


PHASE III

FEBRUARY, 1991

JAPAN INTERNATIONAL COOPERATION AGENCY METAL MINING AGENCY OF JAPAN



REPORT ON THE MINERAL EXPLORATION IN

NAKALE

AREA REPUBLIC OF TURKED

PHASE (I)

FEBRUARY 1991

JAPAN INTERNATIONAL C

METAL MINING AGEN



Nr. 20

REPORT ON THE MINERAL EXPLORATION IN THE ÇANAKKALE AREA REPUBLIC OF TURKEY

# PHASE III

**FEBRUARY 1991** 

# JAPAN INTERNATIONAL COOPERATION AGENCY METAL MINING AGENCY OF JAPAN

 $\mathbf{D}$ 

# 1141762 (3)

#### PREFACE

In response to the request of the Government of the Republic of Turkey, the Japanese Government decided to conduct a Mineral Exploration Project in the Çanakkale Area and entrusted the survey to Japan International Cooperation Agency (JICA) and Metal Mining Agency of Japan (MMAJ).

The JICA and MMAJ sent a survey team headed by Mr. Hisashi Mizumoto to the Republic of Turkey from 20 June to 8 November 1990.

The team exchanged views with the officials concerned of the Government of the Republic of Turkey and conducted a field survey in the Çanakkale area. After the team returned to Japan, further studies were made and the present report is the result.

We hope that this report will serve towards the development of this project and contribute to the promotion of friendly relations between our two countries.

We wish to express our deep appreciation to the officials concerned of the Government of the Republic of Turkey for the close cooperation extended to the team.

February 1991

Kensuke Managu

Kensuke YANAGIYA President, Japan International Cooperation Agency

Gen-ichi FUKUHARA President, Metal Mining Agency of Japan



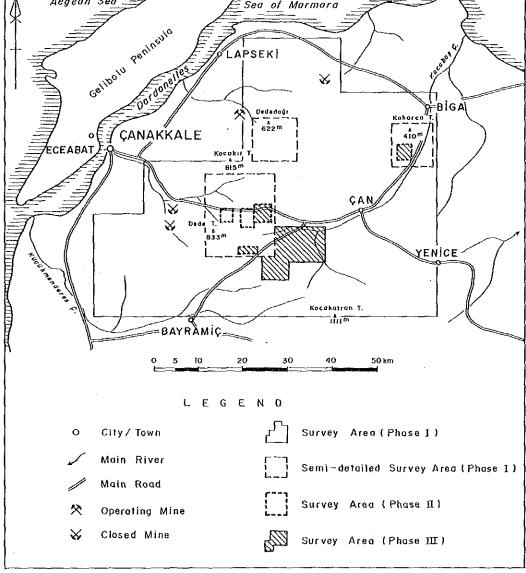



Figure 1-1 Index Map of the Survey Area

The objective of the present survey was to clarify the mode of occurrence of various metal deposits of the Çanakkale Area.

Prior to the survey of the first phase, Landsat images totaling 3,400km<sup>2</sup> in areal extent were analyzed and interpreted; available data regarding previous work on geology and geochemical prospecting were acquired and studied. From the results, Zones A and B were isolated as warranting investigation for precious metals, and Zone C for metallic deposits.

In addition to the geological survey, systematic collection of rock samples for geochemical prospecting, heavy mineral investigation was carried out. Also, the remainder of the stream sediment samples previously collected by MTA was analyzed for gold and other additional elements. As a result of the survey of the first phase, four localities (Arlık Stream, Karaibrahimler, Kestane Mt. and Piren Hill) in Zone B and one (Dikmen) in Zone C were isolated as promising.

In the second phase, the detailed geological survey, rock samples were systematically collected for geochemical prospecting, and heavy mineral investigation, geophysical prospecting and drill survey were carried out in the above-mentioned localities. On the basis of these results, surveys of the third phase were conducted as follows:

| Localities   | Geological Survey | Geochemical Survey     | Drill Survey     |
|--------------|-------------------|------------------------|------------------|
| Arlık Stream |                   | Trench 1,245m, 404 pcs | 1,208m (8 holes) |
| Piren Hill   |                   | Trench 334m, 104 pcs   |                  |
| Etili        | 115km²(120km)     | Rock Samples 69 pcs    | 302m (2 holes)   |
|              | 20km²(45km)       | Rock Samples 389 pcs   | · · ·            |
| Dikmen       |                   |                        | 150m (1 hole)    |
| Total        |                   | 966 pcs                | 1,660m(11 holes) |

The results of survey are summarized as follows:

(1) Arlık Stream: Many rock samples bearing gold were found in the silicified zones, and gold mineralization zones of low grade were detected by trench and drill surveys conducted in the Sartaş and Güvemalanı silicified zones.

(2) Piren Hill: Although limonitic gold-bearing argillized zones were intersected by drill hole MJTC-2 carried out in the Davulgili alteration zones, significant gold mineralization zones on the surface could not be detected by trench survey.

(3) Etili: Many more rock samples containing gold were found in the Hamam and Halilaga silicified zones. The limonitic, porous and brecciated parts of the former contain gold, the massive parts are mined as brick-sized stone. The latter is limonitic, argillically silicified, of small scale, and extending NE-SW. Auriferous zones of a small scale were intersected by drill hole MJTC-16 near the surface.

(4) Dikmen: A porphyry molybdenum-copper mineralization associated with the intrusion of the Dikmen Granite and porphyry was discovered. The subsurface

.

extent of mineralization from the outcrop downward was shown by delineating the PFE anomalies by geophysical methods. The lithology of MJTC-15 consists of altered rocks of Emeşe Formation which are strongly silicified and are accompanied with quartz veinlets of various orientations. The content of antimony and mercury is high, indicating the halo of gold mineralization.

The mineralizations of the survey areas are largely divided into epithermal and dissemination (porphyry molybdenum) types. Epithermal-type mineralization is low-grade large-scale gold deposits in Zone B. The dissemination type is found in Zone C. It is associated with the intrusion of Dikmen Granite and porphyry, and also, low-grade (Mo) mineralization is developed in the host rocks.

Concerning the relationship between geologic structure and mineralization, serpentinite and Dikmen Granite, together with the associated porphyry, and epithermal mineralization are arranged in the direction of the major lineaments, NE-SW and E-W. In Zone B, gold mineralization is observed associated with the NE-SW faults near the uplifted basement and with the younger NEN-SWS and NW-SE fractures. As for the geochemical anomalies and mineralization zones, it was concluded that rock samples are more effective indicators, and delineation was carried out using component scores of a multivariate analysis method. This conclusion is based on the analysis of rock samples and the results of the analysis of heavy mineral samples. Gold grains were found in heavy mineral samples about 1-2km downstream of the exposures and this agrees with the results of rock sample analysis.

A comprehensive study of the above work resulted in delineation of the following zones for future prospecting.

Zone B: Geochemical anomalies of gold were discovered in the alteration zones in the Miocene Şapçı Volcanics which are distributed in the vicinity of the basement complex. The basement is composed of the Taşdibek/Sakar Dağı Formation and granites. From the mineralization and extent of the geochemically anomalous zone, the three localities (Sartaş and Güvemalanı Hills of Arlık Stream, eastern Piren Hill and Tepeköy of Etili) are expected to bear large-scale low-grade gold deposits.

Zone C: A porphyry molybdenum-copper deposit associated with the intrusion of Dikmen Granite and porphyry was discovered in this zone. Molybdenite, chalcopyrite, pyrite and other sulfide minerals occur in minor amounts and analysis of rocks showed the association of gold, arsenic, and other metals. Thus it is considered that epithermal mineralization occurred after the porphyry molybdenum mineralization, and that the two overlapped. It is supposed that this type of mineralization extends to the lower parts and should prove to be a large-scale low-grade deposit.

The objective of future exploration will be to clarify the subsurface extension of the mineralized zone. It is recommended that a drill survey be conducted in the promising areas delineated above.

## CONTENTS

PREFACE

INDEX MAP OF THE SURVEY AREA SUMMARY CONTENTS

LIST OF FIGURES AND TABLES

#### PART I OVERVIEW

| Chapter 1 Introduction                                                | 1  |
|-----------------------------------------------------------------------|----|
| 1-1 Background and Objective of the Survey                            |    |
| 1-2 Conclusions and Recommendations of the Second Phase               |    |
| 1-2-1 Conclusions of the Second Phase                                 |    |
| 1-2-2 Recommendations of the Second Phase                             |    |
| 1-3 Areal Extent and Work Operation of the Third Phase Survey         |    |
| 1-3-1 Coordinates and Contents of the Survey Areas                    |    |
| 1-3-2 Priority Activities of the Survey                               |    |
| 1-4 Members of the Third Phase Survey                                 |    |
| Chapter 2 Geography                                                   |    |
| Chapter 3 Outline of the Survey Areas                                 | 9  |
| 3-1 Outline                                                           |    |
| 3-2 Mining Activity in the Biga Peninsula                             |    |
| Chapter 4 Review of the Survey Results                                | 14 |
| 4-1 Geochemical Nature of Mineralization                              |    |
| 4-1-1 Mineralization of Arlık Stream Area                             |    |
| 4-1-2 Mineralization of Piren Hill Area                               |    |
| 4-1-3 Mineralization of Etili Area                                    |    |
| 4-1-4 Mineralization of Dikmen Area                                   |    |
| 4-2 Results of X-ray Powder Diffraction                               |    |
| 4-3 Results of Whole Rock Analysis                                    |    |
| 4-4 Resource Potential of Gold and Porphyry Molybdenum Deposits       |    |
| 4-4-1 Gold Potential                                                  |    |
| 4-4-2 Porphyry Molybdenum Potential                                   |    |
| 4-5 Geologic Structure, Characteristics and Control of Mineralization |    |
| Chapter 5 Conclusions and Recommendations                             | 27 |
| 5-1 Conclusions                                                       |    |
| 5-2 Recommendations for Future Exploration                            |    |

#### PART II ARLIK STREAM AREA

| Chapter 1 Survey of the Arlık Stream Area                         | 35 |
|-------------------------------------------------------------------|----|
| 1-1 Outline                                                       |    |
| 1-2 Objective of the Survey                                       |    |
| 1-3 Contents of the Survey                                        | 24 |
| Chapter 2 Geology of Arlık Stream Area                            |    |
| Chapter 3 Trench Survey of Sartas and Güvemalanı Alteration Zones | 30 |
| 3-1 Trench Survey                                                 |    |
| 3-2 Sampling                                                      |    |
| 3-3 Analytical Methods                                            |    |
| 3-4 Interpretation of the Chemical Results                        |    |
| Chapter 4 Drilling Survey                                         | 42 |
| 4-1 Outline of Drilling Survey                                    |    |
| 4-1-1 Objective of Diamond Drilling                               |    |
| 4-1-2 Outline of Drilling Operation                               |    |
| 4-1-3 Holes Drilled                                               |    |
| 4-2 Drilling Operation                                            |    |
| 4-2-1 Drilling Method                                             |    |
| 4-2-2 Drilling Machines, Equipment and Consumables                |    |
| 4-2-3 Operation Members and Shifts                                |    |
| 4-2-4 Transportation and Road Construction                        |    |
| 4-2-5 Water Supply                                                |    |
| 4-2-6 Withdrawal                                                  |    |
| 4-3 Results of Diamond Drilling                                   |    |
| 4-3-1 MJTC- 7                                                     |    |
| 4-3-2 MJTC- 8                                                     |    |
| 4-3-3 MJTC- 9                                                     |    |
| 4-3-4 MJTC-10                                                     |    |
| 4-3-5 MJTC-11                                                     |    |
| 4-3-6 MJTC-12                                                     |    |
| 4-3-7 MJTC-13                                                     |    |
| 4-3-8 MJTC-14                                                     |    |
| 4-4 Alteration of Drill Holes                                     |    |
| 4-4-1 MJTC- 7                                                     |    |
| 4-4-2 MJTC- 8                                                     |    |
| 4-4-3 MJTC- 9                                                     |    |
| 4-4-4 MJTC-10                                                     |    |
| 4-4-5 MJTC-11                                                     |    |
| 4-4-6 MJTC-12                                                     |    |

| 4-4-7 MJTC-13                             |      |
|-------------------------------------------|------|
| 4-4-8 MJTC-14                             |      |
| 4-5 Assay Results of Cores                |      |
| 4-5-1 MJTC- 7                             |      |
| 4-5-2 MJTC- 8                             |      |
| 4-5-3 MJTC- 9                             |      |
| 4-5-4 MJTC-10                             |      |
| 4-5-5 MJTC-11                             |      |
| 4-5-6 MJTC-12                             |      |
| 4-5-7 MJTC-13                             |      |
| 4-5-8 MJTC-14                             |      |
| Chapter 5 Discussion                      | · 82 |
| 5-1 Kocatas Alteration Zones              |      |
| 5-2 Sartas Alteration Zones               |      |
| 5-3 Güvemalanı Alteration Zones           |      |
| Chapter 6 Conclusions and Recommendations | 84   |
| 6-1 Conclusions                           |      |
|                                           |      |

6-2 Recommendations for Future Exploration

#### PART III PIREN HILL AREA

| Chapter 1 S rvey of the Piren Hill Area                   | 87 |
|-----------------------------------------------------------|----|
| 1-1 Outline                                               |    |
| 1-2 Objective of the Survey                               |    |
| 1-3 Contents of the Survey                                |    |
| Chapter 2 Geology of the Piren Hill Area                  | 87 |
| Chapter 3 Trench Survey of the Davulgili Alteration Zones | 88 |
| 3-1 Trench Survey                                         |    |
| 3-2 Sampling                                              |    |
| 3-3 Analytical Methods                                    |    |
| 3-4 Interpretation of the Chemical Results                |    |
| Chapter 4 Discussion                                      |    |
| Chapter 5 Conclusions and Recommendations                 | 90 |
| 5-1 Conclusions                                           |    |
| 5-2 Recommendations for Future Exploration                |    |

# PART IV ETILI AREA

| Chapter 1 Survey of the Etili Area                   |
|------------------------------------------------------|
| 1-1 Outline                                          |
| 1-2 Objective of the Survey                          |
| 1-3 Contents of the Survey                           |
| Chapter 2 Geology of the Etili Area                  |
| 2-1 General Geology                                  |
| 2-2 Stratigraphy                                     |
| 2-2-1 Sakar Dagı Formation                           |
| 2-2-2 Gicikler Volcanics                             |
| 2-2-3 Şapçı Volcanics                                |
| 2-2-4 Alluvium                                       |
| 2-3 Intrusive Rocks                                  |
| 2-4 Geologic Structure                               |
| Chapter 3 Alteration Zones104                        |
| 3-1 Outline                                          |
| 3-2 Tepeköy Alteration Zones                         |
| 3-3 Halilaga Alteration Zones                        |
| Chapter 4 Geochemical Prospecting of Rock Samples109 |
| 4-1 Sampling                                         |
| 4-2 Analytical Methods                               |
| 4-3 Statistical Analysis of the Chemical Results     |
| Chapter 5 Drilling Survey116                         |
| 5-1 Outline of Drilling Survey                       |
| 5-1-1 Objective of Diamond Drilling                  |
| 5-1-2 Outline of Drilling Operation                  |
| 5-1-3 Holes Drilled                                  |
| 5-2 Drilling Operation                               |
| 5-2-1 Drilling Method                                |
| 5-2-2 Drilling Machines, Equipment and Consumables   |
| 5-2-3 Operation Members and Shifts                   |
| 5-2-4 Transportation and Road Construction           |
| 5-2-5 Water Supply                                   |
| 5-2-6 Withdrawal                                     |
| 5-3 Results of Diamond Drilling                      |
| 5-3-1 MJTC-16                                        |
| 5-3-2 MJTC-17                                        |
| 5-4 Alteration of Drill Holes                        |
| 5-4-1 MJTC-16                                        |

5-4-2 MJTC-17

5-5 Assay Results of Cores

5-5-1 MJTC-16

5-5-2 MJTC-17

## Chapter 6 Discussion-128

6-1 Alteration Zones

6-2 Alteration of the Deeper Zone

6-3 Gold and Silicified Zone

Chapter 7 Conclusions and Recommendations 129

7-1 Conclusions

7-2 Recommendations for Future Exploration

#### PART V DIKMEN AREA

| Chapter 1 Survey of the Dikmen Area131     |
|--------------------------------------------|
| 1-1 Outline                                |
| 1-2 Objective of the Survey                |
| 1-3 Contents of the Survey                 |
| Chapter 2 Geology of the Dikmen Area133    |
| Chapter 3 Mineralization and Alteration    |
| Chapter 4 Drilling Survey134               |
| 4-1 Outline                                |
| 4-2 Alteration of Drill Hole (MJTC-15)     |
| 4-3 Assay Results of Cores                 |
| Chapter 5 Discussion-135                   |
| Chapter 6 Conclusions and Recommendations  |
| 6-1 Conclusions                            |
| 6-2 Recommendations for Future Exploration |

#### PART VI CONCLUSIONS AND RECOMMENDATIONS

| Chapter  | 1    | Conclusions     |     |        |                |
|----------|------|-----------------|-----|--------|----------------|
| Chapter  | 2    | Recommendations | for | Future | Exploration141 |
| Referend | :es· |                 |     |        |                |

# Photographs

| Photo.       | Mi   | cr   |
|--------------|------|------|
| 1 11 0 0 0 1 | ** - | Q.7. |

croscopic Photograph (Thin Section)

# APPENDIX

| Table l  | Description of X-ray Diffractive Samples | 1  |
|----------|------------------------------------------|----|
| Table 2  | Results of X-ray Diffractive Analysis    | 2  |
| Table 3  | Description of Rock Samples              | 6  |
| Table 4  | Chemical Analysis of Rock Samples        | 16 |
| Table 5  | Component Scores of Rock Samples         | 26 |
| Table 6  | Chemical Analysis of Trench Samples      | 36 |
| Geologic | Logs of MJTC-7~ MJTC-17                  | 46 |

#### FIGURES

Figure 1-1 Index Map of the Survey Area Figure 1-2 Map of Location of the Survey area Figure 1- 3 Map of Location of the Etili area Figure 1- 4 Geologic Map of the Çanakkale Area Normalized Qz-(Ab+An)-Or Diagram for Granitic Rocks Figure 1- 5 Figure 1- 6  $SiO_2 \cdot (Na_2O + K_2O)$  Diagram for Volcanics MFA Diagrams Figure 1-7 Figure 1- 8 CaO-Na<sub>2</sub>O-K<sub>2</sub>O Diagrams Fe<sub>2</sub>O<sub>3</sub>-FeO\* Diagram for Granitic Rocks Figure 1-9 Figure 1-10 SiO<sub>2</sub>-FeO\*/MgO Diagram for Volcanics Figure 1-11 Variations Diagrams (D.I.- Oxides) Figure 1-12 Compiled Map of the Arlık Stream and Piren Hill Areas Figure 1-13 Compiled Map of the Etili Area Figure 1-14 Compiled Map of the Dikmen Area Figure 1-15 Recommendation Map of the Çanakkale Area Figure 2- 1 Location Map of Trenches of Arlık Stream Area Figure 2- 2 Location Map of Drill Hole of the Arlık Stream Area Figure 2-3 Drilling Progress of MJTC-7 Figure 2- 4 Drilling Progress of MJTC- 8 Figure 2-5 Drilling Progress of MJTC-9 Figure 2- 6 Drilling Progress of MJTC-10 Figure 2-7 Drilling Progress of MJTC-11 Figure 2-8 Drilling Progress of MJTC-12 Figure 2- 9 Drilling Progress of MJTC-13 Figure 2-10 Drilling Progress of MJTC-14 Geologic Cross Sections of Drill Holes (from MJTC- 7 to MJTC-14) Figure 2-11 Location Map of Trenches of Piren Hill Area Figure 3- 1 Figure 4-1 Geologic Map and Cross Sections of the Etili Area Schematic Column of the Etili Area Figure 4-2 Figure 4-3 Gold Occurrence and Alteration Map of the Etili Area Figure 4-4 Geologic Map and Cross Section of Tepeköy Area Figure 4-5 Geologic Map and Cross Section of Halilaga Area Figure 4- 6 Map of Component Score of Rock Samples in the Etili Area Figure 4-7 Location Map of Drill Holes of the Etili Area Figure 4-8 Drilling Progress of MJTC-16 Figure 4- 9 Drilling Progress of MJTC-17 Figure 4-10 Geologic Cross Section of Drill Holes (MJTC-16 and 17)

Figure 5- 1 Location Map of Drill Hole of the Dikmen Area Figure 5- 2 Geologic Cross Section of Drill Hole (MJTC-15)

#### TABLES

Table 1- 1 Survey Contents Table 1- 2 Laboratory Studies Table 1- 3 Location of Drill Holes Table 1-4 Average Monthly Temperature of Çanakkale Table 1-5 Monthly Precipitation of Çanakkale Table 1-6 Correlation List of the Biga Peninsula Table 1- 7 Significant Analytical Results of the Rock and Trench Samples Table 1-8 Chemical Analysis and CIPW Norms for Granitic Rocks and Volcanics Table 1-9 Results of Microscopic Observation of the Thin Sections Table 1-10 List of Geological and Geochemical Characteristics Table 2-1 Detection Limit and Analyzed Elements Table 2-2 Basic Statistical Values of Arlık Stream Trenches Table 2-3 Significant Analytical Results of Trench Samples Table 2-4 Drilling Machine and Equipment Used Table 2-5 Consumables Used Table 2- 6 Drilling Meterage of Diamond Bit/Reamer/Shoe Bit Used Table 2-7 Working Time Breakdown of the Drilling Operation Table 2-8 Record of the Drilling Operation at MJTC-7 Table 2-9 Record of the Drilling Operation at MJTC-8 Table 2-10 Record of the Drilling Operation at MJTC- 9 Table 2-11 Record of the Drilling Operation at MJTC-10 Record of the Drilling Operation at MJTC-11 Table 2-12 Table 2-13 Record of the Drilling Operation at MJTC-12 Record of the Drilling Operation at MJTC-13 Table 2-14 Table 2-15 Record of the Drilling Operation at MJTC-14 Summary of the Drilling Operation of MJTC- 7 Table 2-16 Table 2-17 Summary of the Drilling Operation of MJTC- 8 Table 2-18 Summary of the Drilling Operation of MJTC- 9 Summary of the Drilling Operation of MJTC-10 Table 2-19 Summary of the Drilling Operation of MJTC-11 Table 2-20 Summary of the Drilling Operation of MJTC-12 Table 2-21 Summary of the Drilling Operation of MJTC-13 Table 2-22 Table 2-23 Summary of the Drilling Operation of MJTC-14 Table 3-1 Basic Statistical Values of Piren Hill Trenches Table 4- 1 Basic Statistical Values of Etili Rock Samples

Table 4- 2 Coefficients and Covariance Matrix of Etili Rock Samples
Table 4- 3 Bigenvectors and Eigenvalues of Etili Rock Samples
Table 4- 4 Significant Analytical Results of Rock Samples
Table 4- 5 Record of the Drilling Operation at MJTC-16
Table 4- 6 Record of the Drilling Operation at MJTC-17
Table 4- 7 Summary of the Drilling Operation of MJTC-16
Table 4- 8 Summary of the Drilling Operation of MJTC-17

#### PLATES

| PL. 1. | Geologic Map and Cross Sections of the Etili Area         | Scale 1:25,000 |
|--------|-----------------------------------------------------------|----------------|
| PL. 2  | Sample Location Map of the Etili Area                     | Scale 1:25,000 |
| PL. 3  | Geologic Map of the Tepeköy Area                          | Scale 1: 5,000 |
| PL. 4  | Geologic Cross Sections of the Tepeköy Area               | Scale 1: 5,000 |
| PL. 5  | Sample Location Map of the Tepeköy Area                   | Scale 1: 5,000 |
| PL. 6  | Geologic Map and Cross Sections of the Halilaga Area      | Scale 1: 5,000 |
| PL. 7  | Sample Location Map of the Halilaga Area                  | Scale 1: 5,000 |
| PL. 8  | Geologic Cross Sections of Drill Holes (MJTC-7 $\sim$ 14) | Scale 1: 1,000 |
| PL. 9  | Geologic Cross Sections of Drill Holes (MJTC-16 & 17)     | Scale 1: 1,000 |
| PL.10  | Geologic Cross Section of Drill Holes (MJTC-15)           | Scale 1: 1,000 |

# PART I OVERVIEW

# ΕW

.

### PART I OVERVIEW

#### CHAPTER 1 INTRODUCTION

#### 1-1 Background and Objective of the Survey

The survey was conducted with the purpose of clarifying the metal deposits and of assessing the metallic resource potential of the Çanakkale Area. Prior to the field survey, data related to previous geoscientific work were studied, and Landsat image analysis of an area of 3,400km<sup>2</sup> was carried out. As a result of these studies, three promising Zones, A, B and C, were delineated for field work of the first phase. Geological survey and geochemical prospecting were conducted in these zones.

The results of the second phase work in Zone B indicate the possibility of large-scale low-grade gold deposits in the alteration zones near the basement rocks. The porphyry molybdenum deposit in Zone C is also expected to be a large-scale low-grade deposit as this type of mineralization is extensive at depth. This deposit locally contains gold and antimony, and it may turn out to be a very important target if significant gold is found in the overlapping portion.

The third-phase survey included trench and diamond drilling surveys in the Arlık Stream Area, trench in the Piren Hill Area, diamond drill survey in the Dikmen Area, and geology, geochemistry and diamond drill surveys in the Etili Area in which gold grains were detected by the heavy mineral study.

1-2 Conclusions and Recommendations of the Second Phase

#### 1-2-1 Conclusions of the Second Phase

During the second phase, geological and geochemical surveys were conducted in the Arlık Stream, Karaibrahimler, Kestane Mountain, Piren Hill and Dikmen Areas. Further geophysical prospecting was carried out in the Dikmen, and drill survey in the Arlık Stream and Piren Hill Areas. The summary of the five areas is as follows:

(1) Arlık Stream: Silicified and argillized zones occur in Şapçı Volcanics and part of Kirazlı Conglomerate. The Kocataş silicified zones occurring in Şapçı Volcanics were evident to 100m in MJTC-5 and 6, after which Kirazlı

-1-

Conglomerate was intersected, but the Sartaş silicified zones continued for at least 150m in MJTC-4. Altered zones with limonite are predominant on the outcrops, but pyrites are not observed. Of the results of the drill survey, the following are significant: fine-grained pyrites are developed in the section underneath the surface, limonitic silicified zones with open spaces (caves) were found by drill hole MJTC-4 and the low-grade auriferous zones continued from near surface to bottom in hole MJTC-4. Therefore, it is considered that the potential for gold deposits is high.

Generally, auriferous mineralization in the silicified body did not extend further downward, and silicified veins were observed in the periphery of the silicified zones. Thus it is considered that their shapes are "jellyfish-like" in geologic section.

(2) Karaibrahimler: The Şapçı Volcanics and Kirazlı Conglomerate have suffered hydrothermal alteration in the vicinity. Altered zones with limonite and hematite are predominant on the outcrops, and pyrites are rarely observed because of oxidation. It is considered that the Şapçı Volcanics becomes thin because of proximity to the basement rocks. Silicified veins occur in Şapçı Volcanics and Kirazlı Conglomerate, and are exposed rock from lower levels of the formation after erosion of the upper levels.

(3) Kestane Mountain: The Şapçı Volcanics and Kirazlı Conglomerate have suffered hydrothermal alteration in this vicinity. In particular, the Şapçı Volcanics has suffered strong silicification and argillization. Altered zones with limonite and hematite are predominant on the outcrops, and pyrites are usually not observed due to oxidation. Silicified bodies which form the mountain consist of massive, porous and brecciated parts. Silicified veins were not observed in the periphery of silicified bodies. Thus it is considered that they are "mushroom-shaped" in geologic section.

(4) Piren Hill: The geology consists of Sapçi Volcanics in this vicinity. The original rocks cannot be distinguished in the altered zones. The volcanic rocks become thicker with distance from the geologic basement. Altered zones with limonite and hematite are predominant on the outcrops, and pyrites are not observed because of oxidation.

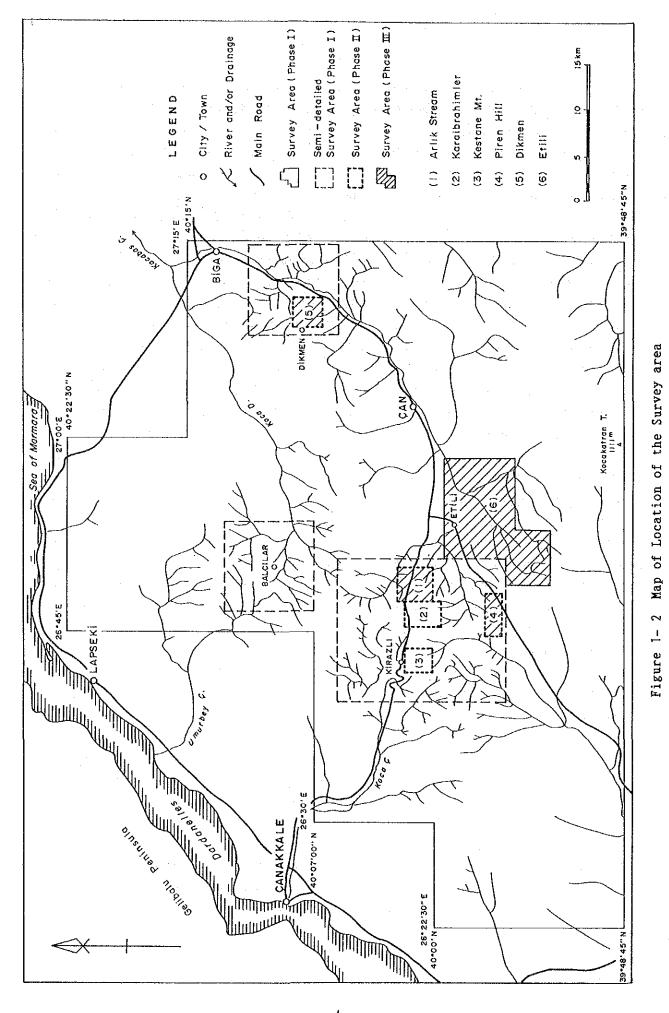
Gold anomalies were detected in the silicified zones located in the southern part of the large alteration zone. The zones extend in an E-W direction in the vicinity of Piren Hill. The auriferous zones, which occur in limonitic clay such as those in fault zones, were detected by drill hole MJTC-2. Silicified zones are considered to be "jellyfish-shaped" in geologic section.

-2-

(5) Dikmen: Geophysical prospecting was carried out together with a detailed geological survey and geochemical prospecting. The detailed geological survey has clarified the distribution and conditions of gold occurrence, argillized zones and skarnization. The geochemical work has revealed two types of mineralization. By geophysical methods, the subsurface extent of mineralization from the outcrop downward was shown by delineating the low-resistivity zone and FE anomalies by IP: detailed SIP work provided the promising section through the interpretation of simulations.

A porphyry molybdenum-copper deposit associated with the intrusion of the Dikmen Granite and porphyry was discovered. The mineralization extends from the eastern side of the Dikmen Granite in a NW-SE direction to the Emeşe Formation in the Sigirirek Stream. The Emeşe Formation is altered, and minor amounts of sulfides such as molybdenite, chalcopyrite, wolframite, sphalerite and pyrite occur in the quartz veinlets. The analytical results show the existence of gold, arsenic, mercury and antimony. This shows that epithermal mineralization occurred after the porphyry molybdenum mineralization and they now overlap spatially.

1-2-2 Recommendations of the Second Phase


It is recommended that the following work be conducted in the promising areas.

In the four localities of Zone B, epithermal gold mineralization is anticipated because of the gold showings of the alteration zones which were identified by geological and geochemical surveys. The hydrothermal gold mineralization is expected to extend both horizontally and vertically. Here, detailed geological survey clarified the distribution and extent of the alteration zone and heavy mineral investigation in the vicinity located the position of the gold mineralization. On the basis of these findings, inclined drilling should be carried out in order to clarify the state of subsurface mineralization.

(1) Arlık Stream: Auriferous zones have been detected in Kocataş, Sartaş and Güvemalanı Hills; these localities belong to the concession of MTA. The drilling survey should be continued in these localities because the auriferous zones were intersected by drill hole MJTC-4.

(2) Karaibrahimler: The silicified zones were not predominant because the upper portions of altered zones had been eroded. As the possibility of detection of gold deposits is low, the survey should be completed within the second phase.

