Appendix

(]

MJCG-1 (1)

Fig. II-1 Geological columnar figures

	icaisolosi	ROCK	DESCRIPTION	ALTERATION and		SAMP				; c	HENIC		- 1 0 MLYSI		
(m)	Cotum	NAME		ZATION	No.	FROM (m)	10 (m)	WIDTH (cm)	Au (com)	As	Cu	Pb	Zn	\$	Ш.
3.05	\mathbf{X}	Non-core	0-3, 05						1.00-00		-ppm/	100000	(ppm)	· provinci	285
ອ. ທິວ	WAI		Tricon-drilling	Weathered											
5	f X Y	Aplitic Granite	3.051-	(Lisonite)											
	\mathbb{R}^{Λ}	OLGSVICE	Aplitic Granite	Silicified			l .								
10	1 X K		With Quarts, E-Feldspar, Plagio,	Epidote	1				ł						
10	181	at in si	Biotite, Hornblende (rare). Pale pinkish gray	Chlorite	X-ray	9.70									
	NI A	1993	Chlorite and Epidote Hard												
15	$VN \cdot V$		Partly Epidote-network		Section	15. 20								Ī	
	$ \uparrow V\rangle$		Original Dictite and Mornblende remaining.					1							
	XA		fragments of Diorite.												Į.
20			20.50 ~ Fracture Zone			ļ							l		
		dia en esta esta esta esta esta esta esta esta													
24.≰ 25			24.45a~28.95a, Sheared Zone.												
50	HM	÷'	24- 1-76 - 20. 20m, Skeared Zone.		1	}									ļ
28.95		- (Fault)	28.95m, Fault.				i								
30	640		Under the Fault, Silicified more						1		ļ				1
	A		intensive. Very hard.			1		1							1
	$ \Lambda \rangle$		1 Biolite, partly chlorite-altered.												
35	1 AL	1.1	35m±,Epidote-Chlorita Natwork.				Į								
		11 A.		· ·					¢.						
4	ИA		38 Sa±, Chlorite Epidote elteration intensive.	1	Section	38.65									
	A		1 Fractures docrease.		X-say	42.60									
	+		41.8m -, hard.					1		1	ŀ		1		
4	5 +														1
	1 V	a da sa sa													
50	1		43.3m~48.5z, Epidote-network												
50	Υ <u>+</u> ΄,	a ta sa an	52.75m~52.90, Epidote-network										ŀ		
														l	
53	· // +												1		
	Y+ +	· ·													
	1									ł					
6	۹ <i>۲</i> , +		59.3m-60.45c, Chlorite in Practure.												
	+														
£	5		65.16m~65.20m, Epidote-altered.	1											
	1-		Aplitic Gramite					•							
:	+		Pale gray Biotite, partly chlorite-altered	-				i			ł				
71	• _M+										ł	ļ		j	
1	⁺ ~`}	12.12	Partly, epidote-altered intensive.									1			
7	. + .					1									
r.	+]						,	
	. +														
8	c + ,				X-ray	79.05									
	1 1	:				ĺ	1			1				1	
	24		88.2m - 84.5m, Epidots-network			1	1	1	1						
8	۲ <u>٬</u> ۰							1			}	1			
	+							1	1				.	· ·	
9						1	1	1		Ì	ł				
	+1							1		<u> </u>			1		
	1 dill	1	92. En~93. Cm, Sheared Zone.						1	1				1	L
ç	• <i>///</i> •	i +	rerv≕ ararınış çıradu. d0 &⊍ragı.		1			.							
	· .				1				1	1				1	
	141		· · · ·			1						1			
10	<u>4 14</u>	<u> </u>	<u> </u>	1		1	<u> </u>	<u> </u>	1.	1	1	1	E I	1	

MJCG-1 (2)

PTN	Baalogica	ROCK	DESCRIPTION	ALTERATION		SAMP	LE		· · ·	Cł	18 11 C	<u>100</u> al ana			m
(m)	Column	NAME		NINERALI- ZATION	No.	FROM (m)	10 (m)	WIDTH (cm)	Au (ppm)	As (pom)	Cu (ppm)	Pb (ppm)	Zn pom)	S (ppm)	Mo pps
	/, /		Aplitic Granite Tith Quartz, K Feldspar, Plagio, Blotite, Hornblende(rere).	· · · · ·	X zay	109.25									
105	/: <u>;</u>	Aplitic Granite	Pale pinkish gray Silicified, with Chlorite and Epidote												
116	₽ + +		Fartly Epidute-netwirk				-							•	
115			114.9m~216.5m Fractured.											 	
100														· · · · · ·	
)2(, , ,		123.5n~126.7n Fractured.										1	•	
125	+X.		1986-1288 Partly Epidote-net#ork												
130			I Thite alteration, Silicified intensive.		Section	133.35									
135	1		133. 6~134 In, Quarts Vein with Specularite, width (3cm. Epidote, Chlorite diclinant.		Analysis	133.50 134.10 134.10	134.00	50	0.06	1.59	18	93	83	227	<
	1.		136. 8n~137. 4, Sheared.		F.J. Analysis	134.30	×	50	0, 01	3, 92	23	51	295	742	<
14	*		142m t, Silicified, intensive		Polish	141.30								- 2 - 2 - 4	
14	↓ +				Analysis Analysis				1	1.73	22 37	97 138	112 107	150 119	< ↓
15	+ + +												•		
	+++++++++++++++++++++++++++++++++++++++		:		Apalysis			: 50	0.03	2	±2	97	92	109	
15	I.		155. €a∼156. 0, Sheared.		X-rey Analysis	155. 9 157. 9	1	: 50	0.03	2	15	80	; 70	93	
15	/ . +		158.95~159,3,Sheared.												
16	s , 	1													
17	+ +				Analysis Analysis Section	169. 1	0 169.6		0.66 0.62		10 9	73 73	53 62	91 91	
			170, Bz~171, Cz, Sheared.		2601104	109.0								3 :	
17	1 + + +									:					
18	× • •		178 6∼175.7m,Chlorite duginant.												
18	, , , , , , , , , , , , , , , , , , ,		183.3~183.85,Epidote network. mith Chiorite		Aaalysi	184.1	15 184	55 50	8.0	1 3.60	11	329	102	108	
13	+		135.8~187.7s, Shite altered 1 Green alteration dwinant. 189.95a, Chlorite in Fracture.		Analysis X-rey Dating	187.5	50	89 5 0	0, 0	5 1 73) 15	92	122	118	
	+ +	1				Ì									
1	^{\$\$}		195.0~193. 4, Fractured	1	F. I.	196. (35							,	
2	ic + ⊥				inalysi	s 198.3	20 198.1	70 50	K 0.	01 6.20	10	1067	m	113	

A-2

MJCG-1 (3)

