Appendix 6

Description and photographs of polished sections of ore

| Macroscopic |
| :--- | :--- |
| Observation | | Oxidized rock. Cavitics are filled with fine network of gocthite and partly with malachite |
| :--- |
| and chrysocola. |
| Pale grey patts suggest that the original rock was a silicified basalt, because a felsic
 Microscopic
 Observation |
| texture consisting of lath-shaped gangue minerals fited with quartz grains is observed in
 these parts. Reddish brown parts represent oxidized silicified basalt disseminated
 densely with fine network of goethite (Photo 1). An ircegular band of malachite and
 chrysocola occurs between the pale grey and reddish brown parts (Photo 2). Small
 patches of malachite with chrysocola and goethite are also observed in these two parts. |

Sample collected from the surface: $\mathrm{SH}-11$	
Macroscopic Observation	Oxidized rock. Cavitics are filled with goethite of manmillary texture. No sulphides are observed.
Thin goethite veinlets and small square cavities rimmed with thin films of mammillary goethite occurring in goethite disseminated silicified rock (Photo 3). Square cavities are Orobably the relicts of pynite crystals leached during oxidation. Goethite consists of not Onservation crystals that show smooth pale grey white polished surface, but also powder that is oeen as rugged pale brownish grey with yellowish brown internal reflection.	

Sample collected from the surface: SH-12		
Macroscopic Observation	Oxidized rock. Cavities are partly filled with patches of goethite. Microscopic ObservationOxidized silicified rock consists of two parts, i.e., one reddish brown smooth polished surface and another one, grey brown rugged surface densely disseminated with goethite The reddish brown part represents a highly silicified rock with goethite veinlets of botryoidal texture occurring atong cracks and grain boundaries of quartz. Some portions of the grey brown part still keep the original texture of basalt represented by the felsitic texture of laths with interstitial voids and fine-grained flakes of goethite. These portions also comprise complicated networks of goethite and quartz, and small patches of goethite aggregates (Photo 4).	

Sample collected from the surace: MQ. 6	
Macroscopic	Massive pyrite ore. Fine-grained pyrite forming colloform texture.
Observation	
Microscopic Obscrvation	A mass of fine-grained pyrite comprises aggregates of colloform texture, concentric texture (Photo 5) or relicts of felsitic texture. Crystals of marcasite, the size of which is from $3 \mu \mathrm{~m}$ to $100 \mu \mathrm{~m}$, occur in several places of pyrite aggregates along cracks and small cavitics. Except for iron sulphides, no other sulphide mincrals are observed.

Sample collected from the surface: MQ-8	
Macroscopic Observation	Magnetite-bearing dark color layered rock without sulphides. Microscopic ObservationNo significant differences are observed in constituent mincrals, textures and sized th. oughout the polished sufface. The constituent mincrals are mainly hematite, magnetite and quartz. Hematite is generally less than $3 \mu \mathrm{~m}$ in size, but magnetite is fron $5 \mu \mathrm{~m}$ to a maximum of $30 \mu \mathrm{~m}$. Grain size of quartz, which forms mosaic aggregates, ranges from 5 $\mu \mathrm{~m}$ to $20 \mu \mathrm{~m}$. Dark color bands comprise a great number of fine irregular grains of hematite densely distributed in mosaic aggregates of quartz with a few marmatized magnetite, occupying a quarter to one third of the polished area. Reddish brown bands, as same as the dark color bands, consist of hematite and quartz, but with less number of bands and grain size.

Sample collected from the surface: MQ-10	
Macroscopic Observation	Magnetite-bearing reddish brown layered rock without sulphides.Although the constituent minerals and texture are similar to those of MQ-8, but with smaller grain in size and less number of grains. Hematite replaces the majority of opaque minerals. Magnetite relicts are observed in some larger hematite grains, which are Observation completely intact or slightly oxidized to hematite along small cracks in crystals. A small amount of minute pynite inclusions are recognized in magnetite grains.

Macroscopic Obsecvation	Silicified rock with stender goethite veintets and some small cavitics filled with pyrite. Several thin goethite veinlets penctrate the silicified rock. A few square aggregates of Observation goethite which are possibly pseudomorph after pyrite, occur in quartz aggregates (Photo 6). Some cuhedral crystals of pyrite (size between 60 to $100 \mu \mathrm{~m}$ and fairly porous) occur is quartz. Gocthite in veinlets and cavities comprises botryoidal texture or concentric texture with pale grey white fibrous crystals and pale brownish white porous powder portions.

