No. 36

MINISTRY OF INDUSTRY VIET NAM STEEL CORPORATION THE SOCIALIST REPUBLIC OF VIET NAM

THE MASTER PLAN STUDY ON THE DEVELOPMENT OF THE STEEL INDUSTRY IN THE SOCIALIST REPUBLIC OF VIET NAM

FINAL REPORT

March 1998

NIPPON STEEL CORPORATION

MPI JR 98-100

No.

MINISTRY OF INDUSTRY VIET NAM STEEL CORPORATION THE SOCIALIST REPUBLIC OF VIET NAM

THE MASTER PLAN STUDY ON THE DEVELOPMENT OF THE STEEL INDUSTRY IN THE SOCIALIST REPUBLIC OF VIET NAM

FINAL REPORT

March 1998

NIPPON STEEL CORPORATION

MPI JR 98-100

na an ann an Aonaichtean ann an Aonaichtean an Ann an Aonaichtean an Aonaichtean an Aonaichtean ann an Aonaichte Ann an Aonaichtean ann an Aonaichte Ann ann ann an

•

ing to be the task of task of

1141434 [9]

4 [9]

Ender Stear (1996) All Berley

PREFACE

In response to a request from the Government of the Socialist Republic of Viet Nam, the Government of Japan decided to conduct the Master Plan Study on the Development of the Steel Industry in Viet Nam, and entrusted the study to Japan International Cooperation Agency (JICA).

JICA sent a study team, led by Mr. Kenji Kobayashi of Nippon Steel Corporation and constituted by members of Nippon Steel Corporation and four major steel companies with a specialized consulting firm, to the Socialist Republic of Viet Nam six times from October 1996 to January 1998.

The team held discussions with the officials concerned of the Government of the Socialist Republic of Viet Nam, and conducted related field surveys. After returning to Japan, the team conducted further studies and compiled the final results in this report.

I hope this report will contribute to the steel industry development in the Socialist Republic of Viet Nam and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of the Socialist Republic of Viet Nam for their close cooperation throughout the study.

March 1998

Kimio Fujita President Japan International Cooperation Agency

March 1998

Mr. Kimio Fujita

President Japan International Cooperation Agency - JICA Tokyo, JAPAN

Dear Mr. Fujita,

Letter of Transmittal

We are pleased to submit herewith the Final Report of "the Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam".

The Report contains the advices and suggestions of the authorities concerned of the Government of Japan and JICA as well as the formulation of the above study. Also included are comments and wishes made by the governmental officials of the Socialist Republic of Viet Nam including officials of ministries concerned and Vietnam Steel Corporation at the technical discussions during site investigation and draft report presentation held in Hanoi, Viet Nam.

This report presents the Master Plan of steel industry in Viet Nam up to the year 2010, indicating firstly the foreseeable steel demand in the future, direction of improvement and expansion of the existing steel plants (rehabilitation), the necessity of constructing an integrated steelworks, the process technology to be adapted by such integrated steelworks, etc., and secondly the results of pre-feasibility study on the construction of an integrated steelworks including financial analysis.

Steel industry is generally conceived as a core industry of a country, however, careful approach and precise examination by Viet Nam side are recommended in view of its heavy investment.

We wish to take this opportunity to express our sincere gratitude to JICA, the Ministry of Foreign Affairs, Ministry of International Trade and Industry. We also wish to express our deep gratitude to the Ministry of Planning and Investment, the Ministry of Industry, Vietnam Steel Corporation and other authorities concerned of the Socialist Republic of Viet Nam for the close cooperation and assistance extended to us during our investigation and study.

Very truly yours,

habayest

Kenji Kobayashi Leader Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel	Chapter	Part	Section	Page			
Date: Feb 17, 1998 Rev.:							

Contents

List of Tables and Figures

List of Abbreviations

- A.

Chapter I Background to "the Master Plan Study on the Development of the Steel Industry in the Socialist Republic of Viet Nam"

Part 1 Background to "the Master Plan Study on the Development of the Steel Industry in the Socialist Republic of Viet Nam"

Section 1 Background to "the Master Plan Study on the Development of the Steel Industry in the Socialist Republic of Viet Nam"

Chapter II Present Situation of Steel Industry in Viet Nam

Part 1 Organization and Administration of Viet Nam Steel Corporation Section 1 Organization and Administration of Viet Nam Steel Corporation

Part 2 Present Situation of Existing Steel Plants and Direction of their Rehabilitation

Section 1 Raw Material

Section 2 Ironmaking Operation

Section 3 Steelmaking Operation

Section 4 Non-flat Rolling Production

Section 5 Flat Product Production

Part 3 Present Situation of Development Plan of Infrastructure

Section 1 Present Situation of Development Plan of Power Generation and Transmission Network

Section 2 Present Situation and Development Plan of Port

Section 3 Present Situation and Development Plan of Road

Section 4 Present Situation and Development Plan of Railway

Chapter III Master Plan for the Vietnamese Steel Industry up to 2010 Part 1 Summary of Master Plan

Section 1 Introduction

Section 2 Master Plan Outline

Name of Project: Final Report Master Plan Study on the Development of S	teel Industry in I	he Socialist Re	public of Viet Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:			<u> </u>	

- Section 3 Necessity for the Construction of a New Integrated Steelworks and Its Capacity
- Section 4 Applicable Production Processes for the New Integrated Steelworks
- Section 5 Technical Propositions for Site Selection
- Part 2 Steel Demand Projection
- Section 1 Present Situation of Supply and Demand of Steel Products
- Section 2 Projection of Future Steel Demand in Viet Nam (Macroscopic Projection)
- Section 3 Steel Demand by Industrial Sub-sector (Microscopic Projection)
- Section 4 Projection of Steel Demand by Steel Type

Part 3 Applicable Process

- Section 1 Raw Materials Sources
- Section 2 Ironmaking Processes
- Section 3 Steelmaking Processes
- Section 4 Hot Strip Mill

Part 4 Technical Suggestion of Site Selection

Section 1 Technical Suggestion on Site Selection of Three Candidate Sites from Proposed Ten Sites

Section 2 Technical Suggestion for Giving Priority to Three Proposed Sites

Section 3 Survey for Dung Quat and Mui Ron

Part 5 Recommendation

- Section 1 Basic Information for Recommendation
- Section 2 Importance of Development of Steel Industry
- Section 3 Recommendation
- Section 4 Financing for a Project in General

Chapter IV Pre-feasibility Study Results for the Construction of the New Integrated Steelworks

- Part 1 Introduction
- Section 1 Preface

Section 2 Scope of the Pre-feasibility Study and Its Preconditions

Part 2 Summary of the Pre-feasibility Study

Section 1 Market Mix Projection

Section 2 Production Scale and Product mix

 Name of Project: Final Report

 Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam

 IICA/Nippon Steel
 Chapter
 Part
 Section
 Page

 Date: Feb 17, 1998
 Rev.:
 2

- Section 3 Production Process and Balance
- Section 4 Outline of the Production Facilities
- Section 5 Raw Materials
- Section 6 Concept of General Layout of Mui Ron Site
- Section 7 Construction Schedule
- Section 8 Financial Analysis
- Section 9 Economic Analysis
- Section 10 Environment
- Part 3 Steel Demand Projection and Production Plan Section 1 Steel Demand Section 2 Production Plan
- Part 4 Site Description
- Section 1 Soil, Weather, Marine and Transportation Conditions Section 2 Environment Section 3 Utilities
- Part 5 Raw Materials and Semi-products Section 1 Raw Materials Section 2 Slab
- Part 6 General Plant Description Section 1 General Design Concept Section 2 Level of Process Automation and Energy Conservation
- Part 7 Execution'Plan
- Section 1 Construction Schedule Section 2 Management Organization and Manning Plan
- Part 8 Estimate of Capital Cost Expenditure Section 1 Estimate of Capital Cost Expenditure
- Part 9 Estimate of Production Cost Section 1 Estimate of Production Cost
- Part 10 Financial Analysis Section 1 Financial Analysis

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
Chapter	Part	Section	Page			

Part 11 Economic Analysis Section 1 Economic Analysis

Part 12 Environmental Protection Section 1 Environmental Protection

Part 13 Recommendations Section 1 Recommendations from the Results of Pre-feasibility Study

Part 14 Individual Plant Description

Section 1 Land Preparation

- Section 2 Port and Port Facilities
- Section 3 Raw Materials Handling Facilities
- Section 4 Sintering Plant
- Section 5 Coke Plant
- Section 6 Blast Furnace Plant
- Section 7 Lime Calcining Plant
- Section 8 Basic Oxygen Furnace Plant
- Section 9 Continuous Casting Plant
- Section 10 Hot Strip Mill Plant
- Section 11 Cold Strip Mill Plant
- Section 12 Metal Finishing Plant
- Section 13 Power Receiving and Distribution Facilities
- Section 14 Power Plant
- Section 15 BF Blower Plant
- Section 16 Air Separation Plant
- Section 17 Fuel Gas Facilities
- Section 18 Water Supply
- Section 19 Intraworks Transportation Equipment
- Section 20 Intraworks Telecommunication Network
- Section 21 Central Maintenance Shops
- Section 22 Testing and Analysis Facilities
- Section 23 Administration and Common Facilities
- Part 15 Product Transportation and Logistics
- Section 1 Product Transportation and Logistics
- Part 16 Non-flat Rolling Mill Plant (Reference)
- Section 1 Master Plan for Long Product Production Section 2 Non-flat Rolling Mill Plant

Name of Project: Final Report Master Plan Study on the Development of	f Steel Industry in t	he Socialist Re	public of Viet Na	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:			<u> </u>	4

References

10.10

Appendices Part 1 Section 1 Study of Ironmaking Processes Section 2 Study of Steelmaking Processes Section 3 Noise Measurement Data Sheet Part 2 Section 1 Scope of Work

Section 2 Minutes of Meetings and Relevant Letter

Section 3 Records of Schedule for Survey Term

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				5		

Ţ

List of Tables & Figures

Chapter	Part	Section	Table/Figure	Title	Page
Ι	1	1	Figure 1-1	Overall schedule of Master	
T			D : 1.0	plan & Pre-feasibility study	1-4
I	1	1	Figure 1-2	Study members & its organization	
I	1	1	Figure 1-3	Vietnamese counterparts	1-7
II H	2	1	Table 1-1	Iron ore deposits in Vict Nam	1-1
П	2	1	Table 1-2	Ore quality of Trai Cau mine	1-1
II	2	l	Table 1-3	Chemistry and size of the ore	1-2
Π	2	1	Table 1-4	Gas reserves in future	1-4
Π	2	1	Table 1-5	Quality of anthracite from Hongai	
II	2	1	Table 1-6	Bituminous coal reserves	1-5
ll	2	1	Table 1-7	Natural resources near TISCO	1-6
II	2	2	Table 2-1	No2 blast furnace specification	2-4
11	2	2	Table 2-2	Operational results	2-5
11	2	2	Table 2-3	Ore quality	2-6
П	2	2	Table 2-4	Coke quatity	2-6
ll	2	2	Table 2-5	Coke properties(1)	2-7
Π	2	2	Table 2-6	Coke properties(2)	2-7
II	2	2	Table 2-7	Ash analysis	2-7
П	2	2	Table 2-8	Coke strength	2-7
П	2	2	Table 2-9	Comparison of size distribution	
				of iron ores before and after	
				washing	2-7
Π	2	2	Table 2-10	Classification of iron ores used at	
				Luuxa steelworks according to	
				their appearance after washing	2-8
Π	2	3	Table 3-1	EAF capacity of existing	
				steelmaking plants	3-1
П	2	3	Table 3-2	Continuous casting & ingot	
				casting	3-2
П	2	3	Table 3-3	The average capacity of VSC's	
				steelmaking plants	3-3
Π	2	3	Table 3-4	Equipment of the representative	
				steelmaking plants surveyed	3-3
П	2	3	Table 3-5	Production of the representative	
				plants	3-3
				•	

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				1		

Ţ

Chapter	Part	Section	Table/Figure	Title	Page
II	2	3	Table 3-6	Comparisons of the productivity	3-4
II	2	3	Table 3-7	Analyzing of tap to tap time	
				EAFs	3-5
ll	2	3	Table 3-8	Unit consumption of major items	
				in Viet Nam	3-5
Π	2	3	Table 3-9	Steel grade and increasing of	
				non-flat product	3-6
II	2	3	Table 3-10	The expansion program of	
				steelmaking capacity	3-6
II	2	3	Table 3-11	The two new billet centers (BTC)	
				under planning	3-7
II	2	3	Table 3-12	Scrap charging time and the	
••				number of charging frequency	3-8
11	2	3	Table 3-13	EAF tap to tap (T-T) time	
11	-	-		and casting time	3-9
11	2	3	Table 3-14	Max. sequential casting ratio	3-10
Ш	2	3	Table 3-15	The plan of plants integration	3-11
Н	2	3	Table 3-16	The main specification of	
11	•	2	m 11 o <i>i</i> a	steelmaking plants of VSC	3-13
11	2	3	Table 3-17	The main operation indices	
TT	2	3	TU 1.1. 2.40	of steelmaking plants	3-14
Ш	2	3	Table 3-18	UC of electric power, electrode,	0.15
II	2	2	T-bl. 2 10	oxygen, carbon	3-15
11	2	3	Table 3-19	Main materials, sub-materials,	2.15
II	2	3	Table 3-20	and refractory	3-15
11	2	3	14010 3-20	Outline of improving plans of Nha Be steelmaking Works	2 17
11	2	3	Table 3-21	TISCO's 5 year investment plan	3-17
11	L	5	14010 3-21	(1996-2000 year)	3-17
II	2	3	Figure 3-1	The non-flat production route in	3-17
1.	2	5	riguit J-1	Viet Nam (product base)	3-2
Π	2	3	Figure 3-2	Improvements of EAF	5-2
	-	Ľ	1.164.10 3.2	technologies and situation of	
				Vict Nam	3-7
II	2	3	Figure 3-3	Pattern of 2-sequential casting	~ •
	-	-		by 2 EAFs	3-9
11	2	3	Figure 3-4	Number of EAF	3-16
	-				~ * •

Name of Project: Final Report Master Plan Study on the Development of S	Steel Industry in	the Socialist Rep	public of Vict Nan	
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				2

Chapter	Part	Section	Table/Figure	Title	Page
П	2	3	Figure 3-5	Nominal capacity of EAF	3-16
I	2	3	Figure 3-6	Yield of existing EAF	3-16
Ĩ	2	3	Figure 3-7	Tap to tap time (min)	3-16
Π	2	3	Figure 3-8	Productivity	3-16
11	2	4	Table 4-1	Long products mill in Vict Nam	4-6
II	2	4	Table 4-2	Production capacity by area and	
				products	4-10
Ш	2	4	Table 4-3	Operation of long products	
				mill in Vict Nam in 1996	4-11
П	2	4	Figure 4-1	Location of long products mill	
				in Viet Nam	4-5
П	2	4	Figure 4-2	Mill capacity in Vict Nam and	
				Japan	4-12
П	2	4	Figure 4-3	Billet weight in Viet Nam and	4 1 2
_				Japan Ni and af mire	4-13
Π	2	4	Figure 4-4	Maximum rolling speed of wire	4-14
	_	_		rod in Viet Nam and Japan	4-14
П	2	4	Figure 4-5	Productivity of mill in Viet Nam	4-15
н	-		D ¹	and Japan Yield of mill in Viet Nam	т 1 9
Ш	2	4	Figure 4-6	and Japan	4-16
П	~	. A	Figure 4-7	Fuel consumption of mill in	• • •
Ц	2	2 4	rigule 4-7	Vict Nam and Japan	4-17
П	-	2 5	Table 5-1	Joint ventures in Viet Nam's stee	
11	2	, J		industry for flat products	5-5
П		2 5	Table 5-2	Joint ventures in Viet Nam's stee	1
11	4		14010 0 -	industry for pipe products	5-6
II		3 1	Table 1-1	Actual power supply and demand	1-1
I		3 1	Table 1-2	Existing main power plants	1-2
Π		3 1	Table 1-3	Expected power supply and	
				demand	1-3
П		3 1	Table 1-4	New power plants to be	
				constructed	1-4
П	-	3 1	Table 1-5	New power plant to be planned	1-5
II		3 1	Table 1-6	Planned transmission network	1-6
П		3 1	Table 1-7	Comparison of future supply and	
				demand	1-6

Ì,

Name of Project: Final Report Master Plan Study on the Development	nt of Steel Industry in t	he Socialist Re	public of Viet Nan	a
JICA/Nippon Steel	Chapter	Pari	Section	Page
Date: Feb 17, 1998 Rev .:		<u></u>		3

Chapter	Part	Section	Table/Figure	Title	Page
It	3	1	Table 1-8	Actual and estimated number of telephones	1-8
][3	1	Table 1-9	Main development plan for local	
П	2	2	W-51-0 1	network	1-9
П	3	2	Table 2-1	Port managed by MOT(1)	2-2
II II	3	2	Table 2-2	Port managed by MOT(2)	2-3
	3	2	Table 2-3	Port managed by MOE(1)	2-4
II	3	2	Table 2-4	Port managed by MOE(2)	2-5
H	3	2	Table 2-5	Port managed by MOE(3)	2-6
II	3	3	Table 3-1	The classifications of roads	3-1
II	3	3	Table 3-2	The Number of bridges	3-1
Π	3	3	Table 3-3	Present situation and	
Ц	3	4	Table 4-1	future plan of routes 1 and 5 The routes of existing	3-2
				railway network in Viet Nam	4-1
И	3	4	Table 4-2	The future plan of railway	
	_			network in Vict Nam	4-1
Ц	3	4	Table 4-3	The list of the available vehicle	4-2
	1	2	Figure 2-1	Master plan for the development	
Ш	1	3	Diama 2 1	of steel industry in Viet Nam	2-2
311	1	3	Figure 3-1	Material balance in 2005	2.2
HI	1	3	Figure 2 1	(master plan) Matazial halanas in 2010	3-3
111	1	3	Figure 3-2	Material balance in 2010	2 5
III	1	4	Elauna 4 1	(master plan)	3-5
ш	1	4	Figure 4-1	Summary of study for applicable	
Ш	1		r: 4 0	process-iron and steelmaking	4-2
Πf	1	4	Figure 4-2	Applicable process-continuous	
Ш	2	1	T-61-1-1	slab casting/hot strip mill	4-3
	2	1	Table 1-1	Total steel supply to market	1-1
	2	1	Table 1-2	Total steel demand	1-1
Ш	2	1	Table 1-3	Steel demand by steel type	
л	2	0		in 1996	1-2
III	2	2	Table 2-1	GDP growth rate	2-1
III	2	2	Table 2-2	Projection of steel demand up to 2010	2-2
Ш	2	2	Table 2-3	Projection of flat products ratio	2-2
***	4	4	10010 6-3	and its quantity	2-2
				and no quantity	2-2

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				4		

3

.

