

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

DEPARTMENT OF WATER AFFAIRS AND FORESTRY THE REPUBLIC OF SOUTH AFRICA

THE STUDY ON THE EXPANSION OF CAPACITY OF MAGALIES WATER IN THE REPUBLIC OF SOUTH AFRICA (PHASE 1)

FINAL REPORT

SUPPORTING REPORT (B) SITUATIONAL ANALYSIS

DECEMBER 1996

JIGA LIBRARY 11141067 (7)

SANYU CONSULTANTS INC.

NIHON SUIDO CONSULTANTS CO., LTD.

SSS
JR
96-131

SUPPORTING REPORT B: GAP ANALYSIS

TABLE OF CONTENTS

ABBI	REVIATIONS AND TERMINOLOGY	
CHÁI	PTER 1 INTRODUCTION	
1.1 1.2 1.3	Background	. 1-3
ı	I TECHNICAL STUDY	
CHAI	PTER 2 BACKGROUND TO THE STUDY	
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	Description of the Study Area and Topography Climate Environmental Sensitivity Vegetation Threatened Plant Species Alien Vegetation and Bush Encroachment Wildlife Ecological Flow Requirements Environmental Laws Environmental Management Geology Surface Water Quality Water Quality Standards	. 2-2 . 2-3 . 2-4 . 2-4 . 2-5 . 2-6 . 2-7 . 2-8 . 2-9 2-10
CHA	PTER 3 SOCIO-ECONOMIC CONDITIONS	
3.1 3.2 3.3	Introduction	. 3-1
CHA	PTER 4 WATER DEMAND PROJECTION	
4.1 4.2 4.3	Introduction	4-1
СНА	PTER 5 WATER RESOURCE AVAILABILITY	î ;
5.1 5.2 5.3	Introduction	. 5-2

Resource Development

5.4

		name of English and Angles Company of the Company o
	5.5	Water Use in Agriculture
	5.6	Water Availability 5-16
	5.7	Afforestation
	5.8	Urbanisation
	5.9	Interbasin Transfers
	5.10	Water Requirements for the Environment
	5.11	International Commitments 5-19
	5.12	Geohydrology 5-19
	СНАР	TER 6 WATER RELATED STUDY
	6.1	Background 6-1
	6.2	Status of Existing Infrastructure
	6.3	Ougaina Projects
		Ongoing Projects
	6.4	water Freatment works Performance 0-13
	CHAP	TER 7 REVIEW OF POLICY REGARDING SECOND TIER ROLES
		AND RESPONSIBILITIES
		randron de la companya de la compan La companya de la co
	7.1	Scope of Review 7-1
	7.2	Review and Collection of Relevant Policy
	7.3	Consultation with Government Officials for Identification of Policy 7-15
	7.4	Review of Discussions Regarding the Establishment of a Water Board in Eastern Zone
	ĊUAD	TER 8 PROFILE OF THE SECOND TIER
	CHAI	TER 6 TROPPED OF THE SECOND TIER
	8.1	Introduction
	8.2	Management Structures 8-1
	8.3	Organization and Functions
-	8.4	Financial Status 8-3
	8.5	Merger Process
	i di	
	СНАР	TER 9 PERIPHERAL AREA ISSUES
	9.1	Background 9-1
٠.	9.2	Approach 9-1
,	9.3	Supply Area Criteria
	9.4	Naboomspruit
	9.5	TLC's Acting as Water Boards 9-4
	9.6	Boundary between Magalies Water and NWWA
	9.7	Eastern Supply Zone
	9.8	Boundary between Magalies Water and Rand Water
	9.9	Discussions with Key Stakeholders
	7.7	Discussions with Key Glakeholders

II INSTITUTIONAL STUDY

СНА	PTER 10 BACKGROUND TO THE STUDY
10.1 10.2 10.3 10.4	Introduction
CHAI	PTER 11 POLICY REVIEW AND ROLE/RESPONSIBILITY
11.1 11.2 11.3	Policy Frameworks and Legal and Institutional Issues
CHAI	PTER 12 ISSUE SCOPING WITH STAKEHOLDERS
12.1 12.2 12.3 12.4	General 12-1 First Tier 12-1 Second Tier 12-3 Third Tier 12-4
CHA	PTER 13 THIRD TIER AUDIT
13.1 13.2 13.3	Approach 13-1 Present Condition 13-3 Major Findings 13-22
CHA	PTER 14 COMMUNITY CASE STUDY
14.1 14.2 14.3	General 14-1 Research Process 14-1 Major Findings 14-5

LIST OF TABLES

Table 2-1:	Monthly Average Rainfall for Representative Rainfall Stations	2-17
Table 2-2:	Average Evaporation	2-17
Table 2-3:	Average Temperatures	2-18
Table 2-4:	Representative Average Windpeeds	
Table 2-5:	Mammal Species Present Within in the Olifants River Basin	
Table 2-6:	Distributions of the Major Geological Formations	2-19
Table 2-7:	Vulnerability of Raw Water Storage Reservoirs to Eutrophication	2-19
Table 2-8:	Water Quality in Dams in the Study Area	
Table 2-9:	Water Quality in Rivers in the Study Area	2-23
Table 2-10:	Value of Parameters for Assessing Raw Water Quality	
Table 2-11:	Comparison of Water Quality Standards	
Table 3-1:	Summary of Magesterial Districts in the Study Area	
Table 3-2:	Average Number of People per Dwelling	. 3-7
Table 4-1:	Projected Mixes of Levels of Service	. 4-6
Table 4-2:	Summary of Projected Population	
Table 4-3:	Summary of Projected Primary Water Demand	
Table 4-4:	Summary of Non-Domestic Primary Water Demand	
Table 4-5:	Projected Per-Capita Water Demands and Growth Rates	
Table 4-6:	Typical Cropping Patterns	
Table 4-7:	Consumptive Use for Various Crops	
Table 4-8:	Total Irrigation Water Requirement	
Table 4-9:	Irrigation Demand Allocation by Local Areas	
Table 5-1:	Quaternary and Tertiary Catchment Information	5-29
Table 5-2:	Average Monthly Naturalised Runoff at Representative Gauging Stations	
Table 5-3:	Major Dams in the Study Area	
Table 5-4:	Livestock Census Results (March 1995)	
Table 5-5:	Irrigation Boards in the Upper Crocodile Catchment	
Table 5-6:	Irrigation Boards in the Elands River Catchment	
Table 5-7:	Irrigation Boards in the Pienaars River Catchment	
Table 5-8:	Irrigation Boards in the Olifants River Sub-eatchment (B20, B21 and	
	a portion of B32)	5-16
Table 5-9:	Summary of Water Usage in Irrigation	
Table 5-10:	Forest Development and Estimated Water Use	
Table 5-11:	Salient Borehole Statistics	5.36
Table 5-12:	Harvest Yield of Groundwater	5-37
Table 6-1:	Water Treatment Works in Western Zone	6-17
Table 6-2:	Water Treatment Works in Central Zone	6-17
Table 6-3:	Water Treatment Works in Eastern Zone	6-17
Table 6-4:	Compliance of Treated Water with Water Quality Standards	6-18
Table 14-1:	Percentage of responses of source of water supply	14-42
Table 14-2:	Percentages of households with non-metred and metred yard	
	connections with metres and no metres, in affected villages in	
	former KwaNdebele (source: quantitative survey data)	14-42
Table 14-3:	Reasons for willingness to pay for water	
Table 14-4:	Relationship between current payment systems, access to water	
	and willingness to pay	14-43

Table 14-5:	Aspects of Affordability	4
Table 14-6:	Monthly Household Expenditure on Water 14-4	4
Table 14-7:	Relation between type of water system and household time and	
1	budget allocation	4
Table 14-8:	Costs Associated with Water Supply Systems for the Household 14-4	15
Table 14-9:	Extent of recognition of current water structures in place 14-4	15
	Perceptions of appropriate organization/entity to be responsible	
	for water	6
Table 14-11:	Tribal Authorities, localities, and their extent of support as	
	organizations responsible for community water supply and	
	management	6
Table 14-12:	Participation of the household in the formal and informal water	
	supply system	7
Table 14-13:	Participation of Community Structures in Water Provision 14-4	8
· · · · · ·		
	LIST OF FIGURES	
	2.00	0
Figure 3-1:	Male Income by District	0
Figure 4-1:	Projected Population by Level of Service (Study Area) 4-1	
Figure 4-2:	Projected Primary Water Demand by Use Category (Study Area) 4-1	
Figure 4-3:	Projected Population by Level of Service (Western Zone) 4-1	ð
Figure 4-4:	Projected Primary Water Demand by Use Category (Western Zone) 4-1	ð
Figure 4-5:	Projected Population by Level of Service (Central Zone) 4-1	y
Figure 4-6:	Projected Primary Water Demand by Use Category (Central Zone) 4-1	9
Figure 4-7:	Projected Population by Level of Service (Eastern Zone) 4-2	0
Figure 4-8:	Projected Primary Water Demand by Use Category (Eastern Zone) 4-2	0
Figure 5-1:	Major Storage Dams and Quarternary Catchments 5-3	8
Figure 5-2:	Government Water Control Areas 5-3	9
Figure 5-3:	Irrigation Boards 5-4	0
Figure 5-4:	Water Quality Map 5-4	H
Figure 5-5:	Borehole Yield 5-4	2
Figure 5-6:	Harvest Potential and Water Quality Hazard 5-4	7

LIST OF APPENDICES

Appendix 1: Population and Water Demand Spreadsheets

•

ABBREVIATIONS AND TERMINOLOGY

The following abbreviations are used in this report:

Annual Average Daily Demand AADD

African National Congress ANC

Black Local Authorities BLA

British Overseas Development Agency BODA

CAPEX Capital Expenditure

CASE Community Agency for Social Inquiry

Community Based Organisations **CBOs**

Centre for Development and Enterprise CDE

Capital Investment Plan CIP

Community Reconstruction and Development Committee CRDC

Crocodile River Catchment Study CRCS

CSIR Council for Scientific and Industrial Research

Community Water Supply and Sanitation **CWSS**

Dissolved Air Flotation DAF

Danish International Development Agency DANIDA

Development Bank of Southern Africa DBSA

DC **District Council**

DFA

Discounted Cash Flow **DCF**

Development Facilitation Act

Department of Water Affairs and Forestry **DWAF**

Extended Supply Area of Magalies Water Board as gazetted in April 1996 **ESA**

ESCOM Electricity Supply Commission

Geological Information System GIS

Government of National Unity GNU

Government Subterranean Water Control Area **GSWCA**

Government Water Control Area **GWCA**

Government Water Scheme **GWS**

Irrigation Board IB

IBS Irrigation Board Scheme

IDT Independent Development Trust (NGO)

IFR Instream Flow Requirements

IMT Interim Management Team

INR Institute of National Resources

JICA Japan International Cooperation Agency

(the official agency responsible for the implementation of the technical

cooperation programmes of the Government of Japan)

LAPC Land and Agricultural Policy Centre

LRDC Local Reconstruction and Development Committee (Local RDP Committee)

LWC Local Water Committee

MSF Medicines Sans Frontiers

MEC Member of Executive Committee

MW Magalies Water Board

NELF National Electrification Forum (ESKOM Database)

NGOs Non-Governmental Organisations

NPV Nett Present Value

NWP North West Province

NWWA North West Water Supply Authority

O&M Operation and Maintenance

ODA Official Development Assistance

ODO Organisation Development Officer

OECF Overseas Economic Cooperation Fund of Japan

PLP Presidential Lead Project

PMC Project Management Committee of the JICA Study

PSC Project Steering Committee of the JICA Study

PWB Phalaborwa Water Board

PWG Project Working Group of the JICA Study

PWSSD Provincial Water Supply and Sanitation Directorate

PWV Pretoria Witwatersrand Vereeniging triangle (geographical area)

RBC Rotating Biological Contactor

RDP Reconstruction and Development Programme

RSA Republic of South Africa

RSC Regional Service Council

(regional bodies established to facilitate and coordinate service provision across local boundaries. To be replaced by Regional and District Councils)

RWB Rand Water Board

S/W Scope of Works

SAMWU South African Municipal Workers Union

SANCO South African National Civic Organisation

SCOWSAS Standing Committee on Water Supply and Sanitation

SDD Summer Daily Demand

Setplan Settlement Planning Services Consulting Engineers

SGT Self-Governing Territories

SR Service Reservoir

STW Sewage Treatment Work

SWET Sanitation and Water Education and Training Program

TA Tribal Authority

TBVC Transkei, Bophuthatswana, Venda, Ciskei (former ""independant""

homelands)

TDS Total Dissolved Salts

THM Trihalomethanes

TLC Transitional Local Council

TMC Transitional Metropolitan Council

TOR Terms of Reference

TRC Transitional Rural Council

VIDP Ventilated Improved Double Pit toilet (latrine)

VIP Ventilated Improved Pit Latrine

WP White Paper

WRC Water Research Commission
WRYM Water Resources Yield Model

WTW Water Treatment Works

UNITS

c Cent (100c = R1)

ha Hectare

kg/c/year Kilograms per capita per year

kl Kilolitre

kld Kilolitres per day

km Kilometre

km2 Square kilometre

1/c/yr Litres per capita per year

lcd Litres per capita per day

m3/c/yr Cubic metres per capita per year

mem Million cubic metres

mem/a Million cubic metres per annum

mg/l Milligrams per litre

MId Megalitres per day

R Rand (R1 = 100c)

CHAPTER 1: INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1	Background	1-1
1.2	Composition of Master Plan Report	1-3
1.3	Supporting Report B	1-3
-	1.3.1 Infrastructure and Resource Issues	1-4
	1.3.2 Policy Issues	1-4
	1.3.3 Institutional Issues	

CHAPTER 1 INTRODUCTION

1.1 Background

In August 1995, the Governments of South Africa and Japan agreed the scope of work for a technical co-operation programme focused on the expansion of the capacity of Magalies Water (MW). The Japan International Cooperation Agency (JICA) is currently undertaking the study in close co-operation with the Department of Water Affairs and Forestry (DWAF) in South Africa. The initiative to expand the capacity of Magalies Water is a direct outcome of South Africa's new Water and Sanitation policy, which is based on the Reconstruction and Development Programme (RDP). In terms of the policy, institutions like Magalies Water will extend bulk supply networks in the longer term, and will assist in stimulating and supporting local level water supply and management institutions in the short to medium term.

The overall framework of the JICA Study is as follows:

PHASE 1 - Formulation of a Master Plan

Stage 1 - Situational Analysis

Stage 2 - Formulation of a Master Plan up to the year 2015 and priority projects to the year 2002

Stage 3 - Recommendations on study methods and terms of reference for Phases 2 and 3

PHASE 2 - Feasibility Study on priority projects

PHASE 3 - Implementation of selected water supply and sanitation pilot initiatives

Against the background of the overall framework described above, the present JICA Study is concerned only with the Phase 1, formulation of an overall and strategic framework / master plan for the appropriately phased, long term, sustainable development of water supply infrastructure and sanitation, including appropriate Second and Third Tier support, in the Study Area. The formulation of a priority project to the year 2002, and an extended programme up to the year 2015 is included in the present JICA Study.

The first Stage of this Phase was a Situational Analysis. The purpose of this was to understand the socio-economic conditions, hydrological and hydrogeological resources, demand for water, supply of water, existence and condition of infrastructure, present standard and coverage of services, environmental conditions, policy implications, capacity and roles of the First, Second and Third Tiers, water supply attitudes and practices at the community level, financial situation, and water tariffs and cost recovery systems.

The second Stage of the Phase is to formulate a Master Plan which includes the Gap Analysis, the Policy / Strategy Recommendation / Plan, the Preliminary Study of Water Supply System (Technical Solution), and the Economic/Financial Analysis of the formulated project(s) under pre-feasibility level including an initial capital investment plan.

The objective of the Gap Analysis was to establish a complete understanding of the Gap between the Current State (institutional, technical and financial) of water infrastructures in the Magalies Water Study Area and the desired future state, as presented in the Water Supply and Sanitation policy. The current state has been determined in the Situational Analysis. The future state is identified through key policy documents such as the White Paper on Water Supply and Sanitation, as well as the needs and expectations of the communities and other consumers in the Study Area.

The objective of the Policy / Strategy Recommendation / Plan was: to facilitate and guide the expansion of Magalies Water through practical recommendations regarding policy and strategy; to identify areas of national policy that support/hinder the expansion of MW, and to propose actions to be taken; to identify areas of policy in specific water sector and related institutions that require attention, and to propose appropriate actions; and to propose strategies to deal with institutional and technical gaps that are likely to hinder the expansion of MW, together with strategies that will facilitate the expansion process.

The objective of the Technical Solution was to quantify the technical requirements to achieve the standards and levels of service identified in the desired future state and bridge the Gap mapped out in the Gap Analysis.

The objective of the Economic/Financial Analysis is to quantify both the cost and the benefit to be incurred by and arising from the project proposals which are to be evaluated from various viewpoints of RSA's national economy and the second and third tiers' entrepreneurial stance. The lessons obtained from a series of analysis will be fed to further Phases 2 and 3 of this Study.

Key to the success of the JICA Study is the support and involvement of the main stakeholders in water supply and sanitation in the Study Area - Magalies Water Board, national and regional offices of DWAF, local authorities, district councils, local and Provincial Government, communities and their representative organisations, and NGOs. To ensure that this involvement occurs the following institutional arrangements have been put in place:

- The entire JICA Study is managed by a Project Management Committee (PMC), on which sits representatives of Magalies Water, Department of Water Affairs and Forestry and JICA. The PMC sits approximately once a month; and
- Project Working Groups (PWGs) have been established to oversee the activities
 of the Study Team and the local consultants. Three PWGs were established,
 which include representatives of key stakeholders, as well as MW, DWAF and
 JICA.

1.2 Composition of Master Plan Report

The Final Report is composed of an Executive Summary, Main Report, Supporting Reports and a Data Book. Each Supporting Report covers an individual part of the Study and has been prepared to provide detailed information to the more interested or specialist reader. The Supporting Reports are as follows:

- A General Affairs
- B Situational Analysis
- C Gap Analysis
- D Policy and Strategy Options
- E Preliminary Study of Water Supply System
- F Institutional Development Plan
- G Economic/Financial Analysis

The Data Book contains primary data and information, and only a limited number of hard copies will be produced which will be held by key stakeholders (such as DWAF and Magalies Water). The contents of the Data Book will be made available in electronic format whenever applicable.

1.3 Supporting Report B

The first stage of the JICA Study involved a detailed situational analysis i.e. a review of the existing conditions prevailing in the Study Area in the Study Area which included institutional and technical aspects as shown in the table. The work was completed mid 1996 and as circumstances in the Study Area are constantly evolving, some of the findings may already have become out of date. Also certain findings have subsequently been developed and are explained in more detail in other parts of the Report. The information from the situational analysis still provides a good overview of circumstances in the area and provided a good basis for the subsequent work therefore it is presented here.

	TECHNICAL STUDY	INSTITUTIONAL STUDY
*	Background (physical, socio-economic conditions) Investigation of peripheral areas Review of policy on Second Tier roles,	 Water study, including issues of policy and cost recovery Issue scoping with stakeholders Audit of capacity and readiness in the
*	responsibilities Water study (infrastructure, demand forecasts) Profile of Second Tier organisations	Third Tier Case studies of 30 selected communities

Key findings were as follows:

1.3.1 Infrastructure and Resource Issues

- (1) Water availability in the Study Area is adequate at present. By 2015 the population of the Study Area will grow from 3.1 million to over 5 million. However the increased demand is expected to be offset by increased return flows.
- (2) Water is imported into the Study Area, and the storage capacity of dams is close to the natural mean annual runoff. Water resources are highly interdependent and require integrated planning and development.
- (3) There is potential for: improved surface water utilisation (eg. increased use of Klipvoor Dam), more efficient use of water, and reallocation of water resources. To meet growing primary demand, transfer of irrigation quotas (with compensation), to primary users may be required.
- (4) Certain existing supplies (especially groundwater), do not meet potable water quality standards desirable for the Study Area.
- (5) Water treatment infrastructure is generally in a good condition. There are relatively few sewage treatment plants.
- (6) The Study Area is generally characterised by poor availability and predictability of groundwater resources.

1.3.2 Policy Issues

(1) The policy and legal frameworks for water supply and sanitation are still evolving. There is a need for new policy in certain areas, for revision of existing policy, and for more integration.

(2) Policy sees water supply to be a local government responsibility. Interim Second Tier roles must support but not undermine local officials.

1.3.3 Institutional Issues

- (1) The merger of Magalies Water and most of the areas of NWWA falling into the Study Area is going ahead. There are many challenges, including subsidy reduction in former NWWA areas, and the effective short and long term deployment of former NWWA staff.
- (2) Cost recovery varies among Second and Third tier authorities administering water schemes. Magalies Water has full recovery, but the challenge is to improve recovery elsewhere. Lowest recovery levels are in the former homelands.
- (3) Non-payment has two sides. It hinders the phasing out of subsidies, but also causes implementing agencies to shy away from projects in the areas where they are most urgently needed.
- (4) Stakeholders in the Magalies expansion see the following challenges ahead: linking the best attributes of MW and NWWA; clarification of short and long term roles for Second and Third Tiers; the cost implications of expanded supply for MW and its customers; the feasibility of achieving RDP targets in the Study Area; and the mobilisation of broader representation on the board of MW.
- (5) Capacity among Third Tier organisations is highly varied. Clarity on roles and sources of support is emerging. District Councils have a key strategic and integrative role. Success will depend on capacity, development expertise and ability to mobilise resources at and for the Third Tier level.
- (6) Community capacity is diverse. In some cases there is organisation around water, and a readiness to manage local supply. In other places this is absent. Key obstacles (in some places) include limited community participation in water management issues, factors leading to non-payment; weak and conflicting local organisations, unauthorised connections (sometimes supported by local officials), and lack of water knowledge.