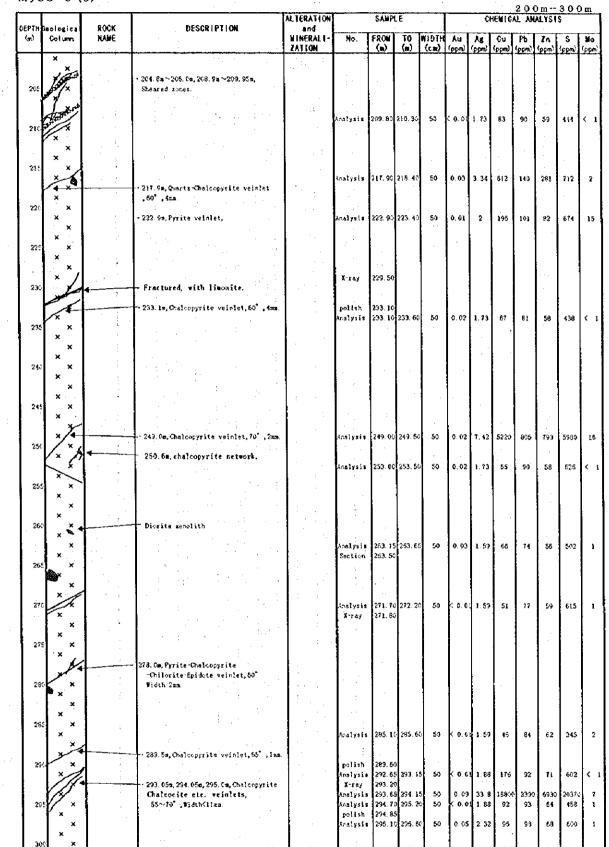
1

DEPT	Geologica	ROCK	DESCRIPTION	ALTERATION		SAMP	LE	. <u>.</u> .		c	HEMIC	200 AL AN		<u>300</u> \$	<u>, 10</u>
(m)	Column	NAME		WINERALI- ZATION	No.	FROM (m)	(m)	HIOTH (cm)	(ppm)	Ag (ppm)	Cu (ppm)	РЬ (ррт)		S (pp#)	. М (ру
	+ · +		Aplitle Granite Silleified, Intensive		Analysis	201.35	201.85	50	ð. 03	1 87	13	93	119	108	<
. 20	+ +		201. Ca~201. 25a, Fractured. Pale picklish gray					н. 1							
	1 + ₊	Aplitic Granite	Chlorite-Epidote network.												
21	+ /	· .	Fartly Epidote-network		Analysis	264 50	210-00	50	0.04). 73	1	92	91	93	<
	171				Analysis					1.73	12	80	228	103	k
	K+ (218.00	410. LV		V. V1	1.13	16	0,1		.05	ſ
21	+				Section	215.15									
	+ +				Section	239. 90								1	
22	· +							ļ							
	+														
22	1.11		1 White alteration dominant. 227.5~227.6a, Chrysocolla disseminated		Section Dating	227.20									
	1.		sol, a -ssi ontentendata atésésiarea		X-ray	227, 20 227, 20 227, 50									
23		· ·	230. 0m ~230. 25m, Fractured.		Polish F. I.	227.60									
:					Analysis X-ray	230, 50			0.01	2.15	13	123	137	132	
2.			235. 7m~236. 6m, Fractured.		An olysis	231.0 0	231.50	50	0.02	1.73	35	85	132	129	K
	1														
2	11/1		238.3=~238.5=, Fractured.		Section Analysis			50	2.02	1. 73	13	80	74	134	L
2.			242.7~242.8m, Charysocolla disseminated		Polish	242. 70		50	0.02	1. 75	13	80	[^{**}	1.54	ľ
	/+ '		with specularite [White alteration dominant.		X-rey Analysis	242, 80 244, 70		50	0. C4	1. 73	15	94	98	521	
24	" <i>i 1/</i>		Sibicified, intensive.	1	Polish	247. 20					:				
	1 At		247.0~247.5e,Chlorite in Fracture.		Polish	272.26									I
2	× / +		249. 45~249. 55s, Shered. 250. 45~250. 55s, Shered.			1						:			
•	+		[White alteration deminant. Partly, Chlorite-Epidote veinlets.		{								1		
2.	55 +		aratty, outorite oproce venters.								1.	92	80	101	
	+				Analysis	200.21	. 255. F	50	0.03	1.73	13	82	80	101	ľ
2	so † +	,			Abalysis	259.00	259.5	50	K 0.0	2.74	13	80	72	101	1
	+/+	14 ¹	262. 8 e ~263. 2e, Fractured.												L
2														1	L
			265, 25~235, 30, QorChlorite-Epidote veinlets, width: 3ma		1										
	. (+)	,	verniets, mittin oca.		Analysis					1.73		86	64	63	
	τς . + .		271.9a~272.55m, Epidote Specularite		Analysis Polish	272.2		ା 50	X 0.0	1.87	10	85	67	127	ľ
	\mathcal{N}	÷ .	veinlet,wodth:4ze,70		X-144	272.50			1						
2	75 +		I Green alteration dominant.												ļ
	+	÷ .			1										
2	s +														ł
	1.1				Analysis Section			59	K 0.0	2.74	8	97	81	187	ŀ
1	85 / +		284. 2m~-284. 9m, Chalcocite?-Specularite	,	Section	201.9	1								I
	r +	[- ·										1			
	+ 90 +							1							
	+ +				Analysis	293.7	0 294.2	0 50	0.61	1.87	10	97	97	180	1
,	. +//		White alteration dominant.										1		
1	* 4 +		Green alteration dominant.		Analysis	295.5	0 295. 0	o 50	k 0.0	1.73	9	99	89	125	
1	1 +	1		1		298.5	1 1	0 50	0.04	1	1	126	94	115	

MJCG-1 (4)

	G−1 (ALTERATION		SAMP	LE			Ç	HENIC	300 AL AN) <u>m —</u> Al YS I) m
(m)	Gootogicai Cotumn	ROCK	DESCRIPTION	and MINERAL 1- ZATION	No.	FROM (m)	10 (m)	WIDTH (ca)	Au (ppm)	Ag (ppm)	Çu	Pb (ppe)	Zn (spa)	\$	¥o
			Aplitic Granite Vith Quartz, K-Feldspar, Plagio,	201100	Analysia			50		1.87	9 9	99 99	72 72	(ppin) 159	(ppm) < 1
365	1. 	Aplitie	Biotite. Pale pinkish gray												
	. //	Granite	Silicified, with Chlorite and Epidote Partly Epidote-network		Analysis S	306.30	306.80	50	< 0.01	1.80	n	89	98	459	¢ į
310	/ *		306.0306.Im,Epidete dueinant.		X-yay	311.40								:	:
315	+ /+		White-altered.	an a										÷	
	1.		317.0~317.10.Epidgte dominant. with chlorite.												
320	+ +	•••	1 Green alteration dealsast. 1 Shite alteration dealsast.		Analysis	319.30	1319.80	50	0.02	2.30	38	135	59	585	< 1 :
	+				Analysia	322.50	323.00	50	< 0.01	2.73	38	135	91	254	< 1
325	+ + +	· · ·			Analysis	326, 90	327.40	50	K 0.01	1.86	19	107	82	227	< 1
330		н. 1. т. – С.			Analysis	330.00	330, 50	53	0.02	2.01	27	121	- Åð	513	< 1
[•]		19 a.	331.0~332.3#,Epidpte dominant.										an. An		
334	1		334.6~335.0, Fractured. 335.1~339.3, Chlorite-networks.		Analysis	335.10	336.60	50	0.01	1.86	27	93	55	191	< 1
34					Analysis Analysis					2.01	75 40	93 100	65 62	137 178	<1 < 1
	+ ; +													•,,,	
34	5 + +	ļ		Vein					·						
35														 	
			350.0, Chlorite dominant.		X-1.87	353. 5	5			1					1 A.
35	5 +														-
ł															
38														,	
30	+ +		Fractures decrease. Mure homogeneous.												
	+++++														· ·
33	'⊂ + +													. :	
3	+ + +						1.5					ľ			
	1 + +						÷ .								
38	3: + +													.	
	+ +				Analysis	384.0	0384.5	e 50	K 0,8	2.15	79	118	75	; 165	< 1
ja J	€ + + +			1				1							
3'	». † "*	7			1										
			393.3~393.4 Chlorite-Epidote veinlet width:428		Analyst			°C 50		2 1.86	22	135	6.5		.
3	* +				4781 9 51	• 1333. 1	,u 333, 1	. 50	0.03	5 8.80		138		218	
	ar - +				X-ray			K. 50	K 0.1		81	137	90	147	

A-4


MJCG-2 (1)