_.____

Chapter	Part	Section	Table/Figure	Title	Page
Ш	2	2	Figure 2-1	Macroscopic projection of steel	
				producto demonte	2-3
Ш	2	4	Table 4-1	Demand projection for Base case	4-1
III	3	1	Table 1-1	Forecast of obsolete scrap	
				generation	1-2
Ш	3	1	Table 1-2	Coal reserves over the world	
				(based on the data in 1986)	1-5
Ш	3	1	Figure 1-1	Demand and supply of ferrous	
				materials in ASEAN countries	1-2
Ш	3	1	Figure 1-2	Net scrap export from main	
				export countries	1-3
Ш	3	1	Figure 1-3	Transition of scrap price (HMS	
				Nc.1 scrap composite in U.S.A.)	1-3
Ш	3	2	Table 2-1	Representative process selection	
				of route B group	2-3
III	3	2	Table 2-2	Representative process selection	2.4
	_	-		of route C group	2-4
Ш	3	2	Table 2-3	Evaluation about iron-steel	2-15
m	2	2	Plana 0.1	making processes Process route for making liquid	2-13
Ш	3	2	Figure 2-1	steel from various ferruginous	
				materials	2-2
Ш	3	2	Figure 2-2	Blast furnace - Converter process	
	3		Figure 2-3	Material flow of MIDREX DR	- •
Ш	J		Figure 2-5	-EAF process	2-6
Ш	3	2	Figure 2-4	COREX-Converter process	2-7
Ш	3		Figure 2-5	Material flow of EAF process	2-8
Ш	3		Figure 2-6	Comparison of investment cost	
,,,,	-	, 2	rigaro 2 o	between iron-steel making	
				processes	2-12
Ш	2	3 2	Figure 2-7	Comparison of molten steel cost	
***	-	, 2	1900 - 1	between iron-steel making	
				processes (case A)	2-13
Ш		3 2	Figure 2-8	Comparison of molten steel cost	
		_	U U	between iron-steel making	
				processes (case B)	2-14
				•	

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				5		

Chapter	Part	Section	Table/Figure	Title	Page
III	3	3	Table 3-1	Demand by steel grade produced in NISW	3-1
111	3	3	Table 3-2	Attainable level of each steel making process	3-2
Ш	3	3	Table 3-3	Attainable hi-grade steel quality of each steel making processes	3-3
Ш	3	3	Table 3-4	The steel grade and the steelmaking process	3-5
M	3	3	Table 3-5	The comparison of CC – Hot process(1/2)	3-8
III	3	3	Table 3-6	The comparison of CC – Hot process(2/2)	3-9
Ш	3	3	Table 3-7	Steel grade and production process	3-10
)][3		Figure 3-1	The possibility of scrap	
	Ũ	0		procurement	3-4
Ш	3	4	Table 4-1	Comparison of hot strip mill type	s
	U	•		(CSP,MSP,CBM and CVM)	4-4
Ш	3	4	Figure 4-1	Schematic drawing of four types	
•••		•	1.60.0	of HSMs	4-2
П	4	1	Table 1-1	The criteria for site selection in	
		-		the 1 st survery	1-3
III	4	1	Table 1-2	Quantity of imported raw	
		-	•	material	1-4
Ш	4	1	Table 1-3	Relevant figures for the port data	1-4
Ш	4		Table 1-4	The investigation results of	
				ten proposed sites	1-7
Ш	4	1	Table 1-5	The investigation results of	
				Cam Pha and CaiLan(1)	1-8
Ш	4	1	Table 1-6	The investigation results of	
				Cam Pha and CaiLan(2)	1-9
Ш	4	F 1	Table 1-7	The investigation results of Thuy	,
				Nguyen and Dinh Vu(1)	1-10
Ш	4	† 1	Table 1-8	The investigation results of Thuy	,
				Nguyen and Dinh Vu(2)	1-11
III	4	4 1	Table 1-9	The investigation results of Cua	
				Sot and Thach Van(1)	1-12

۲

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:			1	6		

Chapter	Part	Section	Table/Figure	Title	Page
ш	4	1	Table 1-10	The investigation results of Cua	
111	•	-		Sot and Thach Van(2)	1-13
Ш	4	1	Table 1-11	The investigation results of	
	•	-		Vung Ang and Mui Ron(1)	1-14
Ш	4	1	Table 1-12	The investigation results of	
				Vung Ang and Mui Ron(2)	1-15
Ш	4	1	Table 1-13	The investigation results of	
				Da Nang and Dung Quat(1)	1-16
III	4	1	Table 1-14	The investigation results of	
				Da Nang and Dung Quat(2)	1-17
Ш	4	1	Figure 1-1	The location of ten proposed sites	
Ш	4	2	Table 2-1	The items of the criteria	2-2
Ш	4	2	Table 2-2	Relevant figures for the items	2-4
Ш	4	2	Table 2-3	The investigation results of port	
				for each site	2-5
Ш	4	2	Table 2-4	The investigation results of water	r o c
				supply for each site	2-6
m	4	1 2	Table 2-5	The investigation results of	2-7
				electric power supply	2-1
Ш	4	1 2	Table 2-6	The investigation results of land	2-8
_				preparation	2-0
Ш	4	4 2	Table 2-7	The investigation results of	2-9
				transportation cost Evaluation of each site from	L
Ш		4 2	Table 2-8	viewpoint of short term basis	2-10
ш			T . 1. 1. 2. 0	Evaluation of each site from	5.10
Ш		4 2	Table 2-9	viewpoint of long term basis	2-11
Ш		4 2	Table 2-10	The investigative results of	
Ш		4 2	14010 2-10	examining possibility	
				accommodating expansion plan	
				for each site	2-12
Ш		4 3	Table 3-1	The site conditions of Mui Ron	
щ		т <i>У</i>	10010 0 1	and Dung Quat	3-12
Ш		4 3	Table 3-2	Evaluation of each site from	
111				viewpoint of short term basis	3-16
Ш		4 3	Table 3-3	Evaluation of each site from	
ш		. 5		viewpoint of long term basis	3-17
				•	

Name of Project: Final Report Master Plan Study on the Development of S	teel Industry in t	he Socialist Re	public of Viet Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page 7
Date: Feb 17, 1998 Rev.:				*

Chapter	Part	Section	Table/Figure	Title	Page
JII	4	3	Table 3-4	IRR calculation results of each candidate site	3-18
M	5	1	Table 1-1	GDP composition by industrial sector	1-2
III	5	1	Table 1-2	Targets of GDP by the 1996-2000 Five-Year Plan	1-3
H	5	1	Table 1-3	Production by the year 2000	1-4
Ш	5	1	Table 1-4	Foreign currencies inflow and spending for 1996-2000	1-6
nı	5	1	Table 1-5	Investment structure planning for 1996-2000	1-7
III	5	1	Table 1-6	Capital mobilization planning for 1996-2000	1-8
Ш	5	1	Table 1-7	State budget planning for 1996-2000	1-8
Ш	5	1	Figure 1-1	GDP growth rates	1-1
III	5	2	Table 2-1	Degree of dependence of crude steel	<i>,</i> .
111	J	L		demand to final consumption in	
				Japan (1985)	2-2
III	5	2	Table 2-2	Stimulation factor of crude steel	
•••		~	10010 2 2	demand in Japan (1985)	2-3
Ш	5	2	Table 2-3	Projection for iron & steel demand	
	-			stimulation in Japan	2-4
III	5	2	Table 2-4	Composition of carbon steel consumption by industrial	
				sub-sector	2-5
Ш	5	2	Table 2-5	Outline of steel industry	
				rationalization program	2-8
Щ	5	2	Table 2-6	Industrial policies of Japan, Korea	
				and Taiwan	2-12
III	5	2	Figure 2-1	Relation of steel, investment and industry	2-1
Ш	5	2	Figure 2-2	Process for preparation of	
			U	industrial vision	2-11
11	5	3	Figure 3-1	Conditions for establishment of integrated steelworks	3-2
				0	a

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Fcb 17, 1998 Rev.:				8		

Chapter	Part Se	ection	Table/Figure	Title	Page
Ш	5	4	Figure 4-1	Flow of investment and loan in	
				Viet Nam	4-1
III	5	4	Figure 4-2	Supplier's credit	4-3
Ш	5	4	Figure 4-3	Buyer's credit	4-4
III	5	4	Figure 4-4	Project finance	4-5
Ш	5	4	Figure 4-5	OECF Loan	4-7
111	5	4	Figure 4-6	World Bank Loan	4-10
nı	5	4	Figure 4-7	Scenarios for financing of an	
			-	integrated steel plant project	4-12
IV	2	1	Table 1-1	Steel demand projection	1 - 1
١V	2	2	Table 2-1	Forecast of flat product demand	
				by final production process	
				(Slab basis)	2-1
N	2	2	Table 2-2	Maximum accessible demand	
				for each process (slab basis)	2-2
IV	2	2	Table 2-3	Production scale of hot finishing	
				facilities	2-4
IV	2	2	Table 2-4	Product kinds of hot rolled	0.0
				products	2-5
N	2	2	Table 2-5	Width distribution of all flat	25
				products	2-5
IV	2	2	Table 2-6	Thickness distribution	2-6
				of hot rolled products	2-6
īV	2	2	Table 2-7	Product size range(Step 2)	
IV	2	2	Table 2-8	Steel grade distribution by tensi	2-7
				strength	2-1
ĪV	2	2	Table 2-9	Size range and typical size	2-7
				for products	2-7
IV	2	2	Table 2-10	Grades of products	2-0
IV	2	2	Table 2-11	Annual production for each	2-8
				products	3-2
IV	2	3	Figure 3-1	Flow of production process	5-2
IV	2	3	Figure 3-2	Material flow and material	3-3
		_		balance (Step 1)	J-J
IV	2	3	Figure 3-3	Material flow and material	3-4
				balance (Step 2)	5-4

Name of Project: Final Report Master Plan Study on the Developme	nt of Steel Industry in t	he Socialist Re	public of Vict Nan	۱
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:			<u> </u>	9

Chapter	Part	Section	Table/Figure	Title	Page
IV	2	3	Figure 3-4	Material flow and material	25
IV	2	4	Table 4-1	balance (Step 3) Main specification of production	3-5
** *				facilities	4-1
IV	2	6	Figure 6-1	Case1-1 of general layout	6-2
IV N	2	6	Figure 6-2	Case2-1 of general layout	6-3
IV	2	6	Figure 6-3	Case1-2 of general layout	6-4
IV	2	6	Figure 6-4	Case2-2 of general layout	6-5
IV	2	6	Figure 6-5	General layout for Mui Ron site	6-7
IV	2	7	Table 7-1	Construction schedule	7-2
IV	2	7	Table 7-2	Construction schedule	
				(Step 0 & 1)	7-3
IV	2	7	Table 7-3	Construction schedule (Step 2)	7-4
ĪV	2	7	Table 7-4	Construction schedule (Step 3)	7-5
IV	3	1	Table 1-1	Domestic steel production	
				by company	1-5
IV	3	1	Table 1-2	Domestic steel production	
				by steel type in 1996	1-6
IV	3	1	Table 1-3	Total steel supply to market	1-7
IV	3	1	Table 1-4	Steel demand in 1996 by steel	
				type	1-8
IV	3	1	Table 1-5	GDP growth rate	1-11
IV	3	1	Table 1-6	Steel demand growth rate	1-11
IV	3	1	Table 1-7	Projection of steel demand	
				up to 2010.	1-12
IV	3	1	Table 1-8	Projection of flat products ratio	
				and its quantity	1-14
IV	3	1	Table 1-9	Projection of ASC/capita	1-14
IV	3	1	Table 1-10	Apparent steel consumption	
				of Asian countries	1-15
IV	3	1	Table 1-11	Foreign capital investment in	
				Thailand	1-18
ſV	3	1	Table 1-12	Projection of steel demand for	
				house construction	1-22
IV	3	1	Table 1-13	Steel demand for house	
				construction	1-23

Name of Project: Final Report Master Plan Study on the Development of Steel Indus	stry in the Socialist Re	public of Viet Na	m
JICA/Nippon Steel	Part	Section	Page
Date: Fcb 17, 1998 Rev.:			10

Ľ

Chapter	Part	Section	Table/Figure	Title	Page
IV	3	1	Table 1-14	Steel type for plant/warehouse construction	1-23
IV	3	1	Table 1-15	Steel type for plant/warehouse construction	1-24
IV	3	1	Table 1-16	Steel demand for office building/ hotel construction	1-24
IV	3	1	Table 1-17	Total steel demand for building construction	1-26
IV	3	1	Table 1-18	Projection of steel demand for bridge construction	1-27
IV	3	1	Table 1-19	Demand of guard rail	1-28
ĪV	3	1	Table 1-20	Specification of steel for power	
	-	-		transmission line	1-28
IV	3	1	Table 1-21	Steel demand for shipbuilding	1-30
IV	3	1	Table 1-22	Steel type and dimensions for	
				shipbuilding	1-31
IV	3	1	Table 1-23	Steel demand for shipbuilding	
				by size	1-31
IV	3	1	Table 1-24	Demand of automobiles	1-32
IV	3	1	Table 1-25	Quantity of domestic production	1-32
N	3	1	Table 1-26	Projection of steel demand for	
				the automobile industry	1-33
IV	3	1	Table 1-27	Production of household	
				appliance	1-34
IV	3	1	Table 1-28	Steel unit consumption	1-34
IV	3	1	Table 1-29	Steel demand for household	
				appliance	1-35
\mathbf{N}	3	1	Table 1-30	Coating weight	1-35
IV	3	1	Table 1-31	Steel specification for machine	
				tool	1-38
IV	3	1	Table 1-32	Demand projection for Base case	1-39
IV	3	1	Table 1-33	Typical steel grades and sizes	
				in 2010	1-40
IV	3	5 1	Table 1-34	List of organizations for the	
				interview survey	1-41
IV	1	3 1	Figure 1-1	Steel supply projection flow char	t 1-2

¢

Name of Project: Final Report Master Plan Study on the Developmer	nt of Steel Industry in t	he Socialist Re	public of Viet Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				11

Chapter	Part	Section	Table/Figure	Title	Page
IV	3	1	Figure 1-2	Steel demand projection flow chart	1-4
IV	3	1	Figure 1-3	Steel Intensity(SI) curve	1-10
ĪV	3	1	Figure 1-4	Per capita ASC and steel industry	
	Ũ	-		development stages	1-10
IV	3	1	Figure 1-5	Projection of steel products	
			D	demand	1-13
IV	3	1	Figure 1-6	GDP/capita and ASC/capita of	
			0	ASEAN countries in 1995	1-16
IV	3	1	Figure 1-7	Share of GDP by sectors in	
			-	Thailand and Viet Nam	1-17
IV	3	1	Figure 1-8	GDP/capita of Thailand	1-19
IV	3	1	Figure 1-9	ASC/capita and flat ratio of	
				Thailand and Viet Nam	1-20
ĪV	3	1	Figure 1-10	Steel demand prospect of	
				Thailand in 1993-1995	1-21
IV	3	2	Figure 2-1	Steel demand projection and steel	
				product supply capacity of the	
				integrated steelworks	2-1
IV	3	2	Figure 2-2	Material flow and material	
n 7	-	-		balance (Step 1)	2-3
IV	3	2	Figure 2-3	Material flow and material	
11.7	-	<u> </u>		balance (Step2)	2-4
IV	3	2	Figure 2-4	Material flow and material	0.6
IV		1	T-61. 1 1	balance (Step 3)	2-5
1V	4	1	Table 1-1	Rainfall volume comparison by	1-2
IV	4	1	Table 1-2	month Direction of wind	1-2
IV	4		Table 1-3		1-2
IV	4		Table 1-4	Humidity Wave record in open-sea near	1-5
1 V	4	L	14010 1-4	the site	1-3
IV	4	1	Figure 1-1	Soil properties of the site	1-1
IV	4		Figure 1-2	Tide figure near the site	1-3
ĪV	4		Table 2-1	Atmospheric temperature	
<u> </u>	-1	2		(Ha Tinh Prov.)	2-1
IV	4	2	Table 2-2	Atmospheric temperature	# #
- •	•	~		(Mui Ron)	2-1
				(mai non)	~ 1

Name of Project: Final Report Master Plan Study on the Development of S	teel Industry in t	he Socialist Reg	oublic of Viet Nan	n
IICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				12

Chapter	Part	Section	Table/Figure	Title	Page
N	4	2	Table 2-3	Rainfall (Ha Tinh Prov.)	2-2
IV	4	2	Table 2-4	Rainfall (Mui Ron)	2-2
ĪV	4	2	Table 2-5	Humidity	2-3
ĪV	4	2	Table 2-6	Latitude and hit of typhoons	
•				(results for the past 36 years)	2-3
IV	4	2	Table 2-7	Proportions of hit of typhoons	
				by months	
				(results for the past 100 years)	2-4
IV	4	2	Table 2-8	Water quality	2-5
IV	4	2	Table 2-9	Results of ion analysis of water	2-6
IV	4	2	Table 2-10	Noise measurement result	2-7
IV	4	2	Figure 2-1	Noise measurement result	2-8
IV	4	3	Table 3-1	Actual and future plan of	
				reservoirs near the site area	3-1
IV	5	1	Table 1-1	Import plan of iron ore	1 - 1
IV	5	1	Table 1-2	Properties of iron ore	1-2
IV	5	1	Table 1-3	Usage plan of iron ore	1-2
IV	5	1	Table 1-4	Ferrous burden for blast furnace	1-2
IV	5	1	Table 1-5	Import plan of coking coal	1-3
IV	5	1	Table 1-6	Properties of coal for coking	1-4
IV	5	1	Table 1-7	Usage plan of coal	1-4
IV	5	2	Figure 2-1	Worldwide demand of slabs	
				in 1996	2-1
IV	5	2	Figure 2-2	Trend of demand for semis	2-2
IV	5	2	Figure 2-3	Main slabs suppliers in 1996	2-3
IV	5	2	Figure 2-4	Trend of slab spot price	2-4
IV	6	2	Table 2-1	Automation level for each plant	2-2
IV	6	2	Table 2-2	Energy-saving facilities	2-3
N	6	2	Figure 2-1	Classification of automation	2-1
ľV	6	2	Figure 2-2	Concept of production control system	2-4
IV	7	· 1	Table 1-1	Construction schedule	1-4
IV	, 7		Table 1-2	Construction schedule	
11	,	Ł		(Step 0 and 1)	1-5
IV	7	۲ I	Table 1-3	Construction schedule (Step 2)	1-6
IV IV	7		Table 1-4	Construction schedule (Step 3)	1-7
14		1	14010 1 3		

Name of Project: Final Report Master Plan Study on the Developmen	t of Steel Industry in t	he Socialist Re	public of Vict Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page 13
Date: Feb 17, 1998 Rev.:	1			1.5

