

TDIP Pseudo-section of Chargeability [Line B-F] Fig. 2-2-22

- 165 ~166 -

• •

.

.

. .

SCALE 1 : 10,000

Fig. 2-2-23 (1) TDIP Plane Map of Chargeability [n=1]

I,

2.3

Contour Line Value & Chargeability (sV-S/V)

Chargeability (aV-S/Y)

Fig. 2-2-23 (2) TDIP Plane Map of Chargeability [n=2]

L

5 ≦ M

M ≦ 0

LEGEND

Ĵ,

B

Fig. 2-2-23 (3) TDIP Plane Map of Chargeability [n=3]

橡

1

Fig. 2-2-23 (4) TDIP Plane Map of Chargeability [n=4]

LEGEND

SCALE 1 : 10,000

Fig. 2-2-23 (5) TDIP Plane Map of Chargeability [n=5]

િ

£

.

.

.

.

.

.

. .

SINULATION WODEL LINE B

	G 1	2	: 3	4	5 I	δ 1	1	8	9	10) 11 	1	2 13	3 14	15
0 -	551	111	111	111	122	222	222	111	111	111	122	222	222	222	222
	555	555	551	111	122	222	222	111	111	111	111	114	444	444	441
100	555	555	551	111	122	222	111	111	111	111	111	114	444	444	441
+100	555	555	551	111	111	111	111	111	111	111	111	114	444	444	441
	111	111	111	111	111	111	111	111	111	111	111	114	444	444	441
-200	111	111	111	111	166	666	611	111	113	331	111	114	444	444	441
200	111	111	111	111	166	666	611	111	113	331	111	113	333	344	441
	111	111	111	111	666	666	111	111	1 1 3	331	111	113	333	334	441
-300	111	111	111	116	666	666	111	111	113	331	111	113	336	666	661
000	111	111	111	1]66	666	661	111	111	1 1 3	331	111	113	336	666	661
	111	111	111	666	666	661	111	111	113	331	111	1 1[3	336	666	661
	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111
	111	111	111	111	111	111	111	111	111	111	111	111	111	111	111

CODE	RESISTIVITY (ohm-m)	CHARGEABILITY (BY·S/Y)
1	15	3.0
2	60	3.0
3	10	8.0
4	7	2.0
5	20	1.5
6	10	15.0

CHARGEABILITY

Fig. 2-2-24 (1) TDIP 2-d. Model Simulation Analysis [Line B]

 $-173 \sim 174 -$

(oha a]

SIMULATION NODEL LINE C

	0 1	2	2 3	4		56		78	9	1 1·	0 11 E I	1	2 1) 1	4	15 J
0 -	111	111	112	222	222	234	444	432	222	222	111	111	111	111	11	i
	111	111	112	222	222	333	444	333	222	222	111	111	111	111	11	1
.100	111	111	112	222	223	333	333	333	222	222	221	111	111	111	11	L
-100 -1	111	111	112	222	223	322	222	<u>33</u> 2	222	222	222	211	111	111	11	ł.
	111	222	222	222	222	222	222	222	222	222	222	211	111	111	11	ł
-200 -	112	222	222	222	222	222	222	222	222	222	222	<u> 211</u>	111	111	11	1
-200	222	222	222	222	222	222	222	222	222	222	222	222	221	111	11	1
	222	222	222	222	222	222	222	222	222	222	222	222	221	111	11	1
- 200	222	222	222	222	222	222	222	222	222	222	222	222	221	111	11	1
200	222	222	222	222	222	222	222	222	222	222	222	222	221	111	11	1
	222	222	222	222	211	111	111	111	111	111	111	111	111	111	11	1
	222	222	222	222	211	111	111	111	111	111	111	111	111	111	11	1
	222	222	222	222	_2 11	111	111	111	111	111	111	111	111	111	11	1
	222	222	222	111	111	111	111	111	111	111	111	111	111	111	11	1
	222	222	222	111	111	111	111	111	111	111	111	111	111	111	11	1
	222	222	222	111	111	111	111	111	111	111	111	111	111	111	11	1

RESISTIVITY (ohm-n)	CHARGEABILITY (@V·S/V)
10	1.5
20	4.0
30	5.0
150	10.0
	RESISTIVITY (ohm-n) 10 20 30 150

0 a

-100

-200

CHARGEABILITY

Fig. 2-2-24 (2) TDIP 2-d. Model Simulation Analysis [Line C]

- 175 ~ 176 -

[obs s]