I. TECHNICAL STUDY

CHAPTER 2: BACKGROUND TO THE STUDY

CHAPTER 2 BACKGROUND TO THE STUDY

2.1	Description of the Study Area and Topography	. 2-1
2.2	Climate	. 2-2
	2.2.1 Rainfall	. 2-2
	2.2.2 Temperature	. 2-2
	2.2.3 Wind	
2.3	Environmental Sensitivity	
2.4	Vegetation	
2.5	Threatened Plant Species	
2.6	Alien Vegetation and Bush Encroachment	
2.7	Wildlife	
•	2.7.1 Fish	
	2.7.2 Reptiles and Amphibians	. 2-5
	2.7.3 Mammals	
	2.7.4 Birds	
2.8	Ecological Flow Requirements	
2.9	Environmental Laws	
2.10	Environmental Management	
2.11	Geology	. 2-9
	2.11.1 Lithology	. 2-9
,	2.11.2 Structural Geology	
	2.11.3 Economic Geology	2-10
2.12	2.11.3 Economic Geology	2-10
	2.12.1 Introduction	
	2.12.2 Salination	2-11
	2.12.3 Pollution prevention control measures	2-12
	2.12.4 Eutrophication of surface water	2-12
	2.12.5 Existing surface water quality	2-13
	2.12.6 Sustainability of surface water for treatment	2-14
2.13	Water Quality Standards	2-15
Table	2-1: Monthly Average Rainfall for Representative Rainfall Stations	2-17
Table	2-2: Average Evaporation	2-17
Table	2-3: Average Temperatures	2-18
Table		
Table	2-5: Mammal Species Present Within in the Olifants River Basin	2-18
Table	2-6: Distributions of the Major Geological Formations	2-19
Table	2-7: Vulnerability of Raw Water Storage Reservoirs to Eutrophication	2-19
Table	2-8: Water Quality in Dams in the Study Area	2-20
Table		2-23
Table	2-10: Value of Parameters for Assessing Raw Water Quality	2-25
Table	2-11: Comparison of Water Quality Standards	2-26

CHAPTER 2 BACKGROUND STUDY

2.1 Description of the Study Area and Topography

The Study Area is situated between 24°30' S and 26°08' S and 26°28' E and 29°19' E, and extends from the Limpopo River in the north to Gauteng in the south and from the western part of the Limpopo River to the confluence of the Olifants and Elands rivers in the east.

On the western side of the Study Area, the Crocodile River rises on the Witwatersrand, just north of Roodepoort at a height of approximately 1,700 m above sea level. It then flows in a generally north-westerly direction for 280 km, during which it is joined by the Marico River, at just below 900 m above sea level. After the confluence the river becomes the Limpopo River which forms the border of South Africa with Zimbabwe and Botswana.

The watershed in the south, between the Vaal River catchment and the Crocodile River catchment, is formed by the Witwaters and with the Magalies Mountains situated just to the north. The average slope of the area decreases from south to north.

The Crocodile River flows through the Witfonteinrant and the Vlieepoort Mountains, which run in an east-westerly direction, in the region of Thabazimbi. The Hoek mountains form the watershed in the north-east between the Crocodile River and the Mogol River. The well known Pilanesberg is in the west of this catchment.

Towards the east, the Waterberge mountains, which are about 1,800 m above sea level, are located between the Crocodile and Mogalakwena Rivers. The Mogalakwena River rises as the Nyl River, just north of Nylstroom, at an altitude of between 1,000 and 1,500 m above sea level. It then flows in an easterly direction through the flat, poorly drained Nylvlei wetland, at approximately 1,100 m above sea level, after which it flows through a wetland. About 45 km north west of Potgietersrus, the Mogalakwena River is joined by one of its main tributaries, the Sterk River, and as it flows northwards it is fed by numerous small tributaries, until it finally flows into the Limpopo River at approximately 600 m above sea level.

The Olifants River Basin is situated south of the Nyl River. Within the Olifants River Basin, both the Wilge and Olifants Rivers rise at a height of between 1,200 m and 1,800 m above sea level. To the east, the Wilge River rises near Devon on the Highveld and then flows in a northerly direction until its confluence with the Olifants River, upstream of Loskop Dam. The major tributaries of the Wilge River are the Bronkhorstspruit, Saalboomspruit, and Grootspruit.

The Olifants River rises to the east of the Wilge River, at an altitude of between 1,200 m and 1,800 m above mean sea level. The Olifants River is joined by the Trichardtspruit, Steenkoolspruit and the Rietspruit, before its confluence with the Klein-Olifants River of which the Keeromspruit and the Rietkuilspruit are the major tributaries. After the confluence of the

Olifants River with the Klein-Olifants River, it is joined by the Klipspruit and the Wilge River respectively.

To the north-east, the Olifants-Loskop area is encountered into which the Selons, Bloed and Moses rivers flow. This catchment includes the Springbok Flats area (900 m to 1,200 m above sea level), in the north and the undulating Highveld (1,200 m to 1,800 m above sea level) in the south.

The Blands River rises near Kaztan and is situated to the south-west of the Olifants-Loskop area. The Blands River flows in a northerly direction through hilly country for about 60 km, until it reaches the Rust de Winter Dam where it turns in a westerly direction to its confluence with the Olifants River, just to the south of the Springbok Flats.

2.2 Climate

For the purpose of considering climate, the Study Area has been subdivided into three regions; the western region (Crocodile River Basin), the northern region (Mogalakwena River Basin) and the eastern region (Olifants River Basin). The Study Area is reviewed from west to east for the purposes of this section of the report.

2.2.1 Rainfall

Summer rainfall is predominant in the Study Area. The western region receives most rainfall from November to February, and the northern and eastern regions receive rainfall mainly from October to March.

The mean annual rainfall in the west ranges from 500 mm to 800 mm. In the northern region, the mean annual rainfall decreases from 1,060 mm, at the source of the Nyl River, to 170 mm at the confluence of the Limpopo and Mogalakwena Rivers. On the eastern side of the Study Area, the mean annual rainfall ranges between 500 mm and 800 mm.

There are over 1,000 rainfall stations located within the Study Area however Table 2-1 provides details of six representative stations.

There is an increase in the occurrence of frost from west to east, with the west receiving little frost in winter and the east receiving frost in the low lying areas from May to September.

Hailstorms are common in the eastern region, with typically four to seven incidents occurring annually in any given location.

The annual evaporation rate increases from 1,700 mm in the east to 2,240 mm in the west. The evaporation rate is higher in summer than in winter. Evaporation is measured at 26 stations within the Study Area and Table 2-2 shows average evaporation at three representative stations.

2.2.2 Temperature

Average monthly temperatures range from 8°C to 28°C in the west and 11°C to 27°C in the east. The greatest extremes in temperature are experienced in the western part of the Study Area, where the temperature can fluctuate from -11°C to 40.6°C. Representative average temperatures are reflected in Table 2-3.

2.2.3 Wind

In the north of the Study Area, prevailing winds are light to moderate in a north-easterly direction, and occasionally south-easterly in winter. In the eastern region, the prevailing wind direction is from the south-east. The representative average wind speed is reflected in Table 2-4.

2.3 Environmental Sensitivity

It is necessary to consider the sensitivity of the natural environment to water resources development because of the inter-relationship between these factors within the river ecosystem. Human activities can have major impacts on the ecological system, which in turn can result in changes in the quality and quantity of water available for water users.

There are a number of proclaimed nature reserves and other areas of special conservation importance in the Study Area.

The Magaliesberg Mountain range, from Pretoria to Rustenburg, has been declared an area of special conservation importance in term of the Environmental Conservation Act of 1989, Act 73 of 1989.

The vegetation and wildlife of the Study Area will be briefly discussed below.

2.4 Vegetation

The western region of the Study Area is predominantly bushveld, however the central and northern regions are represented by a variety of veld types, and the eastern region consists of grasslands in the south and savanna in the north.

The western region of the Study Area is predominantly bushveld with the following trees: Acacia galpinti, Acacia erioloba, Acacia nigrescens, Combretum imbrebe, Spirostachys africana, Scherocarya caffra, Lannea discolor and Ficus natalensis. The other types of vegetation present in this region are Turf Thornveld, (which is also present on the eastern side of the Study Area on the north western banks of the Elands River), Kalahari Thornveld and Sandy Grassveld. Turf Thornveld is a naturally open thornveld, which tends to thicken as a result of poor grazing practices.

Further east, Sour Bushveld is found in the south-western area of the Waterberg mountains, and along the south-western banks of the Nyl River. This veld type consists of an open savanna of tall, straight *Faurea saligna* trees in a tall, tufted, wiry, sour grassveld in the less rocky areas and a dense mixed bushveld in the rugged areas. Sour Bushveld is important for catchment protection and a number of red data species are endemic to it.

To the north-east, Sourish Mixed Bushveld is found along Nyl River flood-plane, as well as on the eastern side of the Study Area, at the confluence of the Olifants and Wilge rivers, where it borders on a negligibly small area of Mixed Bushveld. This veld type occupies an irregular belt on the lower slopes of mountains, between the sour types (both grassveld and bushveld), and the mixed types of the plains and valleys. Like the Sour Bushveld, it is also an open savanna,

however the dominant tree type is Acacia caffra, within a fairly tall, dense grass veld which is dominated by Cymbopogon plurinodis, Themeda triandra, Elionurus muticus and Hyparrhenia.

Further northwards, Mixed Bushveld is present along the lower reaches of the Nyl River and the middle reaches of the Mogalakwena River. Mixed Bushveld contains a mixture of Terminalia/Dichapetalum and tends to be quite dense with small trees. It usually occupies sandy plateaux and valley regions.

At the source of the Mogalakwena River, a variety of veld types are present: North East Mountain Sourveld, Springbok Flats Turf Thornveld and Pietersburg Plateau False Grassveld. Springbok Flats Turf Thornveld is a naturally open thornveld, which tends to thicken up when the grass cover is reduced by grazing mismanagement, and Pietersburg Plateau False Grassveld is an open, clumpy Sourish Mixed Bushveld, with Acacia rehmanniana as its most common tree.

Arid Sweet Bushveld is present within the middle reaches of the Mogalakwena River and just before the confluence of the Limpopo and Mogalakwena Rivers.

In the far north of the Study Area, at the confluence of the Mogalakwena and Limpopo Rivers, Mopani Veld is present. Mopani Veld is a typically short, fairly dense growth of shrubby Colophopernum mopane, which is usually associated with a number of other trees and shrubs within a sparse and tufted grassveld.

Further east Turf Highveld, which is a pure grassveld type, is encountered within the southern region of the Wilge River and the upper reaches of the Olifants River tributaries; Steenkoolspruit and Trichardtspruit. Bankenveld, a false grassveld type, is found in the central regions of the Wilge River catchment (covering a total of 70% of the entire catchment); the majority of the lower Olifants River catchment; the south western part of the Elands River catchment and in the central regions of the Olifants-Loskop area.

In the far eastern region in the vicinity of the Olifants-Loskop area, North Eastern Sandy Highveld is encountered. It is a very dense veld type which is dominated by sour grass species.

2.5 Threatened Plant Species

Threatened plant species are found in the east of the Study Area, where there are usually less than 10 threatened species present, except within the Wilge River catchment, where 20 threatened plant species are found. The number of vulnerable plant species increases in the wetter areas at the confluence of the Wilge River with the Bronkhorstspruit and Olifants rivers.

2.6 Alien Vegetation and Bush Encroachment

The presence of alien plant species has a number of serious ecological implications for both indigenous vegetation and the production potential of the land. The banks of rivers is the habitat which is most affected by the presence of alien plant species. The most significant of these alien plant species are; Syringa, the grey poplar (Populus canescens) and the giant reed (Arundo donax).

In places where Syringa is present, it becomes the dominant canopy tree and is a serious threat to indigenous riverine vegetation and the associated fauna.

The grey poplar occurs in dense thickets, which suppress indigenous vegetation, as well as blocking and narrowing river courses.

The giant reed, invades water courses and tends to go largely unnoticed at the expense of the indigenous riparian vegetation.

2.7 Wildlife

2.7.1 Fish

There is no data available for the western part of the Study Area. In the northern and central regions, 26 species of fish are present. Of these, 24 are indigenous and 2 have been introduced. Some of the species found in this region include: Tilapia rendalli, Tilapia sparmanti, Clarias gariepinus, Labeo cylindricus and Barbus trimaculatus.

Further eastwards, within the Olifants River Basin, there are 61 fish species present. The Olifants River Basin can be subdivided into the Wilge River and its tributaries, the Elands River and its tributaries and the Bloed, Olifants and Moses Rivers and their tributaries. The smallest number of fish species is found in the Wilge River, where only 13 species occur, 4 of which are classified as having the maximum sensitivity to environmental conditions and one (Barbus argentens, which is found in the Bronkhorstspruit), is of special conservation concern. Within the Elands River, 29 fish species are found; 6 of which have maximum sensitivity to environmental conditions and one, namely Chiloglanis sweirstrai, is of special conservation concern as a result of it been habitat specific and confined to the fast flowing sections of streams over sandy or pebbly beds. Within the Bloed, Olifants and Moses rivers, 44 fish species are found of which

9 have maximum sensitivity to environmental conditions, and one, Chiloglanis sweirstrai, is of special conservation concern.

The fish species which have maximum sensitivity to environmental conditions include, Barbus trimaculatus, Barbus paludinosus, Tilapia sparmanii, Clarias gariepinus (which depends on rapids or well-oxygenated water), and Cyprinus carpio.

Within the Upper Olifants River, 17 fish species are found, 5 of which have maximum sensitivity to environmental conditions. Of these, only Austroglanis selateri has been identified as a threatened species.

2.7.2 Reptiles and Amphibians

In the northern central regions of the Study Area, a variety of rare and vulnerable reptile and amphibian species are found within the Mosdene area.

Further eastwards in the Olifants River Basin, there are no endangered reptile or amphibian species within the Wilge River and Blands River regions. Within both the Upper Olifants River

and the Olifants-Loskop Reach, fewer than 5 species of reptiles and amphibians have been classified as being endangered, rare or vulnerable. In the Upper Olifants River region, there has been habitat destruction as a result of the development of agriculture.

There is no data available for the western region of the Study Area.

2.7.3 Mammals

A variety of rare and vulnerable mammal species are found in the northern and central regions of the Study Area. Within the Sterk River region, the rare and vulnerable species which are encountered include Cape hare, bushbabies and leopard.

Eastwards towards the Olifants River Basin, a variety of mammal species are encountered some of which are noted as red data species. A breakdown of the total number of species and red data species present within each region is shown in Table 2-5.

At present, there is no data available for the western region of the Study Area.

The serval, the hippopotamus and the water rat are found within the Wilge River region. These species are of particular importance as a result of their aquatic habitats which are can be affected by either an increase or a decrease in river flow.

There are 34 mammal species found in the Upper Olifants River area. Of these, only the hedgehog, which has been classified as "rare" is a listed Red Data Species,

2.7.4 Birds

In the northern and central regions of the Study Area over 300 bird species are found. Of these, only 25 are Red Data species. Within the Sterk River catchment, species which are present include the Peregrine falcon, Cape vulture and the black eagle.

Further eastwards towards the Olifants River catchment, it is found that the number of bird species present in each region varies greatly.

The greatest variety of bird species are found near Settlers (350 species), the Loskop Dam (300 species) and the Wilge River (300 species). Elsewhere, the greatest variety of bird species is found near the Elands River (250 - 300 species), and the lowest variety in the Upper Olifants River (50 - 100 species). There are less than 5 Red Data species present in each region, except for the Upper Olifants River, where there are less than 10 Red Data species present.

2.8 Ecological Flow Requirements

Although the need to allocate water resources for maintaining riverine ecosystems is not at present recognised in law, current practise is to take cognisance of the so-called Instream Flow Requirements (IFR), in the planning and design of new water supply schemes. Proposed amendments to South African water law also give prominence to the needs of riverine ecosystems.

Development of the water resources of the country dates back more than 70 years and in some cases no consideration was given to IFR's. As a result, releases from storage dams generally do not include any allowance for ecosystems and the result has been unplanned and uncontrolled environmental impact, usually in a negative sense, sometimes resulting in serious damage which is very costly to put right, if it is possible at all.

Recent serious attempts to assess and take account of IFR's in new water resource development projects include cases where the negative effects of past neglect of IFR's affect the feasibility of new proposals to a degree which makes them non-viable. In extreme cases, capital investment in new storage facilities would be necessary to meet modest environmental management objectives without adding to the availability of water supplies.

Although not yet fully documented, there is strong evidence to show that the need to provide streamflow downstream of existing and proposed storage dams, and to retain streamflow in unregulated rivers, has a significant effect on the quantity of water which can be made available for domestic use or for any other purpose.

2.9 Environmental Laws

Many organisations are actively engaged in, or have responsibilities for planning, management, local administration and data collection of natural resources in the Study Area. The main laws governing these activities are as follows:

Environmental Conservation Act (Act No 73 of 1989): This law pertains to all aspects of development and the environment and basically provides for "the effective protection and controlled utilisation of the environment". It makes provision for:

- the protection of ecological processes, natural systems, natural beauty and the preservation of biotic diversity in the natural environment;
- the promotion of sustained utilisation of species and ecosystems and the effective application and re-use of natural resources; and
- the protection of the environment against disturbance, defacement, poisoning and destruction.

It allows for:

- the protection of the natural environment if it will promote the preservation of ecological processes, natural systems, natural beauty or indigenous species, or biotic diversity in general;
- the declaration of any area as a special Nature Reserve or as a limited development area for the purposes of protection of the environment, land or water resources; and
- the identification of any activity which may detrimentally affect the environment, including water use and disposal, and may require that an Environmental Impact Assessment (BIA) is conducted for any activity identified above.

Although it has the potential to be immensely powerful, a lack of regulations so far makes this Act ineffective. This law was rewritten and published in 1982 as No 100 of 1982: Environmental Conservation Act, 1982. Implemented by the DBA.

Mountain Catchment Areas Act (Act No 63 of 1970) and the Mountain Catchment Areas Amendment Acts (Acts No 41 of 1976 and 76 of 1981):

These acts provide for the "conservation, use, management and control of land situated in mountain catchment areas", and are of particular relevance to water resources management. However, no areas within the Study Area are listed and thus the Act is currently irrelevant to this Study. Implemented by the DEA.

Conservation of Agricultural Resources Act (Act No 43 of 1983):

This act provides for "control over the utilisation of the natural agricultural resources of South Africa to promote soil, water and vegetation conservation and combat weeds and invader species" and is thus important as far as any development which may affect the vegetation and agricultural potential of an area, including water resources, is concerned. Implemented by the Department of Agriculture.

Weeds Act No 42 of 1937 as amended by Acts No 2 of 1939, No 50 of 1952 and No 32 of 1964 and No 74 of 1969:

This Act provides for the eradication of such plants as may be declared to be weeds by proclamation of the State President (formerly the Governor-General). A duty is placed on the occupier or owner of land to eradicate such weeds. Previous to the passing of Act No 50 of 1952 (Section 4), the extirpation of noxious weeds was under the control of the Provincial Councils. The Jointed Cactus Bradication Act, No 52 of 1934, was repealed by the Weeds Amendment Act, No 32 of 1964 and jointed cactus is now dealt with under the Weeds Act.

Water Act, Act 54 of 1956 and amendments:

Relates to the pollution of the environment and is discussed in another section.

These are not the only laws relating to the environment and many laws and bye-laws are at present being rewritten however they serve as a guide to the variety of relevant laws implemented by different Government Departments and illustrate the complexity of environmental law enforcement.

2.10 Environmetal Management

Environmental management is done on a provincial basis and the following is a list of institutions involved in the Study Area:

Gauteng: (Mr S Furrey)

The Director Nature Conservation Private Bag X209 PRETORIA 0001

North West Province: (Mr P van Rooyen)

The Director
Environmental Conservation
PO Box 4303
BRITS
0250

Mpumalanga: (Dr G Batchelor)

The Director
Environmental Management
Private Bag 11233
NELSPRUIT
1200

2.11 Geology

2.11.1 Lithology

The lithologies represented in the Study Area comprise a wide variety of sedimentary, igneous and metamorphic rock types. These span a geological history of some 3,500 million years, the oldest being represented by unnamed gneiss and migmatites formed towards the end of the Swazian Erathem and the youngest by Quaternary alluvium, sand and calcrete formed less than 18 million years ago. Other chronological periods of significance are recognised as the following:

- (1) Between approximately 2,300 and 2,100 million years ago, during the Vaalian Erathem, when the Chuniespoort, Pretoria and Rooiberg Group rocks as well as the Bushveld Complex were formed;
- (2) Around 1,300 million years ago, during the Mokolian Erathem, when the alkaline intrusive Complexes such as Pilanesberg were formed; and
- (3) Between 345 and 190 million years ago, during the late Palaeozoic and early Mesozoic Erathems, when the Ecca Group shales, the Clarens and Irrigasie Formation sediments and the Letaba Formation basalt's were formed.

