

B

Fig. 2-4-2 Sample Location Map of the Waimotu Area $^{-267}$ $^{-268}$ $^{-}$

(

Fig. 2-4-3 Summary Map of Existing Data of the Waimotu Lodes and Bill's Hill Prospect

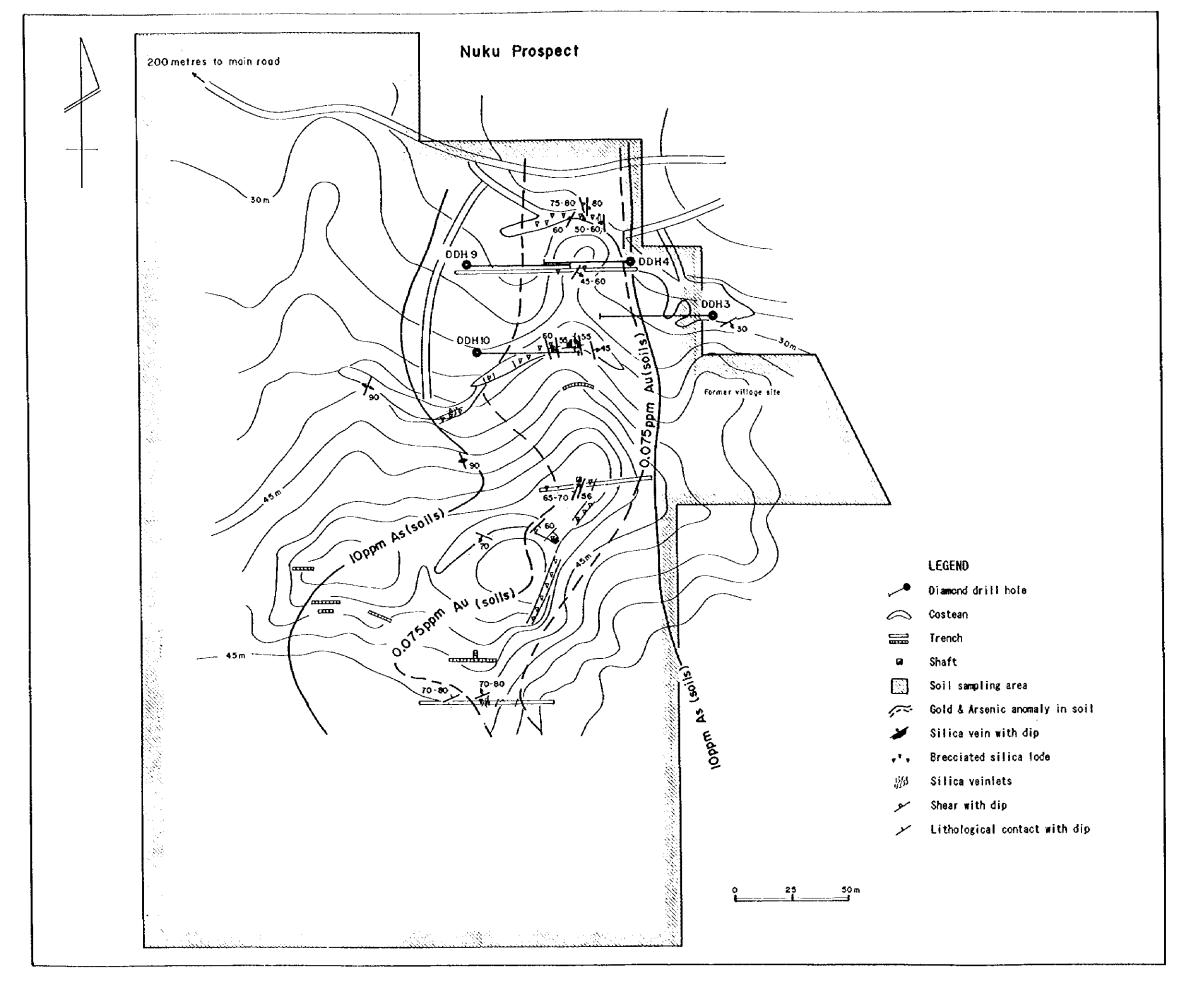


Fig. 2-4-4 Summary Map of Existing Data of the Nuku Prospect Area $-271 \sim 272 -$

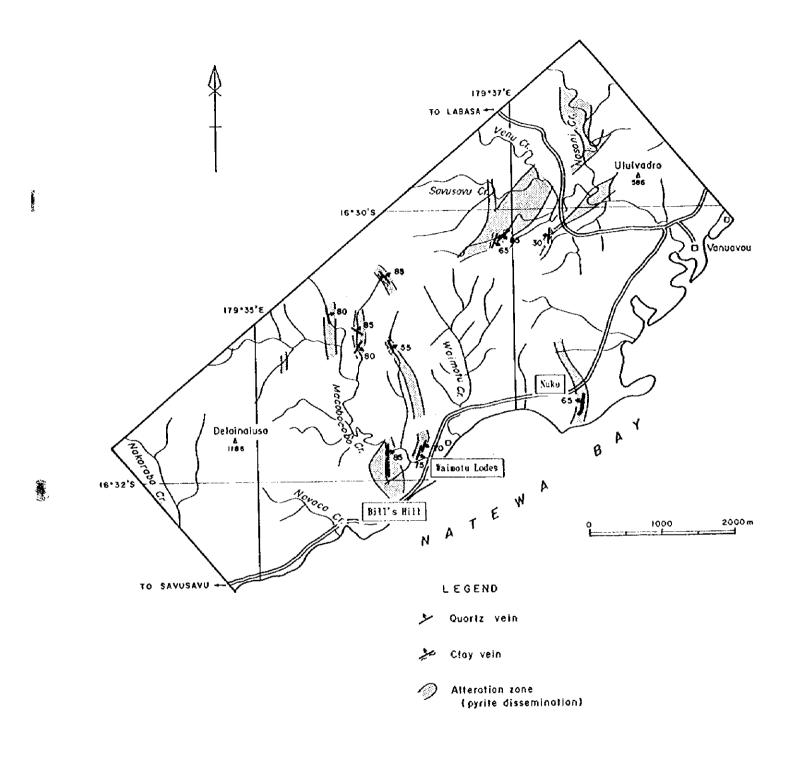


Fig. 2-4-5 Distribution Map of Prospects and Alteration Zones in the Waimotu Area

I

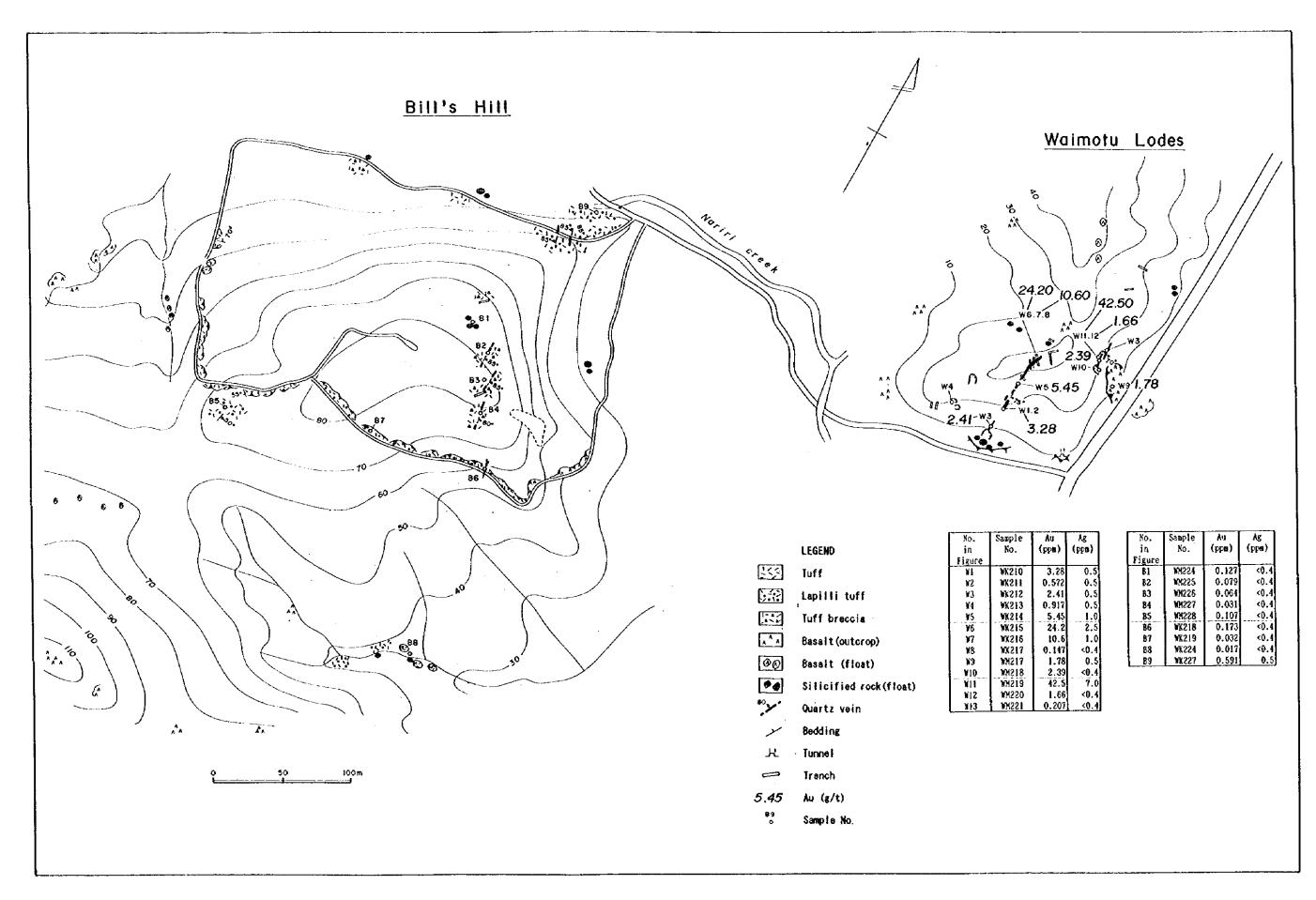


Fig. 2-4-6 Detailed Survey Results of the Waimotu Lodes and Bill's Hill Prospect $-275 \sim 276 \cdots$

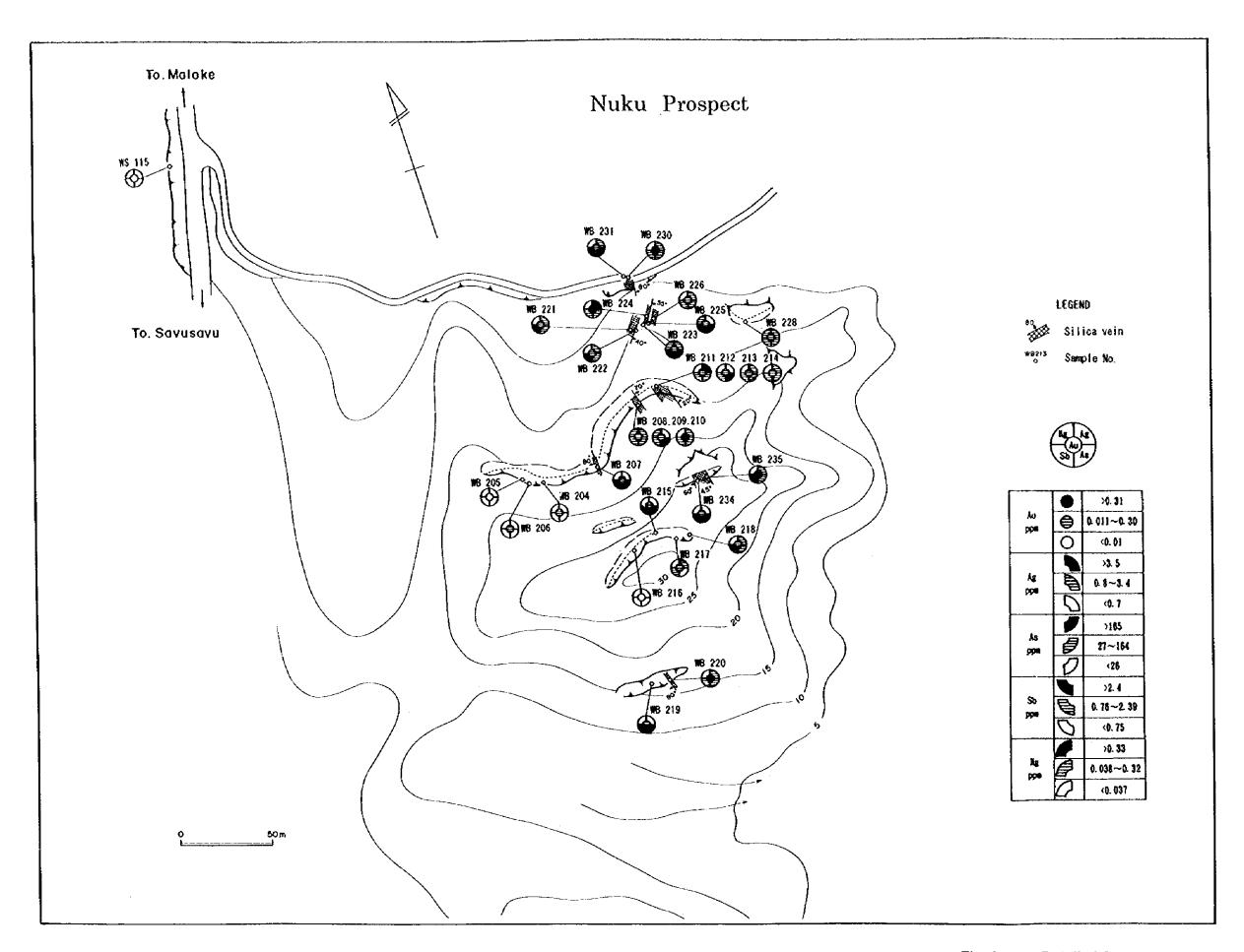


Fig. 2-4-7 Detailed Survey Results of the Nuku Prospect Area

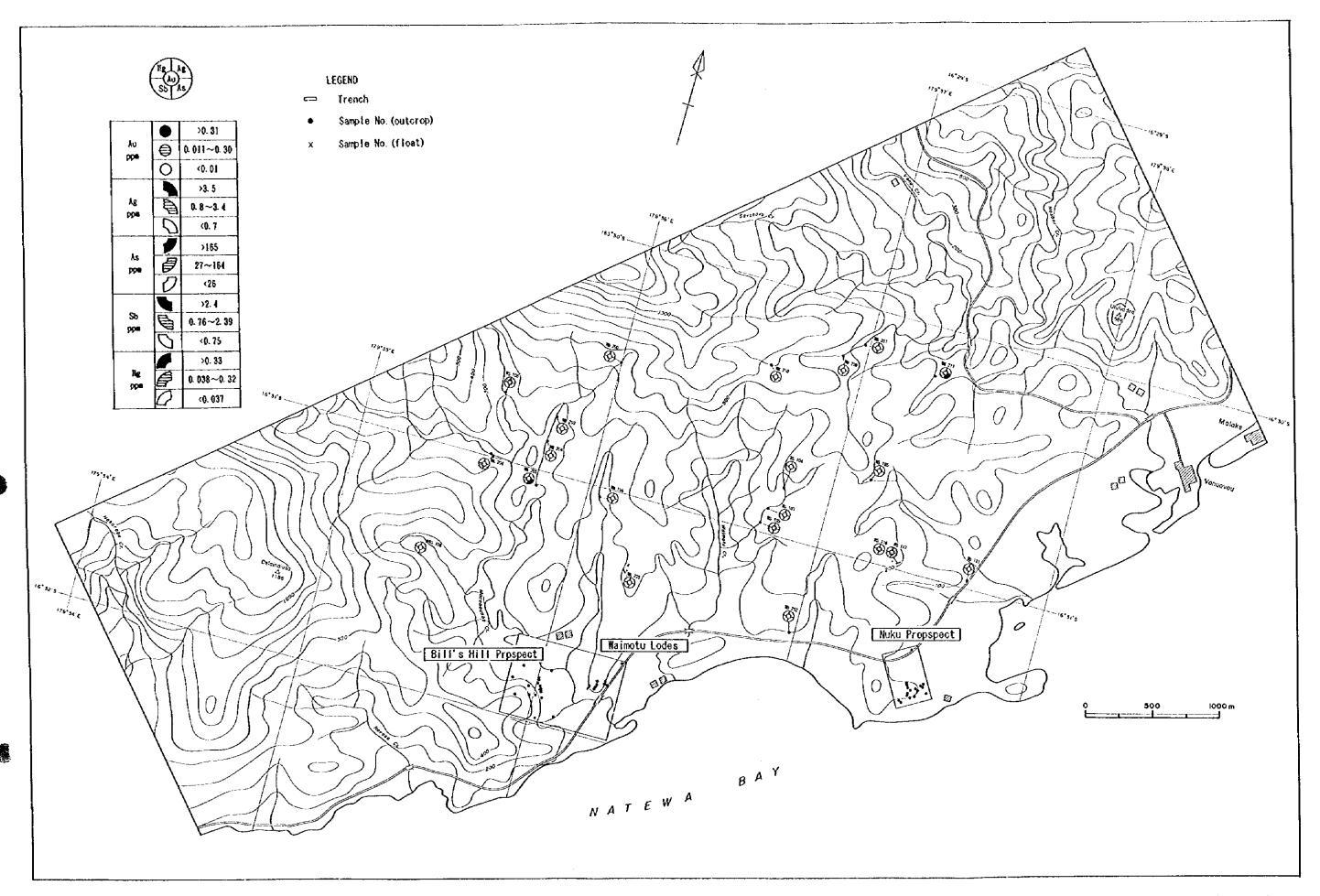
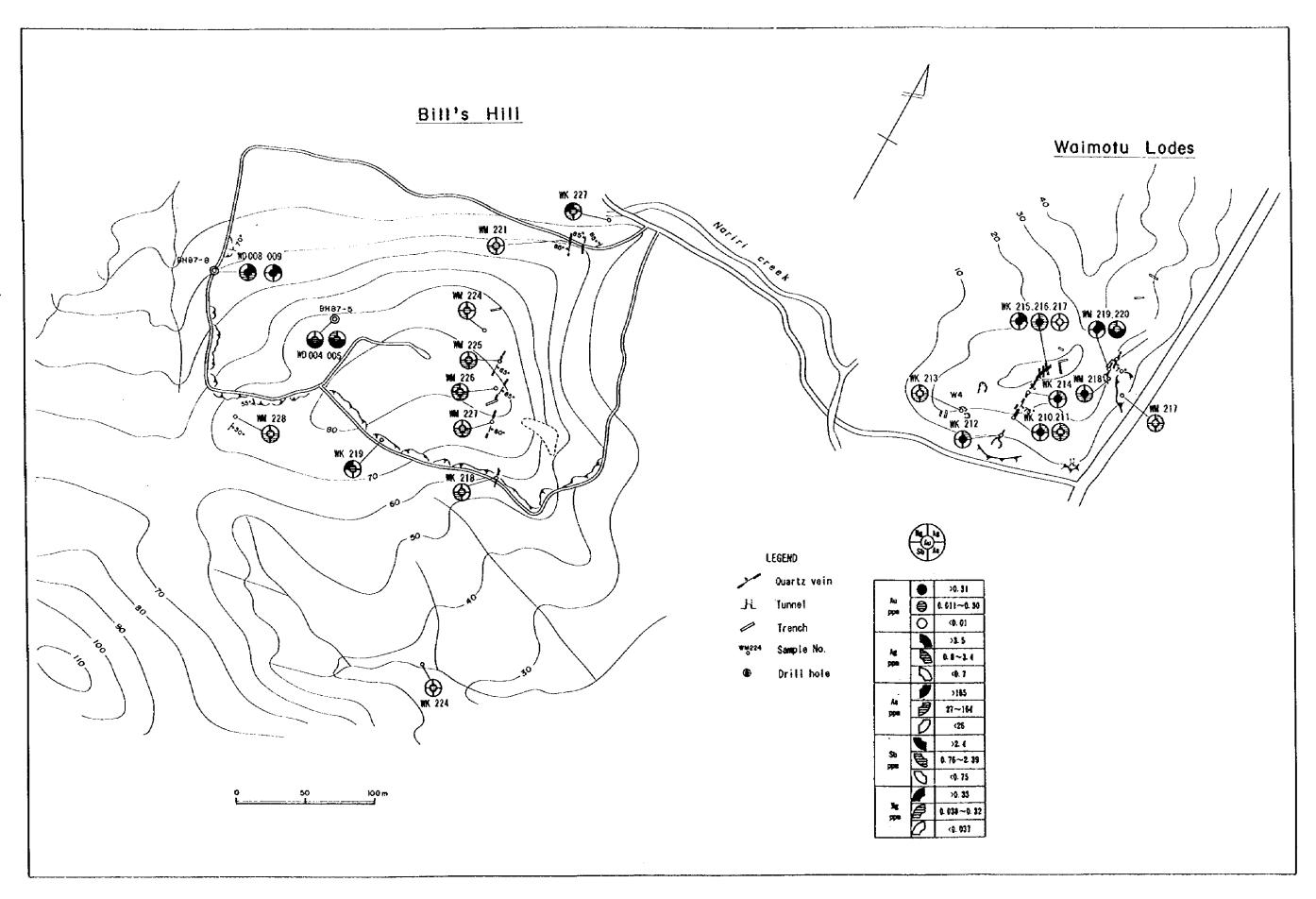