Sample collected from drill cores: G18-254.70	
Macroscopic Observation	Massive sulphide ore with patches of pyrite ($1 \sim 2 \mathrm{~mm}$ in diameter). The matrix consists of fine-grained pyrite and some amounts of chalcopyrite.
	Pyrite occurs predominantly with some amounts of chalcopyrite. Euhedral crystals of Microscopic Observation range in size from $50 \mu \mathrm{~m}$ to 1 mm . On the other hand, minute anhedral grains of pyrite are roundish and with a size of less than $10 \mu \mathrm{~m}$. Chalcopyrite occurs filling the interstices of pyrite grains or wrapping small pyrite grains (Photos 7). Larger crystals are often intensively brecciated (Photo 8) and some parts of these cracks are filled with chalcopyrite.

Sample collected from drill cores: G18-256.80	
Macroscopic Observation	Banded ore with fine-grained pyrite bands and dark reddish brown siliceous bands. Pyrite occupies three quarters of the polished surface. Weakly magnetic
Microscopic Observation	Anhedral round grains and colloform-textured aggregates of pyrite, small patchy aggregates of minute magnetite grains and a small amount of chalcopyrite constitute thin bands. The relative abundance of these minerals differs from band to band, however, the size of the grain of pyrite and magnetite is distributed in a certain range dependent on the band, being the pyrite range much larger than magnintite: Pyrite is distributed in size from less than $10 \mu \mathrm{~m}$ to $400 \mu \mathrm{~m}$, being most abundant in the range from $50 \sim 150 \mu \mathrm{~m}$. Some aggregates of minute pyrite grains represent ring-shaped colloform texture. Aggregates of minute magnetite grains fill up the center of some colloform-textured pyrite aggregates. Larger grains of pyrite are often porous. Chalcopyrite occurs in quartz forming small patches and filling the interstices of pyrite and magnetite grains.

Macroscopic Observation	Banded ore with intermediate or fine-grained pynte and fine-grained magnetite and reddish brown siliccous bands. Pyrite and magnctite bands occupy four fifths of the polished surface. Strongly magnetic.
Although the structure and texture are similar to those of the sample G18.256.80, magnetite occurs abundantly, especially in patches of $300 \sim 500 \mu \mathrm{~m}$ in size (Photo 9). The patches which consist of fine granular grains of $1 \sim 15 \mu \mathrm{~m}$ in size, are porous and Observation containing many pyrite grains and also rarely minute grains ($1 \sim 25 \mu \mathrm{~m}$ in diameter) of hematite. In quartz enclosing these magnetite patches are recognized many minute hematite flakcs of less than a few micrometers. Pyrite crystals are also porous. Very fine pyrite grains occur sporadically in quartz. Relative amount of pyrite and magnetite is almost same. A small amount of chalcopyrite occurs in the interstices of pyrite, magnetite and quartz grains.	

Sample collected from drill cores: G22-98.40
Macroscopic \quad Compact massive sulphide ore comprises sulphide ore. It comprises pyrite of various Observation grain sizes, predominating the larger grains. Chalcopyrite occurs either in the interstices of large grains of pyrite or with fine-grained pyrite of colloform texture.
Massive sulphide ore comprises pyrite grains of large and intermediate size and

Microscopic
Observation
chalcopyrite (Photo 10). Pyrite grains larger than 1 mm are remarkable brecciated and the cracks are filled up with chalcopyrite forming an irregular network. Some pyrite crystals of intermediate or small size are subhedral or euhedral. A breccia veinlet which has a great amount of small breccias of pyrite and chalcopyrite cuts through the massive aggregate of pyrite and chalcopyrite (Photo 11).

Sample collected from drill cores: G22-103.60	
Macroscopic Observation	Compact massive sulphide ore consists of pyrite of various grain sizes and patches as well as veinlets of chalcopyrite. Large grains of pyrite are generally brecciated and rounded. Fine-grained pyrite forms porous colloform texture. Weakly magnetic.
Microscopic	
Observation	Compared to G22-98.40, this samplc is more abundant in colloform-texture pyrite than in crystal. Patchy aggregates of minute magnetite grains accompany the pyrite aggregates. The magnetite aggregates comprise very fine granular grains of $1 \sim 10 \mu \mathrm{~m}$. Snall pyrite rings of colloform texture link to form irregular networks with small subhedral grains of pyrite, being the interstices filled with chalcopyrite (Photo 12).