A broad subdivision of the major geological formations is presented in Table 2-6 together with a brief description of the rock types relevant to each and statistics pertaining to their surface extent. Note that the order of their listing from top to bottom mirrors their chronostratigraphic relationship to one another from youngest to oldest.

2.11.2 Structural Geology

The structural geology of the Study Area is characterised by numerous large scale features such as the regionally extensive Bushveld Complex and the smaller ring-like Pilanesberg Complex, an alkaline intrusive. More specific to the groundwater regime, however, are smaller structural features such as linear fault zones and dyke intrusions.

Subsequent to the solidification of rocks emplaced during the final phase of igneous activity associated with the Bushveld Complex, tensional conditions in the earth's crust led to the development of normal faults in the western part of the Study Area. The strike of these features is mainly north-northwest. The Rustenburg fault represents one such structure. Others are recognised in the vicinity of the Crocodile River between Thabazimbi and Brits. The existence of these regional scale features points to the likely existence of many more such, but smaller, features. An inspection of the 1:250,000 and 1:50,000 scale geological maps confirms this. These structures offer preferred targets for the siting of successful water supply boreholes.

Intrusions of syenite and diabase characterise the dyke structures, which are of pre-Karoo age. The Pilanesberg swarm of north-northwest trending dykes are representative of these intrusions. They are characterised by their generally negative magnetic signatures relative to those of the surrounding country rock (Day, 1980). These structures generally constitute important targets for the siting of successful boreholes in the Study Area.

2.11.3 Economic Geology

The economic geology of the Study Area is characterised by a rich assemblage of minerals. According to Coetzee (1976), these range from precious metals (the non-ferrous platinum-group metals, gold, copper and lead), to basic metallic minerals (the ferrous minerals chrome, manganese, iron, molybdenum and nickel), to non-metallic minerals (kaolin, dimension stone, wollastonite, limestone, phosphate, glass sand, fire clay and road-building materials). The mineral wealth of the Study Area is exploited by both larger scale mining operations, centred on the extraction of the more valuable minerals such as the platinum-group metals, chrome and iron ore, and smaller operations such as those producing dimension stone.

2.12 Surface Water Quality

2.12.1 Introduction

South Africa is a water deficient country therefore the Water Act (1956) requires that effluent be treated and returned to the water course from which it was abstracted. As a result of this practise, salination, pollution and eutrophication occur and the quality of many water sources in the Study Area is declining. The urban areas of Pretoria, northern Johannesburg and the surrounding communities are located in the upper catchments of the Crocodile and Olifants river

systems which flow through the Study Area and as a result many of the sewage treatment works serving these communities are located just outside or just within the southern fringe of the Study Area and discharge into watercourses which in turn feed most of the large impounding reservoirs therein.

In the peri-urban and rural parts of the Study Area, particularly in the north and east, poor sanitation comprising the use of pit latrines or other low-flow sanitation options is widespread. This has a particularly adverse effect on groundwater quality which is discussed in more detail elsewhere. The use of oxidation ponds without mixers is practiced within the Study Area however strict criteria governing the design and operation of such facilities are intended to prevent any significant impact on groundwater or surface water quality. Current legislation permits the use of such ponds for effluent flows of less than 750 m³/d.

Mining operations are widespread within the Study Area and the level of treatment of liquid waste from mining operation varies considerably. Such treatment facilities are often designed, constructed and operated by, or under the supervision of, mining engineers rather than specialists in wastewater engineering. However DWAF applies the same effluent quality standards to mining facilities as for other industrial operations and enforcement measures are taken against those causing serious pollution.

2.12.2 Salination

Natural salination of water sources is recognized as a problem internationally in arid and semiarid regions. This natural problem has been exacerbated by urbanization and industrialization. Water is a scarce resource in South Africa therefore indirect reuse of water is widely practiced and return flows are a vital water resource in the Study Area. There are various degrees of salinity above which water becomes unsuitable for use for potable water supply, industry and agriculture. Although the WHO (1984) drinking water guidelines specify 1,000 mg/l TDS, possible adverse health effects from potable water with high TDS will depend on the concentration of individual constituents. In the case of industry, different sectors will have different maximum values of TDS above which they cannot use the water without further treatment and the level of certain elements will have major economic implications for certain industries such as mineral processing. The problem is compounded when desalination techniques such as ion exchange are used by industry and a concentrated brine waste is generated. It is necessary to establish controls for the safe disposal of such brines to prevent further salination of water sources. For agriculture, the prevailing soil conditions and the crop concerned will determine what level of TDS can be tolerated for irrigation.

Mitigation measures currently used include blending using a second source and the use of the river channel for return flows white water for primary use downstream is carried in a canal (such as the one from Roodeplaat Dam which supplies the water treatment works at Wallmannsthal and Temba).

2.12.3 Pollution Prevention Control Measures

Effluent standards were introduced in South Africa for the first time in the Water Act, 1956. The treatment of any water resulting from industrial use is obligatory and three types of standards are currently applicable:

- General Standard. (applied universally);
- Special Standard, (for specified streams); and
- Special Standard for Phosphorous, (for sensitive catchments).

The requirements apply only to physical and chemical (but not biological), parameters. The pollution prevention policy has been formulated primarily on the polluter pays principle.

In addition to these standards, DWAF has established water quality guidelines for various uses based on the Receiving Water Quality Objective (RWQO) approach to ensure that water remains fit for use by downstream users. This is done by imposing stricter standards than the general requirements where necessary due to local conditions. Catchments studies for the Olifants and Crocodile basins include guidelines for critical parameters.

In the long term, surface water quality in Study Area will continue to deteriorate as the volume of return flows and urban runoff increase, with urbanization and with the expansion of water supply and sewerage systems, while the natural runoff will decrease. The rate of deterioration will largely depend on activities south of the Study Area, which will be the origin of much of the return flows, and will be of great significance to downstream users, particularly for primary use. The development of water quality models as a tool for integrated catchment management is strongly recommended.

The long term trend of deteriorating water quality in the Study Area will have a significant impact on MW as treatment costs and possibly the level of treatment required are likely to increase. The need to use powdered activated carbon will become more frequent and at some point in the future, probably beyond the target date of 2015, it may be necessary to introduce a further stage of treatment such as GAC absorbers.

2.12.4 Eutrophication of Surface Water

Eutrophic water is that which contains sufficient nutrient material (nitrogen and phosphorous in the context of water supply), to support prolific growth of aquatic plants. The problems caused by eutrophication are numerous and are described in detail in "Management of Water Resources of the Republic of South Africa" published by the Department of Water Affairs in 1986.

In the context of the Study Area, these problems include:

- increased treatment cost, (additional process stages, such as microscreens and DAF, and additional chemicals, such as powdered activated carbon, are necessary for effective treatment at water works such as Wallmannsthal, Temba, Kudube, Brits etc.);

- control of algal growth is necessary in irrigation canals (as for the Hartbeesport and Loskop schemes);
- control of algae is necessary in the storage reservoirs to enable recreational activities to continue:
- loss of aesthetic appearance which in turn affects the value of properties located close to water bodies (lake-side homes, leisure related businesses etc.); and
- adverse health impact on fish, livestock, pets and possibly humans.

It is estimated that 80 to 90% of nutrients in water sources originate from point sources. Therefore, in order to control nutrient levels in an effort to reduce eutrophication, the South African Government introduced a phosphate standard of 1.0 mg/l soluble orthophosphate as P for effluents discharged in seven critically sensitive catchments. The standard was introduced in 1980 and full implementation was required by 1985. Two of these seven critically sensitive areas fall within the Study Area: the Picnaars and Crocodile rivers upstream of their confluence and the Olifants River upstream of Loskop Dam. Together these catchments comprise more than half of the Study Area.

Although there is not consensus amongst limnologists concerning the nutrient concentrations above which eutrophication takes place, it is informative to assume some such levels in order to assess the vulnerability of stored water in the Study Area to eutrophication. General features of a eutrophic lake and of an origotrophic lake were described by Okada (JICA Text) and levels of nutrients above which eutrophic characteristics are exhibited were greater than 0.2 mg/l for total nitrogen and greater than 0.02 mg/l for total phosphorous.

Table 2-7 shows data from the DWAF database which was reviewed for the purpose of analyzing the surface water quality within the Study Area. The values which exceed the above levels of nitrogen and phosphorous are underlined.

Although the parameters reviewed (nitrate/nitrite and phosphate concentrations) do not fully represent the total nitrogen and total phosphorous concentrations, the analysis below does indicate reservoirs where entrophication is likely to occur.

The table indicates that based on average nitrate/nitrite and phosphate concentrations the nitrogen and phosphorous levels exceed or are approaching the nutrient levels required for entrophication to take place at many locations. Algae does cause problems at many of the water treatment works.

2.12.5 Existing Surface Water Quality

In order to make an assessment of the conditions prevailing in the rivers and raw water reservoirs within the Study Area, use was made of information from the water quality database of DWAF. Representative points were selected from all of the survey stations within the Study Area. The locations selected included all impounding reservoirs, intermediate stations, when available, located on the watercourses between such reservoirs, and such additional points as were

necessary to provide an overall picture of water quality in the major rivers. Recent data was analyzed statistically and the results are summarized in Tables 2-8 and 2-9. The detailed data obtained from DWAF is included in Part C of the Data Book

It should be noted that the period and frequency of sampling was not necessarily the same at all stations. This is especially true of the rivers, some of which are also subject to considerable flow variation. Unfortunately for some stations no flow data is available for correlation with water quality. The absence of data for metals for most stations, especially iron and aluminium, is unfortunate as the levels of these parameters is important in assessing treatment process suitability.

In addition to the information obtained from DWAF, sampling and analysis was carried out under the supervision of the Study Team to investigate the quality of water being consumed, water treatment works performance and the quality of potential new raw water sources within the Study Area. The sampling was carried out in two stages and the reports are included in Part E of the Data Book.

2.12.6 Suitability of Surface Water for Treatment

In order to derive possible raw water quality criteria for treatability of water for domestic use, a technique proposed in a paper published in 1988 by the Hydrological Research Institute of DWAF, "Water Quality Objectives for Raw Water for Potable Use" (PL Kempster and HR Van Vliet), was used which proposes the following three relationships to relate raw water quality to the water quality standards recommended in SABS 241-1984 "Specification for Water for Domestic Supplies". The approach seeks to take into account the variability of raw water quality and the effectiveness of the treatment process for each parameter. The relationships proposed are:

$$\begin{aligned} P_{50} &= R_{ec} \times f \\ P_{90} &= M_{al} \times f \\ P_{100} &= C_{l} \times f \end{aligned}$$

where P₅₀ is the 50% non exceedence percentile, P₆₀ the 90% non exceedence percentile, P₁₀₀ the 100% limit, f is a purification removal correction factor determined for each parameter and R_{cc} the Recommended limit in SABS 241, M_{al} the Maximum allowable limit in SABS 241 and C_l the "Crisis limit" proposed in the NIWR criteria ("Proposed aesthetic / physical and inorganic drinking water criteria for the Republic of South Africa", Kempster and Smith, 1985), as there is no equivalent criteria in SABS 241. Table 2-10 below is reproduced from the 1988 paper and shows the above levels for each parameter. The data obtained from DWAF and summarised in Tables 2-8 and 2-9 was assessed with respect to the values shown in Table 2-10.

In the main, the data indicates that water quality is suitable for conventional treatment. It must be noted however that the parameters considered are limited and some key parameters are not included as data was not available from the database (e.g. iron, manganese, total phosphorous, total nitrogen etc.).

With respect to impounded water, exceedance of the above values was mainly with respect to

TDS which exceeded the P₅₀ level at Roodekopjes Dam, Bospoort Dam and Leeukral Dam. At Olifantsnek the P₅₀ level for pH was also marginally exceeded. The TDS levels which are in excess of the P₅₀ level by about 10% all fall well within the WHO recommended level of 1,000 mg/l and do not present a problem.

A similar trend can be seen in the rivers with TDS levels in excess of the P_{50} figure in the Crocodile River at Crocodilepoort, Vaalkop and Hardekoolbult. The P_{50} , P_{90} , and P_{100} levels for nitrates and nitrites are exceeded in the Crocodile River at Kalkheuwal.

Although not in exceedance of the guideline levels in the above table, the level of fluorides in the Moses River at Uitspanning and in the Elands River at Weltevreden, (both in the extreme north-east of the Study Area), and in Vaalkop Dam sometimes exceed the recommended limit of 1.0 mg/l hence care must be taken to ensure that if this water is treated, that the level of fluorides present in the raw water is reduced.

2.13 Water Quality Standards

The South African Water Quality Guidelines (1993) published by DWAF govern water quality and will comprise eight volumes as shown below.

Volume 1: Domestic Use

Volume 2: Recreational Use

Volume 3: Industrial Use

Volume 4: Agricultural Use

Volume 5: Natural Environment

Volume 6: Integrated Manual

Volume 7: Estuarine

Volume 8: Coastal and Marine Environment

Only volumes 1 to 4 have been published to date; the first five will relate to inland surface water and groundwater. A revision of Volume 1 which relates to domestic use is due to be issued shortly. It must be noted that compliance with these Guidelines is not mandatory and cannot be enforced nor does non-compliance warrant punitive measures. The 1993 edition of Volume 1: Domestic Use, was based on South African Standards 241-1984 "Specification for Water for Domestic Supplies" where applicable, and reference was also made to standards used in other countries. SABS 241 specifies a "Recommended Maximum Limit" and a "Maximum Allowable Limit" for various physical, chemical and bacteriological parameters.

The parameters included in Volume 1 of the Guidelines differ from those in SABS 241; some parameters are included in the Guidelines but not included in SABS 241 and vise versa. For each parameter information is given on:

- the occurrence of the substance in the natural environment
- standards used in other countries
- background information
- inter-dependence with other constituents and properties
- interpretation of measurements.

For a series of different ranges of concentrations, the possible health effects and treatment options are described for each substance and a target guideline range is indicated.

In the event that the Water Quality Guidelines do not refer to a particular constituent, then it is recommended that reference be made to the drinking water quality criteria of the Department of National Health and Population Development (Aucamp and Vivier, 1990). In these criteria, three levels are specified for each constituent of which the two most onerous, "Maximum Level for No Risk" and "Maximum Level for Insignificant Risk", are broadly the same as the Recommended Limit and Maximum Allowable Limit specified in SABS 241.

In Table 2-11 the guideline levels in SABS 241 and Volume 1, the Water Quality Guidelines and the Department of National Health and Population Development criteria are shown for comparison purposes with WHO, Japanese and EU water quality standards.

Table 2-1: Monthly Average Rainfall for Representative Rainfall Stations

					7		Mont	ily Av	erage	Rainf	all (m	m)		:	
Station No	Station	Period of Records	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
0591 538	Marblehalll	1938 - 1996	85	75	49	38	8	5	1	4	17	44	89	105	520
0515 412	Witbank	1956 - 1996	140	89	85	42	12	6	4	8	25	86	126	111	734
0589 503A	Warmbaths	1941 - 1996	120	84	74	37	7	6	2	5	16	58	101	124	510
0513 285	Pretoria	1916 - 1996	136	75	82	51	13	7	3	6	22	71	98	110	674
0548 165	Pilanesberg	1915 - 1986	78	71	58	38	6	12	3	5	25	57	61	105	414
0511 524	Rustenburg	1918 - 1996	144	103	95	56	11	4	2	8	24	58	100	114	719

Table 2-2: Average Evaporation

				7	lverage	Evapo	ration (mm)					
Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Warmbaths	229	187	186	143	134	311	127	175	229	252	232	105	2,250
Pretoria	195	175	161	114	98	74	83	120	152	200	181	105	1,746
Pilanesberg	265	241	202	174	156	118	131	175	219	256	276	124	2,497

Table 2-3: Average Temperatures

				Avei	rage Ten	nperatu	re (°C)	·				
Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Marblehalll	25.4	25.0	23.7	20.2	16.2	12.7	12.8	15.7	20.1	22.6	23.5	24.8
Warmbaths	23.5	23.0	21.5	18.7	15.2	12.0	12.1	15.1	19.1	21,4	22.2	23.0
Pretoria	23.0	22.6	21.5	18.2	14.9	11.8	12.0	14.9	18.6	20,4	21.4	22.4
Pilanesberg	25.3	24.5	23.2	19.7	15.9	12.2	12.2	15.7	19.5	22.2	23.5	24.4

Table 2-4: Representative Average Wind Speed

				Aver	age Wind	l Speed	(m/s)					
Station	Jan	Feb	Mar	Apr	May	Jun	Ĵul	Aug	Sep	Oct	Nov	Dec
Warmbaths	3.1	2.6	2.7	2.6	2.5	2.5	2.6	2.9	3.3	3.6	3.3	3.1
Pretoria	2.9	2.6	2.4	2.4	2.4	2.6	2.6	3.2	3.3	3.3	2.9	2.8
Pilanesberg	2.9	3.2	3.1	3.0	2.7	3.2	3.2	3.8	· 3.7	3.6	3.8	3.4

Table 2-5: Mammal Species Present Within the Olifants River Basin

Region	Total No of Species	Total No of Red Data Species	Vulnerable	Rare	Indeterminate
Wilge River	44	9	3	5	1
Elands River	63	14	4	8	2
Bloed, Olifants and Moses Rivers	57	5	3	2	•

Table 2-6: Distribution of the Major Geological Formations

Major Geological Formations / Rock Type	Surfac	e Extent
	Area (km²)	Percentage of Total
1. Quaternary Sediments (alluvium, sand, calcrete)	903	3
2. Letaba Formation (basalt)	496	2
3. Irrigasie / Clarens Formations (sandstone, siltstone, mudstone)	2,160	8
4. Ecca Group (shale)	1,468	5
5. Dwyka Tillite Formation (tillite, diamictite)	475	2
6. Basic Intrusive Rocks and Alkaline Complexes (foyaite, syenite)	2,939	11
7. Waterberg Group (sandstone)	730	3
8. Lebowa Granite Suite (hornblende and biotite granites)	4,694	17
9. Bushveld Complex (gabbro, norite, anorthosite)	5,200	19
10. Rooiberg Group (porphyritic and amygdaloidal rhyolite)	1,449	5
11. Pretoria Group (quartzite, shale)	6,122	22
12. Chuniespoort Group (dolomite, chert, quartzite)	664	2
13. Unnamed Swazian Rocks (gneiss, migmatite)	20	1
Total	27,320	100

Table 2-7: Vulnerability of Raw Water Storage Reservoirs to Eutrophication

Name of Raw Water Storage Reservoir	Average Conce	ntration (mg/l)	Water Treatment Works Using Raw Water
	NO/NO,	Ortho-	
andre de la companya de la companya La companya de la co	as N	PO ₄ as P	
Bon Accord Dam on Apies River	0.47	0.024	
Hartbeespoort Dam on Crocodile River	1.80	0.029	Brits WTW
Rietylei Dam on Hennops River	0.79	1.101	
Roodeplaat Dam on Pienaars River	0.83	0.263	Wallmannsthal, Temba WTW
Lindleysoort Dam on Elands River	0.39	0.033	
Koster Dam on Koster River	0.11	0.025	Koster WTW
Klipvoor Dam on Pienaars River	0.08	0.331	
Roodekopjes Dam on Crocodile River	0.14	0.037	
Bospoort Dam on Hex River	0.16	0.214	Bospoort WTW
Warmbath Dam on Buffels Spruit	0.08	0.028	
Vaalkop Dam on Elands River	0.22	0.028	Vaalkop WTW
Leukraal Dam on Apies River	3.08	1.358	Kudube WTW
Buffelspoort Dam on Sterkstroom River	0.05	0.014	
Olifantsnek Dam on Hex River	0.17	0.039	
Swartsruggens Dam on Elands River	0.34	0.040	Swartsruggens WTW
Loskop Dam on Olifants River	0.07	0.032	
Rust de Winter Dam on Elands River	0.14	0.018	(Weltervreden WIW)
Rhenosterkop Dam on Elands River	0.15	0.013	Weltervieden WTW
Bronkhorstpruit Dam on Bronkhorstpruit	0.12	0.019	Bronkhorstpruit WTW, (Cullinan WTW)

