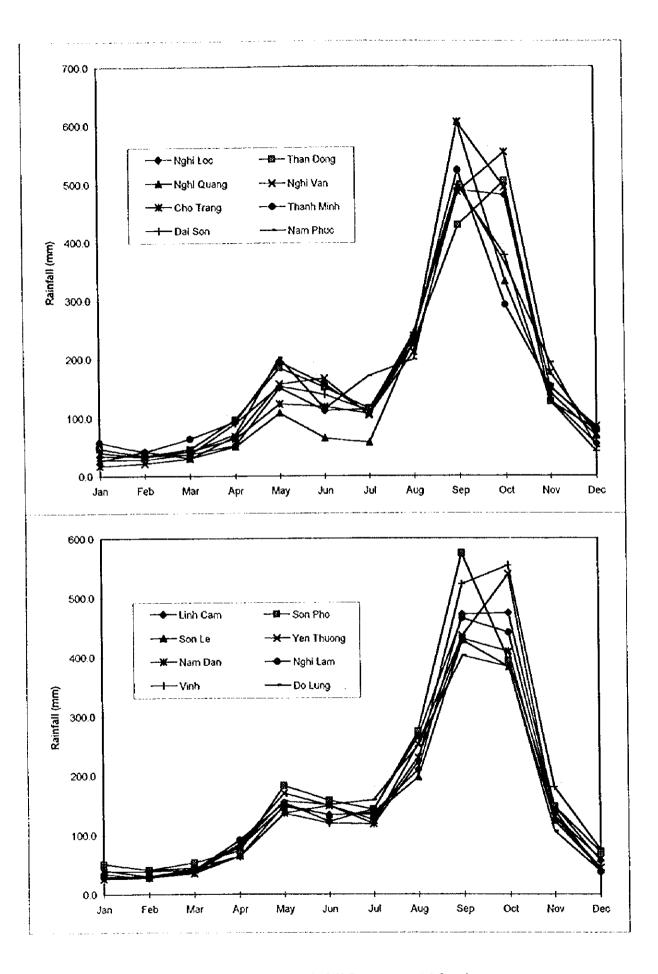

note : 🖷 Data Complete

Fig. A.2.2 Bar Chart of Data Continuity (5/5)

34. 2

Ċ

A • 27

APPENDIX B : AGRICULTURE

.¥.

THE STUDY ON MODEL RURAL DEVELOPMENT IN NAM DAN DISTRICT, NGHE AN PROVINCE

FINAL REPORT

APPENDIX- B: AGRICULTURE

TABLE OF CONTENTS

		Pas	<u>te</u>
INTRO	DUCTION	В-	1
B.1.1	Objective of the Study	В-	1
B.1.2	Summary of Field Work	В-	1
B.1.3	Summary of Agricultural Development Plan	В-	1
PRESE	NT CONDITION OF AGRICULTURE	В-	2
B.2.1	Soil Classification and Land Classification	В-	2
B.2.2	Land Use	В-	4
B.2.3	Agricultural Production	B -	5
B.2.4	Livestock and Aquaculture	В-	6
B.2.5	Farming Practices	B -	7
FORM	ULATION OF MASTER PLAN FOR		
AGRIC	ULTURAL DEVELOPMENT	В-	10
B.3.1	Land Use Plan	B -	10
B.3.2	Farming Plan	В -	14
B .3.3	Proposed Production plan	В-	15
B.3.4	Proposed Agricultural Development Projects	B -	16
	B.1.1 B.1.2 B.1.3 PRESE B.2.1 B.2.2 B.2.3 B.2.4 B.2.5 FORM AGRIC B.3.1 B.3.2 B.3.3	 B.1.2 Summary of Field Work B.1.3 Summary of Agricultural Development Plan PRESENT CONDITION OF AGRICULTURE B.2.1 Soil Classification and Land Classification B.2.2 Land Use B.2.3 Agricultural Production B.2.4 Livestock and Aquaculture B.2.5 Farming Practices FORMULATION OF MASTER PLAN FOR AGRICULTURAL DEVELOPMENT B.3.1 Land Use Plan B.3.2 Farming Plan B.3.3 Proposed Production plan 	B.1.1Objective of the StudyBB.1.2Summary of Field WorkBB.1.3Summary of Agricultural Development PlanBPRESENT CONDITION OF AGRICULTUREBB.2.1Soil Classification and Land ClassificationBB.2.2Land UseBB.2.3Agricultural ProductionBB.2.4Livestock and AquacultureBB.2.5Farming PracticesBFORMULATION OF MASTER PLAN FORAGRICULTURAL DEVELOPMENTBB.3.1Land Use PlanBB.3.2Farming PlanBB.3.3Proposed Production planB

۰,

ŕ

LIST OF TABLES

		Page
Table B.2.1	List of Soil Classification	B • 17
Table B.2.2	Outline of Soil Classification	B - 18
Table B.2.3	Relationship of Soil Type and Land Use Ability	B - 19
Table B.2.4	Area of Land Classification for Main Land Use Types	B - 20
Table B.2.5	Cropping Area of Main Crops in Nam Dan District	B - 21
Table B.2.6	Production of Main Crops in Nam Dan District	B - 21
Table B.2.7	Yield of Main Crops in Nam Dan District	B - 21
Table B.2.8	Recommendatory Fertilizer Application Amount for Rice.	B - 22
Table B.2.9	Application Amount of Agricultural Chemicals for Rice	B - 22
Table B.2.10	Recommendatory Fertilizer Application Amount	
	for Upland Crops	В - 22
Table B.3.1	Sown Area of Crops in Each Category of Land Use	B - 23
Table B.3.2	Production Plan of Main Crops	B - 24

LIST OF FIGURES

÷È

		Page
Fig. B.2.1	Soil Map	B - 25
Fig. B.2.2	Land Classification Map	B - 26
Fig. B.2.3	Present Land Use Condition	B - 27
Fig. B.2.4	Present Cropping Patterns in Nam Dan District	B - 28
Fig. B.3.1	Basic Concept of Agricultural Land Use Plan	B - 29
Fig. B.3.2	Proposed Zoning Map	B - 30

APPENDIX B : AGRICULTURE

B.1 INTRODUCTION

B.1.1 Objective of the Study

The main objective of the study is to clarify the present conditions of farming system, such as soil, cropping pattern farming practice, agricultural input materials, and to suggest the reasonable farming plan which is more profitable in the Study Area.

In Nam Dan District, farm size per household is very small (about 0.35 ha) and cropping rate of farm is very high (about 190 %) because present whole agricultural land is very small and there is no space for land reclamation. Therefore, "increase of yield and profit per land" was regarded as a principal viewpoint of the study.

B.1.2 Summary of Field Work

Following data and information were collected.

- Soil classification map and land classification map
- land use condition

Ľ

È

- Cropping pattern and crop production
- Farming practice
- Input materials

Collection of the statistics data in the District office and the Provincial office, questionnaire survey on typical farmers, discussion with staff of the District and the Province, observation on crops growing field were carried out.

B.1.3 Summary of Agricultural Development Plan

Based on the results of field survey and analysis of present conditions, the agricultural development plans consisting of Land Use plan, Farming Plan and Production Plan are proposed. In addition, 4 projects were proposed, but these are described in the Appendix D because all projects are concerning agricultural supporting services.

(1) Basic Concepts for Land Use Plan

The agricultural land in the Study Area is categorized into 7 categories and activities for agricultural development of each category were suggested after clarified the regional potential and constrains of respective category.

(2) Basic Concepts for Farming Plan

For the improvement of farming practice in Nam Dan District, the basic considerations consisting of 10 items are applied: Establishment of diversified farm management system, Balanced development of agriculture, forestry and fishery, Improvement of cropping pattern, Effective water use, Introduction of crop varieties adaptable for environmental condition & Development of farming technology and their extension, Promotion of agricultural mechanization, Promotion of production increase of livestock, fruits and fishes, Promotion of afforestation, Institution and reinforcement of agricultural supporting system for agricultural development, Promotion of group farm management.

(3) Basic Concepts for Production Plan

Based on the basic considerations for farming practices mentioned above, the increase of crop yield and the conversion from Summer rice cropping with lower yield to Summer-Autumn rice cropping with higher yield as possible as admitted of water supply will be promoted. The main cropping patterns for each zone are proposed. In addition, the Crop Production Plan produced by the above mentioned cropping pattern was proposed.

B.2 PRESENT CONDITION OF AGRICULTURE

B.2.1 Soil Classification and Land Classification

(1) Soil Classification

The Study Area for soil classification covers an area of approximately 19,000 ha representing 64.5% of the Nam Dan District. The soils classification does not cover the area of the South Nghe An Province Irrigation Project implemented by the World Bank and the hillside areas. Based on the FAO-UNESCO Soil Map of the World (FAO, 1990) and the Guidelines for Soil Description (FAO, 1990), a soil classification map of the Study Area at an scale of 1/25,000 has been elaborated. Based on the field survey and analysis results, soils of the Study Area can be classified into 5 major soil groups, 10 soil units and 29 soil sub-units (see Table B.2.1). The major soil groups are as follows:

- Fluvisols group (FL)	:	3,400 ha (22.0%)	1 unit	7 sub-units
- Gleysols group (GL)	;	2,210 ha ((14.8%)	2 units	7 sub-units
- Acrisols group (AC)	:	3,510 ha ((23.6%)	4 units	7 sub-units
- Plinthosols group (PT)	Ξ	1,480 ha	(9.9%)	2 units	6 sub-units
- Leptosols group (LP)	:	4,290 ha ((28.8%)	l unit	2 sub-units
Sub-total	:	14,890 ha			
Other areas	:	4,200 ha			
Total	:	19,090 ha			

Fluvisols group occurs mainly at riverside of Lam River in southern communes of the Study Area. This group was formed by the deposits of Lam River alluvium. The acidity is light acidic or neutral. This soil is highly suitable for growth of rice at irrigable areas and upland crops at non-irrigable area.