		,		ALTERATION		SANPL	E			C	IENIC	AL AN	- 1 0 ALYSI		
ง เหร ๗	ieologica Colum	ROCK NAME	DESCRIPTION	and NINERALI- ZATION	No,	FROM (m)	10 (m)	WIDTH (cm)	Au (ppm)	Ag (ppm)	Cu (ppm)	ԲԵ (բրտ)	Zn (ppm)	S (opat)	No (pp
	$\langle \cdot \rangle$	Non-core	· 0-9.02m Tricon-drilling												Γ
_	\mathbf{V}			l'eathered											
	Δ			(Lizonite)								1 :			
02	/ N														
10	X	Granodiorita	- Granodiorite Biotite duminant. With	· [
	$\mathbf{\mathbf{x}}$		Gneissose-Nicrodioritic Xenolith. Qz,Pl,K-Feldspar,bio,hornblende imp.												
15			 ~14±±, seathered. Jointed Fractures, 20~30s interval. 	Chlorite(p) Nomatite								1			
	الحريب														
	×				X-rey	19.50									
20	××⁄		Nafic mineral dominant.		Section	19.50									
	/×														
4.45 25	××	1			Хтау	24.10									
	× -														
1. F.	×		Fracture with limonite, hematite												
30	×														
	"ž	1.1	Hair crecks with limonite.											•	
35	The .				Х-гау	35, 30					1				
	/*		 35.2m, limonite, Nuscovite in fracture(60°). 												
40	×		(diorite xenolith)	ĺ										1	1
1.															
	1×		Aplite, Fale pinkish gray 35°											· ·	
45	States and	+	- (diorite xenolith)						1			I I			
•			and the second sec		1				ļ				ļ		
50	×.		• 49.75s, Chrysocolla and Malachite in fracture (30°).										1		
	Z× ×	1999) 1997)					1				İ				
	• صعقر							1		1					
55	A CARDON		(Aplite)			1									
60	. *	· · ·]				1				
			- (dioritic~rignatic xenolith)			Í			-						1
55	VY		- Aplite - Pegmatite		Section	66.60				l					
	×														1
	Y and		Partly, gneîssose.												
70		· · · · ·													
	X		= (Aplite)		Analysis	70.20	75 20		0	1.74		54	82	256	
75	₩×/								ľ	1.13	1 ~1			200	ľ
	X	}	Fracture with Malachite		X-rey	77.20				1					
80	1	Į .	• S0a~, Chlorite(p)		3nalysis	78.50	79.00	50	0	1. 44	11	92	45	215	<
	1 del				āralysis	61.39	81.80	50	Q.	1.44	134	BQ	86	234	<
	×		- + 84.15~24.85s,sheared zone. (diorite xemolith)									1		.	
6															
		<u> </u>													
90	× × /	e	Diorite dyke. Fire grained.		Analysis	89.85	99.3	50	D. 05	1 23	120	95	68	291	 ^
	× /*	\vdash			Analysis	93 50	ge 14	50	0 07	1.30	177		110	1394	
	×		• 93, 5m~94.0m, Chalcopyrite-Pyrite	1	1		[```				1	[″	1		
S	× ×		veinlets.l=-27#.				1							1	
	×	1	· · · · · · · · · · · · · · · · · · ·		Analysis.	97 80	08.36	sE 5a	kar	1 00	78	105	70	309	

MJCG-2 (2)

перти	Geologica	ROCK	DESCRIPTION	ALTERATION	· ·	SANP	LE			Ç	BEMLC			<u>200</u> S	<u>m</u>
(m)	Column	NAME		NINERAL I- ZATION	No.	FROM (m)	10 (m)	#10TH (cm)	Au (ppm)	Ag (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppn)	\$ (ppm)	Mo (ppm
:	××														
165	A REPORT		• 105 7m, Fault Clay.		X-ray	105.90									
	×														
110	××														
•		+	– Melanocratic dioritic xenolith.												
115											1				
	Ĵ×	- 1 							•						
120	°,×							:							
	Û x			:				1							
152					•				1						
			Fracture, with crisocolla .		· ·										-
130		÷ .	+ 131.3m, Quarte - Malachite		Abalysis F.I.	130.50 131.20		50	0. 95	5.11	367	388	2339	1250	<
			veinlet. 30' 10mm×.		Analysis			50	0.03	5.71	2920	125	1440	\$\$ 50	1
13					F. 1.	151.50									
	×	:									1		÷.,		:
14	1 the		Fracture - fault.	-											
					Section	143.7) 						÷	· ·	
14	€ × /+	· · : 			Analysis polish	145. 10 146. 63	0 145.64 5	50	0.01	1.44	81	102	122	794	<
	××.				F. 1	145.6	5	1.1		1 14					
15			150.20, Quartz-Pyrite-Chalcopyrite		Annlysis F.I	151-34 151-5	0 157.8 0	o 50	0.02	19.5	262	1545	751	35700	¢
15					Analysis X-ray	154.0 154.3		0 50	0.02	1.30	21	. 91	60	968	,
	×		Aplite, fractured.					·							
16					Analysis	160.0	0 150.5	0 50	0.03	1.59	1	85	53	462	
	1×		- 163.3s, Pyrite Chalcopyrite		Analysis	161.0	0 161 5	c 50	0. 01	3.59	38	85	58	618	1
18	1.		veinlet.65°,6øm,												
	××		• 167m ±, Sheared sone, Limonite.		Xrsay Analysi	169.0	0 169.5	io 50	k 0.0	1 05	1906	145	76	55500	
13	n ×	· · · · ·	 ' 169. 3a~170. 3a, Fyrite Chalcopyrite disseminated~ veinlet 		polish Analysis	170.0	0 179. 5	o 50	K 0.0	2.03	5 405	145	343	3250	
	Surgers'	•	- Aplitic		polish Scalysis			s 50	0.01	1.5	55	101	57	414	
ı:					Analysis					1.7			103		
	1 de		Fracture, liponite		Analysi:		1			3. 6		1	153		
1			Fractures with chalcopyrite.		Analysi:	- p79.0	N 179.8	50 50	0.0	36.1	0 1750	0 261	591	17906	
	1 A				Acalysi:	183.8	30 284. 1	so 50	0.0	3 1.7	4 133	84	67	486	
1	se (Chalcopyrite veinlets.												
			Chalcopyrite veinlet	1								:		.	
1	91		Aplitic.	:	Section	183.1	70								
	X				X-7 87	193. (60 ⁻								
1	95					Í	*								
			- 195. 4m, Quarta -Chalcopyrite veintet. 65°, 5cm.		Ì	1					1	ļ		ł	
2															

MJCG-2 (3)

Result of microscopic observation of thin section

Table ∐-1

REMARKS												Partly migmatic.				
	Monazite			1	-†						-1	_		$\overline{\cdot}$		
0	Sphene							}			$\overline{\cdot}$	⊲		-		
PHI	Epidote	4		4	4	⊲	⊲	ব	4	⊲		•	4	-+	-1	
MOR	Zircon		-			\rightarrow	-	_		Ì			-	-		
ETA	Opaque mineral		⊲	4	∖	4	4	∢	4			⊲	4	⊲		
	Clay mineral			-	-+		-	-				\rightarrow	-			
ALTERATION - METAMORPHIC	Calcite							⊲		4			.		•	
TAT	Sericite						,	÷		- <u>`</u>					,	
EI.	Chlorite	⊲	⊲	⊲			•	0	⊲	4	∢		4	ব	4	
V	Quartz					.		•		-			-	Ì		
	4001 (2															
	Fe-mineral			·							_	•		-		
eAS:	K-feldspar					-								, ·		
I QN	Plagioclase			-												
ROU	Fe-mineral K-feldspar Plagioclase Quartz				·									_		
- 0	Mafic mineral	-													ų.	
	Fe-mineral	-						•			4	♦	•	4	•	
Ę		·			-	_			•	0.	ک ا	2	A		4	
Ž	Biotite		· · ·	19. 19. j	- 44 - 14	i			~	÷.	0	0	7	0	0	
ļŠ	K-feldspar	0	- 2 0	0	i O	0	- :- 0		0	ŏ		0		0	_	
PHENOCRYST		0	0 0	0	0	0	0	0	0		4			0) ک	1
٩		ł				_		0		0		0	0		0	
┝	Quartz	0 7	С л	0 . 1	Ø.	r 💿	© J	0	0	0 ਮ	0 5	©	0	к. О	0	
TEVTINDE		Aplitic Granite Holocrystal, Equigranular	Holocrystal, Equigranular	Aplitic Granite Holocrystal, Equigranular	Aplitic Granite Holocrystal, Equigranular	215.2 Aplitic Granite Holocrystal, Equigranular	227.2 Aplitic Granite Holocrystal, Equigranular	239.9 Aplitic Cranite Holocrystal, Equigranular	Aplitic Granite, Holocrystal, Equigranular	Aplitic Granite Holocrystal, Equigranular	Granodiorite Holocrystal, Equigranular	Holocrystal, Equigranular	Holocrystal, Equigranular	. Granodiorite' Holocrystal, Equigranular	Granodiorite Holocrystal, Equigranular	
		Aplitic Granite	Aplitic Granite	Aplitic Granite	Aplitic Granite	Aplitic Granite	Aplitic Granite	Aplitic Cranite	Aplitic Granite.	Aplitic Granite	Granodiorite	Granodiorite	Granodiorite	. Granodiorite	Granodiorite	
10000	a B	15.2	38.9	133.4	169.6	215.2	227.2	239.9	284.9	399.9	19.5	66.6	143.7	183.7	263.5	
CAT 1 TOO		NJCC-1	MJCG-1	NJCG-1	NJCC-1	MJCC-1	NJCC-1-	NCC-1	MJCC-1	NJCC-1	MJCG-2	NJCC-2	NJCC-2	MJCC-2	NJCC2	
	ź	-	~	n	4	ŝ	9	r	∞	თ	2	17	12	13	Ξ	