Sample collected from drill cores: $\mathbf{0 2 6} \mathbf{8 2 . 0 0}$	
Macroscopic Observation	Massive ore mixture of magnctite, pyrite and chalcopyrite. Round grains of pyrite distribute in magnetite-quartz base. Pyrite grains are generally round and distribute in a fairls limited range of size. Magnctite forms radial or parallel aggregates of flaky crystals and includes small grains of pyrite. Chalcopyrite occurs in irregular forms of various sizes filling the interstices of the grains of other minerals. Strongly magnetic.
Microscopic Observation	Pyrite occurs in quartz aggregates as round anhedral grains in the size range of $10 \sim 600 \mu$ m , but mainly between $50 \sim 150 \mu \mathrm{~m}$. Some of them are brecciated. Enclosing these pyrite grains, magnetite aggregates occur as radial or parallel bundles of long flaky erystals. Small bunches of magnetite crystals occur in chalcopyrite (Photo 13). Small flakes of hematite ($10 \sim 300 \mu \mathrm{~m}$ in length) and small grains of pyrite ($5 \sim 150 \mu \mathrm{~m}$ in diameter) are included in some places. Chalcopyrite fills up the interstices of crystals and bundles of these two minerals.

Sample collected from drill cores: G26-85.80	
Macroscopic Observation	Massive magnetite ore with some dissemination of small pyrite grains. Strongly magnetic.
Microscopic Observation	Mode of occurrence of minerals is similar to that of G26-82.00, but it lacks chalcopyrite. Long flaky crystals of magnetite are much larger than those of G26-82.00. Hematite crystals are also larger ($100 \sim 600 \mu \mathrm{~m}$ in length) and occur more abundantly (Photo 14). In some places, magnetite flakes make a rossete-like arrangement. Pyrite is much less abundant.

	Sample collected from drill cores: G30-121.80
Macroscopic	
Observation	Copper-rich massive ore. Chalcopyrite occupies about one third of the polished surface. Large crystals of pyrite show a smooth surface, however, the surface of the aggregates of pyrite is somewhat rough.
Large subhedral or rounded crystals of pyrite range in size between $50 \sim 500 \mu \mathrm{~m}$, and occur in gangue with chalcopyrite. A breccia veinlet cuts through the assemblage of chalcopyrite, pyrite and gangue. Besides these crystals, nodule-like aggregates of pyrite Microscopic Observation maximum diameter of several hundred $\mu \mathrm{m}$) are observed in some parts. Crystal of pyrite are $100 \sim 300 \mu \mathrm{~m}$ in the periphery of the nodule, but become as small as $10 \mu \mathrm{~m}$ in the inner side. Small nodule-like aggregates of minute pyrite grains (10~30 $\mu \mathrm{m}$ in diameter) distribute in the chalcopyrite matrix (Photo 15). Chalcopyrite also fills the interstice of pyrite grains forming a complicated network (Photo 16). Larger modules contain many small blebs of chalcopyrite. Textures of pyrite aggregates suggest that the aggregates have recrystallized from chalcopyrite-bearing pyrite colloids.	

Sample collected from drill cores: G30-125.10	
Macroscopic Observation	Copper-rich nassive ore. Chalcopyrite occupies nore than half of the polished surface. Pyrite crystals are generally large and partly fractured. Some central parts of pyrite aggregates show colloform texture but in small amounts.
Microscopic Observation	The general texture is similar to that of the sample $\mathbf{G 3 0 - 1 2 1 . 8 0}$. Some large pyrite crystals are cuhedral and as large as $800 \mu \mathrm{~m}$ in size. Many large pyrite crystals are irregularly fractured and filled with chalcopyrite forming complicated networks in pyrite (Photo 17). In some parts, pyrite forms links of small modules, indicating the retict of colloform iexture.