Fig. 2-4-8 Geochemical Survey Results of the Waimotu Area

(3

Fig. 2-4-9 Geochemical Survey Results of the Waimotu Lodes and Bill's Hill Prospect - 281 ~ 282 --

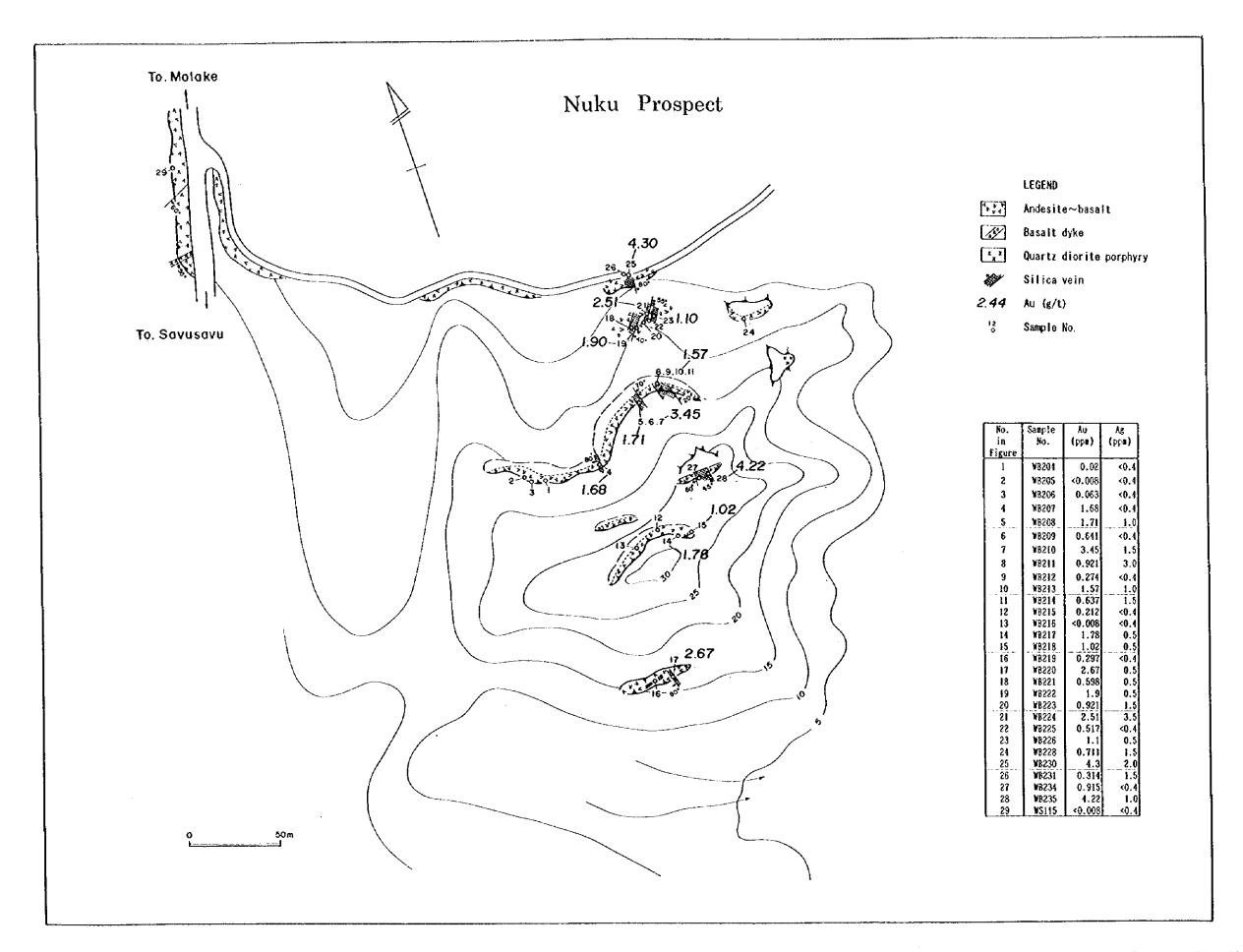


Fig. 2-4-10 Geochemical Survey Results of the Nuku Prospect Area

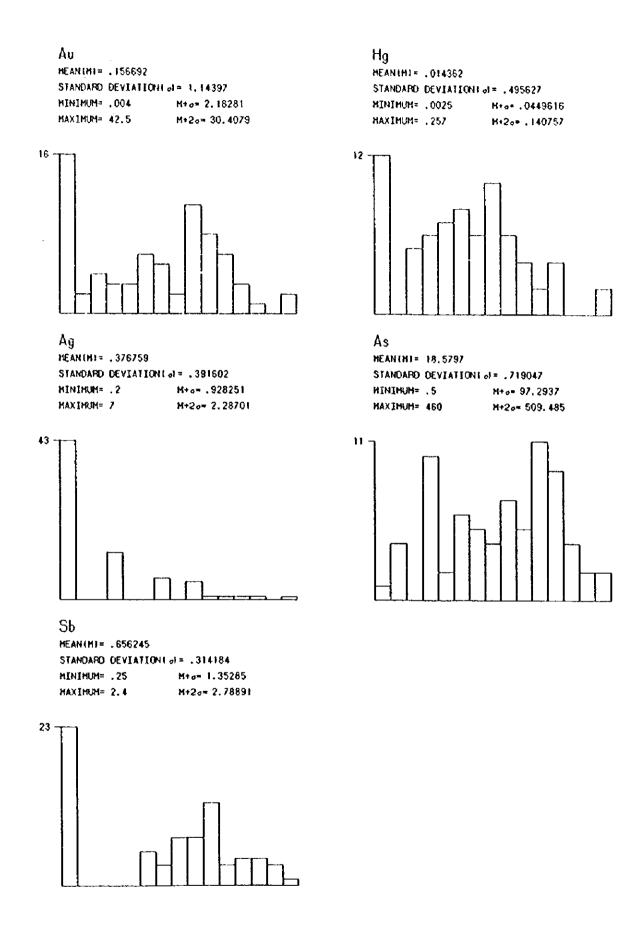
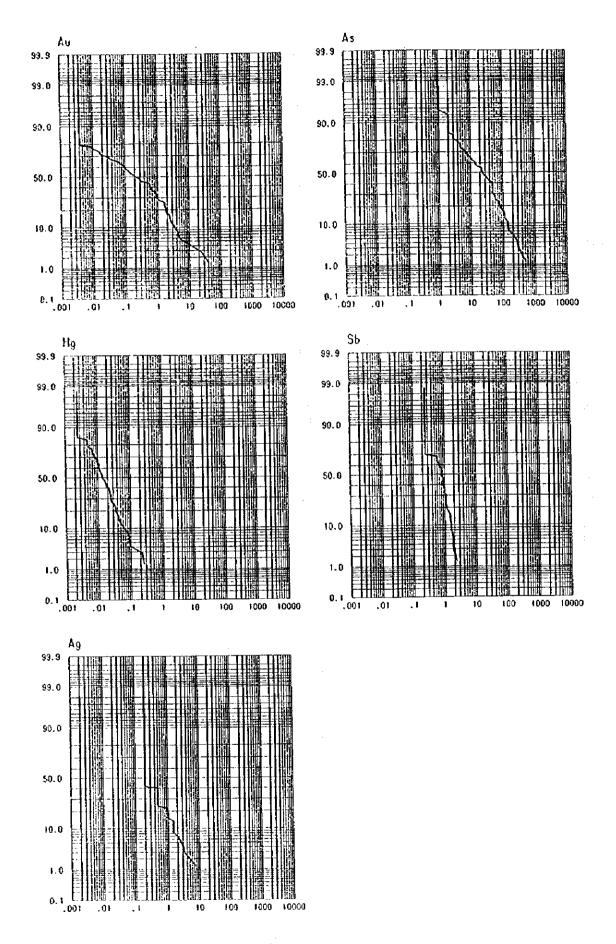
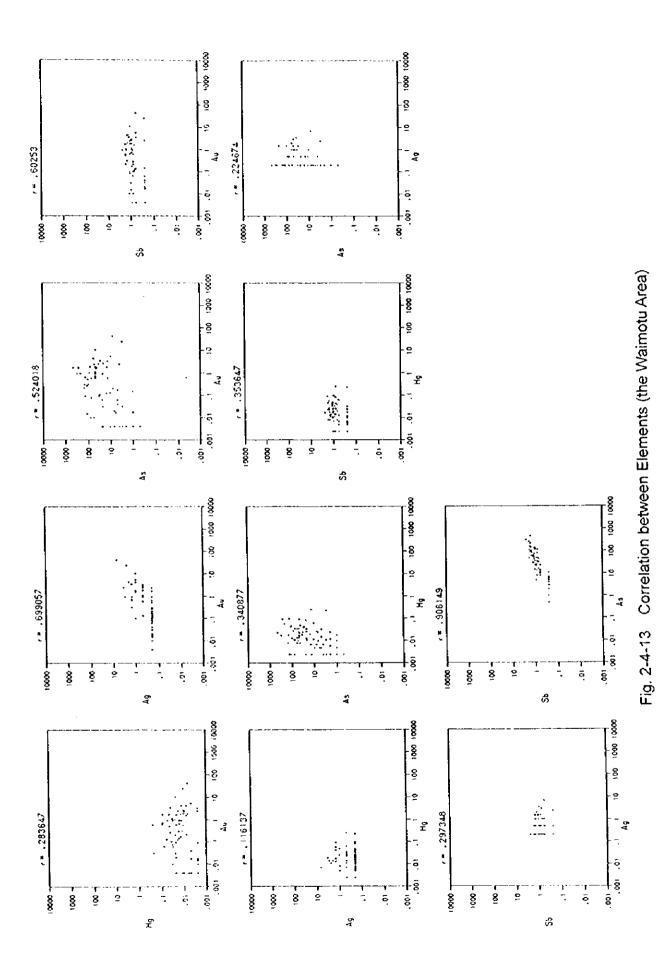
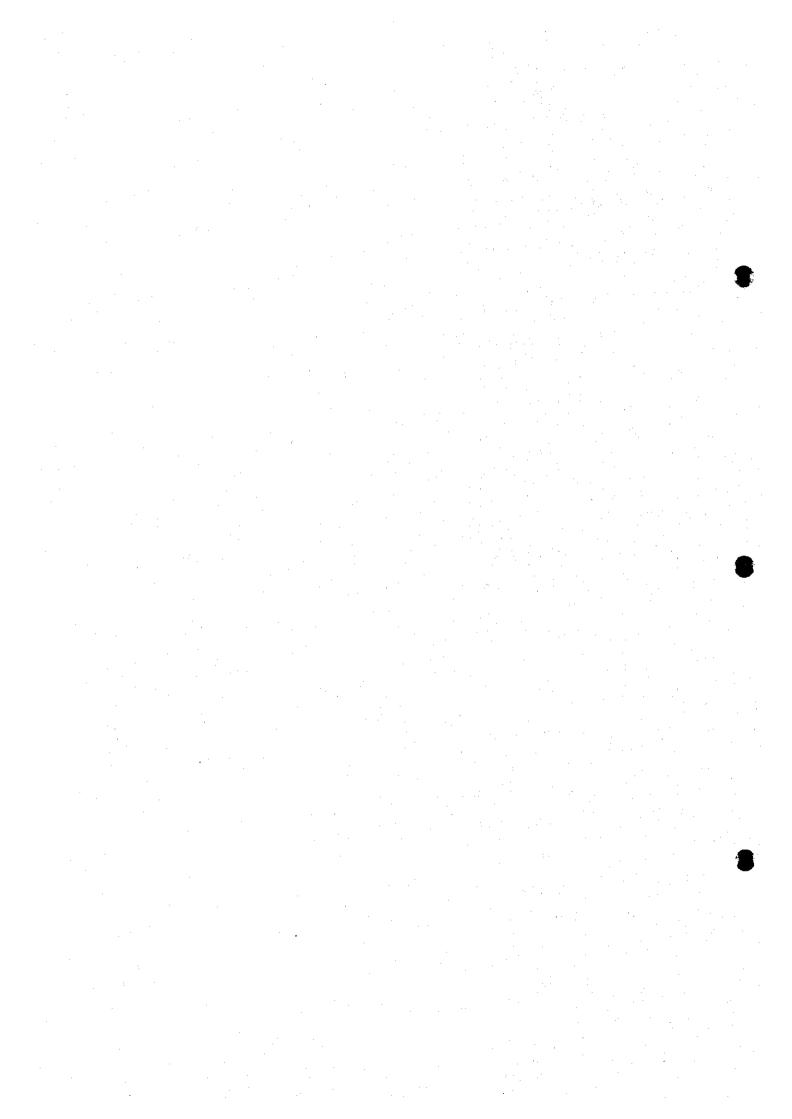


Fig. 2-4-11 Histogram of Assay Values(the Waimotu Area)


Fig. 2-4-12 Cumulative Frequency Distribution of Assay Values (the Waimotu Area)

1

PART III CONCLUSIONS AND RECOMMENDATIONS

PART III Conclusions and Recommendations

Chapter 1 Nakoroutari Area

1-1 Conclusions

1

- (1) This area comprises an areal extent of 36km² and is located approximately 15km south of Labasa. Geochemical, surface magnetic, and IP surveys had been conducted since 1988 in the Leli's Prospect. Also six holes with a total depth of 1,053 m had been drilled in this prospect. The holes were aimed at a quartz breccia zone associated with the NNW-SSE fault system and encountered ores with a core thickness of 0.6 m at 11.6 g/tAu.
- (2) The geology of this area is composed mainly of basalt-andesite lava and volcaniclastics of the Koroutari Andesites, and andesitic volcaniclastics of the Sueni Breccia. These units belong to the Upper Miocene-Lower Pliocene Natewa Volcanics Group.
- (3) Four zones were selected from the study of existing geological and resources data and information. They are; Leli's Prospect, a zone to the south of the same Prospect, Navakuru, and Mugsy's Prospect. Mineralization and alteration were found to occur in all five zones. The Leli's Prospect was concluded to be the most promising by geological survey. It was noted that the altered zone to the south of Leli's Prospect show evidence of gold mineralization.
- (4) The Leli's Prospect occurs within the quartz vein-breccia zone developed in the Koroutari Andesite lava-volcaniclastics which belong to the Natewa Volcanic Group. There are two quartz vein-breccia zones, the eastern and western zones, part of the NNW-SSE system. A silicified tuff breccia sample with a grade of 12.9 g/tAu was collected near the Leli's Prospect, and although in a limited area, high-grade zones had been confirmed during the first year survey.
- (5) Geophysical survey by array CSAMT was carried out for 12km and time domain IP for 7.5km at the Leli's Prospect.
- (6) The array CSAMT method identified intrusive-shaped high resistivity zones in the central parts of Line B-C and Line D-F. One-dimensional resistivity structure analysis showed the existence of two buried high-resistivity bodies that extend in the N-S direction. These two bodies as a whole extend in the NW-SE direction and are interpreted to be areas of silicification.

The apparent resistivity measured by the time domain IP method resulted in a distribution pattern harmonious with the results of the array CSAMT. The chargeability background is dominantly low. Chargeability anomalies exceeding 10 mV·s/V were detected at three localities, but they are independent

anomalies and the reliability is very low. Weak anomalies of over 5 mV s/V occurred continuously in the central-western part of all traverse lines. It was inferred from the results that these IP anomalies were caused by bodies 100 m below the surface. Also the simulation results indicate that these bodies have chargeability in the general range of 5-7 mV·s/V and most probably formed by pyrite mineralization. These bodies and the two high-resistivity bodies detected by the Array CSAMT are located in approximately the same locality. Thus, it was believed that pyritization and silicification were closely related in this area.

- (9) Resistivity and chargeability of 30 rock samples (including core samples) were measured in the laboratory. The resistivity of silicified rocks was the highest at 2,884 ohm-m, followed by basalt > andesite > volcaniclastic rocks. The chargeability of volcaniclastic rocks was the highest at 11.7 rnV·s/V, followed by silicified rocks > andesite > basalt. It was shown from this work that identification of rock types from physical characteristics was difficult.
- (10) Three holes MJFV-1, MJFV-2, and MJFV-3 drilled in the Nakoroutari Area all confirmed two zones of clay quartz veins. In the holes MJFV-2 and -3, weak silicified zones were confirmed in deeper parts. The clay quartz veins confirmed by this drilling strike in the NNW direction and were concluded to continue 600 m in the strike direction. Although the veins encountered in MJFV-1 and -3 are thin, grades of about 5 g/tAu were obtained by assay, and thus the surface gold showings were confirmed to continue into deeper zones. The Au content of the weakly silicified zones, however, was low.
- (11) The IP anomalies obtained by CSAMT and IP surveys during the first year were inferred to reflect the deep-seated silicified zones confirmed by MJFV-1 and -3. Thus, it was clarified by the work during second year that the surface mineral showings continue downward to the deeper parts, and that the geophysical anomalous zones correspond to the silicified zones.
- (12) Evidences regarding stronger mineralization in the vicinity, however, could not be obtained, and it is believed that the mineral showings confirmed by the first and second year surveys represent the characteristics of the mineralization of this area.