Chapter	Part	Section	Table/Figure	Title	Page
IV	7	2	Table 2-1	Manning allocation of management section	nt 2-2
IV	· 7	2	Table 2-2	Manning allocation of production section	2-2
IV	7	2	Table 2-3	Labor productivity for each phase	
IV	7	2	Table 2-4	Labor productivity of Japanese integrated steelworks	2-3 2-3
IV	7	2	Table 2-5	Manning plan for each step	2-5
ĪV	, 7	2	Figure 2-1	Management organization	2-4
IV	, 7	2	Figure 2-2	Administrative organization & its	
74	,	L	Figure 2-2	functions	2-5
IV	8	1	Table 1-1	Total cost of direct construction	2-3 1-2
IV	8	1	Table 1-2	Direct construction cost (Step 1)	1-2
ĪV	8	1	Table 1-3	Direct construction cost (Step 2)	1-5
ĪV	8	1	Table 1-4	Direct construction cost (Step 2)	1-4
IV	8	1	Table 1-5	Total capital investment and cost	1-5
	0	-		per ton of crude steel	1-7
IV	8	1	Table 1-6	Acquisition cost of fixed assets	1-7
Ň	8	. 1	Table 1-7	Allocation of construction cost of	
	v	-		fixed assets to cost centers	1-9
IV	9	1	Table 1-1	Unit price of raw materials, fuels	1-7
	-	-		and other materials	1-3
IV	9	i	Table 1-2	Labor cost	1-4
IV	9		Table 1-3	Depreciation and tangible fixed	• •
				asset	1-5
IV	9	1	Table 1-4	Summarized operating cost per	~ -
				ton of main facrories by	
				calculation basis	1-7
IV	9	ł	Table 1-5	Utility production cost	1-8
IV	9	ŧ	Table 1-6	Cost structure	1-8
IV	9	1	Table 1-7	Sensitivity analysis	
				(Effect to operating cost)	1-9
IV	1	0 1	Table 1-1	Production and sales plan	1-1
IV	1	0 1	Table 1-2	Selling price	1-2
IV	1	0 1	Table 1-3	Raising of funds and payment	
				forecasts during construction	1-4

Name of Project: Final Report Master Plan Study on the Development	t of Steel Industry in t	he Socialist Re	public of Viet Nar	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Fcb 17, 1998 Rev.:				14

Chapter	Part Sec	tion	Table/Figure	Title	Page
IV	10	1	Table 1-4	Net working capital	1-5
ĪV	10	1	Table 1-5	Project profit and loss	
1,		-		(Base case)	1-6
N	10	1	Table 1-6		1-8
ĪV	10	1	Table 1-7	Cash flow (Base case)	1-10
ĪV	10	1	Table 1-8	Profit-loss by product type	
		_		(ordinary year)	1-12
IV	10	1	Table 1-9	Investment effect analysis and	
•				sensitivity analysis	1-15
IV	10	1	Table 1-10	Cash flow (Base case)	1-16
IV	10	1	Table 1-11	Cash flow (Alternative 1)	1-20
IV	10	1	Figure 1-1	Profit-loss break even point	
			0	analysis (Ordinary Ycar)	1-13
IV	10	1	Figure 1-2	Sensitivity analysis of IRROI	
				(Before tax)	1-14
ſV	11	1	Table 1-1	Classification of shadow pricing	
				for construction costs	1-8
IV	11	1	Table1-2	Classification of shadow pricing	
				for product prices and operation	1-9
 .			a 11 1 1	costs Trade statistics in Vict Nam	1-10
N	11	1	Table 1-3		1-14
IV	11	1	Table 1-4	Cash flow (EIRR)	1-16
IV	11	1	Table 1-5	EIRR by sensitivity analysis	1-18
IV	11	1	Table 1-6	Saving of foreign exchange	1-10
IV	11	1	Table 1-7	Estimated job creation for the	1-19
			D' 11	plant operation Study flow for economic analysis	
N	11	1	Figure 1-1	Environmental control measures	1-3
IV	12	1	Table 1-1		1-7
IV	12	1	Table 1-2	Emission standard	1-8
IV	12	1	Table 1-3	Effluent standard	1-11
IV	12	1	Table 1-4	Energy saving measures	1-12
IV	12	1	Table 1-5	Energy balance	1 - 1 2.
IV	12	1	Table 1-6	Emission standards for	1-13
** 7			m 11 1 1	regulatory substances	1 1 2
IV	12	1	Table 1-7	Emission at New Integrated Steel Plant	1-14
π.)		4	Table 1 9	Dimensions of stacks of principa	
IV	12	1	Table 1-8	combustion facilities	1-15
				COMPUSIION JACIANUS	

Name of Project: Final Report Master Plan Study on the Developme	ent of Steel Industry in t	he Socialist Re	public of Vict Nan	۱
JICA/Nippon Steel	Chapter	Part	Section	Page

Chapter	Part Se	ction	Table/Figure	Title	Page
IV	12	1	Table 1-9	Wind velocity and maximum ground concentration	1-16
ĪV	12	1	Table 1-10	Wind velocity and maximum	1-10
11	, L	I		ground concentration	1-16
IV	12	1	Table 1-11	Effluent at New Integrated Steel	
				Plant	1-22
IV	12	1	Table 1-12	Water balance	1-22
IV	12	1	Table 1-13	Results of aggregation of sound	
				sources	1-23
IV	12	1	Table 1-14	Effects of each sound source	
				at evaluation point W-5	1-24
IV	12	1	Table 1-15	Treatment of substances and	
				emissions	1-27
IV	12	1	Table 1-16	Water quality	1-29
IV	12	1	Table 1-17	Results of ion analysis of water	1-30
IV	12	1	Table 1-18	Wind velocity and maximum	
				ground concentration	1-31
ĪV	12	1	Table 1-19	Wind velocity and maximum	
				ground concentration	1-32
IV	12	1	Figure 1-1	Material balance	1-2
IV	12	1	Figure 1-2	Ground level concentration	
				distribution of SOx	1-17
IV	12	1	Figure 1-3	Ground level concentration	
				distribution of SOx	1-18
IV	12	1	Figure 1-4	Ground level concentration	
	_			distribution of NOx	1-19
IV	12	1	Figure 1-5	Ground level concentration	
n 7				distribution of NOx	1-20
IV	12	1	Figure 1-6	Noise simulation result	1-25
IV	12	1	Figure 1-7	Ground level concentration	
π.		-		distribution of SOx	1-33
IV	12	1	Figure 1-8	Ground level concentration	
n 7				distribution of SOx	1-34
ſV	12	1	Figure 1-9	Ground level concentration	
пt				distribution of NOx	1-35
IV	12	1	Figure 1-10	Ground level concentration	
				distribution of NOx	1-36

(**D**

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				16		

Chapter	Part Se	ction	Table/Figure	Title	Page
IV	13	1	Figure 1-1	Future steps to be taken for the development of integrated	
				steelworks	1-7
IV	14	· 1	Table 1-1	Amount of soil for land	
				preparation	1-2
IV	14	1	Table 1-2	Construction schedule for port	
				and port facility	1-3
IV	14	2	Table 2-1	Quantity of imported raw	
				materials for planning of port	2-1
IV	14	2	Table 2-2	Quantity of steel product	
				transportation for planning	~ •
				of port	2-1
IV	14	2	Table 2-3	Specifications of each berth	2-2
IV	14	2	Table 2-4	Construction schedule for land	0.5
75 7		~		preparation	2-5
IV	14	2	Figure 2-1	Scope of dredging	2-3
IV	14	3	Table 3-1	Materials data (Step 2)	3-2
IV	14	3	Table 3-2	Materials data (Step 3)	3-2
IV	14	3	Table 3-3	Consumption of raw materials at	2.2
R.7		•	TIL 2 (each plant	3-3
IV	14	3	Table 3-4	Specifications of raw material	2 0
R/		~	TAL 2 C	handling equipment	3-8
IV	14	3	Table 3-5	Manning plan of raw material	3-6
n <i>i</i>		2	T. 1.1. 2. (yard Construction schedule of raw	3-0
IV	14	3	Table 3-6		
				materials and fuels yard	3-11
IV	14	3	Figure 3-1	equipment Raw material flow (Step2)	3-4
IV	14	3	Figure 3-2	Raw material flow (Step3)	3-5
IV	14	3	Figure 3-3	Material treatment flow chart	3-9
IV	14	3	Figure 3-4	Layout of raw material handling	0 9
14	14	5	Figure 3-4	facilities	3-10
IV	14	4	Table 4-1	Chemical composition of raw,	5 10
* *	17	-1	10010 7-1	sub-materials and sinter	4-1
IV	14	4	Table 4-2	Sinter product quality	4-1
IV IV	14	4	Table 4-2	Sinter production plan	4-2
11	14	4	τανις π.λ	outer provaction plan	

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				17		

þ

Chapter	Part Se	ction	Table/Figure	Title	Page
IV	14	4	Table 4-4	Quantity of main and sub-materials	4-3
IV	14	4	Table 4-5	Specifications of sinter plant equipment	4-4
IV	14	4	Table 4-6	Unit consumption and quantity of utilities	4-3
IV	14	4	Table 4-7	Manning plan of sinter plant	4-7
IV IV	14	4	Table 4-8	Construction schedule of sinter	
1,	1 7	.4	10010 1 0	plant	4-8
IV	14	4	Figure 4-1	Sinter plant process flow	4-5
ĪV	14	4	Figure 4-2	Layout of sinter plant	4-6
IV	14	5	Table 5-1	Production plan of coke plant	5-1
īV	14	5	Table 5-2	Production balance of coke plant	
_				(Step 3)	5-2
IV	14	5	Table 5-3	Coal blending plan	5-2
IV	14	5	Table 5-4	Required coal quality	5-2
IV	14	5	Table 5-5	Coke quality expectation	5-3
IV	14	5	Table 5-6	Operational yield and coefficient	5-3
IV	14	5	Table 5-7	Equipment specifications	5-4
IV	14	5	Table 5-8	Quantity of coal	5-10
IV	14	5	Table 5-9	Utility requirements and quantity of products and by-products	5 4 6
IV	14	5	Table 5-10	(Step 2) Utility requirements and quantity of products and by-products	5-10
IV	14	5	Table 5-11	(Step 3) Manning plan for coke and	5-11
IV	14	5	Table 5-12	by-product plants Construction time schedule for	5-11
				coke plant	5-13
IV	14	5	Figure 5-1	Schematic process flow	5-6
IV	14	5	Figure 5-2	Raw material and product balance (Step 3)	e 5-7
IV	14	5	Figure 5-3	Plot plan of coke and by-product plant	5-9
IV	14	6	Table 6-1	Material and fuel conditions	6-1

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel	Chapter	Part	Section	Page			

Chapter	Part Sec	ction	Table/Figure	Title	Page
IV	14	6	Table 6-2	Material and fuel unit	6-2
				consumption	0-2
IV	14	6	Table 6-3	Blast furnace operating	6-2
				conditions	0-2
IV	14	6	Table 6-4	Specifications of blast furnace	6-4
rs 7		,	T-11-6-6	equipment Utility consumption of blast	
IV	14	6	Table 6-5	furnace	6-3
11.7	14	6	Table 6-6	Manning plan of blast furnace	6-7
IV N/	_	6	Table 6-7	Construction schedule of blast	
IV	14	0		furnace	6-8
IV	14	6	Figure 6-1	Blast furnace process flow	6-5
IV IV	14	6	Figure 6-2	Layout of blast furnace	6-6
	14	0 7	Table 7-1	Production plan of time calcining	
IV	14	'		kiln	7-1
IV	14	7	Table 7-2	Property of lime stone	7-3
IV IV	14	7	Table 7-3	Desired property for BOF	7-3
IV IV	14	, 7	Table 7-4	Desired property for other use	7-3
IV	14	, 7	Table 7-5	Operating condition	7-3
ĪV	14	7	Table 7-6	The capacity of kilns	7-4
IV IV	14	7	Table 7-7	Equipment specifications of	
14	1 '		•••••	calcining plant (CaO)	7-5
IV	14	7	Table 7-8	Production and unit consumption	7-7
ĪV	14	7	Table 7-9	Manning plan of calcining plant	7-7
ĪV	14	7	Table 7-10	Construction schedule of lime	
				calcining plant (CaO)	7-8
N	14	7	Figure 7-1	Raw material and product	
			•	balance	7-2
IV	14	7	Figure 7-2	Equipment flow of lime calcining	3
				process	7-6
IV	14	8	Table 8-1	The construction timing and the	
				amount of production	8-1
IV	14	8	Table 8-2	Hot metal condition (assumption) 8-2
N	14	8	Table 8-3	Product mix and production	<u> </u>
				process of flat product	8-4
N	14	8	Table 8-4	Product mix and production	0.7
				process of non-flat product	8-5

Name of Project: Final Report Master Plan Study on the Development of S	Steel Industry in t	he Socialist Re	public of Viet Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page 19
Date: Feb 17, 1998 Rev.:			1	

-1

9

Chapter	Part Sco	ction	Table/Figure	Title	Page
IV	14	8	Table 8-5	Main materials blending ratio and yield	8-3
IV	14	8	Table 8-6	Operating condition of BOF plant	8-6
IV	14	8	Table 8-7	Equipment specification of BOF	
				plant	8-11
IV	14	8	Table 8-8	The manning plan of BOF plant	8-13
IV	14	8	Table 8-9	Production and unit consumption	
				of steelmaking process	8-16
IV	14	8	Table 8-10	Construction schedule of BOF	
				oxygen furnace plant (BOF)	8-18
IV	14	8	Figure 8-1	Material balance of steelmaking	
				plant at Step 2	8-7
IV	14	8	Figure 8-2	Material balance of steelmaking	
				plant at Step 3	8-8
IV	14	8	Figure 8-3	Equipment flow of steelmaking	
				plant	8-14
IV	14	8	Figure 8-4	Layout of steelmaking plant	8-15
IV	14	9	Table 9-1	The construction timing and	0.1
				amount of product	9-1
W	14	9	Table 9-2	The operating condition of BOF	9-2
IV	14	9	Table 9-3	Size distribution and amount	0.0
- •		_		of production	9-2
IV	14	9	Table 9-4	Operating condition of slab CCM	9-3
IV	14	9	Table 9-5	Yield of slab casting operation	9-3
IV	14	9	Table 9-6	Size-mix of billet production	9-4
IV	14	9	Table 9-7	Operating condition of billet	
				ССМ	9-4
IV	14	9	Table 9-8	Yield of billet casting operation	9-4
IV	14	9	Table 9-9	Productivity balance between	
				CCMs and BOFs	9-5
IV	14	9	Table 9-10	Main specification of slab CCM	9-6
IV	14	9	Table 9-11	Main specification of billet CCM	
ĪV	14	9	Table 9-12	Equipment specifications	9-7
IV	14	9	Table 9-13	Unit consumption of CCM	
				process	9-11
lV	14	9	Table 9-14	The manning plan of the slab CC	М
				plant	9-12

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
HCA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:			<u> </u>	20		

Chapter	Part Se	ction	Table/Figure	Title	Page
IV	14	9	Table 9-15	The manning plan of the billet CCM plant	9-12
īV	14	9	Table 9-16	Construction schedule of slab CCM plant	9-13
IV	14	9	Table 9-17	Construction schedule of billet CCM plant	9-14
IV	14	9	Table 9-18	The type and capacity of billet CCM	9-16
IV	14	9	Figure 9-1	Equipment flow of slab casting process	9-9
IV	14	9	Figure 9-2	Equipment flow of billet casting	
T T T				process	9-10
IV	14	9	Figure 9-3	Influence of BOF capacity	9-15
IV	14	9	Figure 9-4	Influence of slab width	9-15
IV	14	9	Figure 9-5	Influence of sequence casting	9-15
IV	14	10	Table 10-1	Forecast of flat product demand by final production process (product basis)	10-4
IV	14	10	Table 10-2	Forecast of flat product demand by final production process	10-5
IV	14	10	Table 10-3	(slab basis) Accessible demand for each	10-5
IV	14	10	Table 10-4	process(slab basis) Product mix of hot rolled	10-6
				products	10-8
ſV	14	10	Table 10-5	Width distribution of flat produc narrower than 1600mm	ts 10-11
ſV	14	10	Table 10-6	Width distribution of all flat products	10-12
IV	14	10	Table 10-7	Thickness distribution of hot	10-12
IV	14	10	Table 10-8	rolled products Thickness range and typical sizes	S
N	14	10	Table 10-9	of products Typical steel grade for flat products	10-13 10-13
N	14	10	Table 10-10	Product size range(Step 1)	10-13
IV IV	14	10	Table 10-10	Product size range(Step 2)	10-21

Name of Project: Final Report Master Plan Study on the Development of Steel	Industry in the Socialist Re	public of Viet Nar	n
HCA/Nippon Steel	Part	Section	Page
Date: Feb 17, 1998 Rev.:			21

Ì

.

Chapter	Part Sc	ction	Table/Figure	Title	Page
IV	14	10	Table 10-12	Operating time of HSM	10-22
IV	14	10	Table 10-13	Required production efficiency of	of
				HSM	10-22
IV	14	10	Table 10-14	Product yield and unit	
				consumption of HSM	10-23
IV	14	10	Table 10-15	Facility configuration of HSM	10-24
IV	14	10	Table 10-16	Slab storage plan	10-24
N	14	10	Table 10-17	Main facilities of roll shop	10-27
IV	14	10	Table 10-18	Configuration of hot finishing	
				facilitics	10-28
IV	14	10	Table 10-19	Thickness range of finishing	
				facilities	10-28
IV	14	10	Table 10-20	Operational conditions and	
				performances	10-29
IV	14	10	Table 10-21	Outline specification of HSPM	10-30
IV	14	10	Table 10-22	Operational conditions and	
				performances	10-31
W	14	10	Table 10-23	Outline specification of HSHL	10-32
IV	14	10	Table 10-24	Operational conditions and	
				performances of HPCL	10-33
IV	14	10	Table 10-25	Outline specification of HPCL	10-34
IV	14	10	Table 10-26	Operational conditions and	
_ -				performances	10-35
N	14	10	Table 10-27	Outline specification of HSRL	10-36
IV 	14	10	Table 10-28	Areas of coil cooling yard	10-37
ĪV	14	10	Table 10-29	Coil conveyor plan	10-38
IV	14	10	Table 10-30	Utility consumption at HSM	10.20
B 7				plant	10-39
IV N	14	10	Table 10-31	Manning plan of HSM plant	10-44
IV BZ	14	10	Table 10-32	Equipment list of HSM plant	10-48
ĪV	14	10	Table 10-35	Construction volume of HSM plant	10-51
IV	14	10	Table 10-33	Construction schedule of HSM	
A T	11	10		plant (Step 1)	10-52
IV	14	10	Table 10-34	Construction schedule of HSM	. –
			10010 10 01	plant (Step 2)	10-53
				t / t .)	