-3-



(3) Kestane Mountain: The concession of the Kestane Mountain Area has been purchased by Tuprag Company which has its head office in Istanbul and which has commenced joint exploration with a private West German company. Geochemical prospecting (soil sampling and trench) and geophysical survey (resistivity method) was carried out in 1989. Therefore, the survey should be completed within the second phase.

(4) Piren Hill: Gold anomalies were detected in the silicified zones which are located in the southern part of the large alteration zone. Also, the zone extends in an E-W direction in the vicinity of the Piren Hill. The auriferous zone was found by drill hole MJTC-2 in the Davulgili silicified zones belonging to the concession of MTA. During the third phase, drilling survey should be carried out in the southeastern part of the Piren silicified zones.

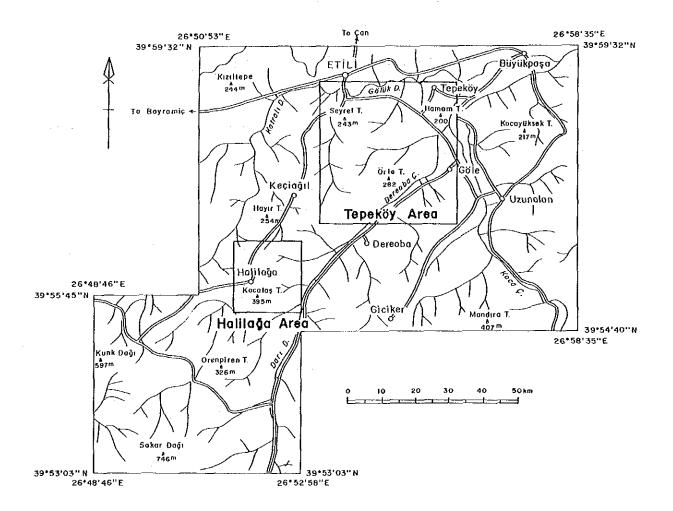



Figure 1-3 Map of Location of the Etili area

(5) Dikmen: Geophysical prospecting was carried out along with detailed geological survey and geochemical prospecting. By geophysical methods, the subsurface extent of mineralization from the outcrop downward was shown by delineating the low-resistivity zone and FE anomalies by IP; detailed SIP work provided the necessary information. Drill survey should be conducted in the mineralized zone of the localities distributed in the Dikmen Granite and porphyry.

(6) Etili: Etili locates in the southeast area of Zone B. Silicified zones are predominant in the Sapçı Volcanics which is widely distributed in the vicinity. A hot spring near Etili village has been used as a bath for medical purposes. Gold grains have been detected in the soil samples collected from nearby the hot spring. The Etili Area is considered to be a promising area, and a drill survey should be carried out after the geological survey and geochemical prospecting.

1-3 Areal Extent and Work Operation of the Third Phase Survey

1-3-1 Coordinates and Contents of the Survey Areas

The localities surveyed during the period of this report is shown in Figures 1-2 and 1-3. The contents are shown by Tables 1-1 and 1-2.

| Localities   | Area  | Route  | Geochemical Pro | specting | Drill  | Survey    |
|--------------|-------|--------|-----------------|----------|--------|-----------|
|              | (km²) | Length |                 |          |        |           |
| Arlık Stream | _     | -      | Trench 1,224m   | 404pcs   | 1,208m | (8 holes  |
| Piren Hill   | -     | -      | Trench 334m     | 104pcs   |        |           |
| Etili        | 115   | 120km  | Rock Samples    | 69pcs    |        |           |
|              | 20    | 45km   | Rock Samples    | 389pcs   | 302m   | (2 holes  |
| Dikmen       | ~     | -      |                 |          | 150m   | (1 hole)  |
| Total        |       | 165km  |                 | 966pcs   | 1.660m | (11holes) |

Table 1-1 Survey Contents

#### Table 1-2 Laboratory Studies

| Type of Study       | Element from                                                                                                 | Amount    | Arlık  | Piren | Etili | Dikmen |
|---------------------|--------------------------------------------------------------------------------------------------------------|-----------|--------|-------|-------|--------|
|                     | Chemical Analysis                                                                                            | (Samples) | Stream | Hill  |       |        |
| Rock Samples        | Au, Cu, Mo, Pb, Zn, Ag, As, Se,                                                                              | 458       |        |       | 458   |        |
|                     | Hg F, Ba, T1                                                                                                 |           |        |       |       |        |
| Trench Samples      | Au, Cu, Mo, Pb, Zn, Ag, As, Se,                                                                              | 508       | 404    | 104   |       |        |
|                     | Hg F, Ba, T1                                                                                                 |           |        |       |       |        |
| Drilled Cores       | Au, Ag, Cu, Pb, Zn, Sb, Hg, Mo                                                                               | 552       | 402    |       | 100   | 50     |
| Whole Rock Analysis | Si0 <sub>2</sub> , Ti0 <sub>2</sub> , Al <sub>2</sub> O <sub>3</sub> , Fe <sub>2</sub> O <sub>3</sub> , FeO, | 18        |        |       | 13    | 5      |
|                     | Mn0, Ca0, Na <sub>2</sub> 0, K <sub>2</sub> 0, P <sub>2</sub> 0 <sub>8</sub> , LOI                           |           |        |       |       |        |
| Thin Section        |                                                                                                              | 18        |        |       | 13    | 5      |
| X-ray Diffraction   |                                                                                                              | 104       | 36     |       | 62    | 6      |

1-3-2 Priority Activities of the Survey

(1) Geological and geochemical survey

The following problems and items were the priority activities during the third phase survey.

- ① Collection of geochemical rock and trench samples with emphasis on delineated altered zones.
- ② Relationship between geochemical anomalies and mineralization.
- Extent of mineralization at depth.
- ④ Determination of geochemically anomalous zones and clarification of their characteristics.

(2) Drilling Survey

The following holes were drilled in the Arlık Stream, Etili and Dikmen Areas.

| Area                                  | No.     | Coordi | nates | Length | Direction | Dip  |
|---------------------------------------|---------|--------|-------|--------|-----------|------|
| Arlık Stream                          | MJTC- 7 | 82325  | 29948 | 151.Om | N 1 0° E  | -50° |
|                                       | MJTC- 8 | 82726  | 30548 | 151.Om | S10°W     | –50° |
|                                       | MJTC- 9 | 82848  | 31059 | 151.Om | S 1.0° W  | -50° |
|                                       | MJTC-10 | 82971  | 30796 | 151.1m | N 10° E   | –50° |
|                                       | MJTC-11 | 83426  | 30694 | 151.Om | N 10° E   | –50° |
|                                       | MJTC-12 | 83554  | 31037 | 151.Om | S10°W     | _50° |
|                                       | MJTC-13 | 83597  | 30497 | 151.Om | S10°W     | –50° |
| · · · · · · · · · · · · · · · · · · · | MJTC-14 | 83729  | 30465 | 151 Om | S10°W     | -50° |
| Dikmen                                | MJTC-15 | 13062  | 41280 | 150.Om |           | -90° |
| Etili                                 | MJTC-16 | 88338  | 20785 | 151.Om | N20°E     | -50° |
|                                       | MJTC-17 | 88500  | 20805 | 151.Om | N 2 0° E  | -50° |

Table 1-3 Location of Drill Holes

#### 1-4 Members of the Third Phase Survey

| (1) Survey Period. G | eological and Geochemical  | Survey : June 24-October 24 |
|----------------------|----------------------------|-----------------------------|
| D                    | rill Survey                | : July 9-October 29         |
| (2) Members particip | ating in the Project       |                             |
| KMTA (MADEN TETKIK V | e ARAMA GENEL MÜDÜRLÜĞÜ) a | t Ankara]                   |
| Head Office          | General Director           | Orhan BAYSAL                |
|                      | Deputy General Director    | Özer ÖLÇER                  |
|                      | Deputy General Director    | Temel NEBIOGLU              |
| Metallic Minerals D. | Director                   | Ramiz ÖZOCAK                |
|                      | Deputy Director            | Asim GÖKTEPELI              |
| Drilling D.          | Director                   | Abdullah GÜLGÖR             |
| NW Anadolu Branch    | General Manager            | Rıfat BAYBÖRÜ               |
|                      | Deputy Manager             | Nizamettin ÇETİNKAYA        |
|                      | Deputy Manager             | Sinan ARSLAN                |

-7-

[Turkish Survey Members of MTA] Coordinator Geologist Geologist Geologist Mining Engineer Mining Engineer [Metal Mining Agency of Japan]

Coordinator Coordinator

[Japanese Survey Members of NED]

Team leader Geologist Drilling Engineer Driller Driller

Necmi YUCE Necip PEHLIVAN Abdullah TUFAN Ahmet **CETIN** Muharrem DAĞLI Mustafa CANTÜRK

Morihiro KURUSHIMA Hiroshi SHIMOTORI

Hisashi MIZUMOTO Kazuyasu SUGAWARA Saichi ISHII Tadateru SUGIBUCHI Mitsuo NOMURA

#### CHAPTER 2 GEOGRAPHY

Çanakkale is the capital of the province and is the largest city on the Biga Peninsula. It is located approximately 550km west of Ankara and about 250km southwest of the largest city in Turkey, Istanbul. The population of Canakkale Can is the second largest city of Canakkale Province, and is about 50,000. its population is more than 20,000.

By road, the distance from Ankara to Çanakkale is approximately 600km through Eskisehir and Bursa; long-distance bus takes 11 hours. The survey area is under the jurisdiction of the MTA Balıkesir Office (Kuzeybatı Anadolu Bölgesi). The major highway between Balıkesir and Çanakkale is paved and the approximately 250km can be covered by car in about three hours. The base camp of the geology section for the third phase survey was set in Çanakkale, and the drill section was in Can and Etili. The field work for geological and geophysical surveys was conducted using jeeps for transport from Çanakkale. The travel time from Canakkale to Arlık Stream and Piren Hill was one hour, and to Dikmen, two hours.

The area delineated for detailed survey in the third phase is located inland. It has relatively gentle topography with elevation ranging from 200-800m. There are many villages in the flat area below the 200m elevation, and vegetables and fruits are actively cultivated. Above 200m, in the higher lands, cultivation of wheat and raising various cattle are very prominent.

-8-

The annual precipitation of the survey area amounts to 567mm (average of 1988 and 1989), and there is a large area of fertile land where cultivation of vegetables, fruits and wheat, and breeding of cows, sheep, goats and other cattle are very active. The annual average temperature is warm (14.6°C), and climate is close to Mediterranean type.

At Çanakkale, the temperature rises above  $30^{\circ}$ C during the four months from June to September, and during June to November when the field survey was carried out, the climate gradually shifted from the relatively dry season to relatively wet season, and the average monthly temperature dropped from  $20.9^{\circ}$ C in September to  $8.7^{\circ}$ C in November. The average monthly temperature and precipitation published by the Çanakkale Meteorological Station are as follows.

| Month(°C) | 1    | 2    | 3    | 4    | 5           | 6     | 7    | 8     | 9      | 10    | - 11 | 12   | Annua1 |
|-----------|------|------|------|------|-------------|-------|------|-------|--------|-------|------|------|--------|
| Max       | 16.7 | 15.2 | 18.1 | 20.7 | 28.8        | 32.0  | 38.8 | 34. 2 | 30.0   | 24. 2 | 18.8 | 17.6 | 1988   |
| Min       | -1.7 | -2.2 | -0.2 | 1.4  | 5.4         | 12.3  | 14.6 | 13.3  | .11.0  | 2.0   | -2.4 | -5.8 |        |
| Average   | 7.9  | 6.7  | 9.3  | 11.5 | 16.8        | 22.7  | 26.8 | 25.5  | 20.8   | 14.8  | 7.7  | 6.9  | 14.8   |
| Max       | 13.7 | 17.4 | 19.5 | 24.3 | 26.6        | 32:2  | 32.8 | 33. 5 | 30.0   | 25.8  | 21.8 | 16.0 | 1989   |
| Min       | -4.0 | -4.7 | 2.0  | 8.0  | 5.6         | 12. 0 | 16.4 | 14.6  | :13. 2 | 6.4   | -2.7 | -4.0 |        |
| Average   | 4.4  | 2.1  | 10.1 | 15.2 | 16.7        | 21.3  | 24.6 | 24.9  | 21.0   | 14.8  | 9.7  | 7.4  | 14.4   |
| Max       | 14.1 | 19.6 | 21.3 | 23.0 | 30. 2       | 36.0  | 34.0 | 34. 3 | 33.6   |       |      |      | 1990   |
| Min       | -4.1 | -1.1 | -1.3 | 3.8  | 3.4         | 8.6   | 16.7 | 15.8  | 8.7    |       |      |      |        |
| Average   | 4.8  | 7.3  | 9.6  | 13.4 | <u>17.0</u> | 21.6  | 25.4 | 24.6  | 19.5   |       |      |      |        |

Table 1-4 Average Monthly Temperature of Çanakkale

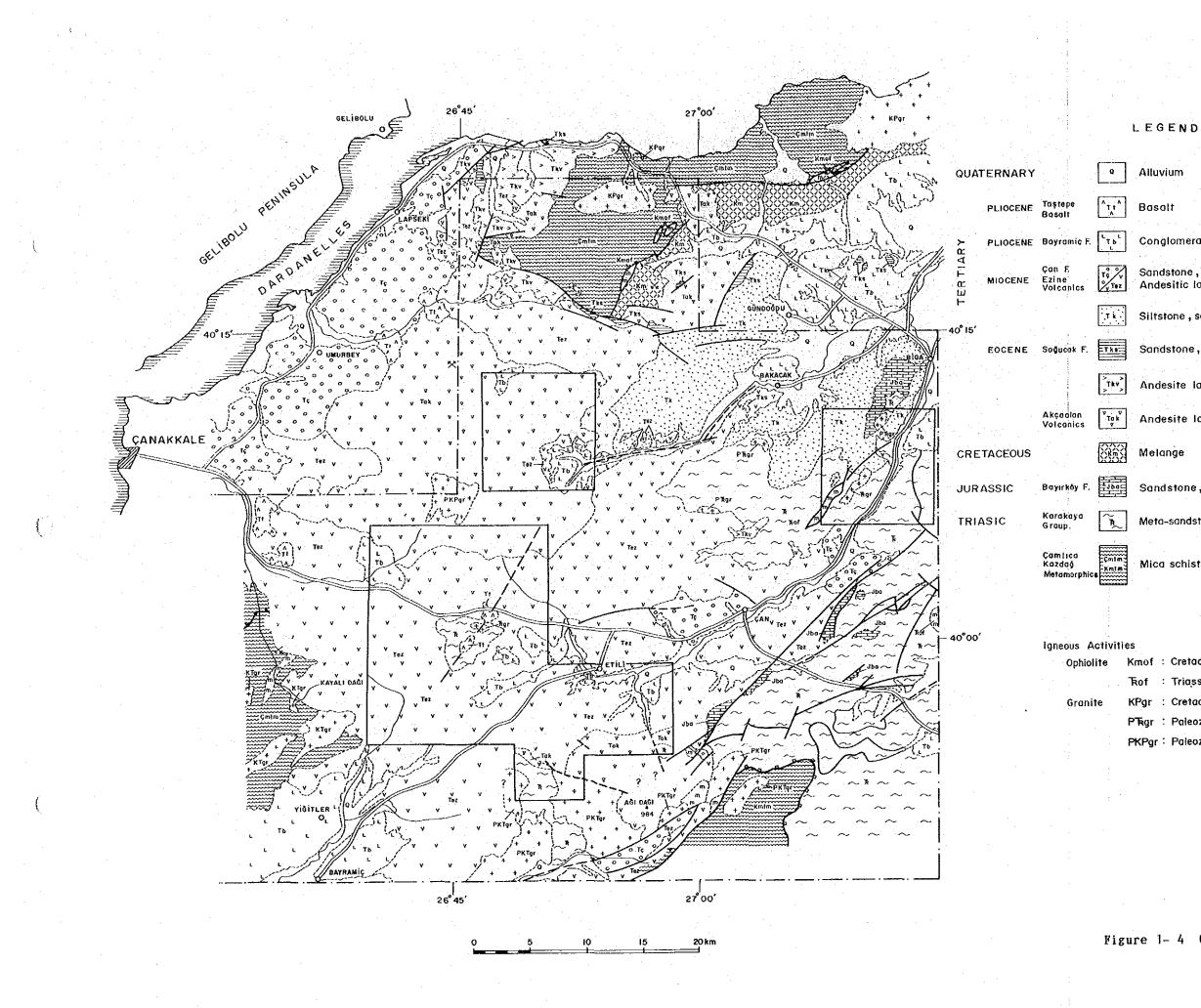
Table 1-5 Monthly Precipitation of Çanakkale

|               |    |    |    |    |    |    |   |    |      | ·  |     |     |        |
|---------------|----|----|----|----|----|----|---|----|------|----|-----|-----|--------|
| Precipitation | 1  | 2  | 3  | 4  | 5  | 6  | 7 | 8  | 9    | 10 | 11  | 12  | Annua1 |
| 1988 (mm)     | 87 | 51 | 75 | 56 | 1  | 37 | 4 | -  | 30   | 21 | 202 | 139 | 703    |
| 1989 (mm)     | 2  | 3  | 58 | 9  | 28 | 19 | - | 25 | - 33 | 85 | 76  | 94  | 431    |
| 1990 (mm)     | 5  | 12 | 25 | 37 | 12 | 50 | 7 | 1  | 19   |    |     |     |        |

CHAPTER 3 OUTLINE OF THE SURVEY AREA

#### 3-1 Outline

The stratigraphy of the Çanakkale Area was compiled by Behçet AKYÜREK and Yılmaz SOYSAL of the Geology Division of MTA Ankara in 1980 (report of First Phase).


The basement of the area consists of pre-Triassic metamorphic rocks - the Kazdag Group. It is mainly composed of gneiss, metamorphic rocks derived from basic volcanic rocks and crystalline limestone. This basement is unconformably overlain by Mesozoic sedimentary formations and Miocene intermediate volcanic rocks. Silicified and argillized alteration zones were identified in some sections (Arlık Stream, Piren Hill and Etili) of the area where volcanism was active during the Eocene to Miocene, and andesite, dacite, rhyolite and pyroclastic rocks are developed. These are widely distributed in the central part of the survey area. During the beginning of this volcanic period, granodiorite intrusions occurred in many parts of the area, and iron, copper, lead and zinc mineralizations are found associated with this type of intrusion in the Dikmen.

In 1987, the exploration group of the Turkish Petroleum Co. conducted a geological survey of the entire Biga Peninsula prior to drilling for oil in Edremit Bay (bay at the southern part of the Biga Peninsula). It was shown by this work that the volcanic rock widely distributed in the central part of the area can be grouped as the product of three major volcanic activities aged Eocene, Miocene and post-Pliocene. Also, there are two stages of granite activity : Triassic and Cretaceous to Eocene. The ages were determined through the study of fossils in the vicinity.

The geology of Biga Peninsula, as mentioned above, has been investigated by MTA and the Turkish Petroleum Co. It is seen that the stratigraphy compiled during the first and third phase studies agrees with that prepared by the Turkish Petroleum Co. The geologic map of the Çanakkale Area and correlation list are shown in Figure 1-4 and Table 1-6.

The lowermost geologic unit of northwestern Biga is the pre-Triassic metamorphics (Kazdag Group) which consists mainly of metamorphic rocks of basic volcanic origin and is distributed to the north of Zone A and west of Zone B, both outside of the first phase survey area. In Zones B and C, the Triassic Karakaya Group and unconformably overlying Eocene and later intermediate volcanic rocks are widely distributed, while in Zone A, Eocene and later intermediate volcanic rocks occur widely. Most of the geologic units of these zones are Eocene to Miocene andesites and andesitic pyroclastics accompanied by a small amount of Late Tertiary to Quaternary dacite and basalt. The intrusive rocks are Triassic and Cretaceous to Eocene granodiorite, and they are distributed in Zones B and C.

The geology of the major part of the survey area consists of Eocene and younger volcanic rocks. The host rocks of the silicified and argillized zones are Miocene volcanics. These alteration zones have characteristics similar to those of the Madendag1 and Kartaldag1 mine areas. They extend into the survey area. The age of the alteration is inferred to be latest Tertiary, and the center of the Tertiary volcanic activity is very clearly identified.



| and the second |                         |            |                  |
|------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------------------|
| vium                                                                                                             | Intru                   | sives      |                  |
| alt                                                                                                              | ن<br>د<br>د             | 2          |                  |
| glomerate/volcanics                                                                                              | 04000<br>04000<br>04000 | 5          |                  |
| dstone , siltstone , conglomerate etc.<br>esitic lava and pyroclastics                                           | 10 A                    | 5          |                  |
| stone , sandstone                                                                                                |                         | ;<br> <br> |                  |
| dstone , siltstone , limestone                                                                                   | -                       | <br>       |                  |
| lesite lava and pyroclastics                                                                                     | Ophiolite               |            | . •              |
| lesite lava and pyroclastics                                                                                     | d                       |            | n                |
| ange                                                                                                             | Kmot                    | <br> <br>  | PKPgr<br>(PKTgr) |
| dstone, siltstone, sandy limestone                                                                               |                         | 1          | -                |
| a-sandstone , meta-volcanics marble                                                                              | Rot                     | РЋgг<br>Г  |                  |

Mica schist, gneiss marble etc.

Kmof : Cretaceous ophiolite

Rof : Triassic ophiolite

KPgr : Cretaceous~Palaeogene granite

PTkgr : Paleozoic ~Triassic granite

PKPgr: Paleozoic~Palaeogene granite

Figure 1-4 Geologic Map of the Çanakkale Area

-11, 12-

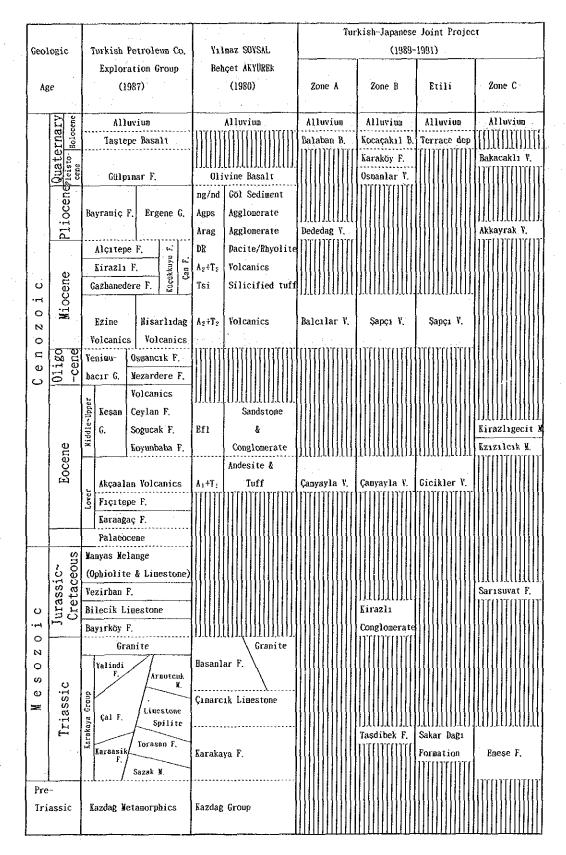



Table 1-6 Correlation List of Biga Peninsula

## 3-2 Mining Activity in the Biga Peninsula

The Biga Peninsula, including the Çanakkale Area, is considered to be the most important lead-zinc metallogenic province of the Republic of Turkey, Also, antimony, gold, silver, mercury, iron and other metallic deposits as well as ceramic material resources have been found in the peninsula. Thus, this peninsula has been the target of geological surveys, geochemical prospecting, mining studies and various other MTA projects.

The area has been the site of the Turkey/Federal Republic of Germany Cooperative Project which resulted in the discovery of promising lead-zinc deposits of the Yenice-Kalkım.

Within the 3,400km<sup>2</sup> area analyzed by Landsat images, there are the wellknown gold deposits of the Madendag1 and Kartaldag1 Mines. Also, although presently closed but previously operated on a very small scale, Çataltepe Mine (lead-zinc veins) is in the above area. In Zone C, a porphyry molybdenum deposit (Dikmen mineralized zone) was discovered during the first phase survey. Immediately outside of the Landsat image, there are the presently operating Koru Köyü Mine and the Yenice gold deposit which is now being explored.

# CHAPTER 4 REVIEW OF THE SURVEY RESULTS

# 4-1 Geochemical Nature of Mineralization

Four hundred and fifty eight samples collected during the detailed survey of the Etili Area and 508 samples collected during the trench survey of Arlık Stream and Piren Hill in the third phase were analyzed. The analyzed elements are; gold, silver, fluorite, mercury, thallium, selenium, antimony, arsenic, copper, lead, zinc, molybdenum and barium. The samples were collected from the silicification zones in Zone B including Etili. The samples exceeding 100 ppb gold are listed in Table 1-7.

# 4-1-1 Mineralization of Arlık Stream Area

From this locality, 404 trench samples were analyzed. Of these, 29 samples collected from Sartas and Güvemalanı silicified zones (the location are shown in Figure 2-1.) contained gold in excess of 100 ppb; this is gold associated with epithermal mineralization. It is noted that almost all of these samples contained small amounts of copper, lead, zinc and mercury, while the content of arsenic, molybdenum, and barium were somewhat higher when found with gold.

Gold-bearing massive silicified zones were detected in drill holes MJTC-4 (Güvemalanı Hill) and MJTC-10 (Sartas Hill). These zones are considered to extend east-west because of accordance with the extent of silicified bodies. On the other hand, gold-bearing brecciated zones were detected in the drill holes MJTC-13 and MJTC-14 of the Inkaya Hill which is distributed in an area of talus deposits.

Silicified bodies are characterized by massive, brecciated and porous parts. The massive part generally locates in the center of the silicified zones, and silicified veins were observed in the periphery of silicified zones. It is thus considered that their shapes are "jellyfish-like" in geologic section.

#### 4-1-2 Mineralization of Piren Hill Area

)

From this locality, 104 trench samples (in length 334m) were analyzed. Of these, two trench samples collected from drill site MJTC-2 of Davulgili silicified zones contained gold in excess of 100 ppb, which is gold associated with epithermal mineralization. A gold-bearing limonitic zone occurs in the north side of periphery of the silicified zones which extend in an east-west direction, but auriferous parts are small-scale and low-grade.

#### 4-1-3 Mineralization of Etili Area

From this locality, 458 rock samples were analyzed. Of these, 61 samples collected from Tepeköy and Halilaga silicified zones contained gold in excess of 100 ppb. This gold is associated with epithermal mineralization. It is noted that almost all of these samples from Tepeköy contained higher amounts of arsenic, barium and mercury, while in the Halilaga, the contents of lead and silver were somewhat higher when found with gold. Silicified zones are characterized by massive, brecciated and porous parts; the massive part generally locates in the center of the silicified zones. Silicified veins were not observed in the periphery of silicified zones. It is thus considered that their shapes are "mushroom-like" in geologic section.

# 4-1-4 Mineralization of Dikmen Area

There is porphyry molybdenum-copper mineralization in the quartz veinlets in and near the Dikmen Granite and porphyry. Elements of lower-temperature mineralization, such as gold, mercury, antimony and barium, were detected in the cores of MJTC-15, and it is noted that two different types of mineralization occurred in the same locality at different times.

Table 1-7 Significant Analytical Results of Rock and Trench Samples (1)

| Etili Au > 100ppb (Rock) | Εt | i | li | Au | Σ | 100ppb | (Rock) |
|--------------------------|----|---|----|----|---|--------|--------|
|--------------------------|----|---|----|----|---|--------|--------|

| Sampl        | e Description              | ۸ú         | Cu      | No  | Pb     | Zn      | ٨g    | ٨s   | Se   | Hg       | F      | Ba     |     |
|--------------|----------------------------|------------|---------|-----|--------|---------|-------|------|------|----------|--------|--------|-----|
| No,          | · · · ·                    | ppb        | ppa     | pp∎ | ppm    | ppu     | ppm   | ppn  | ppp  | рръ      | ្រក្ខា | ppm    | . p |
| Y640         | 94100 25190                | 2790       | 41      | 1   | 12     | 6       | <0.5  | 1320 | 3.4  | 170      | 410    | 2750   | <0  |
| P665         | 88510 20890                | 2380       | 37      | 40  | 5040   | 30      | 3.0   | 1600 | 14.6 | 43000    | 80     | 3450   | 3   |
| ¥734         | 94015 24910                | 1810       | 22      | • 4 | 148    | 8       | <0.5  | 400  | 1.6  | 120      | 70     | 720    | <0  |
| ¥611         | 93980 24910                | 1680       | 43      | 17  | 90     | 14      | <0,5  | 3900 | 8. 2 | 260      | 220    | 3200   | 0   |
| ¥639         | 94100 25190                | 1230       | 14      | 1   | 2      | 2       | <0.5  | .340 | 2.4  | 50       | 300    | 680    | <(  |
| ¥653         | 94125 25195                | 1060       | 29      | 2   | 4      | 4       | <0.5  | 310  | 2.2  | 120      | 300    | 1300   | <(  |
| S705         | 86530 17890                | 1060       | >10000  | 6   | 16     | 118     | 25, 5 | 72   | <0.2 | 10       | 110    | 200    | k   |
| ¥647         | 94085 25185                | 1050       | 12      | 1   | 6      | <2      | <0.5  | 76   | 0.4  | 240      | 60     | 1520   | <(  |
| ¥638         | 94100 25190                | 1000       | 12      | a   | 6      | <2      | <0.5  | 260  | 1.6  | 40       | 160    | 700    | <(  |
| Y738         | 93960 24910                | . 990      | 49      | 7   | 140    | 6       | <0.5  | 3850 | 0.8  | 220      | 70     | >10000 | 0   |
| P660         | 88530 20950                | 960        | 9       | 3   | 334    | 6       | 3.0   | 234  | 2.2  | 19000    | 50     | 3800   | - ( |
| P666         | 88505 20900                | 930        | . 71    | 14  | 2870   | 122     | <0.5  | 1000 | 6.6  | 14000    | 320    | 880    | 6   |
| ¥607         | 93965 24845                | 800        | 110     | 1   | 150    | 48      | <0.5  | 3200 | 0.2  | 90       | 210    | 6900   | 0   |
| ¥733         | 94020 24925                | 790        | 26      | 1   | 260    | . 8     | <0.5  | 1450 | 1.6  | 600      | 70     | 2300   | C   |
| ¥648         | 94085 25185                | 740        | 22      | 1   | . 8    | <2      | <0.5  | 216  | -1.8 | 90       | 220    | 1000   | <(  |
| ¥606         | 93970 24845                | 725        | 52      | 1   | 54     | 18      | <0.5  | 940  | 1.6  | 150      | 120    | 2800   | . 0 |
| ¥621         | 94035 25050                | 690        | 64      | 3   | 6      | 2       | <0.5  | 1250 | <0.2 | 260      | 170    | 400    | 0   |
| ¥732         | 94020 24930                | 655        | 21      | 13  | 162    | 22      | <0.5  | 2700 | 2.8  | 220      | 200    | 2500   | . 0 |
| P668         | 88365 20825                | 620        | 59      | 12  | 204    | 16      | 60.0  | 300  | 6.6  | 61000    | 50     | 2250   | 0   |
| ¥652         | 94125 25195                | 590        | 50      | 2   | 8      | 2       | <0.5  | 340  | 1.0  | 130      | 130    | 1080   | <0  |
| ¥645         | 94085 25185                | 575        | 20      | 1   | 2      | <2      | <0.5  | 610  | 4.6  | 100      | 170    | 2000   | <0  |
| ¥613         | 94030 24780                | 570        | 135     | 13  | 1300   | 38      | <0.5  | 2920 | 1.2  | 150      | 150    | 5400   | 0   |
| ¥605         | 93985 24850                | 500        | 39      | 1   | 30     | 4       | <0.5  | 340  | 1.0  | 490      | 120    | 2900   | 0   |
| P653         | 88700 20930                | 440        | 23      | 7   | 140    | 2       | 17.5  | 52   | 1.2  | 42000    | . 30   | 1560   | Ö   |
| ¥737         | 93990 24915                | 430        | 6       | 1   | 148    | 2       | <0.5  | 160  | <0.2 | 510      | 50     | 8600   | <0  |
| ¥651         | 94125 25195                | 400        | 18      | 3   | 2      | 2       | <0.5  | 76   | <0.2 | 50       | 60     | 4300   | <0  |
| P664         | 88515 20885                | 390        | 27      | 17  | 962    | 12      | 1.0   | 370  | 6.6  | 21000    | 110    | 960    | 1   |
| ¥634         | 94110 25175                | 385        | 9       | 1   | 2      | <2      | <0.5  | 60   | <0.2 | 60       | 110    | 580    | <0  |
| ¥666         | 94300 25230                | 380        | 15      | 1   | 24     | 18      | <0.5  | 2510 | 0.6  | 710      | 560    | 3200   | <0  |
| ¥642         | 94085 25185                | 375        | 5       | 1   | <2     | <2      | <0.5  | 100  | <0.2 | 90       | 60     | 700    | <0  |
| ¥735         | 93990 24920                | 370        | 10      | 2   | 60     | 2       | <0.5  | 176  | <0.2 | 270      | 70     | 1700   | 0   |
|              | 94085 25185                | 340        | 8       | 1   | 2      | <2      | <0.5  | 44   | 0.2  | 150      | 160    | 1370   | <0  |
| Y643         | 94085 25185                | 340        | 12      | 1   | 2      | <2      | <0.5  | 300  | 0.8  | 50       | 160    | 1550   | <0  |
| Y635         | 94110 25175                | 340        | 2       | <1  | <2     | <2      | <0.5  | 23   | <0.2 | 40       | - 40   | 440    | <0  |
| Y636         | 94110 25175<br>94110 25175 | 335        | 5       | 1   | 2      | <2      | <0.5  | 50   | <0.2 | 40       | 50     | 720    | <0  |
| P667         | 88310 20865                | 330        | 34      | 5   | 128    | 12      | 8.5   | 90   | 1.8  | 14000    | 40     | 2800   | 0   |
| C626         | 88755 20795                | 320        | 7       | 9   | 296    | 12      | 1.5   | 880  | 2.4  | 4500     | 80     | 1700   | <0  |
| Y622         | 94035 25055                | 310        | 33      | 5   | 230    | 4       | <0.5  | 1130 | <0.2 | 320      | 70     | 170    | Ö   |
| Y637         | 94100 25190                | 305        | 6       | 1   | 4      | <2      | <0.5  | 90   | 0.6  | 50       | 200    | 2450   | <0  |
| P670         | 94100 20190<br>88395 20880 | 295        | 37      | 21  | 2870   | 34      | 8.5   | 610  | 5.0  |          | 100    | 1200   | 0   |
| Y608         | 93945 24845                | 295        | 23      | 1   | 2010   | 12      | <0.5  | 1000 | 11.2 | 170      | 100    | 2950   | 0   |
| Y644         | 93945 24645<br>94085 25185 | 265        | 6       | 1   | 2      | <2      | <0.5  | 156  | <0.2 | 160      | 160    | 1680   | <0  |
| 7644<br>P656 | 94025 25185<br>88120 20990 | 265        | 8       | 20  | 440    | 4       | 0.5   | 100  | 2.8  | 4800     | 50     | 1100   | 1   |
| r630<br>Y630 | 94110 25175                | 205<br>240 | 6       | 1   | 440    | 4<br><2 | <0.5  | 60   | <0.2 | 4000     | 100    | 390    | <0  |
| 1630<br>Y650 | 94110 25175<br>94125 25195 | 240<br>210 | 0<br>12 | 1   | 4<br>2 | <2      | <0.5  | 00   | <0.2 | 30<br>40 | 100    | 000    | <0  |