	Sample collected from drill cores: G30-187.70
Macroscopic Observation	Copper-poor massive pyrite ore. Anhedral pyrite erystals cover more than half of the polished surface and the result is occupied by aggregates of fine pyrite grains with some minute pyrite grains forming fine mesh-like texture in quartz. The sample shows a vague sub-parallel banded structure made by zones of coarse pyrite crystals, zones of porous fine pyrite grains and zones of pyrite and gangue. Chalcopyrite is hardly identified by the naked eyes.
Microscopic Observation	Mosaic aggregates of coarse pyrite crystals partly accompany extended zones of porous aggregates of fine pyrite grains. The transition of these zones is gradual. Linked arrays of very fine pyrite grains ($2 \sim 8 \mu \mathrm{~m}$ in diameter) in quartz or small concentric nodules of fine pyrite grains indicate the colloidal origin. Chalcopyrite occurs not only in porous pyrite aggregates as small blebs of irregular shapes, but also in the interstices of pynite crystals.

Sample collected from drill cores: G33-241.40	
Macroscopic Observation	Large module-like aggregates (up to about 2 mm in diameter) consisting of pyrite crystals of varied sizes occupy the major part of the polished surface. Pyrite aggregates of rough polished surface, occur in nodules giving a concentric appearance. Chalcopyrite can hardly be observed by the naked eye.
Microscopic Observation	The periphery of a module comprises coarse subhedral pyrite crystals, the size of which is from 0.5 mm to 4 mm , but mostly in the range of 1 to 2 mm . The inner parts have porous zones consisting of aggregates of fine pyrite grains and chalcopyrite inclusions of irregular shapes and gangue Large pyrite crystals contain many small blebs of chalcopyrite and sphalerite with exsolved chalcopynite (Photos 18).

LEGEND

\ddots Wadi

LEGEND

	\therefore	Wodi
	[0.0. 0	Alluvial fons ond olluvium
	Mbin高	Olistolith derived from the Motbal Formation
	Si,	Chert and silicified micritic limestone
\sum_{∞}^{∞}	[${ }^{\text {a }}$	Midode extrusives ; basoltic to ondesitic pillow lava ond mossive lavo with two pyroxene
	V 2 C $\triangle \Delta$	Volcanic conglomerote or breccio ; reworked rockes composed of SD, $\mathrm{VI}_{1-1}, \mathrm{VI}_{1-2}$ ond so on
	u_{1} ?	Umber or metolliferous sediments with radiolorian chert
	$2 x^{x} x^{x}$	Lower extrusives 2 ; basaltic pillow lava with small pillow lova and mossive lava
	v_{1-1} $v^{*} v$	Lower extrusives 1 ; basaltic pillow lova composed of big size pillow lovo
	SO ${ }^{\text {P }}{ }^{\text {, }}$	Sheeted dyke ; doteritic and basaltic dyke
	CG ${ }^{\text {F }}{ }^{\text {\# }}{ }^{\text {\# }}$	Cumulate gobbro

REPORT ON THE MINERAL EXPLORATION THE SOUTH batinah Coastarea, sultanate of oman pHase I

GEOLOGIC MAP AND PROFILE OF HARA KILAB

JAPAN INTERNATIONAL COOPERATION AGENCY NAG AGENCY
MARCH. 1998

B
(m)
$\left.-300^{(}\right)$
tructural features
\int^{50} Strike ond dip of bedding
Strike and dip of dykes and sills - Foult ; doshed where inferred or conceoled

LEGEND

	\because	Wodi
M	\|ract	Alluvial fans and alluvium
$\begin{gathered} \text { B } \\ \text { 赀 } \\ \hline \end{gathered}$		Olistolith derived from Hid
	Sil	Chert ond siticified micritic
$\stackrel{n}{y}$	$\square_{2}{ }^{\text {A }}$	Middle extrusives; basallic lava and massive lova with
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\mathrm{VaC} \triangle \Delta{ }^{\circ}$	Volcanic conglomerote or b rockes composed of SO, V
$\begin{aligned} & z_{0} \\ & 0 \end{aligned}$	Ul_{1}	Umber or metolliferous with radiolarion cherl
$\stackrel{1}{4}$	${ }^{x} x^{x}$	Lower extrusives 2 ; bosalti with small pillow lova ond
¢	v_{1-1} $v^{\prime} v$	Lower extrusives I; basolt composed of big size pillo

