			GEOLOGIC CORE LOG	0F	M	JK	A	7	(6/0	6)			1/20	D		
	МJ	KA	7 (6/6) 2 5 0 m ~ 2 8 0 m				L X Y			20. 6 93. 5 25. 0	m		ctio inat th	ion	105° -45° 81. Om		
1. A.	l tho- Logy	OEPIH (m)	DESCRIPTIONS	DEPTH (m)		PLE 10.	Au	Ag	AS: Cu	SAY РЬ	RES 7n	JL T As	S 5	Mo	LAB. Test	-250	
250-	1 - 1 - 3 - 1		201, 4-281. Om, mJg bio hb granodiorite													-	
252-	+ + +: + + +:		253.2-253.7m, chloritization 253.5-253.9m, porphyritic texyure													-	
254-	n n −ŧ 3t	255.4											-			-	
256-	+ + + + +		73 256.5-256.8m, cholritization with arsenopy imp.													•••••**	Ű)
258-	+ + +	260.0	260.0m, arsenopyrite crystal film of 0.5mm													-260	
260-	+++++++++++++++++++++++++++++++++++++++		along joint													-	
262-	+ + 	263.2	263.0-263.7m, chrolitization withh arsenopyrite im 263.2m, cal chl v with arsenopyrite imp. W=1cm 25 263.8-2644.2 porphyritic texture	p:													
264-	+ + + + +		From 264.Om white albite distinct														
266-	-+ + + +															-	
270-	+ -+ + +		268.8-269.5m, chloritization 269.5-269.7m, plagioclase phenocryst gathering													-210	
212-	+ + + + +																
274-	- + + + +	272														-	()
276-	+ + -+ + +	-															
278-	+ + + + +		276-281m, porphyritic texture													F	
280-	+ + : .+ +															-280	
282-	+ +	281.	0. (281.0m, end of drilling)		-									<u> </u>		-	
284-																-	
286-																-	
288-	-															}	
290-																-290	()
292																-	
294																-	
296									.							-	
298																-	
300				150					ļ							1 ₃₀₀	

.

GEOLOGIC CORE LOG OF MJKA-8 (1/2)

1/200

	MJ	IKA	<u>-8 (1/2) 0 m ~ 50 m</u>		r=)	(((78. 9 352. 3)क 3ल	lnol Leng	inat th	ion	105' 0')1. 1(
	LITHO- LOGY	DEPIK (m)	DESCRIPTIONS	DEPTH (m)	SAMPLE No.	Au	Åg	AS Cu	<u>SAY</u> Рб	RES Zn	UL.T As	\$b	Mo	LAB. Test
	0		O-4.On, pale greenish white strong silicified skarn, pyroxene wallastonite skarn origin	1.0	740035		07	0 03	02		3	0.3	3	
	2		2.2m, malachite dot 2mm	2.0	740036		0.7	0.03	¢ 2	<u> </u>	3	03	3	
			3.3m, two porphyry dykes (0.5 to 1 cm)	3.0	760037		0 15	0.012	0.7		5	(03	5	ł
	4-1-11	4.0	4.0-4.5m, ₩-0.5m light green epidote skarn 4.5m, ₩-1cm arsenopyrite velnlet	4.0	7A0038 7A0039	12.0	0.3	0 015	04	9 3	5 100	03	3	8
	ંગ્રેસ્ટ્રે	^L _\$_1.	4.5-5.1m, white marble, banded structure (20°) ⁸⁵ 5.1-6.3m, white silicified skarn	51	740040		50	0.09	12	3	. <u>1.5</u>	_1.5	12	P
		<u>6.3</u>	5.8m, pyrite veinlet of 0.5cm of 45"	63	7A0041 7A0042		7	0.005	0 12	7 (0 5	15	1.2	15	
	- ALEAE		6.3–9.2m, white marble, partly skarnized and silicified	7.3	740043		04	0 012	0 2	(0)5	$\left \frac{3}{5} \right $	(0)3	<u><1.2</u> <1.2	·
		9.2		83	740044	·	0.5	0 05	(0.1	0.3	20	(0 3	(1.2	
1	0-122		9.2-12.8m, white to pale green silicified skarn. 60 pyroxene wollastonite skarn origin	9.2	7A0045	0.15	0 5	Q 015	0.9	2	2	<0.3	4	1
				11.2	740046	0.12	05	0 03	0.5	3	2	<0.3	12	1 ·
1	2-111		quartz banded network (1-2mm in width) with 30'-50'	12.2	740047		0.4	0 02	0 5	0.9	3	<0.3	5	
	<u> </u>	12.8	12.8-13.6m, W-O.8m, dark green diorite porphyry	12.8	7A0048 7A0049	1	0.2	0.012	09	0.7	<u>1.2</u> 1.2	<u><0.3</u> <0.3	+	·
1	4-	14.6	²⁰ 13.6-14.6m, pale green silicified skarn	13.6 14.6	740050	0.5	<0.1	0.002	{0 1	3	<1.2	<0.9	1 2	
		15 2		15.2	7,0051		05	0 012	0.2	5	3	0.3	1	
1			15.2-18.9m, pale green silicified skarn, garnet pyroxene skarn origin	16.2	7A0052 7A0053		1.5 0.5	0.03	0.15	03	1.2	03	(1.2	
			quartz banded network with 70°-80°	17.2	· • ·					· •	<u>-</u>]		
l	18	18 9		18.9	740054	0.07	05	0 012	Ð, Ş	3	<1.2	<0.3	5	
:		20.0	18.9-20.0m, Lamprophyre, malachite imp. 20.0-20.1m, marble	20.0	740055	0.2	1.5	0.04	1.2	<u>s</u>	<1.2	0.4	7	J.
		20.3	20.1-20.3m, lamprophyre 20.3-21.2m, siticified skarn, pyroxène skarn origin	21.2	740056	0.09	05	0 015	1.5	4	<1.2	<0. 3	,	
;	22		21.2-22.9m, W=1.7m dark green pyroxene skarn, hedenbergite contain, joint rich of 30'-40'	22.2	740057	2.4	3	0.03	0.12	7	9	03	30	<u> </u>
	<u> </u>	22.9	22.0m, W=1cm calcite vein of 30° 22.9-29.5m, pale green to pink silicified skarn	22.9	740058		03	0.03	0.2	5	3	0.3	·	
:	24	•	sò around 25.5m garnet rich	23. 9			03	0 02	0.7	, ,	1.2	0.3		
			quartz banded network (2-10mm in width)	24.9	740061	1	1.5	0.02	0 15	3	1 2	<0 3		- <u>r</u>
:	26-1.1.1.1	•	with 50°-60°	25.9	740062	1	0.2	0.005	0. 52		1.4	0.3	3	1.
	28-	·	26-27m rhodonite	27.9	740063	0.15	0 12	0.005	0.12	5	(1.2	<0.3	2	1
	، [⁰		28.5-29m rhodnite	28.9	740064	· I	0 5	i		1,5			1	
:	30-1-7	29.5	A 29.5-30.2m, ₩=0.7m, diorite porphyry	29.5	710000		<u>0.2</u> <0.1	0 009	1.2	1.5 0.6	· · ·			I
			²⁰ 30. 2-39. 4m, pale green to pink silicified skarn, pyroxene wollastonite origin	31.2	780067	0. 012	0. 12	0.007	1. 2	2	().2	<0 3	9	
;	32-		31.4-32m rhodonite quartz and wollastonite network (1-3mm in width)	32 2	740068	<0 01	<u>0.7</u>	0.012	4	1.2	(). 2	<0.3	4	
				33.2			0.9	0 015			<u>() 2</u>	(0.3	5	. :
:	34- 🔆	•	34.6-34.8m partly weak chloritization	34.2	7A0070 7A0071		0.9	0 612	I	2	<1 2			· .
			around 30m rhodonite	35.2	740072	··	0.5	0.012		4	(1.2			
	36-		36.7m, banded structure showing 50'	35.2			03	0 000	l	0.5	È			
	38- (*) (*)		between rhodonites	37.2	740074	0.12	0.7	0.015	2	2	<1.2			
				38.2	740075	0.5	03	0.012	0.7	2	().2	0 3	5	
	40-	39.4 39.6		40.2	740076	1.0	44	0.612	0.7	4	2	<0.3	9	
			39.6-42.0m, silicified skarn	41.2	7A0077	0.9	04	0 004	0.2	1	15	<0.3	3	
	42- <u>v</u> y	42.0		42.3	740078	0 12	03	0 009	0.3	3	<1.2	(0.3	. 3	
		42.3	42.3-45.3m, epidote chlorite altered zone,	43 3	740079	0.15	(0 1	0.009	0.5	15	2	0 3	•	
	44	÷	ateration after lamprophyre (?)	44.3		·	<0 .1	0 002	1.2	3	(1.2	<0 3	1	T
	<u> </u>	45.3	LN 43,3*43,047, WHOU,348, OOFDDVFILE GYKE	45.3			<0.1	0.002	···	5	<1.2	<03	5	1 -
	46-	45.6 46.8	20 45.6-49.9m, white silicified skarn	46. 3			0 12		l	0.3	<u>├</u> ─-		<u>`</u> ,	-
			46.8m, ₩=0.5m, chlorite epidote vein1et 55	47.3			<01	0 009			1.2			{
	48-1.4.4.4 1.4.4.4		48-49.9m, rhodonite	48.3	7A0084 7A0085		0 S (0.1	0.012	<u> </u>	0.5	<1.2 <1.2			
		49.9		49.3 49.9	110000		$\frac{(0.1)}{(0.1)}$	0.001			<1.2 <1.2			

GEOLOGIC CORE LOG OF MJKA-8 (2/2) 1/200 Level 1, 929: 8m Direction 105

)

MJ	KA	<u>−8 (2/2) 50 m ~ 101 m</u>				X Y		78.9 352.0		Leng	inati th		0" 1.1m		
L 1 THO-	0 €РТ В	DESCRIPTIONS		SAMPLE			AS	SAY	RES	<u>1.1</u>	 -i		AB.		
LOGY	(m)		(st)	No.	Au	Ag	Cu	РЬ 	7n 	As	Sb	Mo	IESI	-50	
	51.2	49.9 51.2m, silicified skarn, pyroxene skarn origin	49.9 51.2	740087	05	05	0 63	03	4	<12 	<03	15			
	52.05	51.2-53.4m, deep green pyroxene skarn 52.05m, malachite chrysocolla veinlet, W=1-1.5cm	52 2	7,0088	1.2	0.4	0 15	02	.7	2	<03	420	P	-52 (5	
14 B1	53 4	3	53 4	740089	19	07	0 03	<0-1) 	. ₹1.2 	<0-3 	F. 2			
		53.4-66.7m, pale green silicified skarn, strong silicification	54_4	740050	08	0.5	0 009	0 15	1.5	(1.2	(0.3	•		-	
		· · · · ·	55 4	740091	03	0 7	0.05	03	12	(1 2	<03 	7 7			
			56 4	7A0092 7A0093	0.09	03	0 02	0 12	1.2	<1.2 (1.2	(0.3	···' ç		[
			57.4	740093	1.1	07	0 02	0 15	2	,	<03	20			4
$\sum_{i=1}^{n}$			58.4	740095	1.2	0 5	0 009	0.4	5	<i.2< td=""><td><0 3</td><td> 50</td><td></td><td></td><td></td></i.2<>	<0 3	 50			
			59 4	740096	·	0.9	0 07	0.3	2	(1.2	<0 3	15		- 60	
	61, 3		60_4	740097	0 07	··	0 007	0.12	•	(1.5	<0'3	5	F	61 3	
steisis States		61.3m, quartz vein W≃1-1.5cm	61.4	740098	0.12	0.3	0.009	03	2	<).2	<0 3	.9			
			62.4	740099	03	0.3	0 007	<0.1	5	(1.2	<0 3	4			
			63.4 64.4	740100	0 63	0 7	0 02	03	3	<1.2	<03	5		-	
			65.4	740101	0 03	0.7	0 015	0.4	2	<1 2		4		1	
				7A0102	0 04	1.2	0.03	1.2	2	₹1 .2	(0 3	9		╞	
(jij)	66 7	66.7-67.8m, pale brown weak silicified marble	66 1	7,0103	0 02	0.5	0 02	(0.1	2	2	0.9	70			
	67.8	67.8-75.8m, pate green silicified skarn	67.8	7,0104	0.04	0.9	0 02	0 15	1.2	<1.2	<03	12	l ·	F	
			68 /	7A0105	0 03	0.5	0 02	0.12	09	<1.2	<03	15			
			69.4	740106	0.05	0.9	0 009	0 12	2	(1.2	(0.3	40		-70	
	·		70 1	7A0107	0.01	2 0.3	0 005	03	5	<1 2	2 <0 3	7			
1.1.1			72	7A0108	0.6	4	0 05	03	3	<1.2	2 0 3	3		-	
		73.4-74m, brecciated marble texture	73.	740109	0 04	0.3	0 01	03	3	0.3	2 <0.3	7			:
			74	740110	03	0 2	0.01	0 12	2	<u>.</u>	2 <0.3	12		Í	
	75 8		75	8 74011	0.3	0.7	0 01	··	1.2	31.3		·		L	
		75.8-83.6m, pate brown weak silicified marble.	76	- I	1		0 02	2	4	2	<0.3				
ĮI [⊥] I [↓]	1	limonite veinlets, Min oxides predominant	n.	-		-l	0 02).5	2	1.5		·		Ł	
	1		7,8	8 7A011 7A011			0.01	· ·	<o :<br=""></o>	5 5	(0 3	<u>30</u> 70			
		limonite calcite veinlets with 1mm of 70°-80°	79.	8 7A011		5 0 7	0 01	·		1.5	(0.3	· · · · ·		-80	
F	4		80.	8			0.01		2			-			
	ll T		.81.	8 74011		- 1	0.01		2	2	<0 S	120		┢	
	83.6		82 83.	174011	9 0 0	5 0 2	0 00	7 3	1	1 2	(0)	309			
<u> </u> `	84.3	83.6-84.3m, brownish shear with clay	84.	1 74012	-	- [5 0 7	2		- <0 3		X	- 84. 2	
	l.	84,3-101.1m, pale brown silicified marble, with imonite veinlets	85.	1	-1		0.00		0.4			: I		1	
┫┇╬┱╏	ц	strong limonitization being presumed existance	86	· ·	-		0 01		- 15	-1	''			F	
		of fracture connected with surface	87.			·	0 12			2			· ·		
	.1		88.	3 7A012	-1								1		
h fit	f		89.	3 74012	<u>۲</u>						· - 1 ·	- · · · ·		-90	
臣			90	3 7A012		2 0 7	0.02	0.3			<0	 3 12		50	
	1		9).	3 74012	•	5 2	 0 0	1.2	0.5	5 5	0	3 40			
	1	91-93m, malachite imp along fracture	92	3 7A012		2 2	0.0	0.4			5 <0	3 29			
	1 1 94.3		93	7401		015 0 9	00	5 1.5	2	0	2 (3	3 12		ŀ	
	× 94		94 95	74012	1 0 0	04 0 9	0.0	3 9 2	1.3	2 1	5 <0	3 20			
	E	94.7-95m, malachite imp 2%	90	7401	2 0.	2 2	0 C	1 0 3	C I	1 .	5 <0	3 20		-	
E E	I	96.6m, malachite imp.	90 97	7401	3 0	12 1 1	0 0	2 0 3		4	<0	3 15			
		00 On malastrika inn	98	7A01	4 0	2 1	0.0	1 0 1	3	. 1.				-	
)	98.0m, malachite imp. 99.0-99.5m, ₩=icm quartz-calcite 4 veins of 60°.	93	3 7401						л т	2 (0		-		
╷╢╹╹		malachite imp.	- 100	7A01									-	-+100	Э
- In 'n '	1 101	1 (101.1m, end of drilling) A	10	1 7A01	37 0	09	5 0 0	4 0 1	0	<u>e)</u> _	5 0	3 0		I	

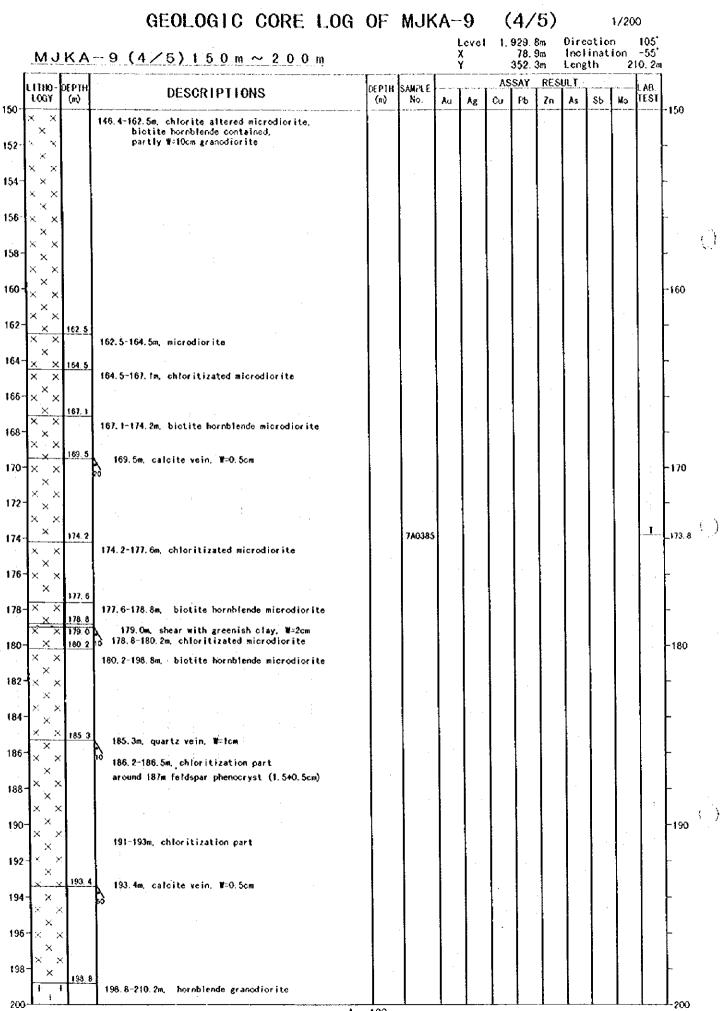
GEOLOGIC CORE LOG OF MJKA-9 (1/5)

1/200

M	JKA	<u>-9(1∕5)_0m~50m</u>			:	Levet X Y		929. 78. 352.	9m		iction inat th	ion	105 -55 0, 2
	- DEPTH	DESCRIPTIONS		SAMPLE		[<u> </u>		SAY	RES		[].]		LAB. TEST
0-mmn	1		(m)	No	Au	Ag	Cu	fb	<u>20</u>	As	Sh	Жэ	110
°-11111	0.8	0.0.8m, detritus with granodiorite petbles											
2-1	I I	0.8-5.9m, granodiorite, hornblende contained. showing partly porphyritic texture											
· +													
4-1	t												
1	+		49	740212	 0 C9	<01	0 007		1 2	12		5	
6-	\$_ <u>9_</u> 	5.9-8.8m, pale greenish white silicified skarn.	59	740213	0 612		0 005	1.2	.	4 2		 9	
	Š.	wolastonite skarn origin, brecoitaed 6.3-6.4m, granodiorite injection of 10 angle	69	740214	0 012	67	0 015	07	7	12	<0 3	,	
8-	8.8	around 7.9m, pate brown garnet	7.9	740215	0 G12	0 2	0 015	0.4	3	<1.2	<0.3	7	
<u>)</u>	88.2	8.8-9.2m, greenish while silicified px-skarn 9.2-9.3m, light green epidote skarn 9.3-10.0m, silicified skarn 9.7m, pyrite-matachite vein Witcm		740216	0 04	03	0 15	03	5	<1.2	<03	2	
10-	10 0	b) 10.0-11.0m, silicified skarn with baned st. of 69	10.0	740217	0 012	<0.1	0 03	0 2	<0 5	(1 2	(0 3	2	1
1912 1913 1913	(H.O		12 0	740218	0 2	07	0 015	03	5	15	KQ 3	12	
12-,,,,,	12 9	11.0-12.9m, garnet wollastonite pyroxene skarn	12 9	740219	07	03	0 012	0 15		<1.2	<03	1 2	
	2	12.9-27.3m, pale green silicified skarn,	13 9	740220	<0 CI	2 0.5	0 012	0.7	3	1.2	(0_3 		
14-1		pyroxene skarn origin, strong silicification, fine pyrite imp.	14 5	740221	0 03	03	0 02	05	2	1.2	<0 3 	\$ 	
16-	3	around 16.7π arsenopyrite 2*2ππ	15 9			0.5	0 015	1.5	2 2		<03 		1
	3		16.9		• • • •	.0.9	0 015		3	2	<03		
18-	Ś	18-19m crushed limonitization along crack.	17.9		- N. S. A.	0.5	0 015				<03		
	N.	neak epidotization : 19.7m molybdenite 3+2mm	18-9	7A0225 7A0226		07	0.012	1.00	1 2		<03 <03		İ
20		around 20-27m fine pyrite imp.,	19.5	74022		12	0.012	3	2	1 2		1	
	" ·	occationally fine op imp.	20 9	740228		0.9	0 015	·	1.5				. . <u>!</u>
22		· · · ·	21.9	740229		12		2	1.5		(0.3	12	
			22 9	74023	0 07	1.2	0'03	1.5	0.9		(0.3		
-24-		24-25m limonitization along crack	23	74023	1 0 1	1.2	0 63	1 5	1 5		<0 3	15	1
			25	74023	2 0 01	2 1.5	0 64	1.5		1.2	<0.3		
26-				74023	3 0 01	2 0.9	0 02	1, 5	0.4	t <1.2	<0 3	20	
28- ⁺ +		27,3-35.9m, chlorite altered granodiorite, biotitization predominant, partly pyroxene skarnization	27. 28	74023	4 0 4	1.2	0 64	1.5	2	<1.2	<03	30	
30-++													- I
ľ∘ŧ													
32- +	<u></u>			1		1							
1·+ +	*]			1									ſ
34- 1	3	35.5-35.9m pyroxene skarnization										1	
ŧ	+ 35	g.	34	74023	5 0 6	2 (0 0 01	7 1.1	5 1	2 <1	2 <0	3 40	
36	5 - F - F - F - F - F - F - F - F - F -	35.9-36.9m, pyroxene skarn, silicification	35 36	74023	6 0 5	0	0.01	2 1	2 3	<1.	2 <0	3 9	
	2	36.9-51.6m, pate green silicified skarn,	37.	74023	7 0 02	0	5 0 0	1.	2 2	KI .	2 <0	3 7	_
38-		partly biotitization. pyroxene skarn origin	38	9 74023	8 0 01	0	5 0 0	2		.	2 (0	3 7	
			39.	9 74023	9 0 4	.<0	1 0 04		2 -		2 (0	3 7	_
40		41.5-45m. biotitization rich (30-60%)	40	9 74024	0 0 0						! <0	3 9	
42-	\gtrsim	pyroxene veinlet cutting biotite rich zon	e 41.									1 ·	
			42	9	2 0 1					· .		1	·
41-			43	9	300								-
			44	9	14 0.3								1
46-	己	45.8-46.2m, chlorite altered granodiorite,	45	9	15 0 C			· -			2 <0		·
		biotite and hornblende	45	9	17 0 0		5. - -	• • • •	~		· • • •		ł
- 1° 2°.		47.8-48.5m, biotitization rich	47	s			· [- · -	1 J			- !	
48-12			48	7402	18 0 0	1 0	5 0 0	15 1	5 1	5 (1)	2 0	3 20	

GEOLOGIC CORE LOG OF MJKA-9 (2/5)

1/200


MJKA-9 (2/5) 50 m ~ 100 m

Lovel 1,929.8m Direction 105" X 78.9m Inclination -55"