.

| Sample Description | Au  | - Cu | No   | РЪ  | Zn  | Ag    | As   | Se    | Ag    | F   | Ba   | TI   |
|--------------------|-----|------|------|-----|-----|-------|------|-------|-------|-----|------|------|
| No.                | ppb | pp∎  | ppa  | ppn | ppm | ppn   | ppn  | ppa   | ppb   | ррп | ppm  | ppu  |
| P659 88520 20965   | 205 | 14   | 13   | 542 | 8   | <0.5  | 232  | 2, 0  | 22000 | 40  | 2120 | 0.4  |
| P663 88520 20885   | 200 | 30   | . 11 | 776 | 12  | 3. 0  | 270  | 2, 6  | 6100  | 60  | 1920 | 0.5  |
| Y632 94110 25175   | 185 | 23   | 2    | 26  | <2  | <0,5  | 100  | <0, 2 | 90    | 150 | 550  | <0.  |
| P658 88580 20960   | 180 | -22  | 6    | 176 | 6   | 4.0   | 110  | 7.0   | 28000 | 70  | 430  | <0.  |
| Y682 93980 25090   | 175 | 74   | 6    | 14  | 12  | <0.5  | 1100 | 6.4   | 100   | 50  | 660  | <0.  |
| Y686 94000 25050   | 175 | 2    | <1   | 6   | <2  | <0.5  | 44   | <0, 2 | 50    | 60  | 500  | <0.  |
| Y610 93945 24865   | 175 | 73   | 9    | 62  | 32  | <0.5  | 3200 | <0.2  | 90    | 400 | 870  | 0.   |
| P655 88610 21000   | 175 | 9    | 15   | 342 | . 8 | 0.5   | ]56  | 2.4   | 5700  | 60  | 1360 | 0. ( |
| Y680 93940 25095   | 130 | 3    | . 1  | 6   | 2   | <0.5  | 14   | <0.2  | 50    | 40  | 600  | <0.  |
| T665 87850 18120   | 125 | 75   | 2    | 92  | 10  | <0.5  | 200  | 17.6  | 1300  | 320 | 940  | <0.  |
| Y678 93995 25110   | 110 | 3    | 1    | 2   | <2  | <0; 5 | 18   | <0.2  | 30    | 50  | 540  | <0.  |
| Y631 94110 25175   | 110 | 5    | <1   | 14  | <2  | <0.5  | 44   | <0.2  | 50    | 80  | 450  | <0.  |
| Y691 93925 24890   | 110 | 4    | 2    | 8   | <2  | <0.5  | 240  | <0.2  | 20    | 50  | 260  | <0.  |
| C631 89175 21200   | 105 | 24   | 12   | 632 | 18  | 1.5   | 500  | 4.2   | 5200  | 90  | 820  | 5.4  |
| Y677 93980 25125   | 100 | 4    | 1    | 2   | <2  | <0.5  | - 11 | <0.2  | 60    | 50  | 300  | <0.  |
| Y620 94045 24980   | 100 | 90   | 10   | 66  | 8   | <0.5  | 4000 | 16.8  | 420   | 160 | 1900 | 4. 9 |

Etili Au > 100ppb (Rock)

· · · · ·

Arlık Au > 100ppb (Trench)

| Sample Description | λu  | Cu   | No  | Pb  | Zn  | Ag              | hs ' | Se              | Bg  | F    | Ba  | Tì    |
|--------------------|-----|------|-----|-----|-----|-----------------|------|-----------------|-----|------|-----|-------|
| No.                | ppb | ррв  | ppm | ppa | ppm | ppo             | ρp⊒  | ppn             | ppb | ppm  | ppm | ppm   |
| AB30 Soil B        | 270 | 12   | 14  | 30  | 8   | <0.5            | 12   | 1.2             | 30  | 520  | 260 | 1.3   |
| AB31 Soil B        | 100 | 15   | 22  | 40  | 12  | <0.5            | 22   | 1.6             | 40  | 470  | 220 | 1.5   |
| AB33 Soil B        | 140 | 4    | 7   | 16  | 4   | <0.5            | 8    | 0.2             | 30  | 190  | 200 | 0.2   |
| AB38 Soil B        | 100 | 8    | 24  | 30  | 6   | <0.5            | 26   | 2.0             | 40  | 550  | 320 | 0.7   |
| AB43 Soil B        | 110 | 5    | 24  | 36  | 2   | <0.5            | 18   | 3.4             | 30  | 540  | 460 | 1.9   |
| AB48 Soil B        | 110 | 14   | 29  | -82 | 20  | <0.5            | 38   | 4.2             | 20  | -160 | 360 | 1.2   |
| AB50 Soil B        | 195 | 8    | 68  | 472 | . 8 | <0.5            | 13   | 3.4             | 20  | 130  | 480 | 3. 2  |
| AB51 Soil B        | 105 | . 21 | 52  | 176 | 8   | <0.5            | 25   | 4.0             | 10  | 190  | 420 | 1.9   |
| A1005 Soil B       | 170 | 60   | 32  | 24  | 40  | <0.5            | 40   | 1.0             | 40  | 230  | 100 | 0.1   |
| A1006 Soil B       | 345 | - 47 | 41  | 10  | 16  | <0.5            | 154  | 7.2             | 20  | 370  | 120 | 0. 2  |
| A1007 Soil B       | 205 | 65   | 16  | 18  | 22  | <0.5            | 32   | 4.0             | 20  | 850  | 560 | 0.4   |
| A1029 Soil B       | 115 | 19   | 62  | 10  | 4   | <0.ā            | 31   | 2.0             | 20  | 250  | 120 | 0.4   |
| A1141 Soil B       | 110 | 6    | 39  | 8   | 6   | <0.5            | 23   | 1.2             | 30  | 100  | 160 | 0.3   |
| A1145 Soil B       | 110 | 11   | 14  | 20  | 6   | <0.5            | 16   | 5. 0            | 40  | 290  | 180 | 1.1   |
| A1149 Soil B       | 105 | 8    | 12  | 44  | 2   | <0.5            | 8    | 6.8             | 50  | 270  | 440 | 1.5   |
| A1256 Soil B       | 225 | 11   | 37  | 26  | 10  | <0.5            | 26   | 2.6             | 50  | 190  | 400 | 0. 3  |
| A1306 Talus D      | 100 | 3    | 144 | 50  | 6   | <0.5            | 25   | 0.6             | 20  | 200  | 480 | 0.2   |
| A1309 Talus D      | 100 | ()   | 22  | 6   | <2  | <9.5            | 4    | <0.2            | 10  | 80   | 40  | <0.1  |
| A1320 Talus D      | 200 | . 1  | 23  | 14  | <2  | <b>&lt;</b> 0.5 | 5    | <0.2            | 20  | 90   | 50  | <0.1  |
| A1321 Talus D      | 220 | 3    | 20  | 10  | 2   | <b>&lt;0.</b> 5 | 5    | <0.2            | 10  | 120  | 50  | <0.1  |
| A1322 Talus D      | 200 | 2    | 18  | 8   | 2   | <0.5            | 6    | <0.2            | 10  | 100  | 60  | <0.1  |
| A1326 Talus D      | 100 | <1   | 1   | <2  | <2  | <0.5            | - 1  | <0.2            | 10  | 50   | 30  | <0.1  |
| A1330 Talus D      | 100 | <1   | 2   | 4   | <2  | <0.5            | 1    | <0.2            | 10  | 50   | 30  | <0.1  |
| A1332 Talus D      | 170 | <1   | 4   | 8   | <2  | <0.5            | 1    | <b>&lt;</b> 0.2 | 10  | 50   | 880 | <0. 1 |
| A1333 Talus D      | 110 | <1   | 3   | 14  | <2  | <0.5            | 2    | <0.2            | 10  | 60   | 60  | <0.1  |
| A1342 Talus D      | 115 | 3    | 13  | 16  | 6   | <0.5            | 6    | <0.2            | 20  | 90   | 120 | 0.1   |
| A1441 Talus D      | 125 | 4    | 18  | 34  | <2  | <0.5            | 10   | 0.2             | 20  | 240  | 520 | 0.3   |
| A1445 Talus D      | 110 | 1    | 9   | 14  | <2  | <0.5            | 4    | <0.2            | 20  | 120  | 60  | 0.1   |
| A1450 Talus D      | 110 | <1   | 6   | 8   | <2  | <0.5            | 2    | <0.2            | 20  | 60   | 40  | 0.1   |

#### 4-2 Results of X-ray Powder Diffraction

Fifty four samples collected from the Etili Area and forty six samples from drill cores were studied by X-ray powder diffraction. The samples of the Etili Area were collected from argillized and silicified zones; altered minerals mainly consist of montmorillonite, kaoline, alunite, cristobalite, and small amounts of sericite and chlorite. The minerals of alteration zones consist of kaoline and alunite in the Hamam and Seyret Hills, and kaoline in the Halilaga. Other areas consist of montmorillonite-kaoline or sericitemontmorillonite. The minerals of alteration zones of Arl1k Stream, where gold was found, consists of alunite, pyrophyllite, kaoline and cristobalite. Thus most minerals were produced by acidic alteration, but montmorillonite and halloysite were produced by meteoric water and diagenesis. The Dikmen samples were collected from the core of drill hole MJTC-15. Altered minerals consist of mainly sericite and kaoline, minerals associated with porphyry-molybdenum mineralization, but kaoline is considered to be associated with gold mineralization in the Canakkale.

#### 4-3 Results of Whole Rock Analysis

A total of eighteen samples, two granites and sixteen volcanic rocks, were analyzed. The granite samples were upper Cretaceous~Eocene granite samples (Çavus Granite) collected from the south of Halilaga. The volcanic rocks consisting of Miocene Şapçı Volcanics were eleven andesite samples from Etili (including three drill core samples). and three drill core samples from the Emeşe Formation of the Dikmen Area. Thirteen elements were analyzed including BaO. The analytical method used was potassium permanganate titration for FeO, and ICP-AES for other elements. The results of the analysis, calculated norm, differentiation index (D.I.) and solidification index (S.I.) are shown in Table 1-8. The analyzed samples were also studied microscopically. (1) Granitic rocks

The chemical composition of the upper Cretaceous-Eocene Çavus Granite was studied using the diagrams in Figures  $1-5 \sim 1-11$ . The results are as follows. (1) The granites of this survey area are between granodiorite and quartz monzonite of Bateman et al. (1963), namely, those with low normative orthoclase in the quartz-plagioclase-orthoclase diagram. The results of the Gümüşhane Project (1984-1987) show that the older granite (Devonian Gümüşhane Granite) is quartz monzonite while the younger (Upper Cretaceous-Eocene) is granodiorite. There was a significant difference between these granitoids, but in the Çanakkale Area, the difference in composition by age was not observed.

-18-

② Neither granite has a clear range of compositional variation in the D.I.oxides chart.

(3) A similar tendency exists for the CaO-alkali ratio, and the granites are in a high CaO zone (Figure 1-8).

Genetic classification of the granitoids has been proposed by Chappell and White (1974), Ishihara (1977) and others. In Chappell and White's classification, the  $Al_2O_3/(Na_2O + K_2O + CaO)$  molar ratio, normative diopside and normative corundum values are used as the basis of the grouping. On this basis, both younger granites of the survey area belong to type I. Ishihara uses the mode of opaque minerals observed under the microscope and the  $Fe_2O_3/FeO^*$  ratio for his classification. Although microscopic study of polished sections has not been done in the third-phase work, the mode of opaque minerals and the  $Fe_2O_3$ -FeO\* diagram (Figure 1-9) indicate the granites of the survey area to be of the magnetite series. (2) Volcanic rocks

Sapçı Volcanics is andesite. In the  $SiO_2 \cdot (Na_2O+K_2O)$  diagram (Figure 1-6), however, they are in the dacite range. The reason for these rocks being chemically in the dacite and rhyolite ranges is believed to be the increase of  $SiO_2$  content by 5-6% through alteration. Also, the MFA diagram (Figure 1-7) and the  $SiO_2$ -FeO\*/MgO diagram (Figure 1-10) show that the volcanic rocks of this area belong to the calc-alkali series.

(3) Compositional variation in the alteration zones

The thirty two samples of Şapçı Volcanics were classified into three groups: thirteen unaltered (A), nine strongly silicified (B) and nine altered andesitic rocks (C). The averages of the chemical components are shown in Table 1-8.

Stable element :Ti
Increased component:SiO<sub>2</sub> (high in center of silicified zones.)
Decreased element :Al (unchanged in alunite zones.)
Fe (low in strongly silicified zones.)
Mg.Ca (marked decrease.)
Na+K (marked decrease, but unchanged alunite zones.)

4-4 Resource Potential of Gold and Porphyry Molybdenum Deposits

# 4-4-1 Gold Potential

The geologic characteristic of this area is the predominance of Bocene to Miocene intermediate volcanic rocks. In Zone A, Eocene Çamyayla volcanics is developed and small-scale vein mineralization associated with the volcanism of this period is observed, while in Zone B including Etili Area, Miocene Şapçı

|                    | 1      | 2      | 3      | 4      | 5      | 12     | 13     | 14     | 15     | 16     | 17       | 18     | 1   |
|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|-----|
|                    | C679   | P706   | S663   | S735   | 16135  | P703   | S699   | D151   | D152   | D153   | D154     | D155   |     |
| SiO <sub>2</sub> % | 51.26  | 59.03  | 55.32  | 62.35  | 58.07  | 66.59  | 65.48  | 73.06  | 69.38  | 70.62  | 69.17    | 70.95  | ]   |
| Ti0₂%              | 1. 20  | 0.71   | 0.77   | 0.60   | 0.60   | 0. 40  | 0.42   | 0. 25  | 0.23   | 0.24   | 0.24     | 0.25   |     |
| Al203%             | 18.99  | 16.81  | 17.45  | 17.29  | 16.55  | 15, 53 | 15.15  | 12.12  | 11.49  | 12, 27 | 12.19    | 12, 45 |     |
| Fe203%             | 5. 78  | 3. 83  | 3. 87  | 5.00   | 3, 58  | 1. 98  | 1.84   | 1. 38  | 2.46   | 2, 51  | 0.87     | 1, 30  |     |
| Fe0%               | 2.66   | 0.96   | 3. 05  | 0.13   | 2.19   | 1.70   | 2.06   | 0.13   | 0.50   | 0.19   | 0.67     | 0.36   | ( · |
| Mn0%               | 0.16   | 0.07   | 0.20   | 0.04   | 0, 38  | 0.07   | 0.04   | 0.01   | 0. 02  | 0.02   | 0.03     | 0, 02  |     |
| Mg0%               | 3, 16  | 2.87   | 1. 72  | 0.56   | 0. 93  | 1.46   | 1.81   | 0.50   | 1.04   | 0.71   | 1.24     | 1.03   |     |
| Ca0%               | 8.45   | 5. 51  | 7.92   | 3. 93  | 4.15   | 3.60   | 3.31   | 3. 25  | 2. 21  | 1.86   | 3.70     | 2.68   |     |
| Na 20%             | 3, 55  | 2. 96  | 3. 97  | 3.40   | 2, 95  | 3. 65  | 2.86   | 0. 25  | 0. 21  | 0. 25  | 0.24     | 0, 27  |     |
| K 20%              | 1.85   | 2.67   | 0.60   | 3.47   | 4.08   | 3, 52  | 4.12   | 3. 43  | 3. 67  | 4.04   | 3, 14    | 4.34   |     |
| P205%              | 0.38   | 0. 22  | 0. 28  | 0.22   | 0.20   | 0.25   | 0.19   | 0.12   | 0.15   | 0.14   | 0.16     | 0.15   | {   |
| Ba0%               | 0.07   | 0.09   | 0.05   | 0.08   | 0. 07  | 0.05   | 0.12   | 0.05   | 0.04   | 0.08   | 0.03     | 0.05   |     |
| L01%               | 3.45   | 3.55   | 3, 88  | 2.50   | 4.79   | 0.56   | 1.61   | 5. 70  | 6. 08  | 5. 11  | 7.59     | 5, 93  |     |
| Total%             | 100.96 | 99.28  | 99, 08 | 99.57  | 98.54  | 99.36  | 99.01  | 100.25 | 97.48  | 98.04  | 99. 27   | 99, 78 | 1   |
| Q                  | 3.75   | 16.40  | 12.56  | 20.98  | 15.24  | 22, 42 | 23. 09 | 51.18  | 48.25  | 49.06  | 46.35    | 45.92  |     |
| с                  | 0.00   | 0.00   | 0, 00  | 1.85   | 0.21   | 0. 00  | 0.42   | 2.49   | 3. 51  | 4.44   | 2, 05    | 2.79   |     |
| or                 | 10.93  | 15. 78 | 3, 55  | 20. 51 | 24. 11 | 20.80  | 24.35  | 20. 27 | 21.69  | 23.88  | 18.56    | 25, 65 | ļ   |
| ab                 | 30. 02 | 25. 03 | 33. 57 | 28.75  | 24. 95 | 30. 87 | 24.19  | 2, 11  | 1.78   | 2. 11  | 2.03     | 2.28   |     |
| an                 | 30.42  | 24.70  | 28.03  | 16.64  | 19.29  | 15, 60 | 15.19  | 15. 01 | 9, 99  | 8. 30  | 17.32    | 12, 32 |     |
| di-wo              | 3.77   | 0.50   | 3, 94  | 0.00   | 0.00   | 0.27   | 0.00   | 0.00   | 0.00   | 0.00   | - 0. 00° | 0.00   | j   |
| di-en              | 3. 26  | 0.43   | 2.69   | 0:00   | 0.00   | 0.19   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00     | 0.00   |     |
| di-fs              | 0.00   | 0.00   | 0.94   | 0. 00  | 0.00   | 0.05   | 0.00   | 0. 00  | 0. 00  | 0. 00  | 0.00     | 0.00   |     |
| hy-en              | 4.61   | 6.71   | 1.59   | 1.39   | 2. 32  | 3. 44  | 4. 51  | 1. 25  | 2.59   | 1.77   | 3. 09    | 2.56   |     |
| hy-fs              | 0.00   | 0.00   | 0, 56  | 0.00   | 0. 78  | 0. 91  | 1.64   | 0.00   | 0.00   | 0.00   | 0.18     | 0.00   | [   |
| mt                 | 5.62   | 1.26   | 5.61   | 0.00   | 5.19   | 2.87   | 2.67   | 0.00   | 1.01   | 0. 00  | 1. 25    | 0, 50  | 1.  |
| hm                 | 1. 91  | 2.96   | 0.00   | 4.99   | 0.00   | 0, 00  | 0.00   | 1. 38  | 1.77   | 2. 51  | 0.00     | 0.95   |     |
| il                 | 2. 28  | 1.35   | 1.46   | 0.36   | 1.14   | 0.76   | 0. 80  | 0.30   | 0.44   | 0.44   | 0.46     | 0.48   |     |
| tn                 | 0.00   | 0.00   | 0.00   | 1.01   | 0.00   | 0.00   | 0. 00  | 0. 23  | 0. 00  | 0. 02  | 0. 00    | 0.00   |     |
| ap                 | 0.90   | 0. 52  | 0.66   | 0. 52  | 0.47   | 0.59   | 0.45   | 0. 28  | 0.36   | 0. 33  | 0.38     | 0.36   | ľ   |
| S. I.              | 18.59  | 21.60  | 13.02  | 4.46   | 6. 78  | 11.86  | 14.26  | 8. 79  | 13. 20 | 9, 22  | 20. 13   | 14.11  |     |
| D. I.              | 44.70  | 57.21  | 49.68  | 70.24  | 64.30  | 74.09  | 71.63  | 73.56  | 71.72  | 75.05  | 66.94    | 73.85  | · · |

Table 1-8 Chemical Analysis and CIPW Norms for Granitic Rocks and Volcanics

| Area | Sample | Rock Name          | Coordinates | Rock Unit | Location         |
|------|--------|--------------------|-------------|-----------|------------------|
| No.  | No.    |                    | · ·         |           |                  |
| 1    | C679   | Basaltic andesite  | 90040 20630 | Şapçı Y.  | Davulga Stream   |
| 2    | P706   | Andesite           | 90070 24240 | Şapçı V.  | Davulga Stream   |
| 3    | S663   | Basaltic andesite  | 96550 21710 | Şapçı V.  | Ardıç Stream     |
| 4    | \$735  | Biotite andesite   | 97330 26100 | Şapçı V.  | Küçökpaşa        |
| 5    | 16135  | Unaltered andesite | 88338 20785 | Şapçı Y.  | MJTC-16(135.00m) |
| 12   | P703   | Granodiorite       | 89240 15300 | Çavus Gr. | Bahçeler Stream  |
| 13   | S699   | Granodiorite       | 86870 17580 | Çavus Gr. | Darı Stream      |
| 14   | D151   | Altered rock       | 13062 41280 | Emeșe F.  | MJTC-15( 56.80m) |
| 15   | D152   | Altered rock       | 13062 41280 | Emeșe F.  | MJTC-15( 68.50m) |
| 16   | D153   | Altered rock       | 13062 41280 | Emeşe F.  | MJTC-15(119.80m) |
| 17   | D154   | Altered rock       | 13062 41280 | Emeşe F.  | MJTC-15(135,00m) |
| 18   | D155   | Altered rock       | 13062 41280 | Emeşe F.  | MJTC-15(149.50m) |

Table 1-8 Chemical Analysis and CIPW Norms for Granitic Rocks and Volcanics

|         |                    | 6      | 7     | 8     | 9      | 10    | 11     | A       | verage | *       |
|---------|--------------------|--------|-------|-------|--------|-------|--------|---------|--------|---------|
|         |                    | 17694  | 16110 | N605  | N610   | Y630  | ¥682   | A       | B      | C       |
|         | Si0 <sub>2</sub> % | 60.23  | 94.43 | 97.17 | 96. 61 | 96.70 | 98, 29 | 56.86   | 96, 39 | 64.41   |
|         | TiO <sub>2</sub> % | 0.74   | 0.61  | 0.86  | 0.54   | 0. 59 | 0.59   | 0.78    | 0.81   | 0.74    |
|         | A1203%             | 20.34  | 0.40  | 0.26  | 0, 15  | 0.15  | 0.47   | 17, 52  | 0. 29  | 15, 02  |
|         | Fe203%             | 3, 38  | 2.48  | 0.01  | 0.05   | 0. 03 | 0.13   | 4.61    | 0.61   | 3.69    |
|         | Fe0%               | 0.68   | 0.30  | 0.09  | 0.06   | 0.06  | 0. 03  | 1, 99   | 0.24   | . 0. 28 |
|         | Mn0%               | <0.01  | <0.01 | 0.01  | 0.01   | 0.01  | 0.01   | 0.16    | 0.01   | 0, 01   |
|         | NgO%               | 0.28   | 0. 05 | 0, 08 | 0.04   | 0. 03 | 0.04   | 1.97    | 0. 03  | 0.12    |
|         | Ca0%               | 0.46   | 0.19  | 0. 22 | 0.19   | 0.19  | 0, 25  | 5.51    | 0.15   | 0.22    |
| · · · · | Na 20%             | 0. 78  | 0.01  | 0.14  | 0.12   | 0.12  | 0.11   | 3.05    | 0.12   | 0. 50   |
|         | K 20%              | 3, 82  | 0.04  | 0.06  | 0. 04  | 0.04  | 0. 08  | 2. 58   | 0.06   | 2. 31   |
|         | P20₅%              | 0.24   | 0.06  | 0. 03 | 0. 02  | 0. 03 | 0. 03  | 0. 26   | 0. 05  | 0.26    |
|         | Ba0%               | 0.06   | 0. 08 | 0. 03 | 0.11   | 0. 09 | 0. 02  | 0.09    | 0. 05  | 0.10    |
|         | L01%               | 8.96   | 0. 89 | 0.40  | 0.40   | 0.35  | 0.41   | 4.69    | 0. 70  | 12.84   |
|         | Total%             | 99, 98 | 99.55 | 99.36 | 98.34  | 98.39 | 100.46 | 100. 07 | 99. 51 | 100. 49 |

| Area | Sample | Rock Na     | ame     | Coordinates | Rock Unit | Location         |
|------|--------|-------------|---------|-------------|-----------|------------------|
| No.  | No.    | at a second |         |             |           |                  |
| 6    | 17694  | Altered an  | ndesite | 88338 20785 | Şapçı V.  | MJTC-17( 69.40m) |
| 7    | 16110  | Altered an  | ndesìte | 88338 20785 | Şapçı V.  | MJTC-16( 11.00m) |
| 8    | M605   | Massive si  | il rock | 93850 24090 | Şapçı V.  | Baga Hill        |
| 9    | M610   | Massive si  | il rock | 93835 24055 | Şapçı V.  | Baga Hill        |
| 10   | Y630   | Massive si  | il rock | 94110 25175 | Şapçı V.  | Hamam Hill       |
| 11   | Y682   | Massive si  | il rock | 93980 25090 | Şapçı V.  | Haman Hill       |

\* Average of Sapç1 Volcanics (from first to third phases)

A 13 samples (unaltered andesite : TS078, TS093, S405, 559, S415, S373, 159, 259, C679, P706, S663, S735, 16135

B 9 samples (strongly silicified rock : M419, T485, M378, 258, M605, M610, Y630, Y682, 16110)

C 9 samples (altered andesite : 158, 358, 359, 460, S463, 558, 656, M460, 17694)



¢

Figure 1-8 CaO-Na<sub>2</sub>O-K<sub>2</sub>O Diagrams

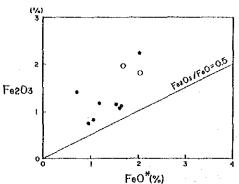



Figure 1- 9 Fe<sub>2</sub>O<sub>3</sub>-FeO\* Diagram for Granitic Rocks

11/43

80.0

20,2

80.0

50.0

40.0 20.0

13,0

10.0

8.0 7.5

5.O

2.5

0.0 7.5

5.0

2.5

0.0 7.3

5.0

2.5

0,0 12.5

10.0

7.5

50

z.5

0.0 7.5

6 0

2.5

**?** ?

5.0

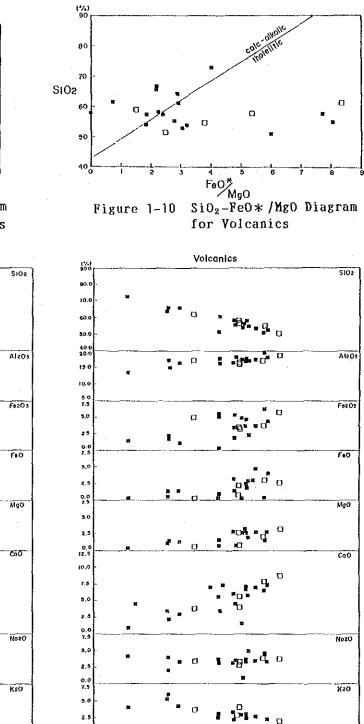
25

Granites

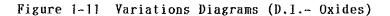
A70\*1

\$00°°

R°...\*


0•0 I ·

0° 1


10

**в**о

D.I. (Q + or + ab)



D.1. (Q + or + ab)



Symbols (same as in Fig. 1-5~ Fig. 1-11)

Granites

- Granodlarite (Triassic ~ Ecocene) Phase 1 ~ Phase II
- O Granodlarite (Triassic~Eeocene) Phase II
- Volcanics
  - 🔳 Andesile rocks (Eocene~ Pllocene) Phase I ~ Phase II
  - C Andesile rocks (Eocene~Pliocene) Phuse M