1-2 Recommendations

- (1) The geology, alteration, and the characteristics of the gold mineralization of this area were clarified by the work carried out during the first and second years of this project. Drilling in this area (MJFV-1, -2, -3) confirmed the ores in both drill holes would be 600 m apart in the strike direction (NNW-SSE). Judging from the widths and gold grades of the veins that drill holes encountered, however, it is not felt that promising gold deposits are emplaced in this area. No further work in this area is recommended.
- (2) On the other hand, the Nakoroutari area is located within the Labasa caldera near its inner slope. Within the caldera hot springs and mineralization zones occur although the volcanic center has not identified because extensive erosion has destroyed the topography. Therefore, it may be effective to

REFERENCES

[Geology]

Cox,M.E.(1980): Preliminary Geothermal Investigations in the Lambasa Area, Vanua Levu, Geothermal Report No.2, MRD.

Colley, H. and Greenbaum, D(1980): The Mineral Deposits and Metallogenesis of the Fiji Platform. Economic Geology vol. 75,807-829.

Colley, H. (1976): Mineral Deposits of Fiji (Metallic Deposits), Memoir No. 1

Colley, H. and Flint, D.J. (1995): Metallic Mineral Deposits. Memoir 4, 198pp, MRD.

Corbet, G.J. and Leach, T.M. (1995): Southwest Pacific Rim Au/Cu Systems: Structure, Alteration and Mineralisation, Workshop presented at Townsville Qld.

Corbet, G.J. and Taylor, G.P. (1994): The Mt. Kasi High Sulphidation Au System, Fiji. AIMM Exploration and Mining Conference, Lae, PNG.

Hathway,B.(1993): The Nadi Basin: Neogene strike-slip faulting and sedimentation in a fragmented are, western Viti Levu, Fiji. Journal of the Geological Society, London, vol. 150, 563-581.

Hedenquist, J.W. (1987): Volcanie-related hydrothermal systems in the Circum-Pacific Basin and their potential for mineralization. Mining Geology, vol. 37, 347-364 (in Japanese).

Izawa, E., Urashima, Y., Ibaraki, K., Suzuki, R., Yokoyama, T., Koga, A. and Taguchi, S. (1990): The Hishikari gold deposit: high grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. Journal of Geochemical Exploration, vol. 36,1-36.

Mallick, D.I.J. and Habgood, F. (1987): Interpretation of SLAR Imagery of the main islands of Fiji. British Geological Survey. 9 pp.

Mineral Resources Department(1994): Exploration and Mineral Digest, vol. 10 No. 4

Mineral Resources Department(1995); Exploration and Mineral Digest,vol.11 No.2

Mineral Resources Department(1996): Exploration and Mineral Digest,vol.12 No.1

Okuda, Y.(1989): Geology of Fiji. Chishitsu News, vol. 415, 6-17.

Reddy, D.P., and Flint, D.J. (1995): Vanua Levu: Summary status of geological knowledge and future work proposals. Mineral Resource Department, Note BP 50/11.

Rodda,P.(1989): Geology of Fiji. MRD

Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. (1985): Practical guide to fluid inclusion studies. Blackie, London.

[Geophysics, General]

Cagniar, L. (1953): Basic theory of the magnetotelluries method of Geophysical prospecting, Geophysics, 37, pp605-635

Goldstein, M.A. and Strangway, D.W. (1975): Audio frequency magnetotellurics with a grounded electric dipole source, Geophysics, 40, pp669-683.

Kaufman, A.A., and Keller, G.V. (1981): The Magmetotelluric Sounding method, Elsevier, p595.

Ogawa, Y. (1988): Fortan Program Codes for Two-dimensional Magnetotelluric Forward and Inverse Analyses, Open File Report Geol. Survey. Japan No.59.

Strangway, D.W., Swift, C.M. and Holmer, R.C. (1973): The application of audio frequency magnetotellurics (AMT) to mineral exploration, Geophysics, 38, pp1159-1175

Yamashita, M. (1984): CSAMT Controlled Source Audio Magnetotellurics, PHOENIX Geophysics Limited. Yamashita, M. and Hallof, P.G. (1985): CSAMT case histories with a mult-channel CSAMT system and discussion of near-field data correction, The 55th SEG Annual Meeting, Washington, D.C.

Zonge engineering & research organization, INC. (1982): Interpretation Guide for CSAMT data.

[Geophysical prospecting (IP Method)]

Bertin, J. (1976): Experimental & Theoretical Aspect of IP. Vol.1. Presentation and Application of the IP Method Case Histories. Gebruder Borntragger, Berlin 1976, 250pp

Keller, G.V. and Frischknecht, F.C. (1966): Electrical Methods in Geophysical Prospecting. Pergamon Press, London, 517p

Madden, T.R., & T. Cantwell (1967): Induced Polarization. A Review, Mining Geophysics, 2,pp373-400, S.E.G. Tulsa, Okla.

Parasnis, D.S. (1972): Principles of Applied Geophysics. Chapman & Hall, London.

Parasnis, D.S. (1973): Mining Geophysics. Elsevier, Amsterdam, p395

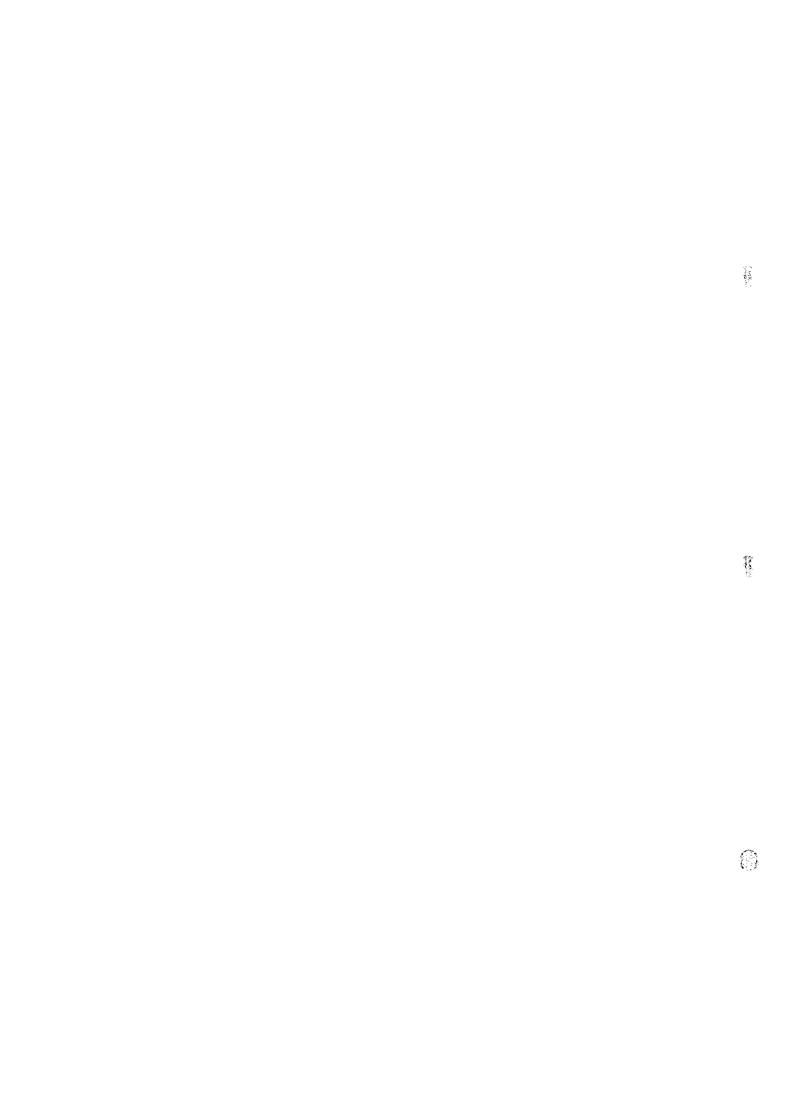
Sato,M. and Mooney,H.M.(1960):The Electrochemical Mechanism of Sulphide Self-potentials. Geophysics 25 No.1, pp226-249.

Seigel, H.O. (1959): Mathematical Formulation and Type Curves for Induced Polarization. Geophysics 24 pp547-565.

Seigel, H.O. (1967): The Induced Polarization Method. In L.W. Morley (Editor), Mining and Groundwater Geophysics. Geol. Rep., No.26. Geol. Surv. Can. pp123-137.

Chapter 3 Waimotu Area

3-1 Conclusions


- (1) The Bill's Hill Prospect is located approximately 45km northeast of Savusavu, and the Waimotu Lode and Nuku Prospect are 0.5km and 2.5km east-northeast from there.
- (2) A total of 18 holes had been drilled in the three prospects of this area. A total of 551 m adits was dug and seven holes with a total of 609 m length were drilled into the Waimotu Lodes, seven and four holes were drilled in the Bill's Hill Prospect and Nuku Prospect, respectively.
- (3) The geology of this area consists mainly of weakly propylitized andesite and basaltic lava and volcaniclastics of the Koroutari Andesite and Korotini Breccias. These units belong to the Natewa Volcanic Group.
- (4) The Waimotu Lodes are comprised of Main Lode, East Lode, and West Lode. A length of about 70 m was confirmed for the Main Lode in outcrop, but both mineralization of the East and West Lodes were confirmed only at one outcrop and the entrance of the adit. All three veins had N-S strike and with a dip of 75°-90° east for the Main and East Lodes. The widths of the veins were, 1.2 m maximum for the Main Lode and 0.8 m was confirmed at an outcrop for the East Lode. The maximum grade was 24.2 g/tAu for the Main and 42.5 g/tAu for the East Lodes. The gold content of 42.5 g/t was obtained in a sample collected from the East Lode (0.8 m wide), but a sample collected only 1 m south of this sample contained only 2.4 g/tAu, thus the fluctuation in the grade was strong. On the other hand, the average grade of four samples collected along the 70 m length of the Main Lode was 7.2 g/tAu and the gold content is constant. The grade of the West Lode was the lowest of the three at 0.92 g/tAu.
- (5) Silicified and argillized zones are well developed in the Bill's Hill Prospect. Quartz and chalcedony stockwork is developed cutting through these zones, and its strike is N-S and the eastward dip is generally steep. Surface observation of the stockwork showed the occurrence of geothite as an opaque with very minor amount of chalcopyrite. The cores drilled in the past showed strong dissemination of pyrite in the silicified zone. The maximum grade of individual veinlets of the stockwork was 0.21 g/tAu.
- (6) At Nuku, a silicified zone comprising chalcedony-quartz veins extends in a N-S direction for approximately 150 m and the average width of this zone was approximately 7 m.
- (7) The direction of dip was seemingly east, but it was difficult to determine the dip on the surface and from the results of the past drilling, it was inferred to be westward dipping. The highest grade of the stockwork was 4.3 g/tAu (sampled width 2.5 m) and the average of the total 150 m was 1.3 g/tAu (average sampled width 7 m). The past two holes encountered ores at approximately 50 m below the surface and the average grade over a 7 m width was 0.6 g/tAu.
- (9) The lower parts of the three prospects in this area had been drilled. All three had significant mineral

potential and the zone extending from the lower part of the Waimotu Lode to the subsurface part of eastern Bill's Hill was concluded to be an interesting target for further exploration.

3-2 Recommendations

Following the first phase survey results, further work in the Waimotu area is recommended. The Waimotu Lode and Bill' Hill Prospect are most interesting within the area.

Therefore, it is recommended that we first confirm the downward continuity and the distribution of the new veins parallel to the known three veins, by electric survey, namely CSAMT and IP, then follow it up by drilling.

REFERENCES

*

References

[Geology]

1

Cox,M.E.(1980): Preliminary Geothermal Investigations in the Lambasa Area, Vanua Levu, Geothermal Report No.2, MRD.

Colley, H. and Greenbaum, D(1980): The Mineral Deposits and Metallogenesis of the Fiji Platform. Economic Geology vol. 75,807-829.

Colley, H. (1976): Mineral Deposits of Fiji (Metallic Deposits), Memoir No. 1

Colley, H. and Flint, D.J. (1995): Metallic Mineral Deposits. Memoir 4, 198pp, MRD.

Corbet, G.J. and Leach, T.M. (1995): Southwest Pacific Rim Au/Cu Systems: Structure, Alteration and Mineralisation, Workshop presented at Townsville Qld.

Corbet, G.J. and Taylor, G.P. (1994): The Mt. Kasi High Sulphidation Au System, Fiji. AIMM Exploration and Mining Conference, Lae, PNG.

Hedenquist, J.W. (1987): Volcanic-related hydrothermal systems in the Circum-Pacific Basin and their potential for mineralization. Mining Geology, vol. 37, 347-364 (in Japanese).

Mallick, D.I. J. and Habgood, F. (1987): Interpretation of SLAR Imagery of the main islands of Fiji. British Geological Survey. 9 pp.

Mineral Resources Department(1994): Exploration and Mineral Digest, vol. 10 No. 4

Mineral Resources Department(1995): Exploration and Mineral Digest,vol.11 No.2

Mineral Resources Department(1996): Exploration and Mineral Digest,vol.12 No.1

Reddy, D.P., and Flint, D.J. (1995): Vanua Levu: Summary status of geological knowledge and future work proposals. Mineral Resource Department, Note BP 50/11.

Hathway, B. (1993): The Nadi Basin: Neogene strike-slip faulting and sedimentation in a fragmented arc, western Viti Levu, Fiji Journal of the Geological Society, London, vol. 150, 563-581.

Izawa, E., Urashima, Y., Ibaraki, K., Suzuki, R., Yokoyama, T., Koga, A. and Taguchi, S. (1990): The Hishikari gold deposit: high grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. Journal of Geochemical Exploration, vol. 36, 1-36.

Okuda, Y.(1989): Geology of Fiji. Chishitsu News,vol.415,6-17.

Rodda, P. (1989): Geology of Fiji. MRD

Shepherd, T.J., Rankin, A.H. and Alderton, D.H.M. (1985): Practical guide to fluid inclusion studies. Blackie, London.

[Geophysics, General]

Cagniar, L. (1953): Basic theory of the magnetotelluries method of Geophysical prospecting, Geophysics, 37, pp605-635

Goldstein, M.A. and Strangway, D.W. (1975): Audio frequency magnetotelluries with a grounded electric dipole source, Geophysics, 40, pp669-683.

Kaufman, A.A., and Keller, G.V. (1981): The Magmetotelluric Sounding method, Elsevier, p595.

Ogawa, Y. (1988): Fortan Program Codes for Two-dimensional Magnetotelluric Forward and Inverse Analyses, Open File Report Geol. Survey. Japan No. 59.

Strangway, D.W., Swift, C.M. and Holmer, R.C. (1973): The application of audio frequency magmetotellurics (AMT) to mineral exploration, Geophysics, 38, pp1159-1175

Yamashita,M. (1984):CSAMT Controlled Source Audio Magnetotellurics, PHOENIX Geophysics Limited. Yamashita,M. and Hallof,P.G.(1985): CSAMT case histories with a mult-channel CSAMTsystem and discussion of near-field data correction, The 55thSEG Annual Meeting, Washington, D.C.

Zonge engineering & research organization, INC. (1982): Interpretation Guide for CSAMT data. [Geophysical prospecting (IP Method)]

Bertin, J. (1976): Experimental & Theoretical Aspect of IP. Vol.1. Presentation and Application of the IP Method Case Histories. Gebruder Borntrager, Berlin 1976, 250pp

Keller, G.V. and Frischknecht, F.C. (1966): Electrical Methods in Geophysical Prospecting. Pergamon Press, London, 517p

Madden, T.R., & T. Cantwell (1967): Induced Polarization. A Review, Mining Geophysics, 2,pp373-400, S.E.G. Tulsa, Okla.

Parasnis, D.S. (1972): Principles of Applied Geophysics. Chapman & Hall, London.

Parasnis, D.S. (1973): Mining Geophysics. Elsevier, Amsterdam, p395

Sato,M. and Mooney,H.M.(1960):The Electrochemical Mechanism of Sulphide Self-potentials. Geophysics 25 No.1, pp226-249.

Seigel, H.O. (1959): Mathematical Formulation and Type Curves for Induced Polarization. Geophysics 24 pp547-565.

Seigel, H.O. (1967): The Induced Polarization Method. In L.W. Morley (Editor), Mining and Groundwater Geophysics. Geol. Rep., No. 26. Geol. Surv. Can. pp123-137.