Table 2.8: Water Quality in Dams in the Study Area

			ŀ		Ì											
Station	Hydro Stations	Sec.	ř	¥d	Ž.	Σ	đ	űs.	ð	NO.	ĝ	Ortho	TALAS	还	×	NH, ES
Number		Cond			Sig.	Diss	Diss	Diss	Diss	Z	Diss	70 as	၌ ၁	Diss	50	Z
		(mS/m)	(mg/l)		(Mgm)	(Mgm)	(Mg/l)	(Value)	(Jam)	(Sa)	(Vâm)	(mga)	(S)	(villa)	(v2m)	(L/Zur)
A2R001Q01	A2R001Q01 Hartbeespoort Dam on Crocodile River	Average 49.6		8.5	5	77	50	0.5	1.7	1.80	69	0,029	8	0.2	9.7	60.0
-		50% 48.2		8.5	4	3	22	90	47	2.18	89	0.027	8	7	8,6	0.0
: -		<u>. </u>	170	0.6	\$	5.	36	0.7	51	2,64	74	0.044	801	3.7	10.4	0.20
		Max, 59.8		9.7	51	22	45	0.7	83	2.76	33	950.0	164	4.0	=	023
•		Mm 44.6		7.9	£	7	<u>6</u>	3	33	0.43	*	0.00	96	40,4	5.3	40.0v
A2R002Q01	Bon Accord Dam on Apies River	Average 47.8		8.3	8.	121	38	0.4	31	0.47	\$	0.024	140	32	32	0.0
:		50% 46.8		8,4	8	:	36	0.4	13	9.44	34	0.025	142	3.9	800	0.0
			435	8.6	\$	21	4	9.0	4	1.07	63	0.034	171	Å	6.9	0.0
				80	₹	ដ	64	8.0	*	1.25	8	0.038	171	5.0	20	0,10
		Min 34.4		7.7	<u>-</u>	Ξ	22	0.2		¥0.0¥	X	<0.005	Š	6. 4.	3.9	*0.0°
A2R003Q01	A2R003Q01 Olifantsnek Dam on Hex River	Average 18.4		8.0	- S	01	ន	0.2	8	0.17	٥	6000	11	53	3.9	0.11
		50% 15.1		4	7	0	12	0.2	*	00		0.029		6.1	2.8	90.0
			214	9.7		35	ี่ย	0.3	040	0.47		0.061	102	7.0	· i	77
				10.4	6	22	155	4,0	5	0.62	8	0.183	138	7.1	13.4	0.32
		Min 11.0		6.9	24	V	90	o I	♡	\$0.0	3	0.007	\$	5.6	6.	3 0.05
A28004001	Rietulei Dam en Henners River	Average 42.9	184	×	3	1	- F	75	2	18				;		
		CON.		3 3	3 8	= =	7	5 4		× •		01.1	1	3	<u>.</u>	S. C.
			5 4	. 0	3 %	===	3 8	3 6	<u> </u>	3	3 *	X	133	0.4	× .	080
				2	5 \	2 :	3 2	3 6	3 4	Ę		200	82	2 3	• •	1.14
• •				1 2	***	9 0	3 8	3 3	? 5	200		0,170	× .	0.0	· ·	9 8 8
	The second of th				,	:	Ī		1				•	\	ξ	}
1005008ZV	Buffelspoort Dam on Sterkstroom River	a#i	48	7.3	CI	. 3	4	0.1	*	0.05	9	0.014	81	જ	2.7	8.0
				7.3	64	r.	**	0.1	•	9.0	9	0.012	80	3.8	4	00
	•	<u></u>	27	7.6	ri ,	4	*	00	77	90.0	•	0.021	ន	4.9	7.5	0.00
٠				×.	vn i	4	22	0.3	92	0.13	<u>-</u>	0.037	\$	5.4	77	22.0
		Min 4.9		6.7	4	N		<u>-</u> -	٧	8 0	3	×0.005	v	5.6	0	800
A2R006Q01	Bospoort Dam on Hex River	Average 74,5		88	88	ย	31	0.4	108	0.16	88	0.2141	133	1.7	17.	0.21
				83	76	8	30	3	911	800	87	0.229	132	7:1	14.5	0.02
		· · · ·		Ci Ci	캺	23	37	0.5	123	0.39	111	0.401	<u>3</u>	2.8	16.7	0.36
				9.5	611	9	22	0.7	174	3	3	0.707	237	3.7	17.8	4.67
		Min 49.1	35.	7.8	8	£	79	0.2	3	<0.0 40.04	36	0.006	8	40>	5.0	40.0
					1	1			1	1						
A2R007001	Lindley's Poort Dam on Elands River	28	139		_	•	13	63	•	0.39	11	0.033	63	4.6	4,8	0.05
		:		œ (vo :	ς ,	2	3	9	0.39	2	0.031	69	4.6	4.7	0.0
		0.1.2		, ;	×	2 :	9 :	3 3		99.	7	0.046	<u></u>	2	5.7	0.07
		Max.	- -	2 1	2 1	= '	<u>×</u>	9.0	× 1	0.65	22	000	&	2.7	0.0	0.15
				, , , , , , , , , , , , , , , , , , ,	-	7	•	27	∇	8	2	0.011	30	3,8	2.7	40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
							1		1							

Table 2.8: Water Quality in Dams in the Study Area

0.10 0.10 0.18 0.35 0.00 0.15 0.15 0.04 유명 명 최 호 NH, ES N (mg/l) 24235 2 2 2 2 2 0 0 0 0 0 5.51 8.81 8.82 8.83 0; 0; 0; 0; x 2 4 4 6 6 6 2 3 2 2 3 × (0,2m) 5 × 2 × 3 4 4 4 6 9 5 5 5 5 5 V 4 4 0 4 3 2 2 2 2 2 30340 5 5 5 5 N S (Ngm) 2 3 8 8 5 4 4 8 6 8 3 3 3 5 5 ភ្ជន់ដូន 88888 TAL as CaCO₃ (mg/l) 0.028 0.023 0.042 0.155 0.331 0.316 0.452 1.033 0.113 0.040 0.022 0.076 0.210 0.200 0.037 0.020 0.031 0.260 0.025 0.021 0.037 0.041 0.028 0.033 0.199 0.005 0.263 0.276 0.276 0.814 0.066 Ortho PO, as P (mg/l) 5 2 2 2 2 5 8 8 7 7 8 23728 3 3 3 3 2 7 S (Val) 0.79 0.00 0.08 0.22 0.28 0.70 0.00 0.00 0.08 NO,/NO, as N (mg/f) 22 22 28 28 2 2 2 2 3 7 2 2 2 2 2 고 (San) 77777 0 0 0 0 0 0 0 4 4 5 6 6 4 4 6 6 6 00000 33233 P. Diss. (mg/l) 2 2 2 2 2 48848 8888 2 (Jam) 28282 ន្ទន្ន : : <u>:</u> : 4 , 8 8 2 2 2 Mg. Dess (mg/l) 2222 22632 4 4 8 8 8 \$ \$ \$ \$ \$ as Se 3 2 3 3 2 2 4 4 6 11 53455 7.8 7.0 9.0 1.8 17.7.03.4 7.7 2 8 2 2 3 3 3 5 8 5 2380 380 808 873 873 25,55 4 4 4 8 8 Total Diss Salts (mg/l) 25.5 25.0 25.0 25.0 25.0 77.0 77.2 81.5 87.8 65.2 2222 7.12 4.05 4.05 5.74 47. 28. 2 49.2 49.6 49.6 43.1 Elec Cond (mS/m) Average 50% 90% Max Min Average 50% 90% Max Min Average 50% 90% Max Min Average 50% 90% Max Mm Average 50% 90% Max Min Swartruggens Dam on Elands River Roodeplast Dam on Pichaars River Kirpyoor Dam on Pienaars River AZROORQOI Warmbad Dam on Buffels Sprui Vaulkop Dam on Elands River Hydro Station A2R011Q01 A2R013Q01 A2R015Q01 A2R014Q01 100600XZV V2R012Q01 Station

Table 2.8: Water Quality in Dams in the Study Area

Nation	Hydro Stations		3	Total Diss	Ę.	•	Ē	3	•	3	5		-	 !	;	:	,
Number	:		Cond	Salts		Diss	Sign	Diss	Diss	Diss	N. SE		78.07	င့်	Dis	Diss	Z
			(m/S/m)	(HZH)	- 1 - 1 - 1	(mg/l)	(l/#m)	(Mgm)	(mg/l)	(mg/l)	(v2m)	(mg/l)	(f/gm)	(Mg/M)	(T/gm)	(mg/l)	(mg/l)
A2R016001	A2R016001 [Lecukraal Dam on Apies River	Average	72.6	ž	8.6	8.1								1,1,1	2	12.9	9
	-	50%	73.9	555	8.5	38								178	9:9	13.8	0.0
		3006	82,9	8	9.1	8	20	51		7	:	\$8		8	36	14.9	9
		Max	88,7	672	9.6	105								233	8.7	15.7	6
		Min	56.1	380	7.9				0.2	1 .		! ! .	0.311	127	6.1	7.	40.0×
									.				1			1	
B2R001001	B2R001Q01 Bronkhorstpruit Dam on Bronkhorstspruit	Average	31.3	233	8.2	74	E	8				<u>K</u>		121	4.	5.5	ö
		50%	30.7	23	8.3	13				~				120	7	8.	9
	·.	%06	33.3	249	8.6	14					:			120	2	\$	ĕ
		Max	41.9	274	8.7	19			-	. :				3	23	6.8	3
:		Min	26.4	192	7.0	2			0.2	:	¥0.04		0.005	86	0.7	7.4	40.0 4
B3R001001	Rust de Winter on Elands River	Average	17.71	123	7.6	13	,								53	9,9	ŏ
		50%	17.4	120	7.6	23	<u>د</u>	•		12					3	4.0	8
		%%	19.0	135	6.7	15	•	=							7.7	9,7	8
		Max	20.3	Si	8.2	2		=	:						10.0	Š	ö
		Min	15,9	ş	4.8	01	*	•	Ç0,		¥0.0×	4	<0.005	78	S.	6.	40.05
					1										1		ľ
B3R002Q01	B3R002Q01 Loskop Dam on Olitants River	Average	200	*	λ·,										3	Ĵ	3
		20%	30.5	193	6.7									4.	20,7	4.5	ö
٠	-	%	ž	ដ	8										33	4.9	ð
· .		Max	37.7	234	8.	22	2	អ		82		108	:	Ç	3.4	5.4	ŏ
		Μġ	56,6	891	7.4		•	. 2,2	0.2		: "		•		4	4.0	40.00
											:					-	
B3R005Q01	Rhenosterkop Dam on Elands River	Average	29.6	216	7.9	38		≗.		<u>6</u>	0.13			8	8.	4 .8	0.10
		30%	30.0	216	% 0.0		∞								4.6	0,	ĕ
-		%06	36.0	523	**										7.0	7.7	0
		Max	39.2	8	8.5		Ξ					30		, i	נו	2	0
		Min	93	2	5.5						. Y		<0.005		0.5	32	ě
-																	

Table 2.9: Water Quality in Rivers in the Study Area

			г					ļ	,	ŀ	0.0	3			10	- 2	
Station	Hydro Stations		ž	Total Diss	ž	2	ξ.	5 ;	• ;	5 ;	SON ON	ž ;	e '		7 2	4 . 2	
- Amper				Salts		O.S.	S O	Š	OHESS		7. °	3	, i	ς 3	s /	ş (z .
. 		· · · · · · · · · · · · · · · · · · ·	(m/S/m)	(p#)		(u/gm)	(%a)	(J/2m)	<u>(</u>		(VSB)	(V/ŽIE)	SE	(Mg/l)	(Mam)	(SE)	
A2HODKOO!	Pienaars River at Klindrift	Average	\$3.9	387	8.3	15.	11	Š	0.6	8	0.21	35	0.057	153	20,	6.7	0.05
		20%	3,	386	8.3	2	-2		9.0	*	0.13	×	0.044	35.	3.1	7.6	8
		%%	61.7	44	8.5	88	5	37	60	62	0.52	4	0.090	8	4	0,0	0.07
		Max	73.6	516	9¢	2	92	3	0:1	71	0.73	3	0.444	227	5.2	14.1	22,0
		Msn	24.9	192	7.8	អ	•	7	ន	ถ	40.0	717	0.016	×	4.0>	65	40.04
				-	1	1	1	†	1			1	0000	1	3	1	7
A2H012Q01	Crocodile River at Kalkhouwel	Average	\$8.5	407	€ 20 20	***************************************	7	<u>(1</u>	0.5	77	/8./	2 ;	0380	ŝ	ŝ.	10.4	
		%o%	\$	421	2	5	4	4	0.5	X	8.26	\$ 1	0300		0, 1	2 :	90.0
1		% 8	38	461	54 DO	۶. ۱	- 1	₹ :	0,7	5 3	9.63	28 8	0.50	45.	7 .		0 1
• .		Mex	68.9	488	× ×	3	90	 	<u>o</u>	8	12.89	5	0.800	138	7.7	12.6	76.1
		Ma	27.4	<u>§</u>	7.8	9		ន	0.3	64	0.33	35	4	0	Š.	<u>o</u> ,	Ş.
A2M021001	A2H021O01 Premars River at Buffelspoort	Average	59.6	433	8,4	2	2	쿘	9,0	8	0.58	85	0.411	152	3.6	10.8	80.0
	•	20%	919	442	90	8	7.	35	9,0	19	0.47	19	0.399	155	3.5	10.9	0.05
		% %	68.7	493	9.8	2	19	38	0.7	22	- 46	8	0.548	174	4.6	12.0	0.17
		Max	83.5	573	9.1	&	2	\$	8.0	8	25	58	0.710	161	6.8	13.2	025
-		Min	28.1	214	7.7	27	-	81	4.0	22	<0.04	ន	0,193	6 %	2:1	8.2	-0.0×
									-			1		1			
A2H025Q01	Crocodile River at Hardekoolbult	Average	70.9		8.2	<u>t,</u>		4	0.3	8	0.30	7	0.097	891	3.7	10.5	0.07
		%0%	71.1		8.2	74		4	0.7	\$	027	9	0.062	173	3.8	10.3	0.05
		%06	80.7	999	8.6	8	58	74	0.7	8	0.58	8	0.209	183	5.5	12.2	0.15
		Max	93.1	583	8.7	5		₩.	8.0	86	0,63	8	0.311	188	- - - -	14.1	021
		E W	80.	8	7.6	2		8	7.0	8	8	8	0.020	ñ	8.	6	40.04
A2H032O01	A2H032O01 Selons River at Modeil	Average	14.3	19	7.1	4	4	8	0.4	6	0,44	0	0.081	25	5.7	3.2	00
,		% 0 %	2.8	8	7.4	4	4	9	0.3	٥	0.38	7	0.046	24	5.6	2.7	0.12
		%06	14.1	3	64	1 0	٧.	86	0.5	9	0.70	16	0.138	36	6.7	53	0.55
		Max	7.0	`.	90 90	•	S	•	50	2	0.76	ន	0.279	<u> </u>	6.9	6.5	1.47
		g X	85.		5.7	e	.	en :	6	•	0.13	2	0.033	12	4	Ϋ́.	8
A2H048Q01	Crocodile River at Crocodile Poort / Thaba Moya	Average	78,9		8.2		7.			27	1.75	8	0.184	186	7.7	7.8	0.07
		30%	813	611	2	63	8	4	0.5	*	1.51	108	0.178	8	7.6	7.9	0.05
		%06	88.7		8. 2.		9			7.0	2.80	113	0.246	211	6.	0.6	0.08
		Max	8.		6 ;		4			8	3.10	126	0.349	217	10.5	9.6	0.54
· .		Min	22.0	378	7.8		**			\$	0.38	2	0.083	124	27	7	×0.0
													:			1	Ī
A2H059Q01	A2H059Q01 Crocodile River at Vaalkop/Adanta	Average	6'86		8.3		33			25	0.30	611	0.026	213	6.0	7.6	90.0
		80%	97.0		83		37			ន្ទ	0.23	ដ	0,018	80	6.0	9.7	9.
		%06	124,4	228	4.8	123	\$	7	0.8	35	0.65	139	0.033	243	8.0	8.2	90.0
		XeM	136.0		8.6					8	0.89	155	0.233		0.6	8.0	95.0
		Σ	74.3		. .		22			87	\$0.0¢	88	8000	<u>&</u>	30	3	0.00 40.00
									1		1	1					

Table 2.9: Water Quality in Rivers in the Study Area

						Ì											
Je in	Mydro Stations		Siec	Total Diss	돈	Ž	X.	ð	ī-	ರ	NO,NO	os Os	Ortho		33	×	N. E.
umber			Cond	Salts		Diss	Diss	Diss	Dies	Diss	z	Diss	PO. 25 P		Diss	S C	z
		;	(m/S/m)	(I/Zw)		(Mg/l)	(mg/l)	(mg/l)	(J/Zim)	(mg/t)	(mg/l)	(mg/l)	(mg/	(v/2cu)	(mg/l)	(Mg/M)	(J/Zw)
100960H2	2H096Q01 Lindleys Poort Dam on Elands River - Right Canal	Average	6.81	137		~	°	7			65.0		١.				
,		20%	8.61	139	٠	S		4		.4	0.23						ċ.
		%06	23.4	163		9	=	. 17		9		<u> </u>				_ :	
		Max	24.3	76	8.6	-F-	17	2	0.5				20.0	8			
		Min	10.6	20		in .				٥	0.14		0.014		4.0	22	40°C
			1	1	1		ľ	1	İ		-						
1003510H2	2H015Q01 Wilge River at Zusterstroom	Average	17.8	118			S	4			.:						
-		20%	17.8	114	٠.			1		;				. :			
		%06 %	24.8	28	,		7	23						1.3			:
		Xe X	25.7	178		=	٥	ģ	9.0	==			20:0	24	4,7	6.0	
		ž		7.				•			40.0°		0.007				70'0 >
				:									•			:	
100700H	3H007Q01 Moses River at Uttspanning / Dennilton	Average	17.6	139			4	6	1.0	6	0.10		120'0				70°0>
	· .	20%	17.0	138				S C	2:								- 7
:		.7,06	23.9	178			S.	2				1	:				
		Max	28.8	221		¥	13	2	1.5	ន		1	24 0.114	=======================================	*	9,7	
		Σ	7.9	3			-	Τ.			Ī					;	
1008Q0H	3H00RQ01 Elands Riverat Welterweden	Average	23.0	991	٠.	14	7	6			0.18	:	620.0	25			
	: -	20%	22.4	. 155		<u>e</u>	•	<u>\$</u>				·	0.027				
_		% %	30.7	230		90	Ε	27									
		Max	45.9	266	8.1	23	23	31	4.	23			22 0.100	141			
1		ž	9.6	86	:		4	9							7	×	×0.0
											:						

Table 2-10: Value of Parameters for Assessing Raw Water Quality

Determinant	f	P _{sq}	P _{>0}	Pioa
Turbidity	NS ^a	NS	NS	NS
Colour	NS	NS	NS	NS
Taste	NS	NS	NS	NS
Odour (ON)	2	2	10	NS NS
ρH	•	6 to 9	5.5 to 9.5	4 to 11
Conductivity (mS/m)	L	70	300	400
TDS (mg/l)	1	500	2000	2700
Total Hardness (mg/l Ca CO ₃)	1	20 to 300	650	1300
Magnesium (nig/l)	1	70	100	200
Sodium (mg/l)	l	100	400	800
Sulphate(mg/l)	j	200	600	1200
Nitrite / Nitrate (mg/l)	l (var.)	6	10° (8d)	20° (10°)
Fluoride(mg/l)	1	1	1.5	3
Arsenic(mg/l)	1	0.1	0.3	0.6
Cadmium(mg/l)	1°(2) ³	0.01*(0.02*.)	0.02° (0.04)*	0.04° (0.08)°
Copper(mg/l)	1	0.5	1.0	2.0
Cyanide(mg/l)	1	0.2	0.3	0.6
fron(mg/l)	5	0.5	5	10
Lead (mg/l)	3	0.15	0.3	0.6
Manganese (mg/l)	2	0.1	2.0	4.0
Mercury (mg/l)	1	0.05	0.010	0.020
Phenols (mg/l)	2	0.010	0.020	0.080
Selenium (mg/l)	2	0.040	0.10	0.20
Coliforms	NS	NS	NS	NS
Aluminium	NS	NS	NS	NS
Ammonia (mg/l N)	1	1	2	4
Calcium	NS	NS	NS	NS

Source: "Water Quality Objectives for Raw Water for Potable Use", DWAF Hydrological Research Institute, PL Kempster and HR Van Vliet (1988)

Notes:

a = Not specified

b = odour number

c = small community users

d = large community users

e = acidic pH waters

g = alkaline pH or turbid waters

Parameter	онм	Republic of	Republic of South Africa	RSA	Republic of South	Republic of South Africa Proposed	Japan	EC Directive
	(1993)	SABS	SABS 241 (1984)	Water Quality Guidelines (1993)	Water Quality Criteria of Department of National Guidelines (1993) Health and Population Developmen	Criteria of Department of National Health and Population Developmen	Water Quality Standards	(1980)
	Recommended	Recommended	Max. Allowable	Recomm.	Max. Limit for	Max. Limit for	(Dec 1993)	
		Limit	Limit	Limit	No Risk	Insignificant Risk		MAC
Physical characteristics				. ;			:	ā
Colour (TCU)	15	50	SN		50	i.	'n	50
Taste & Odour (TON)		Not objectionable	Not objectionable Not objectionable		great	s,	No abnormalities	3 @ 25°C
Hydrogen-sulphide (mg/l)	0.05	,						undetectable
Hď	< 8.0 (PS)	6.0 - 9.0	5.5-9.5	6.0-9.0	0.0 - 0.0	5.5-9.5	5.8 - 8.6	9.5 max.
Temperature (°C)					8,	v 30		28°C
Turbidity	SNTU	1 NTU	SNTU	1 870	UTNI	SNTU	2 mg/l	4 JTU
Total Dissolved Solids (mg/l)	00.1	(450)					88	1,500 (a)
		from conductivity						
Conductivity (mS/m)		70	300	٩	0/	388		
Total Hardness (CaCO ₃)		20 - 300	059 - SN	× 100	20 - 300	059		
Hardness (Ca) Hardness (Ca / Mo)				where possible			000	min 60 mg/l (b)
Dissolved Oreanic Carbon				v	vi	0.		