SINULATION NODEL LINE E

	0 1	2	3		1 5	6	7	8	9	10)]]	12	2 1	3 10	15
0 -	666	666	444	333	333	333	444	447	773	333	333	333	333	33 3	333
	666	666	444	333	333	333	445	557	773	333	333	333	333	333	333
	333	333	333	333	333	333	445	557	773	333	333	333	333	333	333
-100	333	333	444	333	333	111	115	557	773	333_	333	333	333	333	333
	333	333	444	333	333	111	114	447	773	333	222	222	222	333	333
	333	333	444	333	333	111	114	447	773	333	222	222	222	333	333
-200	333	444	444	444	333	331	111	333	333	333	333	333	333	333	333
	333	444	444	444	333	331	111	333	333	333	333	333	333	333	333
202	333	444	444	444	333	331	111	333	333	333	333	333	333	333	333
-300	333	333	333	333	111	111	111	111	333	333	333	333	333	333	333
	333	333	333	333	111	111	111	111	333	333	333	333	333	333	333
	333	333	333	333	111	111	111	111	333	333	333	333	333	333	333
	333	333	333	333	111	111	111	111	333	333	333	333	333	333	333
	333	333	333	333	111	111	111	111	333	333	333	333	333	333	333
	333	333	333	333	111	111	111	111	333	333	333	333	333	333	333
	333	333	333	333	111	111	111	111	333	333	333	333	333	333	333

CODE	RESISTIVITY (ohm-m)	CHARGEABILITY (mV·S/V)
1	10	0.5
2	10	5.0
3	15	2.0
4	50	7.0
5	100	8.0
6	300	6.0
7	50	2.0

Fig. 2-2-24 (3) TDIP 2-d. Model Simulation Analysis (Line E)

Ś

Fig. 2-2-26 Location Map of Rock Samples

Rock	Resisti 10 190	vity [ohm-m] 1.000
Andesite	* .	
Basalt	*	<u>x.</u>
Silicified rock		× 2, 884
Volcaniclastic rock	••	x ••, × 211

I.

Rock	Chargeability [mY·S/V 0 10 20]
Andesi te	····· * ··× ···	 × 5.1
Basalt	<u>**</u>	× 2.4
Silicified rock	•	× 8.0
Volcaniclastic rock	۰۶. X++	, × 11. ?
<u></u>	* omitted value fo	or average calculation

x average value

Fig. 2-2-27 Distribution for Resistivity and Chargeability of Rock Samples

Fig. 2-2-28 Geophysical Interpretation Map

 $50\mathrm{m}\sim200\mathrm{m}$ below the Surface

on the Surface

Fig. 2-2-29 Location Map of Drill Holes in the Nakoroutari Area

Ŷ

·

. · · ·

.