Table 1-9 Results of Microscopic Observation of the Thin Section

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample | Rock Name               | Rock | Texture     |             | Phenocryst  |                 |           | Groundmass  | ISS              | Alteration            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|------|-------------|-------------|-------------|-----------------|-----------|-------------|------------------|-----------------------|
| Basaltic andesite       Ksa       Porphyritic       Image: Silicified rock       Ksa       Granular       Image: Silicified rock       Ksa       Forphyritic       Image: Silicified rock       Image: Silicified rock <t< th=""><th>No.</th><th></th><th>unit</th><th></th><th>Qz Kf Pl Bi</th><th>Ho Au Hy M</th><th>f Op (</th><th>Pl Bi</th><th>Ho Au</th><th>Hy   Mf   Op   G</th><th></th></t<> | No.    |                         | unit |             | Qz Kf Pl Bi | Ho Au Hy M  | f Op (          | Pl Bi     | Ho Au       | Hy   Mf   Op   G |                       |
| Massive silicitied rock Msa       Granular       O       O       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C679   | Basaltic andesite       | Msa  |             | 0           |             | 0               | 0         |             |                  | Ch. Ep                |
| Massive silicified rock %sa       Granular       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M605   | Massive silicified rock | Msa  | Granular    | 0           |             |                 | 6         |             |                  | vs Ser.Ch. Mf-relict  |
| Granodiorite       Int       Bolocrystalline       Int       Bolocrystalline       Int       Bolocrystalline       Int       Bolocrystalline       Int       Bolocrystalline       Int       Int       Int       Bolocrystalline       Int       Int       Int       Bolocrystalline       Int       Int       Int       Bolocrystalline       Int       Int       Int       Int       Int       Bolocrystalline       Int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M610   | Massive silicified rock | Msa  | Granular    |             |             |                 |           |             | · · · · · ·      | vs Ser. Ch            |
| Andesite       Msa       Porphyritic       Image: Complexitic       Image:                                                                                                                                                                            | P703   | Granodiorite            | Int  |             | 0           | 0           |                 | · · · · · |             |                  |                       |
| Basaltic andesite       Ksa       Porphyritic       ©       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P706   | Andesite                | Msa  | Porphyritic |             |             |                 | 0         |             | 0                | Ch. Mf→relict         |
| Granodiorite       Int       Holocrystalline       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○ <t< td=""><td>S663</td><td>Basaltic andesite</td><td>Ksa</td><td>Porphyritic</td><td>0</td><td></td><td>0</td><td><br/>0</td><td></td><td></td><td>Ch, Ep</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S663   | Basaltic andesite       | Ksa  | Porphyritic | 0           |             | 0               | <br>0     |             |                  | Ch, Ep                |
| Biotite andesite       Msa       Porphyritic       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □ <t< td=""><td>S699</td><td>Granodiorite</td><td>Int</td><td></td><td>©</td><td>0</td><td>Ö</td><td></td><td>• • • • • •</td><td></td><td>Ch. Ep</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S699   | Granodiorite            | Int  |             | ©           | 0           | Ö               |           | • • • • • • |                  | Ch. Ep                |
| Massive silicified rock Msa       Granular       □       □       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞       ∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S735   | Biotite andesite        | Mşa  |             | 0           |             | 0               | 0         |             | 0                | Ch. Bi-relict         |
| Massive silicified rock Msa       Granular       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y630   | Massive silicified rock | Nşa  | Granular    |             | • • • • • • | ·               |           |             | ∇                | vs Ser.Ch. qz veinlet |
| 0       Altered andesite       Msa       Granular       □       □       △       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○       ○                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y682   | Massive silicified rock | Kşa  | Granular    |             | ••          | <u> </u>        | <br>      |             |                  | vs Ser.Ch             |
| 5       Unaltered andesite       Msa       Porphyritic       ○       △       ○       ○       ○       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16110  | Altered andesite        | M\$a |             |             | 7           | $\triangleleft$ | <br>      | • • • • •   |                  | vs Ser.Ch. Mf-relict  |
| I       Altered andesite       Msa       Porphyritic       O       △       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       ○       □       □       ○       □       □       ○       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □       □ <t< td=""><td>16135</td><td>Unaltered andesite</td><td>Nsa</td><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td>Ch. Ep</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16135  | Unaltered andesite      | Nsa  |             | 0           |             |                 | 0         |             |                  | Ch. Ep                |
| Altered rockTevGranularOAltered rockTevGranularOAltered rockTevGranularOAltered rockTevGranularOAltered rockTevGranularOAltered rockTevGranularOAltered rockTevGranularO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17694  | Altered andesite        | Nşa  | Porphyritic |             |             |                 | 0         |             | 0                | Ser, Ch               |
| Altered rock       Tev       Granular       0       0       0         Altered rock       Tev       Granular       0       0       0       0         Altered rock       Tev       Granular       0       0       0       0       0         Altered rock       Tev       Granular       0       0       0       0       0       0         Altered rock       Tev       Granular       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>D151</td> <td>Altered rock</td> <td>Tev</td> <td>Granular</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>Ch. Mf-Ep veinlet</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D151   | Altered rock            | Tev  | Granular    |             |             |                 |           |             | 0                | Ch. Mf-Ep veinlet     |
| Altered rock     Tev     Granular     O     O       Altered rock     Tev     Granular     O     O       Altered rock     Tev     Granular     O     O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D152   | Altered rock            | Tev  | Granular    |             |             | )               |           |             | 0                | Ch. Ep. Op-pyrite?    |
| Altered rock Tev Granular © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D153   | Altered rock            | Tev  | Granular    | •••••       |             |                 | 6         |             | L                | Ch.Ep. Op-pyrite?     |
| Altered rock Tev Granular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D151   | Altered rock            | Tev  | Granular    |             |             |                 | 6         |             | 0                | Ch. Ep                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D155   | Altered rock            | Tev  | Granular    |             | ·····       |                 | 6         |             | 0<br>0           | Ch.Ep. Op-pyrite?     |

Abbreviations

| JTC-15 56.8m     | JTC-15 68.5m           | 153 : MJTC-15 119.8m | 154 : MJTC-15 135.0m | 155 : MJTC-15 149.5m |
|------------------|------------------------|----------------------|----------------------|----------------------|
| 0m 151 : MJTC-15 | От 152: MJTC-15        |                      | 154 : MI             | 155 : MC             |
| 16 11.0m         | 16 135.                | 17 69.4m             |                      |                      |
| 16110 : MJTC-16  | 16135 : MJTC-16 135.0m | 17694 : MJTC-17      |                      |                      |

 $\odot:$ Abundant  $\bigcirc:$ Common  $\square:$ Few  $\triangle:$ Rare

Qz:Quartz. Kf:Potassium feldspar, Pl:Plagioclase, Bi:Biotite, Ho:Hornblende, Au:Augite, Hy:Hypersthene, Py:Pyroxene, Mf:Mafic mineral Op:Opaque minerals Ser:Sericite Ch:Chlorite Ep:Epidote C:Calcite Ah:Anhydrite G:Glass vs:very strong arg:argillization volcanics is developed, and silicified and argillized zones related to epithermal gold mineralization is widely developed. In the Çanakkale area, there are the Madendag1 and Kartaldag1 gold mines, and the alteration zone extends from these mines to Zone B including the Etili Area.

It was shown by Landsat image analysis that there are many silicified and argillized alteration zones in the survey area, but the alteration zones are not necessarily accompanied by gold mineralization. Gold occurs only in limited localities. The major localities where gold mineralization was confirmed by geochemical samples (rock and trench) are shown in Table 1-7. The potential of these areas will be clarified by subsequent surveys. The characteristics known to date are as follows.

(1) In the central part of Zone B, the basement which consists of the Taşdibek Formation and Akpınar Granite forms an uplifted zone and gold mineralization is observed in the altered zone surrounding the basement complex. Similar characteristics are found in the Etili Area.

(2) The X-ray diffraction study of samples from the alteration zone showed that gold mineralization occurs in the acidic alteration whose products are kaoline, alunite and pyrophyllite with associated cristobalite.

(3) In the silicified zones, the gold content is low in the massive part, but is generally high along the fissures of the brecciated part with limonitic and hematitic clay associations.

(4) Aside from gold, the components with large absolute values of the eigenvector of the principal component analysis are copper, lead, zinc, silver, mercury, arsenic, and molybdenum; these elements are considered to be associated with gold.

From the above, it is anticipated that low-grade large-scale gold deposits occur in the silicified and argillized alteration zones near the basement rocks in Zone B including the Etili Area. Gold-bearing massive silicified bodies are expected from the Sartas to Güvemalanı Hills in the Arlık Stream Area and Tepeköy in the Etili Area. Further gold-bearing brecciated zones are detected from Güvemalanı to Inkaya Hills.

# 4-4-2 Porphyry Molybdenum Potential

Porphyry molybdenum-copper deposits associated with the Dikmen Granite and porphyry intrusion were discovered in Zone C. The mineralization extends from the eastern side of the Dikmen Granite, which is elongated in the NEN-SWS direction to the Emeşe Formation of the Sıgırirek Stream. The rocks are decoloured white at Sıgırirek, and minor amounts of sulfide minerals such as molybdenite, chalcopyrite, sphalerite and pyrite occur in association with quartz veinlets. Although invisible under the microscope, analysis of drill cores shows the existence of gold, silver, arsenic, mercury and antimony. Sericite and kaoline were identified by X-ray diffraction, indicating epithermal activity after the porphyry mineralization. The two mineralizations may be overlapping. The porphyry-type mineralization extends to the lower horizons and this is expected to be a low-grade large-scale deposit. This deposit locally contains gold. If gold can be found in significant amounts in the overlapped section, it would be an important future target.

4-5 Geologic Structure, Characteristics and Control of Mineralization.

The central part of Zone B consists of the Taşdibek Formation and Akpınar Granite which forms the geological basement. The basement is uplifted. Also, the south of the Etili Area consists of the Sakar Dag1 Formation and Çavus Granite which forms the geological basement. The silicified and argillized zones of Şapç1 Volcanics occur around the basement. The alteration zone extends further outward, but the gold mineralization is observed near the uplifted zone. In these localities, acidic alteration consisting of cristobalite, alunite, kaoline and pyrophyllite is observed. Analysis of rocks shows copper, lead, zinc, silver, mercury, arsenic and molybdenum together with gold. These elements are considered to have been associated with gold mineralization.

Quaternary Kocaçakıl Basalt lava intruded along the fault which extends through the uplifted zone of the basement. This is further evidence that conduits for hydrothermal fluids formed in the vicinity of the basement, and gold mineralization associated with the acidic alteration occurred.

Triassic Emese Formation is predominant in the southern part of Zone C. There are lineations trending NEN-SWS, parallel to the Dikmen Fault. Serpentinite intruded along these latent faults, and Dikmen Granite and porphyry also intruded in the same direction in latest Cretaceous to Eocene. Parts of the limestone and metavolcanics of the Emeşe Formation were skarnitized, argillized and silicified by the intrusion of the granitic rocks Nolybdenite and other sulfide minerals occur in the quartz and porphyry. veinlets along the fissures formed by the intrusion of Dikmen Granite and porphyry. The intermediate volcanism became active in the Tertiary, and large amounts of lava and pyroclastic material were deposited during the Eocene to Miocene. The structure with the NEN-SWS trend clearly remained later into the time of silicification, argillization and associated gold mineralization (inferred to be latest Tertiary to Quaternary). Gold-bearing zones are locally observed along this direction, and the range of this mineralized zone is 4 km long and 2-3 km wide elongated in a NEN-SWS direction.

# CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS

# 5-1 Conclusions

During the third phase, geological and geochemical surveys were conducted in the Etili Area. Further trench survey was carried out in the Arlık Stream and Piren Hill Areas, and drill survey in the Arlık Stream, Etili and Dikmen. Compiled maps of these areas are shown Figures 1-12, 1-13 and 1-14, the list of geological and geochemical characteristics in Table 1-10, and the summary of the four areas is below.

#### (1) Arlık Stream Area

Silicified and argillized zones occur in Şapçı Volcanics and part of Kirazlı Conglomerate. The Kocataş silicified zones occurring in Şapçı Volcanics were evident to 100m in MJTC-5, 6, 7 and 8, after which Kirazlı Conglomerate was intersected, but the Sartaş and Güvemalanı silicified zones continued for at least 150m in MJTC-3, 4, 9, 10, 11, 12, 13 and 14. Altered zones with limonite are predominant on the outcrops, but pyrites are not observed. Of the results of the drill survey, the following are significant: fine-grained pyrites are developed in the section underneath the surface; limonitic silicified zones with open spaces (caves) were found by drill hole MJTC-4 and 10; and the low-grade auriferous zones continued from near surface to bottom in holes MJTC-4, 13 and 14. Therefore, it is considered that the potential for gold deposits is high. Generally, auriferous mineralization in the silicified body did not extend further downward, and silicified veins were observed in the periphery of the silicified zones. Thus it is considered that their shapes are "jellyfish-like" in geologic section.

#### (2) Piren Hill Area

The geology consists of Sapç1 Volcanics in this vicinity. The original rocks cannot be distinguished in the altered zones. The volcanic rocks become thicker with distance from the geologic basement. Altered zones with limonite and hematite are predominant on the outcrops, and pyrites are not observed because of oxidation.

Gold anomalies were detected in the silicified zones located in the southern part of the large alteration zone. The zones extend in an E-W direction in the vicinity of Piren Hill. The auriferous zones, which occur in limonitic clay such as those in fault zones, were detected by drill hole MJTC-2. As a result of the trench survey, gold-bearing zones on the surface were small-scale and the content of gold was low. (3) Etili Area

Silicified and argillized zones occur in Sapçı Volcanics. The Halilaga silicified zones occurring in Sapçı Volcanics were evident as thin near the surface in MJTC-16 and 17, after which weakly altered andesites were intersected, but the Tepeköy silicified zones are inferred to continue for at least 150m because of large-scale silicified bodies. Altered zones with limonite are predominant on the outcrops, but pyrites are not observed.

Of the results of the drill survey, the following are significant: finegrained pyrites are developed in the section underneath the surface, limonitic silicified-argillized zones were found by drill hole MJTC-16 and the low-grade auriferous zones continued from 2.80m to 16.65m in hole MJTC-16. Therefore, it is considered that the potential for gold deposits is low.

In Tepeköy alteration zones, auriferous mineralization in the silicified body extend further downward, and silicified veins are expected to be found in the central portion of the silicified zones. Thus it is considered that their shapes are "mushroom-like" in geologic section, as in the Kestane Mt. Area.

#### (4) Dikmen Area

Geophysical prospecting was carried out together with a detailed geological survey and geochemical prospecting. The detailed geological survey has clarified the distribution and conditions of gold occurrence, argillized zones skarnization. The geochemical work has revealed two types of and By geophysical methods, extent mineralization. the subsurface ... of mineralization from the outcrop downward was shown by delineating the lowresistivity zone and FE anomalies by IP.

A porphyry molybdenum-copper deposit associated with the intrusion of the Dikmen Granite and porphyry was discovered. The mineralization extends from the eastern side of the Dikmen Granite in a NW-SE direction to the Emeşe Formation in the Sigirirek Stream. The Emeşe Formation is altered, and minor amounts of sulfides such as molybdenite, chalcopyrite, wolframite, sphalerite and pyrite occur in the quartz veinlets. The analytical results show the existence of gold, arsenic, mercury and antimony. This shows that epithermal mineralization occurred after the porphyry molybdenum mineralization, and they now overlap spatially.

The porphyry molybdenum deposit mentioned above is expected to be a largescale low-grade deposit as this type of mineralization is extensive at depth. It contains gold and antimony locally and may turn out to be a very important target.

The results of the third phase work summarized in (1)-(3) above, indicate the possibility of large-scale low-grade gold deposits in the alteration zone

near the basement rocks. The porphyry molybdenum deposit mentioned in (4) also is expected to be a large-scale low-grade deposit as this type of mineralization is extensive at depth. It locally contains gold and antimony, and significant gold is expected to be found in the overlapping portion.

5-2 Recommendations for Future Exploration

It is recommended that the following work be conducted in the promising areas delineated above (Figure 1-15). In the three localities of Zone B, epithermal gold mineralization is anticipated because of the gold showings of the alteration zones which were identified by geological and geochemical surveys. The hydrothermal gold mineralization is expected to extend both horizontally and vertically. Here, detailed geological survey clarified the distribution and extent of the alteration zone, and heavy mineral investigation in the vicinity located the position of the gold mineralization. On the basis of these findings, inclined drilling should be carried out in order to clarify the state of subsurface mineralization.

#### (1) Arlık Stream Area

The auriferous zones have been detected in Sartaş, Güvemalanı and İnkaya Hills; these localities belong to the concession of MTA. The drilling survey should be continued in these localities since auriferous zones were intersected by drill holes MJTC-4, 10, 13 and 14.

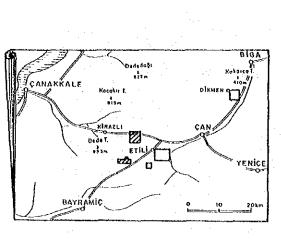
# (2) Piren Hill Area

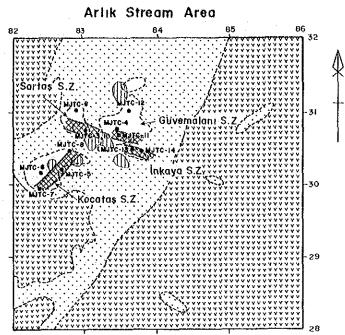
Gold anomalies were detected in the silicified zones located in the southern part of the large alteration zone which extends in an E-W direction in the vicinity of the Piren Tepe. The auriferous zone was detected by drill hole MJTC-2 in the Davulgili silicified zones belonging to the concession of MTA. This zone was small and the content of gold was low on the surface. Further drilling survey should then be carried out in the southeastern part of the Piren silicified zones, which corresponds to west of Muratlar Village.

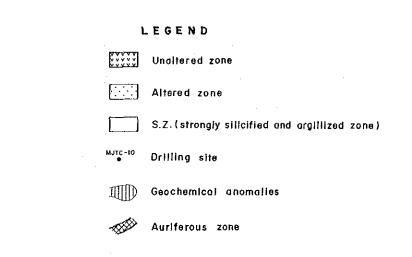
#### (3) Etili Area

The auriferous zones have been detected in Hamam Hill of southern Tepeköy Village. Although this locality does not belong to the concession of MTA, the drilling survey should be continued here because the auriferous zones were found through study of many rock samples. (4) Dikmen Area

Geophysical prospecting was carried out along with detailed geological survey and geochemical prospecting. By geophysical methods, the subsurface extent of mineralization from the outcrop downward was shown by delineating the mineralization zones corresponding to geophysical anomalies, and was intersected by drill hole MJTC-15. Further drill survey should be conducted in the mineralized zone of the localities distributed in the Dikmen Granite and porphyry.


|                             |          | ·           |            |             |
|-----------------------------|----------|-------------|------------|-------------|
| Characteristics of          | •        | Survey Area |            | <u></u>     |
| Geology and Geochemistry    | Arlık    | Etili       | Piren      | Dikmen      |
|                             | Stream   | · .         | Hill       | · · · · ·   |
| Type of Mineralization      | <u> </u> | Epithermal  | Туре       | Porphyry Mo |
| Country Rock of Ore Horizon |          | Şapçı Volca | nics       | Dikmen G.   |
|                             |          |             |            | Porphyry    |
| Clay Minerals               | Kaoline, | alunite, py | rophyllite | Sericite    |
| Silicified Zone:Massive     | 0        | 0           | 0          | -           |
| Vein                        | ×        | ×           | ×          | 0           |
| Scale(km²)                  | 1.5      | 0.8         | 4.7        | · -         |
| Number of Samples (N)       | 802      | 558         | 104        | 50          |
| Au (max) ppb                | 3050     | 3660        | 2060       | 4600        |
| Au > 100 ppb(Core & Trench) | 103pcs   | 5pcs        | . – .      |             |
| Au > 100 ppb(Rock sample)   | -        | 78pcs       | _          | -           |
| Mo > 100 ppm(Core)          |          | _           | -          | 10pcs       |
| Heavy Mineral Study         | ۲        | •           | •          | -           |
| Detection of Gold Grains    | common   | abundant    | few        | <u> </u>    |
| Potential                   | high     | high        | low        | high        |
| Gold-bearing m sil ore      |          |             |            |             |
| Gold-bearing brecciated ore |          |             |            |             |
| Gold-gearing quartz vein    |          |             |            |             |
| Porphyry molybdenum         |          |             |            |             |


Table 1-10 Geological and Geochemical Characteristics


○ : predominant × : not observed ● : collected samples □ : expected ore m sil:massive silicified

Gold-bearing massive silicified ore : During the process of copper smelting, the iron component of the copper concentrates must be precipitated in the slag. Silicified ore is used for this purpose. The ratio of iron to silicified ore is 1.2. Kasuga Wine (Kyushu island) is operated as an open pit; ore grade is 2-3g/T Au and more than 88% SiO<sub>2</sub>.

Gold-bearing brecciated ore : Gold extraction is easy with this type of ore because a sodium cyanide solution can be passed through the cracks to dissolve the gold. Gold extracted by the heap-leaching method is absorbed in active carbon. Generally, the location of the mine should be in a depopulated area with dry climate and a small amount of precipitation. Picacho Wine (California, USA) is operated as an open pit, ore grade is 0.9g/T Au, cut-off limit is 0.3g/T.







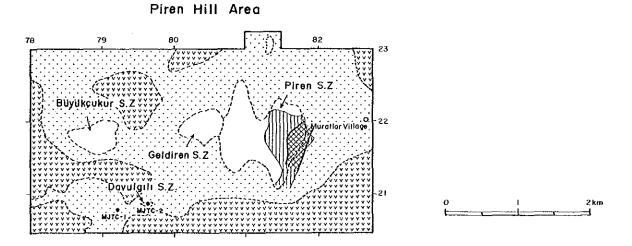
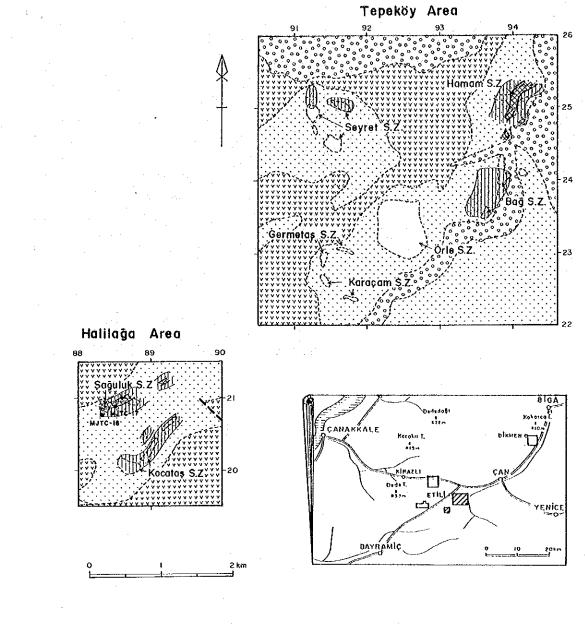




Figure 1-12 Compiled Map of the Arlık Stream and Piren Hill Areas





Silt, sand and gravel Silt, sand and gravel Unaltered zone Altered zone S.Z. (strongly silicified and argillized zone) Fault Murc-16 Drilling site Geochemical anomalies Auriferous zone

'Figure 1-13 Compiled Map of the Etili Area

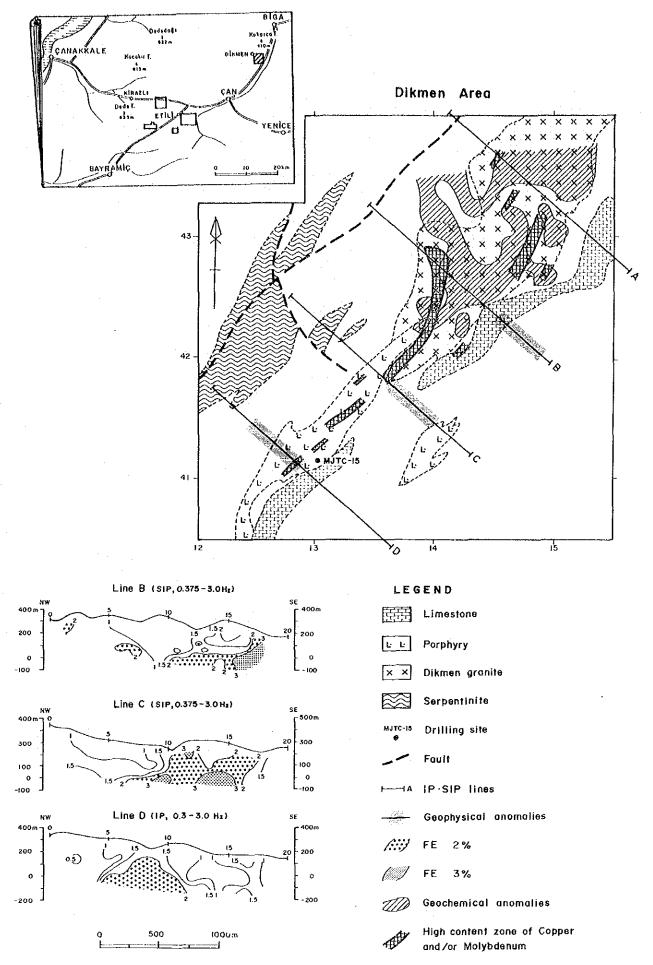
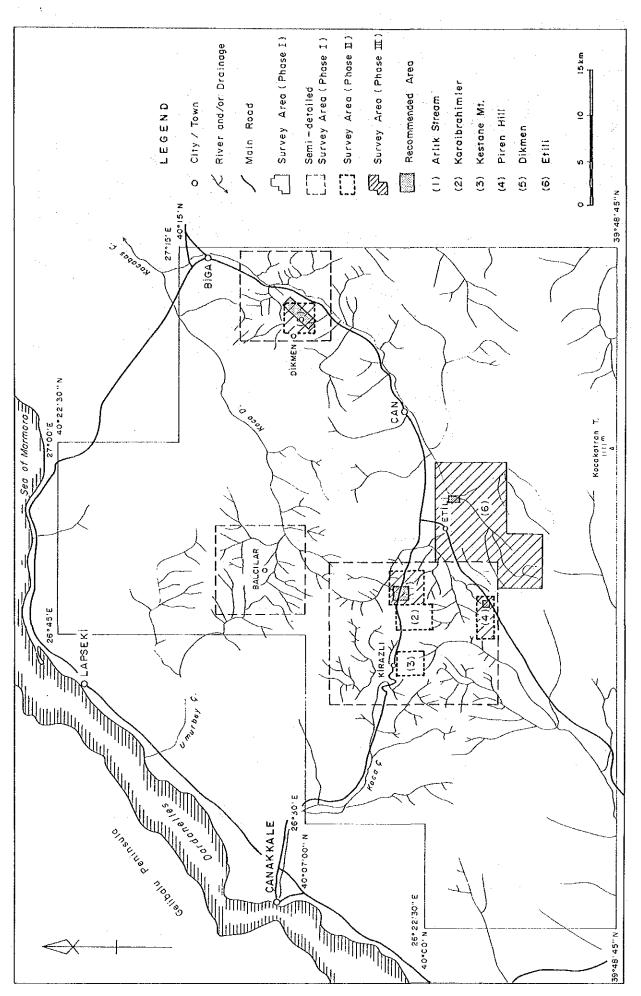




Figure 1-14 Compiled Map of the Dikmen Area





·

# PART II ARLIK STREAM AREA

# PART II ARLIK STREAM AREA

# CHAPTER 1 SURVEY OF THE ARLIK STREAM AREA

# 1-1 Outline

The Arlık Stream Area locates in the eastern part of Zone B. The basement rocks of this zone are the Taşdibek Formation consisting of weakly metamorphosed green schist and crystalline limestone and the Akpinar Granite which intrudes into the Tasdibek Formation. The basement is correlated to the Triassic Karakaya Group because of the weakly metamorphosed lithology. The granite is not associated with mineralization, but the crystalline limestone in the vicinity has undergone contact metasomatism and has been skarnitized. Kirazlı Conglomerate, inferred to be Jurassic, unconformably covers these basement rocks. The intermediate volcanic activity began in the Eocene and the units progress from Camyayla Volcanics to Sapci Volcanics to Osmanlar The Karaköy Formation consisting of conglomerates were then Volcanics. deposited during the long volcanic interval. Quaternary volcanic rocks -Kocaçakıl Basalt - are observed as small outcrops where the Taşdibek Formation is distributed.

Geochemical anomalies of gold were discovered in the silicified and argillized zones in the Miocene Sapçı Volcanics, but the distribution of gold mineralization was gradually delineated by geological, geochemical and heavy mineral surveys of the first phase and detailed geological and drill surveys of the second phase.

1-2 Objective of the Survey

Gold grains were discovered at Arlık and İncirlık Streams. In the upstream section, there are the Sartaş, Güvemalanı and Kocataş Hill silicified zones. Almost all rock samples collected from these silicified zones contained gold in excess of 50 ppb, and hence geological and geochemical surveys were conducted in the Arlık alteration zones, and a drill survey was carried out in the concession of MTA. Then, trench and drill surveys were conducted in order to evaluate the auriferous zones in the third phase.

1-3 Contents of the Survey

The contents of the survey are shown in the following table:

| Conten    | ts of Survey  | Quantity | Components for Analysis                       |
|-----------|---------------|----------|-----------------------------------------------|
| Trench S. | 1,245m        | 404pcs   | Au, Cu, Mo, Pb, Zn, Ag, As, Se, Hg, F, Ba, Tl |
| Drill S.  | 151mx8=1,208m | 402pcs   | Au, Ag, Cu, Pb, Zn, Sb, Hg, No                |

# CHAPTER 2 GEOLOGY OF ARLIK STREAM AREA

The basement rocks of this zone are the Taşdibek Formation consisting of weakly metamorphosed green schist and crystalline limestone; Kirazlı Conglomerate covers these basement rocks unconformably. The intermediate volcanic activity continued from the Eocene to Pleistocene, and the units of Şapçı Volcanics are predominantly distributed. The Karaköy Formation consisting of conglomerates deposited during the long volcanic interval and Quaternary volcanic rocks -Kocaçakıl Basalt - are observed as small outcrops.

The stratigraphic column, geologic map, geologic cross section, gold occurrence and alteration map are shown in the report of the second phase (1990).

# CHAPTER 3 TRENCH SURVEY OF SARTAS AND GÜVEMALANI ALTERATION ZONES

#### 3-1 Trench Survey

Trench survey was carried out on the Sartas and Güvemalanı Hills where the strongly silicified zones were intersected by drill survey in the second and third phases. These localities consist of drill sites of MJTC-4, 10, 11, 12, 13 and 14. The locations of trenches are shown in Fig.2-1. The interval of channel samples collected from the bottom of trenches is three meters, and the length of each trench and number of samples are as follows;

| Location of Trench    | Sample No.       | Length | Quantity |
|-----------------------|------------------|--------|----------|
| Direction of MJTC-10  | A1001~A1055      | 165m   | 55pcs    |
| Direction of MJTC-11  | A1101~A1170      | 210m   | 70pcs    |
| Direction of MJTC-12  | A1201~A1271      | 213m   | 71pcs    |
| Direction of MJTC-13  | A1301~A1355      | 165m   | 55pcs    |
| Direction of MJTC-14  | A1401~A1451      | 153m   | 51pcs    |
| Parallel with MJTC-11 | AA01 $\sim$ AA48 | 144m   | 48pcs    |
| Cross with MJTC-11    | AB01∼ AB63       | 195m   | 54pcs    |
| Total                 |                  | 1,245m | 404pcs   |

# 3-2 Sampling

After the stripping (depth of one meter) of overburden using a bulldozer,

further trenches were scooped out by a rock drill, and trench samples were collected from the B-C layer of soil. The depth of the trench is 1m to 1.5m. Sampling density was 404 samples from 1.224m of trench. The location of most samples vertically corresponds to strongly silicified zones.

3-3 Analytical Methods

All the samples were analyzed by Chemex Labs Ltd., of Canada. Gold was analyzed by the wet method and atomic absorption, fluorine by the SPECIFIC ION method, arsenic, selenium, mercury barium and thallium by atomic absorption spectrometry, and other elements by the ICP-AES method. The limits of detection of the elements are as below.

| Element | Detection Limit | Element | Detection Limit |
|---------|-----------------|---------|-----------------|
| Cu      | lppm            | Pb      | 1ppm            |
| Zn      | 1ppm            | Au      | 5ppb            |
| Ag      | 0.2ppm          | Mo      | lppm            |
| Hg      | 10ppb           | As      | 1ppm            |
| F       | 20ppm           | Ba      | 10ppm           |
| T1      | 0.1ppm          | Se      | 0.2ppm          |

Table 2-1 Detection Limits and Analyzed Elements of Trench Samples

The results of analyses are shown in Table 6 of the Appendix.

#### 3-4 Interpretation of the Chemical Results

(1) Outline of Method

The basic statistical values and correlation matrices of the chemical values of the trench samples were calculated, and the principal component analysis was carried out in the same manner as in the first and second phases, but only basic statistical values are shown in Table 2-2.

(2) Basic Statistical Values

Basic statistical values for 12 analyzed components with a population of 404 samples were calculated. Of the 12 components, gold content was, sometimes, below the detection limit, and thus, less than 2.5ppb was used for samples below 5ppb. The amounts of gold, molybdenum, fluorine and barium were high while those of copper, lead, zinc silver, arsenic, selenium. mercury and thallium were low. The basic statistical values are shown in Table 2-2.