Parameter	WHO	Republic of	Republic of South Africa	RSA	Republic of South	Republic of South Africa Proposed	Japan	EC Directive
	(1993)	SABS		Water Quality Guidelines (1993)	Criteria of Depar Health and Popul	Water Quality Criteria of Department of National Guidelines (1993) Health and Population Developmen	Water Quality Standards	(1980)
	Recommended	Recommended	Max. Allowable	Recomm. Limit	Max. Limit for No Risk	Max. Limit for Insignificant Risk	(Dec 1993)	MAC
Substances undesirable in excess (to prevent colour, taste, corrosion, etc.). All concentrations are in mg/l.	(to prevent colour,	taste, corrosion,	etc.). All concentra	tions are in mg/l.				
Alkalinity (C2CO3)		:						
Alkalinity (HCO ₃)		:						min 30 (5)
Aluminium (Al)	0.2			0.15	0.15	0.5	0.2	0.2
Ammonia (NH.)	1.5							
Ammonia (NH4.)		-			·	من المنافعة الماليات		0.5
Ammonia (N)					,	73	-	
					,	Š		
Calcium (Ca)			:		150	200		-
Chloride (CI)	250	250	009		250	009	700	
Copper (Cu)	l (see also				5.0	_	-	(a) (10) c
Tone (Ee)	ociow)	. 0	0.1	0.1	0.1	p-ref	0.3	070
10 <i>11</i> (FÇ)	}	5	?	<u> </u>				
Magnesium (Mg)		. 02	100		2	100		92
Manganese (Mn)	0.10 (see also	0.05	_	50:0	0.05	4-4	0.05	0.05
	(moloq)							
Phenols (C,H,OH)		0.005	0.01				0.005	0.0005
Phosphorous								5 P ₂ O ₅
Potassium (K)					500	400		7
Silver (Art)			:		0.02	0.05		0.01 (e)
Sodium (Na)	200	100	400		100	400	200	150
Sulphate (SO ₂)	250	200	009		200	009		250
		1			•		· ·	
Zinc (Zn)	· · ·		vo			^	_	(S) (S) (S)

Table 2.11: Comparison of Water Quality Standards

Parameter	WHO	Republic of	Republic of South Africa	RSA	Republic of Sout	Republic of South Africa Proposed	Japan	EC Directive
	(1993)	SABS	SABS 241 (1984)	Water Quality Guidelines (1993)	Criteria of Depar	Water Quality Criteria of Department of National Guidelines (1993) Health and Population Developmen	Water Quality Standards	(1980)
	Recommended	Recommended	Max. Allowable	Кесотт.	Max. Limit for	Max. Limit for	(Dec 1993)	
		Limit	Limit	Limit	No Risk	Insignificant Risk		MAC
Inorganic substances of health signissicance. All concentrations are in mg/l.	ignificance. All con	centrations are in	mg/l.	: :			_	
Arsenic (As)	0.01 (P)	0.1	0.3		0.1	0.3	0.01	0.05
Cadmium (Cd)	0.003	0.01	0.02		0.01	0.02	0.01	0.005
Copper (Cu)	2 (P)	0.5			0.5	₽ -4		no MAC
Cyanide (CN)	0.07	0.20	0.30		0.20	0.30		(see above) 0.05
Fluonde (F)	1.5 (d)	0:1	1.5	1.0	1.0	1.5	0.8	0.7 @ 25 - 30° C
Lead (Pb)	0.01	0.05	0.1		0:05	0.1	0.05	0.05 in running
Manganese (Mn)	0.5 (P(c))	0.05	H	0.05	0.05	F-4	0.01	water (g) 0.05
Mercury (Hg)	0.001	0.005	0.01	0.005	0.005	0.01	0.0005	0.001
Nitrate (NO ₃)	50 NO ₃ (f)						:	50 NO,
Nimice (NO ₂)	3 NO ₂ (f)	,	•	,				0.1 NO ₂
Nitrite/Nitrate (N)		S	01	S	y)	0	10	
Selenium (Se)	0.01	0.02	9.05		0.02	0.05	0.01	0.01

Table 2.11: Comparison of Water Quality Standards

Parameter	WHO	Republic of	Republic of South Africa	RSA	Republic of South Africa Proposed	Africa Proposed	Japan	EC Directive
	(1993)	SABS	SABS 241 (1984)	Water Quality	Criteria of Depar	Water Quality Criteria of Department of National Water Quality	Water Quality	(1980)
				Guidelines (1993) Mealth and Population Developmen	Scalth and Popul	ation Developmen	Standards	
	Recommended	Recommended	Max. Allowable	Кесотт.	Max. Limit for	Max. Limit for Max. Limit for	(Dec 1993)	
		Limit	Limit	Limit	No Risk	Insignificant Risk		MAC
Standards for Chlorophyll and Bacterial Quality	Sacterial Quality							
		-						
Chlorophyll a concentration		-		۷,				
Total Coliforms	0 per 100 ml (h)	ጀ	5		0	S	īŽ	0 per 100 ml (h)
Fecal Coliforms	0 per 100 mi	īž	N.	0 / 100 ml	0			0 per 100 ml
Standard Plate Count		100	SN		× 100	> 1,000		
Coliphage				<1/100ml	0	0.		
Enteric Viruses				< 1 TCID ₅₀ / 101	0			
Protozoan Parasites			•	< 1 Gardia cyst / 10 l				
	,		-					

2-29

GL Guide Level (EC not mandatory)

MAC Maximum Admissible Concentration (EC mandatory)

NS Not Specified

(PS) Performance Standard for filtered water before disinfection.

(P) Provisional

(a) After drying at 180°C

(b) For softened water

(c) After water standing in pipes for 12 hours; 0.1 ex works

(d) Value must depend on climate and local conditions

(e) Level for manganese is 0.5 for toxicity effect but 0.1 to avoid deposition problems

(g) EC directive not clear. UK standard applies both to running water and water left standing in pipe (f) The sum of the concentrations of nitrite and nitrate to their respective GVS should not exceed 1

(h) In 95% of samples in the case of large supplies, throughout the preceding 12 months

CHAPTER 3: SOCIO-ECONOMIC CONDITIONS

CHAPTER 3 SOCIO-ECONOMIC CONDITIONS

3.1	Introd	uction	3-1
3.2	Data S	Sources and Methodology	. 3-1
	3.2.1	Central Statistics Services Census Data	. 3-1
	3,2.2	Saldru Report by University of Cape Town on Poverty	
	3.2.3	Bureau for Market Research	
	3.2.4	Development Bank of South Africa (DBSA)	. 3-2
,	3.2.5	Escom NELF Database	
	3.2.6	Centre for Development Enterprise	
	3.2.7		
	3.2.8	Setplan	
	3.2.9	Map Sources	. 3-2
	3.2.10	Aerial Photography	
3.3		Socio-Economic Indicators	
	3.3.1	Population	. 3-2
	3.3.2		
	3.3.3	Income and Expenditure	
	3.3.4	Health	
Table	e 3-1 :	Summary of Magesterial Districts in the Study Area	3-7
Table	e 3-2:	Average Number of People per Dwelling	
Figu	re 3-1 :	Male Income by District	. 3-8

CHAPTER 3 SOCIO-ECONOMIC CONDITIONS

3.1 Introduction

In order to serve as a basis for population estimates and future service levels, and thus primary water demand, a desk top overview of socio-economic conditions in the Study Area was conducted. Given the recent integration of previously independent Bophuthatswana districts with the areas formerly administered by South Africa, the databases used differ from area to area. While every effort was made to achieve direct comparison of these statistics, this was not always possible with respect to either the level of detail, data classification or availability.

Socio-economic data was collected by magisterial district for the 20 districts which are located in the 4 provinces covered by the Study Area as shown in Table 3-1.

3.2 Data Sources and Methodology

Questionnaires were prepared and sent to all local authorities, district councils and government departments; the response was so poor however, despite follow up, that this method was abandoned and direct data collection from published sources was resorted to. Known sources were networked in order to obtain copies of all source documents / computer files. Data was then captured on Excel spreadsheets and re-arranged into a reporting format.

Details of the data sources utilised are as follows:

- 3.2.1 Central Statistics Services Census Data
- (1) Previous RSA administered areas and previous KwaNdebele administered areas.

 1980 and 1991 census reports which give population per magisterial district, and only classified population as urban and non-urban for selected larger towns.
- (2) Previously Bophuthatswana administered areas:
 - 1985 1991 Bophuthatswana census reports which give separate data per village for most villages.
- 3.2.2 Saldru Report by University of Cape Town on Poverty

Gives poverty indicators based on specific case studies.

3.2.3 Bureau for Market Research

Reports on household income and expenditure based on selected case studies.

3.2.4 Development Bank of South Africa (DBSA)

The DBSA survey reports on population, water supply, sanitation and income.

3.2.5 Escom NELF Database

The database includes information on population, water supply, sanitation and income.

3.2.6 Centre for Development Enterprise

Demographic models for 1995 are available.

3.2.7 Department of National Health and Population Development

The Department has 1994 reports on sanitation and subsistence facilities.

3.2.8 Setplan

Setplan have produced various planning reports for studies in the Study Area.

3.2.9 Map Sources

EVN Consultants GIS maps.

Chief Director Surveys and Mapping 1:50 000 and 1:250 000 scale maps.

3.2.10 Aerial Photography

1:50,000 aerial photography (1995) was accessed in order to update village, footprints.

3.3 Major Socio-Economic Indicators

3.3.1 Population

(1) Introduction

Since 1990 South Africa has seen unprecedented demographic shifts in the population arising from migration away from rural areas and rapid migration into the urban centres and surrounding peri-urban areas. The JICA Study Area, located immediately adjacent to the PWV area (which is the economic heartland of the country), has been directly impacted by these changes. Some studies indicate that population growth rates in recent years have been as high as 26 % per annum in some peri-urban settlements.

In the Urban Development Strategy and the Rural Development Strategy published in the Government Gazette in November 1995 it was forecast that 75 % of the national population will be urbanized by the year 2020 (compared to the present level of 38 %). DBSA also views that the movement of population to metropolitan and other urban areas can be expected to continue, and that the rural population will probably not increase and may even significantly decrease.

For the JICA Study it is envisaged that whilst movement of the rural population from outside the Study Area to Soshanguve, Wonderboom, Brits, Moretele 1 and Odi 1 will continue, less significant numbers of the rural population living within the Study Area will move out to the PWV and to other urban areas. The overall growth rate of the population in the Study Area will therefore remain slightly higher than the national natural growth rate which is 2.3 %.

(2) Population baseline data

For the purpose of the population projection, data from existing information sources was collected and captured in a database. To obtain Study Area wide settlement specific population data, the following sources were referenced:

- (a) 1991 Census of South Africa and Bophuthatswana
- (b) 1993 NELF database
- (c) 1994 DBSA database
- (d) 1995 CDE database

Although ad-hoc settlement specific population studies have been undertaken in the Study Area, they are insufficient to build-up an overall picture for the Study Area.

As the NELF, DBSA and CDE databases were all constructed from 1991 census statistics, the 1991 census data was also adopted for the JICA Study as the best available Study Area wide settlement specific population baseline data.

(3) Consolidated database of population

From the above information sources, a consolidated database of comparative statistics by settlement was compiled (see Part A-1 of the Databook) for cross-reference purposes. Data was collected by magisterial district for the twenty districts in the Study Area, which are located in four provinces, namely North-West, Mpumalanga, Gauteng and Northern.

3.3.2 Household Size

Part B-1 of the Databook was prepared from the CSS1991 publication to reflect household size distribution according to race group and magisterial district (urban and non-urban).

Average household size per magisterial district (urban and non-urban) is reflected in Table Part B-2 of the Databook calculated from 1991 population size (Part A-1) and number of households (Part B-1).

Part B-2 of the Databook reflects the expected patterns as follows:

1) White and Indian households in formal urban areas have the lowest household sizes with 3.2 to 4.0 and 3.5 to 5.0 respectively;

- 2) Black villages in peri-urban and rural areas have the highest household sizes of 6.0 to 7.8.
- 3) Given the disparities between race groups an average figure is of little use.

No single source of data provides statistics of the number of persons per dwelling for the whole Study Area. The Southern Odi-Moretele Development Appraisal by Setplan summarised in Table 3-2 however gives both the number of persons per household and per family which can reasonably be assumed to be representative of the Study Area:

3.3.3 Income and Expenditure

Part B-3 of the Databook reflects the per capita income distribution by race and gender per magisterial district and is split urban / non-urban.

The data in Part B-4 of the Databook shows the average disposable income for 12 of the 20 magisterial districts according to race. No data was available from either Saldru, BMR or IPR for specific villages or districts at household level. Household level expenditure patterns and discernible incomes will require primary research.

Only Part B-3 of the Databook, which gives per capita income for each racial group per magisterial district serves some use in assessing affordability. The graph shown in Figure 3-1 depicts an assessment of four typical income distribution profiles. This graph reflects the disparity in income between the:

- 1) Predominantly white urban employed Wonderboom category, with high percentages in the higher income levels.
- 2) The subsistence rural population of rural Mankwe, with nobody in the higher income category.
- The increased income by virtue of commuting and migrant labour for urban Moutse, with a high percentage in the middle categories representing formal employment.
- 4) The relatively high income of formal black townships such as reflected by Soshanguve.

Possibly the best indicator of income expenditure patterns reflecting the bulk of the population are contained in the Southern Odi-Moretele Development Appraisal report by Setplan, dated July 1991, which states the following.

"Households in Southern Odi-Moretele appear to be comparatively well off in terms of the amount of household income. Median household income of R1,160 to R1,900 exceeded the Household Effective Income indicated by the University of Port Elizabeth as a reasonable income to ensure subsistence. Further, a considerable proportion of income is retained as savings. Generally, the Proclaimed Towns emerge as wealthier enclaves, and the Apies West Bank emerges as a poorer area."

3.3.4 Health

Two sources of information were used to reflect health conditions in the Study Area, namely:

(1) Part B-5 of the Databook which reflects the number of health care facilities (clinics, mobile clinics, health care centres and hospitals per magisterial district for those portions of the North-West and Mpumalanga Provinces that fall within the Study Area.

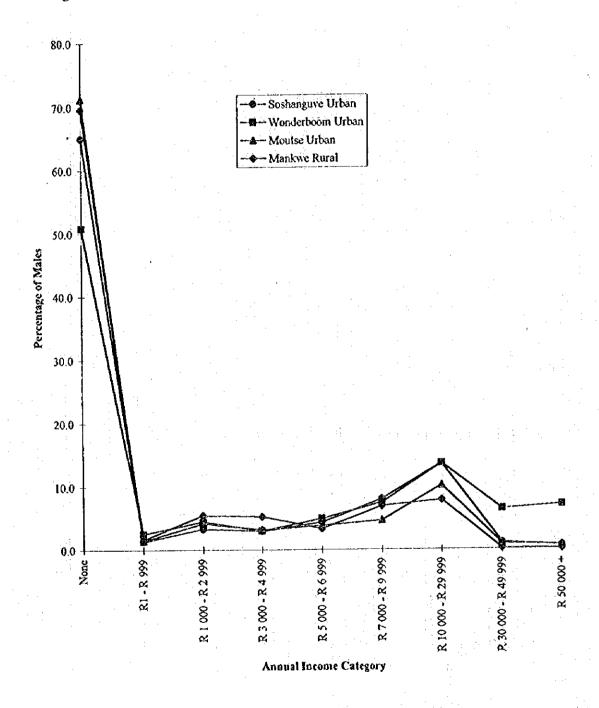
For the Mpumalanga facilities, the table also reflects the availability of water and sanitation services to each family. As can be seen from the data, numerous clinics have an inadequate water supply, and a significant number of clinics are serviced by pit latrine only which has obvious adverse health implications.

- (2) The Southern Odi-Moretele Development Appraisal by Setplan, dated 1991, Chapter 2.2 "Health Care Services", reflects the district health-care situation in a typical large portion of the Study Area. Relevant facts from this report are as follows:
 - a) Bed occupancy at GaRankuwa Hospital averaged 122% with up to 213% in certain wards while Jubilee Hospital in Temba reported a 95% average.
 - b) Of the 30 clinics in the Moretele area:
 - 1) 17 had no running water supply;
 - 2) 21 had no electricity supply;
 - 3) 13 had no telephone connection or two way radio;
 - 4) 23 relied totally on pit latrine sanitation.
 - c) Regarding the health status of the community the report reflected the following:
 - 1) The six most important diseases in the Moretele region were:
 - i.) Tuberculosis (related to malnutrition)
 - ii.) Hypertension
 - iii.) Diabetes
 - iv.) Paraffin Poisoning
 - v.) Typhoid (related to poor drinking water)
 - vi.) Cancer of the cervix

- 2) The five most common cases treated at the Odi hospital are:
 - i.) Dermatology ii.) Tuberculosis

 - Alcoholism iii.)
 - Paraffin poisoning iv.)
 - Measles y.)

According to the Secretary of the Odi Hospital at the time of the survey, an outbreak of typhoid was near epidemic status. In Odi the occurrence of malnutrition was not common.


Table 3-1 Summary of Magisterial Districts in the Study Area

Magesterial District	Previous Government	Current Provincial System
Koster	RSA	North-West Province
Swartruggens	RSA	North-West Province
Rustenburg	RSA	North-West Province
Brits	RSA	North-West Province
Ođi	Bophuthatswana	North-West Province
Moretele 1	Bophuthatswana	North-West Province
Bafokeng	Bophuthatswana	North-West Province
Mankwe	Bophuthatswana	North-West Province
Bronkhorstspruit	RSA	Gauteng
Cullinan	RSA	Gauteng
Soshanguve	RSA	Gauteng
Wonderboom	RSA	Gauteng
Part of Thabazimbi	RSA	Northern Province
Part of Warmbad	RSA	Northern Province
Part of Waterberg	RSA	Northern Province
Moretele 2	Bophuthatswana	Mpumalanga
Mbibana	KwaNdebele	Mpumalanga
Mdutijana	KwaNdebele	Mpumalanga
Mkobola	KwaNdebele	Mpumalanga
Moutse	KwaNdebele	Mpumalanga

Table 3-2: Average Number of People per Dwelling

Communities	Average Number of People per Household	Average Number of People per Dwelling
Proclaimed Towns	5.7	5.7
Central Areas	6.5	6.8
Odi Villages	6.2	7.7
Winterveld	5.8	7.4
Apies East Bank	5.9	5.9
Apies West Bank	5.5	5.6

Figure 3-1: Male Income by District

CHAPTER 4: WATER DEMAND PROJECTION

CHAPTER 4 WATER DEMAND PROJECTION

4.1	Introdu	uction	. 4-1
4.2	Popula	ation Projection	. 4-1
	4.2.1	1995 Population	. 4-1
	4.2.2	2015 Population	
4.3	Water	Demand	. 4-5
	4.3.1	Primary Water Requirement	
	4.3.2	Non-Primary Water Requirement	
Table	4-1:	Projected Mixes of Levels of Service	. 4-6
Table 4	4-2:	Summary of Projected Population	4-12
Table 4	4-3:	Summary of Projected Primary Water Demand	4-13
Table 4	4-4:	Summary of Non-Domestic Primary Water Demand	4-14
Table 4	4-5 :	Projected Per-Capita Water Demands and Growth Rates	4-15
Table 4	4-6 :	Typical Cropping Patterns	. 4-9
Table 4	4-7 :	Consumptive Use for Various Crops	
Table 4	4-8:	Total Irrigation Water Requirement	4-10
Table 4	4-9 :	Irrigation Demand Allocation by Local Areas	
Figure	4-1:	Projected Population by Level of Service (Study Area)	4-17
Figure	4-2:	Projected Primary Water Demand by Use Category (Study Area)	4-17
Figure	4-3:	Projected Population by Level of Service (Western Zone)	4-18
Figure	4-4:	Projected Primary Water Demand by Use Category (Western Zone)	4-18
Figure	4-5:	Projected Population by Level of Service (Central Zone)	4-19
Figure	4-6:	Projected Primary Water Demand by Use Category (Central Zone)	4-19
Figure	4-7:	Projected Population by Level of Service (Eastern Zone)	4-20
Figure	4-8:	Projected Primary Water Demand by Use Category (Eastern Zone)	4-20

CHAPTER 4 WATER DEMAND PROJECTION

4.1 Introduction

In order to serve as the basis for the preliminary planning for water supply systems (Supporting Report E) the population and economic growth dynamics, for the different regions were investigated and interpreted and then extrapolated to predict future population figures. These figures were used to predict water demands for the years 2002 and 2015.

The lifting of boundaries in the new democratic South Africa in the period from 1992 to 1995 resulted in abnormal growth in certain urban or peri urban areas and in declining or stagnant population in other domnitory towns which came to being as part of the past government policy. Growth from 1995 will be determined mainly by socio-economic factors, such as the availability of job opportunities and infrastructure.

The socio-economic conditions in towns and villages will in turn be determined by the availability of employment, with the result that the ability to pay for water will be the highest in the areas that will grow most.

4.2 Population Projection

The collection of population baseline data and socio-economic conditions are described in detail in Chapter 3.

4.2.1 1995 Population

Since it is impractical in a macro study to derive population growth variables for each and every settlement, the Study Area was divided into seven socio-economic/physiographic zones comprising areas which display similar development characteristics. For each of these seven zones, settlement conditions and recent dynamics were explored as the basis for deriving growth rates to update the baseline population to obtain a best estimate of the 1995 population (see Part A-2 of the Databook for the estimated 1995 population).