Log	Lithology	Alteration and Mineralization		Chemical Analysis Results								
	Soil											
	Basalt lava	22.60-23.40 Weak argillization Weak argillization	gillization	Description Cat-Qts veinlet Qts veins One none	Bepth (0) 60.80 75.80 120.00	0.20 0.10	Au (g/t) 0.029 <0.008 0.008	Ag (g/t) 3 <0.4 0.6	As (ppn) 45.0 1.0 4.0	5b (pp=) 3.8 <0.5 <0.5	Hg (ppm) 1.750 <0.005 0.006	
	Lapilli tuff	(Sme 59.00-59.25 Brecciated, argillized zone 	cnie)	Ore zone Ore zone Ore zone Ore zone Qte-breccia Qt <u>t vein</u>	120.10 120.20 120.40 120.45 212.20 255.50	0.10 0.20 0.05 0.35 0.30 0.08	0.100 0.318 5.76 0.404 0.011 0.023	0.7 2.1 90 3.5 <0.4 0.6	13.0 3.0 40.0 38.0 2.0 2.0	<0.5 <0.5 0.9 <0.5 <0.5 <0.5	0.010 0.005 0.047 0.047 <0.005 0.009	
	Basalt lava	63.80-63.90 Brecciated, argillized zone		Qtz:Quartz								
	Coarse tuff,tuff breccia lapilli tuff Basalt lava	75.80-77.80 Brecciated, argillized zone 82.80-83.60 Brecciated, argillized zone 92.80-93.40 Brecciated, argillized zone Weak argillization, pyrite dis	ssemination									
> 4 < A > 4 < A	Tuff breccia, lapilli tuff	118.50-120.80 Strong argillization,										
	Basalt- basaltic andesite lava	(120.00-120.80 Quartz breccia) 155.80-158.80 Quartz-calcite veinlets										
	/Tuff breccia											
	¥	Chlorite, mixed	-layer mineral									
> 1 < 1 > 1 < 1	Basalt lava		(faite pyrite)									
	Tuff breccia	- 212.20 Quartz-calcite veinlets										
2 2	۷ ۱ · ·			-								
	Tuff breccia	 255.50 Quartz veinlet Weak s	ilicification									
		Log Lithology Soil Basalt lava Basalt lava Lapilli tuff Basalt lava Coarse tuff,tuff breccia Iapilli tuff Basalt lava Coarse tuff,tuff breccia Iapilli tuff Basalt lava Tuff breccia, lapilli tuff Basalt- basaltic andesite lava Tuff breccia Tuff breccia Tuff breccia Tuff breccia Tuff breccia Tuff breccia Tuff breccia Tuff breccia Tuff breccia	Log Lithology Alteration and Mineralization Soil = 11.20-12.00 Weak siticification = 22.60-23.40 Weak argillization Basalt lava = 22.60-23.40 Weak argillization Weak argillization Lapilli tuff = 59.00-59.25 Breceiated, argillized zone = 60.80-61.40 Breceiated, argillized zone Basalt lava = 63.80-63.90 Breceiated, argillized zone = 75.80-77.80 Breceiated, argillized zone Value = 28.09.83.60 Breceiated, argillized zone = 92.80.93.40 Breceiated, argillized zone Basalt lava = 118.50-120.80 Strong argillized zone = 92.80.93.40 Breceiated, argillized zone Basalt lava = 118.50-120.80 Strong argillized zone = 118.50-120.80 Quartz breceia) Basalt lava = 118.50-120.80 Quartz breceia) = 118.50-120.80 Quartz breceia) Basalt lava = 155.80-158.80 Quartz-calcite veinlets = 212.20 Quartz-calcite veinlets Tuff breccia = 212.20 Quartz-calcite veinlets = 212.20 Quartz-calcite veinlets Andesite lava = 235.50 Quartz veinlet Weak s	Log Lithology Alteration and Mineralization Soil 11.20-12.00 Weak siticification 11.20-12.00 Weak argillization Basalt lava 22.60-23.40 Weak argillization (smeetile) Lapilli tuff 59.00-59.25 Breceiated, argillized zone (63.80-63.90 Breceiated, argillized zone Basalt lava 75.80-77.80 Breceiated, argillized zone 75.80-77.80 Breceiated, argillized zone Coarse tuff, tuff breccia 82.80-83.60 Breceiated, argillized zone 19.280-93.40 Breceiated, argillized zone Basalt lava 192.80-93.40 Breceiated, argillized zone 192.80-93.40 Breceiated, argillized zone Basalt lava 118.50-120.80 Strong argillization, breceiation 118.50-120.80 Strong argillization, breceiation Tuff breccia 1155.80-158.80 Quartz-calcite veinlets (rare pyrite) Tuff breccia 212.20 Quartz-calcite veinlets (rare pyrite) Andesite lava 235.50 Quartz veinlet Weak silicification	Log Lithology Alteration and Mineralization Cher Soil	Log Lithology Alteration and Mineralization Chemical Soil 11.20-12.00 Weak silicification Image: Soil Soil Soil Soil Soil Soil Soil Soil	Log Lithology Alteration and Mineralization Chemical Anal Soil 11.20-12.00 Weak atiliation Image: Soil 2000 Second S	Log Lithology Alteration and Mineralization Chemical Analysis Soil	Log Lithology Alteration and Mineralization Chemical Analysis Res Soil	Log Lithology Alteration and Mineralization Chemical Analysis Results Soil 11.20-12:00 Weak silicification Interview of the second	Log Lithology Alteration and Mineralization Chemical Analysis Results Soil 11.20-12.00 Weak slicification Image: Chemical Analysis Results Basalt lava 22.60-23.40 Weak argillization (smeetite) Image: Chemical Analysis Results Iapilli tuff 59.00-59.25 Dreceited, argillized zone 63.80-63.90 Dreceitad, argillized zone 52.80-83.70 Direceitad, argillized zone 52.80-93.40 Direceitad, argillized zone 53.50 Quartz calcio veinlets Tuff breccia 235.50 Quartz veinlet	

300.20(EOH)

8

Fig. 2-2-30 Geologic Log of MJFV-1

- 185 ~ 186 -

Depth (m)	Log	Lithology	Alteration and Mineralization	Chemical Analysis Results
0 9.85		Soil Lapilli tuff~ coarse tuff	9.85 Smectite / mixed layered clay Pyrite dissemination	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
50 52.60 69.70 72.10		Volcanic conglomerate <u>Breccia zone</u>	-* 53.40-54.70 72.10 74.15-74.35 Quartz-calcite veinlets	Qiz-breccia 195.50 0.10 0.032 <0.4 3.0 <0.5 <0.005 Qiz-Remaine 245.35 1.00 0.010 <0.4
85.80 100		Basalt dyke Basitic tuff (scoria tuff) tuff breccia	 80.25 Quartz veinlet 97.00(ca.) Quartz vein Weak argillization Pyrite dissemination 	
118.20 118.75		Basalt lava 139.00-139.05 Lapilli tuff	Chloritization	
150 159.65		152.10-152.50 Tuff Tuff breccia	Chloritization	
183.70 198.00 200		Andesite lava	186.00	
233.15		Andosita lavo	232.00	_
250	でない	Tuff breccia	Weak silicitication (quartz veining) - 255.50 - 245.45:246.45, 250.45-250.57	
300			Chloritization (calcite -quartz veins)	

300.50(EOH)