Table 2-2 Basic Statistical Values of Arlık Stream Trenches

| Element | Mean    | Dispersion | S.D.  | Min.  | Max.   |
|---------|---------|------------|-------|-------|--------|
| Au(ppb) | 24.271  | 0.271      | 0.520 | 2.50  | 345.0  |
| Cu(ppm) | 8.138   | 0.293      | 0.541 | 0.5Q  | 132.0  |
| Mo(ppm) | 12.430  | 0.122      | 0.350 | 1.00  | 144.0  |
| Pb(ppm) | 20.728  | 0.113      | 0.336 | 1.00  | 472.0  |
| Zn(ppm) | 5.776   | 0.201      | 0.448 | 1.0d  | 224.0  |
| Ag(ppm) | 0.250   | 0.000      | 0.015 | 0.25  | 0.5    |
| As(ppm) | 13.545  | 0.148      | 0,385 | 0.50  | 154.0  |
| Se(ppm) | 0.573   | 0.371      | 0.609 | 0.1Q  | 17.0   |
| Hg(ppb) | 30.125  | 0.054      | 0.232 | 10.0d | 90.0   |
| F (ppm) | 273.490 | 0.088      | 0.297 | 50.00 | 1350.0 |
| Ba(ppm) | 276.525 | 0.102      | 0.320 | 20.00 | 1600.0 |
| Tl(ppm) | 0.469   | 0.200      | 0.447 | 0.05  | 4.0    |

(Number of Samples:404)

(3) Interpretation

From the result of trench survey, the characteristics of mineralization are considered to be as follows:

Gold-bearing zones were clarified by the trench survey. These zones were divided into massive silicified and brecciated types. The former is inferred to ranges from drill hole MJTC-4 (Güvemalanı Hill) to MJTC-10 (Sartaş Hill), and locates in the limonitic parts of the massive silicified bodies which form the center of silicified zones. On the other hand, the latter ranges from MJTC-12 (Güvemalanı Hill) to MJTC-13 and 14 (Inkaya Hill), and locates in the limonitic-hematite parts of the brecciated zones which form the periphery of southeastern silicified zones.

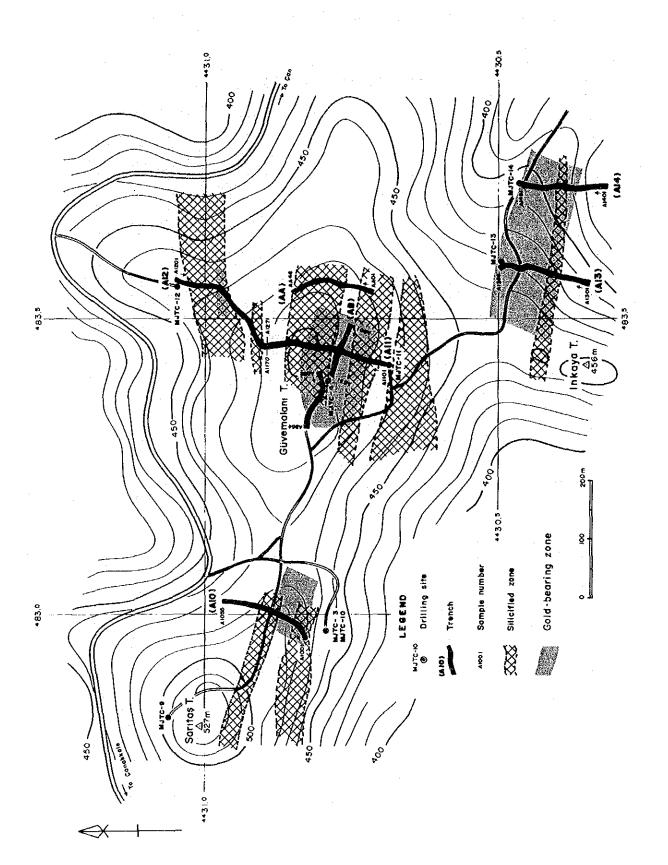



Table 2-3 Significant Analytical Results of Trench Samples (1)

| Sample         | Description | Au        | Cu       | No   | РЪ       | 2 n      | Ag               | As   | Se    | Ag        | P     | Ba             | T1         |     |
|----------------|-------------|-----------|----------|------|----------|----------|------------------|------|-------|-----------|-------|----------------|------------|-----|
| No.            |             | ppb       | ppm      | ppn  | ppa      | ppn      | ppa              | ppm  | ppp   | ppb       | ppa   | ppn            | ppm        | ]   |
| 4409           | Soil B      | 55        | 3        | 10   | 12       | 4        | <0.5             | 4    | 0.4   | 30        | 180   | 300            | 0.5        | ) · |
| AA22           | Soil B      | 50        | 2        | 5    | 16       | 2        | <0.5             | 3    | <0.2  | 40        | 320   | 480            | 0.5        | ļ   |
| AB04           | Soil B      | 90        | 5        | . 8  | 14       | 2        | <0.5             | 8    | <0.2  | 20        | 240   | 460            | 0.2        |     |
| AB06           | Soil B      | 50        | 15       | 15   | 20       | 8        | <0.5             | 28   | 0.2   | 40        | 230   | 400            | 0.2        |     |
| AB07           | Soil B      | 50        | 10       | 10   | 26       | 8        | <0.5             | 22   | 1.2   | 40        | 310   | 280            | 0.7        |     |
| AB08           | Šoil B      | 60        | 12       | 19   | 30       | · 6      | <0.5             | 15   | 1.6   | 30        | 330   | 460            | 1.0        |     |
| AB22           | Soil B      | 55        | 12       | 19   | 32       | 14       | <0.5             | 24   | 1.0   | 30        | -310- | 240            | 0.6        |     |
| AB23           | Soil B      | 75        | 20       | 28   | 36       | 18       | <0,5             | 46   | 2.0   | 30        | 320   | 280            | 0.6        |     |
| AB24           | Soil B      | 70        | 12       | 18   | 34       | 14       | <0.5             | 30   | 1, 2  | 40        | 280   | 280            | 1.0        |     |
| AB25           | Soil B      | 80        | 14       | 20   | 48       | 16       | <0, 5            | 24   | 0.6   | 80        | 530   | 200            | 1.1        |     |
| AB26           | Soil B      | 75        | 11       | 14   | 44       | 14       | <0.5             | 15   | 0.6   | 70        | 440   | 140            | 1.0        |     |
| AB27           | Soil B      | 80        | 13       | 17   | 56       | 14       | <0.5             | 20   | 0.6   | 80        | 510   | 180            | 0.9        |     |
|                |             |           |          |      |          |          | <0.5             | 24   | 1.0   |           | 330   | 200            | 0.6        |     |
| AB28           | Soil B      | 75<br>Ph  | 11       | 17   | 30       | 10       | 1                | F .  | 1.0   | 40        | 330   |                | 0.8        |     |
| AB29           | Soil B      | 80<br>970 | 15       | 12   | 52       | 14       | <0.5<br>20.5     | 24   |       | 50<br>90  |       | - 160<br>- 260 | 1.3        | · · |
| AB30           | Soil B      | 270       | 12       | 14   | 30       | 8        | <0.5             | 12   | 1.2   | 30        | 520   | 260            |            |     |
| AB31           | Soil B      | 100       | _15      | 22   | 40       | 12       | <0.5             | 22   | 1.6   | 40        | 470   | 220            | 1.5        |     |
| AB32           | Soil B      | 55        | 3        | 8    | 18       | 2        | <0.5             | 8    | 0.4   | 30        | 110   | 180            | 0.2        |     |
| AB33           | Soil B      | 140       | -4       | 7    | 16       | 4        | <0.5             | 8    | 0.2   | 30        | 190   | 200            | 0.2        | ļ   |
| AB34           | Soil B      | 60        | .4       | 9    | 16       | 4        | <0.5             | - 6  | 0.6   | . 40      | 250   | 280            | 0.2        |     |
| AB35           | Soil B      | 50        | 5        | 15   | 40       | 4        | <0.5             | 15   | 1.4   | 40        | 320   | 480            | 0.8        |     |
| AB36           | Soil B      | 70        | 7        | - 31 | - 28     | 6        | <0.5             | 25   | 2.6   | 40        | 320   | 620            | 0.5        |     |
| AB37           | Soil B      | 85        | 12       | 28   | 26       | 8        | <0.5             | 34   | 3.4   | 50        | 440   | 500            | 1:3        |     |
| AB38           | Soil B      | 100       | 8        | . 24 | 30       | 6        | <0.5             | 26   | 2.0   | 40        | 550   | 320            | 0.7        | ĺ   |
| AB40           | Soil B      | 55        | 1        | - 10 | 24       | <2       | <0.5             | 4    | <0.2  | 20        | 130   | 460            | 0. 2       |     |
| AB41           | Soil B      | 80        | 1        | 7    | 18       | <2       | <0.5             | 3    | <0.2  | 20        | 240   | 360            | 0.4        |     |
| AB42           | Soil B      | 90        | 4        | 44   | 32       | 4        | <0.5             | 24   | 3.2   | 30        | 740   | 400            | 2.3        |     |
| AB43           | Soil B      | 110       | 5        | 24   | 36       | 2        | <0.5             | 18   | 3.4   | 30        | 540   | 460            | 1.9        |     |
| AB44           | Soil B      | 85        | 16       | 24   | 30       | - 6      | <0.5             | 30   | 1.6   | 40        | 480   | 360            | 3.1        |     |
| AB46           | Soil B      | 60        | 18       | 40   | 114      | 10       | <0.5             | 30   | 1.6   | 40        | 200   | 400            | 1.6        |     |
| <b>AB</b> 47   | Soil B      | 50        | 22       | 30   | 58       | 8        | <0.5             | 21   | 1.4   | 30        | 200   | 360            | . 1.2      |     |
| AB48           | Soil B      | . 110     | 14       | 29   | 82       | 20       | <0.5             | · 38 | 4.2   | 20        | 160   | 360            | 1.2        |     |
| AB49           | Soil B      | 60        | 9        | 25   | 176      | 8        | <0.5             | 12   | 3.2   | 20        | 140   | 440            | 1.9        |     |
| AB50           | Soil B      | 195       | 8        | 68   | 472      | 8        | <0.5             | 13   | - 3.4 | . 20      | 130   | 480            | .3. 2      | 1   |
| AB51           | Soil B      | 105       | 21       | 52   | 176      | 8        | <b>&lt;</b> 0. 5 | 25   | 4.0   | 10        | 190   | 420            | 1.9        |     |
| A1001          | Soil B      | 80        | 28       | 16   | 8        | 8        | <0.5             | 6    | <0.2  | 20        | 330   | 100            | 0.3        | 1   |
| A1002          | Soil B      | 70        | 30       | 14   | 10       | 16       | <0.5             | 17   | 0.4   | 20        | 500   | 140            | 0.2        |     |
| A1003          | Soil B      | 50        | 20       | 8    | 12       | 18       | <0.5             | 10   | 1.0   | 20        | 460   | 180            | 0.4        |     |
| A1004          | Soil B      | 80        | 36       | 33   | 10       | 50       | <0.5             | 48   | 0.8   | 20        | 430   | 220            | 0.2        |     |
| A1005          | Soil B      | 170       | 60       | 32   | 24       | 40       | <0.5             | 40   | 1.0   | 40        | 230   | 100            | 0.1        |     |
| A1005          | Soil B      | 345       | 47       | 41   | 10       | 16       | <0.5             | 154  | 7.2   | 20        | 370   | 120            | 0.2        |     |
| A1007          | Soil B      | 205       | 65       | 16   | 10       | 22       | <0.5             | 32   | 4.0   | 20        | 850   | 560            | 0.4        | ļ   |
|                | Soil B      | 205<br>85 | 38       | 10   | 16       | 26       | <0.5<br><0.5     | 38   | 1.4   | 30        | 980   | 820            | 0.3        |     |
| A1009<br>A1010 | Soil B      | 65<br>70  | 30<br>32 | 21   | 10<br>24 | 20<br>12 | <0.5             | 20   | 2.8   | 30        | 820   | 660            | 0.4        |     |
| A1010          |             |           | 32<br>34 |      |          |          | <0.5             | -17  | 1.8   | 30        | 910   | 520            | 0.4<br>1.3 |     |
|                | Soil B      | 75<br>50  |          | 23   | 30       | 4        |                  |      |       |           |       | 520<br>420     |            |     |
| A1022          | Soil B      | 50<br>00  | 22       | 39   | 58       | 6        | <0.5             | - 11 | 1.0   | 10        | 450   |                | 1.5        |     |
|                | Soil B      | 60<br>115 | 27       | 25   | 86       | 8        | <0.5             | 20   | 2.4   | 20        | 740   | 1200           | 1.4        |     |
| A1029          | Soil B      | 115       | 19       | 62   | 10       | 4        | <0, 5            | 31   | 2.0   | 20        | 250   | 120            | 0.4        |     |
| A1030<br>A1031 | Soil B      | 65        | 28       | 67   | 18       | 8        | <0.5             | 52   | 1.2   | 10        | 250   | 150            | 0.3        |     |
|                | Soil B      | 65        | 38       | 69   | 6        | 4        | <0.5             | 52   | 1.2   | $10^{-1}$ | 160   | 240            | 0.1        |     |

Arlık (1) Au > 50ppb

Table 2-3 Significant Analytical Results of Trench Samples (2)

| Sample Description | ۸u   | Cu   | Ko   | РЪ      | Zn  | Ág    | As      | Se    | Ag   | F        | Ba  |                        |
|--------------------|------|------|------|---------|-----|-------|---------|-------|------|----------|-----|------------------------|
| No.                | ppb  | ppa  | pp≣  | ppn     | ppa | ppa   | ppn<br> | ppz   | ddd  | ppm      | ppg |                        |
| A1120 Soil B       | 55   | 19   | 11   | 70      | 34  | <0.5  | 17      | 1.2   | . 70 | 310      | 240 | ·                      |
| A1133 Soil B       | 70   | 25   | 27   | 42      | 8   | <0.5  | -21     | 2.8   | - 50 | 510      | 580 | ļ                      |
| A1134 Soil B       | 55   | 28   | 28   | 24      | 8   | <0,5  | 12      | 3.0   | 60   | 560      | 420 |                        |
| A1136 Soil B       | 70   | 15   | 26   | 24      | 8   | <0.5  | 23      | 3. 8  | 70   | 1350     | 340 | ŀ                      |
| A1140 Soil B       | 60   | 9    | 73   | 14      | 10  | <0.5  | 56      | 5.0   | 40   | 210      | 240 | <u>ا</u> .             |
| All41 Soil B       | 110  | 6    | 39   | 8       | 6   | <0.5  | 23      | 1. 2  | 30   | 100      | 160 |                        |
| All45 Soil B       | 110  | 11   | . 14 | 20      | 6   | <0.5  | 16      | 5.0   | 40   | 290      | 180 | Į                      |
| A1146 Soil B       | 80   | 11   | 16   | 26      | 6   | <0.5  | 14      | 17:0  | 50   | 360      | 320 |                        |
| All47 Soil B       | 65   | - 8  | 11   | -18     | 6   | <0.5  | 13      | 1. 2  | 50   | 250      | 380 |                        |
| A1149 Soil B       | 105  | S    | 12   | 44      | 2   | <0.5  | - 8     | 6.8   | 50   | 270      | 440 | }                      |
| A1156 Soil B       | .65  | 20   | 41   | 40      | 8   | <0.5  | 60      | 1.4   | 40   | 610      | 220 |                        |
| A1168 Soil B       | 50   | . 27 | 29   | 68      | 10  | <0.5  | 18      | 2.0   | 50   | 240      | 360 |                        |
| A1256 Soil B       | 225  | 11   | 37   | 26      | 10  | <0.5  | 26      | 2.6   | 50   | 190      | 400 | Ì                      |
| A1270 Soil B       | 50   | 9    | 14   | 12      | 4   | <0.5  | 8       | 0.2   | 50   | 140      | 400 |                        |
| A1301 Talus D      | 55   | 8    | 20   | 20      | 16  | <0.5  | 15      | <0.2  | 20   | 260      | 280 | [                      |
| A1302 Talus D      | 50   | 1    | 9    | . 10    | 2   | <0.5  | 5       | <0.2  | 10   | 100      | 80  |                        |
| A1303 Talus D      | 50   | 3    | 34   | 46      | 24  | <0.5  | 8       | 0. 2  | 20   | 100      | 90  |                        |
| A1304 Talus D      | 60   | <1   | 18   | 18      | <2  | <0.5  | -5      | 02    | 10   | 100      | 100 |                        |
| A1305 Talus D      | .70  | 2    | .73  | 34      | 4   | <0.5  | 14      | 0.6   | 10   | 190      | 320 | l I                    |
| A1306 : Talus D    | 100  | 3    | 144  | 50      | 6   | <0.5  | 25      | 0.6   | 20   | 200      | 480 | ļ                      |
| A1307 Talus D      | 50   | 4    | 94   | 42      | 8   | <0.5  | 24      | 0.6   | 20   | 180      | 560 |                        |
| A1308 Talus D      | 50   | 2    | 66   | 22      | 6   | <0.5  | 13      | <0.2  | 20   | 160      | 190 |                        |
| A1309 Talus D      | 100  | <1   | 22   | 6       | <2  | <0.5  | 4       | <0.2  | 10   | 80       | 40  | <                      |
| A1310 Talus D      | 90   | 1    | 12   | 8       | 2   | <0.5  | 3       | <0.2  | 20   | 80       | 80  |                        |
| A1311 Talus D      | 60   | 1    | 12   | 14      | 4   | <0.5  | 5       | <0.2  | 20   | 110      | 120 | ĺ                      |
| A1312 Talus D      | 60   | 3    | 7    | 12      | 2   | <0.5  | 4       | <0.2  | 10   | 90       | 100 |                        |
| A1313 Talus D      | 70   | 1    | 8    | 10      | 4   | <0.5  | 4       | <0.2  | 10   | 90       | 100 |                        |
| A1315 Talus D      | 60   | 5    | 18   | 16      | 10  | <0.5  | 10      | 1.0   | 20   | 200      | 220 | ļ                      |
| A1316 Talus D      | 65   | 3    | 17   | 16      | 6   | <0.5  | 6       | 0.4   | 20   | 130      | 120 |                        |
| A1317 Talus D      | 75   | 1    | 5    | 6       | 2   | <0.5  | 3       | <0.2  | 20   | 80       | 60  | ľ                      |
| A1319 Talus D      | 65   | 2    | 23   | 14      | 4   | <0.5  | 6       | 0.6   | 20   | 120      | 60  |                        |
| A1320 Talus D      | 200  | 1    | 21   | 14      | <2  | <0.5  | 5       | <0.2  | 20   | 90       | 50  | <                      |
| l l                | 200  | 3    | 20   | 14      | 2   | <0.5  | 5       | <0.2  | 10   | 120      | 50  |                        |
| A1321 Talus D      |      | 2    | 18   | 8       | 2   | <0.5  | 6       | <0.2  | 10   | 100      | 60  |                        |
| A1322 Talus D      | 200  | 23   | 16   | 0<br>28 | 2   | <0.5  | 12      | <0.2  | 20   | 160      | 160 | $\left  \right\rangle$ |
| A1323 Talus D      | 80   |      |      |         | í   |       |         |       |      | 1        | 40  | ł                      |
| A1324 Talus D      | 55   | 2    | 4    | 6       | <2  | <0.5  | 3       | <0.2  | 20   | 80<br>60 |     |                        |
| A1325 Talus D      | 70   | 1    | 1    | 2       | <2  | <0.5  | 1       | <0.2  | 10   | 60<br>50 | 40  |                        |
| A1326 Talus D      | 100  | <1   | 1    | <2      | <2  | <0.5  | 1       | <0.2  | 10   | 50       | 30  |                        |
| A1327 Talus D      | - 60 | . <1 | 2    | 2       | <2  | <0.5  | 1       | <0, 2 | 10   | 70       | 30  |                        |
| A1330 Talus D      | 100  | <1   | 2    | 4       | <2  | <0.5  | 1       | <0.2  | 10   | 50       | 30  |                        |
| A1331 Talus D      | 95   | <1   | 2    | 4       | <2  | <0.5  | 1       | <0.2  | 20   | 50       | 30  |                        |
| A1332 Talus D      | 170  | <1   | 4    | 8       | <2  | <0.5  | 1       | <0.2  | 10   | 50       | 880 |                        |
| A1333 Talus D      | 110  | <1   | 3    | 14      | <2  | <0.5  | 2       | <0.2  | 10   | 60       | 60  |                        |
| A1334 Talus D      | 90   | <1   | 3    | 4       | <2  | <0.5  | 2       | <0.2  | 10   | 60       | 30  |                        |
| A1335 Talus D      | 90   | 1    | 3    | 6       | <2  | <0.5  | 1       | <0.2  | 10   | 70       | 40  |                        |
| A1336 Talus D      | 75   | <1   | 3    | 6       | <2  | <0.5  | 1       | <0.2  | 10   | 70       | 40  |                        |
| A1337 Talus D      | 70   | <1   | 5    | 4       | <2  | <0.5  | 2       | <0.2  | 10   | 50       | 40  | <                      |
| A1338 Talus D      | 65   | 34   | 15   | 8       | 2 [ | <0.5  | 6       | <0.2  | 20   | 50       | 40  | <                      |
| A1339 Talus D      | 60   | 1    | 23   | 10      | <2  | <0.5  | 6       | <0.2  | 10   | 50       | 50  | <                      |
| A1340 Talus D      | 55   | 6    | 15   | 22      | 4   | <0, 5 | 9       | <0.2  | 10   | 100      | 140 | <                      |
| A1342 Talus D      | 115  | 3    | 13   | 16      | 6   | <0:5  | 6       | <0.2  | 20   | 90       | 120 |                        |
| A1343 Talus D      | 75   | 1    | 5    | 8       | <2  | <0.5  | 3       | <0.2  | 10   | 60       | 30  | <                      |
| A1344 Talus D      | 90   | 2    | 11   | 10      | 4   | <0.5  | 5       | <0.2  | 20   | 70       | 50  |                        |

Arlık (2) Au > 50ppb

Table 2-3 Significant Analytical Results of Trench Samples (3)

| Arlık (  | (3) Au >   | 50   | ppb |     |     |      |        |      |      |      |     |       |       |
|----------|------------|------|-----|-----|-----|------|--------|------|------|------|-----|-------|-------|
| Sample D | escription | Au   | Շս  | Mo  | Pb  | Zn   | Ag     | As   | Se   | Bg   | F   | Ba    | Ťl    |
| No.      |            | ppb  | ppm | ppm | ppm | ppn  | ррл    | ррв  | ppm  | ppb  | ppm | ppm   | ppa   |
| A1345 T  | alus D     | 90   | 6   | 9   | 8   | . <2 | <0.5   | 3    | <0.2 | 10   | 60  | 50    | <0.1  |
| A1346 T  | alus D     | 65   | 2   | 11  | 14  | 2    | <0.5   | 5    | <0.2 | 20   | 90  | 90    | 0.1   |
| A1347 T  | alus D     | 65   | 3   | ġ   | 14  | <2   | <0.5   | 5    | <0.2 | 10   | 80  | 100   | 0:1   |
| A1348 T  | alus D     | 85   | 2   | 32  | 42  | <2   | <0.5   | 13   | <0.2 | - 10 | 220 | 320   | 0.3   |
| A1349 T  | alus D     | 90   | 2   | 24  | 46  | <2   | < 0, 5 | 10   | <0.2 | 20   | 330 | 460   | 0.3   |
| A1350 T  | alus D     | 75   | 3   | 88  | 38  | 2    | <0.5   | - 18 | 0.4  | 10   | 230 | 220   | 0.1   |
| A1351 T  | alus D     | 70   | 2   | 28  | 32  | <2   | <0.5   | 15   | <0.2 | 20   | 350 | - 400 | 0.2   |
| Å1352 T  | alus D     | 80   | 1   | -88 | 30  | <2   | <0.5   | 15   | <0.2 | 10   | 180 | 340   | 0.3   |
| A1353 T  | alus D     | 95   | 3   | 81  | -32 | <2   | <0.5   | 16   | <0.2 | 10   | 200 | 380   | 0.1   |
| A1354 T  | `alus D    | 90   | 2   | 33  | 10  | 2    | <0.5   | 12   | 0.6  | 20   | 100 | 160   | <0.1  |
| A1355 T  | alus D     | 50   | 1   | 40  | 20  | <2   | <0, 5  | 10   | <0.2 | 10   | 220 | 340   | <0.1  |
| A1441 T  | alus D     | 125  | 4   | 18  | 34  | <2   | <0.5   | 10   | 0.2  | 20   | 240 | 520   | 0.3   |
| A1442 T  | alus D     | 90   | · 2 | 12  | 42  | <2   | <0.5   | 6    | <0.2 | -10  | 200 | 580   | 0.4   |
| A1443 T  | alus D     | - 50 | <1  | 6   | 10  | <2   | <0. 5  | 3    | <0.2 | 10   | 80  | 40    | <0.1  |
| A1444 Ta | alus D     | 50   | <1  | 7   | 22  | <2   | <0.5   | . 2  | <0.2 | 10   | 110 | 120   | 0.1   |
| A1445 T  | alus D     | 110  | 1   | · 9 | 14  | <2   | <0.5   | . 4  | <0.2 | 20   | 120 | 60    | • 0.1 |
| A1446 T  | alus D     | 55   | 1   | 6   | 12  | <2   | <0.5   | 3    | <0.2 | 20   | 110 | 90    | 0.1   |
| A1447 T  | alus D     | 70   | 4   | 6   | 14  | <2   | <0.5   | 3    | <0.2 | 20   | 100 | 820   | 0.1   |
| A1448 T  | alus D     | 90   | 2   | 11  | 76  | 2    | <0.5   | 6    | <0.2 | 30   | 130 | 190   | 0.2   |
| A1449 T  | alus D     | 85   | -2  | 9   | 38  | <2   | <0.5   | 2    | <0.2 | 20   | 110 | 1600  | 0.1   |
| A1450 T  | `alus D    | 110  | <1  | 6   | 8   | <2   | <0.5   | 2    | <0.2 | 20   | 60  | 40    | 0.1   |
| A1451 T  | alus D     | 60   | 2   | 7   | 12  | 2    | <0.5   | 6    | <0.2 | 20   | 100 | 120   | 0.1   |

Arlık (3) Au > 50 ppb

## CHAPTER 4 DRILLING SURVEY

# 4-1 Outline of the Drilling Survey

#### 4-1-1 Objective of the Diamond Drilling

As a result of geological and geochemical surveys carried out in the first phase of the project, an epithermal-gold-type ore deposit is expected as a promising target for future exploration in the Arlık Stream area. In the second and third phases, a drilling survey consisting of twelve holes (total hole length: 1.800m) was planned and subsequently carried out in order to explore underground emplacement of the epithermal-gold-type ore deposit, and to investigate and unravel the relationship between the emplacement conditions of the ore deposit and the results of geological and geochemical surveys.

The purpose of the drill survey of the third phase is as follows: MJTC- 7 & 8: exploration of gold mineralized area (Kocatas Hill) discovered by geochemical survey. MJTC- 9 & 10: exploration of gold anomalous area (Sartas Hill) found by geochemical survey.

MJTC-11 & 12: exploration of gold silicified zones (Güvemalanı Hill) found by drilling survey of the second phase.

MJTC-13 & 14: exploration of gold mineralized area (lnkaya Hill) and gold anomalies found by geochemical survey.

# 4-1-2 Outline of the Drilling Operation

| No.     | Y     | . Х   | Z(m Sea level) | Direction | Dip  |
|---------|-------|-------|----------------|-----------|------|
| MJTC- 7 | 82325 | 29948 | 446            | N10° E    | ~50° |
| MJTC- 8 | 82726 | 30548 | 412            | S10°W     | -50° |
| MJTC- 9 | 82848 | 31059 | 510            | N10° E    | ~50° |
| MJTC-10 | 82971 | 30796 | 454            | N10° E    | -50° |
| MJTC-11 | 83426 | 30694 | 471            | N 10° E   | -50° |
| MJTC-12 | 83554 | 31037 | 464            | N10° E    | -50° |
| MJTC-13 | 83597 | 30497 | 428            | S10°W     | -50° |
| MJTC-14 | 83729 | 30494 | 403            | S10°W     | -50° |

(1) Location of drill holes

# (2) Drilling operation method

A wire line drilling method using the NQ- and BQ-type diamond bits as far as possible was applied. Drill holes were inclined.

#### (3) Core survey

A geological columnar section 1/200 in scale was compiled, and colour photographs of all drill cores collected were taken.

#### (4) Chemical assay of drill cores

Whole cores were split along the core extension, and half-pieces of the split core were chemically assayed to determine gold and silver content for the entrance section, while selected samples were analyzed for gold, silver, copper, lead, zinc, antimony, mercury and molybdenum content.

# (5) Laboratory studies of the core

Detection of altered minerals by X-ray diffractometer were performed.

# 4-1-3 Holes Drilled

Drill Hole Data

| No.       | Length Drilled | Surface | Core    | Core     | Period        |
|-----------|----------------|---------|---------|----------|---------------|
| 1 . Mar 1 |                | Soil    | Length  | Recovery |               |
| MJTC- 7   | 151.00m        | 2.00m   | 145.75m | 94.3%    | 28 Aug-15 Sep |
| MJTC- 8   | 151.00m        | 0.00m   | 150.80m | 99.9%    | 23 Aug- 2 Sep |
| MJTC- 9   | 151.00m        | 0.00m   | 138.55m | 91.8%    | 16 Sep- 8 Oct |
| MJTC-10   | 151.00m        | 19.20m  | 119.95m | 84.9%    | 11 Jul- 2 Aug |
| MJTC-11   | 151.00m        | 0.00m   | 150.70m | 99.8%    | 11 Jul- 7 Aug |
| MJTC-12   | 151.00m        | 0.70m   | 142,70m | 94.9%    | 3 Sep-16 Sep  |
| MJTC-13   | 151.00m        | 42.40m  | 126.50m | 99.5%    | 8 Aug-27 Aug  |
| MJTC-14   | 151.00m        | 47.00m  | 121.95m | 80.8%    | 3 Aug-20 Aug  |

Table 2-4 Drilling Machine and Equipment Used

| Drilling Machine Model "L-38" | 2 set                              |
|-------------------------------|------------------------------------|
| Capacity                      | 700m (BQ-WL)                       |
| Dimensions L x W x H          | 2.150mm x 1,170mm x 1,450          |
| Hoisting Capacity             | 4,500kg                            |
| Spindle Speed                 | Forward 236,490,900,1,510rpm       |
| Engine Model "F4L912"         | 18ps/1,800rpm                      |
| Drilling Pump Model "535 RQ"  | 1 set                              |
| Piston Diameter               | 70mm                               |
| Stroke                        | 70mm                               |
| Capacity                      | Discharge Capacity 132 ℓ/min       |
|                               | Max Pressure 56 kg/cm <sup>2</sup> |
| Dimensions L x W x H          | 1,905mm x 788mm x 940mm            |
| Engine Model "WISCON"         | 18ps/2,000rpm                      |
| Wire Line Hoist               | Attached to Drilling Machine       |
| Derrick                       | Attached to Drilling Machine       |
| Drilling Tools                |                                    |
| Drilling Rod                  | NQ-WL 3.05m 100 pcs                |
|                               | BQ-WL 3.05m 100 pcs                |
| Casing Pipe                   | HW 3.05m 20 pcs                    |
|                               | NW 3.05m 60 pcs                    |
|                               | BW 3.05m 100 pcs                   |
|                               |                                    |

# 4-2 Drilling Operation

# 4-2-1 Drilling Method

The drilling operation was performed by means of the wire line method using

a diamond drilling bit of NQ and BQ sizes not only at the MJTC-7, MJTC-10, MJTC-12, MJTC-13 and MJTC-14 sites covered by surface soil but also at the MJTC-8, MJTC-9 and MJTC-11 sites which had exposed bedrock at the surface.

Bentonite mud water was circulated during the drilling operation in order to reduce torque resistance caused by collapse in the hole.

Geology of the Arlık Stream area consists of silicified and argillized andesite. At the predominantly alterated sections of rocks in the hole, the rocks are soft and brittle and have many well-developed cracks and fissures which often cause loss of circulating mud water and much flash water. Meanwhile strong silicified rock is very hard to drill.

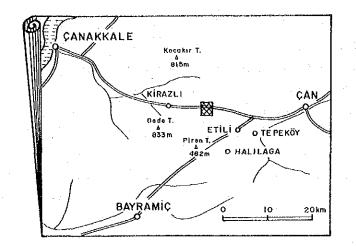
# 4-2-2 Drilling Machines, Equipment and Consumables

Two sets of Longyear L-38 were used for the drilling operation. The types and specifications of machines, engines, pumps and equipment, and amount of consumables are shown in Tables 2-4, and 2-5.