APPENDIX

Table A-1(1) Results of Microscopic Observation of Thin Sections(1)

Sample	Rock type	Texture	Ę	Phenocrust				Ground	dmass (1	ncludin	Groundmass (including microphenocryst)	henocry	-		Alternon
No.			ઉ	ديج	d Ado	Ę,	others	ol cpx	chx obx	hb pl	kf	dz zb	do	others	
NSOON	lapilli tuff	clastic			L.		7)	(V)		C		•	0		of totally-eidd, g; partly-earb *smee
NNOAS	basalt	porphyritic	(-)	Û	0			0	•	С	_	C	0		o! → idd
NM003	basalt	porphyritic	ĝ	C	0			10		Q.		0	0		ol → idd
NM004	basalt	porphyritic	ઉ	0	Q	4	~	• (•)		O		C	0		ol-+idd, opxxnec
NK009	andesite	glomeroporphyritic		,	(V)			0	(C)	0		0	0		opxidd
NK057	tuff breceia	clastic	(Ç		0	0		ļ		C		0	0	Ì	ol-smec, pi parliv-carb, gitdruse baliv-ebi
NK060	andesite	aphyric		7) 🗸	V (V)				(V)	0		Ô	0		opx×ancc
NROOS	andesite	pomphymtic		(V) (O)	ं	0	_	(\times)	(V)	0		0	0		ol parily-carb, cox-carb, oox-carb
:R035	basalt	porphyritic	(C)	0	0 7			0	٧	O		Ô	0 (ol-+smec. gl→smec
NBOKE	basalt	glomeroporphyntic	Ĉ		C			0		0		0	V		0 (— 8 mec
NBO85	basalt	porphyritic	Q	0	¢.	0	L	0		0		0			0 snet
M077	tuff	clastic		c	<u> </u>	·	_		H	O		<u>©</u>	,		glsmeetehltepi
PM0%9	picrite	porphyritic	0	0	Δ.	·	7	Δ (Q)		0	-	0	·		0 i →smec
DK069	andesite	porphyritic		(Ĉ)	O			۵		0		(₾)			opx-snec, gl-snec
DK075	hasalt	porphyritic	(Q)	0	С					G		©	0 (ol-carb, pi partiy-carb+aib, el-sonce
DK084	tuff breceia	clastic	(Q)	O				Δ		0		<u>@</u>	·		oismee, glsmee, druse-ca qz+carb
DK 145	basalt	porphyritic	ĝ	Û	◁			0		0		0			ol-smec, gl-smec, druse-smeetearbteni
DR122	basalt	porphyritic	(Ġ)	0	0			0		0		ĝ			ol→smee. gl→smee
DB131	basalt	glomeroporphyritic	Q		0))	0 (0)		O		0	0		lol-wance, druxe-earb bool
DB136	basalt	porphyntic	(Q)	C	C)) 	(C)		O		Ô	•		o i → smec
DS060	pientic basalt	porphyritic	0	0	4	·	_	0		0		0	·		oi → sme¢
WB184	basalt	porphyritic	(7)	C	O	♡		0		0		C	•		208x-10
WB191	basait	porphyritic			0		7	(A) (Q)		O		<u> </u>			earb vein, of smee+carb, cox carb, pl partly carb, gl clav
WB192	basalt	porphyritic	0	0	0		_	Δ.	❖	0		0	·		
WK207	basalt	porphyritic	Ô		© 7			0		O		0	•		ol-sacc, pi partiy-carb
WK223	andesite	glomeroporphyritic		0	0	0		\(\cdot \)	0	0		0	•		00x-clay
WW201	lapilli tuff	clastic		∇	O		-	Δ		C		٥	•		pi partiy-alb
W.V.206	tut? breceia	clastic		Ϋ́	0		• 25	٧		0		6	·		
WM200	andesite	porphyritic			С	·				Ĉ	0	Ç	·	8.0	ol partiy-alb
WS113	andesite	porphyritic		°	⊕ ∀	¢	H	-	<	Ĝ.		ĝ			gi-spec, druseqz+smce
X10CN	opposite.	pompound		ĝ	0	•	_	(٧)		•		0			And the second s

abbrev, of edivine, cox**clinopyroxene, opx**orrhopyroxene, pl**plagioclase, op**opaque minerals, qz**quartz, hb**homblende, kf**K-feldspar gl**glass, or microcrystalline aggregate, carb **carbonate, serp**scrpentine (©: abundant, O: common, \(\Delta\): small, **: rare, (): totally decomposed

Table A-1(2) Results of Microscopic Observation of Thin Sections(2)

	_														
Sample	1000	Kock type	exture				}	3		2	-	Kh 11 15 00 01	ç	orbers	
No.	(m)			ē	Xdo Xdo	_1_	op comerc		É	_				1	a. 9) results make an entered property control and adjust in
VD108	26.00	26.00 Ivole, breecia	clastic	ĉ	c	c		-	0	1) (§•	=		+	oc to locatify that the control and the control of
41,05	170.20 Bacol		porphyritic	3	0	@	4	\ \	<	*	©	<u>©</u>	<	3	ol-sem, pipanty-carb, gitotaliv-city
71.72	200	herschole	clastic	3	0	6			V	**	0	9	(@)	5	of totally —clay minerals
9170V	27.5 TO 1.00 C		olomoromomburnio	ĝ	С	6	<		<		(4)	(Ø)	V (0	5	of As druse totally motals
SIGN	20000		cleans	ĝ	C	6	┞.	<	<	Ľ	0	(@)	V (4	į,	of & druse totally day minerals
ZO CZ	OC S	ccola	iastr.	Ş	C		L	\vdash	С	ľ	©))	V (O)	5	of R gi totally clay minerals
NDIZA	151.80 basalt		porphyratic		1		\dagger	-			6	Ć		7	S of clay thingstals, druge querty day
ND205	97.70 basalt		porphyritic	3	4	<u>©</u>	+	+		1		+		1	The state of the s
012QN	197.45 andesite		porphyritic	_	<	6		+	Ĉ	-	©			-	DATIVE SPOONER BOOK ALLES CALLES CALL
ND223	73.00 14	ccia	clastic		0	€	c	c	c	-	€	Ĉ)		É	pi & chr partiy - sinte, gi - cay, oruse - smone
XEZGN	300.00		clastic		0	ପ		\dashv	ĝ	-	©) (G	_	ফ	of melayrearb, cpx partix mepidone, pl partix mathie
NDAGO	189.70 hasalt		porphyritic	ĉ	6	0	<	⟨S	<u>ر</u>	_	©	€		٥	ofsery, pl partiyalbite, drukeclav
X050X	176.40	basalt	trachytic	3	С	0	_	-	<		©	છ	(<u>@</u>	0	ol clay-carb, gl totally clay
212GN	224.90		clastic		(O)	(©)				3	(<u>6</u>)	<u>ê</u>	< @	<u></u>	calcite vein, of methy, of totally mathite, alternisem clay
COLCIN	\$0.00 andesite		porphyntic	_	0 0	0	<	<	♥		©	6,	•	1	opx nmclay, druseclay-carb
00500	300 00 andesite		porphyntic		(V)	(0)		\dashv	3	(S)	ê	9	· (@)	5	cox sotaty - clay, pt athere, yl & druse clay-raduraka
20000	127.60	pacalt	nombyritic	ĝ	(0)	(C)	 			<u> </u>	ĝ	B	(6)	=	gateath vein, of methy + each pilk opx meath-ga
7077	176.50 hasalt		porphyritic	ĝ	6	❖	H	(0)	0 0		0	<u>©</u>		ै	ol, y & druse totally clay
	TOO TO Baselt		combunitie		6	©			0	7	0	3))	· (©)	-	ul-clay, plistrongly-sibite, druse-clay-toarti.
71870	120 60		clastic	3	0				٥		۵	3))	V (⊚)	٩	ol & yl clay, druse clay-aduralia-teath
1000	200	1	anideacons (line		F		\vdash	ĝ	6	Ĺ	0	3)	· (@)	c	ol & 및 totallyclay-carb.
25.50	100 OC C1.		meroe ysamine	ĝ	6	L	\dagger	ĝ	0	- 	6	¥	. (0)	3	of R yl totally molay
12500	12 SO Day		Companie	ĝ	ĝ	C	\vdash	+		Ĺ	0	ÿ	· (0)	5	carbonate abundant, of & gt- clay-cart. cox & pi-cart-albrig:
i i	20.57		Approxim			ĝ	\vdash	\vdash	-	=	(O)	() (e)	V (C	3	carbonase vein gl-r gx+clay, pl-r alb-sencire
2000	00.00	sed preceia	Clanic	Ę	c	C	1	\vdash	Ç	Ě	ô	3	· (@)	3	one garestrated gles day, is degree examinable
DD525	1/6.60 basait		Porphyride				t	+	C	ľ	c	S)	· (@)	٥	of & ul totally -clay; of partly- sericite
DD903	01.07	T	Porphyritic	5 6) (C	\dagger	\vdash	ĝ		ĝ	9)	·	ig.	all minerals strongly silicified and cathonstized
COOCIE	20.75	137.00 caroonalized baseli	-landia	į	٠.	_	\vdash	-	3		0	((♥ (@)	٥	of ekgi-reley-teach, core strongly carbonatized
Specie		174 90 carooratized tuti ofessia ciasus	chante	Ş	┺	F	+	-	3	ĺ	0	3	♥ (ŵ)	o	of Agit - clayscarb, cpx strongly carbonatized
Sec.	3 3	3	CIRNIL	9) ĝ	С	T	+	3	۲	<u> </u>	9))	· (@)	٥	of, cpx & ut clav*carb, pl strongly clav*alb
1000	CO.C77	225.55 Carbonatized nasail	לאו לאולולים			1	ļ			ĺ				l	

abbrev. ol=olivime, epx=clinopyroxene, opx=orthopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=homblende, kf=K-feldspar gl=glass or microcrystalline aggregate, carb-nearbonate, serp=scrpentine ©: abundant, O: common, △: smalt, •: rare, ():totally decomposed

(

Table A-1(3) Results of Microscopic Observation of Thin Sections(3)

Ţ

Samolo	Denth	Rock type	Texture	Phenocryst or fragment	ragment				څ	mpun	Groundmass or matrix	atrix	į	Alteration
, ,				do id xdo kdo lo	to Fd	8	ठ	of cox apx hb pl	¥ P	=	kf. qz	ם	op others	
1,100	8	hasalt	pornhyntic	@ @	Ŀ	Ŀ		0		c	-	<u>©</u>	-	of totally-clay minerals, druse-carb carb and grivein
11.00	26.135	bacait	pombynitie	(a)	۷ (و)	⋄	(A)	۷	Ц	0		(<u>©</u>)	<	ol-clay-cart, gl totally-clay, pl-carts, carh and gz vein
21,700	124 90 hasalt	hasalt	pompyritie	6 6	Ė	<u> </u>	(V)	V		6	_	©	<1	grecarb vein, ol-clav + carb pl & cov-carb + gz
21600	100 147	171 Of Lole Perceia	clastic	©	4	4		0		<		(@)	ν (ol rotally-clay, g) totally-clay
2007	302.40 Morelle	Poroli	orthydroc	0	Ŀ	Ŀ	ŝ	◁	_	0	_	(<u>(</u>	٧	of totally-sclay minerals
	20.02.0	10 W O'	4:400 P	₽-	<	⋖	9	0	\vdash	Ĉ	<u> </u>	(©)	V	ol-clay, of totally-clay, douse-cach
70814	2.0.30	LIO.30 Tapanit turi	Anweid	┺		-	(0	L	0	-	Ć	<	ol votally clay minerals
00815	292 90 ibasali	basalı	glomeroporphyritic	(C)	· >	1	3	>	+		\dagger			
91XUQ	276.90 basalt	basalt	porphyntic	(@) \	0	<		ĵ:	4	o	+	(<u>©</u>		gzicam ven, olimclaymeam. plike cpk - carbings.
0.000	178 10 basal	basalt	porphyritic	0 (0)	۷	<	0 (V) V	С	_	С	1	<u>(©)</u>		of totally-clay minerals
1.000	250 00 hasalı	hasalt	porphyritic	O (@)			(0)	Ĉ)		∢	+	(©)		of totallyclay minerals

abbrev, ol=olivine, cpx=clinopyroxene, opx=orthopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblende, kf=K-feldspar gl=glass or microciystalline aggregate, carb=carbonate, sorp=serpentine ⑤: abundant, ○: common, △: small, ·: rare, 〈): totally decomposed

Table A-2(1) Results of Microscopic Observation of Polished Thin Sections(1)

100000		Doole near	Ö	Ore minerals	2				Gang	Gangue minerals	erals						
Sample		ROCK (VDC	-	-	<u> </u>			F				-	_	-		_	
	Ž E	Texture under microscope	<u>0</u>	Sp	Pv Cha Sph Aca Gal	Gal	others	qz	kf	j.	20e	clay Sr	smc apa	a carb	rb bar	ser	others
, 100 day	Cieve street		4	-	$oxed{}$	Ŀ		0		0		◁	•	٥	_ \		cpi(*)
* COO C.	Composition Compos		-	 	L		chec(*)	_			4	4	-	<u> </u>			
	Quartz venn	COLORNIC LOCK	ŀ	` -	1	ŀ		0	T	T			-	-			
NK033	Quartz vein	quartz vein	+	1	1	1		0 @	T	T	1.	<	╁	╁	•		
NK042	Quartz vein	quartz vein		+	-	1			1	T	†	1	$\frac{1}{1}$	╀	\ \ \	-	() ()
NW068	Quartz vein	silicified tuff broccia			_			9	0	1	₫		+	+	7		ncma()
1,000	Ouartz vein	guartz vein	•			•		0					-	+	•		
7	Ouarry vein	silicified volcanic preceia	-	\vdash				0			◁	◁	_		◁	•	
20172	Outside Assista	einicited volcanie process	┞	L	_			0		4	4				4		
77 170	Cuaric voin	cities for the country branch	<	╁.	L			9		0	◁	-	_			٥	
	Quart vein	Sincinca Voicante di cocia	<	ļ.	_	ŀ		0	0	T	4			┢			
DB110	Quartz vein	Silicitied volcanic precess	3	╀	-			0		T	<		┝	-	◁	◁	
DB111	Quartz: vein	silicified tuff	1	4	_) ()	†	3	+	+	╁			
81180	Quartz vein	silicified volcanic breccia	٥	•	_		;	③		_	1	+	+	+	.	.	
08110	Ouartz vein	Isilicitied volcanic breccia				•		0	◁		$\overline{\cdot}$	\dashv	\dashv	-			
22148	Oriantz vein	silicified volcanic breedia	◁	Ŀ	<u> </u>	Ė	٨٢٪)	0	0	d	•						
5100	nion attended	citicified volcanic breccia	上	-	_			0	0								
2 2	Cumary Series	Corporation By	-	┞	ļ.			0	◁	0		◊	_	9	٥		
201100	Quarte vein	cilicified niff	0	-	L	ŀ	1	0	Γ	-	◁	<					chl(•). Pvro(△)
C21171	August Wall	atomatic street	+	╀		·		0						_			
T N	Coarz vem		\dagger	╀	1			@	Γ	T		√	□	\vdash			
WB218	Quartz vein			+	<u> </u>	1		0	₹	T	1.	╀	+	├		_	
WB222	Quartz vein	silicified tuff	.	+	4	1)	1	T	<	<	\dagger	╁		<u> </u>	(©)/ledo
WB231	Quartz vein	opal	4	-	\downarrow			(1	1	1	1	+	╁			()
WK210	Quartz vein	silicitied tuff	•	_				9	₫	1	1	1	+	+	+	\downarrow	
WK212	Quartz vein	silicified tuff breecia	•					③		1		1	+	+		\downarrow	
WK214	Ouartz vein	silicified tuff	•					9	◁	1			1	-		4	
81.57W	Oriartz vein	silicified tuff		-				9			•	◁	-	\dashv			
WK224	Ouarry veno	silicitied tuff	\vdash	-	L		i.	9			$\overline{\cdot}$		\dashv	-			
71,000	Ouartz vein	Isilicified tuff		<u> </u>	_			9			·		\dashv	-			
01.07.00	Ousers vein	silicified nuff breezia		-	L			9				•					
1,000	Quarte vein	Quartz vein Jouantz vein		ļ	Ļ			9		П	•	4	4				
WS105	Ouarrz vein	silicified tuff breccia		-	_			0		0			4	-		_	cbx(.)
210070	iles Alexand	altered overched basalt	ା	\vdash	_			7		<u></u>		•	0				
VIOU.	Cua to vem	מוכוכם אימיייים מחיים.	•	$\frac{1}{2}$	-	1											

Py=pyrite, Cha=chalcopyrite, Sph=sphalerite, Aca=acanthite, Gal=galena, chcc=chalcocite, Ars=arsenopyrite qx=quartz, kf=K-feldspar, pl=plagioclase, goc=goethite, clay= clay minerals, smc=smcetite, apa=apatite, cb=carbonate ba=barite, epi=epidote, hema=hematite, ser=scricite, chl=chlorite, pyro=pyrolusite, cpx=clinopyroxene ©= abundant, O=common, △=small, · = rare

A-4

Table A-2(2) Results of Microscopic Observation of Polished Thin Sections(2)

Ĭ

Sample	Denth	Texture under microscope	ဝီ	Ore minerals	erals			S	Gangue minerals	ninera	sp				
2	(m)		P. C.	No.	Pv ChalSph Aca Gal	Gal	others	S	ķ	lď	50e	clay a	apa carb	b ser	others
ND103	120.20	silicified volcanic breecia	4			•		٥		П		0	\circ		
NDION	120.40	silicified volcanic breccia	◁	0	0	◁		0				◁			
ND215	118.40	silicified volcanic breccia	-	-	7	Ŀ	Hm(•)	0	Δ		_	0	$\frac{1}{\cdot}$	4	
ND217	118.65	silicified volcanic breccia		\vdash			Mt(•)	0			◁	0		◁	
ND227	53.30	silicified volcanic breccia		H	Ц		Mt(•)	0	0		◁	0	\dashv	-	
ND231	245.35	altered basalt	-	-			Hm(△)	4		0		0	-		(△) , ch! (△)
ND309	152.10	silicified volcanic breccia	4	7	4	٠	Au(•)	0	0			0		◁	
ND310	152.20	silioified tuff breecia	·				Hm(•)	0	0	0		0			
DD414	138.25	silicified volcanic breccia	◁		_	Ŀ		0	0			0	0		
DD421	182.20	basalt with quartz vein	◁	ļ.	-			0	0	4		0	\circ	◁	
DD423	190.40	silicified volcanic breecia	0	4	Ŀ			0	0			◁			
DD426	191,20	silicified tuff breceia	0	-	 -			0	0	<1		4			
00500	122.75	silicified volcanic breccia	0	7	◁	◁		٥	4		4	◁	O -		
505GG	152.70	silicitied volcanic breccia	0	F		٠		0	0			-	•	_	
50510	164.10	silicified volcanic breccia	4	-	L			0	0			◁			
50513	182.00	silicified volcanic breccia	4	-		ŀ		0	0		_	0	4	_	
DD628	122.10	silicified volcanic breccia	•	-	<u> </u> -		Au(•)	0	0			0	0		
DD637	267.50	silicified volcanic breccia	◁		_		Hm(△),Mt(・)	0				O	$^{\circ}$		
DD640	297.50	silicified volcanic breccia	◁		_			0	♦	O		0	0		
DD642	75.00	silicified volcanic breccia	4	Н				0	\dashv			0	4		

Py=pyrite, Cha=chaloopyrite, Sph=sphalerite, Aca=acantite. Gal=galena, Au=electrum, Hm=hematite. Mt=magnetiite Si=quartz or SiO2 polymorphs, kf=K-feldspar, pl=plagioclase, goe=gocthite, clay=clay minerals, apa=apatite, cb=carbonate, chl=chlorite ©=abundant. O=common, △=small, · =rare

_

Table A-2(3) Results of Microscopic Observation of Polished Thin Sections(3)

Sample	Depth	Texture under microscope	٥	re mi	Ore minerals				රි	Gangue minerals	ninera	22		Ì	Ī		
2	(E)		Š	haSp	Py Cha Sph Asp Gal	Gal	others	Si	kf	\vdash	pl goe	chl	ара	apa carb	ñ	others	
DD740	227.10	silicitied volcanic breccia	ା	◁	_		Au(+)	0	0			◁			⊲		
C17700	251.20	silicified volcanic breccia	0	◁		4		0	4				•				
2000	25075	1 -	1	4	lacksquare			0	9			7		0			
7 800	125.40		0	ŀ.				0	0			Ø		0	◁		
81800	141.45		0	⊲	ŀ			٥	0					◁	◁		
01800	125.50		0	4	L			0	0	0		0		0			
DD822	116.80	carbonate rock	ं	 										0	7		
50600	88.45	silicitied tuff breccia	0	4			Cr(·)	0	0	0		◁		0			
DD912	93.75		0	-				0	_			0		0	1	!	
DD922	288.89	basalt with quartz vein	ಶ	H	Ц	∇		0	0	◁				ା	◁		

Py=pyrite, Cha=chalcopyrite, Sph=sphalerite, Aca=acantite, Gal=galena, Au=clectrum, Hm=hematite. Mt=magnetiite Si=quartz or SiO2 polymorphs, kf=K-feldspar, pl=plagioclase, goc=gocthite, clay=clay minerals, apa=apatite, cb=carbonate, chl=chlorite ©=abundant, O≕common, △≕small, · =rare