6

Fig. 2-2-31 Geologic Log of MJFV-2

- 187 ~ 188 -

Depth (m)	Log	Lithology	Alteration and Mineralization	Chemical Analysis Results
(m) 0 10.00 19.70 32.80 36.90 50 100 127.40 131.70 150 150 151.60 170.70 180.70 200 215.70 221.90 244.60 250 - 250 - 250		soil Tuff breccia Porphyritic basaltic andesite Tuff breccia Basaltic andesite lava Basalt dyke Andesite lava (Texture: tuff breccia) Tuff breccia Andesite lava Tuff breccia Andesite lava Tuff breccia Porphyritic basalt lava	10.00 Weakly weathered Argillization (smectile) 29.40-29.70 Pyrite dissemination 43.00 Weak argillization (smectile) 57.40 Weak argillization, pyrite dissemination 67.40-67.55 Clay zone 77.80 Very weak alteration, rare pyrite dissemination 93.40 Argillization (smectile, mixed-layer mineral) 104.40-104.90 Clay zone containing silicified volcanics Local weak silicification pyrite dissemination 131.70 Weak argillization 151.60-152.90 Clay, brecciated zone with quartz veinlets 155.80 Silicification, argillization(mixed-layer mineral) 171.60-177.60 Quartz hematite veinlets 177.60 Weak argillization (mixed-layer mineral) 210.90, 225.60,226.60 Calcite veinlets 244.60 250.25, 250.65, 250.78 Quartz-(clay)	Description Depth Interval Au Ag As Sb Pig Arrillized rone 67.40 0.15 0.010 cd.4 cl (cfl) (cgra) (cpa) (cpa)
^{262.20} 300		Alternation of tuff breccia-volcanic breccia and basaltic andesite lava	Weak silicification (quartz calcite veinlets)	

300.60(EOH)

Fig. 2-2-32 Geologic Log of MJFV-3

- 189 ~ 190 -

·

.

Ţ

Ĩ

Ĩ

ľ

I

Ì

Ĵ

Fig. 2-2-35 Geologic Profile of MJFV-2

•

Ĩ

Ţ

L

Fig. 2-2-36 Schematic Alteration Zoning of MJFV-2

Fig. 2-2-37 Ge ologic Profile of MJFV-3

I,

.

Fig. 2-2-38 Schematic Alteration Zoning of MJFV-3

I

I

Fig. 2-2-39 Histograms of Homogenization Temperature from the Nakoroutari Area

Fig. 2-2-40 Resistivity and Chargeability of Drill Core Samples

I

ľ,

ľ

Ţ

Fig. 2-2-43 Schematic Block Diagram Showing the TDIP Simulation Results

Fig. 2-3-1 Schematic Stratigraphic Columns of the Dakuniba Area

Fig. 2-3-2 Sample Location Map of the Dakuniba Area

đ

- 211 ~ 212 -

(interest

Distribution Map of Prospects and Alteration Zones in the Dakuniba Area Fig. 2-3-4

.

.

Fig. 2-3-5 Detailed Survey Results of the Dakuniba Prospect

Fig. 2-3-6 Geochemical Survey Results of the Dakuniba Area

Fig. 2-3-7 Geochemical Survey Results of the Dakuniba Trenches Area

 $-219 \sim 220 -$

•

```
Αu
                                                          Hg
    MEAN(H)= .035944
                                                          MEAN(H)= .0370741
    STANDARD DEVIATIONI of = . 47269
    MINIMUN= .005
                        Mta= .305586
                                                          MINIHUM= .006
                                                                              H+o= .110093
    MAXIMUM= 16.1
                        M+2a= 2.59801
                                                          MAXIMUM= 3.16
                                                                              M+20= .326928
 94 -
                                                      57
                                    <u>l</u>l____
                                                                                       \neg \Box
    Ag
                                                          As
    MEAN(M)= .699243
                                                          MEANIMI= 25.8108
    STANDARD DEVIATION + . 703515
                                                          STANDARD DEVIATION ( J= .806642
    MINIMUH= .2
                        M+o= 3.53299
                                                          MINIMUH= .5
                                                                              M+a= 165.365
    MAXIMUM= 151
                        N+20= 17.8508
                                                          HAXIMUM= 1590
                                                                              M+2a= 1059.46
110
                                                      31
    Sb
    MEANIMI= .752603
    STANDARD DEVIATION ( d = , 497802
    MINIMUM= .25
                        M+a= 2.36793
    MAXIMUM= 28.3
                        H+2a= 7.45024
99
                                          ____
```

Ţ

Fig. 2-3-8 Histogram of Assay Values(the Dakuniba Area)

Fig. 2-3-9 Cumulative Frequency Distribution of Assay Values (the Dakuniba Area)

