ANNEX

ANNEX A

ENGINEERING

FEASIBILITY STUDY FOR MORETELE 2

ANNEX A: ENGINEERING

A.1	Assumptions f	or Plannings of Infrastructure	A-1
	Figure A.1-1	Correlation of Area and Reticulation Pipe Length	A-5
	Figure A.1-2	Correlation of Area and Number of Stand Pipe	A-5
A.2	Schematics of	Alternative Infrastructure Plans	A-6
	Figure A.2-1	Flow Diagram in Moretele 2 (Alt-1)	A-6
	Figure A.2-2	Flow Diagram in Moretele 2 East (Alt-2&3)	A- 7
	Figure A.2-3	Flow Diagram in Moretele 2 West (Alt-2) ·····	A-8
	Figure A.2-4	Flow Diagram in Moretele 2 West (Alt-3)	A-9
A.3	Details of Infi	rastructure Required for Each Alternative	A-10
	Table A.3-1	Summary of Reservoirs	A-10
	Table A.3-2	Summary of Bulk Supply Pipelines (Total 3 Sheets)	A-11
	Table A.3-3	Summary of Booster Pump Stations	A-14
	Table A.3-4	Summary of Intake Pump Stations	A-15
	Table A.3-5	Summary of Reticulation Pipelines(Level B)	A-16
	Table A.3-6	Summary of Reticulation Pipelines(Level A)	A-17
	Table A.3-7	Summary of Standpipes(Level A & Level B)	A-18
	Table A.3-8	Summary of Yard Connections(Level B)	A-19
A.4	Comparison	of Energy Requirements	A-20
	Table A.4-1	Comparison of Energy Requirements	A-20
	Table A.4-2	Present Value Analysis of Alternatives (Total 3 Sheets) ····	A-21
A.5	Preliminary	Designs ·····	A-24
	Figure A.5-1	Regional reservoir ·····	A-24
	Figure A.5-2	Service Reservoir	A-25
	Figure A.5-3	Pumu Station ·····	A-26
	Figure A.5-4	Pipe Trench	A-27
	Figure A.5-5	Standpipe ·····	A-28
	Figure A.5-6	Yard Connection	A-29

A.1. ASSUMPTIONS FOR PLANNING OF INFRASTRUCTURE

The following technical assumptions have been made in the planning of water supply infrastructure in this Feasibility Study.

1. Clear Water Pumping Stations

- At least 50 % standby equipment is provided.
- Number of pumps comprises two sets on duty and one set for standby.

2. Bulk and Distribution Pipeline

Flow rate and peak factors

	Flow rate
Bulk water delivery supply line to bulk reservoir which supplies a service reservoir	1.5 AADD
Bulk water delivery supply line to service reservoir which supplies a distribution network	1.5 AADD
Bulk water delivery supply line to distribution network	4.5 AADD

AADD : Annual Average Daily Demand

Type of pipe to use

- i ype or pipe		
Diameter range (mm)	Internal Pressure	Type of pipe
<= 400	<=1600 kPa	uPVC, Steel (API 5L Grade B), FC
<= 400	> 1600 kPa	Steel (API 5L Grade B)
> 400	<7000 kPa	Steel (API 5L Grade B)

Pipelines which will be subjected to a pressure more than 9 kg/cm^2 is planned as steel; and pipelines less than 9 kg/cm^2 is planned as uPVC.

3. Reservoirs

Service Reservoir

Water Source	Bulk Storage Provision	Service Reservoir Storage requirement
From Magalics Water direct by gravity or		
pumped to service reservoir by gravity to service reservoir		24 h
pumped to service reservoir	-	48 h
From Bulk Reservoir of Magalies water	24 h	
by gravity to service reservoir		24 h
pumped to service reservoir		48 h

Note : in hours of Annual Average Daily Demand

Reservoir Construction : Material

Type of storage	Capacity	Material
Elevated Service Reservoir	0 - 0.5 Ml	Pressed Steel
Ground Regional Reservoir	0.5 Ml and Larger	Concrete