Legend

.

\\\\:\Lambda : Minor O:Medium ©:Abundant

· :Rare

									· ·		1.00			
		Remarks	Tablar hematite			Tablar hematite			Sphalerite exsoluting in Chalcopyrite		Ideomorphic pyrite			
		Quartz	0	0	0	0	Ö	0	0	O	0	\odot	0	0
	S		- 	2										
	AL	Hematite	0	\triangleleft	•	4	0	0	\triangleleft				\triangleleft	
	E R	Bornite					:				·			•
	N	Sphalerite							⊲		0	4		•
	I W	Galena	· ::						•	•	4			
		Pyrite				•			0	\odot	⊲		0	\triangleleft
		Chalcopyrite							\odot	\bigtriangledown	\bigcirc	Ö	•	\bigcirc
		HOST ROCK	Aplitic Granite	Granodiorite	Granodiorite	Granodiorite	Granodiorite	Granodiorite	Granodiorite					
		Depth (m)	134.10	141.30	227.50	242.70	247.10	272.20	146.65	06 69T	171.00	233.10	289.60	294.85
-		ON SNITTING	MJCG-1	MJCG-1 141	MJCG-1	MJCG-1	MJCG-1	MJCG-1	MJCG-2	MJCG-2	MJCG-2	MJCG-2	MJCG-2	MJCG-2
		NO.	-	2	ę	4	ഹ	9	2.5	œ	6	10	11	12
	•	(4) (4) (4) (4) (4)			1 - A - A	e -			•				• •	

Result of microscopic observation of polish section Table II-2

Legend ©:Abundant

- :Rare

∆:Minor

O:Medium

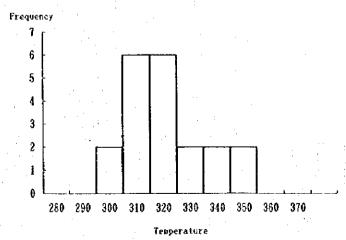
Table II - 3 Result of X-Ray Diffraction Analysis

	DRILLING No.	DEPTH	ROCK TYPE	P	ਦ			N E				ŝ	to I	<u>.</u>	S	C	Remarks
				Quartz	plagioclase	K-Feldspar	Biotite	Hornblende	Albite	Montmollironite	Chlorite	Sericite	Epidote	Laumon ti te	Stilbite	Calcite	
					se	ч		<i>.</i>		ronite				۲ <u>۵</u>			
1	MJCG-1	9.70	Aplitic granite	0	0	Δ				Δ			•				
2	MJCG-1	42.60	Aplitic granite	ø	0	Δ	:	;			•	•	Δ				
3	MJCG-1	79.05	Aplitic granite	0	0	Δ							Δ				
4	MJCG-1	100. 25	Aplitic granite	0	0	Δ		:			•						
5	MJCG-1	134. 10	Aplitic granite	0	-				·		0		Δ			⊿	Near by Quartz vein
6	NJCG-1	155.90	Aplitic granite	0	6	Δ					•	;	Δ				
7	MJCG-1	187. 50	Aplitic granite	0	Δ	Δ		С.			•	•	Δ				
8	MJCG-1	227. 20	Aplitic granite	Δ	0	Δ	1			:	•		Δ				
9	MJCG-1	230. 50	Aplitic granite	Δ		Δ			0		Δ		Δ				
10	NJCG-1	242.80	Aplitic granite	0		0			0		•		Δ				
11	MJCG-1	272.50	Aplitic granite	Δ	ŀ	0	:				Δ	:	△		Δ	Δ	
12	MJCG-1	311.40	Aplitic granite	0		Δ			0	-	Δ						
13	MJCC-1	353. 55	Aplitic granite	0		Δ			0	Ī	•		Δ				
14	MJCG-1	399, 90	Aplitic granite	0		Δ	:	. :	0		Δ		Δ				
15	MJCC-5	19, 50	Granodiorite	0	0	ŀ	Δ	Δ			•				•	Δ	
16	MJCG-2	24. 10	Granodiorite	0	Ó	Δ	Δ	Δ			Δ					Δ	
17	NJCG-2	35.30	Granodiorite	0		Δ			Ţ		Δ	⊿					
18	MJCG-2	77.20	Granodiorite	0	Δ						•			0			
19	MJCG-2	105.90	Granodiorite	0	0	Δ					Δ	ŀ					
20	MJCG-2	154. 30	Granodiorite	0	0		0		•		Δ	:	ŀ				
21	NJCG-2	166. 90	Granodiorite	6	Δ	Δ	Δ	•			Δ						
22	MJCG-2	193. 60	Granodiorite	6		Δ	4	4			•						
23	NJCG-2	229. 50	Granodiorite	6	0		Δ	Δ		Ţ	Δ						
24	MJCG-2	271.80	Granodiorite	6) @		Δ	⊿		Τ	Δ				Γ	T	
25	MJCG-2	293. 20	Granodiorite	©) 6		⊿	Δ					Γ		•		
	Legen ©:Abu		():Medium ∆	:Xi	nor		• :{	Rare	•								