Gleysols group often occurs neighboring Fluvisols area at the opposite side of the River. This soil is formed from low relief, flat plain, poorly drained field which is usually water saturated for more than 6 months per year using rice double cropping. This soil is suitable to grow rice.

Acrisols group can be found at almost all communes in the Study Area. This soil is suitable for upland crops and annual crops, and some soil units are suitable to grow fruit trees. This soil group is divided into 4 soil units: Gleyic Acrisols is formed on medium relief soil which is used for upland crops and single rice cropping; Ferric Acrisols is formed on gently undulating topography and major land form is upland, well drained, which is used for single rice or upland crops; Haplic Acrisols is formed on below foot of hill, undulating topography, very well drained. This soil is used for upland crops and fruit trees; Ferralic Acrisols is formed on hilly topography or steeply dissected topography of granite, rhyolite rock. This soil disposes at mountainous communes.

Plinthosols group is formed from the old degraded alluvial deposits which have been under dry conditions for a long time; as a consequence, iron oxide is strongly concentrated. This soil group is divided into 2 soil units: Eutric Plinthosols is formed on plat or high relief, well drained, which is suitable for double rice and single upland crops or single rice and single upland crops. Distric Plinthosols is formed on high relief. This soil is suitable to grow upland crops or alternation of crops.

Leptosols group can be found at places with hilly and mountainous topography with a slope of more than 15 degree. There are many rocks found on the surface. This soil is not suitable to grow annual crops but can be used for garden agriculture as fruit trees and forestry.

Outline of soil classification (including the characteristics of each soil unit), area of each soil unit and soil map are shown in Table B.2.2 and Fig. B.2.1, respectively.

(2) Land Classification

t

Land classification is carried out applying the Guideline for Land Classification of FAO-UNESCO. The results are shown in Fig. B.2.2, Table B.2.3 and B.2.4. The area of each utilization type and suitability class is summarized as follows:

Utilization Types	Area of c	each suitabilit	y class	(ha)	
	<u>\$1</u>	S2	\$3	N	Total
Land for Rice	867.2	2,399.6	256.3		3,523.1
Land for Rice and Upland Crops		2,257.8	311.3		2,569.1
Land for Upland Crops	659.8	960.6	1,901.8	5,275.6	8,797.8
Total of Land for Classification	1,527.0	5,618.0	2,469.4	5,275.6	14,890.0
Habitation and Special Land				3,071.0	3,071.0
Rivers, Streams, Ponds, Lakes				1,095.0	1,095.0
Total of Natural Area	1,527.0	5,618.0	2,469.4	9,441.6	19,056.0

Land Type and Suitability

S1: Highly suitable, S2: Moderately suitable, S3: Marginally suitable, N: Non suitable.

B.2.2 Land Use

The main uses of agricultural land in Nam Dan District are as shown below. Agricultural land, forest land and water surface for aquaculture covered about 11,530 ha, about 4,400 ha and about 200 ha respectively in 1995. These lands occupy about 40 %, 15 % and 0.5 % of total district area, respectively.

Category	Area (ha)
Residential	2,300
of which : Garden land	1,450
Agricultural land	11,530
a. Annual crop	11,510
- Single rice crop	2,200
- Double rice crop	4,000
- Double rice crop + single upland crop	1,600
- Single rice crop + single upland crop	660
- Double upland crop + single rice crop	1,050
- upland crop	2,000
b. Perennial crop	20
Forest land	4,400
Water surface for Aquaculture	200
Special using land	3,000
No use land	8,000
Total	29,430

Actual Land Use in Nam Dan District (1995)

(Source) Calculated from the Land Use Map (1995)

The land of Nam Dan is classified into three categories according to the topography; Hilly land, Middle land and Plain land. Hilly land is located at the northern part and western part along the district border and occupies about 25% of total district area. Although the Hilly land is considered to be suitable for forest, about 40 % of this land is actually bare land. Middle land is situated along Hilly land with a width of 300 to 400 meters. Most of this land is a resident area and the inhabitants use their gardens mainly as orchards and sometimes grow cassava. Other areas are plain lands and mainly used as rice and upland crops fields.

Agricultural land comprises 11,510 ha of annual crops land (including sugar cane and mulberry according to the statistics of Nam Dan District) and 20 ha for perennial crops land. Annual crops land is classified into six categories.

Rice is cultivated on about 80 % of annual crop land. In addition, about 80 % of annual crops land is carried out double (about 50 %) or triple (about 30 %) cropping with rice and/or upland crops. Only less than 20 % is rice single cropping field because of mainly flood.

B.2.3 Agricultural Production

Ľ,

The sown area, production and yield of the main crops in Nam Dan District are as shown below:

			(1	na)	
Стор	1992	1993	1994	1995	
W-Sp Rice	6,726	6,846	6,877	6,794	
Su-Au Rice	5,358	5,399	5,930	5,924	
Sum Rice	1,599	1,544	957	839	
Rice Total	13,683	13,789	13,764	13,557	
Maize	805	1,226	1,450	2,167	
Sweet Potato	1,141	857	2,112	2,198	
Peanut	1,538	1,613	1,878	2,032	
Vegetables	649	755	934	1,127	
Sugarcane	168	112	118	202	
Cassava	184	117	144	173	
Mulberry	162	342	202	205	

Sown Area of Main Crops in Nam Dan District

(Source) People's Committee of Nam Dan

				(tons)
Crop	1992	1993	1994	1995
W-Sp Rice	25,160	25,559	27,767	29,246
Su-Au Rice	14,136	15,039	18,931	19,410
Sum Rice	2,068	1,475	2,385	1,864
Rice Total	41,364	42,073	49,083	50,520
Maize	746	1,325	3,111	5,117
Sweet Potato	3,840	4,946	12,869	8,675
Peanut	1,238	2,555	1,941	3,234
Vegetables	4,410	5,481	5,654	6,751
Sugarcane	7,301	5,368	6,076	10,594
Cassava	736	700	432	865
Mulberry	679	2,064	1,279	1,358

Production of Main Crops in Nam Dan District

(Source) People's Committee of Nam Dan

				(tons/ha)
Сгор	1992	1993	1994	1995
W-Sp Rice	3.74	3.73	4.04	4.30
Su-Au Rice	2.64	2.79	3,19	3.27
Sum Rice	1.29	0.95	2.49	2.22

Yield of Main Crops in Nam Dan District

.

Rice Total	3.02	3.05	3.57	3,93
Maize	0.93	1.08	2.15	2.36
Sweet Potato	3.37	5.77	6,09	3.95
Peanut	0.80	1,58	1.03	1,59
Vegetables	6.80	7.26	6.05	5,99
Sugarcane	43.46	47.80	51.66	52.45
Cassava	4.00	5.98	3.00	5.00
Mulberry	4.12	5.98	6.39	6.67

(Source) People's Committee of Nam Dan

In addition, sown area, production and yield of rice and other main crops at each cropping season, which are estimated from the results of field survey by the Study Team, are shown in Table B.2.5, B.2.6 and B.2.7 respectively.

Rice is the most important crop and occupies more than 60% of total crop planted area. Production of paddy amounts to 50,520 tons, that is 320 kg per capita. Peanuts, maize and sweet potatoes are planted in more than 2,000 ha each; it is estimated that about twice the amount obtained during 10 years ago. Peanuts is an important cash crop which is sold through intermediate to an agro-export company as a raw material for oil production. Most of maize and sweet potato are used as food stuff for livestock; there is scarcely any grassland in the District. Vegetables such as water spinach, field radish, lettuce, chili, onion etc. are planted covering 1,100 ha. The products are sold at the markets in communes, in Nam Dan town and even in Vinh city through middlemen or by the farmers themselves. Although it was not possible to get statistical data, a lot of fruits such as orange, grapefruit, lemon, persimmon etc. are produced and sold at the markets as vegetables. In addition, a small area, less than 200 ha, of sugarcane, mulberry mainly at riverside are planted, cassava is planted mainly at midlands and soybean or green bean at rice fields. There is scarcely a surplus of major food crops and industrial crops which are expected as cash crops of farmers in Nam Dan District. It is necessary to increase the production of these crops.

B.2.4 Livestock and Aquaculture

The number of main livestock in Nam Dan District is as shown below:

				(head)
Livestock	1992	1993	1994	1995
Buffalo (1)	8,815	8,285	8,839	10,110
Cattle (1)	16,381	18,086	20,890	20,487
Pig (2)	34,396	37,751	39,906	41,945
Poultry (1)			116,100	115,700

Number of Livestock in Nam Dan District

(source)

(1) People's Committee of Nam Dan

(2) Statistic Data of Nghe An Province

Buffalo is the major draft animal found in the area and serves for land preparation in both paddy and upland fields. Although some cattle are also used as draft animals(use in upland field is much more than that of paddy field), more cattle are raised for meat. The average number of cattle, pig and poultry per farm household is 0.7, 1.4 and 3.4 heads, respectively. These livestock are major sources of cash income. It is necessary to introduce high productive strains, to improve technology of feeding and management of livestock.

It is said that there are about 200 ha of water surface for aquaculture in Nam Dan district. However, it is estimated that there are actually much more fish ponds. In addition, there are about 500 ha of Lam river and about 100 ha of reservoirs; it seems that potential of inland water fishery in the district is high. There is the Inland Fishery Center, under the Fishery Department of the Nghe An Province, at Nam Giang Commune. Although the Center supplies 60 million of fry per year to the farmers, the demand for fry far exceeds the supply. Inland fishery is also one of the major sources for cash income.

B.2.5 Farming Practices

(1) Cropping System

There are six cropping systems on annual crop land, which are classified into six categories according to the cropping system as mentioned above (see B.2.2 Land Use). The typical rotation model is as shown below. Details of cropping system are shown in Fig. B.2.4.