	MJ	KA	<u>-9 (2∕5) 50 m ~ 100 m</u>			1	r. 1		78.9 352.3		Inc) Leng	inat: th		~55 0, 2m		
	LITHO-C	жын		N PH	SAMPLE			AS	SAY	RES	JL.T			LAB.		
60-	LOGY	(m)	DESCRIPTIONS	(m)	No.	Au	Ag	Cu	РЪ	Zn	As	\$b	Mo	TEST	50	
50-			36.9 51.6m, pate green to brown silicified skarn	50.9	7A0250 7A0251		09	0 015	1.5	3	<1.2 <1.2	<03 <03	20		-00	
52.	<u>```````</u> `	51.6	51.6-54.0m, W:2.4m, pyroxene wolłastonite skarn	51.6	740252		<01	0 663	0.15	5	(1.2	(0 3	12 1.2		-	
	43 UK 14		around 52.2m, pale brown garnet 5*5mm grain	52 6	740253			0 005		20	1. 2	(0.3				
54-	11 (1 	54.0		54.0									3		-	
	1 . II . II . II		54.0-71.4m, ₩=17.4m, pyroxene skarn. partly silicification, micropyritization	55 O		*** * * ****	0.3	0.007	3	3	(1.2	<03	9			
56	• <u></u>			56.0	7A0255 7A0256	1.000	0.9	0 015		. <u>4</u> 	<1.2 <1.2	<03 <03	20		-	
	н 11 11 11	57.8		57.0	740257		0.5				(1 2	(0.3	12			i }
58			57.8m, calcite vein ₩=1cm a	58.0				0 015	1.2	7	(1.2	<0.3	30		-	•. •'
	а <mark>с</mark> п 1		59.8-60.2m, wollastonite rich	59.0	740259		1.2	0.02	2		<1.2			P, F	60.0	
60		60.0	60.0m, pyrite quartz-calcite vein, W=4-5cm	60.0	740260	1.0	0.15	0.012	· — · — ·	12	<1.2	<0.3			-60	
			40	61.0	740261	0. 7	0.3	0 012	1.2	12	<1.2	<0.3	- 5			
62	0,0			62.0 63.0	740262	1.0	0.3	0 915	1.2	9	1.2	<0.3	12	ĺ	-	
			63.8-64.8m, wollastonite rich	64.0	740263	0.12	< 0.1	0.009	0.7	20	(1.2	<0 3	3	· ·		
64	<u></u>	<u>64.5</u> 64.8	64.4m, 3 quartz veins, ₩=0.5cm ∧ 64.8m, calcits vein, ₩=0.5cm	65.0	740264	0.07	(0.1	0.004	0.7	\$	(1.2	<0.3	1.5			
66		5.0	40 64,9-66m, wollastonite rich	66. C	7A0265	0.012	<0.1	0 004	1.2	9	<1.2	<0.3	2		_	
00	11 .11	66.9	66.9m, pyrite quartz vein, W=1cm	67.0	740266	0, 12	03	0.015	1.2	1.2	<u>_</u> \$1.2	<0.3	- 7 	1 ·		
68			so 65.9-67.5m, pyrite imp.	68.0		1	20	0.5	2	12	1.2	<0.3	·		_	
	-++++	68.9	λ 68.9m, quartz vein, ₩=0.5-1cm	69. C	E C	·	1.5		0.9	12	1,2	(0 3	3	1 · .		
70	- ","		30	70.0	740269	0.2	0.7	0.03	07	12	<). 2	(0 3	. 5	-	-70	
	""	71.4		n.e	7,40270	0.4	50	0 03	1.2	12	2	<0.3	?	1		
72	$\begin{bmatrix} + & + \\ + & + \end{bmatrix}$		71.4-73.4m, limonitizated granodiorite	72.4	740271	0.12	.0.2	0 012	2	2	2	(0, 3	.20		\vdash	
•	$\begin{bmatrix} 1 & + \\ -1 & -1 \end{bmatrix}$	73 4 73 8	73.4∽73.8m, ₩=0.4m, pyroxene skarn	73.4			0.12	0 007 0 007		2. 	1.5	<03 <03	15			()
74	11 11	74.0	73.8-74.0m, marble, fresh	74.0	740274		(0 1	t	F====	0.7	1.3	(0 3	40			
	V. V	75.Q	lamprophyse origin	75.0	760275	0 012	<0 I	0 007	ł —	1.5	<1.2	<0.3	3			
76		76	76.1-78.1m, yellow ochre epidote skarn,	76.1	740276	5 1.0	0.2	0.000	3	3	1.2	(0.3	9		F	
	1.1.1	78.1	weak limoniteization	77.0	240222	1.8	0.15	0.007	3	2	2	<03	20			
78	1	10.1	78.1-85.1m, granodiorite, biotitization	79.	740278	3 0.5	0.12	0.005	3	2	1.2	<0.3	15		Γ	
80	+ ⁺ _+			19.	~		1								-80	
00															00	
82	+	·										1			-	
	+]											
84				84.		-		<u> </u>							╞	
	+ +	.85.1		85.	74027	9 0.12	1.5	0.07	0.7	1.5	1.2	<03	15	<u> </u>	84.6 85.3	
86		86 4	85.1-86.4m, pyroxene skarn, pyirite chalcopyrite imp.	86.	7A028	2.0	1.2	0.03	1.2	4	3	<0.3	9		-	
			86.4-94.3m, granodiorite, biotite hornblende,	87.		1 0.03	0.2	0 00	7 1.5	2	1.2	<0.3	9			
88		1	crushed core	ĺ	1										┢	
	+ +															$\left(\right)$
90	v + ⁺ +										1				-90	. '
												1				
92	1. ' .									ļ		ĺ			F	
										Į						
94		94.3	94.3-95.5m, palo green aplite												ſ	
		95.5	1 95.5-96.4m, granodiorite, chloritization and												L	
90		96.4 97.0				ĺ							1		Γ	
94	┊╢┸┎┖╷	r 98.1	97.0-135.2m, brownish altered marble.			ĺ									L	
96		d	becciated structure, limonite network developed becciated structure, limonite network developed													
10	$\frac{\mu^{1}\tau^{1}}{\mu^{2}\tau^{2}}$	٩	· · · · · · · · · · · · · · · · · · ·	1									Į		L_{100}	
-			A-	160												

.

			GEOLOGIC CORE LOG	0F	MJH		-9 Level		-	′5) 8a		ectio	1/20)0 105°	
	MJ	ΙΚΑ	<u>-9 (3∕5)100m ~150m</u>				X Y		78. 352	9m		linət	ion		•
	LITHO- LOGY	OEPIH (m)	DESCRIPTIONS	OEPHH (m)	SAMPLE No.	Aú	Ag	AS Cu	SAY Pb	RES Zn	I	Sb	Mo	LAB. TEST	
	100-1-1-1 F F F 102-1-T T	T00-4	brecciated structure, Limonite network developed partly silicification	•											-100
			100.4m, arsenopyrite vain W=1.5cm 102.5m, calcito vain W=1cm 102.7m, arsenopyrite vain W=0.5cm 104.8=105.0m, white dolomitic marble 105.5=105.7m, white dolomitic marble, malachite 2mm												-
)		1 1 1 <u>108.1</u>	108.1m, arsenopyrite vein W=0.3cm									-			-
		; ; ;	5												-110
		113.5	113.1-113.3m, white dolomitic marble 113.5m, clay vein W=0.5cm												-
			10									i			
		1 <u>116 5</u>	116.5m, cat vein ₩=0.5cm 10				· ·								-
															-120
)															-
		124 3 125.4	123.8m, fracture with Himonite W=0.5cm 124.3m, fracture with Homonite W=5mm 125.4m, call vein W=1cm												
		<u>128.</u> 0	ið 128.0m, cal vein ₩≕0.5cm A. 128.45m, cal vein ₩=0.5cm												-
		128 8	128.8m, cal vein W=4cm 129.3m, arsenopyrite imp. around 128-130m, pale greenish fluorite observed												-130
		133.4					-								
		135.2	133.4m cal vein ₩=1cm ³ 134.8m ₩=10cm aplite, biotite contained 135.2-137.5m, sheared zone with clay												-
	136- ~~ ~~ 138- + _ +	137.5	137.5-141.0m, altered granodiorite,												-
)	140- + + +	140_7 141:0	hornblende, biotite included 140.7m arsenopyrite quartz vein W=4cm							:				Р	-140
		142.0 ^B	141.0-143.5m, aplite, biotite include 142.0m, clay vein W=4cm 0		7A0384									' 	140 7
	144- <u>+</u> + <u>* x</u> + +	144 2 144 8	143.5-144.2m, brownish altered granodiorite. strongly limonitizaed 144.2-144.8m, aplite, biotite include 144.8-146.4m, granodiorite												-
	146- + × × 148- × ×	146_4	146.4-162.5m, chlorite altered microdiorite, biotite hornblende include												-
	150		A – 161												-150

GEOLOGIC CORE LOG OF MJKA-9 (5/5)1/200 105 n -55 210, 2m Lovel 1, 929. 8m Direction 78, 9m 352, 3m MJKA-9 (5/5)200m~210m Inclination X Y Length LITHO-DEPTH LOGY (m) ASSAY RESULT OEPTH SAMPLE AB DESCRIPTIONS Мо Zn TEST (m) No. PЬ Au Сu As **S**5 Ag 200-200 ì 198.8-210.2m, porphyritic hörnblende granodiorite, plagioclase rich ŝ ŀ ł - 1 202 200.5-210.2m limenitization along joints. crushed along joints ł 204 ŧ 206 j) 208 ÷ (210.2m, end of drilling) 210 2 210--210 212 214 216 218 220 -220 222 () 224 226 228-230--230 232-234 236-238-240--240 242-244 246 248 250 250 A -- 163

GEOLOGIC CORE LOG OF MJKA-10 (1/3) 1/200

MJKA-10 (1∕3) 0m ~ 50m

Level 1,930,7m Direction 105 X 52.0m Inclination 0

Insp Provise DESOR IPTIONS Corr ASSM 2 Status Provise Ass 2 Ass 2 <th></th> <th>MJ</th> <th>KA</th> <th><u>-10(1/3)0m~50m</u></th> <th></th> <th></th> <th>ر ۱</th> <th></th> <th>:</th> <th>52.0 286.3</th> <th></th> <th>Leng</th> <th>inat th</th> <th></th> <th>0 1.9m</th> <th></th> <th></th>		MJ	KA	<u>-10(1/3)0m~50m</u>			ر ۱		:	52.0 286.3		Leng	inat th		0 1.9m		
$ \begin{bmatrix} 0.001 & [0] & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.0 $		11100-	DEDIN	DECODIDE LAUX	กรอาน	CANCH F			AS	SAY	RESU	A.T					
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\$	_			DESCRIPTIONS			Au	Ag	Cu	P b	Zń	As	\$ 6	No			
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$	Q-	12.2.2		0.8 Op. dark brown to green silicified skare	0.0	780001	0 15	3	0 03	1.5	3	1.2	(0.3			-0	
$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$		XX			10									· · · · ·			
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	2-	555			50	• • • • • • • • •					· •	1.1		1.00			
4 6 6 70000 6 6 6 6 70000 6					30	· · · · · · · · · ·	· · - · · · - ·			0.0	2	1.5	<03		·		
$ \begin{array}{c} 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	4-	1555 S			40	740004	0 (9	0.5	0 0013	1.5	1.5	1.2	<0 3	\$		-	
$ \begin{array}{c} 6 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$					5.0	740005	0.05	0.9	Q 0012	1.5	1.2		03	15			
$ \begin{array}{c} 1 \\ 3 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$. 6				6.0	740006	0.05	0.9	0 02	1.5	1.5	1.2	(03	9		i	
8 1 4 0 1 0	v					740007	0 15	0.9	0 05	1.5	1,5	3	03	- 20		-	
a 1 1 0 1.1 0.13.55, althered paradionite. 0.0 20000 0.2 1.5 0.0 0.0 0.0 12 1.3 1.3.5.1 0.0 1.0 0.0			80			740008	0 12	0 5	0 015	1.5	0.9	2	<03	20			¥}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8.	+ +	- v . x	8.0-13.5m, altered granodiorite.	80	740009	0 2	15	0 03	,	0.9			- 30		~	
$ \begin{bmatrix} 12 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$		1			9. Q												
14 19.5 13.5-13.6%, F.O. in pyrozene skarn 19.5 10001 0.6 2 0.7 0.3 17 17 0.3 17 17 17 1	10-	1 - 1 - 1														-10	
14 19.5 13.5-13.6%, F.O. in pyrozene skarn 19.5 10001 0.6 2 0.7 0.3 17 17 0.3 17 17 17 1		1 1														-	
14 14.4 16.4	12-	 + ' +			1											F	
14 14.4 16.4					ан. 1917 - Эл					÷.,						1	
11 12 <td< td=""><td>t.A</td><td></td><td></td><td></td><td>13.5</td><td>740010</td><td></td><td></td><td></td><td></td><td>1.1</td><td></td><td>(4.7</td><td></td><td></td><td></td><td></td></td<>	t.A				13.5	740010					1.1		(4.7				
10 15 2.8 10 <	1.4		E		14.4	·····						<u><u></u></u>		·		Γ	
18 16.5 -18.26 , -2116162 darm 16.5 -10226 -21.55 -2.55 $-2.$			•		15.5	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · ·	1.2		0.5	: J 	2	- 04				
18 17.0e joint 60°, 18.2e joint 30° 13 $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{1000}$ $\frac{10}{10000}$ $\frac{10}{10000}$ $\frac{10}{100000}$ $\frac{10}{1000000}$ $\frac{10}{1000000000000000000000000000000000$	16-	1.5.5.5			16 5			05	0.012	07	1.5	2	<03	50		r	
18 x_{1} 18 x_{1} x_{2}					17.5	740013	0 40	0.9	0 02	0.9	2	(1.2	03	. ?		ĺ	
$ \begin{array}{c} 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 $	18	An or per the second state	. 18 3		1 -	740014	0.15	<u> </u>	$\cdots \cdots = \cdots$	3			<03	. 9		F	
20 - 1, 1, 20, 2, 3, 20, -36, 5a, 1216, 5a, pyrozene skarn, 20, 35a, banding structure with D'0, 20, 35a, banding structure with D'0, 20, 35a, banding structure with D'0, 20, 35a, calcite yein 12:ce 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,		11 11	. .19. Q .		19.0											ł	
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	20-		<u>20 0</u>		20.0	7A0016	0.05	01	0 009	04	5	1.2 	03			-20	
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$.20_8		21.0	7A0017	0 30	09	0.03	03	. 4	1.2	0.3	,			
$ \begin{array}{c} 1 & 1 & 1 & 21.4 & 25. \ calcite vein Tice \\ 24.5 & py cp pot 222cm \\ 24.5 & py cp cp pot 222cm \\ 24.5 & py cp pot 22cm \\ 24.5 & py cp pot 22$	22.	1.11.00	.21.4			7A0018	0.40	.0.7	0 02	03	•	(1.2	<0. 3	- 9		23.4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1 11				740019	0 15	0 2	0.01	0.4		(1.2	03	· 9		Γ	2.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						740020	0.40	0.5	0.03	0 12	5	<1.2	0.3	1.2	<u> </u>	23 3	$\left\{ \right\}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24	0.10	24 7		24 0		1	1.5	0.09	0 12		<1.2				F	
$ \begin{array}{c} 26 & \frac{1}{11} & \frac{1}{11} \\ 28 & \frac{1}{11} & \frac{1}{11} \\ 28 & \frac{1}{11} & $				A sround 25m my imp hornite (2) imp	25 0				6 09	 0 2			<u> </u>		ρ	AC 0	
$ \begin{array}{c} 28 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	26				26 0									· · · · _ · ·		25 6	
$ \begin{array}{c} 28 & 11^{4} & 1 \\ 1 & 11 \\ 30 & 11^{4} & 1 \\ 1 & 11 \\ 32 & 11^{4} & 1 \\ 32 & 11^{4} & 1 \\ 33 & 11^{4} & 1 \\ 34 & 11^{4} & 1 \\ 34 & 11^{4} & 1 \\ 34 & 11^{4} & 1 \\ 1 & 11 \\ 34 & 11^{4} & 1 \\ 1 & 11 \\ 1 & $		11.4	:	around 27m, op py imp.	27.0		·····		!								
$\begin{array}{c} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$	28			29-20- enidete purovene chare	28 0	}		2	0 15	· • • • • • •	،		03	3		-	
$30 - \frac{1}{11},			i .		29.0	740025	0.60	09	0 07	0 12	1	1.2	0.3	2			
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	30				30.0	7A0026	1.20	15	04	0, 12	12	3	- 0.4	?		Lan	
$32^{-} \begin{array}{c} 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11$	~~	- άξει				740027	0 60	2	0 07	0.12	· 12	3	0.3	•		30	
$\begin{array}{c} 32 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	••	11 11			1	7A0028	1.2	2 .	0.2		15	з	0.7	1	1		
$\begin{array}{c} 34 - \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	SZ	14 14				740029	ОB	0.5	0.05		12	1.2	03	2	1 ·	Γ	
$\begin{array}{c} 34 & 1 & 1 & 34.2 \\ 11 & 1 & 1 & 1 \\ 11 & 1 & 1 & 1 \\ 12 & 1 & 1 & 1 \\ 136.5 \\ 11 & 1 & 1 & 1 \\ 11 & 1 & 1 & 1 \\ 11 & 1 & $		11			33 0		•	(0 I	0 012	0 12	. 5	1.2		(1.2			
$\begin{array}{c} 11 \\ 11 \\ 12 \\ 136 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 1$	34		34.2	34.2m, calcite vein W=0.6cm	34.0				0.016							F	
$ \frac{36}{11} \frac{11}{11} \frac{36}{11} 3$		- 11			35 0			·	[}	[
$ \frac{11}{11}, \frac{11}{11$	36		36 5	36-36.5m, calcite veinlet #=2-3mm of 30°-35°			Ł			· · · · · · · ·	·		1			┢	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11 11										1	1		1		
$\begin{array}{c} 11 & 11 \\ 11 & 11 \\ 11 & 11 \\ 11 & 11 \\ 12 & 11 \\ 14 & 11 \\$	38	I 11 11		pyroxene contained	37.5	740138	<0 012	2 (0 1	0.012	0.3	—	 a,	(0.3		1 × 1	L	
		11 11			38 5	· · · · · · · ·			s	· ·			· ·		1	Í	
$\begin{array}{c} 10^{-11} \\ 11^{$	40	0			39.5												$\{ \}$
$\begin{array}{c} 42 \\ 42 \\ 42 \\ 44 \\ 44 \\ 44 \\ 44 \\ 44 $	40				40 5	· · · · · · · · · · · · · · · · · · ·		1	0.009				(0.3	·		F40	
$\begin{array}{c} 42 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\$		- 11	1		41.5	740141		<01	0 005		5	<1.2			I	4.1	
$\begin{array}{c} \begin{array}{c} 1 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\$	42	- 0 i	1	42m_ banded structure of pyroxene veinlet	42.5	740142	<0 ();	2 <0	C 005	02	4					F"	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1			740143	0 012	(0 I	0 002	0.0	5	<1.2	(0 3	•			
$\begin{array}{c} 13 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $	44	- · · · · · · · · · ·	44 1				1			0.3		1.2	(0.3		1	┢	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1		45 1	7A0145	03	40 I	0.006	03	1	1.2		1	1	l	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46	1	46 15						0 012		3			3	j	L	
48 47-49m, banded structure of pyroxene veintet 48 49 15 49 15 49 15 50 11		1222				740147			0 015	1	3			,	1		
48 - </td <td></td> <td>1.4.4.4</td> <td>ļ</td> <td></td> <td></td> <td>7A0148</td> <td>0 65</td> <td>03</td> <td>0 612</td> <td>1.2</td> <td>0 2</td> <td>(1 2</td> <td>(0 3</td> <td>30</td> <td>1</td> <td>1</td> <td></td>		1.4.4.4	ļ			7A0148	0 65	03	0 612	1.2	0 2	(1 2	(0 3	30	1	1	
49 15 50. 15m, wollastonite skarn 50 11 7A0150 0 0/2 0 7 0 0/2 0 5 3 (1 2 (0 3 5 5)	40		40 11			7A0149			4				(6.3		1	Г	
		10 10		49.15-50.15m, wollastonite skarn	43 1	· · · · · ·	· · · · ·								4	1	
	50			A	164			<u>د</u> .	4		.	L	<u>, ,</u>	1	1	-50	

GEOLOGIC CORE LOG OF MJKA-10 (2/3)

•)

()

)

1/200

Level 1, 930.7m Direction 105

LITHO-DEPTH	RECONSISTING	111111	SAMPLE		r — — —	<u>A\$</u>					r — —	EAB.
LOGY (m)	DESCRIPTIONS	(n)	No.	Au	Äg	Cu	РЬ	Zn	As	SЬ	No	TEST
>>> 50 15	50.15-53.5m, pale greenish white silicified skarn,	50 15	7A0151	0.012	03	0.012	0.9	2	(1 2	<03	9	í — —
\mathcal{R}	wollastonite included, banded structure of pyroxene veinlet	51.15	7A0152	(0 013		0.012	12	2	(1.2	<0.3		
555	Danded Structure of pyroxene verniet	52 15	TAUTOR					· · · · · ·				1
53.5		53 5	740153	0 02	03	0 012	09	2	<12	<03	15	
н н 14 ¹ н	53.5-55.0m, silicified pyroxene-wollastonite skarn		740154	0 03	0 1	0 012	1.2	4	(1.2	(0.3	ر ا	
<u>11</u> 55.0	55.0-56.6m, pyroxene wollastonite skarn	55 O									• • •••	
н Н Н 58.6	······································	56 Q	740155	·	03	0.009	07	5	<1.2	(0 3	12	:
31 56.6 31 14 56.95	56.6-56.95m, pyroxene skarn	56 95	740155		(0 1	0 003	0.7	15	(1.2	<0.3	<u>5</u> .	· .
<u>. H 57.95</u>	93 56 95-57.95m, pyroxene wollastonite skarn	57.95	740157			0 007	0.7	- 5	(1.5			ŀ
	A 57.95–58.5m, silloified epidote skarn ³⁰ 58.5–62.5m, weak silicified	58 5	7 <u>A0158</u> 7A0159		06	0 005	0.12	<u>12</u> 5	<u> </u>	<u><03</u> <03	12	ł
	pyroxene wollastonite skarn	59. 5	740160	·	<0.1	0.005		· •-·	· · · · ·	· ···		
11 1 60.5	60.5m. ₩=2cm epidote vein	60 5	· · - · · :				0.3	1.5	<1.2 	<0.3		l
0.0		61.5	740161	0.012	0.5	0 012	0.4	9	(1.2	3	15	13
62.5	around 62m, malachite cp py imp.	62.5	740162	0.015	0.15	0.002	0.9	3	<1.2	<0,3	7	
	62.5-68.4m, pale green silicified skarn, strong silicification,	63.5	740163	0.012	0.2	ð. 009	1.5	5	<1.2	<q. 3<="" td=""><td>20</td><td></td></q.>	20	
	pyroxene skarn origin	64.5	740164	<0.012	0 15	0 015	1.2	7	<1.2	<0.3	,	
			740165	0.012	0 15	0.009	0.3	3	<1.2	<ŭ. 3	20	
		65.5	740166	0 012	0.12	0.009	1.5	4	<1.2	K 0. 3	90	
555		66 5	740167	0.03	0 15	9.012	07	3	<1. Z	K0.3	20	ĺ
68.4	.67.7m, ₩≂1-0.5cm quartz vein A around 68m, py imp.	67. 5	740168	0 07	0.7	0 02	1.5	- 9	1.2	KO 3	30	
<u>0 1 68 8</u>	40 68 4-68 8m, epidote skarn	68 4 68 8	740169		707	0 005	1.5		राष्ट्र			
	68.8-89.8m, pale green silicified skarn ∑ 69.5-69.8m, ₩=30cm pyroxene wollastonite skarn	69.8	7A0170	03	05	0 005	0.2	9 	<1.2	<0.3	12	
	69.8m. W=1cm quartz-calcite epidote vein	70.8	740171	0.015	0 2	0 015	2	5	<1.2	<0.3	12	
		71.8	740172	0 015	94	6.009	09	2	<1.2	<0.3	,	1
		72.8	740173	0.07	07	0 012	1.5	2	<1.2	K0 3	,	
13.5		73.5	740174	0 12	0.9	0 02	0.7	Э	<1.2	<u> <0 3</u>	S	
75 0	73, 5-75.0m, W=1.5m druse ?, because of non-recovery of core	i	· · ·									
		75.0	740175	0.05	07	0 015	0 6	2	<1.2	(0 3		
	76.0-80.1m strong crushed, fracture developed	26 Q	740176		09	0 015	0.4	2	<1.2	Ì		
		17.0									i	1 :
		78 0	740177		1.2	0.015	2	2	<1.2		15	
		79.0	740178		2	0 05	04	2	(1.2		30	Í
	80.1-82.9m, Fimonitization	80 0	7A0179	0.15 	1.5	0.04	0 7	2	1.2	<03	20	
	80.3m banded structure of 30° of limonitization	81.0	740180	0 012	07	0 012	0.9	1.5	<1.2	(0 3 	7	
	81.7-89m, strong crushed along fracture	82.0	740181	0.04	04	0 007	2	3	(1.2	(0.3	12	
		53.0	740182	0 03	0.9	0 009	03	2	(1.2	(0.3	20	
		84.0	740183	0. 12	07	0 015	05	2	42	(6 3	3	
			740184	0 012	1.5	0 04	0 5	4	(1.2	(0 3	12	
S.S.S.		-85.0	740185	0.04	0.9	0 02	1.5	1.5	(1.2	(0.3	30	
		85.0	740186	I	1.2	0 03	1.2	05	1.2	1	15	
		87.0	740187		1.5	0 07	0.9	05	2	03	12	
<u>, , , 88 0</u>	88.0m ₩=0.5cm, calcite vein	88 0	740188		1.2		05			∦	·	
89.8		89.0	7A0189	· · •	0.7	0 03	· · · · · ·		<1.2 1.2	j	ני 70	
	89.8-111.9m, brown weak silicified marble.	89.8	740190		4	0.015	(0.1		1.2 	(0)	9	
	limonitization	50 8			·	1		1.2				ł ·
		91.8	7A0191		5 	0 009	<0 1	05	2	05		·
		92 8	7A0192		3	0 03	0 2	1.2	15	1.2	30	
╏┎╚╻╝ ┎┎┇┛╢		93, 8	7A0193	0 69	2	0 03	0 12	0.5	2	04	15	
╙┰┻┰╨ ╓┺┱┺╓		94.8	740194	0 03	07	0 012	0.12	1.5	2	0 4	30	
			7A0195	0.07	1.5	0 03	03	04	2	0.5	20	
		95.8	740196	0 07	2	0 02	(0.1	05	2	1.5	 9	
		95 8	740197		3	0.4	0.5	1.2		12		
2 * · y · * · * · * · * · · · ·	a sea de la compansión a la compansión de la	4	**************************************	i	1	1	1 * *	1 ***	1 *	1 · •	1 13	4
1 1 97.8 1 1 95.1	97.8m calcite vein, W=1cm 98.1m, quartz vein W=1cm	97.8	740198	0 15	15	0 00	05	5	•	00	120	