# 4-2-3 Operation Members and Shifts

The operation of move-in and move-out from site to site, and preparation work in the site were performed on a shift per day system, while the actual drilling operation was carried out by three shifts per day with eight working hours per shift. One drilling shift consisted of four members, a Japanese driller, a Turkish assistant driller (MTA) and two Turkish workers.

#### 4-2-4 Transportation and Road Construction


The drilling machines, equipment and consumables were transported from the Northwest Anadol Regional Office of MTA located in Balıkesir, to a place near these drilling sites by a large truck, and then to the drilling sites by a small truck. As there was no access road, a new 0.75km road for MJTC-7 and MJTC-8, and a new 1.5km road for MJTC-9, MJTC-10, MJTC-11, MJTC-12, MJTC-13 and MJTC-14 were constructed by a bulldozer.

#### 4-2-5 Water Supply

The necessary water for the drilling operation was transported by two tractors from a nearby well.

#### 4-2-6 Withdrawal

After completion of the third-phase drilling survey, the drilling machines and equipment were stored in the storehouse of the MTA Office in Balıkesir.



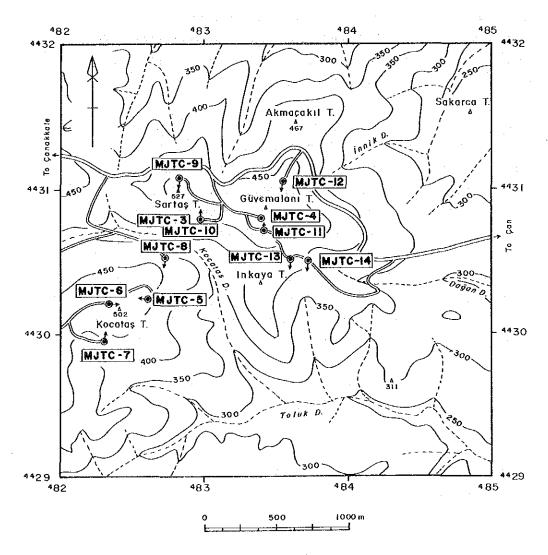



Figure 2- 2 Location Map of Drill Hole of the Arlık Stream Area

Table 2-5 Consumables Used(1)

| Description         | Specifi  | Unit |                |        | Quanti | ty      |         |         |
|---------------------|----------|------|----------------|--------|--------|---------|---------|---------|
|                     | -cation  |      | NJTC-7         | MJTC-8 | MJTC-9 | NJTC-10 | MJTC-11 | MJTC-12 |
| Light oil           |          | e    | 3.700          | 1.900  | 4.020  | 3.700   | 4.660   | 3, 700  |
| Petrol              |          | e    | 1.290          | 720    | 1.560  | 1.530   | 1,920   | 930     |
| Engine oil          |          | E    | 40             | 40     | 40     | 60      | 80      | 60      |
| Hydraulic oil       |          | l    | 20             | 20     | 20     | 20      | 20      | 20      |
| Grease              |          | Kg   | 20             | 20     | 20     | 20      | 20      | 20      |
| Cement              |          | Kg   | 1,000          | 1.000  | 1.000  | 1,000   | 1,000   | 1,000   |
| Bentonite           |          | Kg   | 2,700          | 1,800  | 5,300  | 6,050   | 2, 550  | 3, 600  |
| С. М. С             |          | Kg   | 30             | 20     | 60     | 60      | 30      | 30      |
| Telcoat-L           |          | l    | ) <del>.</del> | -      | 10     |         |         | _       |
| Diamond bit         | NQ/BQ    | pcs  | 5/0            | 4/0    | 3/4    | 8/9     | 7/6     | 3/3     |
| Diamond reamer      | NQ/BQ    | pcs  | 3/0            | 2/0    | 2/2    | 4/4     | 3/3     | 2/2     |
| Casing diamond shoe | NX/BW    | pcs  | 1/0            | 0/0    | 1/2    | 3/2     | 1/1     | 1/1     |
| Casing metal shoe   | HW/NW/BW | pcs  | 0/0/0          | 0/1/0  | 0/1/1  | 1/3/2   | 1/3/4   | 1/2/0   |
| Core barrel Ass'y   | NQ/BQ-WL | set  | 1/0            | 1/0    | 1/1    | 1/1     | 1/1     | 1/1     |
| Inner tube          | NQ/BQ-WL |      | 2/0            | 2/0    | 2/2    | 2/2     | 2/2     | 2/2     |
| Core lifter case    | NQ/BQ-WL | pcs  | 4/0            | 4/0    | 4/4    | 6/4     | 4/4     | 4/4     |
| Core lifter         | NQ/BQ-WL |      | 6/0            | 4/0    | 4/4    | 6/4     | 4/4     | 4/4     |
| Thrust ball bearing | NQ/BQ-WL | pcs  | 4/0            | 2/0    | 4/4    | 4/4     | 4/4     | 4/4     |
| Chuck piece         | NQ/BQ-WL | set  | 1/0            | 1/0    | 1/1    | 1/1     | 1/1     | 1/1     |
| Cylinder liner      | 535-RQ   | pcs  | 3              | 3      | 3      | 6       | 6       | 3       |
| Valve seat          | 535-RQ   | pcs  | 3              | 3      | 3      | 6       | 6       | 3       |
| Steel ball          | 535-RQ   | pcs  | 3              | 3      | 6      | 6       | 6       | 3       |
| Piston rubber       | 535-RQ   | pcs  | 9              | 6      | 9      | 12      | 12      | 9       |
| Core box            | NQ & BQ  | pcs  | 31             | 32     | 26     | 25      | 28      | 28      |

### Table 2-5 Consumables Used(2)

| Description         | Specifi  | Unit |         |         | Quanti  | ty      | Total    |
|---------------------|----------|------|---------|---------|---------|---------|----------|
|                     | -cation  |      | MJTC-13 | MJTC-14 | MJTC-16 | MJTC-17 |          |
| Light oil           |          | Ľ    | 3, 200  | 3, 100  | 3.160   | 2,900   | 34.090   |
| Petrol              |          | l    | 1, 320  | 1, 290  | 1, 110  | 1,020   | 12, 690  |
| Engine oil          |          | l    | 40      | 40      | 40      | 40      | 480      |
| Hydraulic oil       |          | l    | 20      | 20      | 20      | 20      | 200      |
| Grease              |          | Kg   | 20      | 20      | 20      | 20      | 200      |
| Cement              |          | Kg   | 1,000   | 1,000   | 1.000   | 1,000   | 10,000   |
| Bentonite           |          | Kg   | 2,600   | 2, 500  | 2.300   | 4,600   | 34.000   |
| С. М. С             |          | Kg   | 60      | 60      | 30      | 50      | 290      |
| Telcoat-L           |          | l    | -       | -       | 10      | 10      | 40       |
| Diamond bit         | NQ/BQ    | pcs  | 8/0     | 8/0     | 4/1     | 3/2     | 53/25    |
| Diamond reamer      | NQ/BQ    | pcs  | 4/0     | 4/0     | 2/1     | 2/1     | 28/13    |
| Casing diamond shoe | NX/BW    | pçs  | 3/0     | 3/0     | 1/1     | 1/1     | 15/ 8    |
| Casing metal shoe   | HW/NW/BW | pcs  | 1/3/0   | 1/3/0   | 1/1/0   | 1/0/0   | 7/14/7   |
| Core barrel Ass'y   | NQ/BQ-WL | set  | 1/0     | 1/0     | 1/1     | 1/1     | <br>10/6 |
| Inner tube          | NQ/BQ-WL | pcs  | 2/0     | 2/0     | 2/2     | 2/2     | 20/12    |
| Core lifter case    | NQ/BQ-WL | pcs  | 6/0     | 6/0     | 4/4     | 4/4     | 46/20    |
| Core lifter         | NQ/BQ-WL | pcs  | 6/0     | 6/0     | 4/4     | 4/4     | 48/24    |
| Thrust ball bearing | NQ/BQ-WL | pcs  | 4/0     | 4/0     | 2/2     | 2/2     | 34/16    |
| Chuck piece         | NQ/BQ-WL | set  | 1/0     | 1/0     | 1/1     | 1/1     | 9/6      |
| Cylinder liner      | 535-RQ   | pcs  | 3       | 3       | 3       | 3       | 36       |
| Valve seat          | 535-RQ   | pcs  | 3       | 3       | 3       | 3       | 36       |
| Steel ball          | 535-RQ   | pcs  | 3       | 3       | 3       | 3       | 39       |
| Piston rubber       | 535-RQ   | pcs  | 9       | 9       | 9       | 9       | 93       |
| Core box            | NQ & BQ  | pcs  | 31      | 27      | 27      | 25      | <br>280  |

|        | <del>.</del> |       |       | Drilli | ng Mete | rage by | v Unit                                  |       |       | · · · · · |
|--------|--------------|-------|-------|--------|---------|---------|-----------------------------------------|-------|-------|-----------|
| Size   | MJT          | 'C-7  | MJT   | °C-8   | ····    | °C-9    | r · · · · · · · · · · · · · · · · · · · | 'C-10 | MJI   | °C-11     |
|        | Diam.        | m     | Diam. | m      | Diam.   | m       | Diam.                                   | m     | Diam. | π         |
|        | NT-35        | 31.80 | NT-31 | 35.15  | NT-43   | 31.80   | NT- 1                                   | 17.15 | NT- 2 | 21.10     |
|        | NT-36        | 31.75 | NT-32 | 45.75  | NT-44   | 25.90   | NT- 3                                   | 22.90 | NT- 4 | 10.95     |
|        | NT-37        | 33.50 | NT-33 | 45.55  | NT-45   | 18.95   | NT- 5                                   | 21.20 | NT- 6 | 9.20      |
|        | NT-38        | 27.45 | NT-34 | 24.55  |         |         | NT- 7                                   | 21.25 | NT- 8 | . 5. 55   |
| NQ     | NT-39        | 26.50 |       |        |         |         | NT- 9                                   | 20.65 | NT-10 | 9.70      |
| Bit    |              |       |       |        |         |         | NT-11                                   | 2.90  | NT-12 | 6.10      |
|        |              |       |       |        | · ·     |         | NT-13                                   | 4.15  | NT-14 | 8.80      |
|        |              |       |       |        |         | ·       | NT-15                                   | 6.20  | :     | •         |
|        |              |       |       |        |         |         |                                         |       |       |           |
|        |              |       |       |        | BT-20   | 15.75   | BT- 1                                   | 1.80  | BT- 2 | 11.80     |
|        |              |       |       |        | BT-21   | 19.15   | BT- 3                                   | 2.15  | BT- 4 | 12.95     |
|        |              |       |       |        | BT-22   | 24.55   | BT- 5                                   | 4.10  | BT- 6 | 6.10      |
|        |              |       |       |        | BT-23   | 14.90   | BT- 7                                   | 5.55  | BT- 8 | 12.00     |
| BQ     |              |       |       |        |         |         | BT- 9                                   | 2.55  | BT-10 | 18.50     |
| Bit    |              |       |       |        |         |         | BT-11                                   | 6.10  | BT-12 | 18.25     |
|        |              |       |       |        |         |         | BT-13                                   | 2.35  |       |           |
|        |              |       |       |        |         |         | BT-14                                   | 1.75  |       |           |
|        |              |       |       |        | •       |         | BT-15                                   | 8.25  | ÷.,   |           |
| m/pc   | 5pcs         | 30.20 | 4pcs  | 37.75  | 7pcs    | 21.57   | 17pcs                                   | 8.88  | 13pcs | 11.62     |
|        | NR-18        | 63.55 | NR-16 | 80.90  | NR-23   | 31.80   | NR- 1                                   | 40.05 | NR- 2 | 32.05     |
|        | NR-19        | 60.95 | NR-17 | 70.10  | NR-25   | 44.85   | NR- 3                                   | 42.45 | NR-4  | 24.45     |
| NQ     | NR-20        | 26.50 |       |        |         |         | NR- 5                                   | 23.50 | NR-6  | 14.90     |
| Reamer |              |       |       |        |         | -       | NR- 7                                   | 10.40 |       |           |
|        |              |       |       |        |         |         |                                         |       |       |           |
| ·····  |              |       |       |        | BR-11   | 34.90   | BR- 1                                   | 3.95  | BR- 2 | 24.75     |
| BQ     |              |       |       | ,      | BR-12   | 39.45   | BR- 3                                   | 9.65  | BR- 4 | 18.10     |
| Reamer |              |       |       |        |         | BR- 5   | 11.00                                   | BR- 7 | 36.75 |           |
|        |              |       |       |        | :       |         | BR- 6                                   | 10.00 |       |           |
| m/pc   | 3pcs         | 50.33 | 2pcs  | 75.50  | 4pcs    | 37.35   | 8pcs                                    | 18.88 | 6pcs  | 25.17     |
| Casing | אא           | 1pc   | NW    | 1pc    | NW      | lpc     | NW                                      | 3pcs  | NW    | 1pc       |
| shoe   |              | *     |       |        | BW      | 2pcs    | BW                                      | 2pcs  | BW    | lpc       |

,

### Table 2-6 Drilling Meterage of Diamond Bit, Reamer and Casing Shoe Bit Used(1)

|        |       |       |       | Drilli | ng Mete | rage by | Unit  |       |       |       |
|--------|-------|-------|-------|--------|---------|---------|-------|-------|-------|-------|
| Size   | MJT   | 'C-12 | МĴТ   | °C-13  | MJTC    | - 14    | MJTC  | -16   | МЈТС  | -17   |
|        | Diam. | m     | Diam. | m      | Diam.   | m       | Diam. | í m   | Diam. | n n   |
|        | NT-40 | 31.65 | NT-19 | 22.45  | NT-15   | 8.50    | NT-46 | 22.95 | NT-50 | 24.40 |
|        | NT-41 | 26.55 | NT-20 | 19.85  | NT-16   | 17.25   | NT-47 | 37.60 | NT-51 | 29.05 |
|        | NT-42 | 21.25 | NT-24 | 25.90  | NT-17   | 17.40   | NT-48 | 30.35 | NT-53 | 31.95 |
|        |       |       | NT-25 | 25.40  | NT-18   | 23,30   | NT-49 | 21.05 |       |       |
| NQ     |       |       | NT-27 | 20.35  | NT-21   | 18,90   |       |       |       |       |
| Bit    |       |       | NT-28 | 12.90  | NT-22   | 25.40   |       |       |       |       |
|        |       |       | NT-29 | 15.35  | NT-23   | 17.65   |       |       |       |       |
|        |       |       | NT-30 | 8.80   | NT-26   | 22.60   |       |       |       |       |
|        |       |       |       |        |         |         |       |       |       |       |
|        | BT-16 | 16.80 |       |        |         |         | BT-19 | 39.05 | BT-24 | 35.05 |
|        | BT-17 | 23.95 |       |        |         |         |       |       | BT-25 | 30.55 |
|        | BT-18 | 30.80 |       |        |         |         |       | :     |       | -     |
|        |       |       |       |        |         |         |       |       |       |       |
| BQ     |       |       |       |        |         |         |       |       |       | 1     |
| Bit    |       |       |       |        |         |         |       |       |       |       |
|        |       |       |       |        |         |         |       |       |       |       |
|        |       |       |       |        |         |         |       |       |       |       |
|        |       |       |       |        |         |         |       |       |       |       |
| m/pc   | 6pcs  | 25.17 | 8pcs  | 18.90  | 8pcs    | 18.90   | 5pcs  | 30.20 | 5pcs  | 30.20 |
|        | NR-21 | 31.65 | NR-10 | 42.30  | NR- 8   | 25.75   | NR-24 | 60.55 | NR-27 | 53.45 |
| NQ     | NR-22 | 47.80 | NR-11 | 51.30  | NR- 9   | 40.70   | NR-26 | 51.40 | NR-28 | 31.95 |
| Reamer |       |       | NR-14 | 33.25  | NR-12   | 44.30   |       |       |       |       |
|        |       |       | NR-15 | 24.15  | NR-13   | 40.25   |       |       |       |       |
|        |       |       |       |        |         |         |       |       |       |       |
| į      | BR- 8 | 40.75 |       |        |         |         | BR-10 | 39.05 | BR-13 | 65.60 |
| BQ     | BR- 9 | 30.80 |       |        |         |         |       |       |       |       |
| Reamer |       |       |       |        |         |         |       |       |       |       |
| m/pc   | 4pcs  | 37.75 | 4pcs  | 37.75  | 4pcs    | 37.75   | 3pcs  | 50.33 | 3pcs  | 50.33 |
| Casing | N₩    | 1pc   | NW    | 3pcs   | NW      | 3pcs    | NW    | lpc   | NW    | 1pc   |
| shoe   | BW    | lpc   |       |        |         |         | B₩    | 1pc   | BW    | 1pc   |

## Table 2-6 Drilling Meterage of Diamond Bit, Reamer and Casing Shoe Bit Used(2)

| Road con- | Other Reco- Total Remo-struction G. | very val and T   | others | u<br>u<br>u<br>u<br>u<br>u | 122 8 304 24 16 344 | 59 - 152 16 16 184 | 229 - 384 24 24 432 | 188 - 368 16 24 408 | 164         112         464         24         512 | 75 216 24 16 256 | 158 - 320 16 16 352 | 178 - 312 16 16 344 | 147 15 315 20 19 354 | 101 - 255 24 16 295 | 94 – 232 16 24 272 | 1 642 128 216 2 006 |
|-----------|-------------------------------------|------------------|--------|----------------------------|---------------------|--------------------|---------------------|---------------------|----------------------------------------------------|------------------|---------------------|---------------------|----------------------|---------------------|--------------------|---------------------|
|           | Drill- 0t                           |                  |        | ч                          | 174                 | 93                 | 155                 | 180                 | 188                                                | 141              | 162                 | 134                 | 153                  | 1.54                | 138                | 973                 |
| Working   | Worker                              |                  |        | of men                     | 165                 | 66                 | 207                 | 204                 | 249                                                | 126              | 168                 | 162                 | 173                  | 771                 | 135                | 1.072               |
| Men W     | Engi-                               | neer             |        | Number                     | 55                  | 33                 | 69                  | 68                  | 83                                                 | 42               | 56                  | 54                  | 58                   | 48                  | 45                 | 267                 |
| بو<br>بو  | Total                               | 3<br>3<br>3<br>4 |        | shift                      | 43                  | 24                 | 54                  | 51                  | 64                                                 | 32               | 77                  | 43                  | 44                   | 37                  | 34                 | 239                 |
| Shif      | Drill-                              | ing              |        | shift                      | 37                  | 19                 | 48                  | 44                  | 57                                                 | 26               | 40                  | 38                  | 39                   | 32                  | 29                 | 189                 |
|           | Core                                |                  |        | Æ                          | 140.55              | 150.80             | 138.55              | 119.95              | 150.70                                             | 142.70           | 126.50              | 121.95              | 136.46               | 136.45              | 135.40             | 818.90              |
| Drilling  | Drill-                              | ing              | length | -<br>E                     | 151.00              | 151.00             | 151.00              | 151.10              | 151.00                                             | 151.00           | 151.00              | 151.00              | 151.00               | 151.00              | 151.10             | 151.00              |
| Dril      | Bit                                 | size             |        |                            | ÓN                  | ΝŬ                 | NQ/BQ               | NQ/BQ               | NQ/BQ                                              | NQ/BQ            | ŊQ                  | ŊŊ                  | NQ/BQ                | NQ/BQ               | NQ/BQ              | NO/BO               |
|           | Hole                                | No.              |        |                            | MJTC- 7             | MJTC- 8            | MJTC- 9             | MJTC-10             | MJTC-11                                            | MJTC-12          | MJTC-13             | MJTC-14             | Average              | MJTC-16             | MJTC-17            | Average             |

-50-

#### 4-3 Results of Diamond Drilling

#### 4-3-1 MJTC-7

The hole reached massive bedrock at 2.00m after cutting through the surface with an NQ-size diamond bit with circulating dense bentonite mud water. After reaming with the HW and NW casing shoe bit, HW and NW casing pipes were inserted at 3.05m and 12.20m because of severe collapse of the hole wall. Below 12.20m, a NQ wire line method and bentonite mud water were used for the drilling operation. The rock consisted mainly of altered andesite rock with disseminated pyrite. The rock changed from altered andesite to alternations of black mudstone and fine tuffaceous sandstone below 84.75m. The drilling was completed at 151.00m. Mineralization accompanied by pyrite occurred in altered andesite of Sapçi Volcanics from 2.00m to 84.75m.

| Depth (m)                        | 0-6.10          | 6.10-151.00       |
|----------------------------------|-----------------|-------------------|
| Mud Water                        | BMW             | BMW               |
| Bit Exchange(pcs)                | NQWL bit(1)     | NQWL bit(4)       |
| Pump Pres. (kg/cm <sup>2</sup> ) | 0-5             | 5-10              |
| Pump Feed (ℓ/min)                | 40              | 40                |
| Pump Deli. (ℓ/min)               | 40              | 40                |
| Bit Pres. (kg/cm <sup>2</sup> )  | 1,000-1,500     | 1,000-1,500       |
| Bit Rot. (rpm)                   | 200             | 200               |
| Core Recovery (%)                | 82              | 94                |
| BMW:Bentonite Mud Wa             | ter, Pres.:Pres | sures, Rot.:Rotat |

BMW:Bentonite Mud Water, Pres.:Pressures, Rot.:Rotation Deli.:delivery

#### 4-3-2 MJTC-8

As altered andesite of the Sapçı Volcanics was exposed at the surface of the site, the hole was drilled using an NQ diamond bit and circulating mud water, and was reamed with HW and NW casing shoe bits. HW and NW casing pipes were inserted at 3.05m and 6.10m. Below 6.1m, an NQ wire line method and mixed bentonite mud water were used for the drilling operation. The drilling was completed at 151.00m.

The lithology of this drill hole consists of altered andesite (0-94.00m), alternations of black mudstone and sandstone (94.00-126.00m) and altered conglomerate (126.00-151.00m). Mineralization accompanied by disseminated pyrite and native sulfur occurred in Şapçı Volcanics and Kirazlı Conglomerate.

| Depth (m)                        | 0-6.10      | 6.10-151.00 |
|----------------------------------|-------------|-------------|
| Mud Water                        | BMW         | BMW         |
| Bit Exchange(pcs)                | NQWL bit(1) | NQWL bit(3) |
| Pump Pres. (kg/cm <sup>2</sup> ) | 5-10        | 0-5         |
| Pump Feed (ℓ/min)                | 40          | 40          |
| Pump Deli. (ℓ/min)               | 40          | 40          |
| Bit Pres. (kg/cm <sup>2</sup> )  | 1,000-1,500 | 1,000-1,500 |
| Bit Rot. (rpm)                   | 200         | 200         |
| Core Recovery (%)                | 100         | 99          |

4-3-3 MJTC-9

As altered andesite of the Sapçı Volcanics was exposed at the surface of the site, the hole was drilled using an NQ diamond bit and circulating mud water, and was reamed with an NX casing shoe bit. NX casing pipes were inserted through the andesite to 3.1m. Below 3.1m, an NQ wire line method and mixed bentonite mud water were used for the drilling operation. The loss of mud water commenced at 44.50m. NW casing pipes was extended to 45.75m after reaming with NW casing shoe bit. The hole was drilled using an NQ diamond bit, and BW casing pipes were inserted at 76.65m. Below 76.65m, a BQ wire line method, and bentonite mud water including TELCOAT-L were used for the drilling operation. The drilling operation.

The lithology of this drill hole consists of altered andesite (0-49.65m), silicified fine tuff (49.65-132.00m), silicified andesite (132.00-142.30m) and strongly silicified rock (142.30-151.00m). Mineralization of pyrite and native sulfur did not occur in Sapçi Volcanics.

| Depth (m)                        | 0-76.65     | 76.65-151.00 |
|----------------------------------|-------------|--------------|
| Mud Water                        | BMW         | BMW          |
| Bit Exchange(pcs)                | NQWL bit(3) | BQWL bit(4)  |
| Pump Pres. (kg/cm <sup>2</sup> ) | 0-5         | 5-10         |
| Pump Feed (ℓ/min)                | 40          | 30           |
| Pump Deli. (ℓ/min)               | 0-40        | 0            |
| Bit Pres. (kg/cm <sup>2</sup> )  | 1,000-1,500 | 1,000-1,500  |
| Bit Rot. (rpm)                   | 200         | 200          |
| Core Recovery (%)                | 100         | 84           |

#### 4-3-4 MJTC-10

The hole reached massive bedrock at 14.00m after cutting through the surface with an NQ-size diamond bit with circulating dense bentonite mud water. After reaming with the HW and NW casing shoe bits, HW and NX casing pipes were inserted at 3.00m and 39.75m. Below 39.75m, an NQ wire line method and bentonite mud water were used for the drilling operation. Below 103m, loss of mud water commenced in the cave parts of strongly silicified zones, and BW casing pipes were inserted at 116.40m because of severe collapse of the hole wall and loss of mud water. The drilling was completed at 151.00m.

The lithology of this drill hole consists of reddish brown soil (0-14m), strongly argillized rock (14-75.30m), silicified andesite (75.30-91.55m and 140.30-151.00m) and strongly silicified rock (91.55-140.30m). Mineralization accompanied by disseminated pyrite occurred in Sapçı Volcanics.

-52-

| Depth (m)                        | 0-116.40    | 116.40-151.00 |
|----------------------------------|-------------|---------------|
| Mud Water                        | BMW         | BMW           |
| Bit Exchange(pcs)                | NQWL bit(8) | BQWL bit(9)   |
| Pump Pres. (kg/cm <sup>2</sup> ) | 05          | 5-10          |
| Pump Feed (ℓ/min)                | 40          | 30            |
| Pump Deli. (ℓ/min)               | 0-20        | 0             |
| Bit Pres. (kg/cm <sup>2</sup> )  | 1,000-1,500 | 1,000-1,500   |
| Bit Rot. (rpm)                   | 200         | 200           |
| Core Recovery (%)                | 86          | 85            |

#### 4-3-5 MJTC-11

As altered andesite of the Sapçi Volcanics was exposed at the surface of the site, the hole was drilled using an NQ diamond bit and circulating mud water, and was reamed with the HW and NW casing shoe bits. HW and NW casing pipes were inserted through the andesite to 3.0m and 9.15m. Below 9.15m, an NQ wire line method and bentonite mud water were used for the drilling operation and BW casing pipes were inserted at 116.40m because of severe collapse of the hole wall. Although the drill hole because jammed at 120.15m while retrieving an inner tube of the wire line, BQ rods and a core barrel were recovered by reaming, and the hole was completed at 151.00m.

The lithology of this drill hole consists of argillized andesite (0-32.10m and 110.60-150.00m ), silicified andesite (32.10-38.00m and 107.85-110.60m) and strongly silicified rock (38.00-107.85m). Mineralization accompanied by disseminated pyrite did not occur in Şapçı Volcanics.

| 0-71.40     | 71.40-151.00                                                |
|-------------|-------------------------------------------------------------|
| BMW         | BMW                                                         |
| NQWL bit(7) | BQWL bit(6)                                                 |
| 0-5         | 5-10                                                        |
| 40          | 30                                                          |
| 40          | 30                                                          |
| 1,000-1,500 | 1,000-1,500                                                 |
| 200         | 200                                                         |
| 100         | 100                                                         |
|             | BMW<br>NQWL bit(7)<br>0-5<br>40<br>40<br>1,000-1,500<br>200 |

#### 4-3-6 MJTC-12

The hole reached massive bedrock at 0.70m after cutting through the surface with an NQ-size diamond bit with circulating dense bentonite mud water. After reaming with the HW and NW casing shoe bits, HW and NW casing pipes were inserted at 6.10m. Below 6.10m, an NQ wire line method and bentonite mud water were used for the drilling operation. BW casing was inserted at 79.30m because of severe collapse of the hole wall. The drilling was completed at 151.00m.

The lithology of this drill hole consists of reddish brown soil (0-0.70m), strongly argillized rock (0.70-36.25m and 134.20-151.00m) and strongly silicified rock (36.25-134.20m). Mineralization accompanied by disseminated pyrite occurred between 144.90 and 151.00m.

| a ta sa sa sa sa sa sa sa sa sa sa sa sa sa | and the second second second second second second second second second second second second second second second | 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Depth (m)                                   | 0-79.45                                                                                                          | 79.45-151.00                              |
| Mud Water                                   | BMW                                                                                                              | BMW                                       |
| Bit Exchange(pcs)                           | NOWL bit(3)                                                                                                      | BQWL bit(3)                               |
| Pump Pres. (kg/cm <sup>2</sup> )            | 5-10                                                                                                             | 10-15                                     |
| Pump Feed (ℓ/min)                           | 40                                                                                                               | 30                                        |
| Pump Deli. (ℓ/min)                          | 40                                                                                                               | 20                                        |
| Bit Pres. (kg/cm <sup>2</sup> )             | 1,000-1,500                                                                                                      | 1,000-1,500                               |
| Bit Rot. (rpm)                              | 200                                                                                                              | 200                                       |
| Core Recovery (%)                           | 99                                                                                                               | 90                                        |

#### 4-3-7 MJTC-13

As the talus breccia was exposed at the surface of the site, the hole was drilled using an NQ diamond bit and circulating mud water, and was reamed with an HW casing shoe bit. An HW casing pipe was inserted at 3.05m. Below 3.05m, an NQ wire line method and mixed bentonite mud water were used for the drilling operation. The core recovery of unconsolidated limonitic talus breccia zones was low from the surface to 39.95m. After reaming of those zones with the NW casing shoe bits, NW casing pipes were inserted at 36.70m because of severe collapse of the hole. The drilling was completed at 151.00m.

The lithology of this drill hole consists of talus breccia (0-39.95m), and fractured argillized and strongly silicified rock (39.95-151.00m). Oxidization zones accompanied with hematite and limonite occurred in Şapçı Volcanics.

| Depth (m)                        | 0-39.95     | 39.95-151.00 |
|----------------------------------|-------------|--------------|
| Mud Water                        | BMW         | BMW          |
| Bit Exchange(pcs)                | NQWL bit(3) | NQWL bit(5)  |
| Pump Pres. (kg/cm <sup>2</sup> ) | 5-10        | 0-5          |
| Pump Feed (ℓ/min)                | 40          | 40           |
| Pump Deli. (ℓ/min)               | 40          | 40           |
| Bit Pres. (kg/cm <sup>2</sup> )  | 1,000-2,000 | 1,000-1,500  |
| Bit Rot. (rpm)                   | 200         | 200          |
| Core Recovery (%)                | 92          | 92           |

#### 4-3-8 MJTC-14

As the talus breccia was exposed at the surface of the site, the hole was drilled using an NQ diamond bit and circulating mud water, and was reamed with an HW casing shoe bit. An HW casing pipe was inserted at 3.05m. Below 3.05m, an NQ wire line method and mixed bentonite mud water were used for the drilling operation. The core recovery of unconsolidated limonitic talus breccia zones was low from the surface to 47.00m. After reaming of those zones with the NW casing shoe bits, NW casing pipes were inserted at 36.70m because of severe collapse of the hole. The drilling was completed at 151.00m.

The lithology of this drill hole consists of talus breccia (0-47.00m), and fractured argillized and strongly silicified rock (47.00-151.00m). Oxidization zones accompanied with hematite and limonite occurred in Sapci Volcanics.

| Depth (m)                        | 0-47.00     | 47.00-151.00 |
|----------------------------------|-------------|--------------|
| Mud Water                        | BMW         | BMW          |
| Bit Exchange(pcs)                | NQWL bit(3) | NQWL bit(5)  |
| Pump Pres. (kg/cm <sup>2</sup> ) | 1-5         | - 5-10       |
| Pump Feed (ℓ/min)                | 40          | 40           |
| Pump Deli. (ℓ/min)               | 40          | 40           |
| Bit Pres. (kg/cm <sup>2</sup> )  | 1,000-1,500 | 1,000-1,500  |
| Bit Rot. (rpm)                   | 200         | 200          |
| Core Recovery (%)                | 38          | 100          |

#### 4-4 Alteration of Drill Holes

#### 4-4-1 MJTC-7

An inclined hole (-50°) was drilled through the strongly argillized zones of Şapçı Volcanics until 100m and through Kirazlı Conglomerate from 100m to 151m. Argillized zones gradually decreased downward and the pyrite dissemination zones increased in the subsurface. The altered minerals consist of montmorillonite and kaoline in the Şapçı Volcanics, and montmorillonite and sericite in the Kirazlı Conglomerate. The drill hole did not intersect silicified zones distributed in the neighbourhood of the drill site.