Table A-3(1) Results of X-ray Diffraction Analysis of Rock Samples(1)

Table A-3(2) Results of X-ray Diffraction Analysis of Rock Samples(2)

Samo P	Field description	Clay mineral	S111ca	reldspar	_		-1	ı	ŀ	+	s٤	1	0.110	<u>.</u>	ŀ		1	H	,
, c		Sm Ch Ka Se Tr	_	a	Xt CP	S.	£2	5,	NA.	An C	ca Do	<u> </u>	هر - ا	3	2	1	=	2	ממ מחובו
4B 058	Argillic rock		0	1				1	-	+	+	+	\downarrow	-		•	†	+	╀
7R 090	Arrillic altered volcanic breceia								-	-	+	-	4	_		4	1	+	+
020 03	Andesitic vocanic preceia	4	0	0	٠	·			-		+	+	+	\downarrow			1	+	+
38.086	Clay zone (0.3m)	0	0		4					1	\dashv	-	4				†	+	+
890 20	Clay zone (0.1m)	4	0						<u> </u>	-	+	-	-	4			+	+	+
080 80	Clay zone (0.2m)		©		_				-	╣	-	-	-	-			+	\dagger	+
N 084	Clay zone (0.25m)	4	0	_	٥	_				+	-	-	-	_			†	+	+
060 St	Brecciated zone	\dagger \dagge	0	◁					1	-	\dashv	-	-	_		4	†	+	+
960 SQ	Silicified, brecciated rock	•	0		0				1		- 	_	+	_		. (1	+	+
080 M	Argilli nock		o	0					-	1	-	-{	-	4		o¦	1	+	+
DM 081	Argilic basalt	4	(1	+	+	+	4	_	0	+	1	╁
DX 086	Bleached (basalt?)	0	0	0						\dashv	+	+	+	1		4	1	\dagger	+
DM 095	Silicified, argillic rock	0	0	1	0			+	\dagger	+	Ť	1	\downarrow	-		5	†	+	+
DM 103	Quartz, argillic zone (5cm)	•	0			\int		1	+	-) ()	4	\downarrow			+	\dagger	+
901 HC	Argillic zone with quartz voinlets	0	(2)	!	-				+	+	"	<u></u>	+	\downarrow			†	+	╀
179	Argillic zone (2m)		0	0		\downarrow			-	+	+	+	+	1		ŀ	+	+	+
187 187	Argillic zone (lm)	0 4	(2)						1	+	\dashv	+	+	-]	4	†	+	+
188 188			0		◁					+	+	+	+	1	1	٠,	1		╁
DM 191	1.7			0	+	\prod			1	f	-(0	+	+	1	-	1		+	+
	Quartz vein		⊚¦	4				1	+			1	+	+	1		Ī	+	╁
K 074	Clay		o¦		4			1	+	Ŧ	+))	+	1	1		T	\dagger	+
DK 076	Weakly silicified rock	0 0	⊚¦©	- 	•	Ţ		+	+	1	- - - -	+	+	-	_		1	\dagger	╁
DK 078	Strongly argillic rock			o¦		1	1	1	\dagger	T	10	+	+	1		<		t	╁
X 082	Weakly argillic rock		-	1	·	1			\dagger				+	\downarrow	_	1 .		+	╁
X 083	Basaltic tuff breccia(light blue)	0	√ (0	•	1	_		1	+	+	+	<u>_</u>	+	+	ļ	. <		\dagger	╁
3K 086	Weakly silicified rock	4	() ()	-	4	-			1	1	1	+	+	+	1	1		+	+
X 088	Breccia zone in basalt	0	() ()		-	1		1	1	1	(+	+	+	1	$\cdot $		+	+
DK 133	Silicified rock(float)	0 0	③ (_		_		1	1	+	*	+	+	+				\dagger	+
DB 112	White clay	4	9		0	1			\dagger	\dagger	+	+	+	4	\downarrow	\prod		┿,	\dagger
08 114	Leached (clay) zone	4				+	I		†	\dagger	+	-	+	\perp	1			╁	-
DB 120	Clay zone (whitish-brownish)	4	(D)		0	4	1		Ť		\dagger	╁	+	-	-			\dagger	+
200	Clay (pale green, 0.8m)		9	0	1		Ţ		Ť		+	+	+	+	1	ŀ		+	\dagger
205	Quartz stringer (0.1m)	Δ	0			1			1	1	1	+	+	\downarrow	1	1		,	\dagger
M 211	White clay (0.1m)	Δ	(D)			1			1		+	+	+	\downarrow	-	$\cdot $		†	+
FM 217	Quartz vein (Waimotu lode)		90	1	-	-			†	+	+	+	+	+	1				+
M 222	Argillic andesite(pinky)	•	9		4	_			1	+	+	+	+	\downarrow	\downarrow			1	+
WM 223	Quartz, argillic zone(gray-purplish)	◁	9		4	-		1	1	+	+	+	+	\downarrow	1	$\cdot $. ,	+
M 226	Argillic zone		⊚ '		o¦				+	+	+	+	+	+	1			4	+
			9		(-						_	-	_					

Results of X-ray Diffraction Analysis of Rock Core Samples(3) Table A-3(3)

Ţ.,

Sample.	Field description	CIRY	กากครา	311	ICA FEL	aspar	1	3		3 4	ŀ		31	ļ	⊁	ŀ	Ŀ	177
0		Sm Ch	Ka Se	Tr Cr	[J Z)	KfC	S S	Wa La	2	An Ca	on	¥	y S	ΔV	7.y	7. T	3	otners
W 228	Quartz stringer bearing tuff breccia				0			_		-		+	\dashv			•		
623	Soapy tuff breccia	0			0								-		1			
100	Lanili tuff	0			0 0									-		<u>. </u>		İ
204	Rasalt with quartz vein	 - 			í		4	0		(O	_		-		-	-		
¥ 20¢	Weakly gillicified rock			-	 ©			4							-	<u> </u>		
3 5	[abi]]i tuff	0			©			0					-		-	_ <u> </u>		
211	Weakly silicified, limonitic zone	Ø			0	0						-	1		1	\downarrow		
213	Weakly silicified rock		4		o	<						•	\dashv		1	-	1	
表 219	Quartz vein with iron oxide		,		o					-		-	\dashv	_	-	4		
220	Clayer tuff	4			0								1		٥	-	ļ	
据 227	Silicified rock				o	4						1	-		4	1		
205	Limonitic veinlet in andesite		4		C	_				1			1			+	ĺ	
207	Silicified, brecciated rock		•		(O		-	-		1	-	+	+	1		.		
302	Silicified, brecciated rock				(-	1	_	+	-		$\frac{1}{\cdot}$	•	_	
 88	White clay (0.5m)		◁		(1	<u> </u> 	_	-	+	-	-	•		
WB 210	Silicified, brecciated rock		•		(O)			-		1	-	+	+	1	-	-		
211	Strongly silicified rock		•		(O			-	_	_		+	-			-		
212	Andesite(whitisch)		0		O			-	1		_	+	+	1	+	-		
213	Strongly silicified rock		ě.	-	③		-	-		1		-	1	1	+	-		
WB 214	Strongly silicified rock				() ()			-		+	1	1	+		1	-		
215	Weakly silicified rock		•		9			-				+	-		-	+	\downarrow	
217	Strongly silicified, clay zone		٥		() ()					_			-		•			
219	Strongly silicified, brecciated zone		٠٠) (0)	0		_			-	+	-	1	+		1	
224	Strongly silicified rock				0			1			-	+	-		•	•	1	
226	Strongly silicified, breediated rock				0	_						-	-	1		•	_	
227	Andesite?(white, decomposed)		0							_			-	1	-	-		
234	Silicified, brecciated rock		4		0						_	+	-]	. (+	_	
90	Tuff breccia (weakly silicified)	0			0	4	j	-	_	-	1	1	+	1) ()	-	-	
0	Shear zone				(O	0					-	1	+	1	- 0¦	+		
000	A. A. L.				C	<	_		_									

⊕= abundant, ○=common, △=small, ·=rare Sm:smectite, Ch:chrolite, Ka:kaolin, Se:sericite, Tr:tridymite, Cr:cristobalite, Qz:quartz Pl:plagioclase, Kf:K-feldspar, Al:alunite, Ja:jarosite, Ca:calcite, Bo:dolomite, Gy:gypsum, Ap:apatite, An:anatase Cb:chabasite, St:stibite, Wa:wairakite, Na:natrolite,La:laumontite Py:pyrite, Ma:magnetite, He:hematite, Gb:gibbsite, Te:tennantite, Sp:sphalerite, Ma:malachite

Table A-3(4) Results of X-ray Diffraction Analysis of Drill Core Samples(1)

						;	Silica	ale											Carbo	nate	Othe	rs
Sample	Drill	Depth	Silica		Feldsp	аг		Clay	mine	ral			Zeoli	te			Othe	:rs				
No.	hole	(m)	Quartz	Christobalite	K-feldspar	Plagioclase	Smeetite	Mixed layered(C/M)	Chlorite	Mixed layered(S/M)	Sericite	Heulandite	Stilbite	Epistilbite	Hamotome	Analcime	Pyroxene	Epidote	Calcite	Dolomite	Pyrite	Anatase
ND102	MJFV-L	120.10	0		0				Ō		<u> </u>	1	L								0	
ND105	MJFV-1	120.40	0		O			ļ	0		ļ	! ~	ļ				<u> </u>		├			
ND106	MJEV-1	26.00	L			0	0	_				0			\vdash		Δ		$\frac{1}{\Delta}$	-	\vdash	
ND107	MJFV-1	50.60				·					-	$\overline{\Delta}$	├	 -		9	-		△	 -	\vdash	
ND108	MJFV-1	71.70	0	Q	0	0	Δ	0			 	15		 -	-			\vdash	 	$\overline{\Delta}$	†	
NO109 NO110	MJFV-1 MJFV-1	99.40 125.10	<u> </u>			0	0	<u> </u>	-	\vdash	 	t	\vdash		 		Δ		1		1	
NDIII	MJFV-1	155.00	6		Δ	9	9	 	ਨ			1	厂					1	1	1	†	
ND112	MJEV-1	170.20	© 0			0	Δ	t —	0	l	1	T	1				•		Ι	[
ND113	MJFV-1	200.50	<u> </u>			00	<u> </u>	 	Δ		1	1					L				0	
ND114	BJFV-1	225.90	Δ				O	0				L.	0		L_	0		<u> </u>	丄		<u> </u>	
ND115	MJFV-I	249.00	<u>A</u>			0		0	L		<u> </u>		1	L_	ļ	<u> </u>	<u> </u>	<u> </u>	1	_	1:	
ND116	MJFV-1	275.00	0	L		0		Q	<u>L</u> .	<u> </u>	ļ	—	ļ	╽△	↓	<u> </u>	┞	! _	₩	₩		
ND117	KJIV-1	300.00				0		O	╄-	<u> </u>	↓	↓ —	1	┵	 	┡	 	ļ	 	 	├	 -
ND118	NJFY-1	59.30	₩	 	<u> </u>		0	┞	 	 	+-	╂	ļ	 	$ \Delta $	├		╄	tò	1	╀	
ND119	MJFV-1	32.60	 -		 	0	0	ļ	╀	ļ	╁	- -	 	╂	╁	╁	╀≏	\vdash	┯	╂	10	Δ
ND201	MJFV-2	26.00 50.00	0	—	 	 	РΥ	Δ	\vdash	 	+	╌	-	-	╂─	├-	\vdash	╁╌	\perp_{Δ}	✝	╁	-
ND202 ND204	MJFV-2 HJFV-2	69.00	िँ	 	8	 		1 🛱	╂─	 	1	+	 	 	t-	╁╌	十一	1	† <u> </u>	1	†	<u> </u>
ND205	MJFV-2	97.70	╁		┝	0	0	╁╧	1	1-	1	十一	\top	T	†	†	\vdash	1				
ND206	NJFV-2	118.80	1 6	1	 	╀┈	Õ	1-	†—	 	1	1	1	1			1	T				
ND208	MJFY-2	147.95	╅	1	1	0	T -	1	1	1	1	1										
ND209	MJFV-2	176.00	To	Ì		Ю		1	T	1				<u> </u>						1	_	<u> </u>
ND210	MJIV-2	197,45				0		0	L	L				1	1_	1	1_	<u> </u>		<u> </u>	<u> </u>	ļ
ND211	MJFY-2	225.40	1	Ī	I	0	L_	10	<u> </u>	<u> </u>		_	ļ	1_	┴	↓	<u> </u>	<u> </u>	—	4	1	ļ <u> </u>
ND212	S-VILK	250.50	ŢŌ	.	<u> </u>	0	<u> </u>	1_	_	↓	<u> </u>	4	1_	╄-	╄-		╀	-	-	╁┈		 -
ND213	MJIV-2	103.80	0	↓ _	_	 	<u> </u>	-	↓	╁	<u> </u>	+		┿	╁		-	-	+	+	+	┼
ND214	MJFV-2	118.20	18	 	——	╄-	₩.	╁	↓			╁	╫	┼	╫	╁		 	+-	+	+	
N9215	MJFY-2	118.40	0	1-	╁	╂	 	- 			+-	-}-	1	+	╁	+-	+-	╅╌	+	+	+	
ND220	MJFV-2	195.10 35.70	14	╂	+	╁	╁	╅—-	+	+	-	╫		+-	+	╁╌	+	十	┪	1		1
ND234 ND301	MJFY-3	28.50	+	10	+	0	0	+	+-	+	+-	+	-	-†-	+	†	T	+	\top	十	\top	1
ND305	MJFV-3	101.20		0	+	1 8	00	+	+-	+	+-	+	1	1	十	†-	1	十	十一	1	\top	1
ND307	MJFV-3	112.30	+	丁	T^-	1	Ť	0	\top	1	1		1	T	1	1-		T		\perp		
ND308	MJFV-3	126.00	┪┈	1	1	10	0								\perp	\mathbf{L}		I		\Box		<u> </u>
ND315	NJFV-3	175.00	0	\mathbf{I}^{-}		0		\mathbf{I}^{-}	C									1		\perp	_	
ND316	MJFV-3	196.60	7	<u> </u>		0			Q							\perp	╄	┸	┸		\bot	<u> </u>
ND317	MJIV-3	224.90				10	L		0	1		1_			4-	4		1	 	\bot	4	4
ND318	MUFY-3	247.75		上.		0		1		1-	\bot	┦	┷	1	┷-	1	. .	+	—	╄		
SD319	KJIV-3	274.70		1	╁	1_	1	 _ _	C	Ц	+	+	<u>-</u> ļ		-	10	<u> </u>	+		-	+	+
ND320	RJIV-3	300.00	COTTO				seal	<u> </u>	Ц_	ᆜ,	аге	بياب		نل		т.	ب.	ج	h(<u>_</u> _	٠,	mectite

Table A-3(5) Results of X-ray Diffraction Analysis of Drill Core Samples(2)

Ţ

Į

		· · · · · · · · · · · · · · · · · · ·					Silic	ate											Carts	nale	Othe	rs
Sample	Drill	Depth	Silic	a	Feldsj	sar .		Clay	ากโกย	ral			Zeol	ite			Oth	ers				
No.	hole	(m)	Quartz	Christobalite	K-feldspar	Plagioclase	Smectite	Mixed layered(C/M)	Chlorite	Mixed layered(S/M)	Sericite	Heulandite	Stilbite	Epistilbite	Hamotome	АлаІсіте	Pyroxene	Epidote	Calcite	Dolomite	Pyrite	Anatase
DD401	MJFV-4	25.00										ļ		_		L					\sqcup	
DD 102	HJFV-4	50.00	<u> </u>			0	0					L.	<u> </u>			ļ	O		<u> </u>		\sqcup	
DD403	MJFV-4	75.50				Q	0		L			Щ	ļ		ļ	<u> </u>	Ö		ļ		┡	
DD404	MJFV-4	100.00	À			0		<u> </u>	.			├ ──	₩		├—	ᆣ	$^{\circ}$		┞┯	<u> </u>		
DD405	MJFV-4	127.60	0						4		ļ	┞	.		 	-		ļ	Š		Δ	
DD406	MJFY-4	154.60	Q		Δ	-		0	ļ		<u> </u>	┢	├	<u> </u>	<u> </u>	├			0		-1	
DD407	MJFV-4	176.50	<u> </u>		<u> </u>	Ř	0	ļ			 	ļ		ļ	 -	 	0	 -	ļ			
DD408	MJFV-4	205.50	<u> </u>		ļ	Ŏ	0	┝┈			 	 			 	 	0	├	0		0	
DD409	NJFV-4	230.00	0	 -	┡	Ą		4	 		 -	⊢	├	┢	!	ļ	 	-	l 🖭	}	\vdash	
DD410	MJFV-4	250.20	ļĻ		├—		00		 		ļ	├-	┢			-	Δ	⊢	⊢	-	\vdash	
DD411	MJIY-4	273.40	Ι÷	 	ļ	9	9	0		 	├	 	┢┈	├─	├	 	14	 -	6		Н	
DD412	NJFV-4	300.20 159.50	14	├	├	ㅎ	0	14			-	├	 		┝╌	 	0		닏			
DD519 DD521	MJFV-5 MJFV-5	72.80	Δ			X	ő	-	 	├	├-	╁─	 			╁	ŏ		 	-	\vdash \dashv	
DD523	HJFV-5	123.00	14			<u> </u>	-₩-		0	┢	٠.	┢	┢	1-		┞┈	۲		┨──	0		
DD524	MJFV-5	150.00	├	 -				 	۱÷			 	╂	├	 	 	 	-		ő		
DD525	MJFV-5	176.60	├	 -	1 .			0	Δ	 	 	 -	 	 -		┢┈	 	┢	t	ŏ		
DD528	MJFV-5	252.40	 	\vdash	· · · · ·	0	0	<u> </u>		 -	t	 	†	t	†	 	0		 -	Ť		
DD530	MJFV-5	290.25	┼~~	 	١.		Ó	-	1	 -	_	Ι	†	-	†	1-	Ιŏ	-	Δ			
DD531	MJFY-5	132.00	0	 	10		Δ					1	t	t	†	ļ			1	1		i
DD601	MJFV-6	25.00	ΙĂ	•	ΤŤ	l	0					T	T		1				1	•	Ō	
DD603	MJFV-6	56.00	1			0	Ô		1		l	1	T-		1	1	O		0		1	1
DD604	MJFV-6	106.00	1		0	1		0	T		ļ —								Γ			
DD605	MJFV-6	125.20	Ιò		Δ	i			0	l			T			[]	1.		0	L		
DD606	MJFV-6	152.00	Δ	T		0	1	0								Ţ	Δ		Q			L
DD6 07	MJIV-6	174.90	Δ		ŀ	Ľ		0]				L	0			
DD609	MJFV-6	225.85	②			0			0		<u> </u>			L	<u> </u>	L	L	<u> </u>	0	L	0	L
DD511	MJFV-6	272.35	Δ		Δ				0		ļ	L	1	L	L		L		14	<u> </u>	0	ļ
DD612	MJFV-8	300.00	0	L	ļ	0		Ŀ	Δ	ļ	<u> </u>	 	ـــــ			ļ	O	ļ	0	Ļ_	Ō	<u> </u>
DD613	MJFV-6	116.00	Q	L	Δ	<u> </u>		<u> </u>	0	<u> </u>	↓	 	1	ļ	1_	ـــــ	<u> </u>	ـــــ	0	 	 	
DD614	MJFV-6	135.20	1 4	L_	$\perp \Delta$	<u> </u>	0	L.	8	 	L	 	 	Ļ _	<u> </u>	 	0	 	 -	 	L	L
00632 ⊚ abu	MJFV-6 ndant	255.90 O c	© Objoin		ل	<u> </u>	mal)	<u> —</u>	10	ra	Ц_	<u> </u>	l:chl	<u> </u>	<u> ب</u>	ــــــــــــــــــــــــــــــــــــــ	لٍ		ــــــــــــــــــــــــــــــــــــــ	٠	0	ectit