GEOLOGIC CORE LOG OF MJKA-10 (3/3) 1/200

(2/2) + 0

			GEOLUGIC CORE LUG	UF	WU	/W-	10		(\mathbf{S})	/ 0	/		1720	9	
M	<u>1 J I</u>	<u> </u>	1 0 (3/3) 1 0 0 m ~ 1 1 2 m			1	Level X Y		930, 7 52, (286, 3)m	Dire Inci Leng	ection linat gth	ion	105 0 1.9m	1
1 11	10-00	PIN		DEPTH	SAMPLE		r	AS	SAY	RES	<u>ULT</u>		·	LAB.	
1100	CY L	(m)	DESCRIPTIONS	(m)	No.	Au	Ag	Cu	РЬ	Zn	As	\$b	Mo	TEST	-100
100-1-1			89.8-111.9m, brown weak silicified marble,	100	8 7A0200	0.012	09	0 015	0 15	0.5	1.2	<0.3	20		100
		. 1	limonitiztion	101	8 7A9201	0.07	0.9	0 03	03	2	12	<0.3	15		L
102-1 ¹ 1 1. 1			98.5-111.74m, strong crushed	102.	8 740202	0.04	1.5	0 02	03	1.2	1.2	<0.3			
[L]1	ւել			103	8 740203	0 02	12	0 02	03	15	1. 2	<0.3	15		
104-11-1	9			104	740204	0 612	1.2	0 03	0.2	2	1.5	(0.3	30		ſ
				105	7A0205	0 07	15	0.09	99	97	1.5	<03	40	·	
106-1				106	740206	0 15	1.5	0.04	97	07	12	<0.3	70	•	
E.				107.	7A0207	0.05	2	Q Q3	0.3	0.7	<u>,</u>	(0.3	- 12	ļ	
-108-[[]	Ľ.			108	8 7A0208			0.012	0.12	<0.5	(†. 2	<0 3	,		~
				109.	7A0209	0 012	1. 2	0 03	0.15	0.7	0.2	(0.3	12		
-110-1'T			around 110m malachite imp.	110	7A0210	0 03	1.5	0 12	0.3	1.2	1 2	(0.3	30	1 · I	-110
	с н	11.9	(111.9m, end of drilling)	111.	210244	0. 02	1.5	0 07	0 4	1.2	1.2	<0 3	20		
112-	- T													.	ſ
114-							1								
													1		_
116-							1								
118-						1									Ļ
							1								
120-															-120
122-															-
															()
124-									1						- '
											1			•	
126-															+
											ľ				
128-															╞
130-										ļ					-130
									ľ	1		Į			
132-															-
											1		 .		
134-											I			1	F
										1					
136-						1						1		1	F
	ĺ											.			
138-				·			1								Γ
				ļ											
140-															-140
142-					1	1				1					
									İ						L
144-				Í				1							
								Í .							ļ
146-															
148-											1				Ļ
140]		ĺ											1		
150										1			<u> </u>		L ₁₅₀
100			Α	166											