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:			1	22		

Chapter	Part Sec	ction	Table/Figure	Title	Page
IV	14	10	Figure 10-1	Production flow of HSM plant	
			_	at Step 2 (in 2010)	10-9
IV	14	10	Figure 10-2	Production flow of HSM plant	
				at Step 1 (in 2006)	10-10
N	14	10	Figure 10-3	Hot strip mill plant layout	10-46
IV	14	11	Table 11-1	Size range and typical sizes for	
				products	11-2
IV	14	11	Table 11-2	Grades of products	11-2
IV	14	11	Table 11-3	Annual production for each	
				products	11-3
IV	14	11	Table 11-4	Specification of products packing	g 11-3
IV	14	11	Table 11-5	Product yields of each process	
				facilities	11-4
IV	14	11	Table 11-6	Production hours of process	
				facilities	11-8
IV	14	11	Table 11-7	Manning plan of cold strip mill &	
				metal finishing plant	11-8
IV	14	11	Table 11-8	Utility consumption of process	44.0
				facilities	11-9
IV	14	31	Table 11-9	Evaluation of the annealing	11-14
N 7	1.4		P1	facilities	
IV	14	11	Figure 11-1	Production flow of cold strip mil & metal finishing plant at Step 1	
IV	1.4	11	Disease 11.2	Production flow of cold strip mil	
17	14	11	Figure 11-2	& metal finishing plant at Step 2	
IV	14	13	Table 13-1	Total power supply and demand	13-1
IV	14 14	13	Table 13-2	Estimated energy balance at	
14	14	13	14010-13-2	Step 1, HOT COLD plan	13-6
IV	14	13	Table 13-3	Estimated energy balance at	
17	• •	15	10010 10 0	Step 2, BF x 1, BOF x 2,	
				2.3 million ton/year plan	13-7
IV	14	13	Table 13-4	Estimated energy balance at	
				Step 3, BF x 2, BOF x 3,	
				4.5 million ton/year plan	13-8
١V	14	13	Table 13-5	Equipment list and basic	
				specifications of power receivin	g
				and distribution facilities	13-9

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel Date: Feb 17, 1998 Rev.:	Chapter	Part	Section	Page 23		

AN A

Chapter	Part Se	ction	Table/Figure	Title	Page
IV	14	13	Table 13-6	Construction schedule of power receiving and distribution facilities at Step 1 and Step 2,	
				Step 3	13-11
IV	14	13	Table 13-7	Manning plan for energy section	
¥2. ¥				in equipment division	13-13
IV	14	13	Figure 13-1	Power flow of Step 1, HOT and	
11.7				COLD plan	13-2
IV	14	13	Figure 13-2	Power flow of Step 2, BF x 1 and	
IV	1.4	1 1	D'	BOF x 2 plan	13-2
IV	14	13	Figure 13-3	Power flow of Step 3, BF x 2 and	13-3
IV	14	13	Figure 13-4	BOF x 3 plan Planned basic one line diagram	13-5
ĪV	14	13	Table 14-1	Estimated process steam balance	15-5
1 V	14	14		at Step 2 and 3	14-1
N	14	14	Table 14-2	Equipment list and basic	74.1
••	11	.,		specifications of power plant	14-4
IV	14	14	Table 14-3	Construction schedule of power	
	• /			plant at Step 2 and Step 3	14-5
IV	14	14	Figure 14-1	Typical equipment flow	14-3
IV	14	15	Table 15-1	Specifications of blast furnace	
				blower	15-1
IV	14	15	Table 15-2	Utility consumption and quantity	
				of utilities	15-2
IV	14	15	Table 15-3	Manning plan of blast furnace	
				blower	15-2
IV	14	15	Table 15-4	Construction schedule of blast	
				furnace	15-3
IV	14	15	Figure 15-1	Process flow of blast furnace	
				blower	15-1
IV	14	16	Table 16-1	Estimated oxygen balance	16-1
IV	14	16	Table 16-2	Estimated nitrogen balance	16-2
IV	14	16	Table 16-3	Equipment list and basic	
				specifications of air separation	
				plant	16-4

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				24		
Chapter	Part Se	ction	Table/Figure	Title	Page	
---------	---------	-------	--------------	---	--------------	
IV	14	16	Table 16-4	Construction schedule of air separation plant at Step 2 and Step 3	16-5	
IV	14	16	Figure 16-1	Outline of oxygen flow	16-2	
IV	14	16	Figure 16-2	Outline of nitrogen flow	16-3	
IV	14	17	Table 17-1	Total supply balance of fuel	17-1	
N	14	17	Table 17-2	Kind of fuel used in each plant	17-3	
٢V	14	17	Table 17-3	Equipment list and basic specifications of fuel gas facilities and utility piping	17-6	
IV	14	17	Table 17-4	Construction schedule of fuel gas facilities and utility piping	17-7	
IV	14	17	Figure 17-1	Fuel flow of Step1, HOT and COLD plan	17-2	
IV	14	17	Figure 17-2	Fuel flow of Step2, BF x 1 and BOF x 2 plan	17-2	
IV	14	17	Figure 17-3	Fuel flow of Step3, BF x 2 and BOF x 3 plan	17-3	
IV	14	17	Figure 17-4	Planned basic fuel distribution system flow	17-5	
IV	14	18	Table 18-1	Balance of required industry/ potable/sea water by each plant	18-2	
IV	14	18	Table 18-2	Specifications of facilities by each step	18-3	
IV	14	18	Table 18-3	Construction schedule for water supply	18-4	
IV	14	19	Table 19-1	Transport quantities for each step	19-1	
IV	14	19	Table 19-2	Method of transport and transport distance	19-2	
IV	14	19	Table 19-3	Required quantity & specificatio of transport equipment	n 19-3	
IV	14	19	Table 19-4	Railway equipment plan	19-4	
IV	14	19	Table 19-5	Construction cost of intraworks		
IV	14	19	Table 19-6	transport equipment Construction schedule	19-4 19-5	

Name of Project: Final Report Master Plan Study on the Development	nt of Steel Industry in t	he Socialist Re	public of Viet Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				25

Ð

Chapter	Part Se	ction	Table/Figure	Title	Page
IV	14	20	Table 20-1	Equipment list and basic specifications of intraworks	20-3
IV	14	20	Table 20-2	telecommunication facilities Construction schedule of intraworks telecommunication facilities at Step 1, Step 2 and	
IV	14	20	Figure 20-1	Step 3 Outlined telecommunication	20-4 20-2
IV	14	21	Table 21-1	system flow	21-1
ĪV	14	21	Table 21-1 Table 21-2	Construction plan for each phase Function of each shop	21-1
IV IV	14	21	Table 21-2	Main machinery arrangement	21-2
IV IV	14	21	Table 21-3	Manning plan	21-2
ĪV	14	21	Figure 21-1	Layout of central maintenance	21-3
	17	<i>4</i> 1	116010 21-1	shop	21-5
IV	14	22	Table 22-1	Function and test and analysis	
IV	1.4	22	T.1.1 00 0	item	22-2
IV IV	14	22	Table 22-2	Manning plan	22-3
IV IV	15	1	Table 1-1	Total loading and unloading cost	1-2
IV	15	1	Table 1-2	Delivery type and costs for two candidate sites of new integrated	
N	15	1	Table 1-3	steelworks	1-4
1 V	10	1	18010 1-5	Transportation volume of steel products to north and south areas	1-5
IV	15	1	Table 1-4	Coil center for hot rolled coil	1-5
ĪV	15	1	Table 1-4	Coil center for cold rolled coil	1-9
IV	15	1	Table 1-6	Projection of steel to be handled coil center in Viet Nam in 2010	-
IV	15	1	Table 1-7	List of dealers/traders of steel in Viet Nam	1-12
IV	15	1	Figure 1-1	Total delivery cost	1-12
ĪV	15	1	Figure 1-2	Function of intermediate facilitie	
ĪV	15	1	Figure 1-3	Layout of a coil center for hot	0 K = 1
			-	rolled coil in Japan	1-9
IV	15	1	Figure 1-4	Layout of a coil center for cold rolled coil in Japan	1-10

Name of Project: Final Report Master Plan Study on the Development of	Steel Industry in (the Socialist Re	public of Vict Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				26

Chapter	Part S	ection	Table/Figure	Title	Page
IV	16	l	Table 1-1	Demand and Supply Forecast in	1 2
IV	16	1	Table 1-2	Vietnam (Long products) Study for investment for long products mill <case a="" integrated<="" td=""><td>1-2</td></case>	1-2
IV	16	1	Table 1-3	steel plant in north> Study for investment for long products mill <case b="" integrated<="" td=""><td>1-5</td></case>	1-5
IV	16	1	Table 1-4	steel plant in central region> Study for investment for long products mill <case c="" integrated<="" td=""><td>1-6</td></case>	1-6
IV	16	1	Table 1-5	steel plant in south> Typical steel grade and recommended process for long	1-7
IV	16	1	Figure 1-1	products Long products consumption in	1-9
IV	16	1	Figure 1-2	Thailand Long products consumption in Malaysia	1-3 1-3
IV	16	2	Table 2-1	Size mix for wire rod mill	2-1
IV	16	2	Table 2-2	Steel grade mix for wire rod mill	2-1
ĪV	16	2	Table 2-3	Main specification of wire rod	2-2
IV	1 /	2	T-51- 0-4	mill Reviewent list for wire red mill	2-2 2-3
IV IV	16	2 2	Table 2-4	Equipment list for wire rod mill Size mix for bar mill	2-3 2-6
iV	16	2	Table 2-5	Steel grade mix for bar mill	2-6
IV	16	2	Table 2-6	Main specification of bar mill	2-0 2-7
IV	16	2	Table 2-7 Table 2-8	Equipment list for bar mill	2-7
IV	16 16	2	Table 2-8	Size mix for bar and section mill	2-11
IV IV		-			2-11
IV	16	2	Table 2-10	Steel grades for bar and section mill	2-11
IV	16	2	Table 2-11	Main specification of bar & section mill	2-12
IV	16	2	Table 2-12	Equipment list for bar and section mill	2-13
N	16	2	Figure 2-1	Wire rod mill layout	2-15
IV IV	10	2	Figure 2-1	Bar mill layout	2-10
IV	16	2	Figure 2-3	Bar & section mill layout	2-10

Name of Project: Final Report Master Plan Study on the Development of S	teel Industry in	the Socialist Rej	oublic of Viet Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				27

Chapter	Part	Section	Table/Figure	Title	Page
AP. III	3	2	Table 1-1	Outlines of scrap/EAF process	2-23
ΛР. Ш	3	2	Table 1-2	Production plan to estimate	
	-	-		the energy balance	2-25
AP. III	3	2	Table 1-3	Power balance for a 3 million ton	
	_			of crude steel / year plan	2-26
AP. III	3	2	Table 1-4	Fuel balance for a 3 million ton	
				of crude steel / year plan	2-27
AP. III	3	2	Table 1-5	Unit energy consumption for a	
				3 million ton of crude steel /	
				year plan	2-28
АР. III	3	2	Figure 1-1	Blast furnace process flow	2-2
АР. Ш	3	2	Figure 1-2	MIDREX process flow	2-5
A P. 🞚	3	2	Figure 1-3	HYL-III process flow	2-7
AP, III	3	2	Figure 1-4	FINMET process flow	2-9
AP. 🛙	3	2	Figure 1-5	IRON CARBIDE process flow	2-11
AP. III	3	2	Figure 1-6	SL/RN process flow	2-13
AP. 🎚	3	2	Figure 1-7	FASTMET process flow	2-15
AP. 🞚	3	2	Figure 1-8	DIOS process flow	2-20
AP. III	3	2	Figure 1-9	COREX process flow	2-21
AP. 🛙	3	2	Figure 1-10	ROMELT process flow	2-22
AP. 🖩	3	2	Figure 1-11	Schematic diagram of scrap/EAF	
				process	2-24
A P. 🖩	3	3	Table 1-1	Outline of scrap/EAF process	3-1
A P. 🖩	3	3	Table 1-2	Modernized scrap/EAF process	
				technology	3-3
AP. 🛙	3	3	Table 1-3	Outline of BOF typical process	
				divided into three (3) stages	3-4
AP. III	3	3	Table 1-4	Outline of typical BOF process	
				(BOF)	3-5
AP. III	3	3	Table 1-5	The characteristics of secondary	
				refining process	3-6
AP. []]			Table 1-6	The outline of ISP	3-8
AP. II			Table 1-7	The outlines of CSP	3-9
AP. III			Table 1-8	The outlines of MSP	3-11
A P. 阻			Table 1-9	The outlines of CVP process	3-13
A P. []]		3 3	Table 1-10	The modernized main	
				technologies	3-14

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
HCA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:				28		

Chapter	Part	Section	Table/Figure	Title	Page
A₽. Ⅲ	3	3	Figure 1-1	Typical material flow of EAF	
				process	3-2
<u>АР. Ш</u>	3	3	Figure 1-2	Schematic flow of scrap/EAF	
				process	3-2
AP. III	3	3	Figure 1-3	Improvements in the EAF	
				technologies	3-3
A P. III	3	3	Figure 1-4	Schematic diagram of basic	
				oxygen furnace (BOF) process	3-7
AP. 🎚	3	3	Figure 1-5	Schematic drawing of ISP	3-10
AP. III	3	3	Figure 1-6	Schematic drawing of CSP	3-10
AP. II	3	3	Figure 1-7	Schematic drawing of MSP	3-12
AP. III	3	3	Figure 1-8	Schematic drawing of MSP	3-12
AP. 🎚	3	3	Figure 1-9	Conventional CC-Hot process	
			*	(CVP)	3-15
AP. 🛙	3	3	Figure 1-10	Schematic drawing of	
				conventional coil box mill	
				process	3-15

Name of Project: Final Report Master Plan Study on the Development of	of Steel Industry in t	the Socialist Re	public of Viet Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				29

List of Abbreviations

J

AFTA:	ASEAN Free Trade Area
ASC:	Apparent Steel Consumption
ASEAN:	Association of South-East Asian Nations
b.scf:	billion standard cubic feet
B/C:	Buyer's Credit
BAF:	Box Annealing Furnace
BF:	Blast Furnace
BF&BOF	Blast Furnace and Basic Oxygen Furnace
BFG:	Blast Furnace Gas
BOF:	Basic Oxygen Furnace
BOFG:	Basic Oxygen Furnace Gas
BOT:	Build, Operate, Transfer
BPD:	Barrel Per Day
BT:	Billet
BTC:	Billet Center
CAL:	Continuous Annealing Line
CAPL:	Continuous Annealing & Processing Line
CAS:	Composition Adjustment by Sealed argon bubbling
	(Simplified ladle refining)
CAS-OB:	CAS Oxygen Blowing (process)
CBM:	Coil Box Mill
CC:	Continuous Casting
CCC:	Continuous Continuous Casting (Sequence casting)
CCM:	Continuous Casting Machine
CGC:	Commercial Grade Continuous Casting steel
CGL:	Continuous Galvanizing Line
CO:	Coke Oven
CO:	Carbon monoxide
COD:	Chemical Oxygen Demand
COG:	Coke Oven Gas
CPL:	Coil Preparation Line
CQ:	Commercial Quality
CRI:	Coke Reaction Index
CRM:	Cold Rolling Mill
CSM:	Cold Strip Mill
CSP:	Compact Strip Production
CSR:	Coke Strength after Reaction
CVM:	Conventional three quarter Mill
CVP:	Conventional CC-Hot Process
DC:	Down-Coiler

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel Date: Feb 17, 1998 Rev.:	Chapter	Part	Section	Page 1		

DDQ:	Deep Drawing Quality
DH:	Dortmund Horder (vacuum degassing process)
DHCR:	Direct Hot Charge Rolling
DI:	Drum Index
DL:	Dwight Lloyd(type sintering machine)
DQ:	Drawing Quality
DR:	Direct Reduction
DRI:	Direct Reduced Iron
DWT:	Dead Weight Ton
E/N:	Exchange of Note
EAF:	Electric Arc Furnace
ECL:	Electrolytic Cleaning Line
EGL:	Electrolytic Galvanizing Line
ERW:	Electric Resistance Welding
ETL:	Electrolytic Tinning Line
EXIM:	Export-Import Bank(s)
F/S:	Feasibility Study
FDI:	Foreign Direct Investment
FM:	Finishing Mill
FOB:	Free On Board
GDP:	Gross Domestic Product
GI:	Galvanized Iron
GNP:	Gross National Product
H.W.L:	High Water Level
HBI:	Hot Briguetted Iron
HCMC:	Ho Chi Minh City
HD:	Hot Dip
Hema:	Hematite
HMR:	Hot Metal Ratio
HMS:	Heavy Melting Scrap
HP:	High Power
HPCL:	Heavy Plate Cutting Line
HSHL:	Hot Shear Line
HSM:	Hot Strip Mill
HSPM:	Hot Skinpass Mill
HSRL:	Hot Slitting and Recoiling Line
IBRÐ:	International Bank for Reconstruction and Development
IC:	Iron Carbide
IDA:	International Development Association
IFC:	International Finance Corporation
IG:	Ingot Casting
IISI:	International Iron and Steel Institute

Name of Project: Final Report Master Plan Study on the Development of S	teel Industry in	the Socialist Rep	bublic of Viet Na	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:				2

ISP:	In-line Strip Production
JDB:	Japan Development Bank
JICA:	Japan International Cooperation Agency
JIS:	Japanese Industrial Standard
JV:	Joint Venture
L/3:	Level 3 computer system
L/G:	Letter of Guarantee
P/O:	Pickled and Oiled sheet and strip
LD:	Linz-Donawitz process
LDG:	LD Gas
LF:	Ladle Furnace
Limo:	Limonite
LPG:	Liquid Propane Gas
Mag:	Magnetaite
MIĞA:	Multilateral Investment Guarantee Agency
M-DEMAG:	Mannesmann DEMAG
MITI:	Ministry of International Trade and Industry
MMBTU:	Million British Thermal Unit
MOC:	Ministry Of Construction
MOI:	Ministry Of Industry
MOSTE:	Ministry Of Science, Technology and Environment
MPI:	Ministry of Planning and Investment
MPN:	Most Probable Number
MSP:	Medium-thickness Slab Process
NISW:	New Integrated Steelworks
NOF:	Non Oxidized Furnace
ODA:	Official Development Assistance
OECD:	Organization for Economic Co-operation and Development
OECF:	Overseas Economic Cooperation Fund
PABX:	Private Automatic Branch Exchange
PAX	Private Automatic Exchange
PEB:	Pre-Engineered Building
PL:	Pickling Line
PR	Public Relations
R&D	Research and Development
RCL:	Re-Coiling Line
RCM:	Reverse Cold-rolling Mill
RF:	Reheating Furnace
RH:	Rheinstahl Huttenwerke und Heraus (vacuum degassing
	process)
RHF:	Rotary Hearth Furnace
RM:	Roughing Mill

Ľ

Name of Project: Final Report Master Plan Study on the Development of	Steel Industry in t	he Socialist Re	public of Viet Nan	۱
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:		•••• · •	<u> </u>	3

S/C	Supplier's Credit
S/S:	Sub-Station
SBQ:	Special Bar Quality
SEAISI:	South East Asia Iron & Steel Institute
SM:	Sintering Machine
SPM:	Skinpass Mill
SPW:	Spiral Pipe Welding
SR:	Smelting Reduction
SSC:	Southern Steel Corporation
Т-Т:	Tap to Tap Time
ТСМ:	Tandem Cold-rolling Mill
TEU:	Ton Equivalent Unit
TFS:	Tin Free Steel
TISCO:	Thai Nguyen Iron and Steel Corporation
TMBP:	Tin Mill Black Plate
TPM:	Temper Mill
TSP:	Thin Slab Process
UC:	Unit Consumption
UHP:	Ultra High Power (operation)
UOE:	U-ing O-ing and Expanding (pipe process)
VAD:	Vacuum Arc Degassing
VAI:	VOEST ALPINE Industicanlagenbau GmbH
VD:	Vacuum Degassing process
VM:	Volatile Matter
VND:	Vietnamese Dong
VOD:	Vacuum Oxygen Decarburization (process)
VSC:	Viet Nam Steel Corporation
WB:	World Bank

Name of Project: Final Report Master Plan Study on the Developme	ent of Steel Industry in t	he Socialist Re	public of Viet Nar	n
JICA/Nippon Steel Date: Feb 17, 1998 Rev.:	Chapter	Part	Section	Page 4

Chapter I Background to "the Master Plan Study on the Development of the Steel Industry in the Socialist Republic of Viet Nam"

Name of Project: Final Ro Master Plan Study on the	eport Development o	of Steel Industry in t	he Socialist Re	public of Viet Nan	1
JICA/Nippon Steel		Chapter	Part	Section	Page
Date: Feb 17, 1998	Rev.:	1		<u>] </u>	

Part 1 Background to "the Master Plan Study on the Development of the Steel Industry in the Socialist Republic of Viet Nam"

Section 1 Background to "the Master Plan Study on the Development of the Steel Industry in the Socialist Republic of Viet Nam"

Name of Project: Final R Master Plan Study on the	•	of Steel Industry in t	he Socialist Re	public of Viet Nan	n
JICA/Nippon Steel		Chapter	Part	Section	Page
Date: Feb 17, 1998	Rev.:		1	1.	