Result of Chemical analysis of ore samples

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·7				<u> </u>		:	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No	Sample	Au	Ag	Cu	РЪ	Zn	S	Мо
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1	MJCG-1 133.50 \sim 134.00 m	0.06	1.59	18	93	93	227	< 1 I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	MJCG-1 134.30 \sim 134.80 m	0.01	3.92	22	51	295	742	< 1.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. 3	MJCG-1 143.50 \sim 144.00 m	0.03	1.73	22	97	112	130	$\langle \cdot \rangle = 1^{1}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4	MJCG-1 146.70 \sim 147.20 m	0.05	1.73	<u>37</u>	138	107	119	1 ک
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 5	MJCG-1 155.40 \sim 155.90 m	0.03	2.02	12	97	92	109	 < 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	MJCG-1 157.90 \sim 158.40 m	0.03	1.88	15	80	, 70	98	۲ ا
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	MJCG-1 165.85 \sim 166.35 m	0.06	1.88	10	73	62	91	< 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	MJCG-1 169.10 \sim 169.60 m	0.02	1.73	9. S	. 73	62	91	〈 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	MJCG-1 184.15 \sim 184.65 m	0,01	3.60	11	329	102	108	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	MJCG-1 187.30 ~ 187.80 m	0.05	1.73	15	92	122	118	< 1
13MJCC-1209,50 ~ 210.00 m0.041.737929193 $<$ 114MJCC-1212.60 ~ 213.10 m0.011.731280228103 $<$ 115MJCG-1227.70 ~ 228.20 m0.012.1613123127132116MJCC-1231.00 ~ 231.50 m0.021.733585132129 $<$ 117MJCG-1242.70 ~ 243.20 m0.021.73138074134 $<$ 118MJCC-1244.70 ~ 245.20 m0.041.73109498121 $<$ 119MJCG-1256.20 ~ 256.70 m0.031.73139280101 $<$ 120MJCC-1268.00 ~ 268.50 m0.021.7310866488 $<$ 121MJCG-1268.00 ~ 268.50 m0.021.7310866488 $<$ 122MJCC-1293.70 ~ 294.20 m0.011.87109797180 $<$ 124MJCG-1295.50 ~ 296.00 m $<$ 0.011.87109797180 $<$ 125MJCG-1298.50 ~ 299.00 m0.043.311212694115 $<$ 126MJCG-1396.00 ~ 300.50 m <t< td=""><td>11</td><td>MJCG-1 198.20 ~ 198.70 m</td><td>< 0.01</td><td>6.20</td><td>4 10</td><td>1067</td><td>111</td><td>110</td><td>< 1 1</td></t<>	11	MJCG-1 198.20 ~ 198.70 m	< 0.01	6.20	4 10	1067	111	110	< 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	MJCG-1 201.35 \sim 201.85 m	0.03	1.87	13	93	119	108	< 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	MJCG-1 209.50 \sim 210.00 m	0.04	1.73	7	92	91	93	< 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	MJCG-1 212.60 \sim 213.10 m	0.01	1.73	12	80	228	103	< 1 ₁
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	MJCG-1 227.70 \sim 228.20 m	0.01	2.16	13	123	127	132	1
18MJCG-1244.70 ~ 245.20 m0.041.73109498121<119MJCG-1256.20 ~ 256.70 m0.031.73139280101<	16	MJCG-1 231.00 \sim 231.50 m	0.02	1.73	35	85	132	129	· < 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	MJCG-1 242.70 \sim 243.20 m	0.02	1.73	13	80	74	134	< 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	MJCG-1 244.70 \sim 245.20 m	0.04	1.73	10	94	98	121	< 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	MJCG-1 256.20 ~ 256.70 m	0.03	1.73	13	92	80	101	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	MJCG-1 259.00 \sim 259.50 m	< 0.01	2.74	13	80	72	101	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	MJCG-1 268.00 \sim 268.50 m	0.02	1.73	10	86	64	88	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	MJCG-1 270.30 \sim 270.80 m	< 0.01	1.87	10	85	67	127	× 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23	MJCC-1 284.80 \sim 285.30 m	< 0.01	2.74	8	90	81	187	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	MJCG-1 293.70 ~ 294.20 m	0.01	1.87	10	97	97	180	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	MJCG-1 295.50 ~ 296.00 m	< 0.01	1.73	9	98	89	125	< 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	MJCG-1 298.50 ~ 299.00 m	0.04	3.31	12	126	94	115	< 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	MJCG-1 300.00 \sim 300.50 m	< 0.01	1.87	9	99	72	157	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	MJCG-1 306.30 \sim 306.80 m	< 0.01	1.86	11	89	98	459	< 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29	MJCG-1 319.30 ~ 319.80 m	0.02	2.30	38	135	. 69	585	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	MJCG-1 322.50 \sim 323.00 m	< 0.01	2.73	38	136	91	254	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	MJCG-1 326.90 \sim 327.40 m	< 0.01	1.86	19	107	82	227	< 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	MJCG-1 330.00 \sim 330.50 m	0.02	2.01	27	121	49	513	< 1
35 MJCG-1 338.75 ~ 339.25 m < 0.01	33	MJCG-1 336.10 ~ 336.60 m	0.01	1.86	27	93	55	191	< 1
36 MJCG-1 384.00 ~ 384.50 m < 0.01	34	MJCG-1 338.25 ~ 338.75 m	0.01	2.01	75	93	65	137	< 1
37 MJCG-1 393.20 ~ 393.70 m 0.02 1.86 22 132 68 218 < 1	35	MJCG-1 338.75 \sim 339.25 m	< 0.01	2.01	40	100	62	178	< 1
	36	MJCG-1 384.00 \sim 384.50 m	< 0.01	2.15	79	118	78	166	< 1
38 MJCG-1 399.00 \sim 399.50 m < 0.01 2.30 81 137 90 147 < 1	37	MJCG-1 393.20 \sim 393.70 m	0.02	1.86	22	132	68	218	< 1
	38	MJCG-1 399.00 \sim 399.50 m	< 0.01	2.30	81	137	90	147	< 1

A - H


No	Sample	Au	Ag	Cu -	Pb	Zn	S	Мо
		(ppm)	(ppm)	(ppm)	(opm)	(ppm)	(ppm)	(ppm)
1	MJCG-2 74.70 ~ 75.20 m	0.04	1.74	504	94	82	256	< 1
2	MJCG-2 78,50 ~ 79,00 m	0.02	1.44	71	92	. 44	215	< 1
3	MJCG-2 81.30 ~ 81.80 m	0.02	1.44	134	80	86	234	< 1
4	MJCG-2 89.85 ~ 90.35 m	0.05	1.89	120	95	68	291	く 1
5	MJCG-2 93.50 ~ 94.00 m	0.07	1.30	172	90	113	1390	1
6	MJCG-2 97.80 \sim 98.30 m	< 0.01	1.00	78	105	70	309	< 1·
7	MJCG-2 130.50 \sim 131.00 m	0.05	5.71	367	388	2330	1250	< 1
8	MJCG-2 131.40 \sim 131.90 m	0.03	6.74	2920	125	1440	4460	1
9	MJCC-2 146.10 \sim 146.60 m	0.01	1.44	81	102	122	794	۲
10	MJCG-2 151.30 ~ 151.80 m	0.02	19.5	262	1545	751	35700	< 1
11	MJCG-2 154.00 ~ 154.60 m	0.02	1.30	21	91	60	988	1
12	MJCG-2 160.00 \sim 160.50 m	0,03	1.59	49	85	53	462	1
13	MJCG-2 161.00 ~ 161.50 m	0.01	1.59	38	85	58	618	2
14	MJCG-2 169.00 \sim 169.50 m	< 0.01	4.09	. 1906	145	76	55600	4
15	MJCG-2 170.00 \sim 170.50 m	< 0.01	2.03	405	146	343	3250	2
16	MJCG-2 171.85 \sim 172.35 m	0.01	1.59	55	101	57	414	1
17	MJCG-2 175.50 \sim 176.00 m	< 0.01	1.74	98	116	103	1240	2
18	MJCG-2 176.00 ~ 176.50 m	< 0.01	2.62	399	103	153,	1440	2.
19	MJCG-2 179.00 \sim 179.50 m	0.07	36.0	17500	261	591	17900	27
20	MJCG-2 183.80 \sim 184.30 m	0.03	1.74	133	84	67	486	2
21	MJCG-2 209.80 \sim 210.30 m	< 0.01	1.73	83	90	59	444	1
22	MJCG-2 217.90 ~ 218.40 m	0.03	3.34	612	140	281	712	2
23	MJCG-2 222.90 ~ 223.40 m	0.01	2.02	196	101	82	674	15
24	MJCG-2 233.10 ~ 233.60 m	0.02	1.73	67	81	58	438	. K = 1
25	МЈСС-2 249.00 ~ 249.50 п	0.02	7.42	5220	805	793	5980	16
26			1.73	55	90	58	626	< 1
27	MJCG-2 263.15 \sim 263.65 m	0.03	1.59	66	74	56	502	1
28	· · · · · · · · · · · · · · · · · · ·	-	1.59	51	77	59	615	1
29			_	46	84	62	345	2
30			1.88	176	92	71	602	〈 1
31			33.8	18800	2390	6930	20370	7
32			1.88	92	93	64	458	1
33	MJCG-2 296.10 \sim 296.60 n	n i 0.05	2.32	96	98	68	600	1