Population growth rates were determined, using a combination of the following:

- a) historical growth rate
- b) migration trends:
 - access to employment opportunities,
 - changed administrative / political boundaries,
 - changed land access,
- c) resource base
- d) physical and economic planning undertaken by First, Second and Third Tier institutions

An overview of the growth scenarios adopted for each zone is as follows:

(1) Mpumalanga (Moutse 1 and 3, Moretele 2, Mdutjana, Mkobola, Mbibana, Kwamhlanga)

The peripheral rural districts of Mbibana, Moretele 2, and Moutse 1 and 3 are seen as having stagnated since 1990 with no real growth assumed. Ekangala, Kwamhlanga and Mdutjana are seen as having experienced minor growth of 1.8 % per annum. These eastern districts, given their dormitory function and the absence of a local economic base, are seen as areas characterized by outward migration with the natural population growth assumed to have been absorbed elsewhere.

(2) Bronkhorstspruit - Cullinan

The rural areas of the districts of Bronkhorstspruit and Cullinan are assumed to have undergone similar settlement dynamics with the exception of the towns of Bronkhorstspruit and Cullinan where the townships are seen as having undergone rapid growth given their location in Gauteng. The urban areas in these centres are assumed to have accommodated the natural population growth with no real change in migration patterns.

(3) Nylstroom - Warmbaths - Waterberg

The rural areas of Warmbaths and Waterberg are seen as having experienced an outward migration. The townships of Warmbaths and Nylstroom, however, are assumed to have accommodated a rapid influx during the past 5 years. The urban population in these towns is assumed to have stagnated in recent years.

(4) Brits - Odi 1 - Moretele 1 - Wonderboom - Soshanguve

The districts of Soshanguve, Wonderboom, Brits, Moretele 1 and Odi 1, which surround Metropolitan Pretoria, are seen as districts which have attracted a significant population influx in recent years while the outlying rural areas are assumed to have stagnated with natural population growth absorbed elsewhere. The agricultural zone north of Pretoria and the urban communities of the towns are assumed to have grown at their natural population growth rate only. The peri-urban villages, however, and the townships associated with the former RSA towns are seen as having experienced a rapid influx in recent years, thus recent growth rates of up to 20 % per annum have been assumed in these areas. The Klip-Kruisfontein area has developed from scratch during the past 5 years.

(5) Mankwe - Bafokeng - Odi 2 - Rustenburg

These Districts are assumed to have experienced similar dynamics to those outlined above, but the scale of influx is assumed to be less than that which has taken place around Pretoria. Rustenburg and its environs has been the centre of urbanization pressures. In contrast, the outlying rural areas of Mankwe are seen as having stagnated in recent years with only natural population growth assumed to have taken place.

(6) Swartruggens - Koster

In these Districts, a rapid influx to the townships has been assumed with slight outward migration from the established urban communities and rural areas.

(7) Thabazimbi

The rural areas of Thabazimbi District are assumed to have stagnated in recent years whereas the mining areas are assumed to have accommodated an influx although at a more modest rate than that experienced around Rustenburg.

4.2.2 2015 Population

Based on consultation with local officials, (see Part A-3 of the Databook for a list of officials interviewed), and a review of development planning documents relevant to the Study Area and its immediate surroundings, (see Part A-4 of the Databook for a list of reports referenced), future growth scenarios were developed with associated population growth rates up to the year 2015. For the forthcoming 20 years, the following growth scenarios are foreseen for the Study Area:

- The primary population growth will take place in Pretoria Ga-rankuwa, Mabopane and Temba areas. Infrastructure and institutional structures which are well established coupled with job opportunities underlie this axis. There is an active planning policy to reinforce this development by bringing infill planning in Soshanguve North, Soshanguve South and Klip-Kruisfontein areas to strengthen the Pretoria Mabopane connection. Growth rates of between 2.4 % and 3.5 % have been estimated for this area. It is estimated that existing urban areas such as Pretoria will grow at about 1.5 %. As a balance to this, the core area of the Bon Accord Rooiwal Roodeplaat will be reserved for agriculture given the good prevailing soil and climatic conditions.
- (2) A secondary growth area is that of Rustenburg. Growth in the Rustenburg area is characterized by large scale developments north east of the town extending around Kana with a growth axis establishing up to Monakato Mogwase Northam Thabazimbi with good potential for a further large platinum mine to come on-stream in the near future just east of Northam. This axis also shows three westward extensions: i) Rustenburg Phokeng in the south; ii) Monnakato Airport Sun City in the centre and iii) Saulspoort Northern Pilanesberg in the north. As a growth spine the area is well founded on the following factors which reinforce its sustainability:
 - a) the regional function of Rustenburg;
 - b) the platinum mining industry;
 - c) the chrome mining industry;
 - d) the connection to the iron mine at Thabazimbi and supportive lime mines west of Northam; and

e) the tourist industry of the Pilanesberg and the link to Botswana and the Madikwe game reserve.

Growth rates of between 2.4 % and 4.0 % are expected in this area with a growth of 1.0 % in the traditional urban areas.

In addition, the mining axis and strong agricultural axis linking Brits to Rustenburg has shown recent signs of being supported by further urban development in the Bapong - Majakaneng area which will form a node to support the Southern Odi dormitory villages to the north (Bethanie - Berseba, Makolokwe, etc.). Growth rates of between 2.4 % and 3.4 % have been estimated for this region.

(3) The densely settled areas of Moutse and Kwamhlanga do not possess the underlying sustainable growth factors found in the above two areas. Kwamhlanga is an inheritance of the former Kwandebele homeland capital policy and now functions simply as a domittory commuter centre for Pretoria, (26,000 commuters/day), and Witbank. This function is, however, considered to be unsustainable as the Government is likely to discontinue its current practise of subsidising the cost of commuter bus services in these areas in the future.

The Moutse village group, although originally initiated as a labour support area to the adjacent Loskop irrigation scheme, has now totally outgrown its original function. While it serves as a dormitory area with commuting to Pretoria and Witbank/Middelburg, it remains poorly placed and represents the biggest future unknown in the Study Area. It is assumed in this Study that growth in the Moutse Group settlements has stagnated with growth largely absorbed by outward migration to the new settlement areas within the Gauteng Core and Witbank - Middelburg periphery, with the remnant population stagnating as a large cluster of dormitory communities. Growth rates of between 0 % and 1.8 % have been estimated for this area.

It is considered in this Study that a significant outward migration from these areas will be absorbed by a Pretoria East Node (east of Mamelodi), and rapid establishment and growth similar to that seen at Klip-Kruisfontein will take place. It is assumed that this node will accommodate a population of about 250,000 people by 2015 through an average annual growth rate of 15%. Thus, if the Pretoria East Node does not happen, these areas (Moutse and Kwamhlanga), may grow at a maximum annual rate of 2.4% (see Part A-5 of the Data Book for the Eastern Zone population projection based on this high growth scenario)..

- (4) The dormitory villages of the following areas will merely retain their present status relying on commuting or migrant labour income with a declining subsistence agricultural base:
 - a) area west of the Pilanesberg;
 - b) northern and central Odi 1 and Moretele 1; and
 - c) Moretele 2

- (5) Growth prospects are poor for the Swartruggens Marico Koster area with only small scale diamond mining showing any new promise in the short term and Zeerust dominating the future Trans Kalaharl link spin off. While small scale production of shale, manganese and fluorite is undertaken, the large mining houses are known to have begun Witwatersrand related gold prospecting drilling in the area but to date no positive announcements of any plans have been made.
- (6) The rural area east of Pretoria and north of Bronkhorstspruit, (ie: Cullinan Rust de Winter), is likely to remain an extensive agricultural area with Bronkhorstspruit struggling to compete with the attraction of the coal mining and iron and steel industries in the industrial Witbank/Middelburg area.

In line with the above spatial growth scenarios the current population estimates for the Study Area have been projected to the year 2015 with rates of inward migration lower than those assumed for the 1991 - 1995 period, (see Part A-2 of the Databook for the projected 2015 population).

4.3 Water Demand

- 4.3.1 Primary Water Requirement
- (1) Domestic water demand

No reliable primary statistics of household income and expenditure exist from which affordability of level of water supply can be directly addressed. Findings of previous village water supply schemes and studies in the Study Area were used to assess water demand profiles in typical villages.

Communities in the Study Area were categorized according to the following basic criteria:

- a) established urban towns fully serviced with little or no informal infill;
- b) formal towns with informal infill;
- c) peri-urban villages with influx growth;
- d) villages with bus route commuter links; and
- e) distant, subsistence level villages with negative or no growth.

Based on the findings of previous studies, actual water demand was estimated using a ratio of house connections, metered yard taps and street taps for each of the above categories.

- a) 100 % house connections for traditional towns fully serviced with little or no informal infill-classified as Urban High;
- b) 75 % house connections, 15 % yard taps and 10 % street taps for formal towns with

informal infill - classified as Urban Low;

- c) 75 % house connections, 15 % yard taps and 10 % street taps for peri-urban villages with influx growth classified as Rural High;
- d) 20 % house connections, 60 % yard taps and 20 % street taps for villages with bus route commuter connections classified as Rural Medium; and
- e) 5 % house connections, 15 % yard connections and 80 % street taps for distant subsistent villages with negative or no growth classified as Rural Low.

It was also found from previous studies that:

a) for peri-urban/nural areas, the per-capita water demand associated with each level of service, (exclusive of system leakage losses), is as follows:

House connection

: 120 lcd

Yard tap

: 70 lcd

Street tap

: 30 lcd

- b) for formal towns with informal infill the per-capita water use for house connections could be as high as 230 lcd;
- c) for established urban areas the per-capita water use for house connections is much higher than 230 lcd and varies from place to place.

Using the above community and level-of-service classifications and the per-capita water demands. Table 4-1 was prepared summarising the different levels of services.

Table 4-1: Projected Mixes of Levels of Service

Classification of Community	Level of Service	% of House Connections (Water Consumption per Capita)	% of Yard Taps (Water Consumption per Capita)	% of Street Taps (Water Consumption per Capita)
Urban	High	100 (Actual)	0	0
	Low	75 (230 lcd)	15 (70 lcd)	10 (30 lcd)
Rural	High	75 (120 lcd)	15 (70 lcd)	10 (30 lcd)
	Medium	20 (120 lcd)	60 (70lcd)	20 (30 lcd)
	Low	5 (120 lcd)	15 (70 kd)	80 (30 lcd)

(2) Non-domestic water demand

(a) Industrial, commercial and institutional water demands in urban areas

In established urban areas, a significant portion of water is used for industrial, commercial and institutional purposes. In a detailed study of water use in Rustenburg, industrial demand was found to comprise about 20 % of that for domestic use, with commercial and institutional elements comprising 15 % and 10

% respectively. Where separate figures were not available, the split has been assumed to be as indicated above.

(b) Water demands for mines and other special industrial and commercial Centres

Water demands for mines and other special industrial and commercial centres were studied on an actual consumption basis; where such large consumers are currently being supplied by water boards, demand figures were obtained directly from MW or RW.

(3) Water losses

It was assumed that the water supply system will be upgraded in the future and so a reduction in system leakage losses from the system will be achieved. An allowance of 20 % for system leakage losses (outlet of water treatment works to end consumers), was added to the primary water demand estimated for the year 1995 and this was assumed to decrease to 18.25 % by the year 2002 and to 15 % by the year 2015. Other components of unaccounted-for water, such as losses due to meter malfunctioning, meter underregistration and illegal connections constitute a portion of water consumed and are therefore already included in the per capita consumption figures. Another separate allowance of 5% was added to allow for purification losses and, wherever necessary, a further allowance was added to allow for raw water transfer losses. The gross primary water demand so established was used in the water balance simulation.

(4) Zoning of the Study Area and rearrangement of projected population and primary water demand

The Study Area was divided into three supply zones, ten supply areas and twenty eight supply blocks as shown on the Location Map, with a view to allocating the projected primary demands to individual treatment plants in the Study Area, and to the associated surface water resources. The projected population and primary water demand were then totalled for each supply block, supply area and supply zone. The factors which were taken into consideration in determining supply zone, area and block boundaries are set out in Chapter 2 of Supporting Report E.

The population and primary water demand projected for the years 1995, 2002 and 2015 for each supply block, supply area and supply zone are compiled in Appendix 1 and the same information is summarized in Table 4-2 and Table 4-3. Table 4-4 presents details of the non-domestic primary water demand estimated for the years 1995, 2002 and 2015 for each supply block, supply area and supply zone. Both domestic and overall per-capita primary water demands for the years 1995, 2002 and 2015 and the growth rates of population for the years are summarised for each of the three supply zones in Table 4-5.

Figure 4-1 shows the total population of the Study Area projected for the years 1995, 2002 and 2015, with a breakdown according to service mix and level of service. Figures 4-3, 4-5 and 4-7 provide the same information for each of the three supply zones.

Figure 4-2 shows the total primary water demand for the Study Area projected for the

years 1995, 2002 and 2015 with a breakdown according to water use category. Figures 4-4, 4-6 and 4-8 provide the same information for each of the three supply zones.

4.3.2 Non-Primary Water Requirement

(1) Irrigation demand

- a) In general, the irrigation water requirement can be estimated taking into account the consumptive use of each crop to be planted, the total area of the crops to be irrigated, effective rainfall during the irrigation period, and the comprehensive irrigation efficiency.
- b) Typical cropping patterns for the Study Area are summarised as shown in Table 4-6.

Table 4-6: Typical Cropping Patterns

Hartebeespoor	t Dam Area	Roodeplaat I	Dam Area	Roodeplaat R	O-R Area
Crop	Share (%)	Crop	Share (%)	Crop	Share (%)
Vegetables	40	Maize	32	Pastures	40
Wheat	40	Vegetables	31	Vegetables	30
Tobacco	10	Cotton	24	Peanut	15
Maize, Cotton	10	Lucerne	13	Deciduous fruit	15

c) Consumptive use: Water requirements of representative crops are tabulated in Table 4-7.

Table 4-7: Consumptive Use for Various Crops

Crop	Consumptive Use (mm / year)	Сгор	Consumptive use (mm/year)
Wheat	580	Lucerne	1,620
Tobacco	550	Groundnuts	610
Maize	800	Tomato	660
Cotton	750	Onion	390
Citrus	1,560	Soybean	700

- d) The effective rainfall to be considered varies depending on the rainfall pattern in the area and the cropping season; the effective rainfall is assumed to be about 70 to 80 % of the actual rainfall during the cropping season.
- e) In general, the comprehensive irrigation efficiency can be estimated based on the ratio of application efficiency, conveyance efficiency of the canal and operational efficiency. Comprehensive irrigation efficiencies depend therefore largely on

irrigation methods. Average efficiencies adopted vary from 60 to 80 %.

f) Total irrigation water requirements within the Study Area were established and are shown in Table 4-8.

Table 4-8: Total Irrigation Water Requirement

River System	Irrigable Area (h2)	Requirement (mcm/a)		Resources icm/2)
			Reservoir	Run-of-river
Crocodile River Basin	e dige			
Upper Crocodile	30,949	201.5	136.6	64.9
Elands	6,806	45.0	28.3	16.7
Pienaars	13,839	122.3	82.4	39.9
Lower Crocodile	6,699	63.0	0.0	63.0
Sub-total	58,293	431.8	247.3	184.5
Olifants River Basin				
Upper Olifants	1,080	9.8	0.7	9.1
Sub-total	1,080	9.8	0.7	9.1
Total	59,373	441.6	248.0	193.6

Note: The irrigable area in the Study Area supplied indirectly is excluded from the above table.

g) Irrigation demands by local area were allocated to individual water resources: storage water and river flow, as shown in Table 4-9

It should be noted that the figures indicated above represent an average which was calculated when the area was declared, and are based on likely values for cropping patterns, average rainfall, evaporation etc. The total irrigation water requirements used in the water balance model are calculated on a monthly basis depending on that months rainfall, evaporation and on the cropping pattern of the irrigated area in question.

(2) Stock-watering demand

In the Study Area, there are large areas of grazing land for livestock breeding. A large stock unit has a water demand equivalent to one head of cattle, six sheep or goats, twelve pigs or one hundred chickens. The average daily water requirement for a representative large stock unit is about 50 litres per day.

The total population of equivalent large stock units in the Study Area is about 458,000. The total estimated present stock-watering requirements is thus about 8.4 mcm/a. Since livestock is part of the survival strategy of otherwise impoverished communities in rural areas, and since stock-keeping plays an important role in the tribal culture, stock-

watering requirements cannot be ignored in the assessment of rural water needs for water demand purposes. The demand has been assumed to remain at the current estimated level of supply.

(3) Environmental and other requirements

The Water Resources Yield Model was set up to simulate the behaviour of the river and storage system, when required to satisfy a specific set of water demands for primary use and irrigation. Other important water requirements are for sustaining in-stream ecosystems, and for satisfying international river flow commitments.

Riverine ecosystems and other water requirements for environmental purposes do not enjoy legal recognition under the present legislation; existing water resources development has generally been planned without specific provision being made for this aspect. Consequently the actual in-stream flow requirements of the rivers in the Study Area are not quantified.

Since environmental water requirements are generally non-consumptive, and a significant portion of irrigation water requirements are abstracted directly from run-of-river, the water balance simulation described in Supporting Report E does not include specific provision for this purpose.

All of the rivers in the Study Area are of interest to one or more neighbouring states, and are thus subject to international rules for best joint utilisation as originally codified in the 1966 Helsinki Rules. Although discussions on the development of international rivers have taken place between RSA its co-basin states, the river regime required at state boundaries has not been quantified. A simplified assumption was made that the residual flow in rivers, including flow to sustain ecological systems, would satisfy inter-state obligations; it was further assumed that new development proposals would be discussed with neighbouring states before implementation.