SD ${ }^{>} \gg$ Sheeted dyke; dolerilic or | CG | \#\# |
| :---: | :---: | :---: | :---: | :---: | :---: | Cumulate gobbro

ECONOMIC GEOLOGY SYMBOLS
Gossanized mineral showin

- Small gossanized minerol s ond name of mineral show

1 Quartz vein and network

LEGEND

report on the mineral exploration
the south batinah coastinarea, sultanate of oman
phase
GEOLOGIC MAP AND PROFLLE OF MAHAB 586

JAPAN INTERNATIONAL COOPERATION AGENCY ING AGENGY
MARCH, 1938
ctural features
50 Strike and dip of bedding
50 Strike ond dip of dykes ond sills

ECONOMIC GEOLOGY SYMBOLS Gossonized minerol showing

- Small gossonized minerol sho and nome of mineral showing

1) Quortz vein ond network

ECONOMIC GEOLOGY SYMBOLS

ECONOMIC GEOLOGY SYMBOLS
Gossonized minerol showing

- Small gassonized mineral showing and name of mineral showing

1 Quortz vein ond network

structural features

REPORT ON THE MINERAL EXPLLORATION the southbatinah coastarea, sultanate of oman
PHASEI

GEOLOGIC MAP AND PROFILE OF MAHAB 4

LEGEND

\qquad
om

ECONOMIC GEOLOGY SYMBOLS
Gossonized minerol showing

- Small gossonized mineral showing ond name of minerol showing

1 Quartz vein ond network

structural features

Strike and dip of bedding
50 Strike and dip of dykes ond sills
Foult ; doshed where inferred or conceated
[HK-1]: Sample tocation
T : Thin section
P : Polished section
M : Chemical anolysis
X : X-ray diffraction onalysis

REPORT ON THE MINERAL EXPLORATION
gEOLOGIC MAP AND PROFILE OF MAHMUM
(Scale 1:2,500)

LEGEND

[^0]
\qquad

ECONOMIC GEOLOGY SYMBOLS
Gossonized minerol showing

- Smoll gossanized minerol showing

Quartz vein and network
structural features
So Strike ond dip of bedding
Strike and dip of dykes ond sills
Foull; dashed where inferred or concealed
HK-1]: Sample locotion
T : Thin section

P : Polished section
M : Chemicol onolysis
$\mathrm{X}: \mathrm{X}$ - ray diffraction anolysis

REPORT ON THE MMERAL EXPLORATION the south batinah coastaria, sultanate of oman PHASEI
GEOLOGIC MAP AND PROFILE OF MAHAB 2
(Scale 1:2,500)

JAPAN INTERNATIONAL COOPERATION AGENCY MNING AGENCY
MARCH. 1998

LEGEND

\qquad

A

ECONOMIC GEOLOGY SYMBOLS
Gossanized minerol showing

- Small gossanized minerol showin and nome of mineral showing

Quartz vein ond network
STRUCTURAL FEATURES
Strike ond dip of bedding
Strike and dip of dykes and sills
Fault ; dashed where inferred or concealed
[HK-1]: Somple location
T : Thin section

P : Polished section
M : Chemical onolysis
X : X-ray diffraction onolysis

LEGEND

		Wodi
		Alluvial fans ond alluvium
		Olistolith derived from the Motbot Formotion
		Chert and silicified micritic li
	A_{A}^{A}	Middle extrusives ; basaltic to andesitic pillow lava and mossive lova with two pyroxene
	$C{ }^{\wedge} \Delta_{\Delta}{ }^{\text {a }}$	Volconic conglomerate or breccio; reworked rockes composed of SD, V1-1, V_{1-2} and so on
	1 过	Umber or metalliferous sediments with radiolarian chert
	\begin{tabular}{\|c	c
\hline		
\end{tabular}	Lower extrusives 2 ; bosoltic pillow lavo with small pillow lova and massive lavo	
	1 ${ }^{*} v^{v}$	Lower extrusives 1 ; basolfic pillow lavo composed of big size pillow lava