)

•

Contents

Page

1.	Background to the study1
2.	Purposes of the study3
3.	Study schedule 3
4.	Study organization5

Name of Project: Final Report Master Plan Study on the Developn	nent of Steel Industry in t	he Socialist Re	public of Viet Nan)
JICA/Nippon Steel	Chapter	Parl	Section	Page
Date: Feb 17, 1998 Rev.:		1	1 1	Ŭ

1. Background to the study

After Viet Nam won its independence from France (September 1945), it went through a long period of war. In July 1976, the unification of North and South was realized, and the Socialist Republic of Viet Nam has since then been engaged in postwar reconstruction under a socialistic system. In December 1986, the country decided to adopt Doi Moi (reform) policy, and this policy aims at:

- (1) relaxation of the centrally planned production, introduction of the independent profit system, and introduction of the production contracting system
- (2) placing weight of production on food, essential goods and export goods
- (3) opening economy to outside, and legislation for accepting foreign investments.

Afterwards, agricultural produce remarkably increased under the policies of reducing agricultural tax rates etc.

On the other hand, although inflation advanced in the latter half of the 1980's, it was successfully restrained by inflation control policies such as reduction in government subsidies, tight budget, interest rate raising, and curbing of the rise of wages. Owing, however, to the influence of the collapse of the USSR, the COMECON trade system was disrupted, and trade settlement by hard currency became necessary. Then, because of the cessation of economic assistance from Russia and the shortage of imported fundamental materials due to chronic shortage of foreign currencies, the resurgence of inflation has been feared.

A new economic plan was adopted at the Seventh National Congress in 1991, which aims to achieve, while promoting market economy, an annual growth rate of 4-5% in agriculture and 10-12% in industry over a period of 10 years accomplishing GDP in the year 2000 double that in 1990.

At the Eighth National Congress in June last year, an average annual growth rate of 8.2% in GDP from 1991 to 1995 was confirmed, and it was also announced that the country would strive to grow to be an industrial nation by the year 2020.

Name of Project: Final Report Master Plan Study on the Development of	Steel Industry in	the Socialist Rep	oublic of Viet Nat	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	1	1	1	1

The production of iron and steel used to be controlled by Vietnam Steel Corporation (VSC), a substructure of the Ministry of Industry, which controls materials industries.

The steel industry today has an imbalance between the upstream process which produces crude steel and the downstream process which manufactures rolled products. The combined North and South annual production by the upstream process is said to be about 300,000 tons while the annual production by the downstream varies from 1,000,000 to 1,500,000 tons. This gap in production capacity seems to have been filled with imported semi-products. It is strongly felt, however, that the construction of an integrated steelworks to resolve this imbalance problem and the introduction of a structure for producing steel products for shipbuilding and automotive applications expected during 2000-2010 are urgent.

The actual production of steel products in 1995 was about 500,000 tons while the domestic demand in the same year was about 1,100,000 tons. The gap amounting to about 600,000 tons was filled with imported steel products.

The domestic demand projection for 2000 is said to be about 3,500,000 tons. The Government of Viet Nam has requested Japan to carry out master-plan planning for the promotion of the steel industry and a pre-feasibility study for the construction of an expected new integrated steelworks in Viet Nam.

To respond to this request, the Japan International Cooperation Agency dispatched a pre-survey mission from June 6 to 15, 1996 to Viet Nam to discuss the details, scope, etc., of the feasibility study based on the background and history to the request. As agreement was reached with the Government of Viet Nam, the agreement document on the scope of work (S/W) of the feasibility study was signed on June 12.

Name of Project: Final Report Master Plan Study on the Deve		ry in the Socialist	Republic of Vict Na	m
JICA/Nippon Steel	Chapte	r Part	Section	Page
Date: Feb 17, 1998 Re	<u>v.: I</u>	11	1	2

2. Purposes of the study

The purposes of the study are:

- (1) to work out a master plan for the promotion of the steel industry, first by obtaining the information on the future outlook (2010) and supply-demand projections based on socioeconomic policies, development plans, and the present state of the steel industry, secondly by examining viable domestic projects and sites from the conditions of domestic resources, site conditions, etc., thirdly by planning an optimum production structure required for the Vietnamese steel industry in 2010 including the revamping of existing works, and lastly by suggesting crucial policies;
- (2) to carry out a pre-feasibility study on the priority project selected by the Viet Nam side if a decision is made that the construction of a new steelworks is necessary as a result of the master plan study; and
- (3) to transfer the technology of making various polices for the promotion of the steel industry, feasibility study procedures, etc., to the Vietnamese counterparts.
- 3. Study schedule

୍ଦ

This study, following the preparatory work in September 1996, was started by dispatching the first site-study mission and conducted as shown in Figure 1-1.

Name of Project: Final Report Master Plan Study on the Developme	ent of Steel Industry in t	he Socialist Re	public of Viet Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page 2
Date: Feb 17, 1998 Rev.:		1		

Contents of study			Work c	ontents in F	Y 1996							Work c	ontents in H	FY 1997
	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Fundamental investigation Social/Economic situation Status quo/ind development Review of ind'trzation pley Sector develop't plan Develop't plan/spcial infra Nat'l resource develop't plan Steel expansion plan Role of steel ind for economy Status quo/Exist Works Raw materials/fuels Technical level of operation Production/Equipment Product quality/shipping Supply/Demand study Import of semi/finish prodet Past production record Raw material/Fuel Reductant (Coal, Nat'l gas) Iron ore Sub-materials Survey of possible site Land form, geology Infrastr/Transp conditions	Preprtry wrk • Data clictn • Pre study • Prep matrial	→ → → → → → → → → →	- Cap - Stud - Stud - Stud - Stud - Stud - Raw - Site/ - New - Prep - New - Prep - New - Prep - Stel - New - New - Prep - Stel - New - Stel - Stel - New - Stel - Stel - New - Stel - Stel	n t	d es of iron	2-nd s - - - - S-D - Site - Site - Usat mat/ - Proc - Advi plan - Exp	study ole raw fuel ess tech ice/Exst exp plan ectation/ plant	S-D gap plant expanse plant dy cess technol- nalysis fruction on nic impact of		-	ed in	 Energy Proces Produce Op co Capita Comm Comm Comm Comm Gen la Site Proot Raw Proot Intra struct Teclevice Proot Intra struct Teclevice Proot Intra struct Teclevice Proot Struct Proot Intra struct Teclevice Proot Proot Proot Struct Proot Struct Proot Proot Struct Proot Proot<td><u>k/Japan</u> Swork) al balance y balance</td><td>- Soc - Ecc - Cor an sch - Ste - Rec - Rec -</td>	<u>k/Japan</u> Swork) al balance y balance	- Soc - Ecc - Cor an sch - Ste - Rec -
Output documents	- 1 - 1 - 1	Backgrnd · Obj Methodology Questionnaire		H U Prog <u>Rpri</u> 1 - Survey progress - Next sty request		Mar/I Prog Rprt 2 - Surv prog - Next plan requ	ey ress i sty &		(Draft) Report - Suppl - Proce	Jun/E <u>Report</u> Master Plan) (y/Demand g (ss technolog plant project	sy		<u>F</u> - -	8 Sep/E Prog <u>Rpt1</u> 3 Survey progress Next sty plan & request

Figure 1-1 Overall Schedule of Master Plan & Pre-Feasibility Study

Chapter	Part	Section	Page
Ι	ĺ,	1	4

Contents of study			Work c	ontents in F	Y 1996						•	Work con	tents in FY	1997
	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Fundamental investigation - Social Economic situation - Status quo ind development Review of ind trzation pley - Sector develop't plan - Develop't plan/spcial infra - Nat'l resource develop't plan - Steel expansion plan - Role of steel ind for economy Status quo Exist Works - Raw materials fuels - Technical level of operation - Production Equipment - Product quality shipping Supply Demand study - Import of semi-finish prodet - Past production record Raw material Eucl - Reductant (Coal, Nat'l gas) - Iron ore - Sub-materials Survey of possible site - Land form, geology - Infrastr Transp conditions	Prepricy wrk - Data clletn - Pre study - Prep matrial		- Cap - Stud - Stud - Stud - Stud - Stud - Raw - Site - New - Prej -st site survey Methodology Nst'I develp't plcy, bekgroum Survey of ex- sting works Op/Equip/Exp: plan - Survey/Steel consunt'g ind - Survey/Steel consunt'g ind - Survey/Steel - Raw mat/fuel - Energy - Nat'I res devp - Pre-survey of possible sites ed in	in t	t s of iron	(I - - - - - - - - - - - - - - - - - - -	Need for new New site prior Applicable pro gy by sample a Stepwise cons study/suggesti Social/Econor new plant con te suvy tudy tudy tudy le raw nel iss tech ce/Exst exp plan ctation/) S-D gap g plant expansin plant ity occess technol- analysis struction ion nic impact of		- P re - R fc F - P w fi n	ext irvey	 Common Gen layo Gen layo Site loc Prod m Raw mi Process Intrawc structur Tech le vironm Procure thod (FC Construstedul Base di stdy, pr Base di Cnfmm 	apan ork) balance dance dow m premise design wase data ost study equip plan equip cost ut study survey ation ix, amount, at/fuel used s technlgy orks infra- re ivel, en- ent endins ement me- DB/TK/BOT)	- Envi - Op c - Prof - Fina - Soci - Econ - Con - Step - Rec - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Output documents	- 19 - 19 - 10 - 10 - 10 - 10 - 10 - 10	E Oct/M Coption POI1 Backgrnd+C Acthodolog Questionna Jaster sche	S) ire	B I Prog <u>Rpt1</u> - Survey progress - Next sty request		Mar/B Prog <u>Rpit</u> 2 - Surve progro - Next plan d reque	y ess sty &		(Draft M Report) - Suppl - Proce	Jon/E <u>Report</u> <u>Master Plan</u>) y/Demand ga ss technology plant project			Prog <u>Rprt</u> - Sur pro - Ne pla	

()

Figure 1-1 Overall Schedule of Master Plan & Pre-Feasibility Study

Chapter	Part	Section	Page
Ι	1	1	4

4. Study organization

The members of the Japanese group organized for this study are shown in Figure 1-2.

The members of the Vietnamese group who cooperated with the Japanese group at site are shown in Figure 1-3.

Name of Project: Final Report Master Plan Study on the Develo	pment of Steel Industry in t	the Socialist Re	public of Viet Nar	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	1	1	1	5

.

Figure 1-3 Vietnamese counterparts

)

Name of Project: Final Report Master Plan Study on the Development o	f Steel Industry in t	the Socialist Rep	oublic of Viet Nar	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	Ī	1	1	7

Chapter II Present Situation of the Steel Industry in Viet Nam

Name of Project: Final I Master Plan Study on th		of Steel Industry in t	ne Socialist Re	public of Viet Nan	1
JICA/Nippon Steel		Chapter	Part	Section	Page
Date: Feb 17, 1998	Rev.:	H			

Part 1 Organization and Administration of Viet Nam Steel Corporation

Name of Project: Final Report Master Plan Study on the Developmen	t of Steel Industry in 1	he Socialist Re	public of Viet Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	II	1		

Section 1 Organization and Administration of Viet Nam Steel Corporation

Name of Project: Final Report Master Plan Study on the Development of	Steel Industry in t	he Socialist Re	public of Viet Nan	۱
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	Ш	1	1	

Contents

Page

1.	0	Organization and management of Viet Nam Steel Corporation	1
1.	1	Organization of VSC	1
1.	2	Joint ventures of VSC	4
1.	3	Present state of VSC's management activities	-5

Name of Project: Final Report Master Plan Study on the Development	nt of Steel Industry in t	the Socialist Re	public of Vict Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	1	1	

- 1. Organization and management of Viet Nam Steel Corporation
- 1.1 Organization of VSC The organizational structure of VSC is shown below.

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in I	he Socialist Re	public of Viet Nan	a
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	1	1	1

VSC, is a large state owned corporation established pursuant to the Decision No. 255/TTg dated April 29, 1995 of the Prime Minister, Decree No. 03/CP dated January 25, 1996 of the Government to approve the statutes and operation organization of the Corporation and business registration No. 109612 dated February 5, 1996 issued by the Ministry of Planning and Investment, empowered to plan policies by itself and propose them to the higher level of administration, and, at the same time, has been required to operate on the independent profit system. In matters of personnel and budget, however, VSC implements steel industry policies in close communication with the Ministry of Industry.

As has been shown above, VSC is largely composed of four subsidiary departments. The main business of Department I is mainly the production of steel products and the construction of equipment related to it.

As the details of each mill are explained in the next section, a brief description of each mill is given here.

The Thai Nguyen Works, the only one integrated works in Viet Nam, has three blast furnaces, actually one in operation whose inner volume is 100m³ and turns all hot metal into cold pig-iron to be put in electric arc furnaces together with scrap, and after refining, manufactures reinforcing bars and shapes.

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in 1	ihe Socialist Rej	public of Viet Nar	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	II	1	1	2

The Southern Steel Corporation (abbreviated as SSC) is a group of EF and rolling mill plants. These plants used to be independent private mills, but have been consolidated for nationalization. Their equipment is aged, and each mill production capacity is low.

The Danang Steel Mill is a mini-mill with electric arc furnace of 1.5-ton capacity and a parallel-type bar mill.

The Ferrous R&D Institute, located in the suburbs of Hanoi, lacks in research equipment, and therefore needs reinforcements.

Although executives are sometimes sent to SSC from the North, the exchange of personnel between the North and South is not frequently realized.

Department II is mainly in charge of the sale of steel products, and is generically called Vina-Metal. This department is also responsible for importing steel products when the domestic demand exceeds production.

Department III is in charge of arranging the procurement of iron and steel raw materials and importing special steels and nonferrous metals except plain carbon steel. This department is also responsible for business diversification.

Department IV is an organization for training workers, and about 1,000 people are registered. The training period is 3 years.

*1 Organization of VSC Headquarters (manned with about 100 people according to the explanation)

Name of Project: Final Report Master Plan Study on the Develop	oment of Steel Industry in	the Socialist Re	public of Viet Nan	0
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	I	11	1	3

1.2 Joint ventures of VSC

The joint ventures between VSC and foreign capital are shown below.

- (1) VSC-POSCO Steel (Production of steel products for building construction)
- (2) Vina-Pipe Corporation (Production of weleded-pipes)
- (3) Vina-Kyoci Steel Co. (Production of steel products for building construction)
- (4) International Business Center

In addition to the above, there are joint ventures between subsidiaries of VSC and foreign capital as shown below.

- (1) Southern Steel Sheet Co., Ltd. (Galvanizing and color coating)
- (2) Colour Sheet Processing Center NIPPOVINA (Color coated sheet processing for building construction)

Name of Project: Final Report Master Plan Study on the Development of	Steel Industry in	the Socialist Rej	public of Viet Nar	m
JICA/Nippon Steel Date: Feb 17, 1998 Rev.:	Chapter II	Part	Section	Page

- (3) NatSteel Vina Company (Production of steel products for building construction)
- (4) POSVINA Co., Ltd. (Production of galvanized steel sheets for building construction)
- (5) VINGAL INDUSTRIES Co., Ltd. (Galvanizing pipe and processed products)
- (6) VINAUSTEEL Ltd. (Production of steel products for building construction)
- (7) Tydo Steel Co., Ltd. (Production of steel products for building construction)
- (8) Vinanic Steel Processing Company (Coil center)
- (9) Long Binh Steel Co., Ltd. (Production of steel structures, cold forming and welding products, etc.)
- (10) Sigon Steel Co., Ltd. (Coil center)
- 1.3 Present state of VSC's management activities

VSC was approved as a nationalized company on January 25, 1996 pursuant to a government ordinance issued on April 29, 1995, and registered as an organization to promote business activities in production and sale of steel and nonferrous metals throughout Viet Nam.

VSC is virtually a holding company of 16 subsidiaries and 13 joint ventures (12 on the above organization chart) with foreign capital. The main business activities of VSC are as follows.

- (1) Exploitation of iron ore and raw materials mines related to the steel industry
- (2) Production of steel and other metals, and manufacture of steel products

Name of Project: Final Report Master Plan Study on the Development o	f Steel Industry in	the Socialist Rep	bublic of Viet Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	Π	1	1	5

- (3) Trade and services related to steel, metals, iron ore and raw materials, materials (including sub-materials) for steel production, machinery and spare parts for the steel industry
- (4) Designing, manufacturing, building and assembling for steel production facilities
- (5) Training of personnel, and technical and scientific research for steel production
- (6) Hotel business, and other services in accordance with the laws and regulations of the Socialist Republic of Viet Nam

Steel production, the main business of VSC, has been at low levels, as detailed in the following section, at about 300,000 tons in 1996 because crude steel production by the electric arc furnace process suffered from insufficient equipment capacity, scrap shortage and unstable supply of electricity.

On the other hand, the domestic demand for steel products focusing on reinforcing bars was 1,300,000 tons including that for market stocks in 1996, and the domestic production of rolled steel products, except imports and stocks, in 1996 amounted to about 1,000,000 tons. A difference of 700,000 tons from the crude steel production, therefore, was produced from imported billets.

Joint ventures with foreign capital started operation one after another in 1995 and 1996. Among these joint ventures, VSC-POSCO, NatSteel, Vina-Kyoei, and VINAUSTEEL are each re-rolling makers with modern rolling mill equipment. None of them, however, has melting equipment, namely, electric arc furnaces. The total rolling capacity of VSC and joint venture companies is estimated at about 1,500,000 tons/year. If each of these joint ventures should individually import billets and roll them, their production would be excessively large, and the market price of reinforcing bars would drop.