Table 4-2: Summary of Projected Population

											1									
								: 1			POPULATION	Ž		100 111			3107			Ī
SUPPLYZONE	SUPPLYAREA	SUPPLY BLOCK			Š		ŀ									-	- -		┞	
			Ē	J.	Æ	Ř	-1	TOTAL	ž	13	Į	Į	L	TOTAL	1	1	1	E .	1	
WESTERN	VAALKOP NORTH	THABAZIMBI	10,355	٥	0	2,423	37.52	50,x01	12,407	0	6	2,075	40,230	54,712	14,48.	6	5	2,045	45,785	\$ 55
		MOKGAEWANENG	0	•	٥	¢	3,00	69	ō	•	6	ø	3.969	96.	•	6	0	5		<u>.</u>
		SEPTICILE	2,300	•	•	3,061	10,923	16,383	2,911	8	0	7,135	7,713	27.73	4.16X	5	0	Žį	7.713	:
		RAMOKOKSTAD	•	•	•	0	9.770	0.7.0	5	6.	•	0	10,475	10.475	0	5	-	0	1.420 1.420	28
		SAULSPOORT	6	6	•	12,550	53,350	006'5'9	-	•	•	45,565	22,132	\$ 7	0	6	•	70,x12	2	ž
		MOGWASE/SUN CITY	c	ş	2	30 62	21,342	ة •		740	4	20 114		3106.5		ĵ.	=	100	4	\$
		SUB-TOTAL	2.74	\$40	0	30,486	134.017	189,80	316.51	ş	6	105.211	F9 5 19	210 497	1×650	797	=	14142	7	X X
-	VAALKOP SOUTH	BELIKYNIE	•	0	22,205	0	15,238	37,643	0	0	26,215	17,949	<u>•</u>	ģ	0	6	35,642	× 48×	•	50,176
		VAALKOP SOUTHERN/BO	21,629	10,409	87.970	C	0	149,00R	27,518	308,800	11.00	0	0	14: 753	**	157.377	60.246	¢	0	24 070
		SUB-TOTAL	21,620	19,409	110,175	0	15.23	134,451	27,518	108 809	75.646	17 989	¢	229.0622	37.45A	157,377	HC 0.34	24 488	0	10x 24m
	BARNARDSYLE	BARNARDSVLED WESTER	36,828	0	77,455	2, 79	47,948	214,622	39,485	6	104.012	05,501	0	249,027	44,937	0	171,076	121,356	•	137.34
		BARNARDSVI.EI EASTER	•	10.463	14 57	c	12,000	16,620	6	13.22	16.714	15.791	0	4 727	0	20.421	22,740	26,203	ē	64) 464
		SUB-TOTAL	36.828	10.463	91.412	2 791	109 948	21.042	30 4#S	13,222	120,726	121,121	0	294 764	44,037	20,421	193 826	47 644	c	404 KT
	KOSTER	KOSTER	738	0	125.0	=	22,904	74.23	1,23×	0	900.1	0	24.557	37,30	1,778	0	14,237	0	27 WH	43.923
		SWARTRUCCENS	80	c	1.080	e	10 741	14,327	1,006	0	3,138	6	10 980	15.524	1.004	. 0	4.77	0	12 sun	14 070
-		SUB-TOTAL	2744	0	12.661	0,	33 146	155 85	2,744	Ċ	14 544	C	24. 477	42 K24	7.744	Û	18,814	c	40 444	67 (11)
	TOTAL	1.0	23,444	12.0%	214,448	41 677	204, 240	674 850	15,064	122,660	210,016	244.521	950 521	788.238	103,787	178,447	192,302	313 770	138,785	1 033 366
CENTRAL	DRITS	akits	46.463	•	0	0	390	142,862	57,443	0	0	777 501	3,175	166,062	84,390	0	0	135 827	3,710	224 427
	:	MARTBERSPOORT	4.6	e	•	•	ē	7.450	70. X	0	0		0	# 70W	11.97	0	0	0	¢	11 477
		SUB-TOTAL	53.013	0	c	e	301.76	150,312	66.239	0	Ü	105,444	3,175	174,85X	47.362	o	0	135 K27	3.730	274 800
-	KLIPVOOR	KLIPVOOR WEST	0	160	c	0	K61 6	169.6	0	499	0	0	E61 6	0.647	o	*	0	o	X01.4	4,647
	-	KLIPVOOR EAST	6	0	0	ē	27,730	2N,789	•	-6	0	293	28,496	28,780	٥	٥	0	8	73 45¢	28,786
		MORETINE NORTH	c	•	٥	ō	15 830	068,51	ē	0	0	0	13.830	15,830	0	0		0	15 830	15.830
		SUB-TOTAL	°	8	c	٥	50.817	54.316	0	661	0	293	53.524	34,316	. 0	604	c	243	53.524	14,316
	RAND WATER	RAND WATER	19.483	3	408 428	38,253	170,994	937,320	23,157	Ş	706,418	498,131	0	227,870	279,15	184	1,242,141	141,141	0	2.048 SHR
		SUBLICIAL	19.481	3	108.42H	38.283	370 994	937,320	23,157	7	706,418	498, (31	1 0	0CM, 722,	31,922	164	1,242,141	100	O	2 CAS SRX
	TEMBA	KUDUBENORTH	0	17,00	٥	139,370	83.7	200,634	-	7,194	0	165,389	-	242,583	0	119.127	9	229.523	0	348,650
	-	N.UDUBE SOUTH	•	137	9	204,752	7.46	211,380	-5	27	0	259,060	1,461	261,658	6	133	0	388,279	2.461	390,877
		WALLMANNSTHAL	•	9,000	•	0	c	900	•	7,0114	•	•	0	7,08.4	6	0,642	•	٥	0	C790
		WARMBADWYLSTROOM	12,2%7	148	0	17.034	\$60.19	10K 3A4	12.2×7	148	0	37,662	46,467	116,544	12,2%7	¥	0	45 705	75.646	13.72
		SUB-TOTAL	12,287	66.46?	0	187 054	65.347	\$26,34R	12,287	F4 S63	0	147 111	126 89	677,880	12,287	170.054	Ē	261.497	78 107	KK7 044
	rorat		15,631	51.15	COR 429	420,300	560,553	1,641,244	101,683	85,226	706,418	065.070	125,627	CK4,933	141,571	129.717	1,242,161	1 593 963	13% 241	1242.755
EASTERN	WELTEVREDEN	BLOEDFONTKIN	6	0	•	6	159,120	159,120	0	8	0	159,328	6	159,328	¢	•	5	16,791	•	16.70
		KAMELLRIVIER		۰	c	0	14.14 14.14	134	•	0	0	43,416	<u></u>	43,416	6	6	•	47.94	7	\$
		MAPOCH	٥	•		0	37,41	16,254	₹	•	•	13,416	•	18,416	ō	\$	•	ជាជ	•	त्र
		WALKRAAL	c	ô	c	12.647	170 #25	302,377	0	0	0	×68 11.	28	112.750	ć	c	c	121 004	6	400.321
		SUBTOTAL	0	0	0	122.547	304,580	\$19.177	ē	ē	Ċ	750 155		961.010	¢	c	e	631 276	0	631.274
<u> </u>	BRONKHORSTSPRUIT	BRONKHORSTSFRUIT	12,000	9	0	1X9 041	Ş	201,870	3,784	6	0	216.723	9	230,507	17,831	ø	0	777,745	•	× 43
•		CULLINAN	9.085	0		16.500	24 187	49,772	10,725	0	0	21,717	25 931	SR 340	6 600	0	0	30 154	20 517	\$0.264
:		SUBLTOTAL	21,085	0	0	205 %1	74.004	246,125	24,500	υ	0	218 436	150.52	288.876	12.4.11	υ	c	006 LIT	215 00	175 E41
	TOTAL		21,085	¢	0	328, 108	471,576	470-0-	24,509	0	0	791 497	76.32	R47,70K	32,431	0	0	944 596	215 02	1,007,199
CRAND-TOTAL			122.081	971.611	A77 X76	760 062	1, VO3, 178	3,114,915	211.257	307.705	- FEE 216	2 101 992	177.477	715,966	642,772	308,164	1 540 729	2 852 923	W.A. 600.	5,283,243
Note: 13 LE	Inhan High [][. []r	Nove. Dilly lither High III. Lithen I ow RM: Rural High RM: Rural Medius	A R.V. R	Zural Mer	lium Ri	n RI 'Rural I ow														
	מוצמיי ביילייו בייי	·									:	٠								

Table 43: Summary of Projected Primary Water Demand

				-																
	-							-		PKIMARY	RIMARY WATER DEMAND (MCM).	MAND (MC	M/e)							
NOLL COM	SUPPLY ARKA	SUPPLY BLOCK	-		-		ł	1			2002						2015			٦
			NO O	Ş	ΝÓ	INS	MIN	TOTAL	NO NO	ND O	NO.	. SM	MIN	TOTAL	NOM .	IND COM	M INS	MIN	7	TOTAL
WESTERN	VAALKOP NORTH	THABAZIMBI	2.912	0.345	0.252	0. 14X	18.412	22.080	3,258	0.370	0.271	0.190	20,322	.24.401	3.936	0,421	0.30K	50	16	2 2
		MOKGALWANENG	120.0	0.225	•	0	5	967.0	0.070	0.338	ō	0	0	0.40K	0.067	N 24 K	- 6		. 0	0,615
		SEMKILE	0.534	0	٥	0	S.074	5.608	0.644	•	ē	0	5 633	6.270	0.812	-	- &		6.670	7.482
		RAMOKOKSTAB	0.174	•	6	0	0	0.174	0.183	c	•	0	٥	0.183	0.201	0	0	0		0.20
		SAULSTOORT	1361	٥	•	6	2.497	3.838	1.892	0	0	٥	2,592	4 477	2,300	0	0	0	2,842	1 897
		MOCWASSISTURCTTY	1 002	3,710	2.020	c	c	177.	1.618	3.987	1,26,1	0	0	N. Kek	2.163	4 517	1011	¢	0	7.
		SUB-TOTAL	421.4	2,75	3.72	0.168	25 9×3	39.736	7.667	4,495	3.434	0.180	28.547	44 623	0.470	2 504	0 01(1	11 996.0	4.	ŝ
·.	VAALKOP SOUTH	BETHANTE	127	Ö	•	0	0	7.7	.7.	~	Ċ	٥	0	1,729	2.290	0	٥	0	L	2,7%
		VAALKOP SOUTHERN/BOSPO	10.107	0.434	0.127	0.21X	2 994	1.0%	14.40%	1.023	0.410	0.273	2 896	19.00%	TRAIR	I NIN	0.542 0	0.762	2 #46. 2	4.4.4
		SUB-TOTAL	11.384	6.4.36	0.327	0.218	2 xe4.	15.241	16.135	1.023	0.410	0.77	2.896	20.737	21,108	1.818	0 \$42 0	Ļ	Ľ	77.47
	BARNARDSVLEI	BARNARDSVLETWESTERN	2	1.676	0.557	0.371	8,314	20,018	8	2,040	0.588	0,392	6,063	24,062	18.31	3,247	0.651 0	0.434		\$6.05 \$6.05
,,,,		BARNARDSVLF! FASTERN	- XX		d	-	\$ 10°	1001	1.70K	0	0	0	x 907	11.204	7.37k	6	-		· ,	5
		SUB-TOTAL	90%	1676	0 553	162.0	16.619	30.629	14.214	2 (199	0.588	201.0	14.06	35,357	18 880	3.747	1890	7.70		3
	KOSTER	KOSTER	1.019	•	70.0	0.02	•	920	\$00°T	0 ,	10.0	20.0	0	1.155	1.267	٥	300	0.02	ļ	2
		SWARTRUGGENS	0.421	c	υu	100	c	0.461	0.448	Û	0.02	10.0	c	0.47%	Ş	-		100		Š
		SUB-TOTAL	1 44	c	0.07	1 tit ()	c	3:	1.543	0	900	100	0	1.633	E	-	L	100	l	\$
	TOTAL,	TOTAL,	36.62	6,401	4,126	0,787	45.408	86.566	30.563	7.817	765.7	9.875	\$65.65	102.35	51,249	11.96		L		8
CENTRAL	BRITS	BRUTS	8.76	1,286	0.176	167.0	0	10.273	11,416	1.636	9040	9464	٥	277			Ĺ			
		HARTBESPOOKT	1261	0	¢	c	-	3.263	3.853	•	e	•	•	3.853	200		· .		•	3
		[SUB-TOTAL	11.533	1.284	0.436	0 201	¢	1,525	15.240	9.9	9,696	1340	°	š			19	63.4		
	N.LIPYOOR.	KLIFVOOR WEST	0.202	0	0	o	6	0.202	0.20	-	ō	•		Į,	8	L	L			1
		KUPVOOREAST	0.512	0	0	c	0		99				• •	000	70	> <	5-6	> 4	- -	5
		MORETELENORTH	0.2K1	č	c	c	0	0.281	0.276	-		• •	· c	2,2	3,40	0 0	5 e	.	0 0	
		SUB-TOTAL	0.005	0	0	¢	ō	505 0	9800	c	ē	6	c	V20.0	***			5 6		
	RAND WATER	RAND WATER	14.277	20.6	0	¢	c	101	49.487	12.076	¢		٠	169.19	04.7	1.00		1	3	
		SUB-TOTAL	34.277	0 42	c	ē	c	44 107	40.587	3000		•	, .	71717		07.4	3 6	5	֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	3
	TEMBA	KUDUBE NORTH	8.678	3.701	0.5	٥	ē	13.836	846	4 700	٥			17.066				-	֡֟֝֟֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2
		KUDUBE SOUTH	6.642	-6		- 6	-	24	2			•		000		<u>.</u>	.	5	5	2
		WALLMANNSTHAL	3,	•	• •			7 464	900	> 4	> c	,	5 6	5 6		5 G	6 8	0 0	.	2
		WARMBAD/NYLSTROOM	Ē	0.0	- 04	0.20	-	680	7	2 444	-	, ,,,	, «	}		> •	5 ;	5	-	
		SUBTOTAL	23.012	4111	5	0.205	c	2x x74	27.224	Ç 143	1.62	\$ 202	•	101 20		817 9	2 3 3	S 3	6 6	
	rotal	TOTAL	69,807	14,317	1.982	0,496	e .	X7.602	93.04st	18.814	2.316	0,6666	٠	14.864	L			Į	9	7.
KASTERN	WELTEVREDEN	BLOEDFONTEIN	2,7450	c	0	0	0 :	2:860	3,839	ļ	0	0	0	3,839	4.758	-	5	٥	0	į
		KAMEELRIVIER	0.735	6	8	0	0	0.735	1,350	0	0	٥	•	3	\$		- 0	3	•	
		МАРОСИ	0.2%	8	8	•	0	0.288	0.573	0	•	0	•	0.573	0.701	- 0	- 0		. 0	é
~		WALKRAAL	4417	0	c	0	0	6,412	10,331	0	0	ō	6	16,331	12,101	ē		-	-	2
		SUB-TOTAL	10.295	e	٥	c	0	10.205	16.093	0	ø	0	ů	16.003	19 007	6	-	6	-	Ş
	PRONICHORSTSFRUI	PRONCHORSTSPRUI BRONKHORSTSPRUIT	6.693	3,614	0.192	0.128	0	10.677	7.577	3,66	0.226	151.0	0	11.614	9.73R	3.748	0.203	35.0	-	\$
		CUCUMAN	1,740	0.040	0 107	1,00	1.11.1	3,146	2,002	0,104	9210	0.083	Ē	¥1.	7 897			71.0		ž
* 3 *		SUB-TOTAL	R 462	3 703	90. Q	8 <u>1</u> e	=	11.77	0.940	3765	0.352	0.74	141	14.13	12.635	3.891			<u>-</u>	Š
	TOTAL	тфтат,	18.757	3,703	0.799	81.0	Ξ	14.0%	24.762	3,76.5	0.352	0.234	1.11	31,223	279'16	3.891	0.444	\$0.0	-	Į,
GRAND-TOTAL		CRAND-TOTAL	TIR MR	25,421	6.407	1.452	44,608	198.234	150,303	30.396	7.26	1.775	\$19.05	431 432	618.CZZ	10.838	R.995	2,403	L	1
Notes: 1) Primar	y water demand show	Notes: 1) Primary water demand shown in the table includes system leakage losses (1995: 20	cakage loss	es (1995: 2	0 %, 2002;		015:15 %	but exclu	des losses	18.25 %, 2015: 15 %), but excludes losses at the purification plant and from the	cation pla	nt and from	the							
V WeT	raw water source to the purification plant.	rification plant.						į		•	ς γε			:	-				:	
															:					