ECONOMIC GEOLOGY SYMBOLS
Gassonized mineral showing

- Smoll gossonized minerol showing
and nome of mineral showing
f Quartz vein and network
STRUCTURAL FEATURES
50 Strike ond dip of bedding
50 Strike and dip of dykes and sills
Foult ; dashed where inferred or conceoled
HK-1 : Somple locotion
T: Thin section
P : Polished section
M : Chemical anolysis
$X \quad$: X-ray diffroction analysis

REPORT ON THE MNERAL EXPLORATON the south batinah coasin irea, sultanate of oman PHASEI

GEOLOGIC MAP AND PROFILE OF SARAMI EAST

(Scale 1:2,500)

LEGEND

	\because	Wadi
	$\left[{ }^{0}\right.$	Alluvial fans and alluvium
		Olistolith derived from the Matbot Formation
	Si, $\mathrm{E}=-1$	Chert ond silicified micritic limestone
SAMAIL VOLCANIC ROCKS	${ }^{*}{ }^{*}$	Middle extrusives ; bosoltic to andesitic pillow lava and massive lova with two pyroxene
	${ }_{2} \mathrm{C} \triangle_{\Delta}{ }^{\circ}$	Volcanic conglomerate or breccia; reworked rockes composed of $S D, V_{1-1}, V_{1-2}$ and so on
	$u_{1}=$	Umber or metalliferous sediments with rodiolorion chert
	-2 ${ }^{4} x^{4}$	Lower extrusives 2 ; bosolfic pillow lavo with small pillow lova and mossive lovo
	$1-1$ v^{2}	Lower extrusives 1 ; basoltic pillow lavo composed of big size pillow lova
	SD $>$	Sheeted dyke; doteritic ond bosaltic dyke
		Cumulate gobbro
$\stackrel{\text { m }}{\substack{\text { v }}}$	$\begin{array}{l\|l\|} \hline d^{\prime} & x \times x \\ \hline \end{array}$	Trondhjemite or quartz diorite
	Gu' \pm	Gobbro
	$4{ }^{4}$	Slag

Wadi

${ }^{10}$		Alluvial fans and alluvium
	Mb) ${ }^{2}$	Olistolith derived from the Matbot Forrnoiion
	Si, $=0$	Chert and silicified micritic limestone
2000002400012220	$\mathrm{V}_{2}{ }^{A} \mathrm{~A}$ A	Middle extrusives ; bosoltic to endesitic pillow lava and mossive lavo with two pyroxene
	$\mathrm{V}_{2} \mathrm{C} \wedge_{\Delta}{ }^{\text {a }}$	Volconic conglomerate or breccia; reworked rockes composed of SD, V_{1-1}, V_{1-2} and so on
	u_{1} 上	Umber or metalliferous sediments with rodiolarion chert
	$\begin{array}{\|l\|l\|} \hline V_{1-2} & x^{x} \\ \hline \end{array}$	Lower extrusives 2 ; basoltic pillow lava with small pillow lova and mossive lova
	v_{1-1} v^{v}	Lower extrusives I ; basaltic pillow lava composed of big size pillow lava
	 $S D$ $>$	Sheeted dyke; doleritic ond bosoltic dyke
		Cumulate gabbro
		Trondhjemite or quoriz diorite
	Gu^{\prime} \pm	Gobbro
	4.4	Slag

ECONOMIC GEOLOGY SYMBOLS
Gossonized minerol showing

- Small gossonized mineral showing and nome of mineral showing

1 Quartz vein and network
STRUCTURAL FEATURES
50 Strike and dip of bedding
50 Strike and dip of dykes and sillsFoult; dashed where inferred or conceoled
HK-1: Sample locotion
T : Thin section
P : Polished section
M : Chemical anolysis
$X: X$-ray diffraction onalysis

\qquad

Report on the mineral exploration the southbatinah coastin area, sultanate of oman phase:
geologic map and profle of listwaenite (Scale 1:2,500)

LEGEND

\qquad

economic geology symbols
Gossonized minerol showing

- Small gossonized minerol showing

1 Quortz vein and network
Structural features
50 Strike and dip of bedding
Strike and dip of dykes and sills
Foulf; doshed where inferred or conceoled
$\mathrm{HK}-1$: Somple location
T : Thin section

P : Polished section
M : Chemicol onalysis
X : X -ray diffraction onolysis

ECONOMIC GEOLOGY SYMBOLS

B

LEGEND

STRUCTURAL FEATURES
50 Strike and dip of bedding
50 Strike and dip of dykes and sills
Foult ; dashed where inferred or conceated