ľ

I

I

- 223 -

Depth (m)	Log	Lithology	Alteration and Mineralization	Chemical Analysis Resul			ults		<u></u>		
0 00		Soil									
0 9.80				Description	Depth (a)	Interval (a)	λυ (g/t)	Ag (g/t)	As (ppm)	Sb (ppn)	lig (pp∎)
			21.60 Quartz veinlets (width 1mm) 26.80-27.15 argillized zone	Clayisilicified fragments Clay(brown) Basalt	138.15 138.25 138.35	0.10 0.10 0.15	<0.008 0.231 0.011	0.4 2.6 0.5	20 60 <20	<0.5 <0.5 <0.5	<0.005 0.005 0.007
		Development (stantice)	41.80 Drusy quartz-calcite vein	Clay+Basalt fragment Clay+Basalt fragment	138.50 138.65	0.15 0.35	0.613 0.155	3 3.4	215 70	<0.5 <0.5	0.015
50		Basalt lava (picritic)	42.80-48.00 Weakly argitlized zone	Silcified basalt	180.95	0.50	0.056	4.2	145	<0.5	0.021
50			60 80-61.50 Breceiation and bematitization	Silicified basalt	181.45	0.35	0.033	1.4	30	<0.5	0.010
			69.00 Calcite veinits	Silicified basalt	181 80	0.40	0.052	2.5	200	<0.5	0.013
			72.80-73.00 Calcite	Silicified basalt	189.20	0.40	A 101	3.8	200	(D 5	0.012
			81.80-82.20 Calcite veinlets	Qtz vein	183.80	0.60	0.041	1.1	50	<0.5	0.006
				Silicified fragments	190.40	0.20	0.393	2.3	100	<0.5	0.012
100				Clay Clay	190.60 190.90	0.30 0.30	0.236 0.790	1.4 5.8	90 220	<0.5 <9.5	0.013
			 113.80 Drusy quartz calcite veinlets 	Silifified fragment	191.20	0.10 0.12	0.195	2.9 0.5	225 20	<0.5 <0.5	0.005 <0.005
			122 80 Drusy quartz calcite veinlets	Qtz:Quartz							
1			127.70-129.20 Slicification, breached								
			• 138.15-139.20 Silicified breecial clay zone								
154.70		Juff									
156.50		Bacalt Java (nicritic)	. 166.40 Quartz veinlets								
	\uparrow	Basart lava (picific)	170.35, 173.40, 173.50, 174.15, 175.30, 175.60 Quartz veinlets								
191.30			180.95-191.30 Mixed-layer mineral, weak silicification and pyrite dissemination								
-200		Basalt lava (glassy)	' 201.20-202.50 Silicification with green clay mineral								
			213.10-214.10 Argaillized zone (pale green)								
			222.60 Silicification								
007.00			231.30-231.90 Silicification, pyrite dissemination								
237.80		Posalt lova (nigritia)									
2.50		Basalt Java (picture)	and pyrite dissemination								
255		- Dasali lava (Biassy)	250.00-250.60, 252.10-255.60 Quartz veinlet, weak silicification								
233.00		Basalt lava (picritic)	· · · · · · · · · · · · · · · · · · ·								
275.10											
			280.00-282.70 Weak siticification								
300		Basalt (andesitic)	294.70-295.30 Silicification, quaratz vein 297.20 Quartz veinlet			<u>.,</u>	<u> </u>				

300.50 (EOH)

6

Fig. 2-3-12 Geologic Log of MJFV-4

-- 225 ~ 226 --

Depth	Log	Lithology	Alteration and Mineralization	Chemical Analysis Results				
0 4.50		Soil 12.50-12.90 Basalt dyke	¹ 18.40,19.50,22.00,22.10 Quartz veinlets (20.40-20.60 Clay zone)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
50		Basalt lava (picritic)	(Semetite)	Qtz-Pyrite vein				
90.60 100 98.10		90.60-91.60, 97.70-98.10 Basalt dyke	81.60 Hematite vein ¹ 87.80-88.00 Weak argillization	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
113.80、 116.00 -		<u>/Tuff breccia</u>	119.40-119.80 Silisification	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
-150		174.60-174.80,175.00-175.30 Basalt dyke	(Mixed-layer mineral, sericite) 135.20, 136.05 124.95-165.00 Quartz veinlets, clay and quartz breccia zone 152.40, 152.70, 153.00					
-200		Basalt (autobrecciated, glassy)	 172.40-173.20 Quartz clay vein 181.10-188.05 Pale green clay					
220.00 227.00 235.20		Tuff breccia Hyaloclastite (basaltic)	226.20-226.60, 227.00 Quartz veinlets (Smectite)					
-250		Basalt lava	271.80, 271.90, 272.35 Quartz stockwork 276.00, 276.80 Quartz veinlets					
300			285.30-285.50 Quartz vein					

300.30 (EOH)

•

.