In fact, mills under the control of VSC and SSC as well as joint ventures carried out extensive production cutbacks in 1996. If the equipment and facilities of joint ventures should be fully operated, VSC with obsolete and aged equipment would face the problem of a poor level of

Name of Project: Final Report Master Plan Study on the Development o	f Steel Industry in	the Socialist Rep	public of Viet Na	nı
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Fcb 17, 1998 Rev.:	11	1	1	6

111

competitiveness in terms of cost and quality. Therefore, the strong leadership of VSC in production adjustment and the modernization of mills under its control by restructuring and consolidation are necessary.

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in 1	he Socialist Re	public of Viet Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	1	1	1	7

Part 2 Present Situation of Existing Steel Plants and Direction of Their Rehabilitation

Name of Project: Final Report Master Plan Study on the Development of	Steel Industry in	the Socialist Re	public of Viet Na	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	11	2		

Section 1 Raw Material

Name of Project: Final Report Master Plan Study on the Developmen	t of Steel Industry in t	he Socialist Re	public of Viet Nan	3
IICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	11	2	1	
Contents

Page

1.	Preface	1
2.	Iron ore	1
3.	Oil and natural gas	2
4.	Coal	5
5.	Other raw materials for iron making	5

Name of Project: Final Report Master Plan Study on the Developme	nt of Steel Industry in	the Socialist Re	public of Viet Nar	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	1	2	1	

1. Preface

It has been reported that many deposits of raw materials for steel industry exist in Viet Nam and this section evaluates the present situation of mines supplying raw materials to existing steel industries and the potentiality of production increase from deposits from the view point of stable supply for long term.

2. Iron ore

Table 1-1 lists up the significant iron ore deposits which are known to exist in Viet Nam.

Deposit Name	Type of Ore	T.Fe	Geological Reserve ''	Mineable Reserve ''
Thach Khe	Magnetite and Hematite	About 61%	540	320
Trai Cau	Magnetite and Limonite	Mag:61-62% less than 55%	11.4	9.0
Quy Xa	Limonite	About 53%	118	98
Cao Bang	Magnetite	About 60%	37	not available
Ha Giang	Magnetite and Hematite	Less than 40%	128	not available
Tien Bo	Limonite	About 43%	21	not available

Table 1-1 Iron ore deposits in Viet Nam

1 Unit: million t

Trai Cau is the only iron ore mine in Viet Nam producing iron ore at the present time and it supplies lump ore to TISCO. The other deposits are not exploited. The quality of the lump ore sampled at Luusa steel works in TISCO is shown in Table 1-2 and compared to the chemistry of Australian lump ore which is a fairly representative lump ore for reference. From the figures it can be seen that Trai Cau has a high alumina and crystal water (or combined water) (CW) content.

	Total Fe	SiO ₂	A1203	P	Zn	CW	D.T.
The Ore	63.1	1.1	5.2	0.007	0.015	3.8	92.6
Australian ore	65.4	3.4	1.1	0.048	0.002	1.4	90.1

Table 1-2 Ore quality of Trai Cau mine

D.T.: +8.0mm% after Decrepitation Test

Name of Project: Final Report Master Plan Study on the Development o	f Steel Industry in	the Socialist Rep	ublic of Vict Na	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	2	1	1

Table 1-3 shows an analysis of the SiO_2 and Al_2O_3 with size fraction and distribution before and after washing. In finer sizes, the iron content is relatively low and the size fraction after washing becomes larger. This means that this ore is contaminated with adhesive clay material or gang minerals. It would normally understood that this ore is not suitable for big scale blast furnace.

Sizc(mm)	T.Fe	SiO,		washing	Size fraction before washing (%)
-0.045	56.1	4.1	8.7	0	3.2
0.25-0.5	61.4	2.4	4.1	0.4	0.5
2.8-4.8	65.3	0.9	2.2	6.2	5.8
4.8-8.0	61.8	1.4	5.5	40.4	40.1
8.0-16.0	67.9	0.2	1.1	43.3	40.0
0-16.0	63.1	1.1	5.2		

Table 1-3 Chemistry and size of the ore

The production level in long term plan is around 200,000 tons per year. From the present mineable reserves at this mine it can be expected for this production to increase.

Thach Khe iron ore deposit is the only one from which it is possible to supply ore to a large scale steel plant as it has a large reserve of ore with a high Fe content as shown in the Table 1-1. The recent study to evaluate Thach Khe iron ore has been canceled partly because of its high zinc content which complicates present iron making procedures and partly because of the smaller than expected reserve due to complicated structure of the deposit. On the other hand, exploration for other iron ore deposit is not being done. Therefore it can be concluded that under present exploration results and with present iron making technology there is no viable resource in Viet Nam for a large scale steel plant.

3. Oil and natural gas

There are eight basins in the Viet Nam off shore where oil and gas could be found. In the north of Viet Nam exploration for oil and natural gas started in late 1950s. Since 1973 in the south of Viet Nam exploration concessions have been awarded to foreign oil and gas companies.

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in t	he Socialist Re	public of Vict Nan	1
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	2	1	2

The following are the general information about 6 out of 8 basins with potentiality of oil and gas covered by first stage exploration at present.

(1) Hanoi Trough

Gas and condensate were detected in anticline structures associated with the faults. This area is believed to be potentially rich in gas.

(2) Red River (Song Hong) basin in the north

Some oil condensate and gas were discovered but not in commercial quantities.

(3) Phu Khanh basin in the center

A deep water basin in which seismic surveys and two wild cat showed no discoveries.

(4) Cuu Long (Mekong) basin in the southeast

There is production in two oil fields at Bach Ho and Rong and new discoveries are being made. This is one of the most prospective basins.

(5) South (Nam) Con Son basins.

Oil and gas discoveries were made and it seems to be a very promising area. The Dai Hung oil field is already under production and recently there have been many oil and gas discoveries.

(6) Malay Basin in south west

Area with high potential for the presence of hydrocarbon

Oil and gas are produced only in the southeast part of Viet Nam at present and also explorations are being done actively in this area. Some reports state that oil and gas have a tendency to exist in fractured granite basement and Miocene sands and this makes discoveries of oil and gas and evaluation of proven reserve difficult.

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in	the Socialist Re	public of Viet Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	H	2	1	3

In 1995, the production rate of oil and gas was 190,000 barrels per day and 2.7 million cubic meter per day respectively from Bach Ho oil field mainly. Production from this field is anticipated to decrease after 2000.

Oil production is planned to reach to the rate of 530,000 barrels per day in 2010 from oil fields other than Bach Ho oil field.

With respect to the future production of natural gas, follows are the only information possible to know.

Two dry gas wells with proven reserve are to be exploited certainly in near future as shown in Table 1-4.

Fields or well	Basin	Reserve (b.scf ¹)
Lan Do & Lan Tay	Nam Con Son	2,000
Well in block 11-2	Nam Con Son	1,000

Table 1-4 Gas reserves in future

*1 billion standard cubic feet

- Lan Do and Lan Tay fields

Production will start in the near future with reserve of 2 trillion cubic feet. -Gas wells in block 11-2

Production will start in the near future with reserve of 1 trillion cubic feet.

-These two wells will be exploited definitively in near future and Nam Con Son Project will combine these two with pipe line and transport gas to on-shore from these 2 wells.

Gas reserves in above-mentioned wells are not so big compared with anticipated future consumption. The period of viable gas production from these wells will not exceed 30 years (reserve of 3 trillion scf =10 million cubic meter/d production for 23 years).

More than 10 million cubic meter per day is planned to be used for electric power generation by the year 2010 and in this sense, under the present plan of gas usage and with present proven reserves, gas can not be relied on as the main fuel source for large scale iron making process.

Also natural gas can be produced from oil well as associated gas. As the ratio of associated gas is estimated to be around 100 m^3 -gas/ t-oil at the present time and the total production of associated gas is so small that the associated gas is not taken into account.

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel		Chapter	Part	Section	Page		
Date: Feb 17, 1998	Rev.:	11	2	1	4		

4. Coal

Most of the coal reserves in Viet Nam are anthracite and total mincable reserve are calculated to be 3.5 billion tons at annual production of 9 million tons in 1996. The scheduled increase of production 2 to 3 million tons per year requires an investment of US\$3 million per year.

	Table 1-9 Quarty of antinactic from Hongar									
	ΥМ	Ash	TS	С	Н	N	0	Maximum	Free swelling	
								fluidity	index	
Deo Nai	6.22	3.3	0.44	90.2	4.1	1.0	1.1	0	0	

Table 1-5 Quality of anthracite from Hongai

Sample of anthracite coal analyzed in Table 1-5 from Deo Nai mine in Hongai is lumpy bright coal which has lower ash content compared with average quality coal from the mine and the maximum fluidity of 0 compares with the ordinary coking coal maximum fluidity of around 1.0. Maximum fluidity is one of the most important properties for coking coal. So, it can not be used as coking coal.

Table 1-6 shows proven reserves of bituminous coal in Viet Nam, part of which would may be ranked as coking coal. These reserves are very small and only a small quantity of coking coal at the present is mined for TISCO from Lang Cam mine, which has a production of 90,000 tons per year from 3,600,000 tons of mineable reserve. At the moment there is no substantial source of coking coal for large scale iron making process in Viet Nam.

Table 1-6Bituminous coal reserves
(as of 1 January, 1986)

	• • • •	Unit: mil
Field of area	Possible reserves	Proven reserves
North area	9	7
Da River field	4	4
Nghe Tinh area	2	1

5. Other raw materials for iron making

Table 1-7 shows the natural resources near TISCO which shows abundant resources of raw materials like limestone and quartz near the plant. This conditions about the materials are the same all over the country.

Name of Project: Final Report Master Plan Study on the Developme	nt of Steel Industry in	the Socialist Re	public of Viet Nar	n			
JICA/Nippon Steel Chapter Part Section Page							
Date: Feb 17, 1998' Rev.:	11	2	1	5			

Mine Name	Mineral		Actual Mining Capacity (1,000 t/y)	Quality	Transpor- tation
Nui Voi	Limestone	15,200		CaO:51-54.0%	Truck
Khanh Hoa	Dolomite	1,410	20	MgO:12-21.5% CaO:30-34.6%	Truck
Vin Phu	Quartz	1,200	5	SiO ₂ >94%	Truck
Tuyen Quang	Chamotte	850	10	SiO2:68.29%, Al2O3:20.14%,	Truck
True Thon	Clay	7,200	15		Truck
Thanh Iloa	Dolomite	2,680	2	MgO:18-19.8% CaO:32-33%	Truck

Table 1-7 Natural resources near TISCO

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in t	he Socialist Re	public of Viet Nan	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Fcb 17, 1998 Rev.:	11	2	1	6

.

Section 2 Ironmaking Operation

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel	JICA/Nippon Steel Chapter Part Section Page						
Date: Feb 17, 1998 F	lev.:	Π	2	2			

Contents

1.	Status quo and actual production level of ironmaking 1
2.	The points at issue 1
3.	Rehabilitation plan and suggestion for the ironmaking area2

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam								
JICA/Nippon Steel	JICA/Nippon Steel Chapter Part Section Page							
Date: Feb 17, 1998 Rev.:		2	2					

1. Status quo and actual production level of ironmaking

The results of detail survey are shown in the Tables from 2-1 to 2-4. Only one blast furnace is working, the other two blast furnaces are shut down at present. The annual production of pig iron varies from 36,000 to 43,000 tons. Luuxa steelworks has a plan of operating three blast furnaces in the future.

2. The points at issue

(1) Luuxa works No.2 blast furnace produces $100 \sim 120$ tons/day of pig iron. The productivity of blast furnace is $1.0 \sim 1.2$ ton/day/m³.

The productivity is low in comparison with that of modern blast furnace. (2) The fuel ratio (1180 kg/t-pig) is very high in comparison with that of other

- (2) The fuel ratio (1180 kg/t-pig) is very fighth comparison with that of other countries which is about 500 kg/t-pig. The high fuel ratio is caused by the low blast temperature, high ash content of coke and high slag volume. The gas utilization ratio $(CO_2/(CO+CO_2)=27 \sim 33\%)$ is also low.
- (3) All pig iron is cast as mold pig iron at casthouse. One half of the mold pig iron is used for steel making, another half is used for foundry pig iron. The mold pig iron for steel making should be charged directly to the electric arc furnace. The heat is lost between iron making and steel making.
- (4) The Si content of pig iron for steel making does not need over 1.25%. The lower Si content is suitable for steel making because of the decrease of desiliconization material.
- (5) The slag basicity (CaO/SiO₂) is high and Al₂O₃ content is high. The high viscosity of slag is presumed. The permeability of blast furnace is getting worse for that reason.
- (6) The pig iron is cast and treated by workers. If the blast furnace productivity is improved, the casting work may not be finished within the present tap interval.
- (7) The coke sample was examined in Japan. The results are shown in the Tables from 2-5 to 2-8.
 - The ash content is very high.
 - The pore ratio is the same as that of Japanese coke.
 - The micro strength index is the same as that of Japanese coke.
 - The JIS reactivity is very high.
 - The ash composition is the same as that of Japanese coke.
 - The coke strength (DI: Drum index) is very low.

Steel Industry in 1	he Socialist Re	public of Viet Nam	
Chapter	Part	Section	Page
1 U	2	2	1
			Steel Industry in the Socialist Republic of Viet NamChapterPartSectionII22

- The coke strength after reaction (CSR) is very low.

(8) The ore sample was examined in Japan.

The results are shown in Tables 2-9 and 2-10.

- The lower size ore contains much gangue matter.
- Al_2O_3/SiO_2 is contained much in the gangue matter.
- The large size ore quality is good. The quality is ranked between magnetite and hematite.
- The JIS reducibility is 40%, less than hematite.
- The decrepitation is no problem.
- (9) Blast furnace equipment
 - No.2 blast furnace adopts the combination of cooling plate and stave cooler.
 - Chamotte and high Al₂O₃ are adopted for the shaft brick.
 - Chamotte and high Al₂O₃are adopted for the hearth brick.
- 3. Rehabilitation plan and suggestion for the ironmaking area
- (1) Increase of productivity

The increase of blast furnace productivity is needed to decrease fuel ratio by means of coke and ore quality improvement and raising blast temperature.

- (a) Coke quality improvement
 - The coal preparation process should be strengthened to remove ash.
 - The partial use of imported coking coal for coking property improvement.

The following effects will be got by these measures besides the productivity increase.

Coke strength improvement

After the coke strength is improved, the blast temperature will be able to maintain at high level.

- The improvement of blast furnace submaterials consumption.
- The decrease of blast furnace fuel ratio.
- (b) Ore quality improvement
 - The removal of adhesive fine particle

The fine particle adheres to large size ore. After removal of adhesive fine particle, the blast furnace permeability will be improved and the blast volume can be increased.

- The removal of high gangue matter particle (yellow particle).

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel Chapter Part Section Page							
Date: Feb 17, 1998 Rev.:	11	2	2	2			

1

The yellow particle contains little ferrous. The yellow particle is able to be removed using the magnetic separator.

After removal of yellow particle, the slag volume of blast furnace will decrease.

- (2) Molten pig iron charge to electric arc furnace (EAF) The direct charge of molten pig iron to EAF is recommended. But the EAF is distant from blast furnace. Then the molten pig iron temperature drops. The heat retention measure is needed, for example heat retention cover of pig iron ladle.
- (3) Blast furnace equipment improvement From the long life and good operation points of view, two suggestions are shown as follows.
- (a) Adoption of carbon brick for hearth wall The carbon brick has high thermal conductivity and is proof against molten pig iron.
- (b) Adoption of all stave cooler for furnace body

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel	Chapter	Part	Section	Page			
Date: Feb 17, 1998 Rev.:	П	2	2	3			

	Unit	Figure	Set	Remarks
Blast furnacc	m ³	100	3	No.2 blast furnace working
				No.1,3 blast furnaces shutdown
No.2 BF				First operating date: 29th Nov. '63
				China made
Tuyere			6	
Tap hole			1	
Cinder notch			2	
Profile	m			Diameter: Throat 2.5, belly 3.55
				Hearth 2.75
				Height: Throat 1.5, Shaft 6.35, Belly 1.5
				Bosh 2.8, Bosh~Tuyere 0.433
				Tuyere~ Tap hole 1.132
			l	Tap hole~ Bottom 0.302
Cooling				Upper: Cooling plate
				Lower: Stave cooler
				Hearth: Spray cooling
Charging equip.				Bell, Skip
Number of bins				Ore 10, Coke 2, Other 5
Hot blast stove			3	Cowper type with inside combustion
				chamber
				Maximum blast temperature: 850°C
Gas cleaning				Capacity: 1800 Nm ³ /min
Slag treatment				Ladle car 50%
		L	<u> </u>	Granulated 50%

1

Table 2-1 No.2 blast furnace specification

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
HCA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:	П	22	2	4		

_

	Unit	Present value and remarks
Production	ton/month	$3,000 \sim 3,600$
	ton/day	$100 \sim 120$
Fuel Coke ratio	kg/t	1,180
Blast Volume	Nm ³ /t	$220 \sim 240$
Pressure	g/cm ²	$750 \sim 850$
Temperature	ť	$750 \sim 850$
Top gas Pressure	g/cm ²	$350 \sim 450$
Temperature	ъ с	< 400
ċo	%	$28 \sim 32$
CO ₂	%	$12 \sim 14$
N_2	%	$56 \sim 62$
\mathbb{R}_2	%	< 1
Pig iron		For foundry iron For steelmaking
Temperature	l °C	1350 1300
C	%	$3.8 \sim 4.2$ $4.0 \sim 4.2$
Si	%	1.25 ~ 3.25 1.25 <
Mn	%	1.3 < 3.5 <
Р	%	0.20 < 0.22 <
S	%	0.6 < 0.07 <
		Casting iron weight 20kg
		Iron quantity of 1 tap : about 10 ton
Slag		For foundry iron For steelmaking
Volume	kg/l	450 400
SiO ₂	%	$28 \sim 30$ $30 \sim 32$
CaO	%	$38 \sim 41$ $37 \sim 39$
Al ₂ O ₃	%	$14 \sim 17$ $14 \sim 18$
MgO	%	$7 \sim 8$ $7 \sim 8$
CaO/SiO ₂		$1.35 \sim 1.45$ $1.30 \sim 1.40$
Charging		For foundry iron For steelmaking
		Magnetite Limonite
Ore base	ton/charge	$1.1 \sim 1.3$ $1.2 \sim 1.6$
Coke base	ton/charge	0.650 0.650
Orc/Coke	1	$1.5 \sim 2.0$ $2.0 \sim 2.2$

Table 2-2 Operational results (Present average value)

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in (he Socialist Re	public of Viet Nan)
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998' Rev.:	II	2	2	5

	Unit	Present value	and Remarks
Chemical composition		Magnetite	Limonite
T.Fe	%	$59 \sim 64$	53 ~ 64
FeO	%	$9 \sim 10$	$5 \sim 6$
SiO ₂	%	$0.5 \sim 1.5$	$1.0 \sim 1.2$
CaO	%	$1.0 \sim 1.5$	$1.0 \sim 2.0$
Al ₂ O ₃	%	-	-
MnO	%	$1.0 \sim 1.5$	$2.0 \sim 3.0$
S	%	$0.01 \sim 0.05$	$0.01~\sim~0.05$
Zn	%	$0.01 \sim 0.05$	$0.01 \sim 0.05$
Ръ	%	$0.05 \sim 0.06$	$0.08 \simeq 0.12$
Size distribution		Small	Large
	mm	$0 \sim 25$	$25 \sim 50$
~ 5	%	5	
$5 \sim 10$	%	10	
$10 \sim 15$	%	20	
$15 \sim 20$	%	25	
$20 \sim 25$	%	30	5
$25 \sim 30$	%	10	25
$30 \sim 40$	%		30
$40 \sim 50$	%		35
50 ~	%		5