			GEOLUGIC CURE LUG	UF	MOL					-	-		1720		,
	M	JKA	<u>-11(1/6)0m~50m</u>		·	2	Level X Y	·	930, 7 52, (286, ()m		otion inat th	ion	105° -45°)4. 9n	•
	LETHO	- обътн	DESCRIPTIONS		SAMPLE		I		SAY	RF.S				LAB.	
				(n) 	No.	Au	Ag	Cu	РЬ	Zn	As	55	No.	1681	-0
		·······	Ο Ο.δm, detritus	05	7A0282		01	0 015	2	5	12	<0.3	2		
	2		0.5-10.4m, pale green silicified skarn, strong silicification, limonitization	20	740283	0 02	0.3	0 012	0.7	2	0.2	<03	5		
	1.1		pyroxene skarn origin, fine pyrite imp.	30	740284	0 03	05	0.015	1.5	1.5	<1.2	<03			
	4			40	740285		12	0 03	1.2	3	<12	<03	30		-
				5.0	740286	0.2	04	0 02	03	03	() 2	<03	9		
	6-	2		6 0	740287	0.05	0.7	0.05	3	2	<). 2	<03	9		
		3		7.0	740288	0 012	0.5	0 012	09	1.5	<1 2	(03	5		
	8-			8.0	7A0289	0.07	04	0.015	12	<u> </u>	<1 2	(0-3 	5		L
	- SS	3		9.0	740290	0.04	\$ 2	0.015	1.2	2	<u><1.2</u>	<u> <0 3</u>	7		
	10-133	10.4		10.0	740291	0.04	0.7	0 02	-15	2	રલો શ	<03	. 12		L
		10 5	10.4-10.5m, W=10cm pyroxene skarn 10.5-12.4m, pale green silicified skarn	11.0	740292	0.012	<01	0 007	07	2	1.2	<03	8		
	12-	2 <u>31.7</u> 2 <u>12.4</u>			780293	Q. 12	07	Q. 015	1.2	3	<1.2	<0.3	7		Ļ
	()		P 12.4-13.0m, W=60cm ovroxene skarn.	12.4	740294		4	0.012	07	1	1.2	(0.3			
	14-55		limonite along joint of 20-40 13.0-27.9m, pale green to brownish silicified skarn,	t4.C	7A0295	0 015	0.9	0.03	3	2	1.2	(0.3	?		
		2	pyroxene skarn origin	15 0	7A0296	0 012	0.9	0.015	4	<u> </u>	1.2	<03	9		
	16-	3	around 16.3m, banded structure of 60.	16 0	740297	0 012	05	0.015	2	2	12	<03	12		
			showing injection of silicification	17.0	7A0298	0.02	0.5	0.02	3	1.2	<1.2	<0.3	P		
	18-			18.0	740299	0 015	04	0 015	2	2	<1 2	<03	7		
	555	く (19.5	around 19m. banded structure of 60-30	19.0	740300	0 015	0.15	0 012	1.2	04	<1.2	<0.3	5		
	20-	A 19.5	19.5-19.9m, guartz veins with pyrite and	20.0	740301		0 3	0 012	0.7	1.5	<1.2		300		L
		2	arsenopyrite, ₩=0.5-1cm	21.0	7A0302	0.015	05	0 015	2	1. 5	1.2	<03	40		
	22	:		22 (740303	0. 02	07	0.02	1.2	1.5	<1.2	<03	9		
		ζ, ^s		23 (740304	0. 2	1.2	0 04	1.5	1.5	<1.2	<03	. 9		
	24-	2		24.0	740305	0.07	0.9	0 02	2	<u>, 1, 2</u>	<1 2	() 3	15		
	5.5	5		25 0	740306	0. 02	0.4	0.015	1.5	12	<u> </u>	(0 3	\$		ļ
	26-	4		26 (740307	0.02	0 2	0 012	1.5	1.2	<1.2	<0.3	9		
		3		27.0	740308		0.9	0 03	15	1.5	<u> <1. 2</u>	<03	12		
	28-	<u>~ 27.9</u>		27.9			0.9	0 03	1.5	1.5	(1.2	<03	9	x	
	~~~~	27.4	27.9-29.4m, shear zone wiyh yellowish gray clay vein 28.5-29.4m, W=90cm non-core		7A0386	) 									
	³⁰ +	+	29.4-32.8m chlorite altered granodiorite. limonitization												F
	22 ⁺	+ ·	31.55-31.9m, W=40cm non-core	31.8											
	,	32.8		32 1		· •	07	0.015		03			40		
	34-	5	32.8-54.0m, pale green to brownish silicified skarn, pyroxene skarn origin, brecciated structure,	33.4			03	0 012	12	0.3			30		
		3	strong silicification, pyroxene veinlets (35.9)	34 1			0.4	0 015		03	1	<03			
	36-122	2		35.1			0 2	0 012		09	·	I		ł	ļ
	- 16 A	;	· ·	36.4			0 \$	0 012		i. 5			9	<b>{</b> .	
	38-	Ś	18-40a biotification sint	37.1		· · · · · · · · · · · · · · · · · · ·	0.15			12	1		15		ļ
1			38-40m, biotitization rich	38.4			03	0.012		1 2	2	<b>₹03</b>			
}	40-	5	40.4m, pyroxene skarn spot 10+10cm	39.1			03	0 012		3	(1.2		20		ļ
		2	to the pyrotene swarth sport for took	40.1			02	0 009	1.2	2	<u>(1.2</u>	· ··· ·	+2	1	
	42	÷.		41.4	7A0319	0 05	04	0 02	15	2	(1.2	<0.3 -∵∵	50		
		5	43-45m, wolfastonite veinlete along joints	42 4		1.11.11	03	0.012	03	1.5	з	⊀0 3 	9		
	44-	-		43 1	74032	0 07	0 12	0.005	02	12	<1.2 	<03	+2	Į	
		2		44.1			07	0.015	1.5	3	20	(03) 	12		
			44-50m, banded structure of 80	45 4	7A0323	3 0 15	0.9	0 012	0.7	1.5	7	<0.3	9 ¹		
	46-	2				10.07	04	0 009	(01	0.0	1.5	<0.3	1.	1	F
	46-	-) - ( 4). (		46 :	7A0324	1	1.1.1			1.					ĺ
		2 	47.0m. calcite vein W=1.5-2cm, pyrite imp.		8 7A0325		0 3	0 007	03	1.5	1.2		15		
	46-	41.0	<ul> <li>47.0m. calcite vern W=1.5-2cm, pyrite imp.</li> <li>48-52m, limonitization along joints and cracks</li> </ul>	46 4 47.4 48 4	8 7A0325 8 7A0321	5 0 5	03	1		+ · ·				٤	

GEOLOGIC CORE LOG OF MJKA-11 (2/5)

) 1/200 Direction 1

## MJKA-11 (2/5) 50m~100m

	MJ	KA	-11 (2∕5) 50 m ~ 100 m			X Y		
	L I THO- LOGY	DEPTH (m)	DESCRIPTIONS	DEPTH (m)	SAMPLE No.	Au	Ag	
50- 50-			32.8-54.0m, pale green to brown silicified skarn	50 8	740328	0 2	0.15	0
52-	اليستورية ( الم	51 6 52 0 1	S1.6m, guartz vein, ¥÷2cm S. 52.0m, guartz vein, ¥≈1cm	51.8	740329		0.2	0
			53.2m, and 53.5m each W-10cm pyroxene skarn remain	52.8		03	07	-
54-	$\frac{1}{\sqrt{2}}$	54_0		54 0	780331		1.2	0
	$\Lambda^{\Lambda}$		54.0-57.7m, dark gray granodioritic porphyry, biotite, hornblede, plagioclase rich,	55 0	7A0332 7A0710	0.6	0 2 (0,1	
56-	$^{\Lambda}$		phenocryst of plagioclase max. 0.541cm	56 0	740711		<0.1	
	^ ^	57.7	(57, 7m)	51.0 57.7	740712		<u>&lt;0.1</u>	ļ
58-		59. 1	57.7-59.1m, pate green siticified skarn		740713	0.07	0.3	1
60	X X		59.1-62.1m, pale green to brown aplitic rock,	59. I	740714	0 07	<0 1	ĺ
60-	X X		limonite network	60.1 61.1	740715	0 015	<0.1	İ
62-	X X	62 1	62.1m. gray olive clay v. ₩=2~3cm	62 1	780716	0 09	0. 5	1
04	X X		62.1-64.6m, pinkish aplitic rock, limonite network	63.1	740717	0.05	0.4	ľ
64-	×	64.1	64.1m, gray clay v, ₩=1cm		7A0718	0 07	0.12	ŀ
	X X X X	64.6	64.6-73.4m, aplitic rock, limonite calcite network	64.6	760719	0.07	0.12	
66-	<u>x * x</u>	66.4	66.4m, olive clay v, sticky, W=2cm	65.6	740720	0 07	0 12	
	X X	64.8	66.8m, olive clay v. W=4cm 67.2m, olive clay v. sticky. W=2cm	66.6	740721	9.3	0.2	Ī
68-	× ×	67.4	67.4m, olive clay v, sticky, w≃2cm	67, 6 68, 6	760722	0.2	Ð. 2	ľ
	x x				740723	0.4	0.4	
70-				69.6 70.6	740724	0.3	0.3	
	×	1		71.6	740725	0 12	Q 2	Ŀ
72-	- <del>X</del> - <del>X</del>	1		72.6	740725	1.0	0.5	
	X X + +	73.4		73. 4	7A0727 7A0728	0.8	0.5	
74-	1 + 1		73.4-78.0m, gray mdg bio-granodiorite	74. 4		1.2	0.7 0.9	ŀ
30	+ +   +			75.4		0.8	0.9	ŀ
76-	]+· +   +			76.4		·		ł
78·	+ +	78 0		78.0	7A0731	0.8	0.7	1
	114 Alt	1-78-4	78.0-78.4m, chlorite pyroxene skarnized rock 78.4-80.0m, pyroxene skarn,	79.0	7,0732	0.5	0.5	
80	11 11	80.0	76 4 70 5	80.0			0.2	
	2 3 2 3 3		80.0-82.8m, chiorite pyroxene skarnized rock	81.0		0,8	0.12	-
82				82.0		0.8	03	
	~ ~	82 8	82.8-86.0m, W=3.2m, olive sticky clay	82.8	740736	0.8	0.15	
84	- ~~~~		OZ. O'OU. UNI, W-U. ZIII, UTERO SCECKY GLAY		740792	1.2	0.4	
÷					100132		Č.	
86	+ +	86 0	86.0-94.1m, fng hb-bio granodiorite	86. (	740737	Ð.8	0.4	ĺ
	+ ⁺ +			87.6	740738	ł	0.12	2
88	- 			88.0	740739		02	۰ŀ
	, <del>†</del> .			89. ( 90, (	740740	0.8	0.2	1
90	t t	91.0		91.4	760741		0.12	2
	• <b>•</b> •••• <b>•</b> •		91.05m, clay with weathered granodiorite. W-5cm	92.0	740742	0.8	0.12	2
92	]+ + +			93.0	7A0743	0 2	0 12	2
94	4 4	94.1	j	94	740744	0 8	(0, 1	'
34	~~~		94.1-97.1m, W=3.0m, yellow ochre yellow sticky clay with timonitizatied granodiorite pebbles		_	1	1	
96					740793	0.8	0.5	
	X →	<u>97.1</u> (	97, 1-100, 2m, limonitied aplite,	97	7,40745	1.6	0 5	·
98	l- X: -X →	€.	98-99m, arsenopyrite imp.	98.	1 7.0746	·	0.12	- {
400	× ×			99. 100.	210213	1.0	(0.1	1
100	,		A -	-168				1

Level 1,930.7m X 52.0m Direction 105 Inclination -45 286. 3m 204. 9m Length ASSAY RESULT Mo TEST РЬ Zn ÛV. **A**s \$b -50 20 (0.3 0 009 z 2 1.2 5 0 012 \$ 9 30 03 70 0.012 1.2 3 1.5 <03 20 0.03 5 12 **(0 3** 49 1. 5 0.003 1.5 <0 3 \$ 0.4 1.5 Ŀ 55 0 03 <1 2 <0 3 5 0.00 0.7 0.005 1.2 Q 4 <E a **<0** 3 7 1 0 002 15 1.2 41.2 <0.3 I 03 0.015 0.12 2 5 <0 3 20 0.005 0 12 3 1.2 <0.3 4 -60 ₹0.3 0 001 0, 12 0.1 1.5 5 ÷ 5 0 02 0.12 <0.9 5 1.2 3 <0.3 e. e. 0 612 0 2 t. 2 2 0.012 12 0 2 Q. 7 5 <0.3 2 12 0.009 0.15 0.9 (0.3 3 4 12 6.009 0.15 1.5 4 0.3 Ŷ X_ 2 0.009 0.3 7 0,15 1.5 3 67. 2 0. 2 0 012 0.3 1.2 3 7 0 015 0.2 1.2 1 05 . 4 -70 0.012 0.2 1.5 ė 4 0.5 12 2 0.012 0 2 1.2 ŧ 0.4 7. 7 5 0.012 0.7 1.5 0.4 12 \$ 0.5 1 12 0.007 0.3 03 [ 7 0.02 0.4 0.3 (1.2 Kộ. 3 9 g <0 3 0.03 07 0.3 1.2 9 0 02 0.9 0.7 15 9 <1.2 <0.3 7 0.015 0.9 0.3 1.2 <0.3 12 P T 78 5 78 5 5 0.02 0 3 2 <0.3 15 3 4 12 2 0. 015 0.4 4 0.4 -80 4 12 0.09 0.3 3 <0 3 7 3 0.5 1 6.015 3 9 03 7 15 0.015 0.4 2 5 <0.3 4 0 009 1.2 0.9 1.2 <0. 3 65 X 85.5 15 1.2 (0.3 4 0.003 0.4 9 15 12 0.005 1.5 0.3 1. 2 **(0.3** 2 1.2 <0.3 4 0.005 0.4 1.2 ì ţ 2 0.005 1.5 0.3 **<1.2** <0 3 3 -90 <1.2 <0 3 3 12 0.002 1.2 03 2 <0.3 12 0.003 0.3 1.2 15 0.5 <0.3 4 12 0 005 2 1, 5 45 0.007 2 <0.3 Q. 2 <0.3 (0.1 5 0 005 1. S Q. 4 5 <03 20 X **-**96 2 0.3 3 <0.3 15 5 0 003 1.5

4

<0.3 50

(0 3 40

100

9 003 1.5 <0.3

0 005 1.2 0.3 12

GEOLOGIC CORF LOG OF MJKA-11 (3/5)

1/200

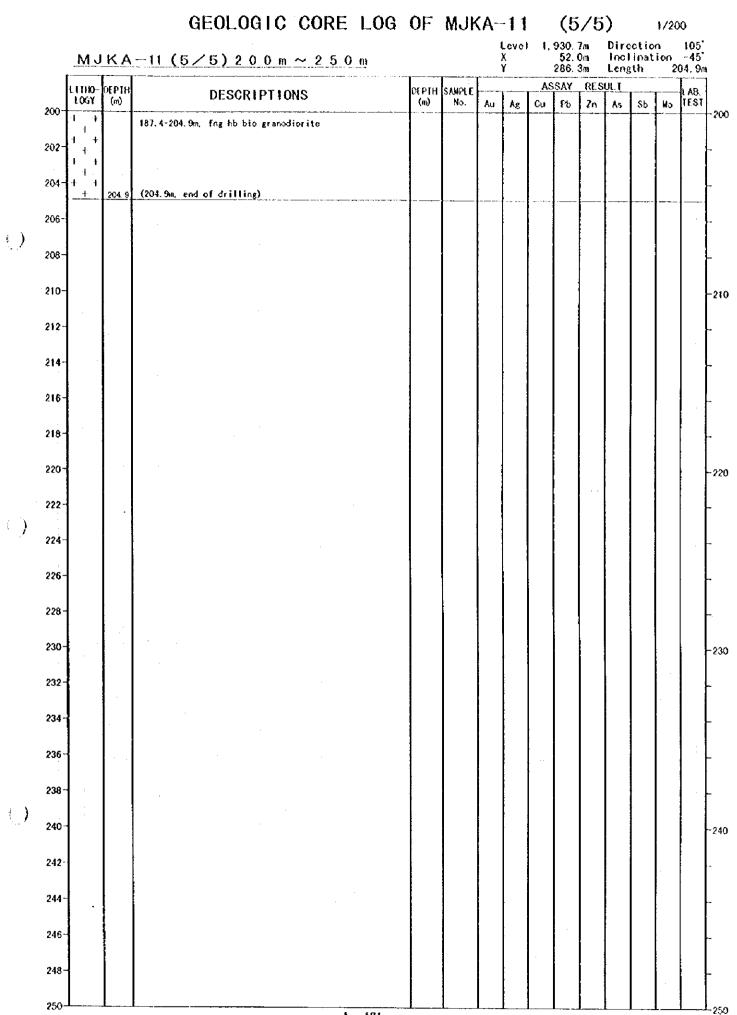
				GEOLOGIC CORE LOG	0F	MJK	(A-	·11		(3	/5	)		1/20	0	
		мJ	KA	-11 (3/5) 100 m ~ 150 m						930. 1 52. ( 288. (	Dm		ction inat	ion	105 -45 4.9m	
					1				·	SAY	RES				·	
		LTTHO- LOGY	(m)	DESCRIPTIONS	(m)	SAMPLE No.	Au	Ag	Cu	РЬ	Zn	As	Sb	Mo	EAB. Test	
	100	<del>t</del> t	-100-2	100.2-105.5m, mdg limonitizated granodiorite	100 2	740748	0 6	0 5	0 003	2	<u>.</u>	· · · · · · · · · · · · · · · · ·	 (03	70		-100
		- <del>1</del> 1 - 1		101.6m, py imp.	10) 2	740749	05	0 2	0 000	1.2	0.3		(0.3			
	102-	ંતાં		102.2m, py imp.	102 2		1.5	<0.1	0 005	2	03	15	(0.3	 		-
		+ + +			103 2		0.2	(0.1	0.003	2	0.4		(0 3	10		
	104-	5	(04. 4	1D4.4m, ochre clay v ₩÷2cm	104.2	1	0 09		0 007	2	07		<0.3			-
		x q x	105.5	105.5-105.8m, bio-aplite, py molybdenite imp.	105 8	1.0750		- K0. T	0.005		-3		.:<0 3	; 15 ∷200		
Ť.	106-	†  -  - - - -	105 8	105.8-155.5m, limonitizated bio-hb granodiorite,	105 8	7A0754	1.0	<01	0 004	1.5	04	3	03	15		
	100	.+ + +		partly K-feldspar contain	107.8	740755	1.2	(ð I	0 002	15	04	3	<b>0</b> 3	12		
	108-	+			108.8	780756	3.6	<0.1	0 007	2	03	7	0 3	. 15		-
	NO.,	+ -+   - <b>+</b>			109.8	7AQ757	10	0.12	0 005	3	0.5	3	0 3	50		
	110-	+ +	110.8		110 8	7A0758	0.9	<0.1	<b>0</b> .003	1 2	0.4	1.5	(0 3	15		-110
	112-	₩.	101.4	45 111.4m, cal-diop vein, ₩=0.5cm	111.6	7A0759	05	<0.1	0.003	1.5	04	1.2	(0 3	12	1	
	112	+  + +			112.8	7A0760	08	<01	0 005	1.5	0.3	<1.2	<03	15		~
	114-	`+			113.6	7A0761	0.2	<0. 1	0.007	1.5	03	1.2	<03	20		
		+	115 0	111.5m, olive sticky play, W=5cm	114.8		0.5	<01	0.005	1.2	1,2	2	<0 3	ੇ 15 	:	Γ
	116-	∓_∓ -+		115.2m, malachite imp.	115.8	1	1.0	03	0.012	0.9	<0.3	1.5	<0.3	: 15 :		
		+ +		115.5-119m, sandy crushed	116.8		2.8	0.12	0 007	0.7	<03	2	<03	12		-
	118-	F ⁻ +			10.6		1.2	0.4	0 007	1.5	0.3	15	<03	<u>15</u>		~
		+`_+			118 8			0 12	0 005 	1.2	<u>&lt;03</u>	5	(0.3	÷ 40		
	120-	+ + + +			119.8	740767	03	<u> &lt;0.1</u> <0.1		1.2		<b>4</b>	<u>(9 3</u>	49		-120
	:	+  + ∖ -}			120.8		0.4	<0 1	0.005	1.2		3	(0 3	40		
	122-	t	122.0	122.0m, cal-diop vein, W=1cm	121.8			<0 1	0.003	1.5  1.5	·	1.5	(03	15		-
		·+ +	<u>123 0</u>	123.0m, cal vein, ₩=0.5-1cm	122 8	1	0 55	<0 1	0.012	0.9	03	2	(0.3	20		
· [ )	124-	<del> </del>   +   +			123.8		0 012		0 007	0.2	9	1.2	<03 <03	3		-
		+ . +			124 8		0.2	(0 1	0.012	2	0.4	3	(0.3	- <del>3</del>		
	126-				125.0		0.4	<0.1	0 005		0.3		<0.3			-
		+  +, ,+	+*		126.4		[	<0.1	0 003	1.2	03	1.2	<03			
	128-	╡ ╡ ╡			127.8		0.5		0.005	1.5		3	<0.3	15		<b>-</b> .
		╡ ╡╴╪			128.4	740856	05	<0 1	0.007	1.2		2	<03			
	130-	+			129.4	740857	1.0	<0.1	0.004	1.5	04	2	03	12		-130
					130.4	Į 7A0858	1.5	<0.1	0 015	1.2	03	4	0.6	9		
	132-	<b>1</b> + + -			131.	740859	07	() (	0.007	1.5	0.3	4	03	12	÷	-
		+ +			132	740860	1. D	<01	0.003	1.2	0.3	2	<0 3	15		
	134-	+  + _+	1		133. 134.	7A0861	0 5	<0.1	0.005	07	0.3	2	<0.3	40		F
	100	+   +			135.4	7A0862	0.8	<0 I	0. 004	1.5	03	3	<03	5		