#### 4-4-2 MJTC-8

An inclined hole  $(-50^{\circ})$  was drilled through the argillized zones of Sapçı Volcanics until 126m and Kirazlı Conglomerate from 126m to 151m. Argillized zones gradually decreased downward and the pyrite dissemination zones and network of native sulfur increased in the subsurface. The altered minerals consist of montmorillonite and kaoline in the Sapçı Volcanics, and montmorillonite and sericite in the Kirazlı Conglomerate. The drill hole did not intersect silicified zones distributed in the neighbourhood of the drill site.

| <u> </u> |              | Dril  | ling le | ngth  | Tot      | al       | Shif     | t       | Working Men |        |  |
|----------|--------------|-------|---------|-------|----------|----------|----------|---------|-------------|--------|--|
|          |              | Shift | Shift   | Shift | Drilling | Core     | Drilling | Total   | Engi-       | Worker |  |
|          | $\backslash$ | 1 -   | 2       | 3     | Length   | Length   | Shift    | Shift   | neer        |        |  |
|          |              | m     | m       | m     | m        | n        |          | a sa sa | men         | men    |  |
| 28       | Aug          | PRDS  |         | · · · |          |          |          | · 1     | 3           | . 9 .  |  |
| 29       | Aug          | PRDS  |         |       |          |          |          | 2       | 3           | 9      |  |
| 30       | Aug          | PRDS  |         |       |          |          |          | 3       | 3           | 9      |  |
| 31       | Aug          | 6.10  |         |       | 6.10     | 5.00     | 1        | 4       | 3           | 9      |  |
| 1        | Sept         | 6.10  | 4.35    | 3.25  | 19.80    | , ,17.40 | 3        | 7       | 3           | 9      |  |
| 2        | Sept         | 4.80  | 4.10    | 3.10  | 31.80    | 28.80    | 3        | 10      | 3           | 9      |  |
| 3        | Sept         | 4.30  | 2.00    | 2.05  | 40.15    | 37.15    | 3        | 13      | 3           | 9      |  |
| 4        | Sept.        | 3.55  | 3.55    | 5.00  | 52.25    | 49.25    | 3        | 16      | 3           | 9      |  |
| 5        | Sept         | RECO  |         |       |          |          |          | 17      | 1           | 3      |  |
| 6        | Sept         | 3.10  | 3.60    | 2.55  | 61.50    | 58.50    | 3        | 20      | 3           | 9      |  |
| 7        | Sept         | 2.05  | 3.25    | 4.85  | 71.65    | 67.65    | 3        | 23      | 3           | 9      |  |
| 8        | Sept         | 4.10  | 2.55    | 4.00  | 82.30    | 78.30    | 3        | 26      | 3           | 9      |  |
| 9        | Sept         | 4.60  | 4.50    | 5.65  | 97.05    | 92.05    | 3        | 29      | 3           | 9      |  |
| 10       | Sept         | 5.05  | 7.20    | 3.55  | 112.85   | 102.40   | · 3      | 32 -    | · 3         | 9      |  |
| 11       | Sept         | 2.90  | 4.65    | 4.10  | 124.50   | 114.05   | 3        | 35      | 3           | 9      |  |
| 12       | Sept         | 5.70  | 4.70    | 4.50  | 139.40   | 128.95   | 3        | 38      | 3           | 9      |  |
| 13       | Sept         | 7.15  | 4.45    | OUCP  | 151.00   | 140.55   | 3        | 41      | 3           | 9      |  |
| 14       | Sept         | DISM  |         |       |          |          |          | 42      | 3           | 9      |  |
| 15       | Sept         | DISM  |         | ·     |          |          |          | 43      | 3           | 9      |  |
| Τc       | otal         | 59.50 | 48.90   | 42.60 | 151.00   | 140.55   | - 37     | 43      | 55          | 165    |  |

Table 2-8 Record of the Drilling Operation at MJTC-7

Abbreviations

ROCO;Road construction PRDS;Preparation of drilling site TRAN;Transportation TRRE;Transportation and Reassembly CIMW;Circulation of mud water DISM;Dismantling RECO;Recovery work INCP;Inserting casing pipe OUCP;Retrieving casing pipe

|        | Dril  | ling Le | ngth  | Tot      | al     | Shif     | t     | Workin | g Men  |
|--------|-------|---------|-------|----------|--------|----------|-------|--------|--------|
|        | Shift | Shift   | Shift | Drilling | Core   | Drilling | Total | Engi-  | Worker |
|        | _1    | 2       | 3 .   | Length   | Length | Shift    | Shift | neer   |        |
| :      | , m   | m       | m     | n .      | m      |          |       | men    | men    |
| 23 Aug | PRDS  |         |       |          |        |          | 1     | 3      | . 9    |
| 24 Aug | PRDS  |         |       |          |        |          | 2     | - 3    | 9      |
| 25 Aug | 3.20  |         |       | 3.20     | 3.20   | 1        | 3     | 3      | 9      |
| 26 Aug | 7.15  | 9.55    | 9.15  | 29.05    | 29.05  | 3        | 6     | 3      | 9      |
| 27 Aug | 6.10  | 12.20   | 9.15  | 56.50    | 56.50  | 3        | 9     | 3      | 9      |
| 28 Aug | 9.15  | 9.15    | 6.10  | 80.90    | 80.90  | 3        | 12    | 3      | 9      |
| 29 Aug | 11.75 | 9.25    | 6.45  | 108.35   | 108.35 | 3        | 15    | 3      | 9      |
| 30 Aug | 10.80 | 7.30    | 5.05  | 131.50   | 131.30 | 3        | 18    | 3      | 9      |
| 31 Aug | 5.55  | 6.75    | 7.20  | 151.00   | 150.80 | 3.       | 21    | 3      | 9      |
| 1 Sept | DISM  |         |       |          |        |          | 22    | 3      | . 9    |
| 2 Sept | DISM  |         |       |          |        |          | 23    | 3      | 9      |
|        |       |         |       |          |        |          |       |        |        |
|        |       |         |       |          |        |          |       |        |        |
|        |       | -       |       |          |        |          |       |        |        |
|        |       |         |       |          |        |          |       |        |        |
|        |       |         |       |          |        |          |       |        |        |
| Total  | 53.70 | 54.20   | 43.10 | 151.00   | 150.80 | 19       | 24    | 33     | 99     |

Table 2-9 Record of the Drilling Operation at MJTC-8

Abbreviations

ROCO;Road construction

PRDS;Preparation of drilling site

TRAN; Transportation

TRRE; Transportation and Reassembly

DISM:Dismantling RECO;Recovery work INCP:Inserting casing pipe OUCP;Retrieving casing pipe

|         | Dril  | ling Le | ngth                                  | Tot      | al     | Shif           | t     | Working Men    |        |  |
|---------|-------|---------|---------------------------------------|----------|--------|----------------|-------|----------------|--------|--|
|         | Shift | Shift   | · · · · · · · · · · · · · · · · · · · | Drilling |        | Drilling       | Total | Engi-          | Worker |  |
|         | 1     | 2       | 3                                     | Length   | Length | Shift          | Shift | neer           |        |  |
|         | • m   | m       | m                                     | . m      | · m ·  |                | · ·   | men            | men    |  |
| 16 Sept | PRDS  |         |                                       |          |        |                | - 1   | 3              | 9      |  |
| 17 Sept | PRDS  |         |                                       |          |        |                | 2     | 3              | - 9 -  |  |
| 18 Sept | PRDS  |         |                                       |          |        |                | 3     | 3              | 9      |  |
| 19 Sept | 5.60  |         |                                       | 5.60     | 5.60   | 1              | 4     | 3              | - 9    |  |
| 20 Sept | 6.45  | 5.95    |                                       | 18.00    | 18.00  | 2              | - 6   | 3              | 9      |  |
| 21 Sept | 4.05  | 5.25    | 4.50                                  | 31.80    | 31.80  | 3              | . 9   | 3              | 9      |  |
| 22 Sept | 3.05  | 6.10    | 3.05                                  | 44.00    | 43.80  | 3              | 12    | 3              | - 9    |  |
| 23 Sept | 4.10  | INCP    | INCP                                  | 48.10    | 47.90  | 3              | 15    | 3              | 9      |  |
| 24 Sept | INCP  | INCP    | INCP                                  | 48.10    | 47.90  | 3              | 18    | 3              | 9      |  |
| 25 Sept | 2.00  | 4.90    | 2.70                                  | 57.70    | 57.50  | -3             | 21    | 3              | 9      |  |
| 26 Sept | 3.15  | 2.90    | 2.60                                  | 66.35    | 66.15  | 3              | 24    | 3              | 9      |  |
| 27 Sept | CIMW  | 2.05    | 5.10                                  | 73.50    | 73.30  | 3              | 27    | 3              | 9      |  |
| 28 Sept | 2.20  | 0.95    | 1.90                                  | 78.55    | 78.35  | 3              | 30    | 3              | 9      |  |
| 29 Sept | 5.70  | INCP    | INCP                                  | 84.25    | 84.05  | 3              | 33    | 3              | 9      |  |
| 30 Sept | INCP  | 2.75    | 1.90                                  | 88.90    | 88.70  | 3              | 36    | 3              | 9      |  |
| 1 Oct   | 3.50  | 3.95    | 5.60                                  | 101.95   | 101.75 | 3              | 39    | 3              | 9      |  |
| 2 Oct   | 6.10  | 3.50    | 4.00                                  | 115.55   | 111.25 | 3              | 42    | 3              | 9      |  |
| 3 Oct   | CIMW  | 6.25    | 5.80                                  | 127.60   | 119.20 | <sup>°</sup> 3 | 45    | 3              | 9      |  |
| 4 Oct   | 8.50  | 4.20    | 3.60                                  | 143.90   | 131.45 | 3              | 48    | 3.             | 9      |  |
| 5 Oct   | 1.00  | 6.10    | OUCP                                  | 151.00   | 138.55 | 3              | 51    | 3              | 9      |  |
| 6 Oct   | DISM  |         |                                       |          |        |                | 52    | 3              | 9      |  |
| 7 Oct   | DISM  |         |                                       |          |        |                | 53    | 3              | 9.     |  |
| 8 Oct   | DISM  | · .     |                                       |          |        |                | 54    | <sup>.</sup> 3 | 9      |  |
| Total   | 55.40 | 54.85   | 40.75                                 | 151.00   | 138.55 | 48             | 54    | 69             | 207    |  |

Table 2-10 Record of the Drilling Operation at MJTC-9

Abbreviations ROCO;Road construction PRDS;Preparation of drilling site TRAN;Transportation TRRE;Transportation and Reassembly CIMW;Circulation of mud water

DISM;Dismantling RECO;Recovery work INCP;Inserting casing pipe OUCP;Retrieving casing pipe

|          |       |         |         |          |        | <br>T    |       | Working Men |         |  |
|----------|-------|---------|---------|----------|--------|----------|-------|-------------|---------|--|
|          |       | ling Le | r · · · | Tot      |        | Shif     |       | ·           |         |  |
|          | Shift | Shift   |         | Drilling | Core   | Drilling | Total | Engi-       | Worke   |  |
|          | 1     | 2       | 3       | Length   | Length | Shift    | Shift | neer        | · .<br> |  |
| -<br>    | m     | m       | m       | , m      | m      |          |       | men         | men     |  |
| 11. July | PRDS  |         | ł       | E i      |        |          | 1     | 3           | 9       |  |
| 12 July  | PRDS  |         |         |          |        |          | 2     | . 3         | 9       |  |
| 13 July  | PRDS  |         |         |          |        |          | 3     | 3           | 9       |  |
| 14 July  | 3.00  |         |         | 3.00     | 1.50   | 1        | 4     | 3           | 9       |  |
| 15 July  | 5.65  |         |         | 8.65     | 4.75   | 1        | 5     | 3           | 9       |  |
| 16 July  | 3.95  |         |         | 12.60    | 7.15   | 1        | 6     | 3           | 9       |  |
| 17 July  | 2.85  | 1.60    |         | 17.05    | 10.55  | 2        | 8     | 3           | 9       |  |
| 18 July  | 2.25  | 4.60    | 5.05    | 28.95    | 19.90  | 3        | 11    | 3           | 9       |  |
| 19 July  | 5.50  | 4.00    | 1.65    | 40.10    | 29.45  | 3        | 14    | 3           | . 9     |  |
| 20 July  | INCP  | 1.05    | 6.20    | 47.35    | 36.10  | 3        | 17    | 3           | 9       |  |
| 21 July  | 8.90  | 5.05    | 8.65    | 69.95    | 58.70  | 3        | 20    | 3           | 9       |  |
| 22 July  | 8.25  | 4.35    | 6.40    | 88.95    | 77.70  | 3        | 23    | 3           | 9       |  |
| 23 July  | 7.55  | 2.55    | 1.70    | 100.75   | 89.25  | 3        | 26    | 3           | 9       |  |
| 24 July  | 2.45  | 1.55    | 1.30    | 106.05   | 90.95  | 3        | 29    | 3           | 9       |  |
| 25 July  | 3.05  | 1.10    | 2.15    | 112.35   | 93.20  | 3        | 32    | 3           | 9       |  |
| 26 July  | 3.55  | 0.50    | BWCP    | 116.40   | 96.05  | 2        | 35    | 3           | 9.      |  |
| 27 July  | BWCP  | 1.80    | 2.15    | 120.35   | 98.40  | 2        | 38    | 3           | 9       |  |
| 28 July  | 4.10  | 5.55    | 2.55    | 132.55   | 106.55 | 3        | 41    | 3           | 9       |  |
| 29 July  | PRMW  | 2.70    | 3.40    | 138.65   | 109.55 | 3        | 44    | 3           | 9       |  |
| 30 July  | 2.35  | 0.50    | 1.25    | 142.75   | 112.00 | 3        | 47    | 3           | 9       |  |
| 31 July  | 5.05  | 3.20    |         | 151.00   | 119.95 | 2        | 49    | 2           | 6       |  |
| 1 Aug    | DISM  |         |         |          |        |          | 50    | 3           | 9       |  |
| 2 Aug    | DISM  |         |         |          |        |          | 51    | 3           | 9       |  |
| Total    | 68.45 | 40.10   | 42.45   | 151.00   | 119.95 | 44       | 51    | 68          | 204     |  |

Table 2-11 Record of the Drilling Operation at MJTC-10

Abbreviations

| ROCO;Road construction             | DISM;Dismantling            |
|------------------------------------|-----------------------------|
| PRDS;Preparation of drilling site  | RECO;Recovery work          |
| TRAN;Transportation                | INCP;Inserting casing pipe  |
| TRRE;Transportation and Reassembly | OUCP;Retrieving casing pipe |
| PRMW;Preparation of mud water      |                             |

|         | Dril  | ling Le | ngth  | Tot      | al     | Shif     | t     | Working Men |        |  |
|---------|-------|---------|-------|----------|--------|----------|-------|-------------|--------|--|
|         | Shift | Shift   | Shift | Drilling | Core   | Drilling | Total | Engi-       | Worker |  |
|         | 1     | 2       | 3     | Length   | Length | Shift    | Shift | neer        |        |  |
|         | m     | m       | n     | m        | · M    |          |       | men         | men    |  |
| 11 July | PRDS  | · · ·   |       |          |        |          | 1     | 3           | 9      |  |
| 12 July | PRDS  |         |       |          |        |          | 2     | 3           | ·· 9   |  |
| 13 July | PRDS  |         |       |          |        |          | 3 .   | 3           | · · 9  |  |
| 14 July | 3.00  |         |       | 3.00     | 3.00   | 1        | 4     | - 3         | 9      |  |
| 15 July | 4.35  |         |       | 7.35     | 7.35   | 1        | 5     | 3           | - 9    |  |
| 16 July | 6.45  |         |       | 13.80    | 13.80  | 1        | ,6    | 3           | 9      |  |
| 17 July | 4.60  | : 2.70  |       | 21.10    | 21.10  | 2        | 8     | 3           | 9      |  |
| 18 July | 3.50  | 4.10    | 3.35  | 32.05    | 32.05  | 3        | . 11  | 3           | 9      |  |
| 19 July | 4.85  | 3.65    | 0,70  | 41,25    | 41.25  | 3        | 14    | 3           | 9      |  |
| 20 July | 0.30  | 4.45    | 0.80  | 46.80    | 46.80  | 3        | 17    | 3           | 9      |  |
| 21 July | 1.60  | 2.00    | 6.10  | 56.50    | 56.50  | 3        | 20    | 3           | 9      |  |
| 22 July | 1.25  | 4.85    | 4.10  | 66.70    | 66.70  | 3        | 23    | 3           | 9      |  |
| 23 July | 4.70  | BWCP    | 2.60  | 74.00    | 73.70  | 3        | 26    | 3           | 9      |  |
| 24 July | 3.85  | 5.35    | 3.80  | 87.00    | 86.70  | 3        | 29    | 3           | 9      |  |
| 25 July | 3.05  | 6.10    | 2.65  | 98.80    | 98.50  | 3        | 32    | 3           | 9      |  |
| 26 July | 3.45  | 8.15    | 3.85  | 114.25   | 113.95 | 3        | 35    | 3           | 9      |  |
| 27 July | 3.25  | PRMW    | 1.00  | 118.50   | 118.20 | -3       | 38    | 3           | 9      |  |
| 28 July | 1.65  | RECO    | RECO  | 120.15   | 118.70 | 3        | 41    | 3           | 9      |  |
| 29 July | RECO  | RECO    | RECO  | 120.15   | 118.70 | 3        | 44    | 3           | 9      |  |
| 30 July | RECO  | RECO    | RECO  | 120.15   | 118.75 | 3        | 47    | 3           | 9      |  |
| 31 July | RECO  | RECO    | RECO  | 120.15   | 118.75 | 3        | 50    | 3           | 9      |  |
| 1 Aug   | RECO  | RECO    | RECO  | 120.15   | 119.85 | 3        | 53    | 3           | 9      |  |
| 2 Aug   | 1.95  | 4.80    | 5.50  | 132.40   | 132.10 | 3        | 56    | 3           | 9      |  |
| 3 Aug   | 6.10  | 5.65    | 5.30  | 149.45   | 149.15 | 3        | 59    | 3           | 9      |  |
| 4 Aug   | 1.55  | OUCP    |       | 151.00   | 150.70 | 1        | 61    | 2           | 6      |  |
| 5 Aug   | DISM  |         |       |          | /      |          | 62    | 3           | 9      |  |
| 6 Aug   | DISM  |         |       |          |        |          | 63    | 3           | 9      |  |
| 7 Aug   | DISM  |         |       |          |        |          | 64    | - 3         | . 9    |  |
| Total   | 59.45 | 51.80   | 39.75 | 151.00   | 150.70 | 57       | 64    | 83          | 249    |  |

Table 2-12 Record of the Drilling Operation at MJTC-11

Abbreviations ROCO;Road construction PRDS;Preparation of drilling site TRAN;Transportation RREE;Transportation and Reassembly PRMW;Preparation of mud water

DISM;Dismantling RECO;Recovery work INCP;Inserting casing pipe OUCP;Retrieving casing pipe

|         | Dril         | ling Le | ngth  | Tot      | al          | Shif     | t     | Workin | ng Men |
|---------|--------------|---------|-------|----------|-------------|----------|-------|--------|--------|
|         | Shift        | Shift   | Shift | Drilling | Core        | Drilling | Total | Engi-  | Worker |
|         | · <b>1</b> · | 2       | 3     | Length   | Length      | Shift    | Shift | neer   |        |
|         | m            | m       | m     | m        | m           |          |       | men    | men    |
| 3 Sept  | PRDS         |         |       | [ [      |             |          | 1     | - 3    | .9     |
| 4 Sept  | PRDS         |         |       |          |             | -        | 2     | 3      | 9      |
| 5 Sept  | PRDS         |         | 1     |          |             |          | 3     | 3      | .9 -   |
| 6 Sept  | 3.15         | 4.05    | 6.15  | 13.35    | 12.55       | 3        | 6     | 3      | 9      |
| 7 Sept  | 9.65         | 8,65    | 6.45  | 38.10    | 37.30       | 3        | 9     | - 3    | 9      |
| 8 Sept  | 4.20         | 6.05    | 3.55  | 51.90    | 51.10       | 3        | 12    | 3      | 9.     |
| 9 Sept  | 6.30         | 5.50    | 7.95  | 71.65    | 70.85       | 2        | 15    | 3      | 9      |
| 10 Sept | 6.10         | 1.70    | INCP  | 7.9.45   | 78.65       | 3        | 18    | 3      | 9      |
| 11 Sept | 7.70         | 7.20    | 5.85  | 100.20   | 99.40       | 3        | 21    | 3      | 9      |
| 12 Sept | 6.05         | 6.05    | 3.50  | 115.80   | 115.00      | 3        | 24    | 3      | 9      |
| 13 Sept | 4.40         | 6.75    | 5.25  | 132.20   | 131.40      | 3        | 27    | 3      | 9      |
| 14 Sept | 10.50        | 8.30    | OUCP  | 151.00   | 142.70      | 3        | 30    | 3      | 9      |
| 15 Sept | DISM         |         |       |          |             |          | 31    | 3      | 9 .    |
| 16 Sept | DISM         |         |       |          | · · · · · · |          | 32    | · 3    | 9      |
|         |              |         |       |          |             |          |       |        |        |
|         |              |         |       |          |             |          |       |        |        |
|         |              |         |       |          |             |          |       |        |        |
|         |              |         |       |          |             |          |       |        |        |
|         |              | -       |       |          |             |          |       |        |        |
|         |              |         |       |          |             |          |       |        |        |
| Total   | 58.05        | 54.25   | 38.70 | 151.00   | 142.70      | 26       | 32    | 42     | 126    |

Table 2-13 Record of the Drilling Operation at MJTC-12

Abbreviations

i

ROCO;Road construction

PRDS;Preparation of drilling site

TRAN; Transportation

.

TRRE; Transportation and Reassembly

PRMW;Preparation of mud water

DISM;Dismantling

RECO;Recovery work

INCP; Inserting casing pipe OUCP; Retrieving casing pipe

|      |        | Dril  | ling Le | ngth  | Tot      | al       | Shif     | t     | Workin         | ıg Men |
|------|--------|-------|---------|-------|----------|----------|----------|-------|----------------|--------|
|      |        | Shift | Shift   | Shift | Drilling | Core     | Drilling | Total | Engi-          | Worker |
|      | $\sim$ | -1    | 2       | 3     | Length   | Length   | Shift    | Shift | neer           |        |
|      |        | m     | n.      | m     | m        | m        |          |       | men            | men    |
| 8 A  | ug     | PRDS  |         |       |          |          |          | 1     | 3              | 9      |
| 9 A  | ug     | PRDS  |         |       |          |          |          | 2 -   | 3              | - 9    |
| 10 A | ug     | 3.05  |         |       | 3.05     | 2.00     | 1        | 3     | 3              | 9      |
| 11 A | ug     | 4.30  |         |       | 7.35     | 3.50     | 1        | 4     | 3              | .9     |
| 12 A | ug     | 3.15  | 3.50    |       | 14.00    | 6.65     | 2        | -6    | 2              | 6      |
| 13 A | ug     | 5.40  | 3.05    | 4.05  | 26.50    | 13.10    | 3        | 9     | 3              | 9      |
| 14 A | ug     | 5.10  | 3.75    | 3.60  | 38.95    | 18.45    | 3        | 12    | 3              | 9      |
| 15 A | ug     | CIMW  | 1.40    | 1.95  | 42.30    | 20.25    | 3 .      | 15    | 3              | 9      |
| 16 A | ug     | 3.35  | 3.45    | 3.85  | 52.95    | 30.90    | 3        | 18    | 3              | 9      |
| 17 A | ug     | 6.10  | 7.10    | 2.05  | 68.20    | 46.15    | 3        | 21    | 3              | 9      |
| 18 A | ug     | 3.55  | 4.00    | 4.65  | 80.40    | 58.35    | 3        | 24    | <sup>5</sup> 3 | 9 -    |
| 19 A | ug     | 5.60  | 4.15    | 3.45  | 93.60    | 71.55    | 3        | 27    | 3              | 9      |
| 20 A | ug     | 2.50  | 5.30    | 5.15  | 106.55   | 84.50    | 3        | 30    | - 3            | 9      |
| 21 A | ug     | 6.40  | 4.85    | 4.10  | 121.90   | 99.85    | 3        | 33    | 3              | 9      |
| 22 A | ug     | Holid | ay      |       |          |          |          |       |                |        |
| 23 A | ug     | CIWW  | 3.95    | 5.40  | 131.25   | 109.20   | 3        | 36    | 3              | 9      |
| 24 A | ug     | 5.30  | 3.45    | 1.20  | 141.20   | 116.70   | 3        | 39    | 3              | 9      |
| 25 A | ug     | 3.00  | 3.90    | 2.90  | 151.00   | 126.50   | 3        | 42    | 3              | 9      |
| 26 A | ug     | DISM  |         |       |          |          |          | 43    | 3              | 9      |
| 27 A | ug     | DISM  |         |       |          | <u> </u> |          | 44    | 3              | 9      |
| Tota | al     | 56.80 | 51.85   | 42.35 | 151.00   | 126.50   | 40       | 44    | 56             | 168    |

Table 2-14 Record of the Drilling Operation at MJTC-13

Abbreviations

ROCO;Road construction

PRDS;Preparation of drilling site TRAN;Transportation TRRE;Transportation and Reassembly

CIMW;Circulation of mud water

DISM:Dismantling RECO;Recovery work INCP;Inserting casing pipe OUCP;Retrieving casing pipe

|        | Drilling Length |         |       |          | <del>.</del> |          | 1     |        |        |
|--------|-----------------|---------|-------|----------|--------------|----------|-------|--------|--------|
|        | Dril            | ling Le | ngth  | Tot      | al           | Shif     | t     | Workin | g Men  |
|        | Shift           | Shift   | Shift | Drilling | Core         | Drilling | fotal | Engi-  | Worker |
|        | - 1             | 2       | 3     | Length   | Length       | Shift    | Shift | neer   |        |
|        | m               | n       | m     | m        | m            |          |       | men    | men    |
| 3 Aug  | PRDS            |         |       |          |              |          | . 1   | 3      | 9      |
| 4 Aug  | PRDS            |         |       |          |              |          | 2     | 3      | 9      |
| 5 Aug  | 5.20            |         |       | 5.20     | 4.25         | 1        | 3     | 3      | 9      |
| 6 Aug  | 4.05            | 4.05    |       | 13.30    | 5.15         | 2        | 5     | 3      | 9      |
| 7 Aug  | 3.95            | 1.65    | 1.80  | 20.70    | 6.55         | 3        | 8     | 3      | 9      |
| 8 Aug  | 3.85            | 1.20    | 2.15  | 27.90    | 11.00        | 3        | 11    | - 3    | 9      |
| 9 Aug  | 5.25            | 1.75    | 0.90  | 35.80    | 12.40        | 3        | 14    | 3      | 9      |
| 10 Aug | 2.90            | 1.20    | 2.55  | 42.45    | 15.45        | 3        | 17    | 3      | 9      |
| 11 Aug | 0.70            | 2.45    | 1.40  | 47.00    | 17.95        | 3        | 20    | 3      | 9      |
| 12 Aug | 2.95            | 6.55    | 7.45  | 63.95    | 34.90        | 3        | 23    | 3      | 9      |
| 13 Aug | 2.50            | 5.70    | 3.85  | 76.00    | 46.95        | 3        | 26    | 3      | 9      |
| 14 Aug | 5.20            | 4.15    | 7.20  | 92.55    | 63.50        | 3        | 29    | 3      | 9      |
| 15 Aug | 6.45            | 4.15    | 5.55  | 108.70   | 79.65        | 3        | 32    | 3      | 9      |
| 16 Aug | 2.05            | 3.45    | 9.15  | 123.35   | 94.30        | 3        | 35    | 3      | 9      |
| 17 Aug | 5.05            | 6.85    | 7.90  | 143.15   | 114.10       | 3        | 38    | 3 -    | 9 .    |
| 18 Aug | 4.95            | 2.90    | OUCP  | 151.00   | 121.95       | 2        | 41    | 3      | 9      |
| 19 Aug | DISM            |         |       |          |              |          | 42    | 3.     | 9      |
| 20 Aug | DISM            |         |       |          |              |          | 43    | 3      | 9      |
|        |                 |         | -     |          |              |          |       |        |        |
|        |                 |         |       |          | ĺ            |          |       |        |        |
|        |                 |         |       |          |              |          |       |        |        |
|        |                 |         |       |          |              |          |       |        |        |
|        |                 |         | i     |          |              |          |       |        |        |
| Total  | 55.05           | 46.05   | 49.90 | 151.00   | 121.95       | 38       | 43    | 54     | 162    |

Table 2-15 Record of the Drilling Operation at MJTC-14

Abbreviations

ROCO;Road construction

PRDS;Preparation of drilling site

TRAN; Transportation

TRRE: Transportation and Reassembly

DISM;Dismantling RECO;Recovery work INCP;Inserting casing pipe OUCP;Retrieving casing pipe

|               |         |         | Su       | irvey        | / Perio | bid              |         |        |       |               | Total      | Men       |
|---------------|---------|---------|----------|--------------|---------|------------------|---------|--------|-------|---------------|------------|-----------|
|               | -       | Pe      | eriod    | T            | Days    | Wo               | ork Day | Off    | Day   | E             | ngìneer    | Worker    |
| Operation     |         |         |          |              |         |                  | Days    | Da     | ys    |               | Men        | Men       |
| Preparation   | 1 2     | 8 ~ 30  | ) August | :            | 3       |                  | 3       |        |       |               | 9          | 27        |
|               |         |         |          |              |         | Dr               | illing  |        |       |               |            |           |
| Drilling      | 31      | Aug~1   | 3 Sept   |              | 14      |                  | 13      |        | -     |               | 40         | 120       |
|               |         |         |          |              | l       | Re               | covery  |        |       |               |            | · ·       |
|               |         |         |          |              |         |                  | 1 -     |        | -     |               |            |           |
| Rémoval       | 14      | ~ 15 s  | Septembe | er           | 2       |                  | 2       |        |       |               | 6          | 18        |
| Total         | 28      | Aug~15  | Sept     | -            | 19      | · · .            | 19      |        |       |               | 55         | 152       |
| Drilling Leng | ;th     |         |          |              |         |                  | Cor     | e Rec  | overy | y o           | f 50 m     | hole      |
| Length        | 15      | 0.00m   | 0ver-    | ļ            | 2.00    | Dm               |         |        |       | . ]           | Core       |           |
| Planned       |         |         | burd     | len          |         | -                | Depth   | Co     | re    |               | Recov      | ery       |
| Increase      |         |         |          |              |         | <u> </u>         | of Hole | Re     | còvei | ry            | Cumul      | ated      |
| or            |         |         | Core     |              |         |                  | ( m     |        | (%)   | )             | •          | (%)       |
| Decrease      | 15      | 1.00m   |          |              | 140.55  | ōπ               |         |        |       |               |            |           |
| in            |         |         | Lengt    | h            |         |                  |         |        |       |               |            | 1997 - A. |
| Length        |         |         | _        |              | • •     | -                | 0~ 5    | 0      | 98    |               | 98         |           |
| Length        |         |         | Core     |              | %       |                  | 50~10   | 0      | 88    |               | 92         |           |
| Drilled       | 15      | 1.00m   | Recove   | ry           | 94.3    |                  | 100~15  |        | 100   |               | 94         |           |
| Working Hours |         | h       | %        |              | %       |                  |         |        |       |               |            |           |
| Drilling      |         | 174     | 57       |              | 51      |                  | Е       | ffici  | ency  | of            | Drilli     | ng        |
| Other Work    |         | 122     | 40       |              | 35      | - <del> </del> - | Total m | /work  | 1     | 15            | 1.00m/1    | 3 days    |
| Recovery      |         | 8       | 3        |              | 2       |                  | Period( | m/day  |       | -(1           | 1.62m/d    | ay)       |
| Total         |         | 304     | 100      |              | 88      |                  | Total m | /tota  | 1     | 151.00m/37 sł |            | 7 shift   |
| Reassembly    |         | 24      |          |              | . 7     |                  | Shift   | (m/shi | ift)  | (4            | .08m/sh    | ift)      |
| Dismantling   | (       | 16      |          |              | 5       | Ð                | rilling | Leng   | th/Bi | it(           | each si    | ze bit)   |
| Water         |         |         |          |              |         |                  | Bit     | Size   | HV    | V.            | NX         | NQ        |
| Transportat   | ion     |         |          |              |         |                  | Drill   | ed     |       |               |            |           |
| Road Constr   |         |         |          |              |         |                  | Lengt   | h(m)   |       | ĺ             |            | 151,00    |
| and Others    |         |         |          |              | . ·     | -                | Cor     |        | 1     |               |            |           |
| G.Total       |         | 344     |          |              | 100     |                  | Lengt   | h(m)   |       |               |            | 140.55    |
| Casing Pipe I | nserte  | d       |          | <del> </del> |         |                  |         |        |       |               | <b>1</b> . |           |
|               |         |         |          | Met          | erage   |                  |         |        |       |               |            |           |
| Size M        | leterag | e Drill | ingx100  | Rec          | overy   |                  | Directi | on: N  | 10° E |               | Inclin     | e:-50°    |
|               |         | Le      | ngth     |              |         |                  |         |        |       |               |            |           |
|               | (m)     |         | (%)      |              | (%)     |                  |         |        |       |               |            |           |
| HW            | 3.0     |         | 2        |              | 100     |                  | ·       |        |       |               |            |           |
| NW            | 12.2    | 0       | 8        |              | 100     |                  |         |        |       |               |            |           |
|               |         |         |          |              |         |                  |         |        |       |               |            |           |