A~12

MJCG-	<u>1 134.30m</u>	: 	Secondary in	clusions are	also observe	ed.	
	Mineral	Size	Volume	Form	Tempe-	Melting	NaC1
No	· .	· · ·	ratio		rature	•	
· · · ·		(m µ)	(%)		(°C)	(°C)	Wt (%)
1 -	Quartz	137. 5	15	irr	320	-10, 7	14.67
2	Quartz	30.0	13	ро	. 311	0.0	0.00
3 :	Quartz	10.0	13	ро	320	0.0	0.00
4	Quartz	7.5	12	ро	329		
5	Quartz	15.0	- 17	sq	355		
6	Quartz	5.0	15	sq	342	_ ·	· _
7	Quartz	12, 5	12	ро	306		
8	Quartz	10.0	13	ро	313		. '
9	Quartz	25.0	15	ро	312	0.0	0.00
10	Quartz	27.0	13	ро	316	-2.8	4.65
11	Quartz	35.0	15	ро	336	0.0	0.00
12	Quartz	22.5	12	tu	308	0.0	0.00
13	Quartz	20.0	20	ро	310	0.0	0.00
14	Quartz	50.0	15	irr	341	0.0	0.00
15	Quartz	17.5	15	ро	323	0.0	0.00
16	Quartz	25.0	20	ро	352	0.0	0.00
17	Quartz	10.0	13	ро	-324		
18	Quartz	5.0	12	ро	314		· :
19	Quartz	17.5	13	ро	331	0.0	0.00
20	Quartz	22.5	15	ро	321	0.0	0.00
				· · · · · · · · · · · · · · · · · · ·			
						1	
				··			

Table II -- 5 Result of measurement of homogenization temperature and salinity of fluid inclusion

eg: Egg-shaped ir:Irregular po :Polygon sq:square tr:Triangular tu:Tubal vg:Wedge-shapeq

Mineral	Quartz
Number	20
Maximum	355 °C
Minimum	306 °C
Average	324. 2 °C
St. diviation	14. 1

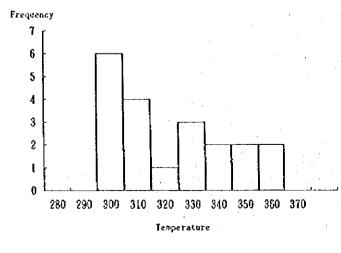
.

(1)

Table II -- 5 Result of measurement of homogenization temperature and salinity of fluid inclusion

MJCG-1 196.35m

Secondary inclusions are also observed.


· ·	Mineral	Size	Volume	Form	Tempe-	Melting	NaCl
No		н	ratio		rature	Temp	
	: 	(m µ)	(%)		(°C)	(°C)	₩t (%)
- 1	Quartz	27.5	15	ро	363	-7.5	11.10
2	Quartz	25.0	13	ро	334	-7.7	11, 34
3	Quartz	22. 5	15	ро	349	-7,7	11.34
4	Quartz	5.0	13	sq	342		· .
5	Quartz	7.5	12	ро	353		. <u> </u>
6	Quartz	10.0	13	ро.	360	-7.3	10, 86
7	Quartz	17.5	10	po	304	-7.7	11.34
8	Quartz	7.5	12	ро	309	·	
9	Quartz	7.5	15	ро	316		
10	Quartz	7.5	13	ро	314	-	; <u> </u>
11	Quartz	22.5	15	irr	303	-7.4	10.98
12	Quartz	20.0	15	irr	308	-7.2	10.73
13	Quartz	17.5	17	ро	335	-7.7	11, 34
14	Quartz	12.5	15	ро	351	-7.6	11.22
15	Quartz	7.5	12	ро	322		· • •
16	Quartz	5.0	12	ро	308		·
17	Quartz	2.5	10	eg	331	—	
18	Quartz	12.5	13	irr	311	-7.7	10.34
19	Quartz	12.5	12	irr	309	-7.5	11.10
20	Quartz	5.0	12	ро	317	-	· _ :

eg: Egg-shaped in :Irregular po :Polygon

sq:square

re tr:Triangular

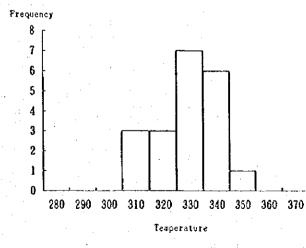
wg:Wedge-shaped

Mineral	Quartz			
Number	20			
Maximum	363 °C			
Minimum	303 °C			
Average	327.0 °C			
St. diviation	19.5			

ts:Tubal

(2)

	Mineral	Size	Volume	Form	Tempe-	Melting	NaC1
No	1		ratio		rature	Temp	
		(m µ)	(%)		(°C)	(°C)	₩t (%)
1	Quartz	17.5	20	ро	339	0.0	0.00
2	Quartz	10.0	20	ро	346		
3	Quartz	20.0	15	ро	337	0.0	0,00
4	Quartz	37.5	15	ро	339	0.0	0.00
5	Quartz	20.0	12	irr	323	0.0	0, 00
6	Quartz	17.5	15	ро	345	-0.1	0.18
7	Quartz	5.0	12	ро	331		
8	Quartz	5.0	15	ро	348		
9	Quartz	5.0	13	ро	352	 ;	`
10	Quartz	17.5	15	irr	330	0.0	0.00
11	Quartz	17.5	13	irr	318	0.0	0.00
12	Quartz	20.0	20	ро	342	0.0	0.00
_13	Quartz	15.0	20	ро	341	-0.1	0.18
14	Quartz	5.0	12	tr	320	· ·	
15	Quartz	7.5	12	po	317	-	-
<u>16</u>	Quartz	5.0	15	ро	333		1
17	Quartz	20.0	17	irr	341	0.0	0.00
18	Quartz	22.5	13	irr	322	0.0	0.00
19	Quartz	17.5	12	ро	335	0.0	0.00
20	Quartz	10.0	12	ро	314	0.0	0.00
				[T	
				T	1		· ·


Table $II \rightarrow 5$ Result of measurement of homogenization temperature and salinity of fluid inclusion (3)

eg: Egg-shaped in :Irregular po :Polygon

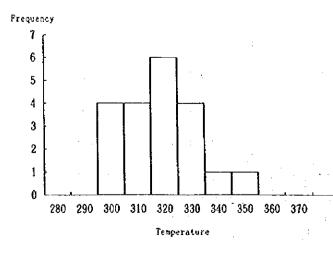
sq:square

tr:Triangular tu:Tubal

wg:Wedge-shapec

MineralQuartzNumber20Maximum352 °CMinimum314 °CAverage333.7 °CSt. diviation11.0

Table II = 5 Result of measurement of homogenization temperature and salinity of fluid inclusion


MJCG-2 131. 20m

	Mineral	Size	Volume	Form	Tempe-	Melting	NaCl :
No			ratio		rature		
		(m µ)	(%)	······	(°C)	(°C)	₩t (%)
1	Quartz	35.0	30	ро	323	-7.2	10. 73
2	Quartz	42.5	25	ро	339	-7.0	10. 49
3	Quartz	10.0	13	ро	318	-7.2	10.73
4	Quartz	10.0	12	ро	324	-7.2	10.73
5	Quartz	45.0	13	ро	309	-7, 1	10.61
6	Quartz	7.5	15	ро	327		
7	Quartz	5.0	20	ро	341	<u> </u>	-
8	Quartz	5.0	15	ро	321		-
9	Quartz	15.0	15	irr	310	-7.1	10.61
10	Quartz	7.5	17	ро	317	-7.3	10.86
11	Quartz	7.5	15	ро	324		
12	Quartz	27.5	13	irr	332	-6.9	10.36
13	Quartz	20.0	15	ро	331	-7.2	10.73
14	Quartz	10.0	17	ро	352	'	—
15	Quartz	7.5	12	ро	304	· ·	
16	Quartz	7.5	13	sq	338	-	-
17	Quartz	30.0	15	ро	325	-7.1	10.61
18	Quartz	25.0	15	ро	317	-7.0	10. 49
19	Quartz	22.5	13	ро	307	-7.1	10.61
20	Quartz	10.0	12	ро	302	<u> </u>	_
							;

eg: Egg-shaped in : Irregular po :Polygon sq:square

tr:Triangular tu:Tubal

wg:Wedge-shaped

Mineral	Quartz
Number	20
Maximum	352 °C
Minimum	302 °C
Average	323. 1 °C
St. diviation	12.9