	136-	<b> </b>			136	740863	03	<0 1	0 005	1.2	0.4	3	(0 3	9		F
	138-	+			137. 1	7A0864	0.4	(0)	0.003	09	0.3	2	<0 3	50		
	100-	+			138.	740865	0 5	<0.1	0.005	1.2	0.3	15	<0.3	150		~
, )	140-				139.	7A0866	0.2	<u>&lt;0.</u> t	0,0015	0.7	03	F. 2	<03	9	1	
	140	+ + +	]		140.4	740867	0.012	<q. 1<="" td=""><td>0.005</td><td>1.5</td><td>07</td><td>3</td><td>(0 3</td><td>- 12 </td><td></td><td>-140</td></q.>	0.005	1.5	07	3	(0 3	- 12 		-140
	142-	]++	1		141.8	7A0868	0.012	<u> &lt;0. 1</u>	0 009	2	04	3	<03	20		
		+ +	1		142 0	740869	0 012	-01	0.0012	1.5	0.5	1.5	(0 3	: 12 		ĺ
	144-	╡ _╞ ╶╷	1		143. (		• ·· -	<u> (</u>	0 002	1.2	0.4	(1.2	<0 3 	3		_
		+			144.0		0 612		0 002	1.2	0.5	<u>(1.2</u>	<0, 3	<b>)</b>		
	146-				145.8		<0.012	<0 1	0.002	1.5	0.3		<0.3	9		L
		+ +   +		146.1-147.6m, sandy crushed	145.6		0 09	<01	0.003	1.5	0.3	1.2	(03			
	148-	+ +	1		147, 8		0.2	<u>&lt;0.1</u>	0 005	1.5	0.4	1.2	(0 3	4		
		+ <u> </u> +			148.6		0.05		0.0015	1.2	03 	(1,2	(0 3	.5		
	150-			L	t 49, 8	740876	0 012	<u></u>	0.0012	1.5	03	(1 2	(0 3	4		L ₁₅₀
				A –169												

.

GEOLOGIC CORE LOG OF MJKA-11 (4/5)

1/200

## MJKA-11 (4/5) 150m~200m


Ì

......

Level 1, 930.7m X 52.0m Y 286.3m Direction

0.7m	Direction	105°
2.0m	Inclination	-45'
6. 3m		204. 9m

11110-1	X P1H	DESCRIPTIONS	DEPTH	SAMPLE	ļ. <u>.</u>		AS	SAY	RES	UL T	<b></b> -		LAB.	
LOGY	(m)	DESURTPHICKS	(m)	No.	Au	Ag	Cυ	Pb	Zn	As	Sb	Мо	IEST	150
1 H		105.8-155.5m, limonitizated blo-hb granodirite	150 E	740877	0.4	<0 t	0.004	15	03	2	(0 3	,		-150
- + + - F			151.8	740878	0 012	<0↓	0 007	2	07	12	<0.3	9		
				780879	(0 D)2	<5 I	0 0012	03	<0 3	<1.2	<03	7		~
1 1			152. E	740880	0.9	(0.1	0 0612	3	04	2	<03	5		
H	154 5	154.5m. shear zone, ¥=5cm	153 8	740881	0 15	<0 1	0 0015	1.5	03	2	<03	12	1.	-
1 1	155 5	rotion, arear cond, #-oon	154.8 155.5		0 15	<01	0 007	1.2	03	1.5	<0.3	3		
1 <u>1</u>		155.5-172.5m, hb bio granodirite	103.0											•••
+ +														
. + .				:	ļ									-
		158-164m, sandy crushed												
it i				ļ	1									-160
+														100
										1				
' + <b>'</b>														
					Í									
4 - H		164-164.5m, sandy crushed									ļ			-
					1						1	ĺ		F
$\begin{pmatrix} + & + \\ + & \end{pmatrix}$			167.5				·		•				:	
1 1			168 5	741157	0 2	0.3	0.003	1.2	04	5	(0.3	15		
+ + +		169-170m, sandy crushed	169.5	741158	0. 12	<0.1	Ø 005	1.2	04	1 2	<0 S	15		
+   +			170.5	781159	10 07	<0 1	0 003	1.5	04	1.2	<0 3	12		-170
-				741160	0.12	(0.1	0.002	1.5	0.4	1.5	(0.3	30		
1 1 1	172.5	·	171.5	741161	03	<0.1	0.004	1. S	0.4	7	(0.3	20	1	-
x x		172.5-181.5m. pale green aplite,	172.5	7A1162	1.2	0.2	0 001	10.9	0.4	30	(0 3	15	•	
X X X		arsenopyrite imp.	173 5		$\{x_i,y_i\} = \{x_i\}$	04	0 002	2	0.5	12	(0 3	15	1	
^ x ^			174.5	741164	1.0	0 2	8 003		07	20	(03	15	1.50	
х -х - х			175.5	741165	· · · · · · ·	0.3	0.012		0.5	20	(0.3	120	1.5	
XX			176 5	741166		<0 1	0 003		03	<1.2		50	1	
X. XX			177, 5			07	0.003		· ·		(0.3	17 17	. I	
			178 5	·					0.4			14		
X X X			179.5			<0   	0 003	· · · · · · · · · · · · · · · · · · ·	0.4	1.2				
X X			180.5			0 12	0 002	.08	0.3	1.2	(0 3	20		-180
×	181.5		181.5			0.15	0 003	1.5	0.4	1.5	\$ <0.3	50		
		181.5-186.6m, fng hb bio granodiorite	182 5	741171	0.9	0 12	0 003	1.2	0.6		<0 3	40	. · ·	F
1 + F			183 5	7A1172	04	0 15	0 093	15	0 3	3	<0.3	120		
<b>i</b> F - 4			184 5	741173	1.0	<u> &lt;0 1</u>	0 005	1.2	04	3	(0 3	. 30		-
− <b>†</b> ]  ∳ − −†		184.5-185.5m, sandy crushed	185.5	741174	0.4	0 12	0 065	1.5	04	1.2	<0'3	20		1
1 H.	186.6			7A1175	0.01	(0 I	0 003	12	03	<1.2	< Q. 3	20	1	╞
×х	187.4	186.6-187.4m, pale green aplite	186 6	1741176	0 012	<0 1	0 004	0 9	0.4	(1.2	(0.3	15		
+ +		187.4-204.9m, fng greenish hb bio granodiorite	185 4	7A1177	1 0.8	<0. į	0 005	07	03	1 :	(0.3	15	1	╞
1 1 1 1 − 1			1	741178	3 0 6	0 15	0 003	2	04	5	<0.3	20		
		187.5-188.5m, sandy crushed	189.4	741179	03	(0.1	0 003		03	3	(9.3	15	1	- 190
-		190.8-192m, sandy crushed	190-4	741180	0.9	<0 1	0 007	1.5	07	3	<0 3	30		
<b>}                                    </b>			191,4	741181	0 07	<0 1	0.005	1 5	0 5	0.3	<03	20	-	
F F			192 4	1	:					1		1		
								]		ŀ				
						1		1	1		1			Γ
					1	1						[·		
4 4							ľ			1		[		F
4 4			1				1	1		1			1	
{`+`				1					1				1	┝
	ļ						1	1		1	1			I
1			1	1	1	1	1				1	1.		$L_{200}$



### GEOLOGIC CORE LOG OF MJKA-13 (1/4) 1/200

-0

3

)

j

### Level 1,920.6m X 93.5m Y 425.0m Direction 105' Inclination -20' Direction MJKA-13 (1/4) 0m~ 50m Length 175.1m ASSAY RESULT LAS. 11110-DEP18 DEPTH SAMPLE _._. **DESCRIPTIONS** LOGY (m) No. TEST Au Ag Cu РЪ Zn As S5 Ro (m) 3 0 25 0-0.25m, detritus 0.25-0.35m, qz px wo skarn 740840 0.05 03 0 015 0.1 (0 3 1.5 <1.2 + 0 0,25-0,35m, q2 px m5 skarn 0,35-0,5m, bio granodiorite 0,5-0,75m, q2 px mo skarn 0,75-1,0m, bio granodiorite 1,0-1,7m, q2 px mo skarn 1,7-2,0m, aplite 740841 0 07 0 3 0 015 0 3 09 <1.2 <03 7 20 7A0842 0 03 <1 2 <0 3 0 5 0 015 0 7 2 1 30 0 3 0.012 0 4 1.2 740843 0 03 <1.2 <0 3 -15 40 1 .....

0-

2-

4-

-

4-1		the transf obstan			· · · · · · · · · · · · · · · · · · ·	· · · · ·		1.1.1.1.1.1						-
l		2.0-8.2m, pate green qz px wo skarn	5.0	740844	0 615	Q. 12	0.012	0.2	1.5	<b>{</b> 1.2	<0.3	<b>9</b>	[	
. 1	11 11			740845	0 012	Q 1	0.005	03	1.2	<1 2	<03	7	[	
6	11 <b>1</b> 11	6.0×6.5m, py cp imp.	60	740846	0.09	(0.1	0 005	03	4	<1 2	<03	×1.2		-
		fromatin order of skarn mineral: gz wo, px, garnet	1.0											f f
8-	11 1 82			740847	05	<01	0 005	0.12	3	<1 2	<03	. 1.2	:	L `
ľ	пн	9 2-9 to areas or chara	8.2	740848	0.	(0.1	0.007	(0.1	4	() 2	<03	41.2		
	11 9.1 11 11	······	9.1			<01	· · ;							
10-	. u . n	9.1-13.5m, px wo skarn	10.1	740849			0.004	02	4	<u>&lt;1.2</u>	<u> </u>	1.5	1	-10
1	n	11.0-11.1m, banded st of garnet px wo skarn		740850	0.03	<0.1	0 004	1.2	0.3	2	<0.3	, <b>3</b> ,		
		showing 80 degree	- 11, 1	740968	10 012	(0.5	0.012	(0.1	3	(1.2	(0.3	1.2	:	
12-	41 44	11.4-11.5m, banded st of garnet px wo skarn	12.1	· ···										F
	11 H 12 13 1			780969	0 02	<0 î	0 02	0.3	Э	(1.2	(0 3	(1.2	1	9
	+ +	13.5-17.0m, granodiorite, porphyritic texture of	.13 5	780970	(0 A)	0.12	0.009	1.5					1	l.
- 14-	+	plagioclase (0.5-1cm)	14, 5						05	<1.2	<03		1	ſ
	+ +	13.5-14.0m, skarnization of garnet and px	15.5	780971	(0 012	<01	0.012	1.2	04	<1.2	<0. J	3		
16-			10.0	740972	(0.012					(1.2			1.1	Ļ
	1 - 1 D.(	12 0-12 2m brandinted exect or store				<0 1	0.015	2	0.4		<b>(0.3</b>	5		
		17.0-17.3m, brecciated garnet px skarn 17.3-17.45m, granodiorite, porphyritic texture	17.0	740973	(0.012	<b>(0 1</b>	0 03	1.2	2	(1.2	(0 3	2	1 1	]
18-	11 11 17.9	1,45 17,45-17.9m, px garnet wo skarn	_17, 9	740974	10 012			0.9	·	<1.2	<0.3	7		ŀ
	11	45 17.9-21.7m, garnet px skarn	18. 9			<0.1	0 012		1.5				1	
	i e i	19.3m, cal network of 30 degree	19.9	740975	<0 012	<0.1	0 007	04	1.2	<b>(1.2</b> )	<03	7		
20-	<u>п</u> и П	20.1m, cal v. #=0.5cm, 75 degree	13.2	740976	K0 012	(0,1	0.001	0.9	1.2	(1.2	(0 3	7		-20
		21.0m, cal v.W=1cm, 40 degree	. 20. 9	}	· · · · · ·						· · ·			
22-	11 11 21.	21.7-21.9m, brown limo-carnonate(ankerite)	21.9	740883		0.12	0 03	0.7	5	3	(0 3	20	X	21.8
24	<u>) () () () () () () () () () () () () ()</u>		22.6			<u>. &lt;0. 1</u>	0 003	0 12	0.3	1.2	<u>&lt;0.3</u>			
	+ +	21.9-22.6m quartz cal v, half of core consisting		7A0978	<0.012	<0.1	D. 012	1.5	0.4	9.2	Ke S	9		1
24 -		of dark green skarnized rock	23.6	740979	10.012	(0.1	0.012	0.9	0.4	(1.2	(0 3	5		- `
	' + '	22.6-29.2m, chl bio granodiorite, metasomatic, limonite along crack	24.6	740980	: <b> </b>		0 001	0.4	0.3	TTT.	(0.3			
	<b>∔</b> -∔-		25.6		(0.012	<u>(0</u> )	<u> </u>			(1.2		1		
26-	<b>,</b> + ,		26 6	740981	<0 0t2	<0.1	0,012	0.4	0.3	<1.2	(0 3	5		F
	1 1	27.0-27.4m, aplitic	20 0	740982	0.04	<0)	0.009	1.2	0 5	(1.2	(03	5		
28-	4 4	28.0-28.7m, limonitization	27, 6	7A0983						11.2	(6.3	1		Ĺ
20	· +		28.6		·	1	0.003	· · · ·	0.3			12		
	29. X X	2 29.2-31.2m, apiite	29.2			1	0.007		0.4		. (0 3	15		
30-			30.2	7.40985	(0 0+2	. <0 1	0 007	0.9	0.3	<1.2	<0.3	4	Į .	-30
1	X X 31.	31.1~31.2m, chl altered metasomatic rock 2from aplite		740986	S 0.012	0.12	0.009	09	0.9	1.2	<0.3			ł
	31 11	31, 2-33, 8m, deep green px skarn	31.2	740987	0. 012	<0.1	0 005	0.7	5	<1.2	(0 3	5	1 - 1	
32-		one oo on, beep groon py sharn	32 2											h.
	4) H		33.2	7,0988	_	· · · ·	0.02	1.2		<1.2	(0 3		1.1	
34-	11 33		33.8	740985			0.012		3	<u>&lt;1.2</u>	<u>(0</u> .3			
34	ы <u>34</u> .	7 33.8-34.7m, garnet px skarn	34.7	740990	0 0.012	0.15	0 005	0,9	3	<1.2	(0,3	1		
	"""	34.7-39.4m, deep green px skarn		7A0991	i 0.03	00	0.03	1.2	3	1.2	<0 3	27.2		
36-		35.6-36.2m, mixture of granodiorite	35.7	740992	2 0 012	(0.1	0.00	0.7	1.5	(1.2	(0'3		1 1	-
	o u		36 7	۰ <u>ـــــ</u>		1	ł			· · · · · · · · · · · · · · · · · · ·	1	- {		
	- 0 - 14 - 0 - 19		31.1	7A0993	3 0 02	0.12	0 009	0.7.	7	<1.2 	< <u> 0</u> 3			
38-	11 11	1		740994	4 0.05	0.9	0.03	09	5	1.2	<0_3	z		
	11 11 39.	4	38.7	74000	5 0 09	0.7	0.01	1.2	17	12	0.4	3		
	1	39 4-40 4m or skarnized granodiorite	39.4	74099		<0.1	0.00	3 1.2	1.2	(1.2	(0 3	1.1	<b>i</b> :	-40
40 ·		4	40 4							- <u></u>				<b>F</b> 4€/
	+ + :	40.4-41.8m, granodiorite	1	7A099	7 (0 Ori	2 <0.1	0.00	1.2	0.4	<b>(1.2</b>	(0.3	•		
42	+ 41	8 41.8-42.9m, px skarnized granodiorite	41.8				·			1		-	4.	F
74	+ 2 + 42			7A099	8 0 01	2 0 12	0.04	2	2	<1.2	<0.3	4		
	<u>п.п</u>	42.9-46.1m, deep green px skarn to px-quartz skarn	42 9	7A099	9 1.1	1.2	0 12	03	3	5	(0) 3	4		
44		43.0m & 43.3m, malachite imp.	43.9			·		1			(0 3	5	1	F
	.°o	43.9-44.0m, granodiorite	44.5	9 7A100	0 0 3	0 12	0.00	02	1.2	<1 2			1	1
	5.00			7A100	1 1.2	03	0 01	5 0.2	1.2	1.5	(0.3	5	1	1
46	45	46.1-47.0m, granodiorite	46	1		0.5		1		-				F
	+ + 47		47.0	7A100			0.02	1.2	. 0.3	. 1.2	03	··· •		
• •	1.1.1.47	3 47.3-48.8m, strong limonitizated altered rock	48		3 0 0:	5 0.1	0.01	2 0 5	1.5	1.5	0 5	12		L
48	48		1	74100	4 0 01	2 0 1	0.00	0.5	03	2	<0 3	9		ſ
	1 1	48.8-51.6m, limonitizated granodiorite	43	8 7A100	5 0 04	 	0 00	7 0 9	03	1 2	<0 3		1	
50	+		49	8									·I	⊥ ₅₀
~~		A –	-172											

GEOLOGIC CORE LOG OF MJKA-13 (2/4) 1/200

÷

**,** )

• )

)

ΜJ	KA	-13 (2/4) 50 m ~ 100 m	<b>j</b> ,	r	ر ۱ 			93. 5 425. 0	)m	Leng	inati th		-20° 5. 1#	1
LITHO- LOGY	OEP1H (m)	DESCRIPTIONS	0EP118 (m)	SAMPLE No.	Au	Ag	AS Cu	<u>SAY</u> РЪ	RES Zn	ULT As	, Sb	Ko	LAB. Test	
1 1	50.7	48.8-51.6m. Limonitizated granodiorite	50 8	7A1006		(0 1	0 015	1.5	0.4	1.2	<0 3	15		-
+	<u>. 51. 6</u>	50.7m, cream clay, W=3cm	51.6	741007		()	0.009	1.5	04		<u> (0</u> 3	20		Ĺ
-t + -t		51.6-70.4m, bi-hb granodiorite	52 6	741008		<01	0 012	15	• •	< <u>}.</u> 2	<0.3	- 9 		ſ
+ +			53.6	741009		02	0 012	1.5	03	(1.2	(0.3	20		L
* +			54 6			0.5	0 007	1.5	0.3	<u>() 2</u>	<0.3	20		Ì
- 11 -11-		55.0-55.1m, limonitization 55.3-55.5m, limonitization	55.6			0.9 	0 015	1.5	0.4 	<).2 	(0 3	5 <b>15</b>		
++++++++++++++++++++++++++++++++++++++		56.0-56.6m, chloritization	55 6			Q. 12		0.9	03	1.2	(03			ſ
ŧ		30.0 30. cm, error referención	57.6	1		<0 I	0.004	0.9	0.3	<1.2	<0.3			
+ +		58.0-58.6m, chloritization	58 6			<u>&lt;0.1</u>	0.004	1.2	0.3	1 (1.2	<u>&lt;0.3</u>	<b>*</b>		ſ
+ +	1		59.6			}	0.005	1.2	0.5	<1.2	(4 3	5	ļ	l
+ +		around 62m, fresh granodiorite	60.6		I	<0, I	0 003		0.4	<1.2	<0.3	12		Ì
+			61. 6			<u> &lt;0. 1</u>	0.003		0.3	1.2	<0.3 	9		I
+			62.6		I		0 0015	1.2	0.3	<u>(† 2</u>	<u>&lt;0.3</u>	15		Į
+ +	-		63.6		· • • • • • • • • • • • • • • • • • • •	I	0 005	1.5	03	<1.2	<03	3	ł	