4. Reticulation

Residual Pressures

Type of connections	Minimum de	sign pressures
	For connections	For services mix
House connections	12 m	
Yard taps	10 m	12 m
Street taps*	5 m	

*: 10 l/min of water flow from each tap should be secured

Pipe Selections for Reticulations

Pipe Diameter	Pipe material and Class
63 dia up to 250 dia	uPVC class 9 with push-fit couplings or z-lock

Sizing of Reticulation

In order to cost the proposed infrastructure it is necessary to estimate the length of pipework and hence the cost of the reticulation in each community. With a total of 76 communities in the three Feasibility Study areas it is neither practicable nor necessary to design the reticulation in each community in detail during the feasibility

study. Therefore a methodology was developed for estimating the length of pipework and number of standpipes required.

Initially the reticulation required in each pilot project community was considered however this sample was not sufficiently representative of the entire Study Area so instead the communities in Klipvoor West were considered (a total of 6 excluding Ga Rasai). The average area of these communities is 224 ha and they include a range of different sizes of settlement so the sample is representative of the communities in the feasibility study areas. When designing RDP level reticulation systems, it is normal practise in South Africa to allow for future upgrading by designing for the higher demand but then omitting some of the pipes for the RDP case. This obviates relaying pipes with a slightly larger size when demand increases.

For each of the six communities mentioned above the reticulation system was designed in detail using the 1:10,000 scale Orthophotos for Level B and then some of the pipes were removed to represent the Level A scenario. The data obtained from this exercise was then used to investigate the correlation between various parameters. Pipe length was tested against population, population density and area and unit length (metres of pipework per capita) was tested against the same parameters; population, population density and area. It was found for both Level A and B that pipe length versus area gave the best correlation. The relationships that were established are as follows:

Level A - y = 36.657 x + 4473.8

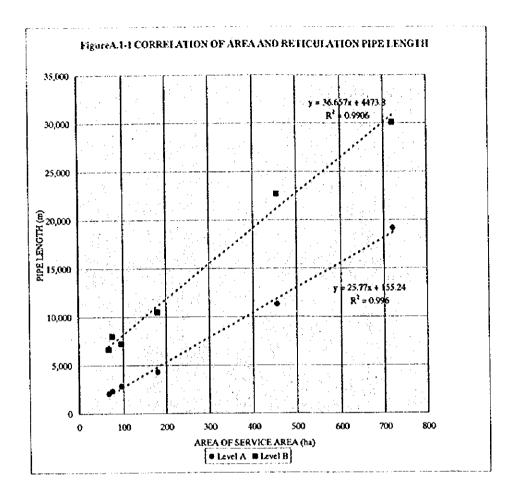
Level B - y = 25.77 x + 155.24

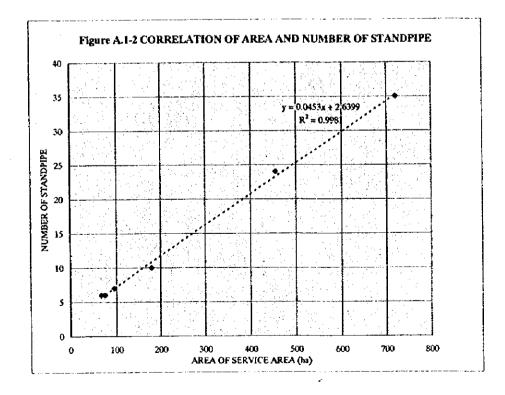
where y is the total pipe length and x is the area of service (this is determined from the orthophotos and constitutes approximately 90 or 95% of the households in a given community i.e. those which are still sufficiently dense to warrant an RDP level standpipe system)