A-16

` **(**4)

Table II -5 Result of measurement of homogenization temperature and salinity of fluid inclusion

				<u>.</u>		14.14.	
No	Mineral	Size	Volume	Form	Tempe-	Melting	NaCl
No		(m µ)	ratio (%)		rature (°C)	Temp (°C)	Wt (%)
1	Quartz	37.5	13	irr	288	-7.1	10.61
2	Quartz	7.5	10	ро	286	-6.8	10.24
3	Quartz	5.0	10	sq	319	-6.6	9.98
: 4	Quartz	10.0	10	Wg	322	-6.6	9.98
5	Quartz	7.5	10	po	327	-6.5	9.86
6	Quartz	2.5	10	eg	297		
. 7	Quartz	10.0	12	ро	294	-6.6	9.98
8	Quartz	10.0	10	ро	292	-6.4	9.37
. 9	Quartz	12.5	13	ро	302		
10	Quartz	15.0	12	ро	327	· · · ·	
11	Quartz	20, 0	15	ро	325	-6.8	10. 24
12	Quartz	12.5	10	irr	308	-7.1	10.61
13	Quartz	15.0	12	po	314	-6.9	10.36
14	Quartz	10.0	12	sq	317	-6.4	9.73
15	Quartz	20.0	20	ро	327	-6.5	9.86
16	Quartz	15.0	15	ро	314	-6.6	9.98
17	Quartz	12.5	12	ро	312	-6.6	9.98
18	Quartz	12.5	13	Wg	319	-6.4	9.73
19	Quartz	7.5	13	ро	316	-6.6	9.98
20	Quartz	17.5	12	irr	311	-6.6	9.98
					<u> </u>		:


MJCG-2 146.65m

eg: Egg-shaped in :Irregular po :Polygon

sq:square

re tr:Triangular tu:Tubal

wg:Wedge-shaped

Mineral	Quartz
Number	20
Maximum	327 °C
Minimum	286 °C
Average	310. 9 °C
St. diviation	13.0

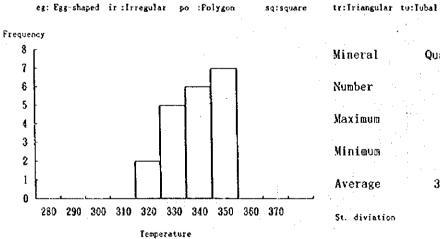

(5)

Table II -- 5 Result of measurement of homogenization temperature and salinity of fluid inclusion

.

MJCG-2 151.60m

		· · · ·	·····				
	Mineral	Size	Volume	Form		Melting	NaCl
No		(ratio (%)		rature (°C)	Temp (°C)	Wt (%)
		(m µ)		·····			· · · · · · · · · · · · · · · · · · ·
1	Quartz	127.5	15	irr	352	· -7.4	10.98
2	Quartz	25.0	15	ро	348	-7.2	10.73
3	Quartz	32.5	12	irr	332	-7.2	10.73
4	Quartz	5.0	10	eg	336	-7.1	10.61
5	Quartz	80.0	12	irr	357	-7.2	10.73
¹ 6	Quartz	<u>15.0</u>	· 17	ро	355	-7.3	10.86
7	Quartz	12.5	12	ро	342	-7.2	10.73
8	Quartz	35.0	20	ро	353	-6.9	10.36
9	Quartz	7.5	12	ро	341	-	
10	Quartz	7.5	10	ро	331		
11	Quartz	22.5	17	irr	355	-7.0	10.49
12	Quartz	17.5	15	irr	344	-7.3	10.86
13	Quartz	5.0	13	- po	356	-7.0	10.49
14	Quartz	37.5	15	irr_	339	-7.2	10.73
15	Quartz	7.5	13	ро	342	_	
16	Quartz	17.5	15	irr	327	-6.8	10.24
17	Quartz	10.0	12	po	338	-	
18	Quartz	22.5	15	irr	355	-7.1	10.61
19	Quartz	10.0	12	ро	322	-7.2	10.73
20	Quartz	5.0	12	ро	346		_
		· · · · · · · · · · · · · · · · · · ·	1. 1.	· · · ·		1	
			1.1		1		

Mineral	Quartz
Number	20
Maximum	357 ℃
Minioum	322 °C
Average	343.6 ℃
St. diviation	10. 2

*g:Wedge-shaped

(6)

Result of measurement of Hole deviation Table II — 7

			M^	Total (m)	0.00	-24.21	-48.33	-71.92	-93.92	-115.47	-136.60	-157.72	-178.81		200.00
,	e		E→W	Section(m) Total(m)	0.00	-24.21	-24. 11	-23. 59	-22.00	-21.55 -	-21.13 -	-21.13 -	-21.09		-
	Horizonal distance		S↓Z	Total (m)	0. 00	-0.85	-3.17	-6. 48	-10, 16	-14.16	-18.27	-22.37	-26.66		000
(HO	Horizona			Section(m)	00.00	-0.85	-2.32	-3.32	-3.68	-3.99	-4.11	-4.11	-4. 29		
MICG-1 [E, -60°, 400.0m]			Direction of bit	Total(m)	0.00	24.23	48.45	72.28	94.58	116.50	138.02	159.55	181.07		200.00
- 1 E			Directi	Section (m) Total (m)	0.00	24.23	24.23	23.83			21:52	21.52	21.52		
MICG	Vertical depth		(Level)	()=-)	00.00	-43.73	-87.46	-131.40	-176.15	-221 09	-266.22	-311.35	-356.48		-346 41
(三)	Vertic		(Section)		00 0	43, 73	43.73	43.94	44, 75	44 94	45, 13	45.13	45.13		
4 ° 0 9 %			Din	1 : 4 : 1 :	-60,	-62	29-	-63,	-64	-64	-65	-64°	-65		-60
(*Declination of needle: 2.04 209 E)	Result	T+110	direction		: [I	NR6 [°] F	N83° F	N81 E	a USN	N79 F	N79' E	N79° E	N78°E		E
ation of n		Mamatia	Magnetion		NRAF	N84° F	a lan	170° F	N78 F	N77° F	N77°F	N77 F	N76 E		N88° E
(*Declir	langth	Tem & contract	Photo. of section magnetic	(w)										I A N	
	Point of langth		rhoto.	(1	(m)			150		000	002	250	400	=	400

·
400.0回)
[E60° 4
С
MICG-1
09"E)
0 0 0
0
loclination of needle . 2.04
cotion o

E
2
Š
•
E, −60°、300.0m)
M] CG-2 [N20E, -
20
\mathbf{C}
\otimes
E
ò
Õ
ì
\mathbf{Z}
<u>ы</u>
*
"6 O
0
`+
$\overline{\mathbf{O}}$
÷
ิณ
** 40
11.6
- ee
ŭ
clination of needle: 2,04
ē
-ioi
يە تە
Ê

		E → W	Total (m)	0. 0	-7.24	-12.52	-16, 58 -	-19.30	-20.57	-20.42		-51.30
	¢	ці L	Section (m)	0.00	-7.24	-5. 29	-4.05	-2.72	-1.28	0.15		-
	l distanc	S t	Total (m)	0.00	-22.27	-42.72	-62.64	-81, 98		-117, 35	м. М.	
300.0m)	Horizonal distance	N T Z	ection(m)	0. 00	-22. 27	-20.45	-19, 93 -		-18. 28 -100. 26	-17.09 -117.35		Ĭ
		o of bit	Section(m) Total(m) Section(m) Total(m) Section(m) Total(m)	00.00	23.36	44.46	<u> </u>	┢──	102.63	1		150.00
- 2 (N20E		Directio	ection (m)	0.00	23.36	21.11	20.34	19.51	18.32	17.08		
M] CG – 2 (N20E, -60 ,	I depth	([ava])		0. 00	-44 15		1	+	-227.69	-274.67		-259.81
	Vertical depth	Section) (Level) Direction of bit		00.00	╞		1.		Г			-
,00,t		Din /		-60°	-64	-66	166	-68	-69-	-71		-60,
(*Declination of needle: 2°04 09 E)	Result	True		N20° E	N16 E	N13° F	N10'F	NO6° E	NO2° F	NO3° W		N20'E
		Magnetic		N18 F	N14° F	1 4 . I I N		NO4 F	NO1 F	NO5°W		N18°E
(*Declin	lanoth	Photo. of sectio Magnetic	(III)	C	C L	05					LAN	
	Point of length	Photo.	(m)		C G				040	300		300

.