REPORT ON THE MMERAL EXPLOSATIO
the south batinaticoasianea, sultanate of oman PRASEI

GEOLOGIC MAP AND PROFILE OF DOQAL WEST
(Scale 1:2,500)

APAN INTERNATIONAL COOPERATION AGENC MARCH, 1998

	$\because \because \cdot]$	Wodi
${ }^{\text {U }}$		Alluvial fans and alluvium
	Mb1 4	Olistolith derived from the Matb
2 ${ }_{6}$	1	Chert and silicified micritic lime
$\stackrel{\bigcirc}{\text { ¢ }}$	* ${ }^{4}$	Middle extrusives ; basaltic to an lavo ond mossive lavo with two
	$\mathrm{VaC} \Delta_{\Delta}$	Volconic conglomerate or brecci rockes composed of SD, $\mathrm{V}_{1-1}, \mathrm{~V}_{1}$
2 0 0 0	3	Umber or mefalliferous sedimer with radiolarian chert
$\frac{1}{4}$	$-2 x^{x} x^{x}$	Lower extrusives 2 ; basolfic pill with smoll pillow lova and mass
\sum_{6}^{6}	$v_{1-1} v^{*} v^{v}$	Lower extrusives 1; basoltic pill composed of big size pillow lave
		Sheeted dyke ; doleritic and
		Cumulote gobbro
	$d^{\prime} x_{x}{ }^{x}$	Trondhjemite or quortz diorite
	Gu' \pm	Gabbro
	$\triangle{ }^{4}$	Slog

ECONOMIC GEOLOGY SYMBOLS
Gossonized minerol showing

- Small gossanized mineral showi and nome of minerol showing

Quartz vein ond nelwork

Japan international cooperationagenc
metal minng agency of hen METAL MINGG AGENCY OF JAPAN
MARCH, 1993

ECONOMIC GEOLOGY SYMBOLS

Gossonized minerol showing

- Small gossanized mineral showing

1 Quartz vein and network

Strike ond dip of bedding
50 Strike and dip of dykes and sills
Foult; dashed where inferred or conceoled
HK-I]: Sample location
T : Thin section
P : Polished section
M : Chemical onalysis

strike and dip of bedding
50 Strike ond dip of dykes ond sills Foull; dashed where interred or concealed

Thrust tavit
Anticline
[HK-1]: Somple tocotion
1 : Thin section
P : Polished section
M : Chemical onotysis
$X: X$-roy diffraction onalysis

 $\rightarrow \quad\left[\begin{array}{lll}V_{1-1} & \underline{x} & \underline{x}\end{array}\right] \begin{aligned} & \text { Lower extrusive } 1 \text {; } \\ & \text { bosoltic pillow lovo ond massie lava }\end{aligned}$ $\underset{\substack{\text { Sheeted-dyke } \\ \text { Complex }}}{ } \mathrm{SD}{ }^{>}$Doteritic ond basoltic dyke

ECONOMIC GEOLOGY SYMBOLS
Gossonized minerol showing
Kitraty zone

Quartz vein and network

economic geology symbols
Gossonized minerol showing

STRUCTURAL FEATURES

Strike and dip of bedding

Shee ted-dy
Complex

Rocks

ECONOMIC GEOLOGY SYMBOLS
Gossonized mineral showing
$\$$ Rusty zone
1 Quartz vein and network
structural features
Strike and dip of Dedding
P : Polished section
M : Chemical anolysis
$X: X$ - roy diffroction onalysis

ECONOMIC GEOLOGY SYMBOLS
Gossanized minerol showing
$\stackrel{\%}{4}$ Rusty zone
1 Quartz vein ond network

tructural features

Strike and dip of bedding
5 Surike ond dip of dykes and sills
Fault; doshed where inferred or concealedThrust foult
if Anticline

* Syncline

HK-1 : Sample locotion
T : Thin section
P : Polished section

M : Chemical onotysis
$X: X$-ray diffroction anolysis

若

$$
=10 A
$$

[^0]:

 Wadi

 | $S D$ | $>$ |
 | :--- | :--- |
 | | $>$ |
 | Sheeted dyke; doleritic ond bosoltic dyke | |