+ + +			64.6		·		0.003	1.2	0.3	<u>&lt;1.2</u>	<0.3	1		Ì
+ +			65 6		·	(0 1	0.007	0.9	0.3	<1.2	<03	5		I
· ·			66 G		·	0 2	0.007	1.2	0.3	2	. (0 3	4		Ì
+ +		· · · · · · · · · · · · · · · · · · ·	67.6	7A1023	· i				0.3	<1.2	<03	4		1
-+			68. 6	7A1024	· •		0.003	0.9	0.3	<u>&lt;1, 2</u>	<0.3			ĺ
+ +			69.6			1	0.007	0.0	0.3	<1.2	(0 3	1.5		
$\frac{+}{\sqrt{1}}$		70.4-71.1m, green lamprophyre, hematite contained	70.4	1 741021				0.7	0.3	<1 2 <1 2	<u>&lt;0.3</u> 0.3	3		
+ +		71. 1-84. fm. chloritizated granodiorite	71.1	7A1028				1	0.3	<b>&lt;1.2</b>	(0 3	4		
}  -+  -+ -+		71, 1-04, IR, Childrittated granoutorres	72 1	7A1029	0.012	0.1	2 0.004	0.9	0.3	<1.2	<0 3	4		
<b>•</b>			73.	741030	0 03	() I	0.003	0.1	0.3	<b>(1,2</b>	<03	2	1	
+ +   +	+		74.	74103	0.012	(0.1	0.005	0.9	0.3	<1.2	<0.3	1.2		
+ + ↓+	۲Į		75.1	74103	2 0.05	(0.1	0.007	0.9	0.3	1.2	<0 3	1.2		
+ +	ŧ		76	7A103	3 0.01	2 0.1	2 0 001	0.9	0.3	2	<03	3		
<b>↓</b> + <i>↓</i>	ł		77.	74103	4 <0.0	12 <0 1			0.3	(1.2		1.3		
<b>ĺ</b> + [·] .	Ļ	79.4-79.6m, chloritizated veinlets of 45 degree	78	7A103	5 0. 07	<0 1	0 003	0 5	0,3	<1.2	<0 3	: 2		
+	<u> </u>		79.	74103	6 <0 0	12 <u>(0</u> 1	0.004	0.9	0.3	1.2	(0.3	3		
	1 ·		80	7A103	7 0 01	2 <0.1	0.00	1 0 5	0.3	) <1.2	<0.3		s] ·	
+ .·	+[		81.	74103	8 0 01	2 <0 1	0 000	3 0 9	0.3	1.2	<0 [°] 3	. 3		
<b>1</b> + [·	+		82.	74103	9 0 0:	2 <0	0.000	2 0 7	0.3	1.2	<03	1		
+ +	+ 84.1		83	7A104	0 40.0			1 1.5	0.4	1.2	<b>&lt;0</b> 3	3	٦ ١	
		84.1-84.5m, green lamprophyre. 5 84.3-84.5m, strong hematitization	84. 84.	21.01.03	1 <0 0 2 0.12								- 1	
4	+	84.5-89.2m, bi hb granodiorite	85.		_								-	
1+	ł	87.3-87.5m. Limonitization of 40 degree	86.	5	4 0.05				0 4		<0.3		-	
+	+		87.	5	5 0 09						<0.3	20	-	
	+	88.4-88.7m, limonitization	88.	5 74104	6 0.04		12 0.00	. <b>.</b>	<del>.</del>		_1		-	
<b>}</b>	69.1	89,2-98.9m, strong limonitizated metasomatic rock.	89.	- 7A104	7 0.12	_	0 00	5 2	0	3 5	<0 3	20	1	
1		from aplite origin	90.	7A104	8 0.05	(0)	1 0.00	3 1.5	5 0.3	3 3	<0.3	12	1	
			91,	74104	9 0.01	5 (0	1 0 00	? 1.3	2 0.1	1 2	<0.3	15		
1:.:	•		92	2 7A105	0 0 01	-	0 00	2 0 9	0	3 3	- <del></del>	20	-	
	2		93.	7A105	1 (0.0	12 (0.	0 00		, Q.	- <del>-</del>	(0.3	20	-	
1:::			94.	2 7A105	2 (0 0							12	-1	
			95.	2 7A105	3 0 01		12 0.00	- · - · · ·		÷		15	-	
	::		96						-		(0.3		-1	
			97.	2 7A105	5 0.3				· · · · ·		(0.3	·	-	
100	98.	8	98 98	2 8 7A105	6 0.09	0	12 0 00	7 0.1	0	í ir	(0.3	20		
×.	* 99	- 30. 3"33. Zak, White allered apprece	99.		7 7 70 7 8 0 4		T 0 00				2 <u>&lt;03</u> <03		- 1	

### GEOLOGIC CORE LOG OF MJKA-13 (3/4)1/200

### Level 1,920.6m Direction 105 Inclination 93. 5m -20 MJKA-13 (3/4) 100m ~ 150m X 425. Om 175.1m Length ASSAY RESULT LITIO- OEPIN DEPTH SARPLE AB DESCRIPTIONS LOGY (m) No. (m) Ag ₽b ITEST Cu Zn \$Ь No Au As. 100 100 99.2-102.6m, limonitizated granodiorite 741059 0.012 <u>(</u>) 1 0 001 1.2 6 3 1 2 <0 3 5 101 101.6-102.6m, quartz cal network 741060 0 02 <0.1 0.005 D S 04 3 (0 3 .1 102 -ŧ 102 6 102 102.6-104.0m, chloritizated aplitic rock Х 781061 0 64 <0.1 0.004 67 0.5 (1.2 4 <0[']3 104 0 104 104.0 -1 104.0-107.0m. Himonitizated granodiorite 741062 15 0.04 0.12 0.001 2 03 5 (0.3 105.0 7A1063 \$ (0 012 <0 1 0 005 1.2 8.3 3 (0 3 9 106 106.0 ŧ 741064 0 03 (0.1 0 612 2 5 107 0 0.3 (0.3 ٦ 107. ν. 107. 0-108. 4m, gray lamprophyre 741065 (0.3 0 612 CO I 8 004 6 3 0.4 1 2 2 108 v 108 4 108 X 741066 05 108.4-112.0m, timonitizated aplite. 0.5 0.02 (6.1 0.3 5 <0 a 2 X 109 malachite imp. 7A1067 0 15 110-0.3 3 <0.3 ¥ 0.7 0.015 0.13 4 110 х X X 741068 0.5 0 7 0 02 (0. 1 0 3 20 <0 3 3 112.0 112 112.0 4 741069 0 2 0 009 112.0-117.7m. Himonitizated granodiorite (O. 1 <0 3 0.3 3 1,2 12 ÷ 113 C 7A1070 0 02 ά, ι 6 603 1.2 0.3 7 <0 3 15 114 114 ÷ 741071 0.012 <0.3 20 (0) 0 004 1.2 0.3 з -1 ٠ŧ 115.0 ł 741072 (0 i 0 603 0. **9** 0.012 òз **(1 2** . ∢o a 5 116 ł + 116.0 741073 ÷ 1.0 0 2 0 004 1.5 0.4 5 <0.13 12 117. ( 4 ÷ 7 741074 1.0 117.7 (0 1 0 003 1.5 0 3 <0.3 30 117. 118 v V 7A1075 0 05 0 7 117.7-123.9m, greenish limonitizated lamprophyre. 0.3 0 015 <t. 2 64 <o 3 30 v 118 hematite contained, fng hb 741076 40 612 0 009 ١. (0.1 0 3 Q. 4 (1.2 <0. 3 9 119 v 120 120.7-122.Om, strong limonitization 741077 0 012 0. Z 0 003 2 0.4 (1.2 <0.3 9 v 120 V 121.3 741078 121.3m, gtz cal vein, W=1cm (0)1 0.003 0 \$ 0 012 0.3 (1 2 <0 3 30 v 121 122 v 7A1079 to a12 0.15 0. 007 (i. 2 <0'3 0.9 ¥5 04 122. v 123.3-123.9m, strong limonitization 0. 003 v 741080 CO. 1 0.4 (0 01 0.4 (1.2 <0 3 20 123.9 123 9 124 ٠ŧ 741081 0 02 03 123.9-124.8m, limonitizated granodiorite <0 i 0 007 ż <0 3 124.8 0 9 50 124 Х 0.2 7A1082 0 12 0 02 1.2 10.3 40 124.8-134.0m. limonitizated aplite 0.1 07 х 125 126 741083 ¥ X 0.2 0.7 0.04 0.7 0.4 5 **≺o s** 40 126 Х 127.0m, malachite imp. along joint 7A1084 0.12 1. 2 0 03 0.12 03 5 <0.3 5 Х Х 127. 128 X 7A1085 0 07 <0.1 (0.1 (0.1 la cos a. **∢0** 3 5 X 128 × X 741086 0 07 0.0 0 02 0.7 9 04 (0.3 20 130.0m, malachite imp. along joint 129.

130 х X

132

134

136

138

140

142

144ł

146

148

150

X

х

X

Х

¥

х

х

Х

X

¥

ł

÷

4

÷¥

Ŧ

~ 144 8

143.7

144.4

Ŋ 134.0

v

Ж

134.1

x

X ¥

v

X Э

¥

130.8m, malachite imp. along joint

133.1-134.0m. strong timonitization

134.0-134.7m, greenish gray lamprophyre, phnocryst: pl, hb, bio

134.7~143.7m. Limonitizated aplite

139.0-139.5m. cal network

134.7-135.2m, biotitization

132.0-132.4m, px skarn forming in time, aplite

135.7-136.4m, px skarn forming in limo, aplite

136.8-138.0m, chloritization & biotitization

143.7-144.4m, strong limonitizated granodiorite

144.8-168.3m, strong limonitizated granodiorite, cal network

144.4-144.8m, yellow cream sticky clay

A-174

7A1087

741088

7A1089

741090

7A1091

7A1092

741093

781094

741095

7A1096

7A1097

741098

741100 <0 0+

741099 0 07

7A1101 0 12

741126 0 4

741127 0.7

741128 0 4

7A1129 0 C4

781130 09

130

131 8

132.3

134.4

134

135

136

137

138

139

140

141

142

143

144.

144

145 8

145 8

147.8

143 8

149

0.12

0 015

οз

<0. OH <0. I 0 002 0.9 0.4

0.03

<0.012

0 012

0 012

02

0 07

0 07

0 07

0.2 9.043 (0 0.3 2

0.12

0.9 0.02

0 2

0 2

03 0 012 0.9 1.2 3

03 0 009 15 0 9

0 12 0 012 0 12 0.5 <1.2 <o 3 12

0.9 0 612

0 2 0.002

0 12

0 12 0.005

0.12 0 00:

03 0 007 1.2 01 t

0.4 0 015 1 2

1.5

05

0.2

0.5

0 005 07

0 0/2

0 012

0 012 1.2

0 612

0 009

0 003 0 9

0 012

(0) 04 1.2 <0 '3 40

0.32

05 04

8 9

0.9

1.5

12

1. 2

1.2

1.2

0 4

1 2 0.4

0.3

0.3

0.5

0 :  $\mathbf{O}$ 

04 3

04

05

07 () 2 <0, 3 30

D 4

20 (n 3 40

1.5 (0.3 20

1.5 <0 3

3

3

3

1, 2

1.2

1.2 <0 3

2

1 2

1

100

-110

120

-130

-140

<o 3

<0 3

(0.3 12

<0. 3

<0 3

<6 3 12

<0 3 15

<0 3 12

<0.3 40

(0 3 20

03 39

03 49

(0 3

7

3

5

9

20

12

20

)

ġ

GEOLOGIC CORE LOG OF MJKA-13 (4/4)

,

1/200

ł

				GLOLOUTO CONL LOG	OI.	NOT	(n	ΤŪ	,	74	/ 4	1		17.50	U	
	-	MJK	<u> </u>	<u> 1 3 (4 / 4) 1 5 0 m ~ 1 7 5 m</u>				Level X Y	1,	920, 93. 425.	5m		etio linat th	ion	105" -20" 75. 1a	ı
	L	itho-de: Logy (	PTH m)	DESCRIPTIONS	DEPTH (m)	SAMPLE No.		1.		SAY	I				LAB. TEST	
	150					7A1131	Au 0 4	Ag 0 1	Cu 0 009	РЬ 12	7n 04	<u>As</u> 4	\$5 (0.3	Mo- 20	11.51	-150
		+		144.8-168.3m, strong limonitizated granodiorite	150-8 151.8	741132		0 12	0 005	· · · · ·		[*] 1 2		30		
	152-	+ +			152.8	7A1133	10	0 2	0 612	32	03	3	<0 3	30		-
	154-1	+			153 8	7A1134	<b>i .</b> .	0.2	0 009	15	03	3	03	40		
		-+- 			154 8	7A1135 7A1136		0 2	0 612		04	•	<03	40		-
	156-				155-8			<0 I 9 I5	0 003	03 1.2	03	\$	03 	15		
		- 4 ] - 4 ]			156 8	741138	· -· - ·	0 2	0 007	12	0.4	40 		20 15		
	158-1	+			157.8	741139	0 015	(Q 1	0 005	1.2	0.4	(1 2	<03	20		-
	160-+	-+; E			158.8 159.8	741140		0 12	0 012	1.5	04	15	<03	\$5		
		-+ <b> </b>		161.0-161.1m, brecciated structure	160.8	741141	(0 Q12	<0 1	0 009	1.2	04	2	03	15		-160
	162-	4			161.8	7A1142 7A1143	<0 012		0 009	1.5	04	1.2	<03	12		
		4			162 8	741144		0 12	0 009	1.2	03	1.5 2	<03 <03	15		
	164-	+ Í		164.3-166.От, аріісіс	163.8	741145	·	0.12	0 009		03		(0)	- 30 - 40		-
		_+ <u>16</u>	5.5	165.5m, clay v, ¥≍3cm	164 8 165 8	741146	0 05	02	0 015	1.5	04	2	 <0 3	20		
	166-+	+			166 8	741147	0 12	05	0 02	D. 9	05	1.5	<0.3	30		
	168-	+	8.3			741148	03	12	0 04	69	05	1 2	(6.3	20		-
		- 10	9.2	168.3-169.2m, white aftered lamprophyre	168-3 169.2	741149		07	0 015	0.9	0.5	1. 2	(0 3	20		
	170 X		0.0	169.2-170m, limonitizated aplite 170.0-170.6m, biotitizated rock with px network, py imp	170 0	7A1150 7A1151		02	0 012	0 12	03 04	<1.2 <1.2	<03 <03	7		-170
	X		<u>i 4</u> 2 1	170.6-171.4m, limonitizated aplite	170, 6 171, 4	7A1152 7A1153	0 012	0 2	0 009	0 2	03	<1.2	<03	7		
. 6	172-	····	<u>.                                     </u>	171.4-172.1m, chloritizated granodiorite 172.1-175.1m, biotitizated rock with px skarn network,	172 1	741154		0 12	0 007	12	03	<1.2 <1.2	(03 (03	 9		-
$(\mathbf{j})$	174-			aplite origin 173.5m, py imp	173-1 174.1	741155		1.5	0 05	02	05	<1.2	03	20		
		<u></u> ]ı	5.1	(175.1m, end of drilling)	175 1	7A1156	04	07	0 63	07	04	(1.2	C 0	12		•
	176-							Į								-
	178-															•
	180-															400
																-180
	182-															_
	184-															_
	186-															
																-
	188-															-
- )															ľ	
•*	190-														ł	-190
	192 -												Ī			
	1.52											ľ				-
	194 -															_
	196-														·	-
	100															
	198-														ł	-
	200															-260
				A - 175												

.

.

. .

# Appendix 3

Miscellaneous Data of the Drilling Survey

# Appendix 3-1

List of Used Equipment for Drilling

ltem	Model	Quantity	Capacity, type and specification
	L-38-98	2	Capacity NQ : 565m, BQ : 725m
<b>Drilling machine</b>			Inner diameter of spindle : $\phi$ 98mm
	SKB-5	1	Capacity φ 76mm : 800m, φ 59mm : 1,000m
			Inner diameter of spindle : $\phi$ 63mm
Engine for drill	4L-912	2	Electricity
	4AM180S43	1	Electricity
Pump	BG-10C	2	Piston $\phi$ 80mm, Capacity 120 liter/min
······································	ANB-22	1	Pressure 3.8 kg/min
Engine for pump	NFD-13	1	Electricity 2,400rpm
	ASDA-200	2	Electricity 1,500rpm
Generator	GSF-100	1	125KVA, 100KWh, 400V, 181A
Mud mixer	Mie-200	2	2.2KWh, 1,00rpm
Derrick	MA9-1	2	Maximum load : 15 ton
	MRUG-18/20	1	Maximum load : 5 ton
Rod holder	HQ	2	Capacity 5t
	NQ	2	Capacity 5t
	BQ	2	Capacity 5t
	φ 89mm	3	Capacity 10t
	φ 73mm	3	Capacity 10t
Drill rods	BS∳50mm	120	4.8m/pc
	8Sφ50mm	110	3.0m/pc
	HQ( <i>ф</i> 88.9mm)	84	3.0mX80pc 1.5mX4pc
	NQ( <i>ф</i> 70.0mm)	266	3.0mX262pc 1.5mX4pc
	BQ(φ55.6mm)	263	3.0mX259pc 1.5mX4pc
Casing pipes	φ 127mm	13	1m/pc
	¢ 108mm	13	3m/pc
	HW(	21	3mX12pc 1.5mX4pc 1mX5ps
	NW(	98	3mХ94pc 1.5mХ4pc
	8W(φ73.0mm)	257	3mX249pc 1.5mX4pc 1mX4pc
Core tube assembly	HQ( <i>ф</i> 73.0mm)	5	
	NQ(	6	
	BQ( <i>ф</i> 42.9mm)	6	

## Apx. 3-1 List of the Used Equipment for Drilling

# Appendix 3-2

Miscellaneous Result on Individual Drillhole

		Survey period		Breakdow	n of period	Total	
	Per	riod	Total days	Working	No-working	persons	
	from	to	ĺ	days	days		
Preparation	7 Oct. '97	7 Oct. '97	0.5	0.5	0	19	
Drilling	8 Oct. '97	18 Oct. '97	10.5	10.5	0	399	
Dismount	18 Oct. '97	18 Oct. '97	0.5	0.5	0	19	
Total	7 Oct. '97	18 Oct. '97	11.5	11.5	0	437	
		Dril	ling length				
Programmed len	gth	160m		Overburden		0m	
Prolongation		0.1m		Core length		146.6m	