Table A-3(6) Results of X-ray Diffraction Analysis of Drill Core Samples(3)

								Sitica	ate											
Sample	D-:11		0:1					7	~···					Zeolite	Others		Carb	onate	Othe	rs
Sample	Drill		Siti	ca		Felds	bat		Clay	mine	eral			Ž	0					
No.	hole	Depth(m)							ङ		Ą								<u> </u>	
			•						Mixed layered(C/M)		Mixed layered(S/M)					:				
:				alite	ų.	ar	1Sc		yere		yere	oysit			;				Ì	
			123	Christobalite	Tridymite	K-feldspar	Plagioclase	Smectite	ed la	Chlorite	ed la	meta Haloysite	Sepiolite	Analcime	Pyroxene	ţţ	Sidente	Ankenite	2	
			Quartz	Chr	Tric	K-fé		Smc	X	Š	Mix	meta	Sepi	Anal	Pyrc	Calcite	Sid	Ag.	Pyrite	glass
DD701	MJFY-7	41. 10					0	•							0				i	
DD702	MJFY-7	102. 50	Δ				0		0							O				
DD703	MJFY-7	153. 70				•	0			Δ					Δ	0			Δ	
DD704	MJFV-7	203. 00	Ö	•			0		0							Δ		L		
DD705	MJFV-7	227. 00	0			L	Δ			Δ				<u> </u>		0			Ŀ	
DD706	MJFV-7	201.65	Δ	•			Ö		0			ļ		ļ		Δ		<u> </u>	<u> </u>	<u> </u>
DD707 DD708	MJFY-7	248.10	0			 	Ò		0		<u> </u>	<u> </u>				0	<u> </u>	L		<u> </u>
DD708	M)8Y-7	253. 20	Δ		ļ		Δ	-	<u> </u>	Δ	<u> </u>			<u> </u>		٠		O		<u> </u>
DD710	MJEV-7	284. 60					0	0	<u> </u>	<u> </u>	ļ <u>.</u> .	4			O	L	<u> </u>	ļ	<u> </u>	<u> </u>
DD711	MJEV-7 MJEV-7	321.90					Δ	0		ļ	ļ	Δ	Δ	Δ			 	<u> </u>		
DD712	MJFY-7	338. 50 382. 35	$\overline{\Delta}$	Δ		<u> </u>	<u>\(\rightarrow \)</u>	 -	0	<u> </u>	 -	<u> </u>	 	ļ		ļ	ļ	<u> </u>	ļ	<u> </u>
DD801	M1264-1	48. 30	Δ.				0	0	 			Δ	ļ		Δ	Δ	 	<u> </u>	<u> </u>	Ļ
DD802	MJFY-8	125, 50	0			ļ	<u> </u>		_			ļ	}	-	.		 	}	├-	0
DD803	MJFY-8	112. 20	0				Δ	 	Ÿ		 -	 -	<u> </u>		ļ		 	 	<u> </u>	-
DD804	MJFV-8	134. 70	Ö				$\frac{\Delta}{\Delta}$	├—	40			<u> </u>	ļ		_	<u> </u>		0	<u> </u>	
DD805	MJFV-8	181. 65	\vdash				Δ	 	<u> </u>	Δ	 				<u>O</u>	0	 	├ ─	<u> </u>	<u> </u>
DD806	WIFV-8	143.00	0				6	<u> </u>	├	-	├	 -	 -		0		 	 	 _	ļ
DD807	MJFY-8	204.50	Δ				$\frac{1}{\Delta}$		0	 	\vdash	 -	- -				┢	╂	梟	
DD808	MJFY-8	261. 80				-	$\frac{\Delta}{\Delta}$	0	<u> </u>	-		 	 	0		0	├	\vdash	<u> </u>	┼
DD809	MJFY-8	277. 60	Δ			 	Ö		0	 	 	 	 -	-	Δ	⊦∺	 	 	├ ं	
DD810	MJFY-8	336.10			-	<u> </u>	ŏ	 	ő	 	 	\vdash			<u>' ' '</u>	Δ	 	 		
DD811	MJFY-8	363. 50	Δ				ŏ	 	ŏ	t		 		├	Δ	د.،	-	-	12	
DD812	MJFY-8	396. 80	Δ		 -		ŏ	 	Ö		 	 	 	 	-	├ .	!	 	 	
DD924	MJFY-9	58. 70	0			<u> </u>	Δ	l	Δ	 		 -	<u> </u>		Δ	0	 	 	 .	
DD926	XJFV-9	88.00	Ö				Δ			Δ		 -	 			ڵ		0	Δ	
DD927	MJFV-9	115.00			Δ		0	Δ		- - -		Δ		 	Δ	Δ	 	ا ٽ	二	╁
DD928	MJFV-9	151.60	Δ				$\tilde{\Delta}$	0	ऻ		-	Δ		t		 	 	†	 	t
DD930	NIFV-9	200. 70			•		Ó	Ō	Г			Ō	<u> </u>	t^-	Δ	0		 	1	
DD932	MJFV-9	258. 50	Δ				Δ		0					Τ	0	Ť	1	1	†	<u> </u>
DD933	MJFV-9	289. 90	0				O			0	0		T	l	Δ		 	1	 	<u>† </u>
DD934	MJFV-9	300.00	0			•	Δ	•	<u> </u>	Δ		1	1		1	0	l	<u> </u>	l	T

© abundant ○ common △ small · rare C/M:chlorite/smcctite S/M:sericite/smcctite

Table A-4(1) Results of Chemical Analysis of Rock Samples(1)

Element	Au	Ag	As	Sb	llg	Element	Au	Ag	As	Sb	llg
Unit	(ppm)	(ppm)	(mqq)	(ppm)	(ppm)	Unit	(ppm)	(ppm)	(ppm)		(ppm)
	0.01(0.008)	0.4	1	0.5			0.01(0.008)	0.4		0.5	
DB 107	5.72	9.8	160	1.6	0.08	DK 074	<0.01	<0.4		<0.5	0.025
DB 108 DB 109	5.11	6.5	140 280	1.4 2.8		DK 086 DK 088	<0.01 <0.01	<0.4 <0.4		0.7	0.006
DB 110	4.55	16.5 47	500	5.8	0.219 0.483	DK 089	<0.01	0.4	4/3	$\begin{array}{c} 0.6 \\ 0.6 \end{array}$	0.009
DB 111	2.89	6.4	100	1.5		DK 093	0.11	38.5		28.3	0.575
D8 113	0.38	11.1	560	2.7		DK 093	0.26	62	1050	17.4	0.63
D8 114	0.1	<0.4	250	3,1	0.288	DK 095	0.015	0.6	380	4.3	0.028
DB 115	0.318	0.5	1360	14.4		DK 096	<0.01	1.6	310	1.9	0.048
DB 116	0.13	1.2	310	3.4	0.041	DK 097	0.1	27.2	380	12.3	0.465
DB 117	4.45	12.3	410	3.9		DK 100	<0.01	<0.4	16	[1	0.034
DB 118	6.7	8.5	200			DK 101	0.12	<0.4		1.3	0.075
DB 119	6.56	10.4	265	2.4	0.06	DK 102	2.55	0.6		1.1	0.069
DB 123	<0.01	<0.4	3	<0.5		DK 103	0.07	0.4		1	0.02
DB 124	<0.01	<0.4	4	<0.5	0.022	DX 104	0.015	<0.4		<0.5	0.00
DB 125	<0.01	<0.4	3	<0.5		DX 105	0.19	2,2	31	0.9	0.06
DB 126 DB 130	0.62 <0.01	<0.4	2 4	<0.5	0.015 0.026	DK 106 DK 107	0.14 0.56	$\frac{1}{0.4}$	15 25	$\begin{array}{c c} 0.6 \\ 1.3 \end{array}$	0.04
DB 132	<0.01	<0.4 <0.4	2	<0.5		DK 107	0.05	<0.4			0.05
DB 134	<0.01	<0.4	6	<0.5		DK 109	0.052	$-\frac{50.4}{60.4}$			0.06
DB 137	0.02	2.8	24	₹0.5		DK 110	0.049	<0.4			
DB 139	0.12	1.2	55	<0.5		DK 111	0.173	<0.4		1.6	0.04
DB 140	0.2	<0.4	25	<0.5		DK 112	0.049	<0.4			0.06
DB 141	0.03		۲۱	<0.5		DK 113	0.435	12.2			2.3
DB 142	1.77		155	<0.5		DK 114	0.04	<0.4		2.6	0.11
DB 143	<0.01	<0.4	3	<0.5	0.014	DK 115	0.162	1.7		2.9	0.0
DB 144	0.11	0.4	8	<0.5		DK 116	0.12	0.4			0.06
DB 145	<0.01	<0.4	4	<0.5	0.014	DK 117	0.204	16.1	160	2.6	
DB 146	0.69	38.7	1430			DK 118	0.01	<0.4			0.03
DB 147	0.71	47	1590	12.6	3.16	DK 119	0.012				0.03
DB 148	12.4	46	1420			DK 120	<0.01	<0.4			0.01
DB 149 DB 150	2.18 0.045	5.6 2.4	190 70		0.057 0.136	DK 121 DK 122	<0.01 0.012				0.02
DB 151	1.33	4.6				DK 123	<0.012	0.6			
DB 152	0.54	7.2	280			DK 126	<0.01	<0.4			0.02
DB 153	2.28	11.3				DK 127	<0.01	1.2	25	<0.5	0.02
DB 154	4.61	8.3	240			DK 128	0.01	0.4	60		
DB 155	16.1	78				DK 129	0.01	<0.4			
DB 156	< 0.01	<0.4	5			DK 130	0.01	<0.4		<0.5	0.02
DB 158	<0.01	0.4				DK 131	<0.01	<0.4			0.0
D8 159	<0.01	<0.4				DK 132	<0.01	<0.4	20		0.01
DB 160	<0.01	<0.4		<0.5		DK 133	0.02	0.8	8		0.03
DB 161	<0.01		4	<0.5	0.024	DK 134	0.07	2.4	70	$\frac{1}{2}$	0.04
DB 162	<0.01	<0.4			0.077	DK 136	0.136		130		0.03
DB 163 DB 164	<0.01 <0.01	0.4 <0.4	<1 7		0.016	DK 140	<0.01				0.02
DB 165	<0.01	<0.4	1	<0.5	0.032	DK 144 DK 146	<0.01 <0.01	<0.4 <0.4		<0.5 <0.5	0.01
DB 166	<0.01	<0.4		1		DK 146	1.7		34	4.7	0.01
DB 167	<0.01	<0.4		1.6	0.024	DK 148	0.6				
DB 168	<0.01	<0.4		1.1	0.028	DK 149	0.141				0.08
DB 169	<0.01	<0.4	8	0.6	0.017	DK 150	0.134	9.5	145		0.0
DB 171	<0.01	<0.4	3	0.9	0.017	DK 151	0.117		175	7.4	
DB 172	<0.01	<0.4	20	<0.5	0.022	DK 152	0.015	2.7	60	<0.5	0.05
DB 173	0.02	0.4	4	<0.5	0.022	DK 153	0.113	0.9	200	0.9	0.02
DB 174	0.01			<0.5	0.026	DK 154	0.04	3	80	<0.5	0.0
DB 175	0.015				0.027		0.024				
DB 176	<0.01	<0.4			0.021	DM 078	<0.01				
DB 177	0.02				0.017		<0.01	<0.4			
DB 178	<0.01	<0.4			0.016	DX 080	<0.01		13	0.6	
DK 063	<0.01	<0.4			0.022	DM 081	0.07				
DK 064	<0.01	<0.4			0.022	DM 083	<0.01		15	<0.5	
DK 065 DK 066	<0.01	<0.4		1 (0.5	0.014	DM 085 DM 086	<0.01			0.6	
DK 067	<0.01 <0.01	<0.4 0.4	5	1 70.4	0.018		<0.01 0.405				
DK 068	<0.01				0.016	DM 095	0.403	0.5			
OK 073	<0.01				0.018		<0.01				
ON OID	, ,0.01			, ,,,	V-010	1511 000	, ,0.01	. 0.7			· v.v.

Table A-4(2) Results of Chemical Analysis of Rock Samples(2)

Element	Au	Ag	As	Sb	llg	Element	Au	Ag	As	Sb	llg
Unit	(mqq)	(ppm)	(ppm)	(ppm)	(Ppm)	Unit	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	0.01(0.008)	0.4	1	0.5	0.005		0.01(0.008)	0.4	. 1	0.5	0.005
DM 097	<0.01	<0.4	11	<0.5	0.021	DM 164	0.05	1	75	1	0.014
DM 098	<0.01	<0.4	110	0.7	0.031	DM 165	<0.01	0.7	13	0.8	0.054
DM 099	<0.01	<0.4	15	0.6	0.023	DM 166	<0.01	<0.4	8	0.6	0.015
DM 101 DM 102	<0.01 0.065	$\frac{0.4}{0.8}$	4 10	<0.5 <0.5	0.013 0.028	DM 167	0.13 0.31	$\frac{3.4}{4}$	140	$-\frac{1.4}{0.00}$	-0.044
DM 103	<0.01	$\begin{array}{c} 0.8 \\ 0.9 \end{array}$	25	0.8	0.026	DM 168 DM 169	0.454	4 151	130 155	$\begin{array}{c} 0.9 \\ 1.6 \end{array}$	0.091
DM 104	<0.01	<0.4	2	<0.5	0.08	DM 170	0.1	5.3	160	1.3	0.022
DM 106	<0.01	<0.4	5	<0.5		DM 171	0.053	2.2	60	1.4	0.041
DM 107	<0.01	<0.4	5	<0.5	0.02	DM 172	0.039	0.5	85	1.1	0.024
DM 108	0.018	<0.4	1	<0.5		DM 173	0.027	1.8	33	1.3	0.08
DM 109	<0.01	<0.4	6		0.011	DM 174	0.033	2.6	85	2.2	0.051
DM 110	<0.01	<0.4	4	<0.5		DM 175	0.034	2.5	55	1.4	0.225
DM 111 DM 112	<0.01 0.112	0.4 2.2	15	0.6		DM 176	0.03	3.9	20	1.3	0.735
DM 113	<0.01	<0.4	110	<0.5	0.022 0.054	DM 179 DM 180	0.01 0.014	<0.4 0.7	13	<0.5	0.019
DM 114	0.077	2.2	31	0.6	0.034	DM 181	0.014	<0.4	28	<0.5 <0.5	0.009 0.013
DM 115	<0.01	0.6	4	0.7	0.026	DM 184	0.2	16.7	145	3.9	0.379
DM 116	<0.01	< 0.4	3	<0.5	0.006	DM 185	<0.01	0.5	9	<0.5	0.04
DM 117	<0.01	0.4	13	0.6	0.01	DM 186	<0.01	<0.4	3	<0.5	0.007
DM 118	<0.01	<0.4	6	<0.5	0.01	DM 187	<0.01	<0.4	2	<0.5	0.01
DM 119	0.025	2.2	70		0.019	DM 188	0.16	0.4	17	1.6	0.039
DM 120	<0.01 <0.01	<0.4				DM 190	0.63	2.4	29	1.4	0.127
DM 121 DM 122	<0.01	<0.4 <0.4	7 13		0.007 0.025	DM 192 DM 193	<0.01 <0.01	<0.4 <0.4	2 3	<0.5 <0.5	0.022 0.052
DM 123	<0.01	<0.4	17		0.023	DS 061	0.01	0.4		<0.5	
DM 124	<0.01	<0.4	10			DS 065	<0.01	<0.4	2	<0.5	0.021
DM 125	0.063	2.2	110	1.3	0.043	DS 067	<0.01	0.4	₹1	<0.5	
DM 126	0.085	2.9	50	0.8		DS 069	0.01	<0.4	10		0.052
DM 127	0.06	<0.4	80		0.021	DS 070	0.045	<0.4		<0.5	
DM 128	0.288			1.9	0.038	DS 071	0.015	<0.4	3	<0.5	0.058
DM 129 DM 130	0.028 0.557	0.5 0.4	25 390	<0.5 2		DS 074	0.02	<0.4		<0.5	0.014
DM 131	2.85		210		0.083 0.136	DS 076 DS 079	0.688 0.157	3.4 <0.4		1.9	0.033 0.032
DM 132	0.072		80		0.04	DS 080	0.282	1.1	285	1.5	0.037
DM 133	<0.01	<0.4	<1	0.6	0.019	DS 081	0.015			0.7	0.026
DM 134	0.137	<0.4				DS 082	0.04	0.4			0.025
DM 135	0.327	0.9				DS 083	<0.01	<0.4	4	<0.5	0.026
DM 136	0.11	0.8			0.052	DS 084	0.466	6.1	270	1.7	0.038
DM 137 DM 138	0.027 2.11	0.4	55 65		0.023	DS 085	<0.01	<0.4		<0.5	0.038
DM 139	0.112				0.039	DS 036 DS 088	0.05	<0.4 <0.4		0.6 <0.5	0.052
DM 140	4.05						0.024		10	<0.5	0.106
DM 141	0.5	0.7			0.047	DS 092	<0.01	<0.4	<1	<0.5	0.015
DM 142	3.2	4.1	285	7.6	0.382	DS 093	<0.01			<0.5	
DM 143	0.75	0.5	70	2.3	0.059	DS 094	0.015	0.4	3	<0.5	0.008
DM 144	<0.01	<0.4			0.041	DS 096	0.45			6.6	0.36
DM 145	0.05	1.4	5 5		0.026		0.018	1.4			
DM 146 DM 147	0.08	0.4 1.1	50 150		0.079		0.296	<0.4			
DM 148	0.86	1.3			0.075	NB 012	0.545 0.01				
DN 149	0.135	0.6			0.088		<0.01	<0.4			
DM 150	0.23	0.4		1.8	0.077	NB 019	<0.01	<0.4			
DM 151	0.01	<0.4	31	1	0.068	NB 021	<0.01				0.026
DM 152	<0.01			0.6	0.043	NB 023	< 0.01	<0.4	<1	<0.5	0.021
DM 153	<0.01		23	1			<0.01	<0.4		<0.5	0.088
DM 154	0.05				0.015		<0.01			<0.5	
DM 155 DM 156	0.03			9 9	0.014	NB 029 NB 030	<0.01			<0.5	
DM 157	<0.01				0.014		<0.01 <0.01	<0.4		<0.5	
DM 158	0.01	<0.4		1.2	0.017	NB 033	<0.01				
DM 159	0.015			0.9	0.013	NB 034	<0.01				
DM 160	0.01	0.4	100	0.8	0.017	NB 037	<0.01			<0.5	0.029
DM 161	0.02	0.6	75	1.2	0.018	NB 043	0.01	< 0.4	5	<0.5	0.016
DM 162	0.12	0.5			0.018		<0.01			<0.5	0.048
DM 163	0.18	0.9	180	1.1	0.014	NB 048	<0.01	<0.4	<1	<0.5	0.022

Table A-4(3) Results of Chemical Analysis of Rock Samples(3)

.