Mark	Category	Rotation Model
CP1	Single rice crop	Winter-Spring Rice [W-Sp] or Summer Rice [Su]
CP2	Double rice crop	W-Sp Rice + Summer-Autumn Rice [Su-Au] or W-Sp Rice + Su Rice
CP3	Double rice crop + Single upland crop	W-Sp Rice + Su-Au Rice + Winter Upland Crop (Maize, Sweet Potato or Vegetable) [W U.C]
CP4	Single rice crop + Single upland crop	Su Rice + Spring U.C (Maize or Sweet potato) [Sp U.C] Su Rice + Winter-Spring U.C (Maize or Sweet potato)[W- SpU.C]
CP5	Double upland crop + single rice crop	W-Sp U.C (Maize, Sweet potato or Peanut) + Su-Au Rice + W U.C (Maize, Sweet Potato or Vegetable), W-Sp U.C + Su Rice + W U.C
CP6	Upland crop (Single, Double, Triple)	Spring U.C (Maize, Sweet potato or Peanut) [Sp U.C] + W U.C (Maize, Sweet Potato or Vegetable), Sp U.C + Summer U.C (Soybean or Green Bean) [Su U.C] + W U.C

Present Cropping Systems

(2) Rice Cultivation

There are three seasons of rice cropping, winter-spring rice cropping (W-Sp), summer-autumn rice cropping (Su-Au) and summer rice cropping (Su). Paddy yield of W-Sp cropping which is sown from December to January and harvested at May is highest among three cropping, followed by Su-Au cropping which is sown at May and harvested at September and Su cropping which is sown at July and harvested at November is lowest (see Table B.2.7).

Usually after W-Sp cropping, Su-Au cropping is done. Sometimes Su cropping has to be carried out because of lacking water in the field. If water is available in June, the farmers choose Su-Au cropping. Su cropping may suffer from flooding from middle of the September to the first half of November.

Growing period of rice strictly depends on cropping season. Thus, suitable varieties are limited in each cropping season. Growing period and yield of main varieties are as shown below:

Variety	Growing Period (days)			Yield (without (o) and with (w) Irrigation) (t/ha)					
	W-Sp	Su-Au	Su	(o) W	Sp (w)	(o) Su -	Au (w)	(0)	Su (w)
IR 1820	170-180			3.5-3.8	4.5-5.0				
IR 17494	160-170			3.2-3.5	4.0-4.5			<u> </u>	
CR 203	120-125	110-115		2.5-3.0	3.0-3.5	2.5-2.8	3.0-3.5		
BAO THAI			140-150	[T	Î i		1.8-2.0	5 .

Growing Period and Rice Yield by Variety

These varieties do not satisfy the farmers' demand. Main demands of the farmers concerning rice varieties are higher yields, disease tolerance and resistance to insects. Farmers want to harvest more than 6 t/ha in W-Sp rice. The tolerance to blast and sheath blight is especially demanded and the resistance to brown planthopper is also requested by farmers.

Rice is generally transplanted after 25 days seeding on nursery bed. However, some varieties need about 50 days of growing period on nursery bed in W-Sp rice because of low temperature. Land preparation of rice field is carried out with local plow and harrow driven by buffalo. This work needs about 20 days per ha (1 day=8 hours). A few farmers have exceptionally a power tiller and they carry out the contracted land preparation for neighboring farmer's fields after completed the work of theirs. Land preparation work for 1 ha of field is completed only 2 days with the power tiller. Service fee for land preparation of 1 ha of field is from 400,000 to 700,000 VND. According to the results of the socio-economic survey about 40 % of answers expressed the need of farm mechanization in order to be free from heavy labor. On the other hand, direct seeding of rice is carried out a little in W-Sp cropping to avoid a heavy labor of rice transplanting. However, direct seeding in summer-autumn cropping is impossible because of shortage of fallow field as a result of intensive land use.

Application amount of fertilizer is generally 150-200 kg/ha of urea, 150-200 kg/ha of superphosphate and 60-80 kg/ha of potassium chloride and 6-7 tons per hectare of manure. Application amount in Nam Dan is less than level of the general standard of Viet Nam(see Table B.2.8).

Major insect pests are Yellow rice borer (*Tryporyza incertulas*), Brown planthopper (*Nilaparvata lugens*) and Leaf fold (*Cnaphalocrosis medinalis*). Padam 95SP and Bassa 40EC etc. are sprayed for insect control by instruction from the Agricultural

Protection Station. Major diseases are Blast (*Pericularia oryzae*) for W-Sp rice and Sheath blight (*Pellicularia sasakii*) for Su-Au rice. Fujione 40EC and Validacin 3A are also sprayed for control of Blast and Sheath blight, respectively by instruction from the same Station. Weeding is carried out generally by manual labor and herbicide such as Sofit 40ND is also applied sometimes (see Table B.2.9).

Rice seed is supplied by cooperatives or private stores. Although some seeds are produced at the limited seed production farmer's fields under contract with the Seed Station located at Hung Tien Commune, quantity of its produced seeds is 40-50 tons in each cropping season and this quantity covers only less than 10 % of total cropping area of Nam Dan District. There were no seed inspection nor certification system in the Nghe An Province to say nothing in Nam Dan District. Fortunately, Nghe An Provincial Seed Test & Inspection Center was established at June 1997 and a seed inspection system is providing.

As a result of studying actual situation of rice cropping during past few years in Nam Dan District, it was estimated the average yield of paddy as shown below:

Water condition	Cropping season					
	WSp.	SuAu.	Summer			
irrigated	4.32	3.31				
rainfed	2.15		1.3			

Estimated Yield of Paddy in Nam Dan

(Source) JICA Study Team

(3) Upland Crops

Main upland crops grow on rice field with intensive cultivation such as double cropping and triple cropping with rice. On the other hand, intensive rotational cultivation of upland crops are carried out on the land where irrigation is difficult. Cassava is cultivated a little on the middle land. Application amounts of fertilizers for main upland crops are shown below:

Amount of Fertilizer Presently Used in Nam Dan

Сгор	Ch	emical Fertilizer	kg/ha	Manure	
	Urea	Sup. Phos.	K. Cl.	t/ha	
Maize	100 - 120			6 - 8	
Sweet potato	40 - 60		50 - 70	6 - 8	
Peanut	40 - 60	200 - 300	80 - 100	6 - 8	
Green bean	60 - 80			6-8	
Sesame	70 - 80			6-8	
Chili	40 - 50	150 - 250	40 - 60	6 - 8	
Sugar cane	350 - 450	400 - 600	50 - 70	6 - 8	

(Source) JICA Study Team

Application amount in Nam Dan is less than level of the general standard of Viet Nam (see Table B.2.10).

Land preparation is carried out with local plow and harrow driven by buffalo or ox. Most management works are carried out by using manual labor.

As a result of studying actual situation of upland crops cropping during past few years in Nam Dan District, it was estimated the average yield of each crop as shown below:

Стор	Сторг	Cropping season						
	WSp.	SuAu.	Winter					
Maize	1.80		1.40					
Sweet potato	4,50		4.50					
Peanut	1.40							
Green bean		0.70						
Sesame		0.60						
Vegetables	6.00	6.00	6.00					
Chili	0.80							
Sugar cane			48.00					

Estimated Yield of Upland Crops in Nam Dan

(Source) JICA Study Team

B.3 FORMULATION OF MASTER PLAN FOR AGRICULTURAL DEVELOPMENT

In consideration of lack of space of farming land which is able to develop, it is necessary to increase yield through introduction of new technology and input of effective materials and to rise cropping rate through intensive cropping in order to increase agricultural production in the District.

B.3.1 Land Use Plan

The agricultural land in the Study Area is categorized into 5 major categories, i.e., hilly zone, middle zone, upland crop zone, rice zone and flood plain zone. In the category of rice zone, the following three sub-categories are defined to identify the agricultural environment:

- Rice Zone Suffering from Water Shortage
- Rice Zone Having Drainage or Inundation Problem
- Rice Zone Suffering from Inundation and Water Shortage

In addition to the above sub-categories, the project area of the South Nghe An Irrigation Project supported by the World Bank is considered as an independent sub-category of the rice zone. It is denominated as Rice Area with the South Nghe An Irrigation Project. The regional potential and constraints of each category are shown below (see Fig. B.3.1 and Fig. B.3.2):

Zone	Category	Potential	Constraints	Suggested Activities for Agricultural Development
1	Hilly Zone	Contribute to preserve the environment as it is or rehabilitate the environment as it should be from the viewpoint of the watershed management and the protection of agricultural land. Can be used for agroforestry type agriculture that is: production forestry, fuel trees and livestock feed production. Some of hilly land has a capability to be developed for tree crops. Land conservation should be considered carefully.	The present condition of hilly land is considered pessimistic in the Study Area. Bare land or land suffering from erosion covers most of the Area while there are not observed primary stand forest. Land sliding is observed in some Hilly Land and it damages agricultural lands. Considering reforestation program, infertile soit on granite sandy stone, which is dominant in the area, restricts forest growth.	The land use of hilly land consists of protection and conservation areas. In the protection area, agricultural activity is prohibited and reforestation shall be promoted. In the conservation area, agricultural activity shall have constraints against full utilization and intensive cultivation.
2	Middle Zone	Land suitable for tree crops and upland crops. This land is to be used for annual crops such as cassava and perennial crops such as orange, lemon, persimmon, banana, etc. In particular, perennial crops will contribute to raise farmers income as they will become effective cash crops. Also, as this type of land has slope unsuitable for cropping, it is expected to be used as grazing lands for livestock.	Middle Land is not suitable for large scale development because it is scattered in the Study Area in small pocket areas. The soil is generally infertile and water sources are limited. Erosion and land sliding are observed in this kind of land and it damages agricultural land in the plain area.	Perennial crops such as orange, lemon, persimmon, etc. shall be maintained as to raise up cash income for those farmers who do not face environmental problems in their areas. The areas suffering from erosion or land sliding shall be classified as conservation areas and must be developed with careful consideration for environmental aspects.
3	Upland Crop Zone		To practice intensive cultivation, this area has less fertile soil and water shortage due to lack of irrigation facilities and water resources. The topographic conditions are not suitable for rice crop due to the unevenness of the land and steep slope. Furthermore, damages from erosion are observed in the area.	The area is expected to be an intensive area of upland crops, vegetables and forage crops with development of irrigation where the potential of water resources exist. In the areas which suffer agricultural land erosion, protection against erosion shall be introduced.