Effective length		160,1m		Core recove	ery	91.6%	
	Working H	lours		Core red	ecover by each 50 meter		
Drilling		220h	79.7%	Length (m)	Each (%)	Cumula. (%	
Non-drilling		32h	11.6%	0 - 50	97.0	97.0	
Regain of accide	nt	6h	2.2%	50 - 100	92.2	94.6	
Preparation/sett	ing up	12h	4.3%	100 - 150	91.7	93.2	
Dismount/mobili	zation	6h	2.2%	150 - 160	90.0	91.6	
Others							
					Efficiency		
				Effective I	ength/Working	; drilling days	
					15.2m/d		
				Effective	length/Total	drilling days	
Total		276h	100%		15.2m/d		
		Dritting ler	ngth by diame	eter			
Bit diameter	116mm	HQ	NQ	BQ		Total	
Drilling length	5.0m	29.2m	56.5m	69.4m		160.1m	
Core length	5.0m	28.5m	53.0m	60.1m		146.6m	
		Inserte	d casing pipe	s			
Inserted lengt	n by diameter	Inserted le	ength / Drille	d length	recovery		
HW	5.0m		3.1	100 %			
NW	34.5m	21.		1.5 % 100 %			
BW	91.0m		56.8	*	80 %		

1

1

## Apx. 3-2 Miscellaneous Results on Individual Drillhole

			·····			(MJKA-2)		
	(	Survey period		Breakdow	n of period	Total		
	Per	iod	Total days	Working	No-working	persons		
	from	to		days	days			
Preparation	19 Oct. '97	19 Oct. '97	0.5	0.5	0	10		
Drilling	19 Oct. '97	21 Nov. '97	33.5	33.5	0	1310		
Dismount	22 Nov. '97	22 Nov. '97	1.0	1.0	0	10		
Total	19 Oct. '97	22 Nov. '97	35.0	35.0	0	1330		
		Dril	ling length					
Programmed leng	¢th	244m		Overburden		2.0m		
Prolongation		0.5m		Core length		224.7m		
Effective length		244.5m		Core recove	ry	91.9%		
	Working H	nours		Core rec	Core recover by each			
Drilling		325.0h	38.7%	Length (m)	Each (%)	Cumula. (%)		
Non-drilling		97.5ħ	11.6%	0 - 50 90.2		90.2		
Regain of accide	nt	393.5h	46.9%	50 - 100	87.0	88.6		
Preparation/sett	ing up	12.0h	1.4%	100 - 150	89.6	88.3		
Dismount/mobili	zation	12.0h	1.4%	150 - 200	91.0	90.3		
Others				200 - 245	92.8	91.9		
					Efficiency			
				Effective	ength/Workin	g drilling days		
	<u> </u>				7.3m/d			
	<u>.</u>			Effective	length/Total	drilling days		
Total		840	100%		7.3m/d			
		Dritting ler	ngth by diam	eter				
Bit diameter	116mm	HQ	NQ	BQ		Total		
Drilling length	4m	57.5m	183m	_		244.50m		
Core length	2.20m	54.4m	168.1m	_	-	224.70m		
		Inserte	d casing pipe	)S				
Inserted lengt	h by diameter	Inserted length / Drilling length Ca				recovery		
HW	4.0m	1.60 %				100 %		
NW	127.0m	1	51.9	) %	100	*		

- -

### Apx. 3-2 Miscellaneous Results on Individual Drillhole

	T	-				(MJKA-4	
		Survey period	r		n of period	Total	
	Per	riod	Total days	Working	No-working	person	
	from	to		days	days		
Preparation	23 Nov. '97	23 Nov. '97	0.5	0.5	0	10	
Drilling	23 Nov. '97	14 Dec. '97	21.5	21.5	0	834	
Dismount	15 Dec. '97	17 Dec. '97	3.0	3.0	0	30	
Total	23 Nov. '97	17 Dec. '97	25.0	25.0	0	874	
		Dril	ling length				
Programmed len	gth	150m		Overburden		0m	
Prolongation		12.3m		Core length		142.1m	
Effective length		162.3m		Gore recove	ry	87.6%	
	Working I	nours		Core rec	cover by each	50 meters	
Drilling		271h	49.1%	Length (m)	Each (%)	Cumula, (	
Non-drilling		197h	35.7%	0 - 50	86.2	86.2	
Regain of accide	nt	36h	6.5%	50 - 100	86.3	86.3	
Preparation/sett	ting up	12h	2.2%	100 - 150	87.3	86.8	
Dismount/mobili	zation	36h	6.5%	150 - 162	88.3	87.6	
Others							
					Efficiency		
				Effective I	ength/Workin	g dritting da	
	·				7.5m/d		
				Effective	length/Total	drilling day	
Total		552h	100%		7.5m/d		
	·	Drilling le	n <b>gth by dia</b> m	eter			
Bit diameter	116яна	HQ	NQ	BQ		Total	
Drilling length	3m	29.4m	30.1m	99.8m	m	162.3m	
Core length	3m	24.2m	27.7m	87.2m	m	142.1m	
		Inserte	d casing pipe	s			
Inserted lengt	h by diameter	Inserted	ength / Drillir	ng length	recovery		
HW	HW 3m		6.0		5.0 % 100 %		
NW	45m		27.7	7.7 % 100 %			
BW	63m	<b> </b>	38.8				

)

.)

)

A -- 181

						(MJKA-6)
		Survey period		Breakdow	n of period	Total
	Pe	riod	Total days	Working	No-working	persons
	from	to	1	days	days	
Preparation	5 Oct. '97	5 Oct. '97	0.5	0.5	0	10
Drilling	5 Oct. '97	27 Oct. '97	22.0	22.0	0	854
Dismount	27 Oct. '97	27 Oct. '97	0.5	0.5	0	10
Total	5 Oct. '97	27 Oct. '97	23.0	23.0	0	874
	· · · · · · · · · · · · · · · · · · ·	Dril	ling length			
Programmed len	gth	160m		Overburden		0m
Prolongation		0.1m		Core length		146.8m
Effective length	<u></u>	160.1m		Core recove	e <b>ry</b>	91.7%
	Working I	nours		Core rea	cover by each	50 meters
Drilling		230.5h	41.7%	Length (m)	Each (%)	Cumula. (%)
Non-drilling *		181.5h	32.9%	0 - 50	98.4	98,4
Regain of accide	nt	123h	22.3%	50 - 100	90.8	94.6
Preparation/set	ting up	12h	2.2%	100 - 150	92.8	93.7
Dismount/mobili	zation	5h	0.9%	150 - 160	89.7	91.7
Others						
					Efficiency	
				Effective I	ength/Workin	g drilling days
					7.3m/d	
				Effective	length/Total	drilling days
Total	<u> </u>	552h	100%		7.3m/d	
		Drilling le	ngth by diam	eter		
Bit diameter	116mm	HQ	HQ	8Q		Total
Drilling length	3.0m	16.5m	51.4m	89.2m		160.1m
Core length	3.0m	16.5m	49.4m	77.9m		146.8m
		Inserte	d casing pipe	S		
Inserted lengt	h by diameter	Inserted I	ength / Drilli	ng length	Casing	recovery
HW	3.0m		1.9	5	X	
NW	20.5m		12.8 %			
BW	96.0m		60.0	) %	100	8

. .

ì

•

.

		Survey period		Breakdown	of period	Total	
	Pe	riod	Total days	Working	No-working	persons	
	from	to		days	days		
Preparation	28 Oct. '97	28 Oct. '97	0.5	0.5	0	10	
Drilling	28 Oct. '97	24 Nov. '97	27.5	27.5	0	1,063	
Dismount	25 Nov. '97	25 Nov. '97	0.5	0.5	0	10	
Total	28 Oct. '97	25 Nov. '97	28.5	28.5	0	1,083	
		Dri	lling length				
Programmed le	ngth	280m		Overburden		3.0m	
Protongation		1.0m		Core length		248.1	
Effective lengt	h	281.0m		Core recover	Y	88.3%	
	Working	hours		Core reco	ver by each {	50 meters	
Drilling		361h	52.8%	Length (m)	Each (%)	Cumula. (%	
Non-dritting		285h	41.7%	0 - 50	65.6	65.6	
Regain of accid	lent	20h	2.9%	50 ~ 100	83.0	74.3	
Preparation/se	tting up	6h	0.9%	100 ~ 150	85.8	80.1	
Dismount/mob	itization	12h	1.7%	150 - 200	84.3	82.2	
Others				200 - 250	87.8	85.0	
				250 - 280.10	91.5	88.3	
					Efficiency		
				Effective len	gth/Working	drilling days	
					10.2m/đ		
				Effective le	ngth/Total d	rilling days	
Total		684h	100%		10.2m/d		
		Drilling le	ngth by diam	eter		·	
Bit diameter	112mm	HQ	NQ	BQ		Total	
Drilling length	3.0m	30.3m	61.4m	186.3m		281.1m	
Core length	2.5m	20.0m	56.0m	169.6m		248.1m	
		Inserte	d casing pipe				
Inserted lengt	h by diameter	Inserted I	ength / Drilli	ng length	ecovery		
HW	6.0m		1.1	66.6	%		
NW	31.5m		11.2	100 %			
BW	100.0m	· · · · · · · · · · · · · · · · · · ·	······································			0 %	

4 . 4

)

		Survey period		Breakdow	n of period	Total
	Pei	riod	Total days	Working	No-working	persons
	from	to		days	days	
Preparation	23 Aug. '97	28 Aug. '97	- 6	6	0	110
Drilling	29 Aug. '97	9 Sep. '97	11.5	11.5	0	275
Dismount	9 Sep. '97	9 Sep. '97	0.5	0.5	0	10
Total	23 Aug. '97	9 Sep. '97	18	18	0	395
		Dri	ling length			
Programmed leng	gth	100m		Overburden		Ôm
Prolongation		1.1m		Core length		84.6m
Effective length		101.1m		Core recove	ary .	83.7%
	Working I	hours		Core rea	cover by each	50 meters
Dritting		112h	44.5%	Length (m)	Each (%)	Cumuta. (%
Non-drilling	Non-drilling		21.4%	0 - 50 91.7		91.7
Regain of accide	ent	25h	9.9%	50 - 101	75.6	83.7
Preparation/set	ting up	60h	23.8%			
Dismount/mobili	zation	th 1	0.4%			
Others						
					Efficiency	
				Effective	ength/Workin	g drilling day
		ļ			8.8m/d	
				Effective	e length/Total	dritting days
Total		252h	100%		8.8m/d	
	-	Drilling le	ngth by diam	eter		· · · · · · · · · · · · · · · · · · ·
Bit diameter	101 <i>m</i> m		NQ	80		Total
Drilling length	1.1m		68.0m	32.0m	-	101.1m
Core length	1.ím		55.4m	28.1m		84.6m
		Insert	ed casing pipe	es		
Inserted lengt	Inserted length by diameter		length / Drilli	Casing	recovery	
NW 18.0m			17.8 % 100			
BW	69.0m		68 :	68.2 % 100 %		

ş

						(MJKA-9)
	Survey period			Breakdown of period		Total
	Рег	iod	Total days	Working		persons
	from	to		days		
Preparation	10 Sep. '97	11 Sep. '97	2.0	2.0	0	76
Dritting	12 Sep. '97	3 Oct. '97	21.5	20.5	1	750
Dismount	3 Oct. '97	4 Oct. '97	1.5	1.5	0	29
Total	10 Sep. '97	4 Oct. '97	25.0	24.0	1	855
		Dril	ling length			
Programmed length		210m	Overburden		0.8m	
Prolongation		0.2m	Core length		206.2m	
Effective length		210.2m	Core recovery			98.1%
Working hours				Core rea	50 meters	
Dritting		368h	68.1%	Length (m)	Each (%)	Cumula. (%
Non-drilling		131h	24.3%	0 - 50	99.3	99.3
Regain of accident		5h	0.9%	50 - 100	97.0	98.2
Preparation/setting up		24h	4.5%	100 - 150	97.4	97.9
Dismount/mobilization		12h	2.2%	150 - 210	98.3	98.1
Others						
				Efficiency		
				Effective length/Working drilling day		
				10.3m/d		
				Effective length/Total drilling day		
Total		540h	100%	9.8m/d		
		Drilling le	ngth by diam	eter		
Bit diameter	116mm	101mm	NQ	BQ		Total
Drilling length	0.8m	3.6m	99.4m	106.4m		210.2m
Core length	0.8m	3.6m	98.2m	103.6m		206.2m
		inserte	d casing pipe	s		
Inserted length by diameter		Inserted length / Drilling length			Casing recovery	
NW	15.0m		7.1 %		100 %	
BW	94.5m	-	45.0	100 %		

8 5

}

. )

						(MJKA-10)	
		Survey period		Breakdown	n of period	Total	
	Pe	riod	Total days	Working	No-working	persons	
	from	to		days	days	÷	
Preparation	24 Aug. '97	29 Aug. '97	6	6	0	[31	
Dritting	30 Aug. '97	16 Sep. '97	17.5	17.5	0	522	
Dismount	16 Sep. '97	16 Sep. '97	0.5	0.5	0	10	
Total	24 Aug. '97	16 Sep. '97	24	24	0	643	
	A	Dril	ling length				
Programmed leng	,th	110m		Overburden		0m	
Prolongation		1.9m		Core length		96.2m	
Effective length		\$11.9m		Core recove	ry	86.0%	
	Working	hours		Core rec	cover by each	50 meters	
Drilling		166.5h	40.8%	Length (m)	Each (%)	Comula. (%)	
Non-drilling		131.5h	32.2%	0 - 50	92.0	92.0	
Regain of accide	nt	37h	9.1%	50 - 100	86.6	89.3	
Preparation/set	ling up	72h	17.7%	100 - 112	79.6	86.0	
Dismount/mobili	zation	1h	0.2%				
Others							
					Efficiency		
				Effective	length/Workin	ig dritting days	
					6.4m/d		
				Effective	e length/Total	drilling days	
Total		408h	100%		6.4m/d	 	
		Drilling le	ngth by diam	eter			
Bit diameter	101mm		NQ	BQ		Total	
Drilling length	1.1m		73.9m	36.9m		111.9m	
Core length	1.1m		65.8m	29.3m		96.2m	
		Inserte	ed casing pip	es			
Inserted lengt	h by diameter	Inserted	length / Drilling length Casir			g recovery	
NW	22.0m	-	19.7 %			00 %	
BW	75.0m		67.	) <del>%</del>			

### Apx. 3-2 Miscellaneous Results on Individual Drillhole

1

						(MJKA-11)	
		Survey period		Breakdown of period			
	Per	iod	Total days	Working	No-working	persons	
	from	to		days	days		
Preparation	17 Sep. '97	17 Sep. '97	0.5	0.5	0	6	
Drilling	17 Sep. '97	8 Dec. '97	82.5	69.5	13.0	<del>1</del> 917	
Dismount	9 Dec. '97	10 Dec. '97	2.0	2.0	0	34	
Total	17 Sep. '97	10 Dec. '97	85.0	72.0	13.0	1957	
		Dril	ling length				
Programmed leng	ţth	204m		Overburden		0.5m	
Protongation		0.9m		Core length		181.5m	
Effective length		204.9m		Core recove	ery	88.6%	
	Working I	ours	·	Core rec	cover by each	50 meters	
Drilling		333h	24.8%	Length (m)	Each (%)	Cumula. (%	
Non-drilling		752h	56.0%	0 - 50	89.3	89.3	
Regain of accide	nt	199h	14.8%	50 - 100	88.0	88.7	
Preparation/sett	ing up	48h	3.6%	100 - 150	90.0	89.0	
Dismount/mobili	zation	12h	0.8%	150 - 200	88.7	88.9	
Others				200 - 205	88.3	88.6	
					Efficiency		
				Effective I	ength/Workin	g drilling day	
					2.9m/d		
				Effective	length/Total	drilling days	
Total		1344h	100%	1	2.5m/d		
		Drilling le	ngth by diam	eter	· -		
Bit diameter	112mm	96mm	76mm	59mm		Total	