ITEM	OCTOBER	NOVEMBER	DECEMBER
Repairing road		9	
NA. 1 2 1 2 + 2			
Mobilization to La Guanaca		11 -13	
Rig up			3-4
MJCG-1 Drilling Tear down			4 20 20-22
Rig up		13-14	
MJCG-2 Drilling		18	2
Tear down			-3

			ADIG LI - 9 UTITITI SUIMALY WORKING PERIOD	RIOD	(1-0		
CLASS	WORKING PERIOD	PERIOD		BREAK	DOWN	WORKERS	
:	PERIOD		TOTAL DAYS	ACTUAL WORKING	DAY OFF		:.
RIG UP	$97/12/03 \sim 97/12/04$	2/04	2 days	2 days	0 days	8 workers	rs
DRILLING	$97/12/04 \sim 97/12/20$	2/20	22	DRILLING 20	0	170 workers	rs
				REPAIR 2	0	0 workers	rs
TEAR DOWN	TEAR DOWN 97/12/20 ~ 97/12/22	2/22	5	ر يا	0	20 workers	rs.
TOTAL	$97/12/03 \sim 97/12/22$	2/22	29	31	0	198 workers	rs'
	DRILLING DEPTH etc.	SPTH etc.		CORE	CORE RECOVERY PER EACH 100m	H 100m	
PROPOSED DEPTH	400.00 =	OVERBURDEN	8	DEPTH	CORE LENGTH	CORE RECOVERY(%)	۲(%)
ADDILIONAL DEPTH	0.00 m	CORE LENGTH	390.58 m	(m)	(m)	SECTION CUMU	CUMULATIVE
INSPECTED DEPTH	400.00 m	RECOVERY	97.6 %	0.00 ~	102.00 94.60	92. 7	92.7
	TIME ANALYSYS	/SYS		102.00 ~	230. 15 126. 3	98.6	96.0
CATEGORY	(hr.)	(%)	(%)	230.15 ~	332.10 101.83	99.9	97.2
DRILLNG	188.5	35	31.0	332.10 ~	400.00 67.85	99.9	97.6
TRIP, CORE RECOVER Me.	283. 5	53	46.6				
REPAIR. FISHING	0	0	0.0				
WATER SUPPLY	57	11	9.4		· · · · · ·		
SUB-TOTAL	529	100.0	86.9	TOTAL DEPTH/TOTAL WORKING DAYS	L WORKING DAYS	18.18 m/day	
RIG UP	35		5, 8	TOTAL DEPTH/ACTUL WORKING DAYS	L WORKING DAYS	18. 18 ш⁄ day	
TEAR DOWN	42		6.9	TOATL DEPTH/ACTUL DRILLING DAYS	L DRILLING DAYS	20.00 m/day	Š
TOTAL	606		99.6	ACTUAL DRELING WO	ACTUAL DRLLING WORKERS/TOTAL DEPTH	0.43 workers/dav	s/dav
	CASING					- - -	
SIZE	set depth (m)	B/A×100 (%)	RECOVERY (%)	REMARKS			:
MH	102.00	25.50	100	A: TOTAL DEPTH	F		
NW				B: SET DEPTH			:
BW							

Table II-9 Drilling Summary (MJCG-1)

4 1 (14)	OF OF LOT LON	QUA	NTITY	AOIMENT	
ITEM	SPECIFICATION	MJCG-1	MJCG-2	COMMENT	
Drilling Machine	C\$3000	- 1	1		
Drilling rod HQ	3. 05m	34	34		
Drilling rod NQ	3.05m	· 131 - E	99		
Outer tube	HQ	1	1		
Inner tube	HQ				
Inner tube	NQ	1	1		
Inner tube	80			-	
Inner tube head	HQ	2	2		
Inner tube head	NQ				
Inner tube head	80		1		
Overshot	HQ	1	1		
Overshot	NQ			· · · ·	
Wireline rope	6mm	500	400		
Casing pipe(HW)	3.05m	34	34		
Casing pipe(NW)	3.05m				
Casing pipe(8W)	3.05m		14		
Core lifter case	HQ				
Core lifter case	NQ	5	5		
Core lifter case	80				
Bentonite		3100	2400	kg	
Cement		550	350	kg	
Light oil		5500	4100	I I	
Engine oil		90	70		
Gear oil		30	20		
Hydraulic oil		60	40		
Core box	3-4m	134	89		

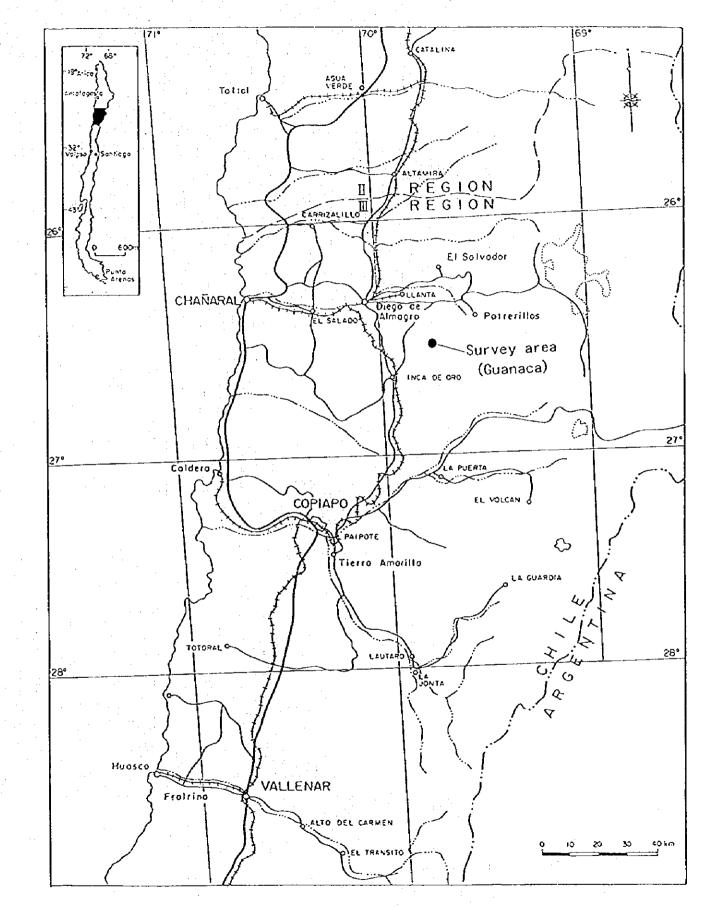
Table II-10 List of Drilling Equipment and Consumption Goods

PREFACE

In response to the request by the Government of Republic of Chile, the Japanese Government decided to conduct a Mineral Exploration Project in Guanaca · Cholqui Area Project and entrusted the Survey to the Japan International Corporation Agency(JICA) and Metal Mining Agency of Japan(MMAJ).

The JICA and MMAJ sent to Chile a survey team headed by Mr.Jun-ichi Ishikawa from 21 October to 30 December, 1997.

The team exchanged views with the officials concerned of the Government of Chile and conducted a field survey in the Guanaca-Cholqui area. After they returned to Japan, further studies were made and the present report has been prepared.


We hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.

We wish to express our deep appreciation to the officials concerned of the Government of the Chile for their close corporation extend to the team.

February 1998

Kimio Fujita President Japan International Cooperation Agency

Hiroaki HIYAMA President Metal Mining Agency of Japan

Locality map of survey area