.

Zone	Category	Potential	Constraints	Suggested Activities for Agricultural Development
		Taking into account the regional crop diversification goal, this area plays an important role in agricultural production in the Study Area.		
4	Rice Zone Suffering from Water Shortage	The yield of Summer- Autumn rice is expected to increase significantly by improving water supply conditions during the planting period. Rice production in the area will increase by raising the yield of Summer-Autumn rice. Furthermore, the combined cultivation vegetables or forage crops and rice is possible over the area if water shortage problem is solved.	The area suffers from water shortage in May and June. This area is developed as an intensive rice crop area. The rice production in the area is restricted by water shortage for cultivation of Summer- Autumn rice; consequently the yield of Su-Au rice is low. Irrigation system can be found in the area; however the equipment do not work properly.	The area shall be targeted for intensive and high yield rice production introducing irrigation system improvements and efficient water use. New development of water resources is required wherever the potential exists.
5	Rice Zone Having Drainage or Inundation Problems	This area has a potential to increase production if a drainage system is developed and inundation is mitigated. The development of a drainage system will contribute to improve soil saturation conditions and make it possible to cultivate vegetables or forage crops with rice.	The area suffers from inundation in September and October due to the depressed topographic conditions. This area is developed as an intensive rice crop area; however, the cropping is restricted by inundation problems during the storm season. This causes deterioration of rice yield for the Summer-Autumn rice cropping.	The area shall be aimed for intensive and high yield rice production by developing a drainage system. For the areas where it is difficult to solve inundation problems, the introduction of deep water tolerant varieties of rice shall be studied.
6	Rice Zone Suffering from Inundation and Water Shortage	This area has a well fertile soil and a high potential to produce rice. In this area, it is difficult to solve inundation problems due to the severe degree of inundation. However, efforts to mitigate damages from inundation are essential. Irrigation water supply during the rice planting period will make it possible to shift cropping pattern and to avoid damage from inundation.	The area suffers from water shortage in May and June as much as frequent heavy inundation in September and October. The heavy inundation deteriorates rice production during the summer season and restricts most of the farmers to one rice crop in the Winter-Spring season. On the other hand, there is water shortage in rice	The area shall be targeted for intensive and high yield rice production by developing a drainage system to mitigate inundation as well improving the irrigation system. Cultivated area of Summer-Autumn rice is expected to be expanded and the production will increase through an irrigation and drainage development.

Zonc	Category	Potential	Constraints	Suggested Activities for Agricultural Development
		development, cultivation area will be expanded and rice production will be increased significantly.	Summer-Autumin rice. It compets farmers to give up cultivation of Summer-Autumin rice and to cultivate Summer rice even though it has severe disadvantage in yield.	
7	Flood Plain Zone	The soil of this area is very fertile and suitable for cultivating because of sedimentary materials from the Lam River. Flooding from the Lam River is unavoidable due to topographic condition. Hence, the present land use for water tolerant crops - adapted to the area should be continued.	This area is considered as a flood prone area and suffers from frequent direct floods from the Lam River.	This area shall be used as it is, because the protection from river flood in the area is difficult and investment for protection is not considered reasonable from the economic point of view. A careful cropping program concerning flooding conditions with water tolerant crops is necessary to be implemented in this area.
8	Rice Zone with South Nghe An Irrigation Project	This area is the project area of the South Nghe An irrigation Project and the agricultural environment is planned to be improved. When the Project will be completed, this area will become a rice intensive cultivation area with high yield and production.	Most of this zone has the same characteristics of Zone 4 and some parts have same characteristics of Zone 5. Thus, the same constraints for those Zones apply.	It is an intensive rice crop area (Land use is about same to Zone 4, although style of Zone 5 is partially included).

The present land use for each zone is shown as follows:

Zone	Category	Agricult	ural land		Forest land	Others	Total	
		Paddy field	Upland field	Sub Total				
1	Hilly zone	150	130	280	4,840	1,650	6,770	
2	Middle zone	200	700	900	390	730	2,020	
3	Upland crop zone	800	800	1600	650	810	3,060	
4	Rice zone, W.S.	1,500	100	1600	160	1,290	3,050	
5	Rice zone, D. or I.	600	50	650	40	360	1,050	
6	Rice zone, I & W.S.	1,500	150	1650	100	1,160	2,910	
7	Flood plain zone	200	1000	1200	120	3,170	4,490	
8	Rice zone, W/B	3,500	150	3650	90	2,340	6,080	
	Total	8,450	3,080	11,530	6,390	11,510	29,430	

Note: Estimated from land use map (1995)

W.S.: suffering from water shortage, D. or I.: having drainage or inundation problems, 1 & W.S.: suffering from inundation and water shortage,
W/B: with South Nghe An Irrigation Project

B.3.2 Farming Plan

For the improvement of farming practice in Nam Dan District, the following basic considerations are applied.

Item	Basic Consideration for Improvement of Farming Practices
Establishment of	It is necessary to establish diversified farm management systems which will go
Diversified Farm	along with the improvement of agricultural and social structures and economic
Management	system in Nam Dan District and its surrounding regions. The new systems will
Systems	contribute to the increase of income level and improvement of nutrition of the
,	inhabitants of the area. The new systems would aim to maintain self sufficiency
	in basic foods by an efficient use of limited land, to increase production of
	profitable crops, and to establish a balanced development with others aspects like
	animal husbandry, fruit gardening and aquaculture. Additionally, the
	development plan should include promotion of agro-industry.
Balanced	Clean and healthy natural environment is a precious resource for mankind. Thus,
Development of	any niral development which affects adversely the natural environment should
Agriculture, Forestry	not be overlooked. It is necessary to prepare a harmonious development plan for
and Fishery	agriculture, forestry and fishery which will contribute to the conservation of
	natural environment, water resources, land resources and living environment of
	residents of Nam Dan District.
Improvement of	Maintaining present cropping pattern basically, agricultural production is
cropping pattern	considered to be increased by introducing new farming technology. The
	introduction of cash crops with high returns is also considered.
Effective Water Use	Water shortage is one of the most serious limiting factors of crop production.
Encente trater 630	Present irrigation facilities do not fulfill their function well enough and it
	restricts cropping and decreases yield. Rehabilitation and additional construction
	of irrigation facilities is indispensable. This will contribute to increase cropping
	rate as well as yield levels.
Introduction of Crop	One of the major reasons of low yield of crops in Nam Dan District is shortage of
Varieties Adaptable	good varietics of crops. For example in rice, every farmer demands good varieties
for Environmental	with characteristics of high yield, disease tolerance and insect resistance.
Condition,	Selection and introduction of adaptable varieties are necessary. On the other
Development of	hand, development of farming technology for getting high yield such as fertilizer
Farming Technology	application and plant protection and extension of their results are also important.
and Their Extension	Reinforcement of these activities is necessary. Supplying of high quality seeds to
	the farmers is also very important.
Promotion of	Land preparation, transplanting, harvesting and weeding are major works in
Agricultural	farming practice, and land preparation and transplanting are the hardest works
Mechanization	above all. Introducing agricultural machinery will reduce severe work and
meenaaava	improve farmers' working conditions. At the same time, agricultural production
	will increase and be stabilized through planting appropriate varieties in
	appropriate time, which is achieved by shortening working days for those
	practices.
	Furthermore, land resources, which is limited in the Project Area, can be shifted
	in use from keeping draft animals to raising beef cattle by agricultural
	mechanization. It will contribute for farm management diversification and
	increase of farm income.
	Introduction of mechanized agriculture has also a potential to provide labor force
	from agricultural sector to industrial sector when the strong demand of labor
	force from industrial sector is raised in future.
Promotion of	Animal products, fruits and fishes are major resources of cash income for the
Production Increase	farmers and important resources for human nutrition of residents. Increase of
of Livestock, Fruits	production of feed crops depends mainly on increase of yield. Preparation of
and Fishes	supply system of superior calf, piglet and chicken is necessary for animal
and risings	production. Preparation of supply system of superior seedling is necessary for
L	production. Treparation of supply system of superior seconder is necessary for

Item	Basic Consideration for Improvement of Farming Practices
	orchard. Reinforcement of actual supply activity of fry for aquaculture is also necessary.
Promotion of Afforestation	More than 40% of forest area is bare land which causes flood in the Lam river basin, seasonal water shortage of reservoirs, soil crosion and shortage of firewood for residents. Thus, afforestation in order to develop water resources, to conserve river basin, to conserve sloping land and to produce firewood is an urgent matter. It is necessary to prepare nurseries for that purpose. In addition, acceleration of undergrowth is necessary because undergrowth of forest is the major feed resources for cattle. The potentiality of forest land use as grazing forest should be assessed.
Institution and Reinforcement of Agricultural Supporting Systems for Agricultural Development	In order to carry out effectively the above-mentioned projects, it is necessary to institute and reinforce the supporting systems like extension system of new technology, reinforcement of existing supply systems of high quality materials used for production such as fertilizer and agro-chemicals, seed and fry, reinforcement of existing plant protection system, etc.
Promotion of Group Farm Management	To change the farm management from small scale farming to group farming should be important for establishment of new farm management system corresponding with marketing condition and increasing of farmers' income.