4-13

Table 4-4: Summary of Non-domestic Primary Water Demand

	SUPPLY AREA	SUPPLY BLOCK		DEMIAND CATEGOR	WATER I	2002	2015
VESTERN	VAALKOP NORTH	THABAZIMBI	AMANDELBULT PLATINUM	MiN	3.28	3.665	4.3
			THABAZIMBURON MINE	MON	11.096	11 096	11.09
		-	NORTHAM PLATINUM	MIN	2 815	4.129	6.5 0.42
			URBAN INDUSTRIAL	IND	0 345	0.37	0.3
			URBAN COMMERCIAL	COM INS	0.252 0.168	0.180	0.2
			EURBAN INSTITUTIONAL RHINO ANDULASITE	MiN	1 221	1 432	1.8
		MOKGALWANENG	PPC	IND	0.225	0.338	0.5
		SEFIKILE	RPM SWARTKLIP	MON	4,974	5 533	6
		SETTALLE	UNION MINE	MIN	0.100	0.100	0.1
		SAULSPOORT	BATLHAKO CHROME	MIN	1.095	1.095	1.0
		J. C.	RUIGHOEK CHROME	MIN	0.201	0 201	0.2
	100		MAKGOPE CHROME	MIN	1,000	1.095	€.0
			ROODERAND FERROCHROM	MIN	0.201	0.201	0.2
-		MOGWASE/SUN CIT	MOGWASE INDUSTRIAL	END	3.719	3 987	4.5
			SUN CITY RESORT	COM	2.920	3 263	4.0
-	VAALKOP SOUTH	VAALKOP SOUTHE	RUSTENBURO NEW INDUST	IND	0	0.477	1.0
		BOSPOORT	IMPALA PLATINUM MINE	MIN	1.825	1.825	1.8
		i '	URBAN INDUSTRIAL	IND	0.436	0.546	0.7
			URBAN COMMERCIAL	COM	0.327	0.41	0.5
		3.5	URBAN INSTITUTIONAL	INS	0.218	0.273	0.3
	1 1 1 1 1 1 1	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RPM	MIN	1.071	1.071	1.0
	BARNARDSYLEI	BARNARDSVLEI	URBAN INDUSTRIAL	IND	0,712	0.784	0.8
	l · ·	WESTERN	URBAN COMMERCIAL	COM	0.557	0.588	0.6
	l:	1	URBAN INSTITUTIONAL	INS	0.371	0 392	0.4
			IMPALA PLATINUM MINE	MIN	4.353	4 353	-4.3
	· '	· .	VOGELSTRUISNEK PLATINU	MIN	0.3	0.3	(
	i		RUSTENBURG PLATINUM MI	MEN	1.924	1.924	1.9
			KAREE MINE	MIN	1.737	2.456	2.4
	· ·		RAINBOW CHICKENS	IND	0.934	1315	2.4
		BARNARDSVLEI	WESTERN PLATINUM MINE	MEN	8.305	8 997	9.7
		EASTERN	Land to the court	60)1	0.04	0.04	0.
	KOSTER	KOSTER	URBAN COMMERCIAL	COM	0.02	0.04	0
	1	multiply Direction	URBAN INSTITUTIONAL	INS COM	0.03	0.02	0.
	1	SWARTRUGGENS	URBAN COMMERCIAL URBAN INSTITUTIONAL	INS	0.01	0.02	O.
						V.V	
			10.000		6 101	2067	10.6
				IND	6.401	7.817 4.502	
		NECTON ZONE		IND COM	4,126	4 592	5.5
		WESTERN ZONE 1		IND COM INS	4,126 0,787	4 592 0.875	5.5 1.0
		WESTERN ZONE 1		IND COM INS MIN	4,126 0,787 45,498	4 592 0 875 49 503	10.6 5.5 1.0 54.8 72.1
	DAVE		IOTAL	IND COM INS MIN TOTAL	4.126 0.787 45.498 56.812	4 592 0 875 49 503 62.787	5.5 1.0 54.8 72.1
ENTRAL	BRITS	WESTERN ZONE 1	TOTAL URBAN INDUSTRIAL	IND COM INS MIN TOTAL IND	4,126 0,787 45,498 56,832 1,286	4 592 0 875 49 503 63 787 1 636	5.5 1.0 54.8 72.1 2.5
TENTRAL	BRITS		IOTAL URBAN INDUSTRIAL URBAN COMMERCIAL	IND COM INS MIN TOTAL IND COM	4,126 0,787 45,498 56,832 1,286 0,436	4 592 0.875 49 503 62.787 1.636 0.696	5.5 1.0 54.8 72.1 2.5
FENTRAL		BRITS	TOTAL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS	4,126 0,787 45,498 56,832 1,286	4 592 0.875 49.503 62.787 1.636 0.696 0.464	5.5 1.0 54.8 72.1 2.5 1.1 0.8
CENTRAL	BRITS RAND WATER		URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA	IND COM INS MIN TOTAL IND COM INS	4,126 0,787 45,498 56,832 1,286 0,436	4 592 0.875 49 503 62.787 1.636 0.696	5.5 1.0 54.8 72.1 2.5 1.1 0.8
CENTRAL	RAND WATER	BRITS RAND WATER	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA	IND COM INS MIN TOTAL IND COM INS	4 126 0 787 45 498 56 832 1 286 0 436 0 291	4 592 0 875 49 503 62 787 1 636 0 696 0 464 8 321	5.5 1.0 54.8
TENTRAL		BRITS	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL	IND COM INS MIN TOTAL IND COM INS IND IND	4, 126 0, 787 45, 498 56, 832 1, 286 0, 436 0, 291 7 2, 92	4 592 0 875 49 503 63 787 1 636 0 696 0 464 8 321 3 715	5.5 1.0 54.8 72.1 2.5 1.t 0.8 11.
TENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL	IND COM INS MIN TOTAL IND COM INS IND IND	4,126 0,787 45,498 56,832 1,286 0,436 0,291 7 2,92 3,701	4 592 0.875 49 503 62.787 1.636 0.696 0.464 8.321 3.715 4.709	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.
CENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL	IND COM INS MIN TOTAL IND COM INS IND IND IND COM	4,126 0,787 45,498 56,832 1,286 0,436 0,291 7 2,992 3,701 0,5	4 592 0.875 49 503 62.787 1.636 0.696 0.464 8.321 3.715 4.709	5.5 1.0 54.8 72.1 2.5 1.t 0.8 11. 5.
ENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL	IND COM INS MIN TOTAL IND COM INS IND IND IND COM IND	4,126 0,787 45,498 56,832 1,286 0,436 0,291 7 2,92 3,701 0,5	4 592 0.875 49 503 63 787 1.636 0.696 0.464 8.321 3.715 4.709 0.5	5.5 1.0 54.8 72.1 2.5 1.t 0.8 11. 5. 5.9
ENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL	IND COM INS MIN TOTAL IND COM INS IND IND COM IND COM	4,126 0,787 45,498 56,832 1,286 0,436 0,291 7,7 2,92 3,701 0,5 0,41 1,046	4 592 0.875 49.503 63.787 1.636 0.696 0.464 8.321 3.715 4.709 0.5	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 0.1
ENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL	IND COM INS MIN TOTAL IND COM INS IND IND COM IND COM IND COM IND	4,126 0,787 45,498 56,832 1,286 0,436 0,291 7 2,92 3,701 0,5 0,41 1,046 0,205	4 592 0 875 49 503 62 787 1 636 0 696 0 464 8 321 3 715 4 709 0 55 0 433 1.12 0 202	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 0.1
CENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INDUSTRIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND COM IND COM IND COM IND COM IND	4.126 0.787 45.498 56.832 1.286 0.436 0.291 7.292 3.701 0.5 0.41 1.046 0.205	4 592 0 875 49 503 62 787 1 636 0 696 0 464 8 321 3 715 4 709 0 5 0 433 1 12 0 202	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5. 9 0.4 1.3 0.1 26.2 2.9
CENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INDUSTRIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND COM IND COM INS IND	4 126 0,787 45,498 56,891 1,286 0,436 0,291 7 7 2,92 3,701 0,45 0,205 15,347 1,982 0,496	4 592 0.875 49:503 62:787 1.636 0.696 0.464 8:321 4:709 0.53 0.433 1.12 0.202 18:814 2:316 0.666 0.666	5.5 1.0 54.8 72.1 2.5 1.1 0.8 8 11. 5. 0.4 1.3 0.1 1.2 2.2 2.9 1.0
ENTRAL	RAND WATER	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INDUSTRIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND IND COM IND COM INS IND COM INS IND COM INS	4 126 0,787 45,498 56,832 1 286 0,436 0,291 7 7 2 92 3,701 0,55 0,41 1,046 0,205 15,317 1,982 0,496 0,	4 592 0.875 49:503 62:787 1.636 0.696 0.464 8:311 4:709 0.5 0.433 1.122 0.202 18:814 2:316 0.666 0.666 0.600 21:796	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 0.1 26.2 2.9 1.0
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND IND COM INS IND COM IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0,291 7 2 92 3,701 0,55 0,41 1,046 0,205 15,317 1,982 0,496 0	4 592 0 875 49 503 62 787 1 636 0 696 0 8 321 3 715 4 709 0 433 1.12 0 22 18 814 2 316 0 666 0 9 21 796 3 358	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5. 9. 4 1. 26.2 2.9 1.0
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL IOTAL EKANDUSTRIA URBAN INDUSTRIAL	IND COM INS MIN TOTAL IND COM INS IND IND IND COM IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0,291 7 2 92 3,701 0,51 1,046 0,205 15,317 1,982 0,496 0 17,795 3,3358 0,256	4 592 0 875 49 503 62 787 1 636 0 696 0 8 321 3 715 4 709 0 433 1 12 0 202 18 814 2 316 0 666 0 0 2 1 1 296 0 3 3 3 5 8	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5. 9. (0.4 1.3 0.1 26.2 2.9 1.0
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL IOTAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INDUSTRIAL URBAN INDUSTRIAL URBAN INDUSTRIAL	IND COM INS MIN TOTAL IND COM INS IND IND COM INS	4 126 0,787 45,498 56,812 1 286 0,436 0 291 7 2,92 3,701 0,53 0,41 1,046 0,205 15,317 1,982 0,496 0,49	4 592 0 875 49 503 62 787 1 636 0 496 0 352 4 709 0 15 0 403 1 10 1	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 0.1 26.2 2.9 1.0 30.2 30.2 30.2 30.2
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADMYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA GA-RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INSTITUTIONAL EKANDUSTRIA URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND IND IND COM IND COM IND COM IND COM IND COM IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0,291 3,701 0,55 0,41 1,046 0,205 15,347 1,982 0,496 0,496 0,205 17,795 3,358 0,296 0,19	4 592 0.875 49:503 62:787 1 636 0.696 0.464 8 331 4 709 0.5 0.433 1.12 0.202 18.814 2 316 0.666 0.666 0.600 2 1.796 3 3.58 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.303	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 3.0 1.1 26.2 2.9 1.9 30.2 3.3 3.3 0.3 0.3 0.2 0.3
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE	URBAN INDUSTRIAL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INDUSTRIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND COM INS IND COM IND COM IND COM IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,291 7 2 92 3,701 0,55 0,41 1,046 0,205 15,317 1,982 0,496 0,17,795 1,795 1,7	4 592 0 875 49 503 62 787 1 636 0 696 0 8 321 3 715 4 709 0 433 1 12 0 202 18 814 2 316 0 666 0 0 21 796 3 358 0 302 0 226 0 215 0 105	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5. 9.9 1.0 1.3 0.1 26.2 2.9 9.1 0.3 0.3 0.3 0.3 0.3 0.2 0.4
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADMYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL	IND COM INS MIN TOTAL IND COM INS IND IND IND IND IND IND IND COM INS IND IND COM INS IND IND COM INS IND IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0,291 7 2,92 3,701 0,51 1,946 0,205 15,317 1,982 0,496 0,17,795 0,192 0,192 0,192 0,192 0,192	4 592 0 875 49:503 62:787 1.636 0.696 0.696 4:709 0.53 1.12 0.202 18:814 2:316 0.666 0.00 21:796 0.3358 0.302 0.226 0.151 0.105 0.126	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11.1 5.5 9.9 (0.4 0.1 30.2 3.3 0.2 0.3 0.2
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADMYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INSTITUTIONAL IOTAL EKANDUSTRIA URBAN INSTITUTIONAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND COM INS	4 126 0,787 45,498 56,812 1 286 0,436 0 291 3,701 0,53 0,41 1,046 0,205 15,317 1,982 0,496 0,000 17,795 3,358 0,192 0,128 0,192 0,192 0,192 0,192 0,193	4 592 0.875 49:503 62:787 1.636 0.496 0.454 8:321 4:709 0.53 1.612 0:202 18:814 2:316 0:666 0:00 21:796 3:358 0:302 0:226 0:151 0:1026 0:083	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 0.1 26.2 2.9 1.0 30.2 3.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADMYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL	IND COM INS MIN TOTAL IND COM INS IND IND IND IND IND COM IND COM IND COM IND COM INS IND	4 126 0,787 45 498 1 286 0 435 0 291 7 2 92 3.701 0.51 1.046 0 205 15.347 1.982 0.496 0.496 0.17.795 3.338 0.496 0.17.795 0.128 0.089 0.109 0.128	4 592 0 875 49 503 62 787 1 636 0 696 0 464 8 321 4 709 0 53 1 12 2 316 0 666 0 606 0 21 796 3 338 0 326 0 151 0 105 0 105 0 105 0 105 0 105 1 11	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 3.0 2.2 9 1.0 30.2 2.9 1.0 30.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADMYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA-RANKUWA INDUSTRIA BABALEGI INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN INSTITUTIONAL IOTAL EKANDUSTRIA URBAN INSTITUTIONAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL	IND COM INS MIN TOTAL IND COM INS IND IND IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0,237 7 2 92 3,701 0,53 0,41 1,046 0,205 15,317 1,982 0,496 0,127 0,128 0,12	4 592 0 875 49 503 62 787 1 636 0 696 0 696 0 709 1 709 0 433 1 12 0 202 18 814 2 316 0 666 0 0 21 1996 0 335 0 302 0 226 0 105 0 105 0 126 0 126	5.5 1.0 54.8 72.1 1.1 2.5 1.1 1.1 5.5 9.0 1.3 0.1 2.6 2.2 9.9 1.0 3.0 2.2 9.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
EASTERN	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA GA. RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL URBAN INSTITUTIONAL PREMIER MIÑE	IND COM INS MIN TOTAL IND COM INS IND IND IND IND IND IND IND COM INS MIN TOTAL IND COM INS IND COM INS MIN TOTAL IND COM INS IND COM IND COM IND COM IND IND COM IND COM IND COM IND COM IND COM IND IND COM IND COM IND COM IND IND COM IND COM IND COM IND IND COM IND IND COM IND COM IND IND COM IND IND COM IND COM IND COM IND IND IND COM IND IND IND COM IND	4 126 0,787 45,498 56,812 1 286 0,436 0,291 7 2,92 3,701 0,41 1,046 0,205 15,317 1,582 0,496 0,17,795 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,192 0,193 0,194	4 592 0 875 49 503 62 787 1 636 0 696 0 696 0 433 1 12 0 202 18 814 2 316 0 666 0 0 21 1996 0 3358 0 302 0 226 0 126 0 683 1 11 1 13 3 765 0 352	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11.5 5.9 0.1 26.2 2.9 1.0 0.1 0.1 0.1 0.1 0.1 0.1
EASTERN	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADMYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA GA. RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL URBAN INSTITUTIONAL PREMIER MIÑE	IND COM INS MIN TOTAL IND COM INS IND IND IND IND IND IND IND COM INS MIN TOTAL IND COM INS	4 126 0,787 45,498 56,812 1 286 0,436 0 291 3,701 0,51 1 1,046 0 205 15,317 1,932 0,496 0 17,795 0,128 0,128 0,192 0,192 0,193 0,193 0,193 0,193 0,193 0,193 0,193 0,193 0,193 0,193 0,193 0,193	4 592 0 875 49 503 6 2 787 1 636 0 496 0 486 8 321 3 715 4 709 0 53 0 120 21 796 0 22 666 0 21 796 0 302 0 226 0 151 0 108 0 118 0 198 0 198	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11.1 1.1 26.2 2.9 1.0 30.2 3.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
EASTERN	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA GA. RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL URBAN INSTITUTIONAL PREMIER MIÑE	IND COM INS MIN TOTAL IND COM INS IND IND IND IND COM IND COM IND COM INS IND COM IND COM IND IND COM IND IND COM IND IND COM IND IND COM INS IND IND COM INS IND IND COM INS IND IND COM INS IND	4 126 0,787 45 498 56 832 1 286 0 436 0 291 3 701 0 5 0 205 1 1046 0 205 1 17.795 3 3388 0 496 0 17.795 0 128 0 089 0 1071 1 111 3 7001 0 299 0 111	4 592 0 875 49 500 62 787 1 636 0 696 0 464 8 331 4 709 0 53 1 12 0 202 18 814 2 316 0 606 0 21,796 3 3,358 0 302 0 151 0 105 0 1	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5.9 (0.4 1.3 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
EASTERN	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA GA. RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL URBAN INSTITUTIONAL PREMIER MIÑE	IND COM INS MIN TOTAL IND COM INS IND IND IND IND COM INS IND IND COM INS IND IND COM INS IND IND COM INS IND IND IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,231 7 2 92 3,701 0,53 0,41 1,046 0,205 15,317 1,982 0,496 0,197 0,198 0,199 0,197 0,299 0,191 1,3703 0,299 0,199	4 592 0 875 49 503 62 787 1 636 0 696 0 696 0 797 1 799 0 1 799 1 8 111 2 116 0 666 0 221 2 1796 0 105 0 105 0 105 0 111 3 765 0 332 0 234 1 111 5 661	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11. 5. 9.0 1.3 0.1 26.2 2.9 9.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
EASTERN	RAND WATER TEMBA	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA GA. RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL URBAN INSTITUTIONAL PREMIER MIÑE	IND COM INS MIN TOTAL IND COM INS IND IND IND IND COM INS MIN TOTAL IND COM INS IND COM INS MIN TOTAL IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0,297 7 2,92 3,701 0,41 1,046 0,205 15,317 1,982 0,496 0,079 0,17,295 0,192 0,192 0,192 0,193	4 592 0 875 49 503 62 787 1 636 0 696 0 696 0 433 1.12 0 202 18 814 2 316 0 666 0 0 21 1996 0 032 0 026 0 126 0 083 1 11 1 3 765 0 352 0 234 1 11 3 3 765 1 3 3 3 9 6	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11.1 5.5 9.9 0.1 26.2 2.9 9.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
EASTERN	RAND WATER TEMBA BRONKHORSTPRU	BRITS RAND WATER KUDUBE NORTH WARMBADMYLSTE CENTRAL ZONE T	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA GA. RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL URBAN INSTITUTIONAL PREMIER MIÑE	IND COM INS MIN TOTAL IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0 291 7 2,92 3,701 0,41 1,046 0,205 15,317 1,982 0,496 0,17,795 0,128 0,192 0,128 0,192 0,192 0,192 0,192 0,193	4 592 0 875 49 503 62 787 1 636 0 696 0 450 1 3.715 4 709 0 50 1 18 814 2 316 0 666 0 0 21,796 3 358 0 151 0 1026 0	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11.1 5.5 5.9 0.1 26.2 2.9 1.0 30.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
EASTERN	RAND WATER TEMBA BRONKHORSTPRU	BRITS RAND WATER KUDUBE NORTH WARMBADNYLSTE CENTRAL ZONE 1 BRONKHORSTPRUI	URBAN INDUSTRIAL URBAN COMMERCIAL URBAN COMMERCIAL URBAN INSTITUTIONAL ROSSLYN INDUSTRIA GA. RANKUWA INDUSTRIA GA. RANKUWA INDUSTRIAL CAROUSEL URBAN INDUSTRIAL URBAN COMMERCIAL URBAN INSTITUTIONAL EKANDUSTRIA URBAN INDUSTRIAL URBAN INSTITUTIONAL URBAN INSTITUTIONAL PREMIER MIÑE	IND COM INS MIN TOTAL IND COM INS IND IND IND IND COM INS MIN TOTAL IND COM INS IND COM INS MIN TOTAL IND COM INS IND	4 126 0,787 45,498 56,812 1 286 0,436 0,297 7 2,92 3,701 0,41 1,046 0,205 15,317 1,982 0,496 0,079 0,17,295 0,192 0,192 0,192 0,193	4 592 0 875 49 500 62 787 1 636 0 696 0 464 8 331 4 709 0 .53 1 .12 0 202 18 814 2 316 0 666 0 0 21 796 0 .151 0 .105 0 .226 0 .151 0 .105 0 .226 0 .226 1 .11	5.5 1.0 54.8 72.1 2.5 1.1 0.8 11.1 5.5 9.9 (0.4 1.3 0.1 26.2 2.9 9.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Note: IND:Industrial, COM: Commercial, INS: Institutional, MIN: Mining

Table 4-5: Projected Per-Capita Water Demands and Growth Rates

ANOX			*	WESTERN		.:		Ę.	CENTRAL				.	EASTERN		+3e9pen-		Ę	STUDY AREA		
			:						<u> </u>	-								3			
VEAR & ANNUAL AVERAGE GROWTH RATE	GE GROWTH RATE	366 I	G.R.(%)	2002	G.R.(%)	2015	×	G.R.(%)	2002	C.R.(%)	2015	ž.	G.R.(%)	2002	G.R.(%)	2014	×	C.R.(%)	2002	G.R.(%)	2015
		030	•	100	,	777	3		2 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	7		and ofter	2	300, Cr.	2	91.	71071	ï	ž	ř	.,
POPULATION		0.00	77 7	105,63a	2	100 CO	or a noo	-		,	JL.	100	L					7.33	00.017		6.50 (0.50)
	DOMESTIC	81,518	4 5	108,302	201	140.408	191 252	4	1.54 981	1.24	386.104	61.380	ž	70 581	- \$0	36 6 90	124 140	4.26	433.054	2.70	613 202
		542.61	8	317 16	ţ	V Cu	8	ć	3	<u> </u>	9	¥7.4.	5	Ş	ř	477	70777	03 6	25 to	96	200 111
	INCOME	76.07			7						-					2	20,00		0		
WATER DEMAND	COMMERCIAL	6	154	12,581	1.50	15,266	5,430	225	6,345	1.90	8,107	810	2.36	264	2.15	1,271	17,553	1.80	19.890	£	24,644
						•••			-		+- ,			٠			لىدا	1 1) i	1 A 2 A 3 B
(KEG)	NSTITUTIONAL	2.2	5	2,397	E	7.825	340	2,3	22	38	200	ž	7.	2	2.17	747	4 060	18.	4 863	3,	6,84
	MINING	124.652	7	135.625	ę	150,321				: •		900	•	2	•	3	127,693	<u> </u>	138,666	, K. 0	153.362
	A section of																		!	1	
	TOTAL	267.75	2.7.2	Z80,411				1				55.0	2	ž	\$	20.		ř.	000		14000
PER-CAPITA DEMAND	DOMESTIC	121	. 6	138		136	511	0.85	122	-0.19	110	- 29	1.28	. 2	0.18	\$	ž	1.70	117	-007	115
(Jod)	OVERALL	351	0.20	3,6	\$	327	<u> </u>	0.48	151	10.0	2	86	2.32	ē	5 0 0	6	174	ž,	£	6	Ē
]																	1		ı

Note: Water demand shown in the table includes system leakage losses (1995: 20%, 2002: 18.25 %, 2015: 15%), but excludes losses at the purification plant and from the raw water source to the purification plant.

Table 4-9: Irrigation Demand Allocation by Local Area

Area	Source	Annual Demand (mcm/a)
Upstream of Hartbeespoort	Run-of-river	57.2
Hartbeespoort	Harbeespoort	100.6
Buffelspoort	Buffelspoort	6.6
Roodekopjes	Roodekopjes	29.4
Upstream of Roodekopjes	Run-of-river	7.7
Upstream Roodeplaat	Run-of-River	13.5
Roodeplaat	Roodeplaat	6.7
Bon Accord	Bon Accord	11.5
Upstream Warmbad	Run-of-river	0.8
Warmbad	Warmbad Dam	2.2
Upstream Klipvoor	Run-of-river	25.6
Klipvoor	Klipvoor Dam	62.0
Olifantsnek	Olifantsnek Dam	14.3
Koster	Koster Dam	2.9
Lindleyspoort	Lindleyspoort Dam	8.4
Upstream of Vaalkop	Run-of-river	16.7
Vaalkop	Vaalkop Dam	2.7
Lower Crocodile	Run-of-river/Ground water	63.0
Bronkhorstspruit	Bronkhorstspruit Dam	0.7
Upstream Rust de Winter	Run-of-river	6.5
Moses River	Run-of river	2.6

Figure 4-1 Projected Population by Level of Service (Study Area)

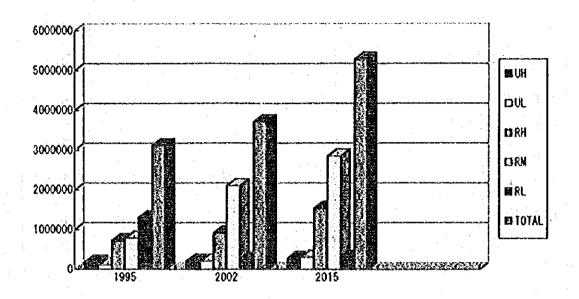


Figure 4-2 Projected Primary Water Demand by Use Category (Study Area)

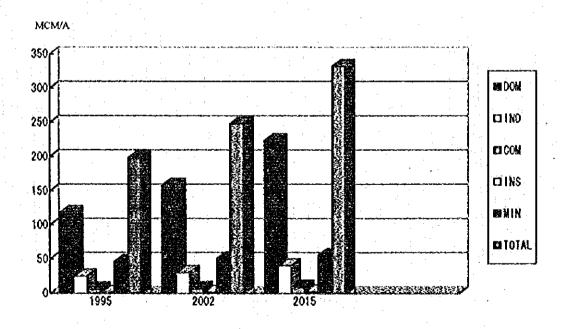


Figure 4-3 Projected Population by Level of Service (Western Zone)

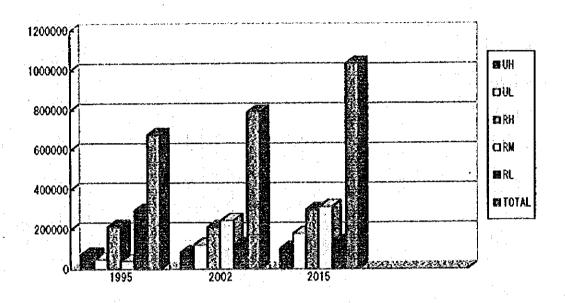


Figure 4-4 Projected Primary Water Demand by Use Category(Western Zone)

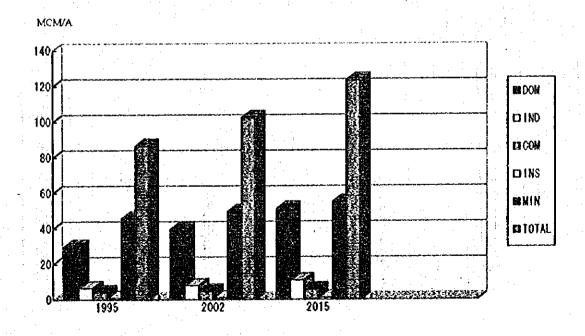


Figure 4-5 Projected Population by Level of Service (Central Zone)

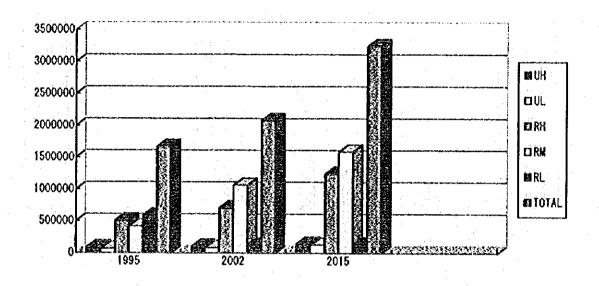


Figure 4-6 Projected Primary Water Demand by Use Category (Central Zone)

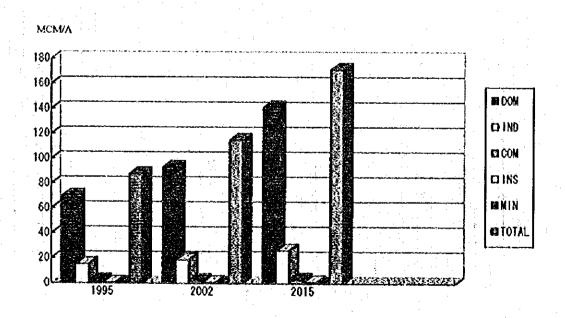


Figure 4-7 Projected Population by Level of Service (Eastern Zone)

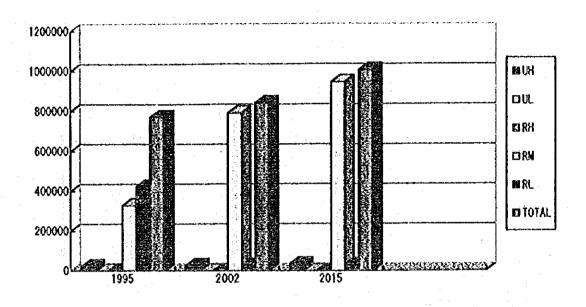
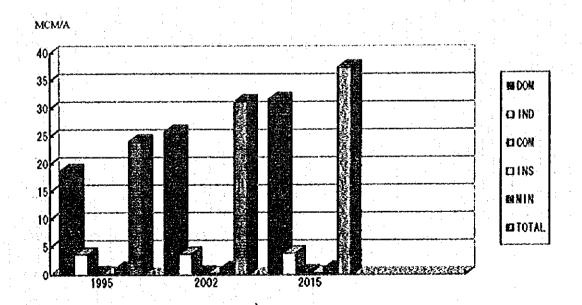



Figure 4-8 Projected Primary Water Demand by Use Category (Eastern Zone)