# Table 2-16 Summary of the Drilling Operation of MJTC-7

## Table 2-17 Summary of the Drilling Operation of MJTC-8

|                                       | · · · ·  |                                        | <u></u>  | Su        | rve | y Peri | od      |                   |          |                |               | Tota.  | Men     |
|---------------------------------------|----------|----------------------------------------|----------|-----------|-----|--------|---------|-------------------|----------|----------------|---------------|--------|---------|
|                                       | ~        |                                        | Pe       | riod      |     | Days   | W       | ork day           | Off      | day            | E             | nginee | Worker  |
| Operation                             | . 1      |                                        | · .      |           | ·   |        |         | Days              | Day      | 'S             |               | Men    | Men     |
| Preparatio                            | n        | 23                                     | ~ 24     | August    |     | 2      |         | 2                 | -        | •              |               | . 6    | 18      |
| · · · · · · · · · · · · · · · · · · · |          |                                        |          |           |     |        | D       | rilling           |          |                | 1             |        |         |
| Drilling                              |          | 25                                     | ~ 31     | August    |     | 7      |         | 7                 |          | -              |               | 21     | 63      |
|                                       | ł        |                                        |          |           |     |        | R       | ecovery           |          |                | 1             |        |         |
|                                       |          |                                        |          |           |     |        |         |                   |          |                |               |        |         |
| Removal                               |          | 1 ~                                    | ~ 2      | Septemb   | er  | 2      |         | 2                 |          | -              |               | 6      | 18      |
| Total                                 | 2        | 3 Au                                   | 1g~2     | Sept      |     | 11     |         | 11                |          |                | 1             | 33     | 99      |
| Drilling Len                          | gth      | ······································ |          |           |     |        |         | Cor               | e Reco   | ver            | y 0           | f 50 m | hole    |
| Length                                |          | 150.                                   | .00m     | Over-     |     |        | n I     |                   |          |                |               | Core   | 2       |
| Planned                               | ļ        |                                        |          | burd      | en  |        |         | Depth             | Cor      | e              |               | Recov  | /ery    |
| Increase                              |          |                                        |          |           |     |        |         | of Hole           | Rec      | over           | ry            | Cumui  | ated    |
| or                                    |          |                                        |          | Core      |     |        |         | (m                | )        | (%)            | )             |        | (%)     |
| Decrease                              |          | 151.                                   | 00m      |           |     | 150.80 |         |                   |          |                |               |        |         |
| in                                    |          |                                        |          | Length    |     |        |         |                   |          |                |               |        |         |
| Length                                |          |                                        |          |           |     |        |         | 0~ 5              | 0 1      | 00             |               | 100    | )       |
| Length                                |          |                                        |          | Core      |     | %      |         | 50~10             | 0 1      | 00             | Ì             | 10(    | )       |
| Drilled                               |          | 151.                                   | 00m      | Recove    | rу  | 99.9   |         | 100~15            | 1        | 99             |               | 99     | 0.9     |
| Working Hour                          | s        | $\top$                                 | h        | %         |     | %      |         |                   |          |                |               |        |         |
| Drilling                              |          | -                                      | 93 61    |           |     | 50     |         | E                 | fficie   | ncy            | of            | Drilli | ng      |
| Other Work                            |          |                                        | 59       | 59 39     |     | 32     | Total m |                   | /work    |                | 15            | 1.00m/ | 7 days  |
| Recovery                              |          |                                        |          |           |     |        |         | Period(m/day)     |          | (2             | (21.57 m/day) |        |         |
| Total                                 |          |                                        | 152      | 100       |     |        | Total m |                   | /total   |                | 151.00m/19    |        | 9 shif  |
| Reassembly                            |          |                                        | 16       |           |     | 9      |         | Shift (           | m/shift) |                | (7.95 m/shift |        | shift)  |
| Dismantlin                            | g        |                                        | 16       |           |     | 9      |         | Drilling Length/B |          | it(each size b |               | ze bit |         |
| Water                                 |          |                                        |          |           |     |        |         | Bit               | Size     | H              | M             | NW     | NQ      |
| Transporta                            | tion     |                                        |          |           |     |        |         | Drill             | ed       |                |               |        |         |
| Road Const                            | ructi    | on                                     |          |           |     |        |         | Lengt             | h(m)     | -              | -             |        | 151.00  |
| and Others                            |          |                                        |          |           |     |        |         | Core              |          |                |               |        |         |
| G.Total                               |          |                                        | 184      | <b></b> _ |     | 100    |         | Lengt             | h(m)     |                |               |        | 150.80  |
| Casing Pipe                           | Inser    | ted                                    |          |           |     |        |         |                   |          |                |               |        |         |
|                                       |          |                                        |          |           |     | terage |         |                   |          |                |               |        |         |
| Size                                  | Meter    | age                                    | Drill    | ingx100   | Re  | covery |         | Directi           | on: S1   | 0°₩            |               | Inclin | ie:-50° |
|                                       |          |                                        | Le       | ngth      |     |        |         |                   |          |                |               |        |         |
|                                       |          | m)                                     | ļ        | (%)       |     | (%)    |         |                   |          |                |               |        |         |
| HW                                    |          | 05                                     | <u> </u> | 2.02      |     | 100    |         |                   |          |                |               |        |         |
| NW                                    | 6.       | 10                                     |          | 4.04      |     | 100    |         | -                 |          |                |               |        |         |
|                                       | <b>_</b> |                                        |          |           |     |        |         | ~                 |          |                |               |        |         |

| <hr/>         |          |                      | Su                | rvey  | Perio     | bd                                                                                                             |                            |              |          |                  | Total         | Men             |  |
|---------------|----------|----------------------|-------------------|-------|-----------|----------------------------------------------------------------------------------------------------------------|----------------------------|--------------|----------|------------------|---------------|-----------------|--|
|               | ·   ·    | Pe                   | eriod             |       | Days      |                                                                                                                | ork day                    | Off day      |          | Ē                | Engineer Work |                 |  |
| Operation     |          |                      |                   |       |           |                                                                                                                | Days                       | Da           | ys       | 1                | Men           | Men             |  |
| Preparation   | n 16     | $\sim 18$            | Septemb           | er    | 3         |                                                                                                                | 3                          |              | ~        |                  | 9             | 27              |  |
|               |          |                      |                   |       |           | D                                                                                                              | rilling                    |              |          |                  |               |                 |  |
| Drilling      | 19       | 19 Sept $\sim$ 7 Oct |                   |       | 17        |                                                                                                                | 17                         |              | -        |                  | 51            | 153             |  |
|               |          |                      |                   |       |           | R                                                                                                              | ecovery                    |              |          |                  |               |                 |  |
| Removal       |          | 6~                   | $6 \sim 8$ Octobe |       | 3         |                                                                                                                | 3                          |              |          |                  | 9             | 27              |  |
| Total         | 6        | Sept~                | ept~ 8 Oct        |       | 23        |                                                                                                                | 18                         | · .          |          |                  | 69            | 207             |  |
| Drilling Leng | gth      | - <i>x</i>           |                   |       | <u></u>   |                                                                                                                | Cor                        | e Rec        | ovér     | ус               | of 50 m       | hole            |  |
| Length        | 15       | 150.00m              |                   |       | 0.00m     |                                                                                                                |                            | . ·          |          |                  | Core          |                 |  |
| Planned       |          |                      | burd              | en  - |           |                                                                                                                | Depth                      | Coa          | `e       |                  | Recovery      |                 |  |
| Increase      |          | *                    |                   |       |           |                                                                                                                | of Hole                    | Re           | Recover  |                  | y Cumulated   |                 |  |
| or            |          |                      | Core              |       |           |                                                                                                                | ( m                        | )            | (%)      |                  | . (5          |                 |  |
| Decrease      | 15       | 151.00m              |                   |       | 138.55    | 5 п                                                                                                            |                            |              |          |                  |               |                 |  |
| in            |          |                      | Lengt             | h     |           |                                                                                                                |                            |              |          |                  |               |                 |  |
| Length        |          |                      |                   |       |           |                                                                                                                | 0~ 5                       | 0            | 99       |                  | 99            | .6              |  |
| Length        | Length   |                      | Core              |       | %         |                                                                                                                | 50~10                      | 0            | 100      |                  | 99            | .8              |  |
| Drilled       | 15       | 1.00m                | Recove            | ry    | 91.8      |                                                                                                                | 100~15                     | 1            | 75       |                  | 91            | .8              |  |
| Working Hours | 3        | h                    | %                 |       | %         |                                                                                                                |                            |              |          |                  | . •           |                 |  |
| Drilling      | Drilling |                      | 40                |       | 37        |                                                                                                                | . E:                       | fici         | ency     | of               | Drilli        | ng              |  |
| Other Work    | ·        | 229                  | 60                |       | 53        |                                                                                                                | Total m/work               |              |          |                  | 1.00m/1       |                 |  |
| Recovery      |          |                      | <br>              |       |           |                                                                                                                | Period(m/day)              |              |          | ( 8.88 m/day)    |               |                 |  |
| Total         |          | 384                  | 100               |       |           |                                                                                                                | Total m/total              |              |          | 151.00m/48 shift |               |                 |  |
| Reassembly    |          | 24                   |                   |       | 5         |                                                                                                                | Shift (m/shift)            |              |          | (3.15 m/shift)   |               |                 |  |
| Dismantling   | 3        | 24                   |                   | · ·   |           | _                                                                                                              | Drilling Length/B          |              |          |                  |               |                 |  |
| Water         |          |                      |                   |       |           | ta de la companya de la companya de la companya de la companya de la companya de la companya de la companya de | Bit                        |              | H        | W                | NQ            | BQ              |  |
| Transporta    |          |                      | ļ                 |       |           | _                                                                                                              | Drille                     |              | 1        |                  |               | ·               |  |
| Road Const    | ruction  |                      | 1                 | 4     |           |                                                                                                                | Lengtl                     | n(m)         | <u> </u> | -                | 76.65         | 74.35           |  |
| and Others    |          |                      |                   |       |           |                                                                                                                | Core                       | <i>(</i> )   |          |                  | 74.45         | 10.10           |  |
| G.Total       | -        | 432                  |                   |       | 100       |                                                                                                                | Lengtl                     | 1( <b>m)</b> |          |                  | 76.45         | 62.10           |  |
| Casing Pipe   | Inserte  | d                    |                   | v .   |           |                                                                                                                |                            |              |          |                  |               | ·               |  |
|               |          |                      | 1                 |       | erage     |                                                                                                                | Dinst                      |              | 10011    |                  | ·T11          | а. Г <b>О</b> О |  |
| Size Me       | 1eterag  |                      | ingx100           | кес   | overy     |                                                                                                                | Direction: S10°W Incline:- |              |          |                  |               | e:-50°          |  |
|               | /_\      |                      | ngth              |       | (%)       |                                                                                                                |                            |              |          |                  |               |                 |  |
|               | (m)      |                      | (%)               |       | (%)<br>00 |                                                                                                                |                            |              |          |                  |               |                 |  |
| NW            | 45.75    |                      | 0.30              |       | 00        | _                                                                                                              |                            |              |          |                  |               |                 |  |
| BW            | 82.25    | `                    | 4.47              |       | 00        |                                                                                                                |                            |              |          |                  |               |                 |  |

## Table 2-18 Summary of the Drilling Operation of MJTC-9

|              |           |                  | Su      | irve | y Peri | od | L ·             |             |        |                | Total           | Men      |  |
|--------------|-----------|------------------|---------|------|--------|----|-----------------|-------------|--------|----------------|-----------------|----------|--|
|              |           | Pe               | eriod   |      | Days   | W  | lork day        | Of          | day    | En             | gineer          | Worke:   |  |
| Operation    |           |                  | 2 - s   |      |        |    | Days            | Da          | iys    |                | Men             | Men      |  |
| Preparatio   | on 1      | 1~13             | July    |      | 3      |    | 3               |             |        |                | 9               | 27       |  |
|              |           |                  |         |      |        | D  | rilling         |             |        |                |                 |          |  |
| Drilling     | 1         | 14 ~ 31 July     |         |      | 18     |    | 18              |             |        |                | 53              | 159      |  |
|              |           |                  |         |      |        | R  | lecovery        |             |        |                |                 |          |  |
|              |           |                  |         |      |        |    |                 | · · · · ·   |        | <u> </u>       |                 |          |  |
| Removal      |           | 1 Aug -          | ~ 2 Aug |      | 2      |    | 2               |             | **     | ļ              | 6               | 18       |  |
| Total        |           | 1 July-          | ~ 2 Aug | 5    | 23     |    | 23              |             |        |                | 68              | 204      |  |
| Drilling Ler | ngth      |                  | Over-   |      |        |    | Cor             | e Rec       | overy  | y of           | 50 m            | hole.    |  |
| Length       | .15       | 0.00m            | burd    | len  | 14.00  | m  |                 |             |        | Ì              | Core            |          |  |
| Planned      |           |                  | Cave    |      | 5.20   | m  | Depth           | Co          | re     |                | Recovery        |          |  |
| Increase     | Increase  |                  |         |      |        |    | of Hole         | R€          | ecovei | ry             | Cumul           | ated     |  |
| or           | ļ         |                  | Core    |      | ļ      |    | (m              | )           | (%)    |                |                 | (%)      |  |
| Decrease     | 15        | 1.00m            |         |      | 119.9  | 5m |                 |             |        | 1              |                 |          |  |
| in           |           |                  | Lengt   | 'n   |        |    |                 |             |        |                |                 | <u> </u> |  |
| Length       |           |                  |         |      |        |    | 0~ 5            | 0           | 84     |                | 84              |          |  |
| Length       | Length    |                  | Core    | 2    | %      |    | 50~10           | 0           | 100    |                | 86              |          |  |
| Drilled      | Drilled 1 |                  | Recove  | ry   | 84.9   | X. | 100~15          | 1           | 68     |                | 85              |          |  |
| Working Hour | rs        | h                | %       |      | %      |    |                 |             |        |                |                 |          |  |
| Drilling     | Drilling  |                  | 49      |      | 44     |    | ii              |             |        |                | Drilli          |          |  |
| Other Worl   | ĸ         | 188              | 51      |      | 46     |    | Total m         | /work       | :      |                | 151.00m/18 days |          |  |
| Recovery     |           | ·                |         |      | <br>   |    | Period(m/day)   |             |        | .39m/d         |                 |          |  |
| Total        |           | 368              | 100     |      | 90     |    | Total m/total   |             | 3      | 151.00m/44 shi |                 |          |  |
| Reassembly   | у         | 24               |         |      | 6      |    | Shift (m/shift) |             |        |                |                 |          |  |
| Dismantli    | ng        | 16               |         |      | 4      | ~  | Drilling        | Leng        | th/Bi  | it(e           | ach si          | ze bit   |  |
| Water        |           |                  |         |      |        |    | Bit             | Size        | NC     | )              | BQ              |          |  |
| Transporta   | ation     |                  |         |      |        |    | Drill           |             |        |                |                 |          |  |
| Road Const   | truction  |                  |         |      |        |    | Lengt           | <u>h(m)</u> | 116.   | . 4            | 34.6            | <u> </u> |  |
| and Others   | 5         |                  |         |      |        |    | Cor             | е           |        | ĺ              |                 |          |  |
| G.Total      |           | 408              |         |      | 100    |    | Lengt           | h(m)        | 96.    | .05            | 23.90           |          |  |
| Casing Pipe  | Inserte   | d                |         |      |        |    |                 |             |        |                |                 |          |  |
|              |           |                  |         |      | terage |    | Directi         | on: N       | 10° E  |                | lnclin          | e:-50°   |  |
| Size         | Meterag   | erage Drillingx1 |         | Re   | covery |    |                 |             |        |                |                 |          |  |
|              |           | Le               | ngth    |      |        |    | ¥ (119,         | 95-8.       | 00)/(  | (151           | -14-5.1         | 2)=84,9  |  |
|              | (m)       |                  | (%)     | <br> | (%)    |    |                 |             |        |                |                 |          |  |
| HW           | 3.0       | 0                | 2       | ĺ    | 100    |    |                 |             |        |                |                 |          |  |
| NW           | 39.7      |                  | 27      | }    | 100    |    |                 |             |        |                |                 |          |  |
| BW           | 116.4     | 0                | 78      |      | 100    |    |                 |             |        |                |                 |          |  |

## Table 2-19 Summary of the Drilling Operation of MJTC-10

|               |          |                                       | Su           | irve          | y Peri | od            |                 |               |            | Total Men       |            |  |  |
|---------------|----------|---------------------------------------|--------------|---------------|--------|---------------|-----------------|---------------|------------|-----------------|------------|--|--|
|               |          | Pe                                    | eriod        |               | Days   | W             | ork day         | Off           | day        | Enginee         | r Worke    |  |  |
| Operation     |          |                                       |              |               |        |               | Days            | Day           | s          | Men             | Men        |  |  |
| Preparation   | 11       | ~ 13                                  | July         |               | 3      |               | 3               | ·             |            | 9               | 27         |  |  |
|               |          |                                       |              |               |        | D             | rilling         |               |            |                 |            |  |  |
| Drilling      |          | July~                                 | $\sim$ 4 Aug |               | 22     |               | 18              | ·             |            | 53              | 159        |  |  |
|               |          |                                       |              |               |        | R             | ecovery         |               |            |                 |            |  |  |
|               |          |                                       |              |               |        |               | 4               |               |            | 12              | 36         |  |  |
| Removal       | <u> </u> | $5 \sim 7$                            | Aug          |               | . 3    |               | 3               |               |            | 9               | 27         |  |  |
| Total         | 11       | July~                                 | 7 Aug        |               | 28     |               | 28              |               |            | 83              | 2.49       |  |  |
| Drilling Leng | th       | - · · *                               |              |               |        |               | Core            | e reco        | very       | of 50 m         | hole       |  |  |
| Length        | 150      | ).00m                                 | Over-        |               | -      | m             |                 |               |            | Cor             | e          |  |  |
| Planned       |          | <u> </u>                              | burd         | en            | · .    |               | Depth           |               |            | Reco            | very       |  |  |
| Increase      |          |                                       | [ · ·        |               |        |               | of Hole         | Rec           | overy      | / Cumu          | lated      |  |  |
| or            |          |                                       | Core         |               |        |               | <b>(</b> m)     | )             | (%)        |                 | (%)        |  |  |
| Decrease      | 151      | 1.00m                                 |              |               | 150.7  | 0n            |                 |               |            |                 |            |  |  |
| in            |          |                                       | Lengt        | h             |        |               |                 |               |            |                 | ·          |  |  |
| Length        |          |                                       | i<br>i       | · · · · · · · |        |               | 0~ 50           |               | 00.0       |                 | 0.0        |  |  |
| Length        |          |                                       | Core         |               | %      | E.            | 50~100          |               | 99.4       |                 | 9.7        |  |  |
| Drilled       | 151      | .00m                                  | Recove       | ry            | 99.8   |               | 100~151 100.0   |               | 00.0       | 9               | 9.8        |  |  |
| Working Hours |          | h                                     | %            |               | %      |               |                 |               | ·          |                 | та на<br>н |  |  |
| Drilling      |          | 188                                   | 41           |               | 36     |               |                 |               |            | of Drill        |            |  |  |
| Other Work    |          | 164                                   | 35           |               | 32     |               | 4               |               |            | 51.00m/         |            |  |  |
| Recovery      |          | 112                                   | 24           |               | 22     |               | <u> </u>        |               |            | ( 8.39 m/day)   |            |  |  |
| Total         |          | 464                                   | 100          |               |        | 10000         |                 |               |            | 151.00m/57 shif |            |  |  |
| Reassembly    |          | 24                                    |              |               | 5      |               | Shift (m/shift) |               |            |                 |            |  |  |
| Dismantling   |          | 24                                    |              |               | 5      |               |                 |               |            | t(each size bi  |            |  |  |
| Water         |          |                                       |              |               |        |               | Bit S           |               | HW         | NQ              | BQ         |  |  |
| Transportat   |          | · · · · · · · · · · · · · · · · · · · |              |               |        |               | Drille          |               |            | 71 /            | 70 (       |  |  |
| Road Constr   | uction   |                                       |              | -             |        |               | Length<br>Core  | I(M)          | ·          | 71.4            | 79.6       |  |  |
| G.Total       |          | 512                                   |              |               | 100    |               | Lengt           | \ <i>(</i> m) |            | 71.4            | 70.0       |  |  |
| Casing Pipe I | ncontod  | - <b>1</b>                            | <u> </u>     |               | 100    |               | Lenger          | 1 ( 10 )      |            | /1.4            | 10.0       |  |  |
|               |          |                                       |              | Mo            | terage |               |                 |               |            |                 |            |  |  |
| Size M        | eterage  | Drill                                 | ingx100      |               | covery |               | Directio        | on: N1        | 0° E       | Incli           | ne:-50°    |  |  |
|               |          | 1                                     | ength        | RC            |        |               | <i></i>         |               | <u>у п</u> | 111011.         |            |  |  |
|               | (m)      |                                       | (%)          |               | (%)    | A DESCRIPTION |                 |               |            |                 |            |  |  |
| HW            | 3.00     |                                       | 2.00         |               | 100    |               |                 |               |            |                 | -          |  |  |
| NW            | 9.15     |                                       | 6.10         |               | 100    |               |                 |               |            |                 |            |  |  |
| 1             | 116.50   |                                       | 7.78         |               | 100    |               |                 |               |            |                 |            |  |  |

### Table 2-20 Summary of the Drilling Operation of MJTC-11

### Table 2-21: Summary of the Drilling Operation of MJTC-12

|               |               |       | .Su                | irve | y Peri | od          | Legen en         | ·····                                   |              | Total Men      |          |  |
|---------------|---------------|-------|--------------------|------|--------|-------------|------------------|-----------------------------------------|--------------|----------------|----------|--|
|               |               | Pe    | eriod              |      | Days   | W           | lork day         | Off                                     | day          | Engineen       | Worker   |  |
| Operation     | ->            |       |                    |      |        |             | Days             | Day                                     | 's           | Men            | Men      |  |
| Preparation   | n 3           | ~ 5   | Septemb            | er   | . 3    |             | 3                | · -                                     | .            | 9              | 27       |  |
|               |               |       |                    |      | 1-1-1  |             | rilling          |                                         |              |                |          |  |
| Drilling      | 6             | ~ 14  | September          |      | 9      |             | - 19 · [         | _                                       | . [          | 27 .           | 80       |  |
|               |               |       | -                  |      |        | R           | lecovery         |                                         |              |                |          |  |
|               |               |       |                    |      |        |             |                  |                                         |              |                |          |  |
| Removal       | 15            | ~ 16  | Septemb            | er   | 2      |             | 2                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |              | 6              | 18       |  |
| Total         | 3             | ~ 16  | Septemb            | er   | 14     |             | 14               | -                                       |              | 42             | 126      |  |
| Drilling Leng | gth           | · ·   |                    |      |        |             | Cor              | e reco                                  | very         | of 50 m        | hole     |  |
| Length        | 15            | 0.00m | Over-              | ÷.,  | 0.70   | M           |                  |                                         | i.           | Core           |          |  |
| Planned       |               |       | burd               | en   |        |             | Depth            | Cor                                     | 'e           | Recov          | ery      |  |
| Increase      |               |       |                    |      |        |             | of Hole          | Rec                                     | over         | y Cumul        | ated     |  |
| or            |               |       | Core               |      |        |             | (m               | )                                       | (%)          |                | (%)      |  |
| Decrease      | 15            | 1.00m |                    |      | 142.7  | 0 n         |                  |                                         |              |                |          |  |
| in            | ĺ             |       | Lengt              | h    |        |             |                  |                                         |              |                | <b>_</b> |  |
| Length        |               |       |                    |      |        |             | 0~ 5             | 0                                       | 98           | 98             |          |  |
| Length        | ength         |       | Core               |      | - %    | ĺ           | 50~10            | 0 1                                     | 00           | 99             |          |  |
| Drilled       | 15            | 1.00m | Recove             | гу   | 94.9   |             | 100~151 85       |                                         | 95           |                |          |  |
| Working Hours | 5             | h     | %                  |      | %      |             |                  |                                         |              |                |          |  |
| Drilling      | rilling 14    |       | 65                 |      | 55     |             | E                | fficie                                  | ncy          | of Drilli      | ng       |  |
| Other Work    |               | 75    | 35                 |      | 29     |             | Total m          | /work                                   |              | 151.00m/       | 9 days   |  |
| Recovery      |               | -     |                    |      |        |             | Period(          | m/day)                                  | ł            | (16.78 m/day)  |          |  |
| Total         |               | 216   | 100                |      |        |             | Total m          | /total                                  |              | 151.00m/2      | 6 shifts |  |
| Reassembly    |               | 24    |                    |      | 9      |             | Shift (          |                                         |              | (5.81 m/shift) |          |  |
| Dismantling   | ζ             | 16    |                    |      | 7      |             | Drilling         | Lengt                                   | h/Bi         | t(each si      | ze bit)  |  |
| Water         |               |       |                    |      |        |             | Bit              | Size                                    | HW           | NQ             | BQ       |  |
| Transportat   | ion           |       |                    | [    |        |             | Drill            |                                         |              |                |          |  |
| Road Constr   | ruction       |       |                    |      |        |             | Lengt            |                                         |              | 79.45          | 71.55    |  |
| and Others    |               |       |                    |      |        |             | Core             |                                         |              |                |          |  |
| G.Total       |               | 256   |                    |      | 100    | CROCKER AND | Lengt            | h(m)                                    |              | 78.65          | 64.05    |  |
| Casing Pipe 1 | nserte        | 1     |                    |      |        |             |                  |                                         |              |                |          |  |
|               |               |       |                    |      | terage |             |                  |                                         |              |                |          |  |
| Size 1        | Size Meterage |       | age Drillingx100 R |      | covery | ļ           | Direction: S10°W |                                         | Incline:-50° |                |          |  |
|               |               | Le    | ength              | i    |        |             |                  |                                         |              |                | i        |  |
|               | <u>(m)</u>    |       | (%)                |      | (%)    |             |                  |                                         |              |                |          |  |
| HW            | 6.10          |       | 4.0                |      | 100    |             |                  |                                         |              |                |          |  |
| NW            | 6.10          |       | 4.0                |      | 100    |             |                  |                                         |              |                |          |  |
| BW            | 79.30         | 5     | 52.5               |      | 100    |             |                  |                                         |              |                |          |  |

|               |                 |                                       | Su      | rvey Pe | riod | ĺ                             |            |          | Total      | Men      |  |
|---------------|-----------------|---------------------------------------|---------|---------|------|-------------------------------|------------|----------|------------|----------|--|
|               |                 | Pe                                    | riod    | Day     | 's V | √ork day                      | Off        | day      | Engineer   | Worker   |  |
| Operation     |                 |                                       |         |         |      | Days                          | Day        | 7 S      | Men        | Men      |  |
| Preparation   | ı i             | 8~9                                   | August  | 2       | 2    | 2                             | _          | -        | .6         | 18       |  |
|               |                 |                                       |         |         | ľ    | rilling                       |            |          |            |          |  |
| Drilling      | 1               | $0 \sim 25$                           | August  | 16      |      | 15                            | 1          |          | 44         | 132      |  |
|               | -               |                                       |         |         | F    | Recovery                      |            |          |            |          |  |
|               |                 |                                       | · · · · |         |      |                               |            | <u>.</u> |            |          |  |
| Removal       |                 |                                       | August  |         |      | 2                             | . <u> </u> |          | 6          | 18       |  |
| Total         |                 | 8 ~ 27 August                         |         | 20      |      | 19                            | 1          |          | 56         | 168      |  |
| Drilling Leng | <u>gth</u>      | et i                                  | Over-   |         |      | Cor                           | e reco     | very     | of 50 m    |          |  |
| Length        | 15              | 0.00m                                 | burd    | 1.      | 95m  |                               |            | -        | Core       |          |  |
| Planned       |                 |                                       | Cave    | 2.      | 45m  | Depth                         | Cor        | `e       | Recov      | •        |  |
| Increase      |                 |                                       |         |         |      | of Hole                       | Rec        | overy    | Cumula     | ated     |  |
| or            |                 |                                       | Core    |         |      | · (m                          | )          | (%)      | ) (?       |          |  |
| Decrease      | 15              | 1.00m                                 |         | 126     | .50n |                               |            |          |            |          |  |
| in            | [               |                                       | Lengt   | h [     |      |                               |            |          |            |          |  |
| Length        |                 |                                       |         |         | 0~   |                               |            |          | 47         | * .      |  |
| Length        |                 |                                       |         |         | %    | 50~10                         | 0          | 98       | 79         |          |  |
| Drilled       | Drilled 151.00m |                                       | Recove  | ry 99   | .5)  | 100~15                        | 1          | 00       | . 85       |          |  |
| Working Hours | 5               | h                                     | %       |         | %    |                               |            |          |            | •        |  |
| Drilling      |                 | 162                                   | 51      |         | 6    |                               |            |          | fDrilli    |          |  |
| Other Work    |                 | 158                                   | 49      | 4       | 5    | Total m/work                  |            |          | 51.00m/19  |          |  |
| Recovery      |                 |                                       |         |         |      | Period(                       |            |          | 7.95m/day) |          |  |
| Total         |                 | 320                                   | 100     |         | 1    | Total m                       | -          | 1        | 51.00m/40  |          |  |
| Reassembly    |                 | 16                                    |         |         | 5    | Shift (m/shift) (3.78m/shift) |            |          |            |          |  |
| Dismantling   | <u>ç</u>        | 16                                    |         |         | 4    | ¥                             |            | h/Bit    | (each siz  | ze bit   |  |
| Water         |                 |                                       |         |         |      | Bit                           |            | NQ       |            |          |  |
| Transporta    | tion            |                                       |         |         |      | Drill                         |            |          |            |          |  |
| Road Constr   | uction          |                                       |         |         |      | Lengt                         |            | 151.0    | 0          |          |  |
| and Others    |                 |                                       |         |         | _    | Cor                           | · · ·      |          |            |          |  |
| G.Total       |                 | 352                                   |         | 10      | 0    | Lengt                         | h(m)       | 126.5    | 0          | <u> </u> |  |
| Casing Pipe 1 | nserte          | d                                     |         |         |      |                               |            |          |            | _        |  |
|               |                 |                                       |         | Metera  |      | Directi                       | on: S1     | 0° W     | Incline    | e:-50°   |  |
| Size 1        | leterag         | rage Drillingx10                      |         | Recove  | rу   |                               |            |          |            |          |  |
|               |                 | 1                                     | ngth    |         |      | <u>₩</u> (126.                | 50-18.     | 45)/(    | 151-39.9   | 5-2.45)  |  |
| ļ             | (m)             |                                       | (%)     | (%)     |      |                               |            |          |            |          |  |
| HW            | 3.0             | ··· · · · · · · · · · · · · · · · · · | 2       | 100     |      |                               |            |          |            |          |  |
| NW            | 36.7            | 0                                     | 24      | 100     |      |                               |            |          |            |          |  |

## Table 2-22 Summary of the Drilling Operation of MJTC-13

۹. ۱