B.3.3 Proposed Production plan

Based on the basic considerations for farming practices mentioned above, the increase of crop yield and the conversion from Summer rice cropping with tower yield to Summer-Autumn rice cropping with higher yield as possible as admitted of water supply will be promoted. The main cropping patterns for each zone are proposed and shown in Table B.3.1 which is summarized as follows:

W	Sp.	Su -	Au.	Sun	mer	Wii	nter	Year	Total	
Rice	Upland Crop	Rice	Upland Crop	Rice	Upland Crop	Rice	Upland Crop	Rice	Upland Crop	Total
94	178	0		114	0	0	100	208	380	588
150	730	71	150	50	0	0	411	271	1,291	1,562
500	1,100	600	400	200	0	0	700	1,300	2,200	3,500
1.150			100	150	0	0	500	2,500	1,050	3,550
		400	50	0	0	0	50	800	350	1,150
				100	0	0	400	2,550	900	3,450
			L	0	0	0	600	300	1,800	2,100
	· · · · ·			0	0	0	400	6,300	1,050	7,350
					0	0	3,161	14,229	9,021	23,25
	Rice 94 150 500 1,150 400 1,250 1,250 1,50 3,150	Crop 94 178 150 730 500 1,100 1,150 450 400 250 1,250 400 150 1,050 3,150 500	Rice Upland Crop Rice 94 178 0 150 730 71 500 1,100 600 1,150 450 1,200 400 250 400 1,250 400 1,200 1,50 1,050 150 3,150 500 3,150	Rice Upland Crop Rice Upland Crop 94 178 0 102 150 730 71 150 500 1,100 600 400 1,150 450 1,200 100 400 250 400 50 1,250 400 1,200 100 150 1,050 150 150 3,150 500 3,150 150	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rice Crop Upland Crop Rice Crop Upland Crop Rice Crop Upland Crop 94 178 0 102 114 0 150 730 71 150 50 0 500 1,100 600 400 200 0 1,150 450 1,200 100 150 0 400 250 400 50 0 0 1,250 400 1,200 100 100 0 1,50 1,050 150 150 0 0 3,150 500 3,150 150 0 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rice CropUpland CropRice CropUpland 	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Proposed Cropping Pattern

Note: W. - Sp. is from late January to May.

Su. - Au. is from early June to middle September.

Summer is from early July to middle November.

Winter is from late September to middle January.

The proposed crop production produced by the above mentioned cropping pattern is shown in Table B.3.2 and is summarized as follows:

. . .

Сгор	Cropp	oing Season		Total	
	W-Sp	Su-Au	Summer	Winter	(ton)
Rice(Irrigated)	24,346	31,494	0	0	55,840
Rice(Rainfed)	7,285	0	1,044	0	8,329
Sub Total	31,631	31,494	1,044	.0	64,169
Maize	2,090	0	0	2,690	4,780
Sweet polato	5,497	0	0	6,367	11,864
Ground nut	3,417	0	0	0	3,417
Green bean*	0	500	0	0	500
Sesame	0	35	0	0	35
Vegetables	· 1,440	3,830	0	3,462	8,732
Chili	74	0	0	0	74
Sugar cane	12,180	0	0	0	12,180
Mulberry	1,300	0	0	0	1,300

B.3.4 Proposed Agricultural Development Projects

Projects for irrigation and drainage improvement, agricultural supporting, agro-industry and marketing system are proposed for concerning agricultural development. The detail description of those projects are descried in the Appendixes C, D and E.

APPENDIX B : TABLES

Soil name	Symbols	Area	Area %	Texture
		ha	%	
1. Fluvisols	FL	3,396.0	17.8	
1. Hapli Eutric Fluvisols	FLe-h	299.1	1.6	SL-CL
2. Silti Eutric Fluvisols	FLC-si	336.4	1.8	SiL-SiCL
3. Areni Eutric Fluvisols	FLc-a	1,114.2	5.8	SL-FSL
4. Epi Gleyi Eutric Fluvisols	Fl.¢-gl	821.7	4.3	L
5. Endo Gleyi Eutric Fluvisols	FLe-g2	27.7	0.1	L
6.Epi Hypo Ferri Eutric Fluvisols	FLc-fe4-1	116.9	0.6	SL
7. Abrupti Eutric Fluvisols	FLe-ab	680.0	3.6	CL
2. Gleysols	GL	2,211.0	11.6	
8. Stagni Eutric Gleysols	GLe-st	292.6	1.5	
9. Anthraqui Eutric Gleysols	GLe-an	386.8	2.0	CL-SL
10.Stagni Dystric Gleysols	GLd-st	620.4	3,3	SiCL
11.Silti Dystric Gleysols	GLd-si	105.0	0.6	L-SiL
12. Anthraqui Dystric Gleysols	GLd-an	298.0	1.6	CL
13.Epi Hypo Ferri Dystric Gleysols	GLd-fe4-1	364.3	1.9	SL-L
14.Endo Hypo Ferri Dystric Gleysols	GLd-fe4-2	143.9	0.8	SL-L
3. Acrisols	AC	3,513.6	18.4	<u> </u>
15.Epi Hypo Ferri Gleyic Acrisols	ACg-fe4-1	341.0	1.8	SL
16.Endo Hypo Ferri Gleyic Acrisols	ACg-fe4-2	164.7	0.9	SL
17. Endo Hyper Ferri Gleyic Acrisols	ACg-fe5-2	172.8	0.9	SL
18. Areni Ferric Acrisols	ACfe-a	497.8	2.6	FSL-CoS
19. Areni Haplic Acrisols	ACh-a	35.0	0.2	CoSL
20.Epi Lithi Ferralic Acrisols	ACf-II	1,370.2	7.2	SL
21.Endo Lithi Ferralic Acrisols	ACf-12	932.1	4.9	SL
4. Plinthosols	PT	1,478.0	7.8	
22 Epi Gleyi Eutric Plinthosols	PTe-gi	370.0	1.9	
23.Endo Gleyi Eutric Plinthosols	PTc-g2	112,5	0.6	
24.Epi Hyper Ferri Eutric Plinthosols	PTe-fe5-1	192.5	1.0	SL-FSL
25.Endo Gleyi Dystric Plinthosols	PTd-g1	668.5		
26.Endo Gleyi Dystric Plinthosols	PTd-g2	92.0		SL
27. Areni Gleyi Dystric Plinthosols	PTd-a	42.5		SL-CoSI
5. Leptosols	LP	4,291.4	22,5	
28. Hyper Ferri Dystric Leptosols	LPd-fc5	164.0	0.9	
29.Epi Lithi Dystric Leptosols	LPd-11	4,127.4		L-CL
Sub Total		1, 489. 0	78.1	
Habitation & special land	1	3, 071. 0	16. 1	
Rivers, streams, ponds, lakes	1	1, 095. 0		

Table B.2.1 List of Soil Classification

(Source) NIAPP: Report of soil map and fand classification map, 1997

8
an
<u>0</u>
E
2.5
õ
5
of Soil
õ
- 43
Outline
ភី
-
B.2.2
B.2.2
Table
Ë

1. Fluvisols FL 1. Hapli Eurric Fluvisols FL 2. Silti Eurric Fluvisols FLe-h 3. Areni Eurric Fluvisols FLe-si 3. Areni Eurric Fluvisols FLe-si 5. Endo Glevi Eurric Fluvisols FLe-si 6. Epi Hypo Ferri Eurric Fluvisols FLe-si 7. Abruph Eurric Fluvisols FLe-fod-1 7. Abruph Eurric Fluvisols GL 8. Snoon Eurric Glevols GL	ha 3.396.0 299.1 336.4 1,114.2 821.7	% 17.8		of Sub Surface	Thickness	Density		o mol/kg	~∿	/0	ân 7 Au	
	3,396.0 299.1 336.4 1,114.2 821.7	17.8										
	299.1 336.4 1,114.2 821.7				сш	g/cm3						
	336.4 336.4 1,114.2 821.7	1.6	SI-CL	2.5YR 5-6/2-4	25	1.0-1.6	6.0-7.0	5.0-10.0	50-80	0.3-1.0	4.0-10.0	4.141.0 0.141.0
	1,114.2	00	Ι,	10YR 4-5/3-6	20	1.2-1.7	6.0-7.0	4.0-10.0	55-70	0.5-1.0	3.0-7.0	4.0-8.0
	821.7	Ŷ	T	2.5YR 5-6/2-3	30	1.2-1.8	6.0-7.0	4.0-10.0	60-85	0.3-0.6	4.0-8.0	3.0-8.0
	0.44		1	7 5 VR 6.7D	8	12-1.8	6.0-7.0	4.0-8.0	55-80	0.6-1.2	5.0-10.0	4.0-3.0
					×	1 2-1 8	6.0-7.0	4.0-8.0	55-80	0.6-1.2	5.0-10.0	4.0-8.0
	717		1			2141	5 2.7 3	\$ 0-10.0	55-75	0.5-1.2	5.0-12.0	5.0-9.0
	116.9	0.0	7	101447101			20203	40.80	\$0.70	04-10	5.0-10.0	3.0-7.0
	680.0	3.6	сг СГ	10YK 5-6/5	07	1.0-1.1	0.1-0.0	A-0-0-1	2			
	2,211.0	11.6					1		20 22		0000	30.70
	292.6	1.5	SL	7.5Y 4-6/2-3	20	1.0-1.2	5.0-7.0	4.5-8.0	52-55	4.1-1.0		0.1-0.5
	386.8	0. 10	CL-SL	7.5YR 5-6/2-3	18	1.0-1.2	6.0-7.2	5.0-10.0	55-80	7-1-0-0	0.01-0.4	
	620.4	33	Γ	7.5Y 4-6/1-2	18	1.4-2.0	4.5-6.0	6.0-10.0	20-50	0.8-1.4	4.0-8.0	0.1-0.2
9	105.01	0.6	L-SiL	7.5YR 4-5/4								
	298.0	1.6	IJ	10YR 5/3-4	18	1.2-1.8	4.5-6.0	7.0-10.0	less 50	0.8-1.4	4.0-10.0	4.0-/.0
ł	10.830	0	CT_1	07 2701	4	1.0-1.5	5.0-6.0	5.0-8.0	20-40	0.6-1.0	5.0-9.0	3.06.0
╋	0410	20	1.10	101K 6/2								
14. Endo Hypo Fern Dystric Gieysols GLa-104-2	14:641	0.7	1.13									
3. Acrisols AC	3,513.6	18.4					60.00	0001	20.05	0 2.1 1	4.0-8.0	3.0-7.0
15 For Hypo Fern Glevic Aensols ACg-fo4-1	341.0	1.8	SL	10YR 6-7/4	50	0-1-0-1	0.0-0.0	4.0-0.0		1.1010		
S	164.7	0.9	SL	10YR 6-7/4							-	
	172.8	0.9	SL	10YR 6-7/4						0.0		1001
	497.8	2.6	FSL-Cost.	10YR 5/4	16	1.0-1.4	5.0-6.0	3.0-5.0		ICSS V.O	Very Pour	
	35.0	0.2	CoSL	10YR 6/3	17	1.0-1.6	5.5-6.5	5.0-8.0	Icss 40	Very poor		
sols	1.370.2	7.2	SL -	5YR 5-6/3-4	15	1.4-1.8	4.5-6.0	5.0-10.0	less 30	1.0-1.8	N.C-C-T	N.C. C
5	932.1	4.9	SL	5YR 5-6/3-4								
4 Dinthault	1,478.0	7.8							;		00.01	0001
the Plinthosols F	370.0	1.9	SL-FSL	7.5YR 5-6/2	8	1.0-1.4	5.0-6.0	4.0-6.0	more 20	ICSS 1.0		A.0-7.4
S	112.5	0.6	SL-FSL	7.5YR 5-6/2								
slos	192.5	1.0	SL-FSL	10YR 6/2-3								0003
┢	668.5	3.5	SL	10YR 5/2-3	14	1.4-2.0	4.5-6.0	5.0-10.0	less 40	less 1.0	4.0-0.0	N.0-V.C
╞	92.0	0.5	SL	10YR 5/2-3			-					001
┢	42.5	0.2	SL-CoSL	10YR 6/2-3	18	0.8-1.4		6.0-10.0	less 40 -	less 0.8	4.0-8-0	1022 10.0
╞	4,291.4	22.5										V 7 V C
28 Humr Fem Dwarne Leptosols LPd-fe5	164.0	6.0	r		- 13			4.0-6.0	less 40	D:1 2000	4.0-0-0	2.0-0.0
20 Emiliate Doctric Lentosols L.Pd-II	4.127.4	21.7	L CL							•		