I

Element	, Au	Ag	As	Sb	Ilg	Element	Au	Ag	As	Sb	Ilg
Unit	(ppm) 0.01(0.008)	(ppm)	(ppm)	(ppm) 0.5	(ppm) 0.005	Unit	(ppm) 0.01(0.008)	(ppm) 0.4	(pp <u>m</u>)	(ppm)	(DDm)
NB 050	<0.01	0.4 <0.4	<1	<0.5	0.005	NK 058	<0.01	<0.4	14	0.5 <0.5	0.005 0.141
NB 053	<0.01	<0.4	3	<0.5	0.041	NK 059	<0.01	<0.4	50	0.8	0.141
NB 055	<0.01	< 0.4	5	<0.5	0.01	NM 002	<0.01	<0.4	<1	<0.5	0.014
NB 058	<0.01	<0.4	14	<0.5	0.023	NM 003	<0.01	<0.4	<1	<0.5	0.016
NB 061	0.02	<0.4	<1	<0.5	0.034	NM 005	<0.01	<0.4	<1	<0.5	0.018
N8 065	<0.01	<0.4	3	0.7	0.016	NM 006	<0.01	<0.4	<1	<0.5	0.019
N8 067	0.01	<0.4	<1	<0.5	0.027	NM 007	<0.01	<0.4	<1	<0.5	0.026
NB 070	<0.01	<0.4	<1	<0.5	0.025	NM 008	<0.01	<0.4	<.	<0.5	0.015
NB 073	<0.01	<0.4		<0.5	0.039	NM 009	<0.01	<0.4	<1	<0.5	0.021
NB 077 NB 080	0.01 <0.01	<0.4 <0.4	<1 <1	<0.5 <0.5	0.035 0.042	NM 010 NM 012	<0.01	<0.4	<1	<0.5	0.018
NB 081	<0.01 <0.01	<0.4	4	<0.5	0.019	NM 014	<0.01 <0.01	<0.4 <0.4	1	<0.5 <0.5	0.024 0.018
NB 087	<0.01	<0.4	<1	0.7	0.025	NM 017	<0.01	0.5	27	<0.5	0.023
NB 088	<0.01	<0.4	<1	<0.5	0.034	NM 018	<0.01	<0.4	3	<0.5	0.081
NB 089	<0.01	<0.4	i	<0.5	0.036	NM 024	<0.01	0.4	7	0.9	0.021
NB 090	<0.01	<0.4	<1	<0.5	0.021	NM 025	<0.01	<0.4	1	<0.5	0.037
NB 091	<0.01	<0.4	<1	<0.5	0.029	NM 026	<0.01	<0.4	<1	<0.5	0.018
NB 092	<0.01	<0.4	<1	<0.5	0.036	NM 027	<0.01	<0.4	<1	<0.5	0.022
NB 093	<0.01	0.4	<1	<0.5	0.024	NM 028	<0.01	<0.4	5	<0.5	0.03
NB 094	0.01	<0.4	3	<0.5	0.075	NM 029	<0.01	<0.4	<1	<0.5	0.022
NB 096 NB 097	<0.01 <0.01	0.7 <0.4	3	<0.5 <0.5	0.123	NM 030 NM 033	<0.01 <0.01	<0.4 <0.4	<1 3	<0.5 0.8	0.016 0.323
NB 099	0.013	5.3	् रा	⟨0.5	0.029	NM 034	<0.01	1.7	12	<0.5	0.023
NB 100	<0.01	<0.4	2	<0.5	0.02	NM 035	<0.01	<0.4	<1	<0.5	0.025
NB 101	0.01	<0.4	$ar{ar{3}}$	<0.5	0.039	NM 036	<0.01	8.9	2	<0.5	0.021
NB 102	<0.01	<0.4	<1	<0.5	0.032	NM 037	<0.01	0.7	16	<0.5	0.022
NB 103	0.012	<0.4	<1		0.025	NM 038	0.012		2	<0.5	0.021
NB 104	<0.01	<u> </u>	3		0.029	NM 040	<0.01	<0.4		<0.5	0.02
NB 105	<0.01	<0.4	<1		0.063	NM 041	<0.01	<0.4	<1	<0.5	0.021
NK 001 NK 002	0.1 <0.01	<0.4 <0.4	9 28	<0.5	$\frac{0.017}{0.019}$	NM 042 NM 043	<0.01 0.05	<0.4		<0.5	0.021
NK 003	<u>₹0.01</u>	<0.4	5	<0.5	0.019	NM 044	0.103	<0.4 <0.4	29 20	<0.5 0.8	0.025 0.061
NK 018	<0.01	<0.4	5		0.025	NH 045	0.01	<0.4	8	<0.5	0.024
NK 019	0.026	<0.4	6		0.021	NN 046	0.015	<0.4	60	1.4	0.218
NK 020	0.127	0.8	<1	<0.5		NM 047	0.026	<0.4	42	0.8	0.036
NK 021	0.02	<0.4	6	<0.5	0.02	NM 048	0.01	6.5	6	0.6	0.071
NK 022	0.192	0.6	18	<0.5	0.021	NM 049	0.018	0.7	6	0.6	0.028
NK 026	0.022	0.4	7	<0.5	0.048	NN 050	0.026		20	0.6	0.027
NK 027 NK 029	0.08 12.9	<0.4	7	<0.5 0.6	$\frac{0.047}{0.011}$	NM 051 NM 052	0.01	2.1	60	1.2	0.03
NK 030	1.89	10.4 0.6	<u>5</u> 8	<0.5		NM 053	0.01 <0.01	<0.4 <0.4	70 60	1.1	0.029 0.049
NK 031	0.096	<0.4		(0.5	0.029		0.012				
NK 032	0.064	<0.4	্য		0.021	NM 055	<0.01	<0.4	3		
NK 033	9.78	2.3	3		0.007	NM 056	<0.01	1.4			
NK 034	0.01	<0.4	23	0.7	0.02	NM 057	0.015	<0.4	5	0.6	0.024
NK 035	0.115	<0.4	2	<0.5	0.028	NM 058	0.05	<0.4	5	<0.5	0.034
NK 037	6.69	0.5	3	<0.5	0.031	NM 059	0.266			<0.5	0.024
NK 038	4.24	0.6	7	<0.5	0.051	NM 060	1.26	0.9		_ 1.8	
NK 039	1.84	0.7		(U.5	0.161	NM 061	0.316	<0.4		1.1	0.033
NK 040 NK 041	0.86 0.07	0.4 2.3	12 90	1.5	0.032 0.049	NM 062 NM 063	2.46 0.305	1.9 <0.4		<0.5	0.074
NK 042	0.01	1.8	11	1.8	0.032	NM 064	1.83			<0.5 <0.5	
NK 043	0.011	5.4	37	1.6	0.04	NM 065	0.016	<0.4	<	<0.5	
NK 044	0.04	14.9		14.3	0.045	NM 066	0.025	3.3	120	4	0.312
NK 045	0.025	10.4	120	2.4	0.145	NM 067	<0.01	5.4	140	6.7	
NK 046	0.049	1.6	90	2.9	0.109	NM 068	0.02	9.8	70	1.9	0.108
NK 047	0.086	5.4	50	1.6	0.054	NM 069	<0.01	2.9	190	2.9	0.184
NK 048	0.01	<0.4		<0.5		NM 070	0.152	5	70		
NK 049	0.06				0.079	NM 071	0.016	2.7		4.1	
NK 050	<0.01	<0.4		0.6	0.0 98 92	NM 072	0.01	1.4	7	1	
NK 051 NK 052	<0.01 <0.01	<0.4 <0.4		<0.5 <0.5		NM 073 NM 074	<0.01 <0.01	2.2	10 4	0.6 <0.5	
NK 053	<0.01	<0.4		<0.5		NM 075	<0.01	1.4	20	70.5	0.034
NK 054	<0.01	0.4		<0.5		NM 076	<0.01	1	60		0.388
NK 056	<0.01	< 0.4				NS 010	<0.01				0.181

Table A-4(4) Results of Chemical Analysis of Rock Samples(4)

Element	Au	Ag	λs	Şb	Hg	Element	Au	Ag	As	Sb	Hg
Unit	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	Unit	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
	0.01(0.008)	0.4	1	0.5	0.005		0.01(0.008)	0.4	1	0.5	0.005
NS 012	<0.01	1.1	20	<0.5	0.05	WB 220	2.67	0.5	22	0.9	0.011
NS 013	0.01		80	1.2	0.027	WB 221	0.598	0.5	50	1.8	0.023
NS 018 NS 019	<0.01 0.01	<0.4 <0.4	<u> </u>	<0.5 <0.5	0.042	W8 222 W8 223	1.9 0.921	0.5 1.5	220 220	1.4	0.011
NS 020	<0.01	<0.4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<0.5	0.03	W8 224	2.51	3.5	220 36	1.6	0.057 0.019
NS 021	<0.01	<0.4	<u>\`i</u>	0.8	0.022	WB 225	0.517	<0.4	110	1.8	0.046
NS 022	<0.01	<0.4	<1	0.8	0.024	WB 226	1.1	0.5	50	0.9	0.035
NS 023	<0.01	<0.4	<1	<0.5	0.043	WB 228	0.711	1.5	50	0.9	0.092
NS 024	<0.01	<0.4	<1	<0.5	0.039	WB 230	4.3	2	60	1.3	0.014
NS 025	<0.01	<0.4	<1	<0.5		WB 231	0.314	1.5	100	1.5	0.013
NS 026	0.27	0.4	2	<0.5	0.023	WB 234	0.915	<0.4	315	2.4	0.017
NS 027 NS 028	<0.01 0.83	<0.4	1	<0.5 <0.5	0.031	WB 235 WD 004	4.22 3.65	<u>-</u>	60	1.5	0.008
NS 029	<0.01	0.5 <0.4	21	<0.5	0.046 0.048	WD 004 WD 005	3.03 4.03	2.5	33 15	0.8	<0.005 <0.005
NS 030	<0.01	<0.4		<0.5	0.021	WD 008	0.347	<0.4	190	2.3	0.02
NS 031	<0.01	<0.4	रा	<0.5	0.024	WD 009	1.55	<0.4	210	1.6	0.066
NS 032	<0.01	<0.4	⟨1	<0.5	0.043	WD 011	<0.008	<0.4	2	<0.5	<0.005
NS 033	<0.01	<0.4	<1	<0.5	0.024	WK 204	<0.008		25	0.9	
NS 034	<0.01	<0.4	<1	<0.5	0.018	WX 210	3,28		14	0.6	
NS 035	<0.01	<0.4	<1	<0.5	0.025	WK 211	0.572		1	1.1	0.011
NS 036	0.025	<0.4	<1	<0.5	0.02	WK 212	2.41	0.5	<u>4</u>	<0.5	<0.005
NS 037 NS 038	<0.01	<0.4	<1	<0.5 <0.5	$\frac{0.02}{0.018}$	WK 213 WK 214	0.917	0.5	23	0.9	0.034
NS 038 NS 039	<0.01 0.015	<0.4 <0.4	<1 <1	<0.5	0.029	WK 215	5.45 24.2		10	0.6 <0.5	0.005 0.011
NS 040	0.163		2	<0.5	0.021	NK 216	10.6		50	3.1	0.025
NS 041	0.09		<u> </u>	<0.5	0.032	NK 217	0.147		1	<0.5	0.018
NS 042	<0.01	<0.4	<1	<0.5	0.023	WK 218	0.173			0.9	
NS 043	<0.01	<0.4	<1	<0.5	0.024	WK 219	0.032	<0.4	3	<0.5	
NS 044	<0.01	<0.4		<0.5	0.03	WK 224	0.017	<0.4	6	<0.5	0.005
NS 046	<0.01	<0.4	<1	<0.5		VK 225	<0.008			<0.5	
NS 049 NS 050	<0.01 <0.01	<0.4 <0.4	13		0.128	WK 227	0.591	0.5		0.8	0.257
NS 051	<0.01	<0.4	- 13 <1	4	0.131	WM 196 WM 200	<0.008 <0.008		2 2	<0.5 <0.5	0.024
NS 052	<0.01	<0.4	रा	₹0.5	0.026	WM 203	<0.008		2	<0.5	<0.005
NS 053	<0.01	<0.4	₹ί		0.024	WM 204	<0.008			<0.5	0.012
NS 054	<0.01	<0.4	<1	<0.5	0.02	WM 205	0.092			i	< 0.005
NS 055	<0.01	<0.4	<1			WM 207	0.01		80	0.8	<0.005
NS 056	0.03	<0.4	<1		0.018	M 208	<0.008			0.6	0.013
NS 057	0.16	<0.4				WM 210	0.01			1.2	
NS 058	0.13	<0.4	2			WM 211	0.015			1	<0.005
WB 181 WB 185	<0.008 <0.008	<0.4 <0.4	2	<0.5	0.01 <0.005	WM 217 WM 218	1.78 2.39			0.9	0.014
WB 202	<0.008				0.005		42.5				
WB 204	0.02	<0.4	7		0.024	WM 220	1.66			1.9	
W8 205	<0.008	<0.4		<0.5	0.012	WM 221	0.207	<0.4			
WB 206	0.063	<0.4		<0.5	0.033	WN 224	0.127		16	0.7	
WB 207	1.68	<0.4		1.6	0.023	WM 225	0.079	<0.4	75	1.1	0.035
WB 208	1.71	1	43			WM 226	0.064	<0.4		0.8	
WB 209	0.641	<0.4	135		0.097		0.031			1	0.026
WB 210	3.45	1.5				WM 228	0.107				
WB 211 WB 212	0.921 0.274	3 <0.4			0.014		<0.008 <0.008				
WB 213	1.57	1	45				0.017			<0.5	<0.005
WB 214	0.637	1.5	50		0.017		0.132			0.6	
WB 215	0.212	<0.4		1.7	0.008	WS 108	<0.008				<0.005
WB 216	<0.008	<0.4	<1	<0.5	<0.005	WS 115	<0.008			<0.5	
WB 217	1.78	0.5		1	0.007	WS 116	0.04	<0.4	5	<0.5	0.005
WB 218	1.02			1.6	0.028	WS 117	0.097		34	0.8	0.025
WB 219	0.297	<0.4	145	1.5	0.018	J					

Table A-4(5) Results of Chemical Analysis of Drill Core Samples(5)

MJFV-1

Sample No.	Depth	ı(m)		Width(m)	Au(g/t)	Ag(g/t)	As(ppm)	Sb(ppm)	Hg(ppm)
ND101	120,00	-	120.10	0,10	0.008	0.6	4.0	<0.5	0.006
ND102	120.10	-	120.20	0.10	0.100	0.7	13.0	< 0.5	0.010
ND103	120.20	-	120.40	0.20	0.318	2.1	3.0	<0.5	0.005
ND104	120.40	-	120.45	0.05	5.76	90	40.0	0.9	0.047
ND105	120.45	-	120.80	0.35	0.404	3.5	38.0	< 0.5	0.047
ND120	255.50	-	255.58	0.08	0.023	0.6	2.0	< 0.5	0.009
ND124	212.20	-	212.50	0.30	0.011	< 0.4	2.0	< 0.5	< 0.005
ND131	75.80	-	76.85	1.05	<0.008	< 0.4	1.0	< 0.5	<0.005
ND133	60.80	-	61.00	0.20	0.029	3	46.0	3.8	1.750

MJFV-2

					·				
Sample No.	Depth((m)		Width(m)	Λυ(g/t)	Ag(g/t)	As(ppm)	Sb(ppm)	Hg(ppm)
ND202	50.00	-	51.00	1.00	0.059	1.6	12.0	< 0.5	0.009
ND212	250.50	-	250.57	0.07	< 0.008	< 0.4	3.0	< 0.5	0.012
ND214	118.20	-	118.40	0.20	0.094	4.9	26.0	< 0.5	0.009
ND215	118.40	-	118.45	0.05	0.890	1.4	8.0	< 0.5	< 0.005
ND216	118.45	-	118.55	0.10	0.895	1.6	2.0	< 0.5	< 0.005
ND217	118.55	-	118.70	0.15	0.254	1.1	3.0	< 0.5	< 0.005
ND218	118.70	-	118.75	0.05	0.845	3	3.0	< 0.5	< 0.005
ND220	195.10	-	195.20	0.10	0.010	< 0.4	2.0	< 0.5	< 0.005
ND221	195.50	-	195.60	0.10	0.032	< 0.4	3.0	< 0.5	< 0.005
ND222	186.00	•	186.18	0.18	0.018	< 0.4	3.0	< 0.5	< 0.005
ND227	53.30	-	54.70	1.40	0.031	1	37.0	0.6	0.338
ND231	245.35	-	246.35	1.00	0.010	< 0.4	1.0	< 0.5	< 0.005

MJFV-3

Sample No.	Depth	(nı)		Width(m)	Au(g/t)	Ag(g/t)	As(ppm)	Sb(ppm)	Hg(ppm)
ND303	67.40	-	67.55	0.15	0.010	<0.4	<1	<0.5	< 0.005
ND306	104.40	-	104.90	0.50	0.638	1.6	85.0	11.9	0.023
ND309	152.10	-	152.20	0.10	5.06	<0.4	6.0	< 0.5	0.005
ND310	152.20	-	152.25	0.05	2.04	1	7.0	< 0.5	0.005
ND311	250.25	-	250.65	0.40	0.021	0.4	2.0	< 0.5	< 0.005
ND312	250.65	-	250.78	0.13	0.012	1	1.0	< 0.5	< 0.005
ND313	250.78	-	250.95	0.17	0.015	< 0.4	< }	< 0.5	< 0.005
ND331	174.60	-	175.60	1.00	0.014	< 0.4	<1	< 0.5	< 0.005
ND333	176.60	•	177.60	1.00	0.010	< 0.4	< }	< 0.5	< 0.005
ND337	152.00	-	152.10	0.10	0.835	<0.4	<1	< 0.5	< 0.005

Table A-4(6) Results of Chemical Analysis of Drill Core Samples(1)