3

0

Fig. 2-3-13 Geologic Log of MJFV-5

- 227 ~ 228 -

Depth (m)	Log	Lithology	Alteration and Mineralization	Chemical Analysis Results
0 5.25		Soil	Abundant quartz veinites, pyrite dissemination 29.60	Description Depth Interval (m) Au Ag As Sb lig (ppm) Qtz Breccia 55.35 0.20 <0.008
- 50 -100		Basalt lava (picritic)	46.35 - 55.35 -61.00, 61.30, 61.40 - 61.00, 61.30, 61.40 Abundant quartz veinlets, very weak pyrite dissemination 71.55 -74.40,75.00, 75.05 77.70, 79.30 91.10 96.10 Quartz veinlets 99.20 No Silicified zone	Qtz veinlets 01.30 0.10 0003 0.4 1.0 0.5 0.022 Qtz veinlets 61.40 0.30 0003 0.4 1.0 0.5 0.009 Qtz veinlets 68.90 1.00 0008 0.4 1.5 0.5 0.009 Qtz veinlets 71.55 1.00 0.008 0.4 1.5 0.5 0.009 Qtz veinlets 71.55 1.00 0.008 0.4 6.5 0.5 0.027 Qtz veins 74.40 0.15 0.003 0.4 3.0 0.5 0.010 Qtz vein 75.05 0.65 0.048 0.4 50.0 0.5 0.013 Qtz vein 75.05 0.85 0.036 0.4 12.5 1.3 0.016 Qtz veinlets 77.70 0.85 0.008 0.4 12.5 1.3 0.016 Qtz veinlets 77.70 0.85 0.003 0.4 48.5 0.5 0.047 Qtz veinlets 112.00 1.00 0.003 0.4 48.5 0.5 0.047 Qtz veinlets 114.00 0.20 0.003 0.4 23.0 0.5 0.020 Qtz veinlets 122.10 1.00 0.008 0.4 24.0 0.5 0.020 Drusy qtz veinlets 120.10 0.20 0.208 0.4 42.5 0.5 0.007 Qtz fragsent + Clay 124.40 0.60 0.159 0.4 44.5 0.5 0.014
116.00 128.40 142.10		Basalt dyke Basalt lava (picritic)	124.40 > Quartz veinlets	Qtz veinlets 233.30 2.30 (0.005) 0.3 50.0 (0.5) 0.005 Qtz veinlets Pyrite disseminated 272.55 0.55 0.039 0.8 36.5 <0.5 0.012 Qtz-fyrite vein 297.00 0.25 0.069 0.4 <0.5 0.011 Qtz:Quartz <0.5 0.069 0.4 <0.5 0.011
149.50 -150 155.00 159.20 167.90 181.80		Lapilli tuff-tuff breccia Basalt lava (piciritic) Lapilli tuff Alternation of basalt lava and fine tuff Tuff breccia, lapilli tuff and fine tuff	Uuartz veinlets H63.05 (Especially abundant at 160.40-163.05)	
200		181.80 -182.20 Sandy tuff Basalt lava (piciritic)	194.20 196.10 207.30 Quartz-calcite veinlets 218.90 225.10 225.10	
236.00 250		Tuff brecciaBasalt lava 243.70-244.90 Basalt lava	Pale green clay (mixed layered clay and chlorite)	
278.20 283.20		Tuff breccia - lapilli tuff 267.00-269.40 Basalt dyke Basalt lava Lapilli tuff - tuff breccia Basalt lava	256.90 Quartz breecia, clay, quartz Pyrite dissemination (especially strongly disseminated at 270.60-274.60) 272.55Pyrite disseminated	
300		(293 60-294 80,300 70-300 90 Basalt dyke)	2970.00 Quartz vein	<u> </u>]

300.90 (EOH)