Table 2-3 Ore quality

	~ /	0.1	1
Lahie	7.4	Coke a	mality.
JUUJY	~ .		luullut

	Unit	Present value and Remarks				
Coke analysis						
Ash	%	20~25				
Volatile matter	%	<1.0				
Fixed carbon	%	20~26				
S	%	1.5~1.7				
Ash analysis						
SiO ₂	%	40~45				
Al_2O_3	%	18~25				
T.Fe	%	18~25				
CaO	%					
MgO	%	5~8				
		2~4				
Size distribution	mm	$\sim 25 \sim 30 \sim 50 \sim 75 75 \sim$				
	%	20 20 30 20 10				

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel	Chapter	Part	Section	Page			
Date: Feb 17, 1998 Rev.:	IJ	2	2	6			

1

-

$Iauto L^{-}$	Table 2	-5 C	loke	properties	(1)
---------------	---------	------	------	------------	-----

Proximate analysis (%)				Ultima	ate analys	is (%)	
VM	Ash	TS	С	H	N	S	0
1.13	21.25	1.02	76.64	0.10	1.02	0.95	0.05

True density	Apparent density	Porosity	Micro- strength	JIS reactivity					
g/cm ³	g/cm ³	%	(-)	%					
2.10	1.09	48.1	66.22	44.3					

Table 2-6 Coke properties (2)

Table 2-7 Ash analysis

		-							the second se
SiO ₂ Al ₂ O ₃	Fe ₂ O ₃	TiO ₂	CaO	MgO	P ₂ O ₅	MnO	SO ₃	K ₂ O	Na ₂ O
55.98 24.94	9.05	1.14	3.81	1.17	0.38	0.06	2.45	0.46	0.07

Table 2-8 Coke strength

DI15 ¹⁵⁰	CRI	CSR
72~73	45.4	16.3

1

þ

Table 2-9 Comparison of size distribution of iron ores before and after washing

Size(1	<u></u>	-0.045	-0.063	-0.125	-0.25	-0.50	-1.0	-2.0	-2.8
<u>`</u>	Before	0.0	0.3	0.5	0.3	0.4	0.7	2.6	2.1
ratio	After	3.2	0.7	0.9	0.6	0.5	0.7	2.5	1.8
<u>(%)</u> Adhei	L	-				-		2.0	15.0
ratio	-			L	<u> </u>	<u> </u>		<u> </u>	<u> </u>

Size(mm)		-4.75	-8.0	-9.5	-13.2	-16.0	-19.0	+19.0
Mass	Before	6.2	40.4	17.1	20.5	5.7	3.2	0.0
ratio (%)	After	5.8	40.1	15.6	18.9	5.5	3.2	0.0
Adhering	<u> </u>	6.7	7.5	8.7	7.6	3.9	2.0	-

Name of Project: Final Report Master Plan Study on the Developmer	t of Steel Industry in t	he Socialist Re	public of Viet Nam	1
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	т п I	2	2	7

 Table 2-10
 Classification of iron ores used at Luuxa steelworks according to their appearance after washing

Size	Black and massive	Black and rough surface	Yellow
4.75 - 8.0 mm	57.9 mass %	36.9 mass %	5.2 mass %
8.0 - 9.5 mm	44.6	51.1	4.3
9.5 - 13.2 mm	44.7	53.0	2.2
13.2 - 16.0 mm	56.1	43.9	0.0

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in t	he Socialist Re	public of Viet Nar	ກ
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	2	2	8

Section 3 Steelmaking Operation

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in t	he Socialist Re	public of Viet Nan)
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	2	3	·

Contents

Page

	he status quo of plant equipm Production capacity estimation					
	The present situation and pre					
1.2.1	The production capacity and main specification					
1.2.2	The productivity per worker	r				4
1.2.3	The amount and quality of a	scrap generat	ed			4
1.2.4	EAF / Tap to tap time analy	zing				4
	Unit consumption (UC)					
	Shortage of billet and expan					
	The situation of steelmakin					
2. D	pirection of rehabilitation of a	existing steel	making plan	ts		8
2.1	The direction of improvement	nt measures f	or the existin	ng plants		8
2.1.1	To increase the productivity	y of EAF				8
	To increase the number of s					9
2.1.3	Hot metal charging to EAF	(Luu Xa w	orks)	••••••••		10
2.2	Integration of the steelmakin	ig plants				10
2.2.1	Present plan of SSC					10
2.2.2		plan				10
2.2.3	Problems					11
2.3	Outline of the present produc	ctivity impro	ving plans			11
2.4	Summary					12
2.4.1	The situation of the existin	g steelmakin	g plants			12
	The measures to increase the					12
3. R	Reference data					13
3.1	The data of steelmaking plar	nts informed	at first surve	у		13
3.2	The reference data of EAF o	peration in c	ase of Japan			15
	Outline of the present produ	ctivity impro	ving plan an	d investment	plan	17
	e of Project: Final Report					
Mast	er Plan Study on the Development of S	Steel Industry in	the Socialist Rep	Sublic of Viet Na	m r	
JICA	/Nippon Steel	Chapter	Part	Section	Page	
Date:	Feb 17, 1998 Rev.:	П	2	3		

1. The status quo of plant equipment

Ľ

The present situation of existing plants was investigated by oral interview and some data submitted by VSC during the 1st and 2nd survey. The rehabilitation plans are discussed and suggested hereinafter.

- 1.1 Production capacity estimation of existing steelmaking plants
- (1) The nominal production capacity is approx. 290 $\times 10^3$ t/y, and the actual capacity is assumed to be approx. 400 $\times 10^3$ t/y considering over charged ton/ht and actual tap to tap time. Actual production is approx. 300 $\times 10^3$ t/y in 1995 (partially '96 data). Table 3-1 shows EAF capacity of existing steelmaking plants.

Table 3-1 EAF capacity of existing steelinaking provide						
	Nominal			Actual		Actual
						production
Works	Equip. x	Prod. cap.	Equip. x	Тар-Тар	Prod. cap.	1995
	unit		unit			
	t/ht	$x 10^3 t/y$	OC t/ht	hr	t/ht	$x10^{3}t/y$
Luu Xa	<u>30 x 1</u>	54.0	30~35 x 1	3.5	60.0	('96) 42.0
Gia Sang	6 x 4	45.0	9 x 4	3.0	63.0	60.0
Da Nang St.	1.5 x 2	5.4	2.3 x 2	(1.5~)2.5	12.0	7.5
Bien Hoa St.	20 x 1	36.0	22 x 1	2hr 10min	60.0	50
Thu Duc St.	12 x 1	21.6	16 x 1	3.0	32.0	35
	8 x 1	14.4	10 x 1		20.0	<u> </u>
Nah Be St.	12 x 1	40.0	16 x 2	3hr 15min	60.0	(*96) 43.0
	10 x 1					
Tan Thuan	3 x 1	5.4	3 x 1	3.0	6.0	5.4
St.	(3 x 2)	(Alloy)	(3 x 2)			
	(1 x 1)	(Alloy)	(1 x 1)			
Tan Binh St.	10 x 1	18.0	12~14 x 1	3.0	27.0	23.5
Mechanical	8 x 1	34.2	8 x 1	3.0	40.0	34.2
Engineering	5 x 1		5 x 1			
	1.5 x 4	ļ	1.5 x 4		<u> </u>	
Average	8.2 x 20	15				
Total		289.0			398.0	300.6

Table 3-1 EAF capacity of existing steelmaking plants

Note: 1) Nominal Capacity = (Nominal t/ht) x 6 (ht/d) x 300 (d/y); The calculation formula is suggested by SSC.

2) Actual capacity =(Over charged t/ht) x 24 x 365 x 0.70/T-T(hr)

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in t	he Socialist Rej	public of Viet Nar	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:		2	3	1

- (2) The shortage of scrap is one of the limiting factors of EAF production capacity. Generating amount of scrap in Viet Nam seems to be different by region. Scrap is relatively easy to procure in the southern region, but in the northern region it is comparatively difficult to collect domestic scrap timely according to the EAF operation program.
- (3) The nominal capacity of continuous casting is approx. $330 \times 10^3 t/y$, and that of CC+Ingot is assumed to be approx. $480 \times 10^3 t/y$ as shown in Table 3-2.

Table 5-2 Continuous casting & ingot casting					
	BT-CC			I G	
		Nominal	Actual	Nominal	Actual
Works	ССМ	Capacity	Product	Capacity	Product
		$x10^3$ t/y	$x10^{3}t/y$	$x10^3 t/y$	$x10^3 t/y$
Luu Xa	4st CC	120.0	5.5('96)		36.6
Gia Sang			-	75.0	
Da Nang St.				16.0	
Bien Hoa St.	2st CC	70.0			 -
Thu Duc St.	2st CC	70.0			
Nah Be St.	2st CC	70.0	13.0		29.5
Tan Thuan St.				12.0	
Tan Binh St.				23.0	
Mechanical Eng.				20.0	
Total		330.0		146.0	

Table 3-2 Continuous casting & ingot casting

(4) The billet is imported instead of scrap, because the price of billet produced from imported scrap is not competitive to imported billet price. Figure 3-1 shows the non-flat production route in Vict Nam.

Figure 3-1 The non-flat production route in Viet Nam (product base)

Name of Project: Final Report Master Plan Study on the Developn	nent of Steel Industry in	the Socialist Re	public of Viet Na	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	11	2	3	2

- 1.2 The present situation and problems of existing steelmaking plants
- 1.2.1 The production capacity and main specification Table 3-3, Table 3-4, and Table 3-5 show the characteristics of existing steelmaking plants.

Table 3-3 The average capacity of VSC's steelmaking plants						
Number of	Number of	Average nominal	Actual annual capacity			
plants	EAF	capacity per EAF	per EAF			
10	20	8.2 t/ht/EAF	20 x10 ³ t/y/EAF			

 Table 3-4
 Equipment of the representative steelmaking plants surveyed

10010-0-1	Luu Xa	Nha Be
EAF	30 t/ht(OC 34t/ht) 16,000 kVA	12 t/ht (OC 16t/ht) 9,000 kVA 10 t/ht (OC 16t/ht) 9,000 kVA
	Inner Volume 27.9 m ³	Inner Volume 16.5 m ³
BT-CCM		100sq. x 2str. (at '97 +90 sq. Mold) Dec. 1995 started
		Made in India

Dust catcher No (Investment is not planned) Under construction (June '97) Note: The data of other steelmaking plants are shown in Table 3-16 and Table 3-17.

OC : Over charged

Table 3-5 Production of the representative plants

		Luu Xa	Nha Be
Actual in 1996		42,120 t/y (50% of capa.) • CC-BT 5,500 (13%) • Ingot 36,600 (87%)	42,500 t/y (94% of capa.) · CC-BT 13,000 (30%) · Ingot 29,500 (70%)
	Plan of CC ratio up	80% Mar. 1997	80% 1997 (mold size increase etc.)
	(informed)	CC: 120,000 t/y	EAF; 45,000 t/y /2 furnace CC; 70,000 t/y
Working	days, ht/M	15 day/M(50%), 96 hts/M	27 day/M(90%), 160 hts/M

The characteristics of the plants are as follows.

- a) Small capacity, many furnaces, and located in many places
- b) The biggest EAF is 30t/ht, the smallest one is 1.5 t/ht.
- c) The reference data of the EAF capacity(t/ht) distribution in Japan is shown in Figure 3-4.

Name of Project: Final Report Master Plan Study on the Development o	f Steel Industry in t	the Socialist Rep	oublic of Viet Na	າາ
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	II	2	3	

- d) It shows that the share of group A (capacity<301/ht) is approx. 50%, though average capacity of all EAF is approx. 901/h.
- c) The designed capacity is not satisfied at Luu Xa, due to bad domestic scrap.
- f) The all EAFs are operated in over charged about 120% of nominal capacity(t/ht). They could not afford to increase the productivity by more heavy charging.

1.2.2 The productivity per worker

Table 3-6 shows the comparison of the productivity between Viet Nam and Japan.

	Luu Xa		1
		Nha Be	Japan
rsons	140	137	Approx. 80
ews x Shift	3 c x 3 s	3cx2s	3c x 3s
person/y	307	313	Approx. 1,000
,	43,000	43,000	Approx. 80,000
/	· · · · · · · · · · · · · · · · · · ·	person/y 307	person/y 307 313

 Table 3-6
 Comparisons of the productivity

Note: In case of Japan, the data is average of EAFs capacity <50t/ht. Referential data is shown in Figure 3-8.

The productivity of Viet Nam is about 1/3 of the small capacity EAFs of Japan.

- 1.2.3 The amount and quality of scrap generated
 - a) The scrap is almost domestic obsolete scrap, and the quality is bad.
 - b) The specific weight is low (0.3~0.5 t/m³ (Luu Xa)~0.4t/m³(Nha Be)), and mostly not pre-processed.
 - c) The low grade quality of scrap causes low productivity and large unit consumption in EAF operation.
 - d) The amount of obsolete scrap generated domestically restricts the amount of steelmaking production. (approx. 300x10³t/y = Production of EAF)
 - e) The increase of domestic scrap in 2010 year is not assumed so high, because of low social accumulation in Viet Nam.

1.2.4 EAF/Tap to tap time analyzing

Table 3-7 shows the analyzing of tap to tap time of EAFs.

- a) Tap to tap time in Viet Nam is very long(approx. 3.5hr), although it is aimed at decreasing to approx. $2\sim 2.5$ hr compared to that of Japan.
- b) The reference data of tap to tap time in Japan is shown in Figure 3-7. The tap to tap time of the smallest size EAF(Group A) is approx. 120min, and that of larger size is approx. 65min.

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam					
JICA/Nippon Steel Chapter Part Section Page					
Date: Feb 17, 1998 Rev.:	П	2	3	4	

	Luu	Xa		Nha Be		
Tap to Tap		Actual	Aim	Actual Ai		
time (min)	Scrap charging 2		-	Scrap charging 20	10	
	Power on			Power on		
	Melting	130	-	Melting 80	60	
	Oxidizing	22	-	Oxidizing 20	15	
	Reduction	30	-	Deoxidizing 35	20	
	Sampling analyzi	ng	-	Sampling analyzing 10) 5	
	Tapping	<u>5</u>	-	Tapping 15	i 5	
	Refractory repair	ing 17	-	Refractory repairing 15	<u>5</u>	
	Total	3:45'	2:30'	Total 3:15	<u>` 2:00'</u>	

Table 3-7 Analyzing of tap to tap time of EAFs

1.2.5 Unit consumption (UC)

Ì,

Table 3-8 shows the unit consumption of major items.

	adie 3-8	one consumption of	major nems in vicery	
Items	unit	Luu Xa	Nha Be	Japan (A-Group)
Electric power	kWh/t-s	Furnace: 829.0	720~740	Арргох. 470
		CC : 27.5 Public : 43.7	154~134	
Electrode	kg/t-s	10.9	6.41	Approx. 4.7
Oxygen	Nm ³ /t-s	No	No	Арргох. 22
Carbon blow	kg/t-s	No	No	Approx. 12
Refractory	kg/t-s	Imported from ChinaRoof: 5.0MgO brick:10MgO powder :15	Imported from China Hi-Al ₂ O ₃ : 18.9 MgO : 5.3 Bottom life : 110 hts	
Ferro alloy	kg/t-s	Fe-Mn : 8.30 Fe-Si : 9.21	Fe-Mn : 7.88 Fe-Si : 7.33	Арргох. 11.0
CaO	kg/t-s	53 +Dolomite 20	65.0 ~70.0	Арргох. 30

Table 3-8 Unit consumption of major items in Viet Nam

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in t	the Socialist Re	public of Viet Nar	n
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	2	3 ·	5

- The data of other steelmaking plants in Viet Nam are shown in Table 3-17. a)
- Comparing with the data of small capacity EAF in Japan, the operation indexes b) of Viet Nam are considerably worse (see Reference data 3.2).
- Shortage of billet and expansion plan 1.2.6
 - Table 3-9 shows the demand increase of non-flat product to 2010 based on the a) market study.

Table 3-9 S	ble 3-9 Steel grade and increasing of non-flat product $(x 10^3 t/y)$					
Year	1996	2000	2005	2010		
Non-flat produc	t 910	1,480	2,240	2,870		

The existing work's production capacity (approx. $400 \times 10^3 t/y$) is too small compared with the total non flat production required.

Drastic improvement of productivity is not expected for the existing plants due to the following reasons.

- The increase of domestic scrap is not expected so much, and the product by 1) imported scrap is not competitive.
- 2) The modernized steelmaking plants shall be constructed for the large demand.
- The expansion program of steelmaking capacity b)

Table 3-10 and Table 3-11 show the expansion program of steelmaking capacity under planning.

The amount of approx. $1,100 \times 10^3 t/y$ billet shall be produced by the NISW.

			Billet bas	se(final pi	roduct base)
	Works	Process	Iron source	Product	$x10^3 t/y$
				1996	2010
Non-flat	Existing works	Steelmaking	Domestic scrap	(300)	300 (270)
product		Rolling	Import BT	(610)	500 (450)
	Joint venture	Steelmaking & rolling	Import scrap	0	1,000 (900) *1)
	ISW	Steelmaking & rolling	lton ore	0	1,050(950)
	Final product		Import	0	330 (300)
	Total			(910)	3,180(2870)

	•	
Table 3 10 The evenne	CION BEGREAM A	t staalmaking capacity
Table 3-10 The expans	SION DIOPIAM OF	с месниакну сарасну
	rest freedoments of	

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Vict Nam					
JICA/Nippon Steel Chapter Part Section Page					
Date: Feb 17, 1998 Rev.:	H	2	3	6	

Ĩ

Taur	Table 5-11 The two new billet centers (BTC) and a planning						
No.	Location	Product	Start up	Process			
1,	Cai Lan	500,000t/y	1999±α	EAF+BT/CC			
2.	Vung Tau	500,000t/y	$1999 \pm \alpha$	EAF+BT/CC			

The two new billet contere (RTC) under planing T-L1. 2 11

The situation of steelmaking (EAF) technology in Viet Nam 1.2.7 The modernizing technologies are not applied yet in Viet Nam as shown in Figure 3-2.

Figure 3-2 Improvements of EAF technologies and situation of Vict Nam (by HSI 27 '93. Henri Faure)

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel		Chapter	Part	Section	Page	
Date: Feb 17, 1998	Rev.:	П	2	3	7	

- 2. Direction of rehabilitation of existing steelmaking plants
- 2.1 The direction of improvement measures for the existing plants The modernized technology mentioned above shall be applied as much as possible.
- 2.1.1 To increase the productivity of EAF
 - (1) To decrease the tap to tap time
 - (a) To reduce scrap charging times: approx. Δ 10min. Table 3-12 shows the scrap charging time and the number of charging frequency.