Types of soil	Area	Area %		Suitab	ility and	Ability	
-)[(ha)	(%)	Rico		Upland Crop	Fruit tree	Forestry
			Irrigation	No Irrig.	(annual crop)		
Fluvisols (FL)	3,396.0	17.8	Suitable	Ι	Suitable		
Gleysols (GL)	2,211.0	11.6	Suitable				
Acrisols (AC)	3,513.6	18.4			Ability		<u> </u>
Plinthosols (PT)	1,478.0	7.8			Ability		
Leptosols (LP)	4,291.4		No Abil.	No Abil.	No Ability	Ability	Ability

Table B.2.3 Relationship of Soil Type and Land Use Ability

(Source) NIAPP: Report of soil map and land classification map, 1997

.

Use Types
Land
Main
n for
Classificatio
of Land
Area (
Table B.2.4

			5								
I fillization Types 1	Whole	rerccnt	2							7	Cuk Total
			.		- t	••	q	60	SI	σ	TENAT AND
	FICE										3 200 5
	1 203 2	18 51	867.2	1.537.1	862.5						
202	4.747.6	5.74								3	,
V1 0	1 072 0	12.4		2,126,51	40.01	0.09		12.21			
- い 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8	7.207.1	1.1.1			ļ			0.01	22.7		960 6
	0 707 0	CYV	659.8	54.0	716.3	4.7	137.8	14.41	1-77	4.74	
۔ در	0'121'0	4.01	2				0 5 6 7	0.00	7 4	244	
	10 008 11	78.7	1 577 0	3.717.6	~	5.5	0.101	17.22	1,		
sub 1 otal	14.070.41	1.0.4	2 · · · · · · ·								
John & Sneedal	3 071 0	16.1									
operation of the second s											
Vater Surface	1 095.01	5.71									
11000						10.05	0 401	0 66	227	4.40	2.618.0
	10 056 01	100.01	1.527.0	3,717.6	1,618.8	04.7	0-/01	17.42			

				ŝ					Z		
i f t sl d Sub I 0tal sl g d sub I 0tal sl g d sl d sl d sl d sl sl d sl sl <th< th=""><th>Utilization Types</th><th></th><th></th><th>2</th><th></th><th></th><th>· · · · ·</th><th>-</th><th></th><th>T</th><th>Sub Total</th></th<>	Utilization Types			2			· · · · ·	-		T	Sub Total
12.8 197.1 46.4 256.3 11.3 218.5 719.1 42.5 50.3 311.3 218.5 719.1 3.0 537.1 642.6 1.901.8 3.956.4 14.0 1.305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2	<u> </u>		f	••	sl	U	Sub Lotal	SI	8	,	
218.5 42.5 50.3 311.3 218.5 719.1 3.0 537.1 642.6 1.901.8 3.956.4 14.0 1.305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 731.3 916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2	T	17 8	101			46.4					
218.5 719.1 42.5 537.1 642.6 1.901.8 3.956.4 14.0 1.305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 731.3 916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2		14.0		2 64		503					
719.1 3.0 537.1 642.6 1.901.8 3.956.4 14.0 1.305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3.956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2 231.3 916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2	С С	218.51		1.24				1			
916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2 916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2			1012		537.1	642.6					
916.2 45.5 537.1 739.3 2,409.4 5,790.4 47.0 1,305.2 916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2			11/1			0.000				1 205 2	
916.21 45.51 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2		2313	916.21			739.3				***	
916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2		1									
916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2											
916.2 45.5 537.1 739.3 2,469.4 3,956.4 14.0 1,305.2						-1		- 11			
		2313	916.2			739.3			14.0		

UC: Upland Crops, Habit. & Special: Habitation and Special Land, Water Surface: Rivers, Streams, Ponds, Lakes

S1: Highly suitable, S2: Moderately suitable, S3: Marginally suitable, N: Not suitable

i: irrigation, f: flood, t: soil texture, n: nutrient, g: type of soil, sl: slope, d: depth of soil horizon (Source) NIAPP: Report of soil map and land classification map, 1997

Сгор	T	ropping	Season		Total
crop	W-Sp	Su-Au	Summer	Winter	
Rice (Irrigated)	3,299	5,924			9,223
Rice (Rainfed)	3,495		839		4,334
Sub Total	6,794	5,924	839	and the second sec	13,557
Maize	980			1,187	2,167
Sweet potato	1,018			1,179	2,193
Peanut	2,040				2,04
Green bean*		630			63
Sesame		50			5
Vegetables	200	532		460	
Chili	60				6
Sugar cane	210	1			21
Mulberry	200				20
Total	11,502	7,136	839	2,820	22,30

Table B.2.5 Cropping Area of Main Crops in Nam Dan District

Note:

ій. Ж

W. - Sp. is from late January to May.Su. - Au. is from early June to middle September.Summer is from early July to middle November.Winter is from late September to middle January.Green bean is including green bean and soybean.Winter is from late September to middle January.

Sugar cane and mulberry are year-round crops, but they are placed in W.-Sp. colum for calculation. (Source) JICA Study Team

Crop		ropping	Season		Total
	W-Sp	Su-Au	Summer	Winter	
Rice (Irrigated)	14,245	19,609			33,854
Rice (Rainfed)	7,529		1,091		8,620
Sub Total	21,774	19,609	1,091		42,474
Maize	1,764			1,662	3,426
Sweet potato	4,581			5,306	9,887
Peanut	2,856				2,856
Green bean*		441			441
Sesame		30			30
Vegetables	1,200			2,760	
Chili	48			<u> </u>	48
Sugar cane	10,080				10,080
Mulberry	1,180	I			1,180

 Table B.2.6 Production of Main Crops in Nam Dan District

(Source) JICA Study Team

Table B.2.7 Yield of Main Crops in Nam Dan District

Table D.2.7 Th	CIU VI MIAMI	Crops m			(ton/ha)
Стор		ropping	Season		Average
	W-Sp	Su-Au	Summer	Winter	<u> </u>
Rice (Irrigated)	4.32	3.31			3.6
Rice (Rainfed)	2.15		1.30		1.9
Maize	1.80			1.40	
Sweet potato	4.50			4.50	
Peanut	1.40				1.4
Green bean*	1	0.70			0.7
Sesame		0.60			0.6
Vegetables	6.00	6.00		6.00	
Chili	0.80				0.8
Sugar cane	48.00				48.0
Mulberry	5.90				5.9

(Source) JICA Study Team

			:	(kg/ha)
Season	Urea	Sup.Phos	K. Cl	manure
W Sp	230	425	110	12,000
Su Au	200	300	100	
Su	140	200	80	7,000

Table B.2.8 Recommendatory Fertilizer Application Amount for Rice

Note: Recommendation from The National Center of Variety Examination

Table B.2.9 Application Amount of Agricultural Chemicals for Rice

Cropping	Insecti		Fungio		Herbicide
Season	Padam 95 SP	Bassa 40 EC	Fujione 40 EC	Validacin 3A	Sofit 40 ND
W Sp Rice	1.4 kg	2.0 litre	2.0 litre		1.0 litre
Su Au Rice	1.4 kg	1.0 litre		2.0 litre	1.0 litre
Su Rice	1.4 kg				1.0 litre

(Source) People's Committee of Nghe An Province

Note: Padam 95 SP : For Yellow rice bores (Tryporyza incertulas)

Bassa 40 EC : For Brown planthopper (Nilaparvata lugens)

Fujione 40 EC : For Blast (Pericularia oryzaea)

Validacin 3A : For Sheath blight (Pellicularia sasakii)

Table B.2.10 Recommendatory Fertilizer Application Amount for Upland Crops

				(kg/ha)	
Crop	Urea	Sup.Phos	K. Cl	Manure	
Maize	280	450	130	15,000	
Sweet Potato	180	350	90	10,000	
Peanut	60	330	60	10,000	
Sesame				10,000	
Green bean	180	250	0	10,000	
Sugarcane	350	500	300	10,000	