Drilling length	4.5m	69.5m	130.9m	130.9m		204.9m	
Core length	51.5m	18m	112.0m	112m		181.5m	
		Inserte	d casing pipe	s	-		
Inserted lengt	h by diameter	Inserted I	length / Drilling length Casir			recovery	
108mm	4.5m		2.2	0	0 %		
89mm	74.0m	1	36.1 %				

#### Apx. 3--2 Miscellaneous Results on Individual Drillhole

] }

.)

· }

						(MJKA-13)	
		Survey period		Breakdow	n of period	Total	
	Per	iod	Total days	Working	No-working	persons	
_	from	to	-	days	days		
Preparation	26 Nov. '97	27 Nov. '97	1.5	1.5	0	10	
Drilling	27 Nov. '97	14 Dec. '97	17.5	17.5	0	702	
Dismount	15 Dec. '97	17 Dec. '97	3.0	3.0	0	. 48	
Total	26 Nov. '97	17 Deo. '97	22.0	22.0	0	760	
		Dril	ling length	<b>.</b>			
Programmed leng	sth	175m		Overburden		0.25m	
Prolongation		0.1m		Core length		163.9m	
Effective length		175.1m		Core recove	ry	93.6%	
·····	Working H	nours		Core red	over by each	50 meters	
Drilling		262h	57.5%	Length (m)	Each (%)	Cumula. (%)	
Non-drilling		135h	29.6%	0 - 50	95.4	95.4	
Regain of accide	nt	24h	5.3%	50 - 100	96.6	96.0	
Preparation/sett	ing up	23h	5.0%	100 - 150	93.4	94.7	
Dismount/mobili	zation	12h	2.6%	150 - 175	92.5	93.6	
Others	- ·		· · · · ·				
					Efficiency	· · · · · · · · · · · · · · · · · · ·	
				Effective I	ength/Workin	g drilling days	
				10.0m/d			
				Effective	drilling days		
Total		456h	100%	]	10.0m/d		
		Drilling ler	ngth by diam	eter			
Bit diameter	112mm	HQ	NQ	BQ		Total	
Drilling length	3.0m	20m	43.7m	108.4m		175.1m	
Core length	3.0m	20m	40.7m	100.2m		163.9m	
		Inserte	d casing pipe	s			
Inserted length	n by diameter	Inserted k	ength / Drillin	Casing recovery			
HW	3.0m		1.7 % 10			) %	
NW	24.5m		14 % 100			X	
8₩	64.5m		36.8 %				

ŧ

į

### Apx. 3-2 Miscellaneous Results on Individual Drillhole

# Appendix 3-3

## Consumable Drilling Articles

ltem	Specifi-	Unit			Qu	antity		
	Cation		MJKA-1	MJKA-2	MJKA-4	MJKA-6	MJKA-7	Sub tota
Diesel oil		liter	6,100	12,900	7,800	9,750	11,100	47,65
Gasoline		liter	550	1,400	900	950	1,120	4,92
Hydraulic oil		liter	35	153	100	54	110	45
Grease		kg	6	23	18	18	19	
Bentonite		kg	25	45	15	40	0	12
Cement		kg	0	0	0	0	0	
Clear mud		m ³	0	0	0	0	0	
Soda calcium		kg	0	0	0	0	0	
Soda chloride		kg	0	0	0	0	0	
Sodium biocarbonate		kg	0	0	0	0	0	(
Diamond bit	116mm	рс	1	1	1	1	0	
Diamond bit	101mm	pc	0	0	0	0	0	(
Diamond bit	HQ	þc	1	2	1	1	3	1
Diamond bit	NQ	рс	2	14	3	4	5	- 28
Diamond bit	8Q	рс	2	0	8	10	11	31
Diamond bit	76 mm	pc	0	0	0	0	0	(
Diamond bit	59mm	рс	0	0	0	0	0	(
Metal crown	HW	pc	1	1	1	1	1	{
Metal crown	NW	pc	1	8	0	1	2	12
Metal crown	BW	рс	1	0	0	1	5	
Diamond shoe	нw	р¢	1	0	1	0	0	2
Diamond shoe	NW	рс	1	4	2	0	1	<u></u>
Diamond shoe	8W	ρc	1	0	1	5	4	11
Core box								
		рс	24	38	25	28	41	156

### Apx. 3-3 Consumable Drilling Articles (1)

)

)

)

ltem	Specifi-	Unit	Quantity							
	cation		MJKA-8	MJKA-9	MJKA-10	MJKA-11	MJKA-13	Sub total	Grand tota	
Diesel oil		liter	2,450	9,050	5,250	16,300	7,700	40,750	88,400	
Gasoline		liter	475	920	795	1,820	700	4,710	9,630	
Hydraulic oil		liter	270	130	120	250	75	845	1,297	
Grease		kg	28	17	10	80	12	147	23	
Bentonite		kg	0	0	0	11,800	0	11,800	11,92	
Cement		kg	0	0	0	0	0	0		
Clear mud		m ³	0	0	0	0	0	0	1	
Soda calcium		kg	0	0	0	0	0	0		
Soda chloride		kg	0	0	C	0	0		j j	
Sodium biocarbonate		kg	0	C	C	0 0	0 C	) <u> </u>		
Diamond bit	112mm	р¢	\$	C	(	) 1	1	3	3	
Diamond bit	108mm	pc	1	(	1		(		3	
Diamond bit	HQ	р¢	(	) (	) (			2 2	2 1	
Diamond bit	NQ	pc		3 4		<u>با</u>	5 4	2 18	3 4	
Diamond bit	8Q	pc	1	1	ı ;	3 :0	)	7 1	5 4	
Diamond bit	76 mm	pc	(	) (		0 5	6	0 54	6 5	
Diamond bit	59mm	pc	. (	0		0 2	2 1	0 2	2 2	
Metal crown	нw	pc	(	<b>)</b> (		0	D	0	0	
Metal crown	NW	pc	(	0	2	0	0	0	2 1	
Metal crown	BW	pc		1	۱	0	0	0	2	
Diamond shoe	нж	рс		D	0	0	1	1	2	
Diamond shoe	NW	pc		1	0	0	4	1	6	
Diamond shoe	8W	рс		1	0	0	0	1	2	
				-						
Core box	T	рс	1	3 3	3 1	4 2	3 2	6 10	9 2	

### Apx. 3-3 Consumable Drilling Articles (2)

ì

## Appendix 3-4

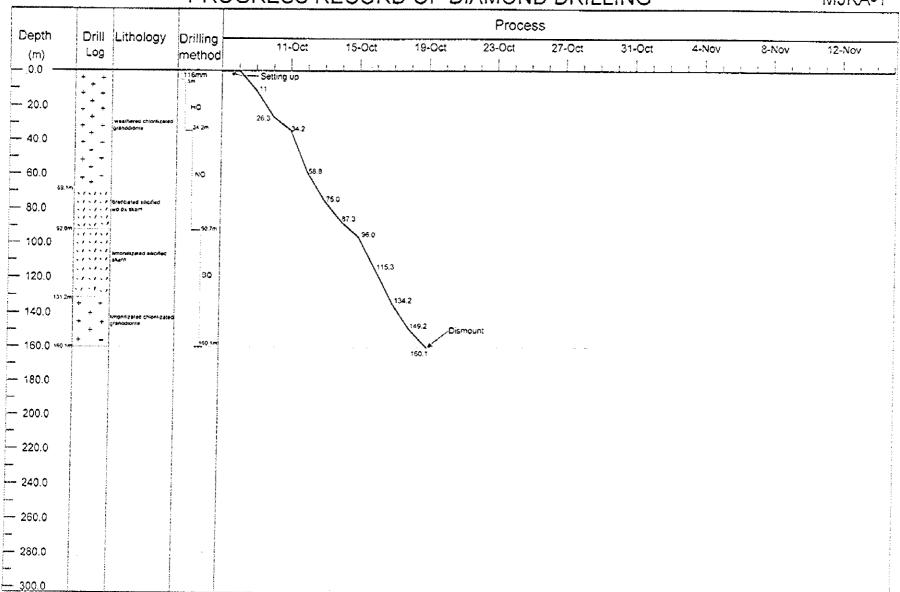
Drilling Meter of Diamond Bits

Size	Bits		Drilling meter by drillhole (m) MJKA-1 MJKA-2 MJKA-4 MJKA-6 MJKA-7 MJKA-8 MJKA-9 MJKA-10 MJKA-11 MJKA-13										
	(pcs)	MJKA-1	MJKA-2	MJKA-4	MJKA-6	MJKA-7	MJKA-8	MJKA-9	MJKA-10	MJKA-11	MJKA-13	Total (m)	Efficiency (m/bit)
HQ	1	29.2										29.2	29.2
	2		57.5									57.5	28.8
<u>.</u>	1			29.4								29.4	29.4
	1				16.5							16.5	16.5
	3					30.3						30.3	10.1
	0						0				-	0	
	0							0				0	
·	0	-1							0	* <u>.</u>		0	
										0		0	
	_ 2										20	20	10.0
Sub total	10	29.2	57.5	29.4	16.5	30.3	0.0	0.0	0.0	0.0	20.0	182.9	18.3
NQ	2	56.51										56.5	28.3
	14		183.0									183	13.1
	3			30.1							_	30.1	10.0
	4	-			51.4						-	51.4	12.9
	5					61.4						61.4	12.3
	3						68.0					68.0	22.7
	4							99.4		-		99.4	24.9
	4								73.9			73.9	18.5
	5									54.4		54,4	10.9
	2			<u></u>							43.7	43.7	21.9
Sub total	46	56.5	183.0	30.1	51.4	61.4	68.0	99.4	73.9	54.4	43.7	721.8	15.7

Apx. 3-4 Drilling Meter of Diamond Bits (1)

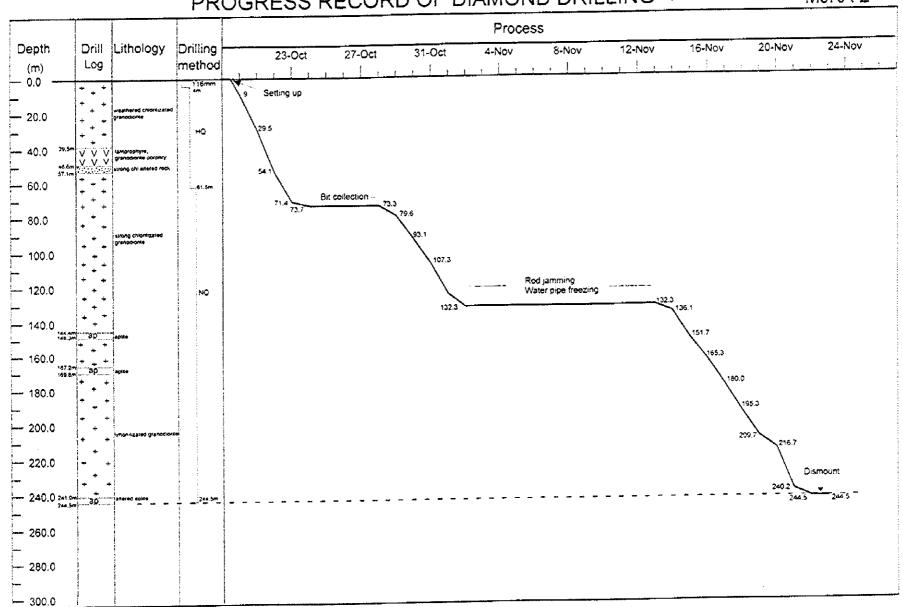
Size	Bits		Drilling meter by drillhole (m)										Efficiency
	(pcs)	MJKA-1	MJKA-2	MJKA-4	MJKA-6	MJKA-7	MJKA-8	MJKA-9	MJKA-10	MJKA-11	MJKA-13	(m)	(m/bit)
BQ	2	69.4		1	1			a an an an an an an an an an an an an an				69.4	34.7
	0		0			· ·						0	
	8			99.8					· -			99.8	12.5
	10				89.2							89.2	8.9
	11					185.4	a se tra com	and the second				185.4	16.9
			i				32.0					32.0	32.0
	4					+	· · · ·	106.4				106.4	26.6
	3						1.11		36.9	1		36.9	12.3
										0		0	· · · · ·
	-7						-				108.4	108.4	15.5
Sub total	46	69.4	0.0	99.8	89.2	185.4	32.0	106.4	36.9	0.0	108.4	727.5	15.8
Grand total	102	155	241	159	157	277	100	206	111	54	172	1,632	16.0

....


...

### Apx. 3-4 Drilling Meter of Diamond Bits (2)

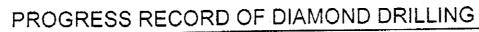
# Appendix 3-5


## Progress Record of Diamond Drilling

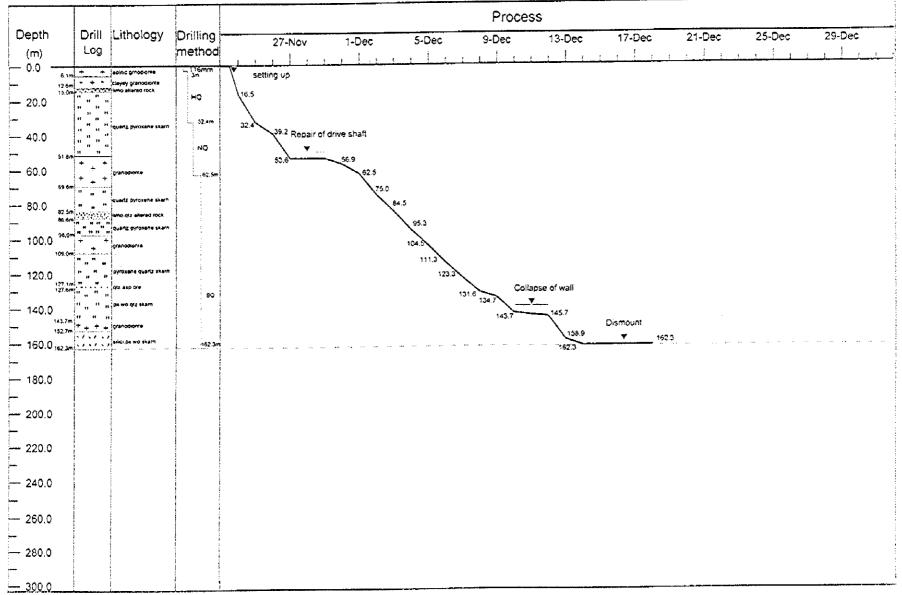
.



PROGRESS RECORD OF DIAMOND DRILLING

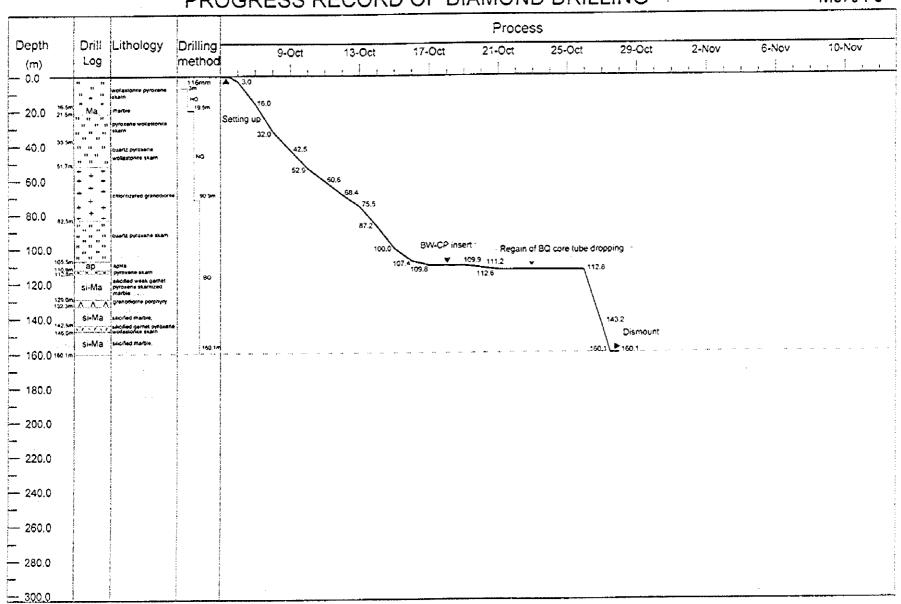

**~__**__




PROGRESS RECORD OF DIAMOND DRILLING

MJKA-2

بالأراب فالمصمور وال



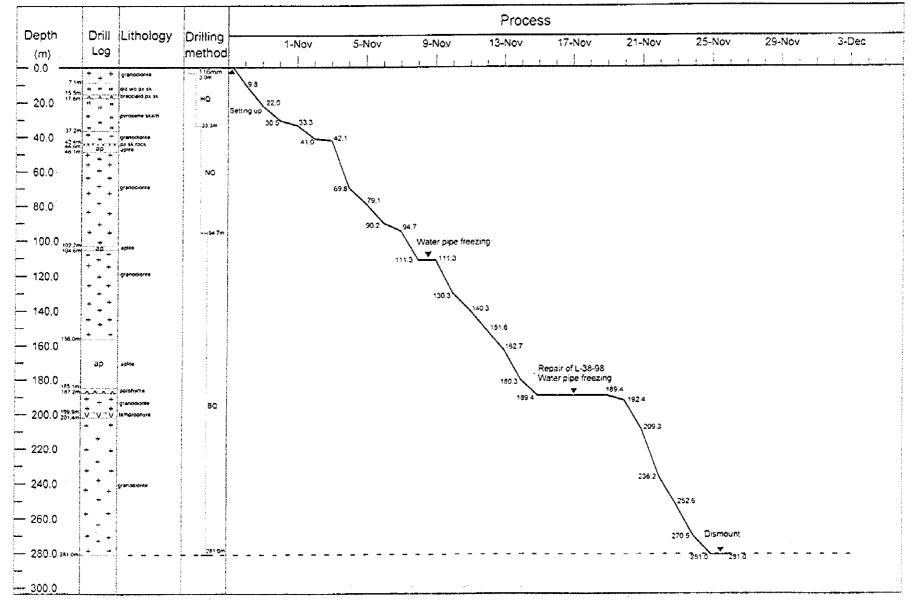

MJKA-4



A -- 195

-

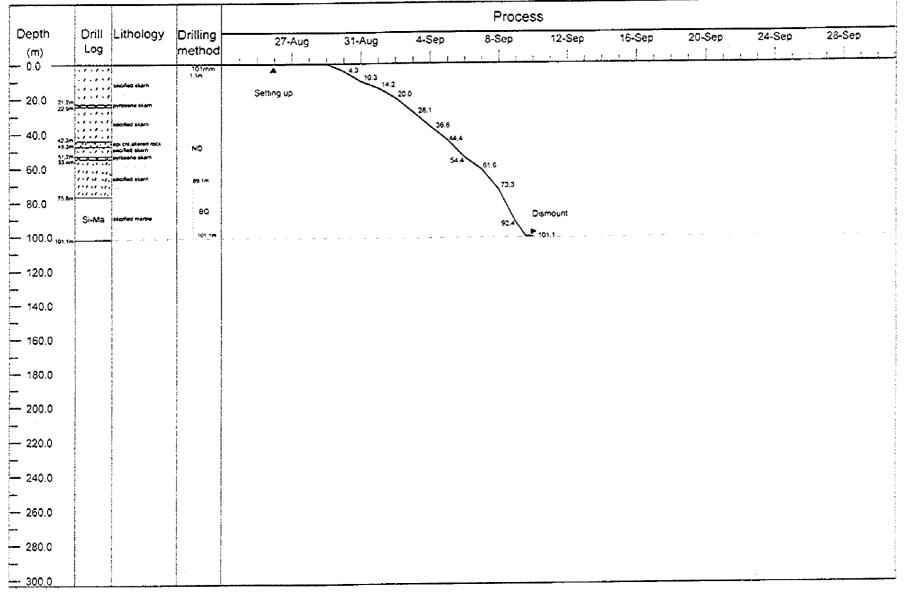



•••

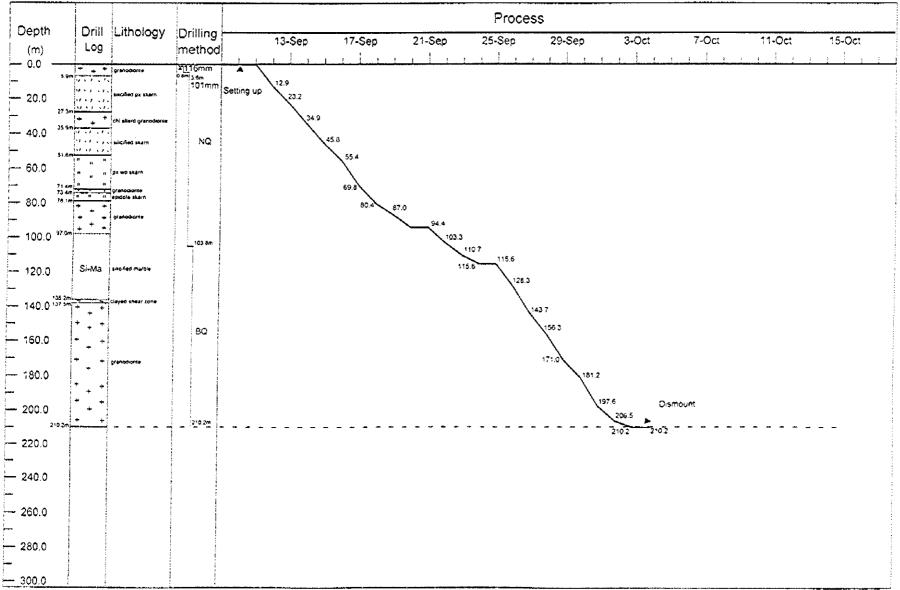

## PROGRESS RECORD OF DIAMOND DRILLING

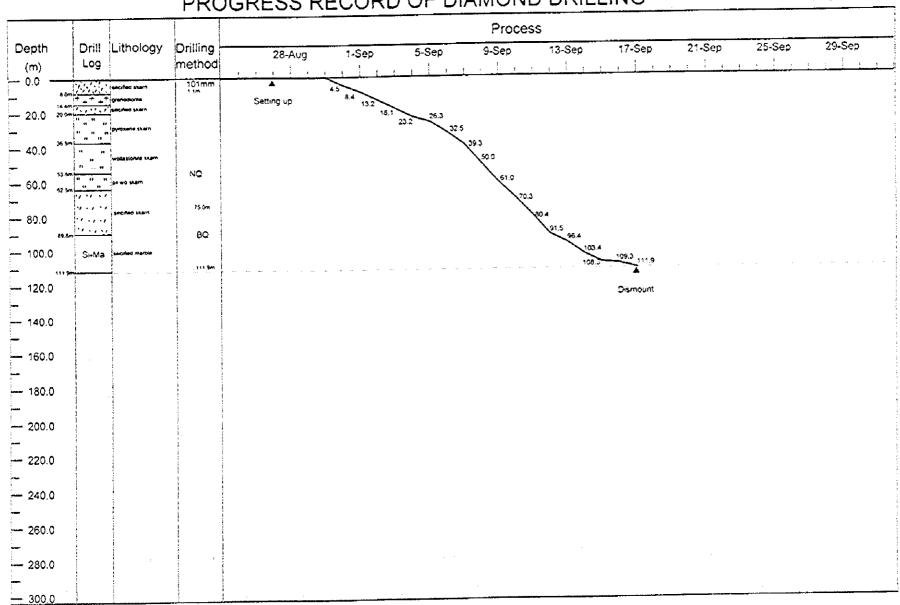


MJKA-7

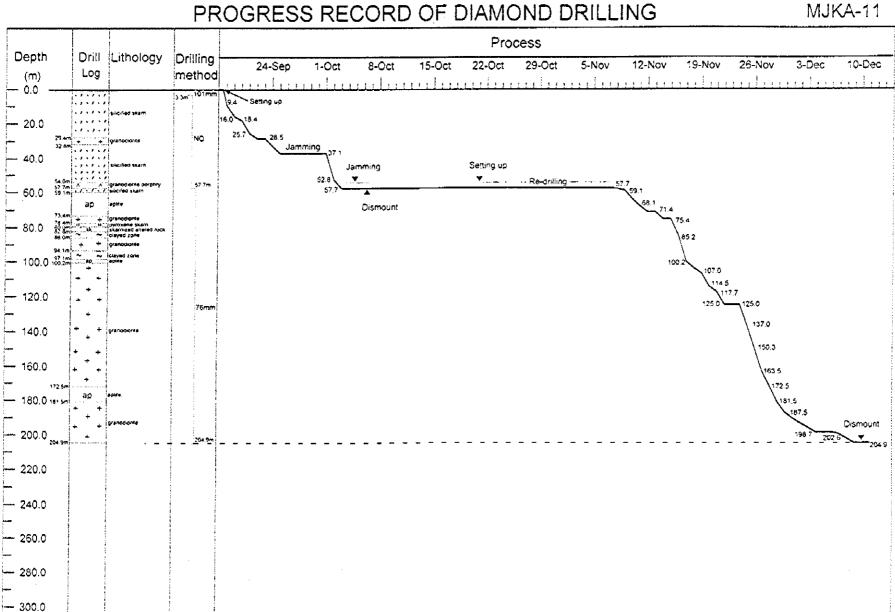

S ......





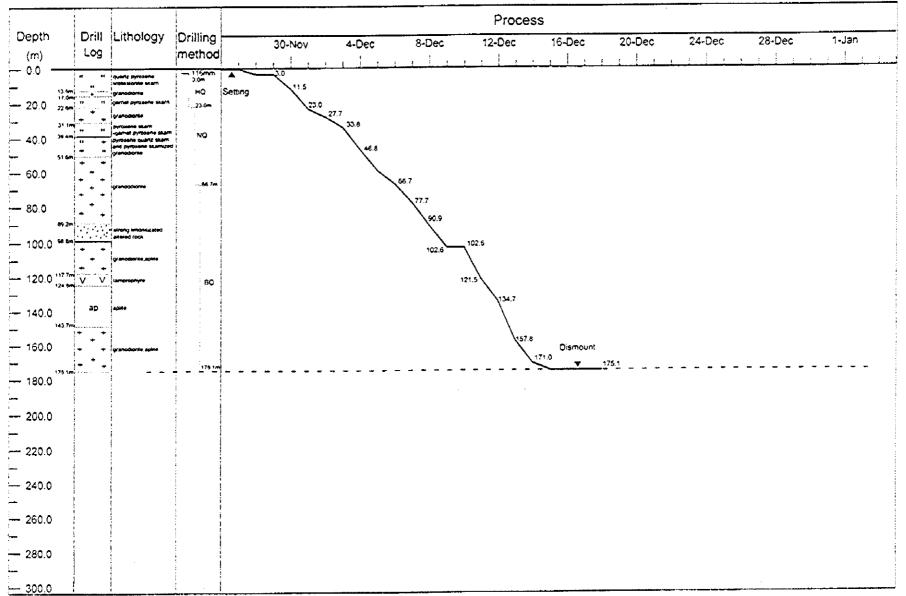


MJKA-8

· · ·




### PROGRESS RECORD OF DIAMOND DRILLING

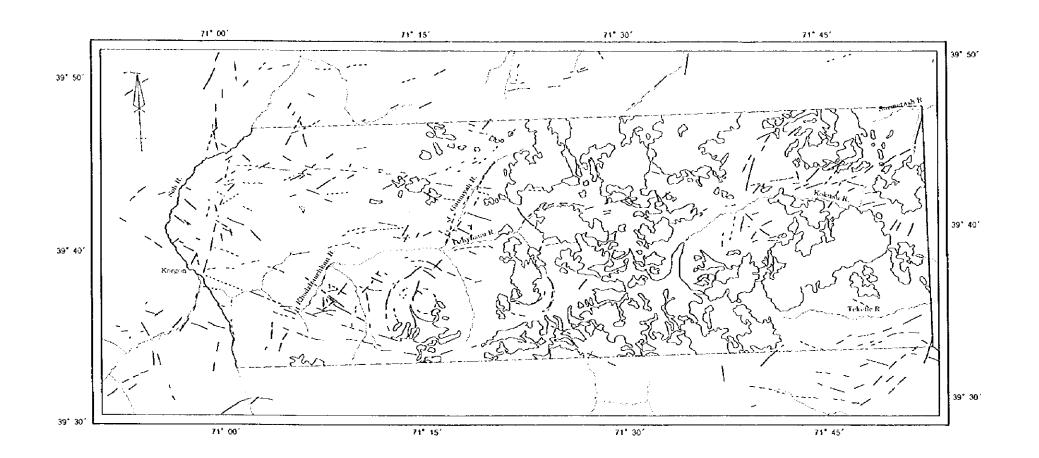


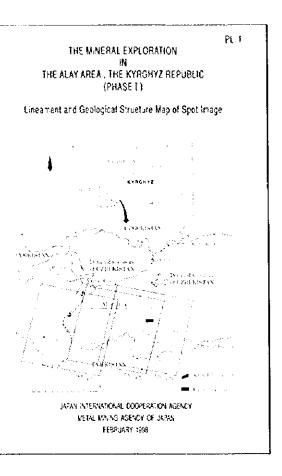


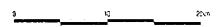

## PROGRESS RECORD OF DIAMOND DRILLING



PROGRESS RECORD OF DIAMOND DRILLING

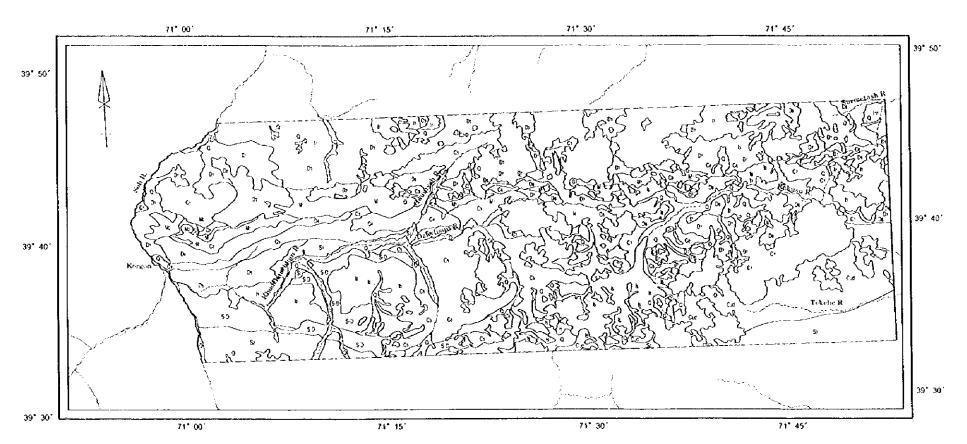

MJKA-13





. ...

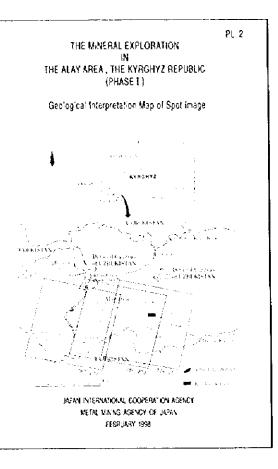
A -- 202

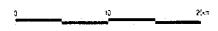
. . . . .







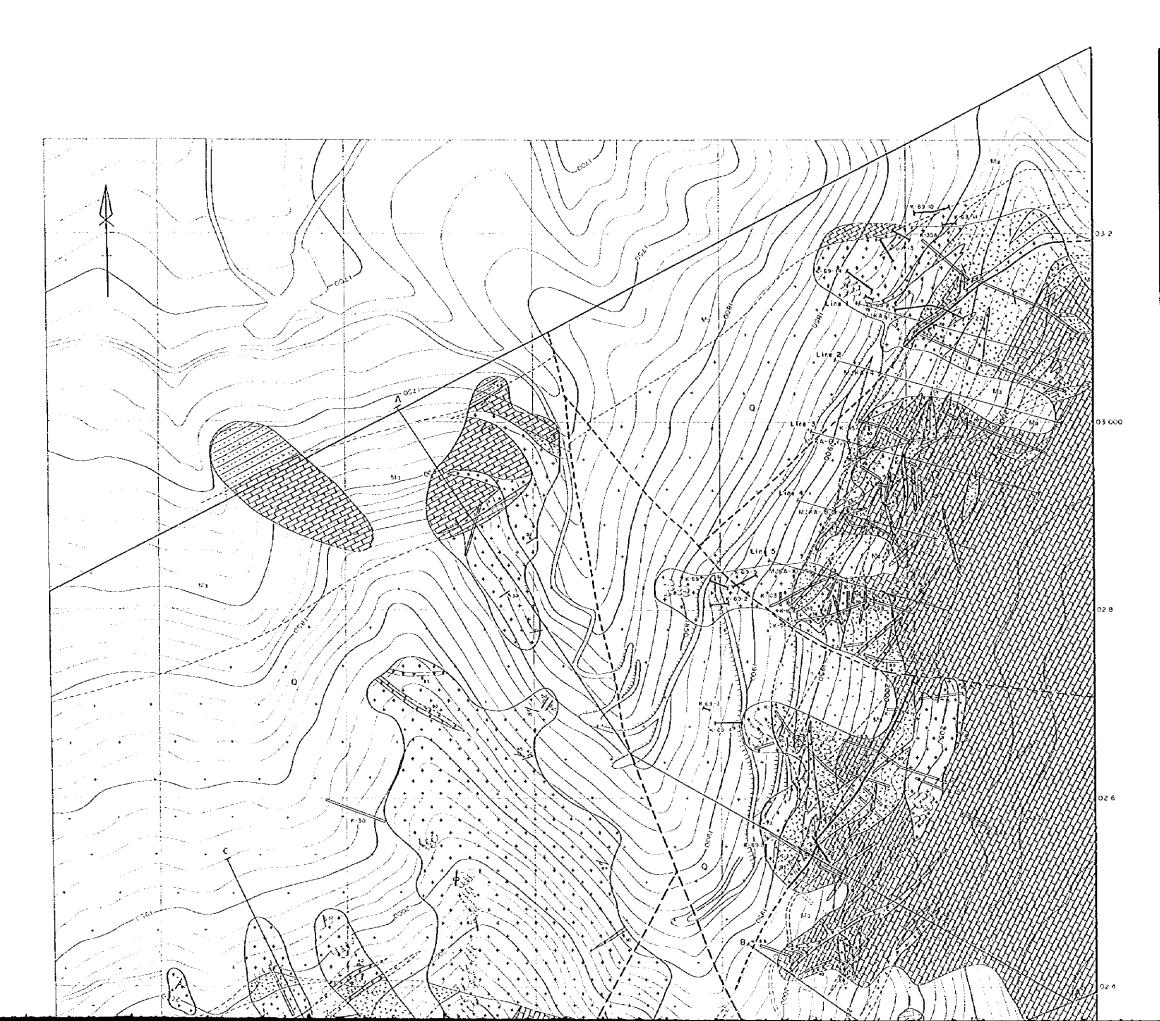


2	Bedding trace and dip direction
-	

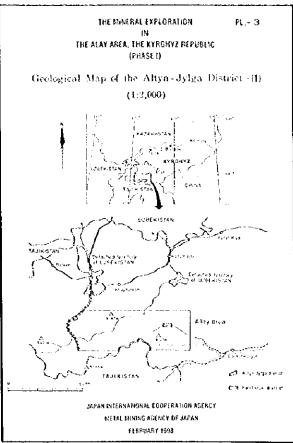

- Lineament
  - Glacier, snow cover
- Cloud
- ) Drainage
- C_] Alay area

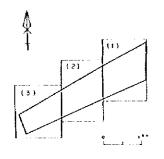


Photogeologic Characteristics of Interpretation Units

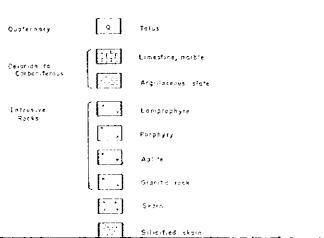
6-5	Proto hander?	5 65	O-a'r	424	) Georean	ak gic aspunts	Correction	As S. Typic.
	Coor		Paren	Consty	344 5.314.6	Decision 1	t tanwanan	-
α.	0 8 10 11 1 0 CAN	¶re `	parater	157 60	10 YE 1 10 W	10.4	Ouzien an	sand grave
•	brown	ine i	dendi So	fow	lc.vr	-0-A	Tenary Createous	\$.5I. 51. CO
62 F	<b>Tect</b>	-rocerate	dendine	- <b>C</b> P		200	CrafaceOuts	# \$1 \$4 CC
¢-	'est	crians a	de tar te	100	CO 54 214	+	L V Carbon, Wolks	17-05", 45
C+	Gen ging	100	surveys of	7.XXX 8.9	35.0	7514	L V Cabon wous	(76251, 846
Cs.	641 9 3y 10 100		\$ 004'8'9'	100113		(^pre	N U Caroph larous	PN550 86 108
C.	na infan grag	craise	B. COLTA O	-cn	*ia*	inere i	L M Calcon arous	mos1 84
C .	Call gray	129158		- do - 1	1.0	peer	M C Carbon Vroks	TC51, 59, CC7
Ċ.	dat boah	10	64 ° * *	100 c alt	monera e	no e	L H Caloc - albus	mdx1, <b>13</b>
ç,	dark brown	crocerate.	5.00e-0 1:	164	10	*3~	L I Carbon aro	'n del
Ċ.	- m-3	moderate	de ste		moder all	2 or mult	Carbor feroisis	ະສຸດອະສຸດປະ
e٠	1900, s. 173 s	icca sa	ેય સ્ટાઇન છે. કેટ		iren i	<b>~</b> 3 <b>~8</b>	Devonian	ેક લગ જ ર
O.	date gray		submaral et	more care	÷	. ~ . •	Certan an	N 001 T4
co.	Ca's gray	See.	5.546-0-50	TOTO NO.	mader alter	ion sety ≁o≉	Devonian	a dol ma
De	red to pink sh	CGA SO	5.00-3 2 ei	modurate	ic a		Devonian	14 dat r-2
De l	dare gray brown	5.0	શ્રાહવાન ન	10001.04	ic *	0.00	Devenian	mon: 55
<b>6</b>	net to pink ship on th	Course	5.11.12.1	incontata.	ic≁	1010	Devon an	\$ 54,00
D.	gray to Sath DiOA 9	C:2-54	Number of Tic	"sh	- Fight		Devorian	5 35 F 3
Di	20.00	Prode ste	subder dr tic	Gh		2007	) Devonan	a obtena
50	cath o ay	008.50	5000010156		versities.	- poor	5 vian Celorian	0.00
5	Getom	Le	Skinklend Sc		CA.	-0-6	Sidan	most as
50	dark orey	C#4 30	5.04 1 50		r-a	1010	51.1 20	most ss
54	ed a redd sh gray	mode and	de de te	node ata	Proderia e	. a	Overkan Suran	mds: 53
h	ruddish pirk	053.58	Subserve to	- et	ven hen	100	LU Zarni	March all complete
5	64.9.37	chana	ATUS	- I	ve han	1016	LU Para	VADA CO DOC
ii i	C	604 M	5.0.0 .	6	un hen	0.00 <b>0</b> 0	"LUP#n	Matha complex
L.	date of An	- Trad	d: 0 tc	must state	mucera a	To te	UCaro L Pern	ara na complex
5	dare brown	T.A. 12.18	Gr 3 10	nuclearing		- one	°V⊂at £Pem	Autoration contract
<b>N</b>	G41 241	CC-1 14	3. 5de 3 %	· • •	- C 22 4	`~a~e	UCab LPem	SANT READ CONCION
31	ರ್ಧೇಶಿಸಂಗ	cca se	ેકઅક્રાન્સ સ્ટ	note sta	n.c. 14	1010	UCab LPern	Fare style to the
۰.	dare brown	Tude ale	5	-00-59	C. (11)	inote .	GCEN LPVM	United Complete
	democrat	100	5 5 : -		re tera e	- G- 🖬	OCAS LPAS	Change and the
	dan biown	rearse.	5.7.720	· norterate	(C. 16-1-6	1.0.10	UCan LFem	Summarin company

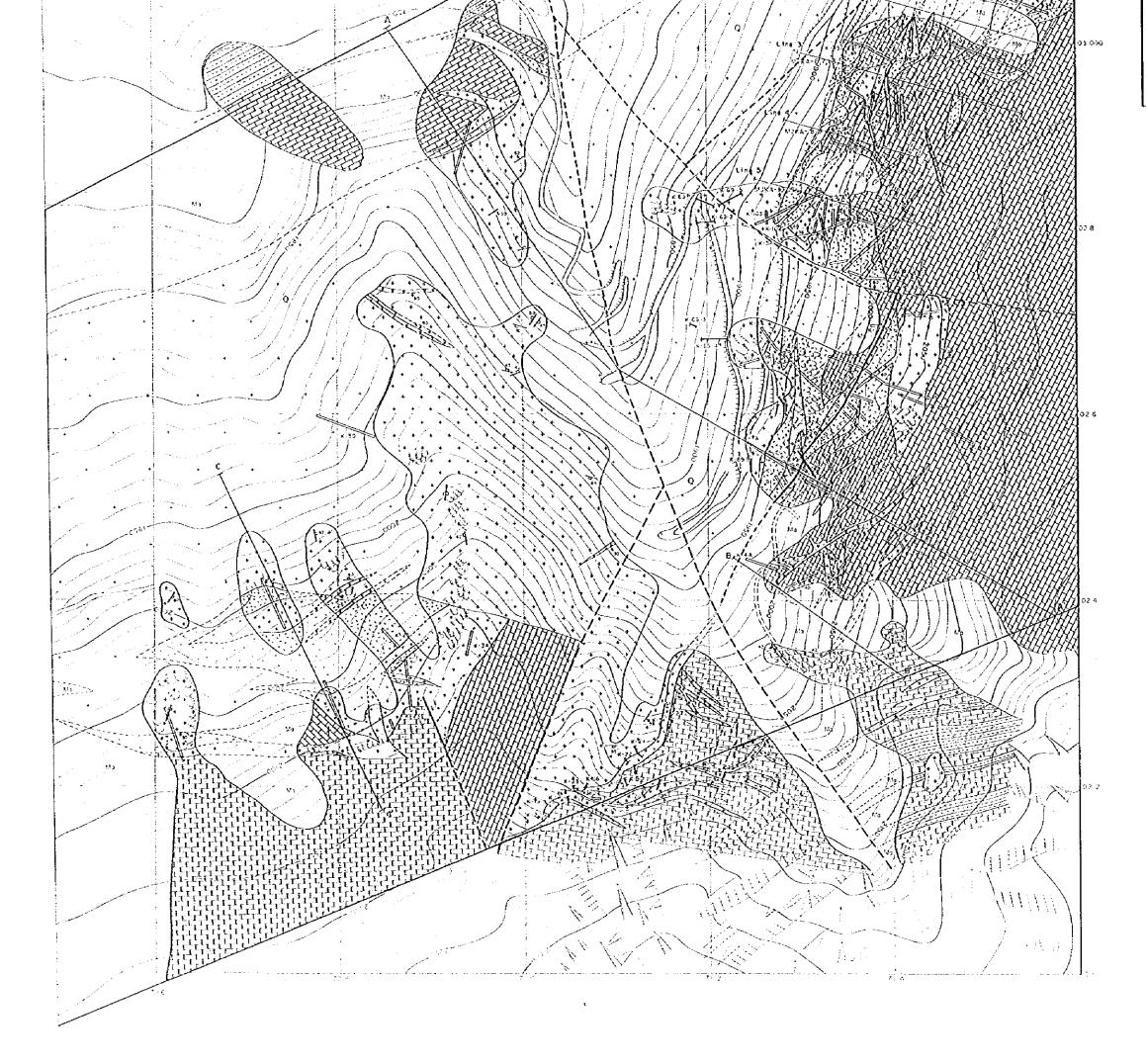


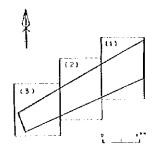


_	Dı.	

Interpretation unit and boundary Glacier, snow cover


- Cloud
- ی محمد محمد مر
- 🗀 Alay area

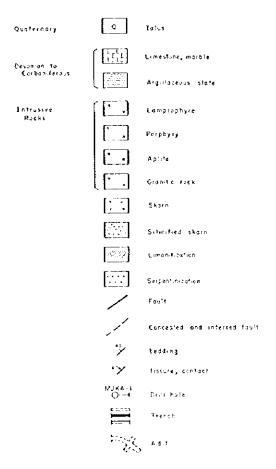


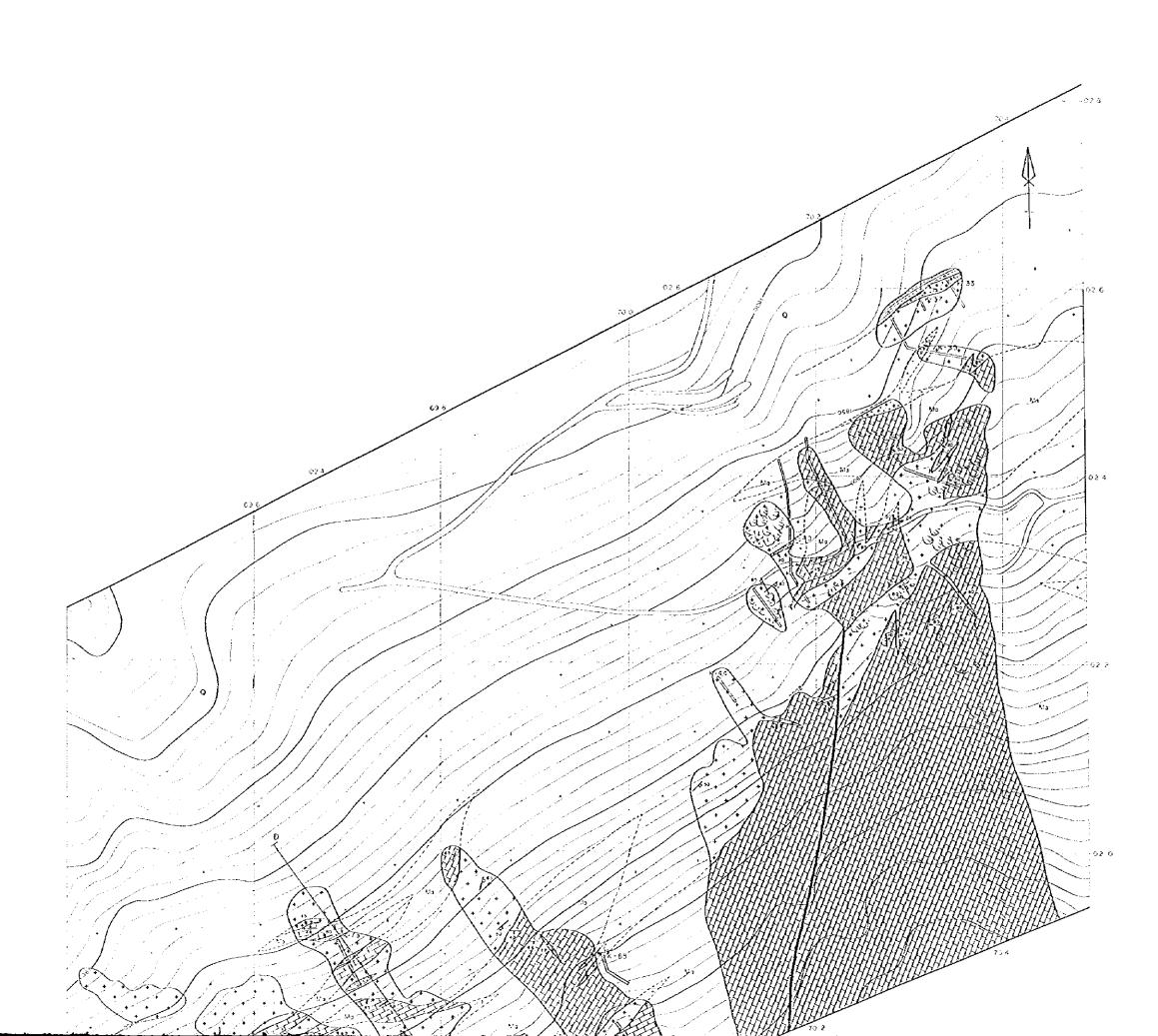


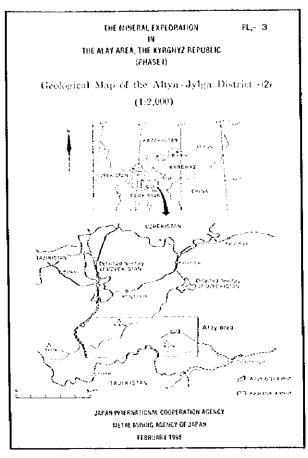



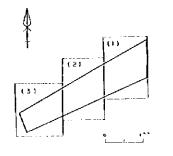


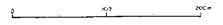


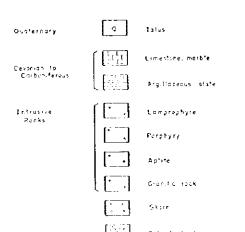



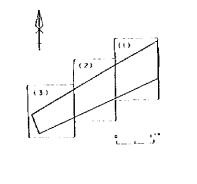


#### LEGENO





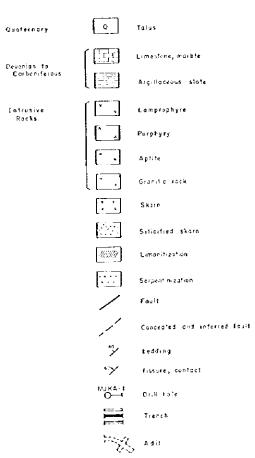


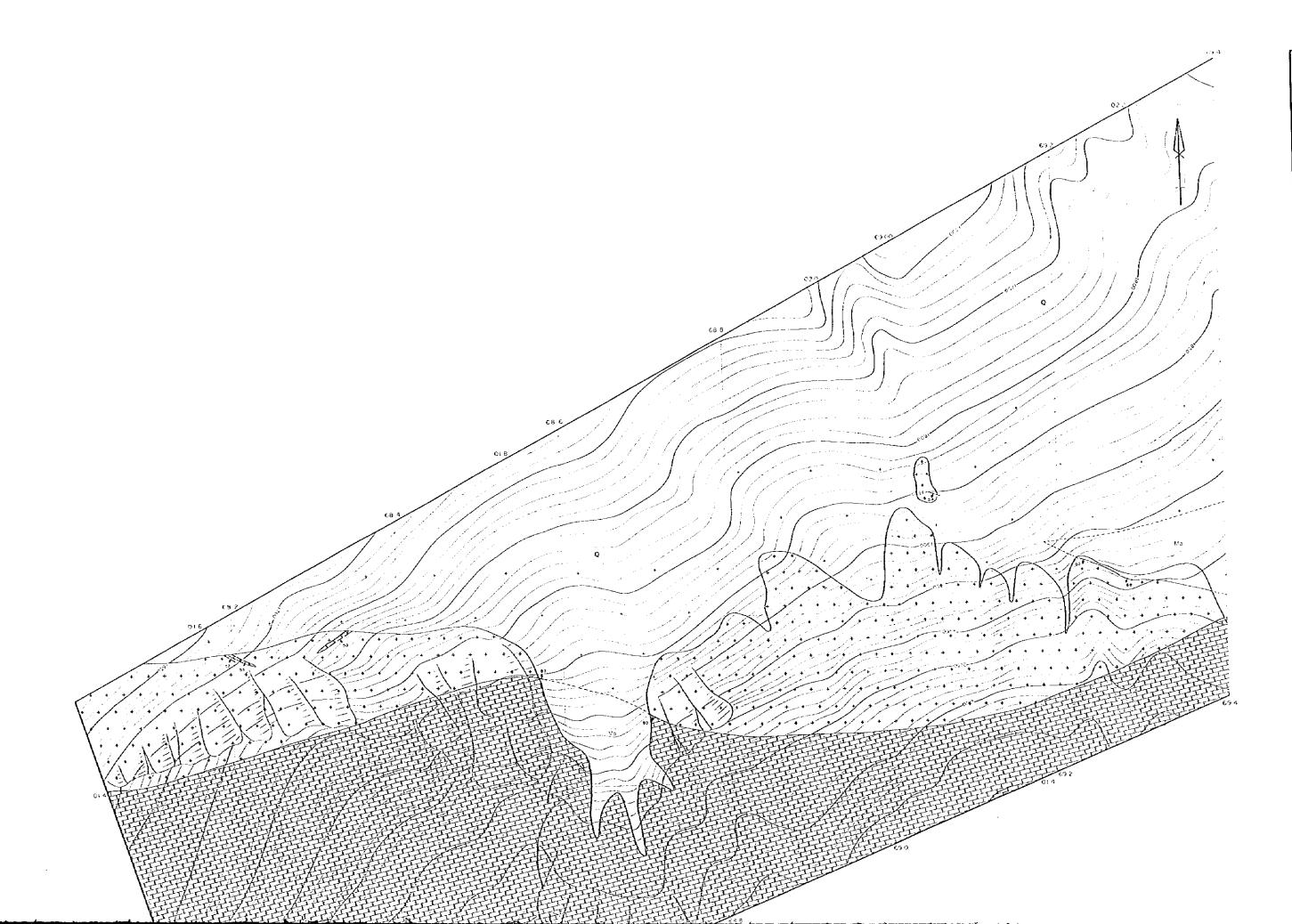




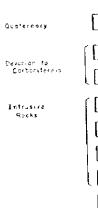


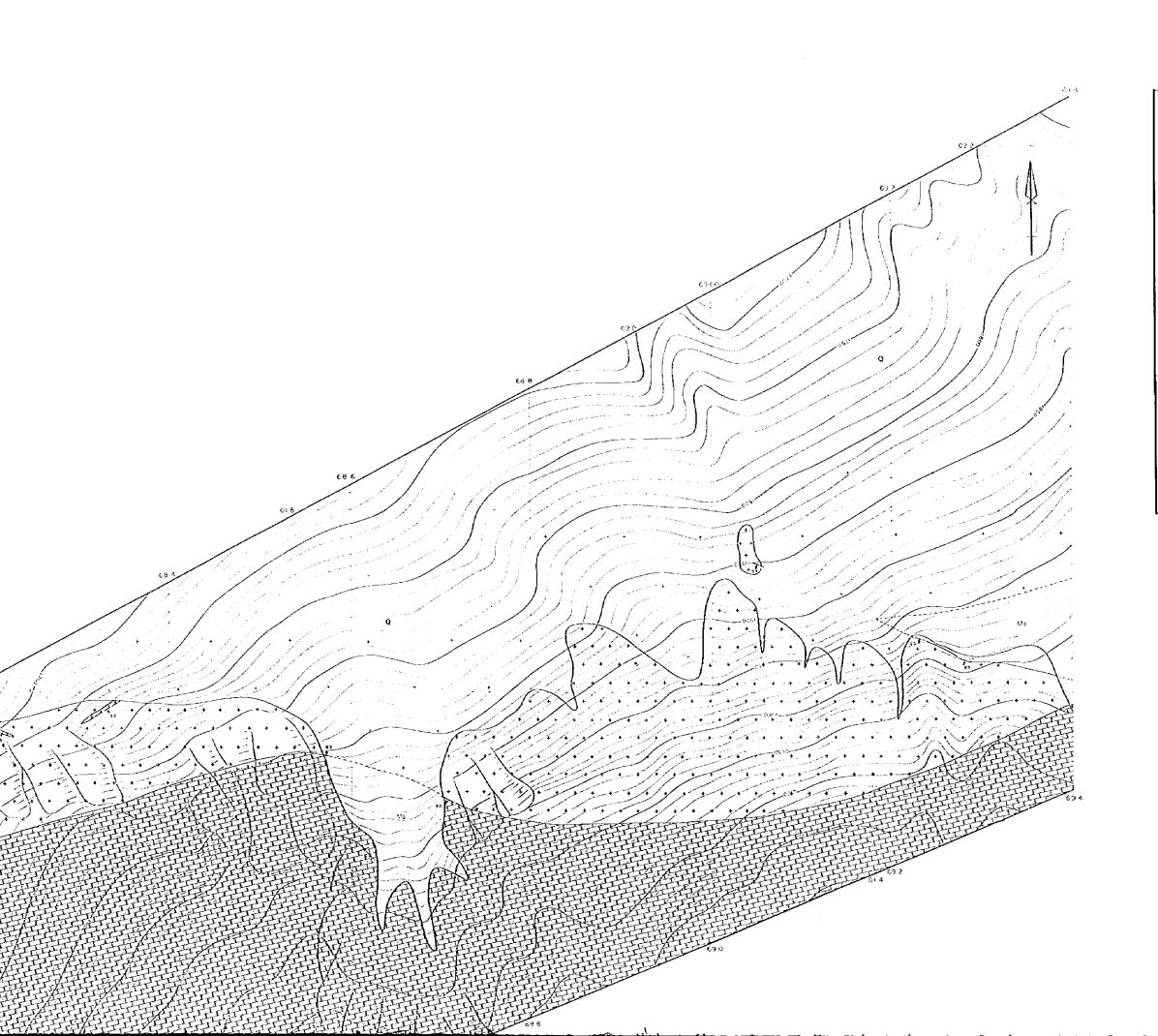


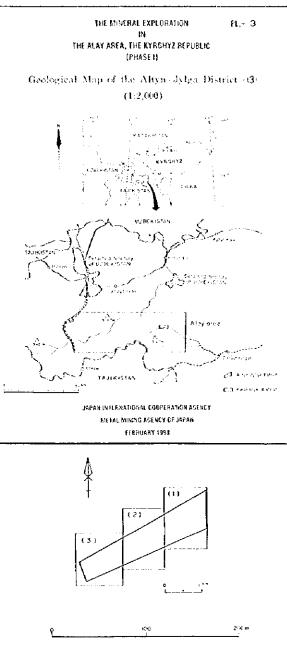



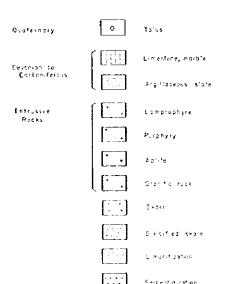





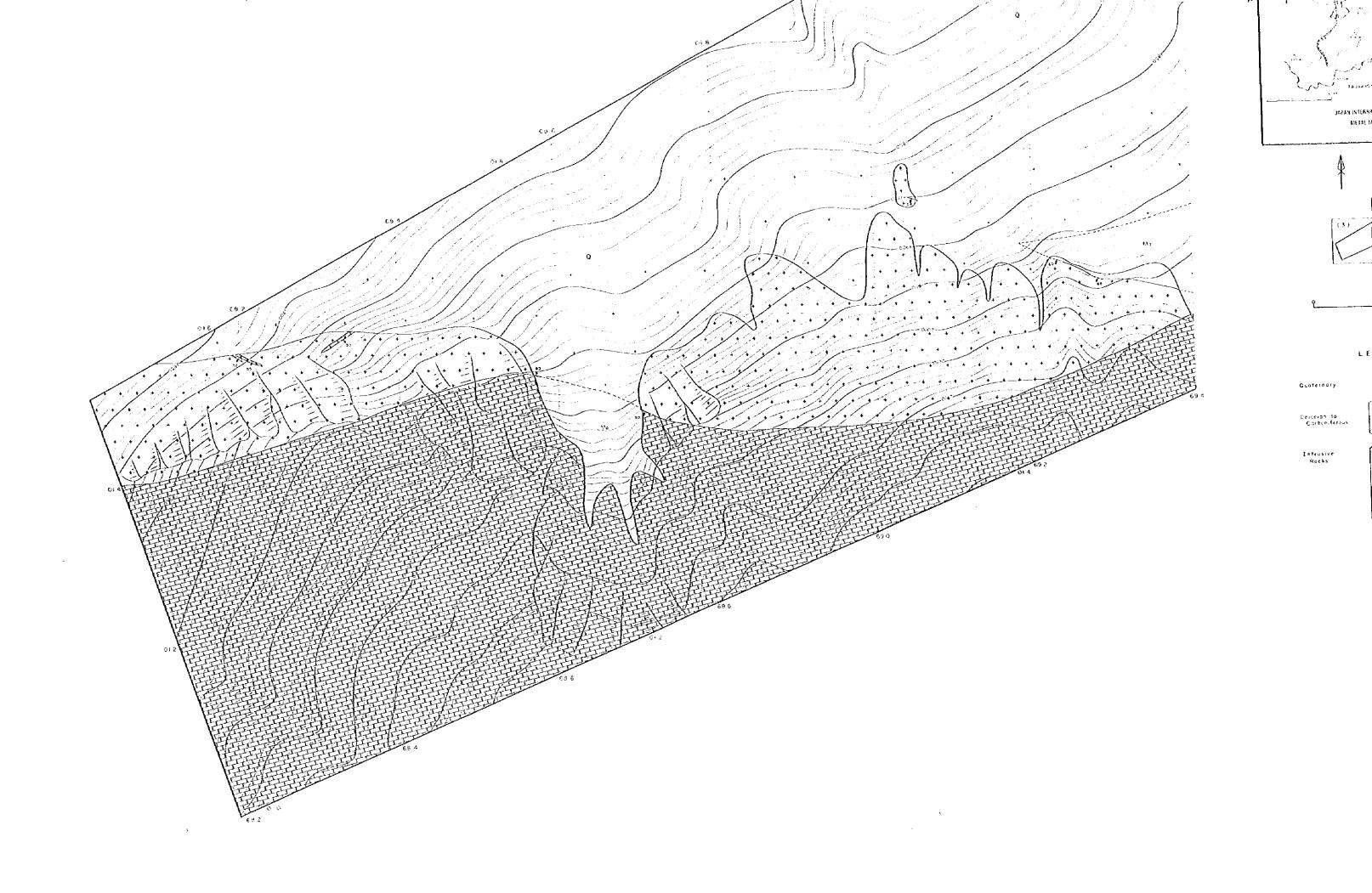


200 m

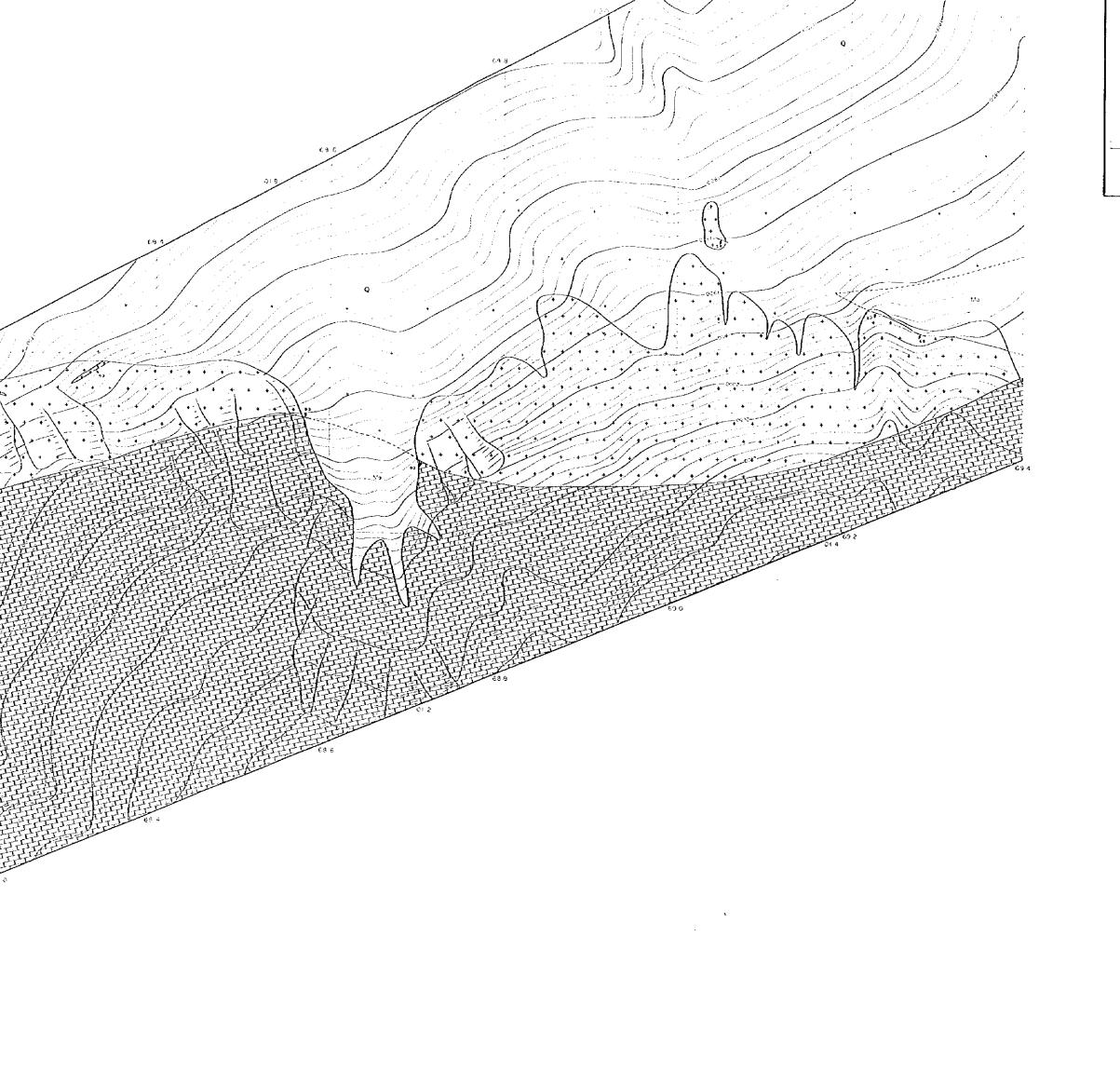

LEGEND

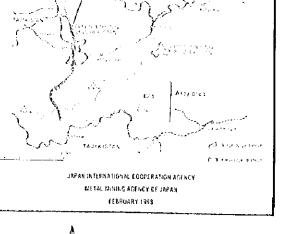




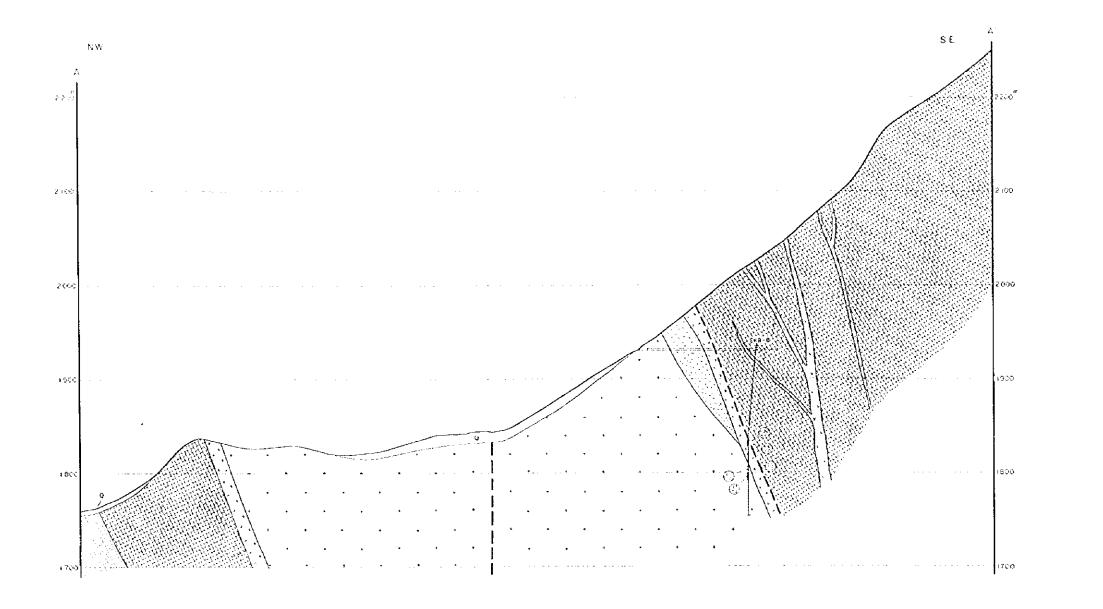



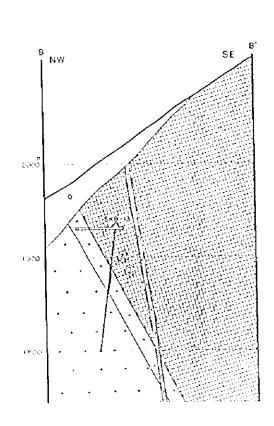


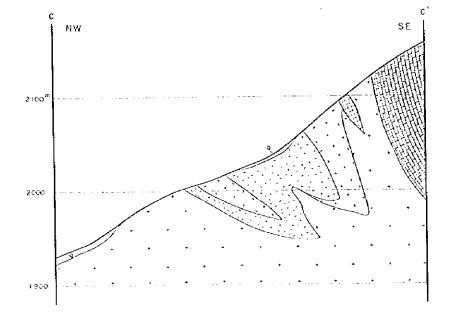

2 9 1 8 9 7 9 7 2 1 9 0 P

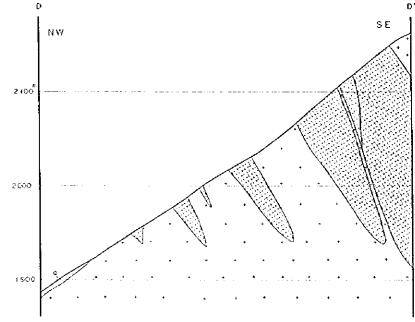


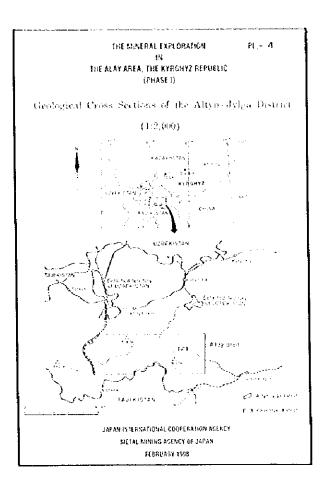






۵۵۵ کې ۱


LEGEND


Quaternory	6	Toʻus
Devanian to		Lomestone, morbie
C artoniferous		Arg.Maceous store
Entrusiva Rocks	ſ	Lomprophyre
		Parphyry
		Aptile
		Granitic rock
		Skarn
		Silicitiza skarn
	\$%	Limon tration
	[]	Serpentinization
	/	Fault
	1	Concepted and inferred fault
	*	tedd ng
	·7	fissure, contact
	MSFA-1 O4	Crit hole
		Treach
	100	≜ d'st