Plants	Scrap specific	Yield	Processing	Charging	Charging
	weight	CC∕IG		time	frequency
	t/m ³	%		min/ht	n times/ht
Luu Xa	ca. 0.3~0.5	74/79	No	Approx. 20	4~5
Nha Be	ca. 0.4	89/80	No	Арргох. 20	4
Aimed	ca. 0.7	+	Yes	Арргох. 10	2~3

Table 3-12 Scrap charging time and the number of charging frequency

- 1) Adoption of scrap processing to increase the specific weight.
- 2) Being many plants(6) / many EAFs(13) in the southern area, the scrap processing center (cutting and pressing) is effective.
- 3) In the northern area, the scrap processing center is not so effective because of few plants (few plants(2)/5 EAFs) compared to the southern area.
- (b) To reduce the sampling and temperature measuring time; approx. Δ 10min. Application of the <u>optical analyzing equipment</u>.
- (c) To reduce the melting and refining time: approx. Δ 40min(20%)
- Oxygen and carbon powder blowing equipment shall be applied. This has already tried in Bien Hoa, and the tap-tap time is reduced from 180 to 140min. This method is planned to introduce at Nha Bc and Luu Xa.
- (d) To reduce the equipment trouble (Example in Luu Xa) :
- 1) Electric power is restricted to 70% of the design capacity, because of the electrode breakage at high electric current.
- 2) Large air pollution because of no dust catcher (investment is not planned).
- (e) The reconstruction of larger capacity EAF, and higher power operation: It is impossible, because of large investment cost is required.

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in I	he Socialist Re	public of Viet Nan	- 1
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	II	2	3	8

- (f) LF Process application: generally 20% reduction; Δ 30min This is effective for steady operation (chemical composition and temperature adjustment).
- (2) Expected tap to tap time

I

- (a) Tap to tap time reduction is expected approximately 60 min. (from 210min. to 150min.).
- (b) Approximately, total of 90 min. of reduction is expected by further introduction of LF (from 210min. to 120min.).
- 2.1.2 To increase the number of sequential casting Table 3-13 shows the difference of cycle time between EAF and CCM. The difference is so large to get many sequential casting.

Works	EAF (a)			CCM (b)		(a)/(b)
	Capacity (Over charge)	T-T (min)	Matching time (min)	Casting time (min/ht)	BT size & casting speed	
	201/ht(22) x 1		130/1 = 130	50	110 sq. 2.4 mpm	2.7
Thu Duc		180	180 /2 = 90	25	110 sq. 2.15 mpm	2.6
	12t/ht(16) x 1			40 av. 35		Ĺ
Nha Be	12t/ht(16) x 2	195	195 / 2 = 95	40	100 sq. 2.5 mpm	2.4
Luu Xa	30t/ht(35) x 1	210	210/1 = 210	40	110 sq. 2.5 mpm	5.3

Table 3-13 EAF tap to tap (T-T) time and casting time

(a) The plants having two EAFs are capable of realizing two heats casting sequentially as shown in Figure 3-3.
 This method shall be realized soon. (at Nha Be, Thu Duc, Bien Hoa).

Figure 3-3 Pattern of 2-sequential casting by 2 EAFs

- (b) More number of sequential casting requires the following conditions.
- 1) More decreased tap to tap time shall be required (approx. 120 min.).
- 2) Number of EAF is 3 or more. (If 3-EAFs are available, at least 3 heats sequential casting is possible.)

Name of Project: Final Report Master Plan Study on the Development of	of Steel Industry in	the Socialist Rep	oublic of Viet Na	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	Π	2	3	9

Table 3-14 shows the maximum sequential casting ratio according to the number of EAF and tap-to-tap time

		Tap-to-tap ti	me of each EAF	CC casting
		>120 min	<120 min	time (min)
Number of	1	Max. 1-CCC	Max. 1-CCC	
EAF	2	Max. 2-CCC	Max. 2-CCC	40
	3	Max. 3-CCC	n- CCC continuously	7

Table 3-14 Max. sequential casting ratio

Note: CCC Continuous continuous casting (=sequence casting)

3) Luu Xa and Gia Sang

They have more difficulty to realize sequential casting than the southern area, because casting time of 4-strand CCM is shorter.

2.1.3 Hot metal charging to EAF (Luu Xa Works)

It is not to be realized because of the following reasons.

- The temperature of hot metal is too low for carrying and charging to EAF. a)
- The construction of the new BF, BOF and CCM is under planning. b)
 - BF $100m^3 x 2 + 15t$ BOF x 2 + Billet caster
 - Capacity 100,000 t/y
 - Planned start up to 1999
- Integration of the steelmaking plants 2.2

2.2.1 Present plan of SSC

Now(1996)	⇒ 1997

① Bien Hoa: 20t EAF x1 (with rolling mills, higher productivity) \Rightarrow 20t EAF x2

I

② Tan Binh: 10t EAF x1 (no rolling mill, environmental problem) \Rightarrow to be closed

2.2.2 Suggestions of integration plan

- The concept of integration (1)Table 3-15 shows the plan of integration plan of existing works.
- To close the small plants with small EAFs, and to construct three EAFs in a) bigger plants are recommended.
- b) The plant integration will exhibit maximum efficiency due to perfect matching between EAFs and CCM.

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
HCA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:	II	2	3	10		

g Future	Existing	Future	Existing	Future
1 2	1			3
2	2		12	
	4		13	<u> </u>
2	2		1~6	3
30	1.5		7.51	14
0 * 2) 15	0 10.0	0	180.0	300.0
_	0 * ²⁾ 15	0 ^{*2)} 150 10.0	0 * 2) 150 10.0 0	30 1.0

Table 3.15	The plan	of plants	integration
------------	----------	-----------	-------------

- (2) The concrete plan of integration
- a) North area:

Addition of a 30t EAF in Luu Xa Works, small (9t x 4) EAFs of Gia Sang shall be integrated to Luu Xa Works. (The continuous caster in planning now shall be altered.)

b) Central area:

The small EAF(at Da Nang) shall be integrated to the NISW.

- c) South area :
 - Integration to three big works is proposed, having 3-EAFs and 1-CCM.
 - 3-EAFs make sure at least 3-sequential casting.
 - More number of sequential casting is possible after decreasing the tap to tap time less than 120 min.
- 2.2.3 Problems
 - a) The employment policy: the reemployment of labor at the new steel works
 - b) Large investment cost: the profit estimation is not studied here.
 - c) The amount of production depends on the quantity of domestic scrap generation.
- 2.3 Outline of the present productivity improving plans

Table 3-20 (in Reference data 3.3)shows the investment plan of Nha Be Steelmaking Works and Table 3-21 shows the 5-year investment plan at TISCO (Thai Nguyen Iron and Steel Corporation).

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel	Chapter	Part	Section	Page		
Date: Feb 17, 1998 Rev.:	- II	2	3	11		

2.4 Summary

- 2.4.1 The situation of the existing steelmaking plants
- (1) EAF
 - There are twenty small EAFs in ten steelmaking plants, and the average capacity of them is approx. 8.2 t/ht.
 - The production capacity is approx. $300 \times 10^3 t/y$, and depends on the domestic generated scrap. The increase of domestic scrap generation is not expectable because of short stock in Viet Nam.
 - The operation index is not good compared with that of the modernized EAFs, for example, tap to tap time is $2\sim 3.5$ hrs.
 - One of the main reasons is the poor quality of scrap (for example, the specific weight is approx. $0.3 \sim 0.5 \text{ t/m}^3$).
- (2) CCM
 - There are four billet CCMs in the four steelmaking plants, and the capacity is $70 \sim 120 \times 10^3 t/y$ each (Total capacity is approx. $330 \times 10^3 t/y$).
 - The sequence casting is not realized yet, although two heat sequence casting operation is under trial operation.
 - The difference of the operation time (min/ht) between EAF and CCM is too large to do multi-sequence casting operation.
- 2.4.2 The measures to increase the production capacity
 - (1) Decreasing tap to tap time from 3.5 hr to 2.5 hr by mainly following ways:
 - Improving the specific weight by the construction of scrap pre-treatment centers
 - Modernizing the temperature measuring and sampling equipment
 - Decreasing the refining time by blowing of oxygen and injection of carbon powder
 - Decreasing tap to tap time to approx. 2.0 hr by adoption of LF
 - (2) Increasing the number of sequence casting by mainly following ways:
 - Realizing two sequential casting by 2 EAFs at first
 - Integrating the small steelmaking plants to larger efficient steelmaking plants which have 3-EAFs, and realizing multi heats sequential casting

The capacity increase of the existing steelmaking plants shall be expected approx. $40\% \sim 50\%$ from the view of tap to tap time decreasing.

However, it is required to improve the production capacity along with the increase of scrap generation which mainly restricts the production of existing plants.

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam						
JICA/Nippon Steel		Chapter	Part	Section	Page	
Date: Feb 17, 1998	Rev.:	П	2	3	12	

3. Reference data

3.1 The data of steelmaking plants informed at first survey

	18 3-10	- The montop		······································	king plans of vo	<u> </u>
Plant name				teel making		<u> </u>
	EAF spe		CC or ing	ot(IG)	Other equipment	Started &
		capacity	capa			future plan
TISCO	30t x1		4st BT-CC	by India		63 started
	Capa.		•	120,000 t/y		·90~
Steel			IG			modernized
Works						'94~ 30t EAF
	6t x4		IG	75,000 t/y		'75 started
	Capa.	50,00 t/y				'85 EAF started
Works						
Da Nang Steel			16	16,000 t/y		'92 started
Factory	Capa.	16,000 t/y				
	20t x 1	Tr. 12.5MVA			Oxygen + Carbon	69 started
Steel	Capa.	50,000t/y	Capa.		Dust catcher	
Works			IG;	t/y	by(India)	LF (idea only)
Thu Duc Steel		Tr. 6 MVA	2str. BT-CC		Oxygen + Carbon	64 started
Works	12t x1	Tr. 6.5 MVA	Сара.		Dust catcher	'75 EAF started
	Capa.	45,000t/y *	IG	t/y	by(India)	'94 CC started
Nha Be Steel	12t x1	Tr. 9 MVA	2str. BT-CC	🕻 by India	Oxygen + carbon	*73 started
Works	10t x1	Tr. 9 MVA	Capa.	70,000 t/y		'95 CC started
	Capa.	45,000t/y *	IG	t/y		'97Dust catcher
						start
Tan Thuan	3t x1	Tr. 4 MVA	IG	12,000 t/y		'75 started
Steel Works	Capa.	12,000 t/y			Fe-Si 2,500t/y	
	x2	Tr. 2MVA			CaC ₂ 1,200t/y	
	x1	Tr. 1MVA			Pig Iron 1,800t/y	
·	3t/h Cu	pola				
Tan Binh Steel	10t x1	Tr. 4 MVA	IG	23,000 t/y		'73 started
Works	Capa.	23,000 t/y				at '97 close
Mechanical	8t x1	Tr. 6 MVA	IG	20,000 t/y		ļ
Engineering	St x1	Tr. 4 MVA			Cast. 2,800t/y	
Factory	1.5t x1	Tr. 1.5 MVA			Other; mechanical	
	Capa.	20,000 t/y	ļ		processing;	
	2.5 C	upola			1,500t/y	
	1		CC :	330,000 t/y		CC 500,000 k/y
Total		357,000 t/y	1G (146,000)		

Table 3-16	The main s	necification	of steelmaking	plants of VSC
14010 0 10	THE ROUND	proving out on	or orovinning	promo or row

Mark (*): The average capacity of EAF without information is assumed as next calculation. (over charged t/ht) x1440x 365 x 0.6 / (tap to tap min) Work time ratio assumed by the information of SSC is as follows. (Normal t/ht) x 6(ht/d) x 300(d/y) Tap to tap=3hr ⇒ Work time ratio=0.6

Name of Project: Final Report Master Plan Study on the Development	of Steel Industry in	the Socialist Rep	oublic of Viet Na	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	Π	2	3	13

Plants		Steel making	ion maters of steelmaking	Employment
1 101113	F	AF	СС	Persons
T1000				
	T-T time:	2.5~3.5 hr		Total: 13,000
1)Luu Xa		750~830kWh/		(Luu Xa + G.S+Infra)
Steel Works		7.5~8.0 kg/t	Sq. casting: 1 hts/cast	Steel making: 400
	Scrap:	1.33~1.14	BO ratio : nearly 0	
		t/t		
/ /	T-T time:	3.0 hr		Total:
Steel Works	UC El. Power:	kWh/t		Steel making:
	Electrode	kg/t		(included in
	Scrap:	<u>1/t</u>		Luu Xa)
Da Nang Steel	T-T time:	1.5~2.5 hr		Total: 220
Factory	UC El. Power:	1,000 kWh/t		(include. RM etc.)
	Electrode:	8.0 kg/t		EAF: 69
·	Scrap:	1.35 t/t		
Bien Hoa	T-T time:	2 hr 10 min	Casting speed:	Total: 700
Steel	UC El. Power:	700 kWh/t	max.3 av. 2.4 mpm	(include, RM etc.)
Works	Electrode:	5.0 kg/t	Sq. casting: 1 hts/cast	Steel making: 201
	Scrap:	1.25 t/t	BO ratio: nearly 0	
Thu Duc Steel	T-T time:	3.0 hr	Casting speed:	Total: 600
Works	UC El. Power:	900 kWh/t	max. 3 av. 2.15 mpm	(include. RM etc.)
	Electrode:	6.0 kg/t	Sq. casting: 1 hts/cast	Steel making: 120
	Scrap:	1.4	BO ratio: nearly 0	
		t/t		
	T-T time:			Total: 580
Works	UC El. Power:	780 kWh/t	4.0 max. av. 2.5 mpm	(include. RM etc.)
	Electrode:	5.5 kg/t		Steel making: 170
	Scrap:	1.18	BO ratio: a few times	
		t/t		
Tan Thuan	T-T time: -	hr	·	Total: 380
Steel Works		850 kWh/t IC		(include Fe-Si, RM
	(Fe-Si: 8,000), CaC: 3,000		and cupola)
		t/y)		Streelmaking:
Tan Binh Steel		3.0 hr		Total: 300
Works		910 kWh/t		(without RM)
		8.02 kg/t		
	Scrap:	1.49 t/t		
Mechanical	T-T time:	—— hr		Total: 450
Engineering	UC El. Power:	= - kWh/t		
Factory	Electrode:	kg/t		
	Scrap:	1/t		
L	1			

The mean and	n indiana and	f steelmaking plants

Comments: The some data of Luo Xa and Nha Be Steel Plants are different from those informed at the second survey.

Note: BO ratio; break out ratio

Name of Project: Final Report Master Plan Study on the Development of	of Steel Industry in	the Socialist Rep	public of Viet Nat	m
JICA/Nippon Steel	Chapter	Part	Section	Page
Date: Feb 17, 1998 Rev.:	П	2	3	14

(JICA) JAPAN INTERNATIONAL COOPERATION AGENCY

- The reference data of EAF operation in case of Japan (Data : Jan. \sim Dec. 1995) 3.2
- Figure 3-4 Number of existing EAF (1) The small EAF group (A) is applied to special steel manufacturing plants. The capacity for carbon-steel is large (group $B \sim D$).
- Figure 3-5 Nominal capacity of existing EAF (2) The average capacity of Group-A is approx. 24 t/ht, it is larger than that of Viet Nam. Figure 3-6

Figure 3-7

Figure 3-8

- Yield of existing EAF(CC) (3)
- Tap to tap time (4)
- Productivity (5)

Other typical unit consumption (6)

Table 3-18 and 3-19 show the reference data of EAF in Japan for example.

Table 3-18	UC of electric	power, electrode,	oxygen, carbon
------------	----------------	-------------------	----------------

Group			Unit consumpt	ion	
-		Electric power	Electrode	Oxygen	Carbon
	t/ht	kWh/t	kg/t	Nm ³ /t	kg/t
A	<30	469	4.7	22	
В	30~50	431	2.2	24	
C	50~100	392	2.1	34	
D	>100	363	1.7	28	
Average		380	1.9	29	12

Main materials, sub-materials, and refractory Table 3-19

Gr.	Main		Sub	-material	<u>. </u>	
	Pig ratio	Ferro Ailoy	CaO	CaCO ₃	Carbon	Other
	%	kg/t	kg/t	kg/t	kg/t	kg/t
Average	12.2	11	26	1	13	4

Gr.				Refractory	,		
	Roof	Wall	Bottom	Repair	Ladle	CC	Total
Ī	kg/t	kg/t	kg/t	kg/t	kg/t	kg/t	kg/t
Average	0.1	0.5	1.2	3.3	3.0	0.3	8.4

Name of Project: Final Report Master Plan Study on the Dev	elopment of	Steel Industry in	the Socialist Rep	ublic of Viet Na	m
JICA/Nippon Steel		Chapter	Part	Section	Page
Date: Feb 17, 1998 R	ev.:	I	2	3	15

ी है।

3.3 Outline of the present productivity improving plan and investment plan

Table 3-20 shows the outline of the present productivity improving plans in Nha Be Steelmaking Works.

	Now	Investment	Remarks
Scrap quality	Bad	Not improved	Not satisfied
Demand	Low	Increased(assumed)	Depend upon domestic scrap
O ₂	No	Under planning	
C blow	No	Under planning	
Ton/heat	16	16	Impossible
LF	No	No	Low profit by SSC's F/S
Secondary refining	No	No	
Dust catcher	No	Under construction	'97 May complete \$M 0.6

Table 3-20 Outline of improving plans of Nha Be Steelmaking Works

Table 3-21 shows the outline of the	present investment	plans in TISCO.
-------------------------------------	--------------------	-----------------

140	le 3-21 115CU's 5-year investio	icin pian	(1990 2000 Joary	
Works	Item	Timing	Investment	
			MVND (\$M)	
Luu Xa	Rod mill 6 & 8 mm ϕ to be added	'96-'9 7	30,000 (2.35)	
	to medium section mill		India ODA	
Luu Xa	LD converter	<u>'98-'99</u>	20,000 (1.8) Import	
Gia	Rod Mill	'96	6,000 (0.55)Domestic	
Sang				
Gia	CC machine	'98-'99	18,000 (1.6) Import	
Sang				
Hai	EAF 6t/ht	'96	5,750 (0.5)	
Phong			Local bank credit, Local made	
	Lang Cam & Phan Me Coking	'96-2000	36,000 (3.3)	
	mine			
	Flux and Additive mines Exp.		14,000 (1.3)	
	Others			
	 Heat treatment facilities 			
	 Scrap cutting & briquetting 	'96-2000	31,750 (2.9)	
	• Chemical analysis & quality			
	• Rehabilitation of sinter plant			
	• Office & Social welfare			
1	Total		161,525 (13.5)	

Table 3-21 TISCO's 5-year investment plan (1996-2000 year)

Name of Project: Final Report Master Plan Study on the Development of Steel Industry in the Socialist Republic of Viet Nam							
JICA/Nippon Steel		Chapter	Part	Section	Page		
Date: Feb 17, 1998	Rev.:		2	3	17		