3

Fig. 2-3-14 Geologic Log of MJFV-6

- 229 ~ 230 -

Depth (m)	Log	Lithology	Alteration and Mineralization	Chemical Analysis Results
6.00 23.50	.	Soil Ocher-dark green, solt-hard Basalt lava Pyroxene phenocryst:large Basalt lava	Weathered	
		23.50-23.90 Basalt dyke 29.00-29.45 Basalt dyke 45.00-45.20 Basalt dyke Alternation of compact patls and porous parts Compact patis: green-dark green, hatd, large pxroxene phenocryst Porous parts: gray-reddish, filled with calcite, partly hematite	Very weakly argillized- <u>-></u> Xray (41.10m): semecetite - 63.50 Calcite veinlets	No. Depth (m) Width (m) Au Ag As S5 Hg DD721 226.60-226.90 0.30 0.166 4 85 1.6 0.084 DD722 226.90-227.50 0.60 0.841 2 54 0.5 0.938 DD722 227.50-227.60 0.10 2.32 6 2.26 2.2 0.945 DD724 227.60-227.90 0.30 0.581 3 105 0.645 DD724 227.60-227.90 0.10 0.592 6 2.26 2 0.945 DD725 227.90-228 0.30 0.591 3 105 0.661 DD725 227.90-228 0.930 0.50 6 112 0.6 0.150
)		78.50-78.55 Basalt Tava 143 40-143 80 Basalt dyke	Xeay(302.50m): mix layered mineral(smectite/chlorite)-quartz	DD726 249.90.251.05 1.15 0.162 2 56 <0.5
) 143.40	· · · · · · · · · · · · · · · · · · ·	Basalt lava Alternation of compact parts and porous parts Compact parts: green-dark green,bard,large pxroxene phenocryst Porous parts: gray-reddisb,filled with calcite,partly hematite	– 153.20 Caicite veinlet Weakly altered Xray{153.70m}: chlorite, K-feldspar	DD733 259.10-259.65 0.55 0.288 2 50 <0.5
0 202.10 207.20 211.00		Lapilli tuff-tuff breccia Basalt lava(autobrecciated)	181.50-181.30 Weakly argillized, quartz irregular veinlets Xray(201.65m): mix layered mineral(smectite/chlorite)-quartz-christobalite 226.69-228.00 Silicified breccia and clay zones with weakly argillized gangue rock	
226.69 228.00 236.40 239.25 249.90 233.70 258.80 260.70		Basalt lava (weekly autobreccialed) Silicified-argillized zone -Basalt(picritic) Telf(coarse) 248.60-248.65, 248.40-249.20 Basalt dyte Tuff breccia Silicified-argillized zone Auto-brecciated lava (partly weakly brecciated) maximum block size>30cm	230.90-233.50 W cakly argitlized zone Xray(248.10m): mixed layered mineral(smectite/chlorite)-quartz Xray (253.20m): chlorite-quartz 246.55-246.90 Bleached zone with quartz and clay 249.90-253.70 Argitlized zone with sitified breccia and quartz veinlets 259.10-260.20 Argitlized and silicified zone (assayed part within 258.80-260.70)	
10 307.00 309.10		blockimatrix ratio:20%-50% Blacky-gray, glassy <u>Tulf bieccia</u> Basalt lava (auto-brecciated) Basalt dube	Xray(284.60m): smectite-metabaloysite 303.70 Quartz veinlei(lem wide, at 40 degree) 303.90-304.20 Quartz stockwork(partly drusy) Xrax(321.90m):smectite-metabalaysite	
325.00 329.80 334.70 50 359.50 361.30		Basah baya Lapidi test Basah lava dark green-greea, compact (partly very weakly silicified)	Xray(338.50m): mixed layered mineral(smectite/chlorite)-quartz-christobalite Partly very weak silicification (quartz films)	
370.90 371.70		Basalt lava(weakly auto-brecciated) Basalt dyke dark green-blacky,hard Basalt lava(weakly brecciated) partly compact	395.50 Calcite veinlet(at 40 degree) 396.25-396.45 Clay and weakly bleached 397.60 Clay Xtay(382.35m): smeetle-quartz	

0

Fig. 2-3-15 Geologic Log of MJFV-7

 c_{ij}

400.30(EOH)

Î

	Chemical Analysis Results							
	Depth (m)	Wiðth (m)	Au (g.4)	A g (g/t)	As (ppm)	Sb (ppm)	Hg (ppm)	
2	116.80-117.25	0.45	0.228	4	85	1.0	0.093	
8	318.10-118.60	0.50	0.551	2	86	0.6	0.028	
9	122.10-122.50 122.50-123.50	0.40 1.00	0.918 0.654	2	50 96	<0.5 0.8	0.009 0.150	
1	123.50-123.80	0.30 1.70	0.203 0.637	2	86	<0.5	0.009	
2	124.30-124.70	0.40	0.319	4	61	1.2	0.023	
7	125.10-125.40	0.30	0.478	2	60	1.0	0.003	
3	125.40-125.60	0.20	3.13	3	80	1.1	0.013	
13	125.60-126.60	1.00	0.416	2	50	<0.5	0.008	
24	126.60-127.70	$\begin{array}{c} 1.10 \\ 2.60 \end{array}$	0.405 0.628	2	145	<0.5	<0.005	
14	128.15-129.25	1.10	1.88	2	69	<0.5	<0.005	
25	141.45-141.70	0.25	0.471	8	350	1.6	<0.005	
26	142.60-143.00	0.40	0.473	6	265	1.6	<0.0 05	
27	241.20-241.24	0.04	<0.008	<2	5	<0.5	<0 .005	
35	279.90-280.70	0.80	<0.008	<2	13	<0.5	<0.005	