Note: Recommendation from The National Center of Variety Examination

Zonę	Rice			Uρ	l a n	d	ГО						Sub	Total
	Season	Area	Season	Maize	Sweet	Ground	Green	Sesa-	Vege-	Chili	Sugar	Mul-	Total	
					potato	nut	bean	me	tables		cane	berry		
1	WSp.	94	WSp.	80	98								178	27
	SuAu.		Su, Au.				50	10	42				102	10
	Summer	114											0	11
	1. A. A. A. A. A. A. A. A. A. A. A. A. A.		Winter	50	50								100	10
	Sub Total		Sub Total	130	148	0	50	10	42		0	0	380	58
	W. Sp.	150	W. Sp.	370	360								730	88
2	Su. Au.	71	Su. Au.				70	20	60				150	22
	Summer	50									· · ···			
			Winter	252	159								411	41
	Sub Total	271	Sub Total	622	519	0	70	20	60		0	- 0	1,291	1.56
	W. Sp.	500	W. Sp.	190	250	600			60				1,100	1,60
3	Su. Au.	600	Su. Au.			<u> </u>	200	20			· · · · ·		400	1.00
	Summer	200							<u>```</u>	l				20
			Winter	300	270				130			<u> </u>	700	70
	Sub Total	1,300	Sub Total	490	520	600	200	20	370		0	0		3,50
41	W. Sp.		W. Sp.	60	60	270			60				450	1,600
4	Su. Au.		Su. Au.				50		50				100	1,000
	Summer	150											100	1,50
			Winter	200	200				100	- · · ·			500	500
	Sub Total	2.500	Sub Total	260	260	270	50	0			0	0		3,55
	W. Sp.		W. Sp.	20	30	200						<u> </u>	250	65
5	Su. Au.		Su. Au.			200	50			<u>-</u>			230	450
-	Summer													4)
			Winter	50									50	5
	Sub Total	800	Sub Total	70	30	200	50	0	- <u></u>	-	0	0	350	1,15
	WSp.		W. Sp.			350			······································	50		V	400	1,65
6	Su. Au.	1,200	Su. Au.				100						100	1,00
-	Summer	100											100	1,50
			Winter	200	150				50			· · · · · ·	400	40
	Sub Total	2,550	Sub Total	200	150	350	100	0		50	0	0	<u> </u>	3,45
7	WSp.		W. Sp.	130	120		100		80	20		-		
	Su, Au,	150	Su. Au.	1.30	120	- 270	50		100	20	210	200	· · · · ·	1,20
	Summer						50		100	 			150	30
			Winter	250	250				100	ļ			200	
	Sub Total	300	Sub Total	380	370	290	50	0		20	210	200	600	60
8	W. Sp.		W. Sp.	100	100	300	50	L	200	<u> </u>	<u> </u>	200	1,800	2,10
	Su. Au.		W. Sp. Su. Au.		100		50		100				500	3,65
	Summer	3,130	<u></u>						100				150	3,30
	Summer		Winter	200	100				100	·	<u> </u>			
	Sub Total	6 300	Sub Total	300	200	300	50	· · · ·	100				400	40
	W. Sp.		W. Sp.	950			and the second second second second second second second second second second second second second second second	0			0	0	1,050	7,35
Total	w. sp. Su. Au.	0,844	w. sp. Su. Au		1,018	2,010	0	0		70		200	4,658	11,50
TOTAL			50. AU.	0	0	0	620	50		0		0	1,202	7,97
	Summer	614	Weden	0	0	0	0	0		0		0	0	614
	Tetal	14 000	Winter	1,502	1,179	0	0	0		0		0	3,161	3,161
Note:	Total	14,229	Total	2,452	2,197	2,010	620	50	1,212	70	210	200	9,021	23,250

Table B.3.1 Sown Area of Crops in Each Category of Land Use

Note:

ľ

10 A

W. - Sp. is from late January to May.

Su. - Au. is from early June to middle September.

Summer is from early July to middle November.

Winter is from late September to middle January.

Green bean of this table includes green bean and soybean.

(1) Rice		Table B. (Unit : Are	3.2 Product a is ha Yie	ion Plan of . Id is ton/ha,	Production	s is ton)			
IT NAC	Proposed Pr			Pre	sent		Increased Pr	roduct	
Season		Yield	Product		Yield	Product	Value	%	
N. Sp.(irrigated)	4,146	5.82	24,346	3,299	4.32	14,245	10,101	1.71	
WSp.(rainfed)	2,698		7,285	3,495	2.15	7,529	-244	0.97	
Sub Total	6,844		31,631	6 794	3.20	21,774	9,857	1.45	
Su_Au (irrigated)	6,771		31,494		3.31	19,609	11,885	1.61	
Summer (rainfed)	614		1,044		1.30		-47	0.96	
Total	14,229		64,169		3.13		21,695	1.51	
(2) Upland Crops				eld is ton/ha	Production	n is ton)	:	· · · · ·	<u> </u>
Стор	Season	Proposed P		lan Pres				Increased Pr	
•		Area	Yield	Product	Агеа	Yield	Product	Value	%
	WSp.	950	2.20	2,090					<u>.</u>
Maize	Su. Au.	0		0	0		0		
	Winter	1,502				1.40			
	Total	2,452		4,780			3,426		1.40
	WSp.	1,018	5.40	5,497	1,018	4.50	4,581	916	
Sweet	Su. Au.	0		0			0		
potato	Winter	1,179	5.40		1,179		5,306		
•	Total	2,197	1	11,864	2,197	·	9,887		1.20
	W. Sp.	2,010	1.70	3,417	2,040	1.40	2,856	561	
Groundnut	SuAu.			0	0		0		
	Winter		1	0	0)	0		
	Total	2,010		3,417	2,040)	2,856	561	1.20
	WSp.))	0		
Green bean &	Su. Au.	620	0.8	500	630	0.70	441	59	-
Soybean	Winter	· · · · · · · · · · · · · · · · · · ·					.0		
3	Total	620		500	630)	441		1.13
	WSp.						0		
Sesame	Su. Au.	50	0.7	35	5(0.60	30	5	-
	Winter			1)	0		
	Total	50		- 35	5	0	30		1.17
	WSp.	200	7.2	0 1,440	200	0.6.00	1,200		
Vegetables	SuAu.	532				2 6.00			
Ũ	Winter	480	7.2	1 3,462	460	0 6.00		702	
	Total	1,212	2	8,732	2 1,192	2	7,152		
	W. Sp.	7	0 1.0	6 74	6	0.80	0 48	3 26	
Chili	Su. Au.	(0			0	(
	Winter		0			0			
	Total	7		7			48		
Sugar cane	WSp.	21	0 58.0	0 12,18	210	0 48.0			
	SuAu.		0			0			
	Winter		0			0		0 0	
	Total	21		12,18			10,080		
	WSp.	20	0 6.5			0 5.9	0 1,18	0 120	
Mulberry	Su. Au.		0			0		0 0	5
-	Winter		0			0		0 0	
	Total	20	0	1,30	0 20	0]	1,18	0 120	1.10

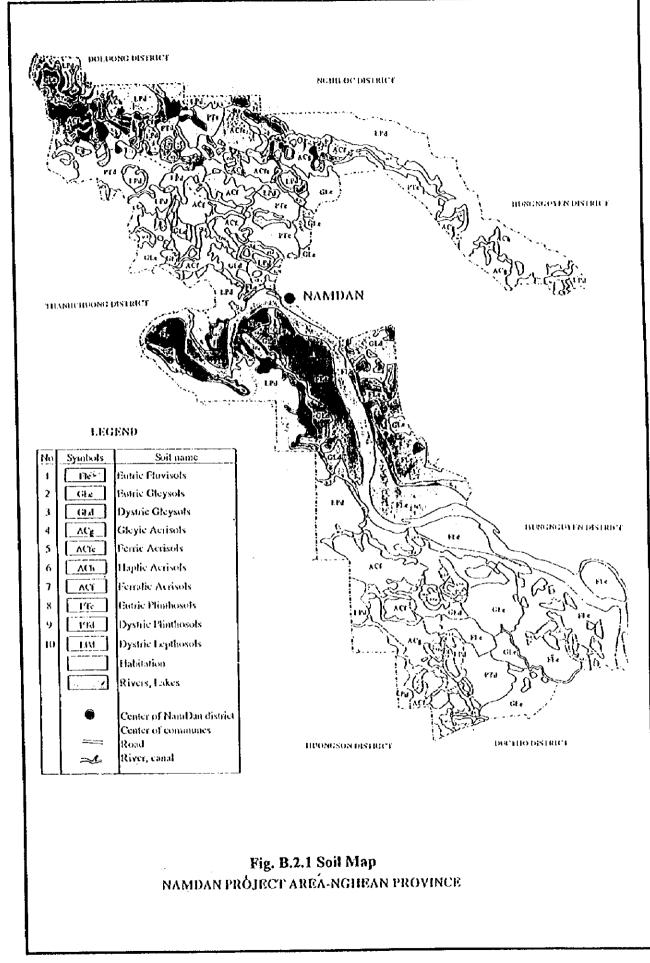
 Table B.3.2 Production Plan of Main Crops