MJFV-4

Sample No.	Depth(m))	Width(m)	Au(g/t)	Ag(g/t)	As(ppm)	Sb(ppm)	Hg(ppm)
DD413	138.15 -	138.25	0.10	<0.008	0.4	20	< 0.5	< 0.005
DD414	138.25 -	138.35	0.10	0.231	2.6	60	< 0.5	0.005
DD415	138.35 -	138.50	0.15	0.011	0.5	<20	<0.5	0.007
DD416	138.50 -	138.65	0.15	0.613	3	215	< 0.5	0.016
DD417	138.65 -	139.00	0.35	0.155	3.4	70	< 0.5	0.006
DD418	180.95 -	181.45	0.50	0.056	4.2	145	< 0.5	0.021
DD419	181,45 -	181.80	0.35	0.033	1.4	30	< 0.5	0.010
DD420	181.80 -	182.20	0.40	0.052	2.5	200	< 0.5	0.013
DD421	182.20 -	182.60	0.40	0.191	3.8	200	< 0.5	0.012
DD422	183.80 -	184.40	0.60	0.041	1.1	50	<0.5	0.006
DD423	190.40 -	190.60	0.20	0.393	2.3	100	< 0.5	0.012
DD424	190.60 -	190.90	0.30	0.236	1.4	90	< 0.5	0.013
DD425	190.90 -	191.20	0.30	0.790	5.8	220	< 0.5	0.016
DD426	191.20 -	191.30	0.10	0.195	2.9	225	< 0.5	0.005
DD427	295.00 -	295.12	0.12	0.009	0.5	20	<0.5	< 0.005

MJFV-5

DD502 121 DD503 122 DD504 122 DD505 122 DD506 152	1.45 1.80 2.25 2.75 3.35 2.40	- - -	121.80 122.25 122.75 123.35 123.65	0.35 0.45 0.50 0.60	0.291 2.71 13.5	5.4 165 140	350 350 300	<0.5 <0.5 1.5	0.031 0.047 0.049
DD503 122 DD504 122 DD505 122 DD506 152	2.25 2.75 3.35	-	122.75 123.35	0.50	13.5	-			
DD504 122 DD505 123 DD506 152	2.75 3.35	-	123.35	-		140	300	1.5	0 0.10
DD505 123 DD506 153	3.35			0.60	27.6				0.077
DD506 152		-	123.65		27.6	900	320	1.2	0.017
	2.40		143.03	0.30	0.545	8.3	300	1.4	0.045
DD403 144		-	152.70	0.30	0.244	14.7	220	0.6	0.015
DD507 152	2.70	-	153.00	0.30	3.55	16.5	220	0.8	0.023
DD508 153	3.00	-	153.40	0.40	1.27	4.6	90	< 0.5	0.034
DD509 163	3.60	-	164.00	0.40	11.7	4.3	210	<0.5	0.005
DD510 164	4.10	-	164.40	0.30	1.51	1.5	30	< 0.5	0.005
DD511 17:	2.40	-	172.70	0.30	0.706	1.3	50	< 0.5	0.005
DD512 17.	2.70	-	173.00	0.30	0.192	1.2	40	< 0.5	0.005
DD513 183	2.00	-	182.30	0.30	0.498	1.5	50	< 0.5	< 0.005
DD514 18:	5.00	-	185.20	0.20	5.02	4	110	< 0.5	0.009
DD515 186	6.10	-	186.30	0.20	1.05	1.7	140	< 0.5	0.056
DD517 13:	2.20		132.40	0.20	1.27	7.6	240	< 0.5	0.097
DD518 13:	5.20	-	135.40	0.20	0.362	5.1	300	< 0.5	0.012
DD519 136	6.05	-	136.25	0.20	7.71	9.9	200	< 0.5	0.050

Table A-4(7) Results of Chemical Analysis of Drill Core Samples(2)

MJFV-6

Sample No.	Depth	(m)		Width(m)	Au(g/t)	Ag(g/t)	As(ppm)	Sb(ppm)	Hg(ppm)
DD615	55.35	-	55.55	0.20	<0.008	<0.4	2.0	< 0.5	0.011
DD617	61.00	•	61.30	0.30	<0.008	< 0.4	1.5	< 0.5	0.012
DD618	61.30	-	61.40	0.10	<0.008	< 0.4	1.0	< 0.5	0.022
DD619	61.40	-	61.70	0.30	<0.008	< 0.4	1.0	< 0.5	0.009
DD620	68.90	-	69.90	1.00	<0.008	< 0.4	1.5	<0.5	0.009
DD621	71.55	-	72.55	1.00	<0.008	< 0.4	6.5	< 0.5	0.027
DD622	127.10	-	128.50	1.40	0.016	<0.4	25.5	< 0.5	0.008
DD623	96.10	-	96.30	0.20	<0.008	< 0.4	48.5	0.5	0.047
DD624	112.00	-	113.00	1.00	< 0.008	<0.4	29.0	<0.5	0.009
DD625	114.00	-	114.20	0.20	<0.008	<0.4	24.0	< 0.5	0.030
DD626	114.70	-	115.60	0.90	<0.003	< 0.4	35.0	< 0.5	0.020
DD627	120.10	-	120.30	0.20	0.208	< 0.4	42.5	< 0.5	0.007
DD628	122.10	-	122.30	0.20	0.198	<0.4	100	0.6	0.010
DD629	124.40	•	125.00	0.60	0.150	<0.4	44.5	< 0.5	0.014
DD638	272.55	•	273.10	0.55	0.039	0.8	36.5	<0.5	0.012
DD640	297.00	-	297.25	0.25	0.069	0.4	120	< 0.5	0.011
DD641	75.05	-	75.90	0.85	0.036	< 0.4	28.0	< 0.5	0.020
DD642	75.00	-	75.05	0.05	0.048	<0.4	50.0	< 0.5	0.013
DD643	74.40		74.55	0.15	<0.008	< 0.4	3.0	<0.5	0.010
DD644	77.70		78.55	0.85	< 0.008	< 0.4	12.5	1.3	0.016
DD645	79.30	-	79.70	0.40	0.010	0.6	32.5	<0.5	0.013
DD646	256.90	-	259.20	2.30	< 0.008	0.5	50.0	<0.5	0.008

MJFV-7

Sample No.	Depth(s	m	Width(m)	Au(g/t)	Ag(g/t)	As(ppm)	Sb(ppm)	Hg(ppm)
DD721		- 226.90		0.160	4	85	1.6	0.084
DD722		227.50		0.041	2	54	0.6	0.038
DD723	227.50	- 227.60		2.32	6	226	2.2	0.045
DD724	227.60	- 227.90	0.30	0.591	3	108	0.6	0.150
DD725	227.90	- 228.00	0.10	0.962	6	112	0.6	0.016
DD726	249.90	- 251.05	1.15	0.162	2	56	< 0.5	0.010
DD727	251.05	- 251.20	0.15	3.13	2	102	0.9	0.092
DD745	251.20	- 251.50	0.30	0.610	3	148	0.7	0.016
DD728	251.50	- 251.60	0.10	0.842	2	186	1.4	0.093
DD729	251.60	- 252.20	0.60	0.122	<2	82	< 0.5	0.013
DD730	252.20	- 252.30	0.10	0.532	2	126	1.1	< 0.005
DD731	252.30	- 253.20	0.90	0.496	2	105	<0.5	0.012
DD732	253.20	- 253.70	0.50	0.612	3	152	0.7	0.013
DD733	259.10	- 259.65	0.55	0.288	2	50	< 0.5	< 0.005
DD734	259.65	- 259.75	0.10	0.401	2	68	< 0.5	< 0.005
OD735	259.75	- 260.20	0.45	0.221	2	50	< 0.5	< 0.005
DD736	303.90	- 304.20	0.30	< 0.008	<2	23	< 0.5	< 0.005
DD737	338.40	- 338.60	0.20	< 0.008	2	- 11	< 0.5	< 0.005

Table A-4(8) Results of Chemical Analysis of Drill Core Samples(3)

A	1	1	R	17	_ Q
- 13		. 1			-0

	TATOR A O							
	Sample No.	Depth(m)	Width(m)	Au(g/t)	Ag(g/1)	As(ppm)	Sb(ppm)	Hg(ppm)
Ì	DD822	116.80 - 11	7.25 0.45	0.228	4	86	1.0	0.093
ı	DD837	125.10 - 12	5,40 0.30	0.478	2	60	1.0	0.008
ļ	DD823		5.60 0.20	3.13	3	80	1.1	0.013
ı	DD833		6.60 1.00	0.416	2	50	<0.5	0.008
١	DD824		7.70 1.10	0.406	2	146	< 0.5	<0,005
ł	DD834		9.25 1.10	1.88	2	69	< 0.5	<0.005
ļ	DD825	,	11.70 0.25	0.471	6	350	1.6	< 0.005
	DD826		13.00 0.40	0.473	6	265	1.6	< 0.005
	DD827		11.24 0.04	<0.008	<2		< 0.5	< 0.005
ı	DD828		18.60 0.50	0.551	2		0.6	0.028
1	DD829		22.50 0.40	0.918	2			0.009
	*			0.654	2			
ļ	DD830				2			
	D1283 I	1-0100	23.80 0.30	0.203	-			
	DD832		24.70 0.40	0.319	4		1.2	
	DD835	279.90 - 23	80.70 0.80	< 0.008	<2	13	<0.5	< 0.005

MJFV-9

MJF Y-Y								
Sample No.	Depth(m)		Width(m)	Au(g/t)	Ag(g/t)	As(ppm)	Sb(ppm)	Hg(ppm)
DD901	87.20	87.30	0.10	1.01	2	60	<0.5	0.04
DD902	88.10	88.45	0.35	0.562	3	102	0.7	0.015
DD903	88.45	88.50	0.05	0.516	4	110	0.7	0.010
DD904	88.50	88.70	0.20	0.262	2	106	0.6	0.013
DD905	90.70	91.35	0.65	0.436	3	128	0.8	0.027
D12906	91.35	91.55	0.20	0.291	4	130	1.0	0.012
DD907	91.55	91.70	0.15	0.020	2	50	< 0.5	0.009
DD908	91.70	91.95	0.25	0.051	2	100	<0.5	0.014
DD909	91.95	93.00	1.05	0.101	2	63	<0.5	0.016
DD910	93.00	93.05	0.05	0.372	2	63	<0.5	0.016
DD911	93.05	93.70	0.65	0.211	2	92	0.6	0.021
DD912	93.70	93.75	0.05	0.792	3	112	0.9	0.032
DD913	93.75	94.05	0.30	2.33	3	34	0.9	< 0.005
DD914	94.05	94.10	0.05	0.171	2	23	<0.5	< 0.005
DD915	94.10	94.75	0.65	0.008	<2	15	< 0.5	< 0.005
DD916	95.15	95.25	0.10	0.401	<2	50	< 0.5	0.006
DD917	243.65	243,70	0.05	< 0.008	<2	1	<0.5	< 0.005
DD918	245.35	245.50	0.15	< 0.008	2	5	<0.5	< 0.005
DD919	246.70	246.85			<2	3	<0.5	< 0.005
DD920	248.60	249.00			<2	19	<0.5	0.009
DD921	284.10	284.50		< 0.008	2	50	<0.5	< 0.005
DD922	289.90	290.10			6	70	<0.5	0.006

Table A-5(1) Homogenization temperatures of Fluid Inclusions(1)

Sample No.	ND103	ND120	ND310	DD414	DD421	00505	00507	DD627	00638	DD-118	DD509	DD655
Hole So.	NJEY-1	XJFV-1	MJFY-3	MJFV-4	MJFY-4	HJFV-5	AUFY-5	MJFV-6	SJFV-6	XJFY-4	NJFV-5	MJEV-6
Depth(m)	120.20	255.50	152.20	138.25	182.20	123.35	152.70	120.10	272.55	180.95	163,60	127.10
	221	286	235	181	216	250	233	130	209	237	160	231
	227	275	257	174	223	245	248	130	241	176	206	229
	218	283	230	161	225	245	247	130	217	169	241	195
	228	296	239	173	233	178	260	129	214	į .	207	242
	225	1	237	183	184	183	270	131	251	Ì	188	203
			233	177	184	212	253		274		216	239
	222		234	136	219		227		269		189	217
	224		233	167	228		261		241	1	158	259
	221		234	183	223		261		247	ŀ	203	255
	213		209	181	221		217	İ	240		222	208
	212		202	183	233		213		252		208	217
	226		245	184	189	'	192	İ	252		173	218
Temperature(℃)	555		239	204	190		265	ļ	250		170	263
	228		274	161	243		273	1	254		190	559
	206		238	150	217		177		259	ĺ	187	222
	550		239	173	217		198	l	269		ļ	228
	214		2 52	285	217		249	ŀ	558	ļ		233
ļ			252	174	214	ł	257		269	i		234
			239	187	191		230		253	ļ		231
			237	186	167		251		251			250
			250	176	1				294	1		
			243	204	[!			ł			
Ì	1		228	183	l	l		-				
ŀ	:		271	190								
number	16	4	24	24	20	6	20	5	21	3	15	20
average	220		240	182		219			1	T		I
Dax	228		274	286								
eio	206	275	202	136	7		177	129			158	1
standard deviation	6	9	16	27	20	33	27		21			
sode	221		239	183	217			130	269			231

Table A-5(2) Homogenization temperatures of Fluid Inclusions(2)

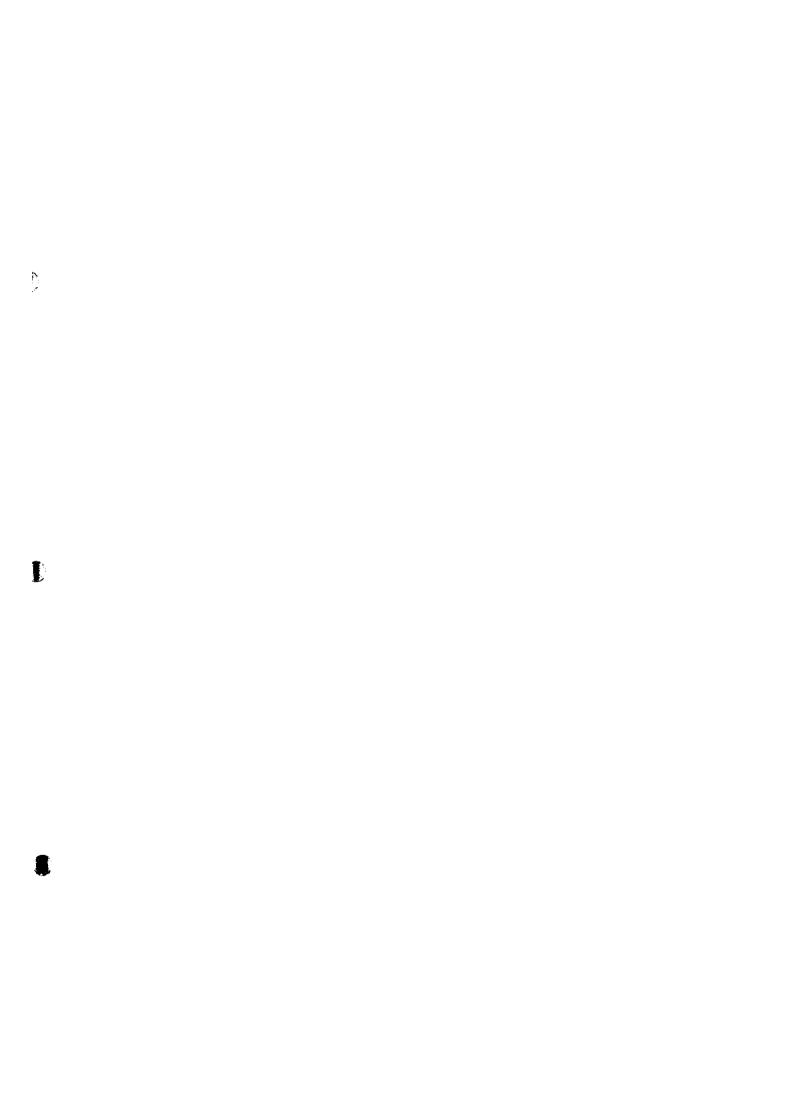

Sample No.	DD740	DD742	DD818	DD914	DD916	DD922
Hole No.	MJFV-7	MJFV-7	MJFV-8	MJFV-8	MJFV-9	MJFV-9
Depth(m)	227.10	251.20	141.45	180.95	94.05	288.90
	460		345	178	365	317
	407		256	125	406	347
			196	126		268
			192	118		294
			227	125		314
Temperature(℃)			265	128		351
			223	127		284
			185	131		342
			373	131		288
			232	131		
			317	127		
			336			
			317			
			351			
			293			
			227			
number	2	0	16	11	2	9
average	434		271	132	386	312
max	460		373	178	406	351
min	407		185	118	365	268
standard deviation	37		62	16	29	30
mode			227			, , , , , , , , , , , , , , , , , , ,

Table A-6 Resistivity and Chargeability of Drill Core Samples

1

N -	Danib(m)	Rock name	ρ	Ch	Alteration
No	Depth(m)		55	10.3	smectite
ND106	26.00	Basalt			
N0107	50.60	Lapilli tuff	55	21.7	smectite
ND108	71.70	Basalt	65	6.4	smectite
ND109	99,40	Tuff breccia	43	13.5	mixed layered
ND110	125.00	Basalt	55	6.5	chlorite
ND123	151.80	Basalt	113	0.9	chlorite
ND112	170.20	8asalt	519	1.6	<u>chlorite</u>
ND113	200.50	Tuff breccia	238	2.7	chlorite
ND115	249.00	Tuff breccia	138	3.1	mixed layered
ND116	275.00	Tuff breccia	145	5.9	mixed layered
ND117	300.00	Tuff breccia	177	2.9	mixed layered
ND203	35,70	Lapilli tuff	20	24.2	smectite
ND234	35.70	Coarse tuff	22	3.8	(smectite)
ND205	97.70	tuff breccia	165	4.5	smectite
ND207	120,30	Basalt	168	1.9	smectite
ND229	126.90	Basalt	157	6.3	(smecite)
ND208	147.90	Basalt	104	1.8	smectite
ND209	176.00	Tuff breccia	213	3.2	chlorite
N0240	189.70	Andesite	409	4.6	(chlorite)
ND210	197.45	Andesite	414	3.1	chlorite
ND230	200.00	Tuff breccia	77	0.7	(chlorite)
ND211	225.40	Tuff breccia	82	2.2	chlorite
ND233	238.40	Andesite	107	4.5	(quartz breccia)
ND238	300.00	Tuff breccia	176	3.5	(chlorite)
ND301	28.50	Andesite	243	11.8	(smectite)
ND302	50.00	Andesite	395	1.0	(smectite)
ND304	79.35	Andesite	33	20.3	pyrite diss.
ND305	101.20	Andesite	161	3.4	smectite
ND308	126.40	Andesite	60	11.7	smectite
ND315	175.00	Andesite	954	8.2	silicified
ND316	196.00	Tuff breccia	133	2.5	chlorite
ND317	224,90	Tuff breccia	122	1.1	chlorite
ND318	247.75	Andesite	211	0.8	chlorite
ND319	274.70	Tuff breccia	537	7.6	chlorite
ND320	300.00	Andesite	150	6.3	mixed layered
L NOSZO	300.00	Immesite	100	0.3	mixed injered