Fig. 2-3-16 Geologic Log of MJFV-8

	Depth (m)	Log	Lithology	Alteration and Mineralization	Chemical Analysis Results
0	1.00 19.30		soit ocher-reddish-gray, weakly breeciated Basalt lava large phenocryst:pyroxene	-6.10-6.20 whitish clay, FcOx 9.00-9.30 Reddish clay, soft	
50	19.80 46.60 49.10 55.757 56.15		Bisandytegray-green-dark green, partly reddish-purplish weakly brecciated- compact, rather hardBasalt lavarather hardBasalt dytepyroxene phenocryst: largeBasalt dytedark green, fine grainedBasalt dyteAlternation of dark green compact facies Basalt lavaBasalt lavaand reddish amygdaloidal facies	0-14.35 Weathered 28.30-28.40 Fractured, weakly argillized 41.90-41.91 Sheared zone (crossing at 40 degree) 41.90, 44.20, 46.70, 46.85, 58.60 Quartz veinlets (1-4mm, at ~40 degrees) Pyrite weakly disseminated Xray(58.70m): Mixed layered mineral(smectile/chloride)-quartz 61.90 Clay width=2 cm brownish Xray(58.00m): chloride-quartz	No. Depih (m) Width (m) Au (g/t) Ag (g/t) As (g/t) Sb (ppm) Hg (ppm) DD901 87.20-87.30 0.10 1.01 2 60 <0.5
100	87.20 95.35		amygaates and irregular pool: lilled with sinca mineral Clay-argillized-silicified zone green-pale green, massive fragments: mafic, lithic, angular, max size=10cm Lapilli tuff mineral (pyroxene) fragments	79.35 Quartz veinlet (at 30 degree) 83.30-83.40 Clay-quartz veinlts Xray(15.00m): Smectile-metahaloysite 83.70-83.90 Clay, pyrite disseminated 87.20-87.30 Clay (true width Scm, at 40 degree) including a quartz veinlet 88.10-89.70 Argillized zone, pyrite disseminated	DD905 90.70-91.35 0.65 0.436 3 128 0.8 0.027 DD905 91.35-91.55 0.20 0.291 4 130 1.0 0.012 DD907 91.55-91.70 0.15 0.020 2 50 <0.5
150	131.70		Tulf breccia (gradually change into basalt lava) Basalt lava grayish-dark green, fine-grained compact partly brecciated(blacky fragments and pale green matrix)	including silicified fragments 89.90-90.25 Weakly argillized zone 90.70-93.05 Argillized zone with quartz veinlets, silicified fragments 93.70-93.75 Quartz fragments 93.75-94.05 Quartz stockwork 94.05-94.75 Quartz vein(Scm), Clay-quartz veinlets 95.15-95.35 Silicified zone with quartz veinlets (Smm width) Xray(115.00m): Smectite-metabaloysite - 116.00, 116.80, 124.75 Quartz veinlets(2-3mm width)	D D 914 94.05-94.10 0.05 0.171 2 23 <0.5 <0.005 D D 915 94.10-94.75 0.65 0.003 <2
200	190.75 192.60 200.85		Lapilli tuff-green, densely packed, fragments>matrix, rather hard Expilient dark gray, large amygdules Basalt lava filled with green soapy minerals(smectite?)		
250	245.80 250.60 272.30 278.00		Tuff-Lapilli tufffine tuff-sandy tuff: green finely laminated lapilli tuff: mosaic, lithic angular fragmentsBasility	243.65-243.70 Clay quartz veialets(1cm milky quartz) 245.35-245.50 Drusy quartz, pyrite disseminated 246.55-246.95 Quartz veialets(stockwork) 247.65, 247.80 Quartz veialets(Smm) Xray(258.50m): Mix tayered mineral-quartz 248.60-249.00 Clay(fault clay? smectite) 250.30 Quartz veialets(3mm)	
300	283.30 284.10 288.80 289.50		Basalt fava Tuff breeceia Basalt Lava (genetically weakly breeceiated fava) Basalt dake parily tapills tuff facies Tuff breeceia bithic angular, multi-color fragments	Xray(289.90m): Chlorite-mix layered mineral(smectite/sericite)-quartz 284.10-284.50 Silicified-argillized zone(weak) - 289.90-290.10 Bleached zone with a drusy quartz - 295.00 Quartz veinlet(irregular) Xray(300.00m): Chlorite-quartz - 299.50 Pyrite disseminated (weakly)	

300.90(EOH)

Fig. 2-3-17 Geologic Log of MJFV-9

. . والمتعادين المتعارضين والمعالي والمنافر والمعالي والمعالي والمعالي والمعالي والمعالي والمعالي والمعالي . .

.

- 237 -

ŧ •

· •

Fig. 2-3-19 Schematic Alteration Zoning of MJFV-4

8

Ĵ

ł

Ţ

Į

- 243 -

Ţ

J

·

Fig. 2-3-23 Schematic Alteration Zoning of MJFV-6

- 247 -

÷. 1

Fig. 2-3-24 Geologic Profile of MJFV-7

ľ

Ţ

- 251 -

ł

Į,

I

ł

Î

Ľ

`.

ŧ C

Fig. 2-3-29 Schematic Alteration Zoning of MJFV-9

Ţ

1

Fig. 2-3-30(1) Histograms of Homogenization Temperatures of Fluid Inclusions from the Dakuniba Area(1)

屬

Fig. 2-3-30(2) Histograms of Homogenization Temperatures of Fluid Inclusions from the Dakuniba Area(2)

DD740 (NJFV-7, 227, 105m)

I

5

Đ

٢

Fig. 2-4-1 Schematic Stratigraphic Columns of the Waimotu Area

Ţ

I

X