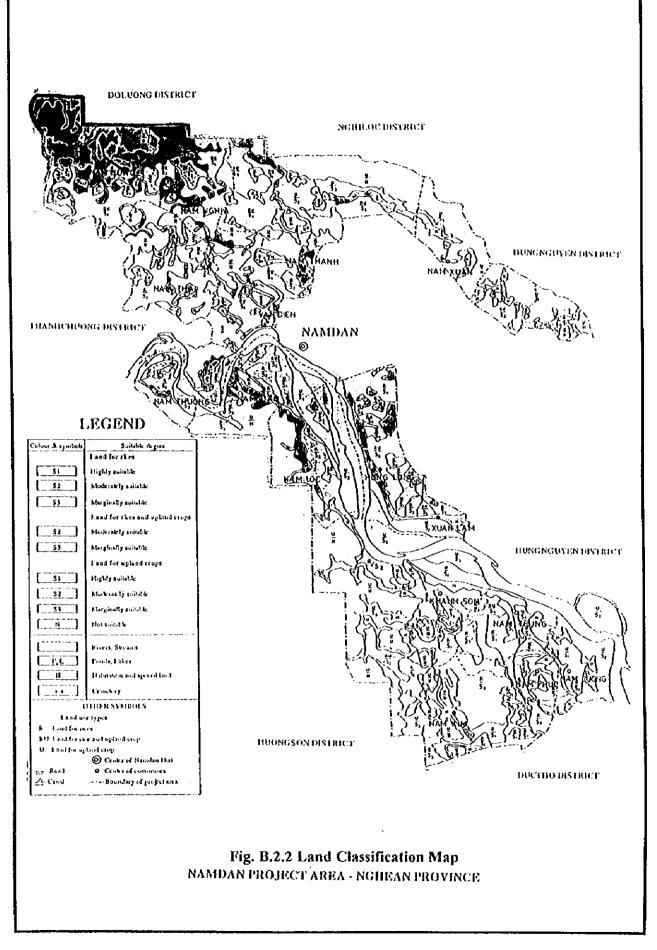
 (Unit : Area is ha, Yield is ton/ha, Production is ton)

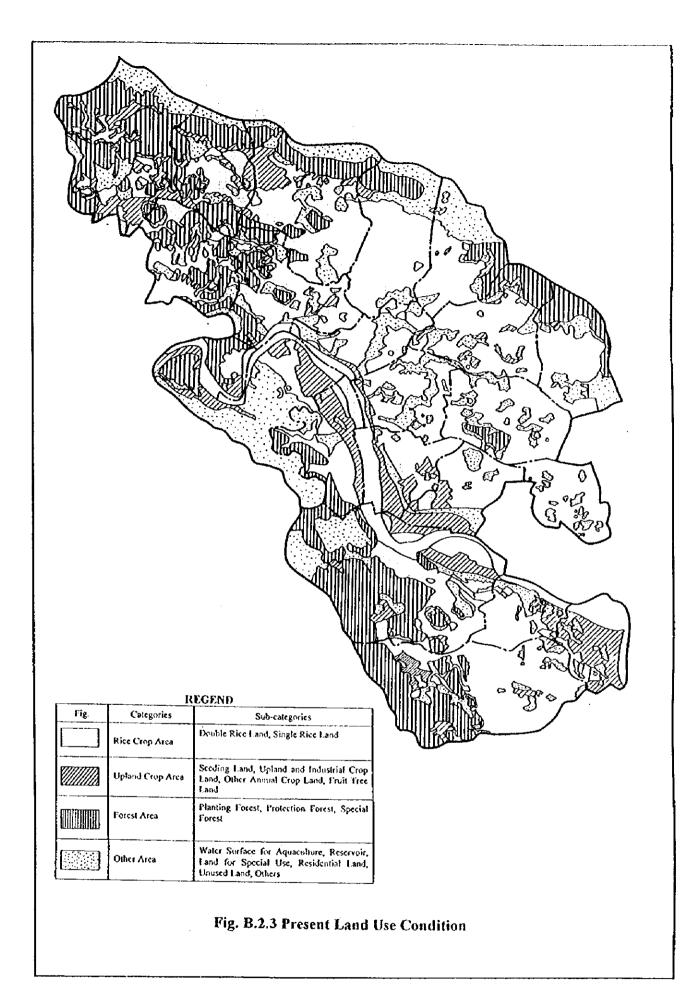
 colspan="2">Present

Note:

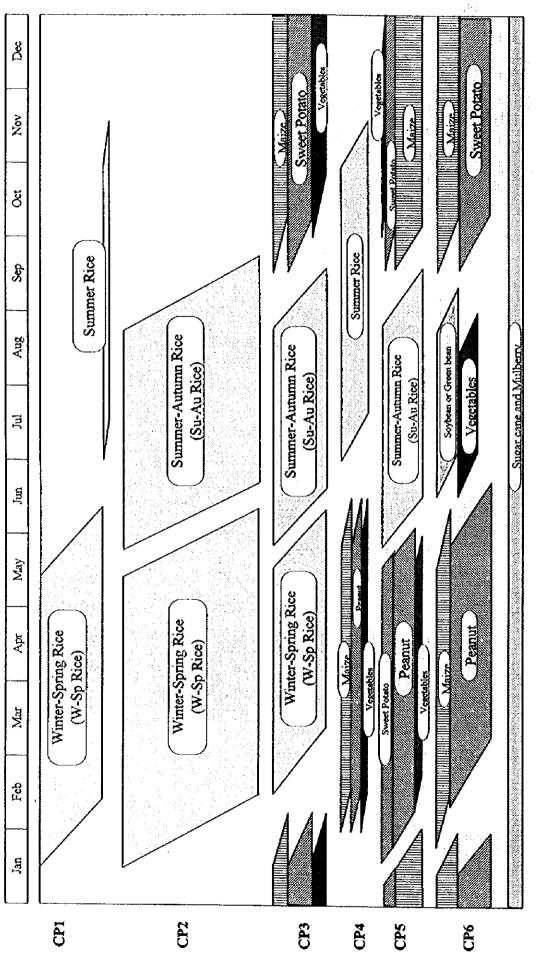
W. - Sp. is from late January to May.

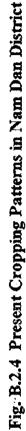

Su. - Au. is from early June to middle September.


Summer is from early July to middle November.

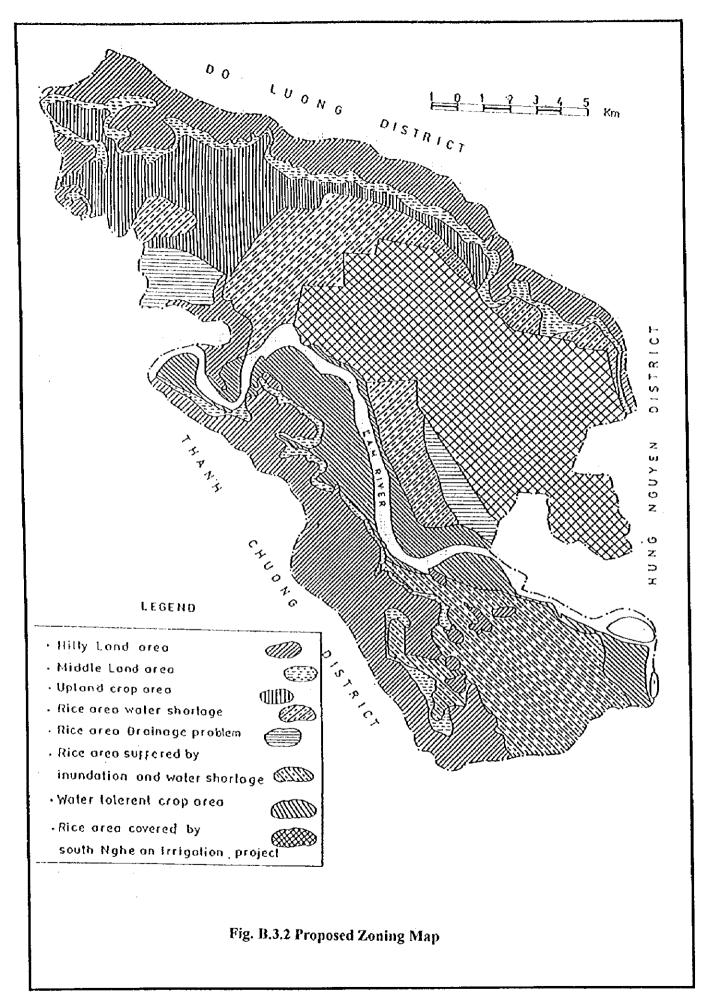

Winter is from late September to middle January.

APPENDIX B : FIGURES


-



B - 27



B - 28

	River				
A Bank A A A A A A A A A A A A A A A A A A A	Flood Plain Zone	- Upland Crop Maize, Bearrs, Pearnt, Sweet potato, Vegetables, Sugareane, Mutherry etc.	- Eutric Fluvisois sandy loam - clay loam (fertile soil)	- Inundation sometimes	
>	No.6 No.6 Rice Zone (Suffer, from Inundation & Water Shortage)	- Double Rice (W-Sp Rice + Su-Au Rice) Propose: Convert from Su Rice to Su-Au Rice by irrigation facility construction	 Eurric Fluvrsols sandy loarn - clay loarn Eurric Gleysols clay loarn - sandy loarn (fertile soil) 	- Water shortage in May and June - Inundation of rice field in Sept. and Oct.	
>	No.5 Rke Zone (Drainage Problems or Suffer, Inundation)	- Double Rice + U.C. (W.Sp Rice + Su-Am Rice+W.U.C)	- Gleysols (mainly Eutric GL & Distric GL) clay loam - sandy loam (furtile soil)	- Inundation in Sept. and Oct.	
	No.4 No.4 Rice Zone (Suffering from Water Shortage)	 Double Rice + U.C. (W-Sp.Rice + Su-Au Rice-W-U.C) If not enough water Double Rice (W-Sp Rice +Su-Au Rice) 	- Eutric Fluvisols sandy loarn - clay loarn - Eutric Cleysols clay loarn - sandy loarn (fertile soil)	- Water shortage in May and June	
	No.3 Upland Crop Zone	- Upland Crop - Sp-U.C + Su Rice - Double U.C + Rice	- Plinthosols (mainly Eutric PT & Dystric PT) sandy loam (less fertile soil)	- Water shortage - Erosion	
	No.2 Middle Zone	- Amual Crop : Cassava - Perennial crop : Orange, Lemon, Persimmon, Banana, Pincapple, etc.	- Acrisols (mainly Ferralic Acrisols) sandy loarn (infertile soil)	- Erosion - Land siding	
	No. 1 Hilly Zone	- Forest - No use land	- Leptesols (mainly Dystric Leptesols) loam - clay loam rocky (infertile soil)	- Bare land - Erosion - Land sliding	
	ə u o Z	s d o u O	1 1 0 5	.n or izn3	4

Fig. B.3.1 Basic Concept of Agricultural Land Use Plan