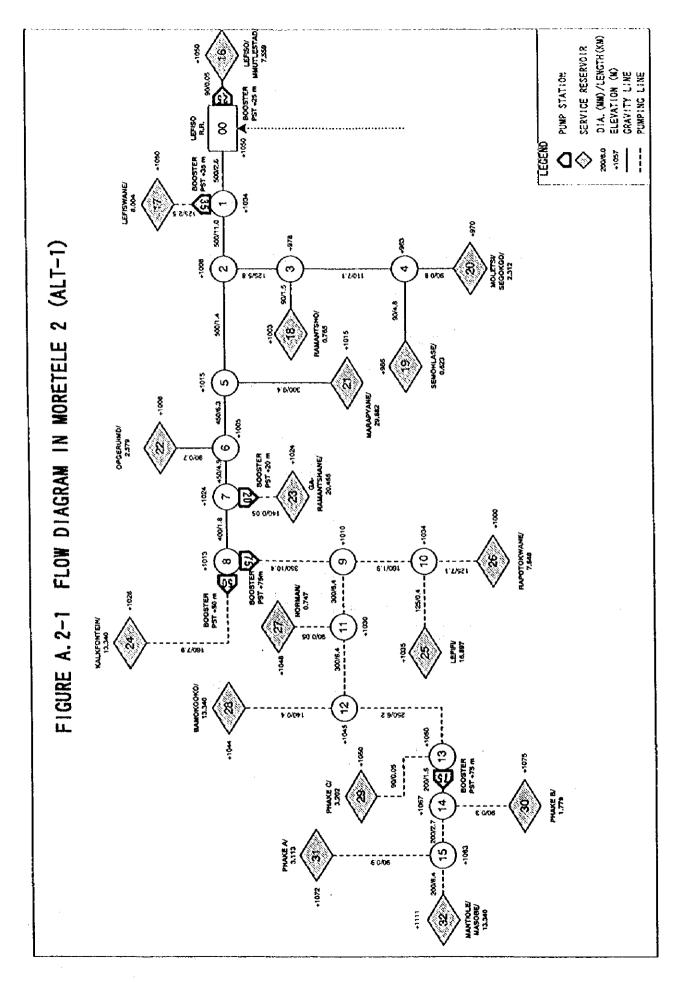
From the six communities for which the reticulation was designed in detail, a good correlation was found for Level A between the area of supply and the number of standpipes. The relationship is as follows:

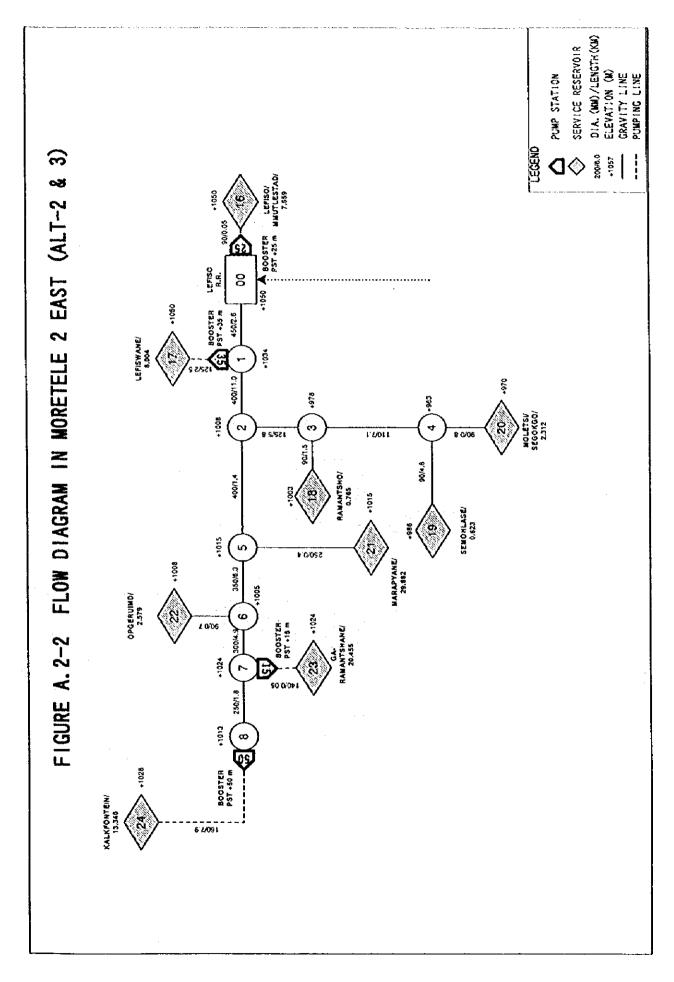
y = 0.0453 x + 2.6399

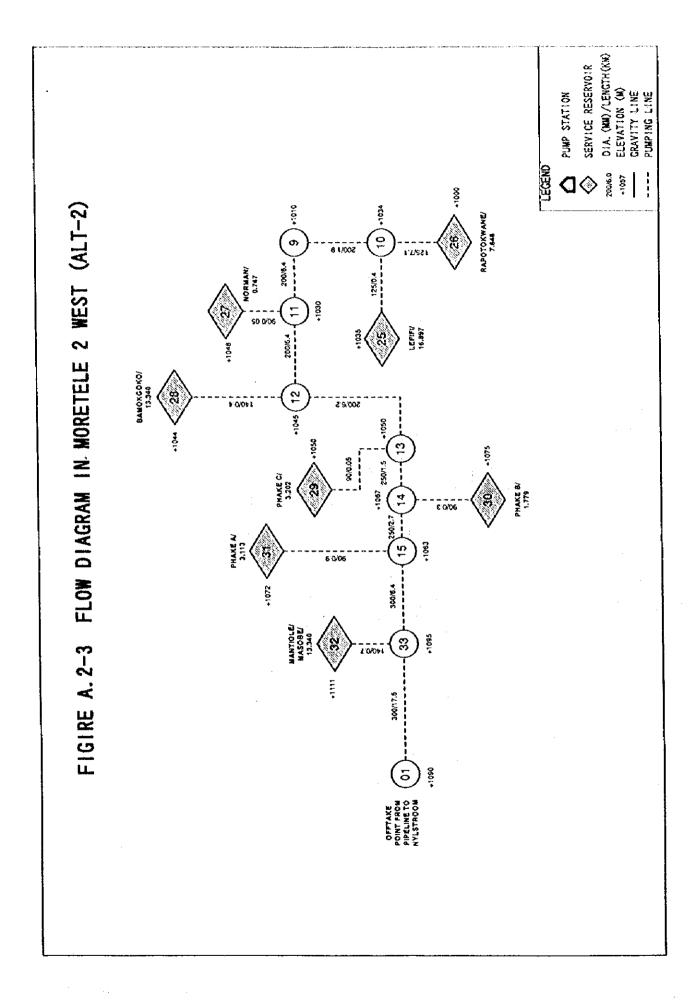
where y is the number of standpipes and x is the area of supply.


For Level B, there are still 10% of households which will remain on standpipes. It is assumed that these will be those households on the periphery of the communities where the cost of upgrading will be highest. By investigating the six typical communities in Klipvoor West it was found that the average number of standpipes per community for Level A is 13 while the average number required for Level B is still 10. This proportion was used for all of the communities.


Having established the total length of pipework required to reticulate a community to each level of service, it is still necessary to determine the breakdown for each pipe size. To do this a standard reticulation design was prepared for Level B for a fictional community. The layout corresponded with the average area of the 35 communities in the Klipvoor Area and the total length of pipework corresponded to the average length for the Klipvoor Area. Each component of the network was sized for the average summer peak daily demand which gave the proportion of each size for a typical system. As the pipe sizes for Level A tend to be of larger diameter than the additional pipes added for Level B, and as the actual size is dependant on the diameter of the incoming pipeline from the service reservoir, a range of incoming sizes was considered and a series of variations from the typical case were determined to allow for variations in this key parameter.


For Level A it was assumed that all pipes of 125 mm diameter and above from the Level B design will also be necessary for Level A. For pipes smaller than 125 mm diameter, the standard design amended for Level A was used to derive the distribution in pipe sizes.


To derive the number of yard connections, 90% of households are assumed to require yard connections as is assumed for the Level B service level. For Level A, no yard connection are included.


From the above methodology it is possible to determine the length of pipework of each size and the number of yard connections and standpipes in each community given the area to be supplied and the diameter of the incoming pipeline.

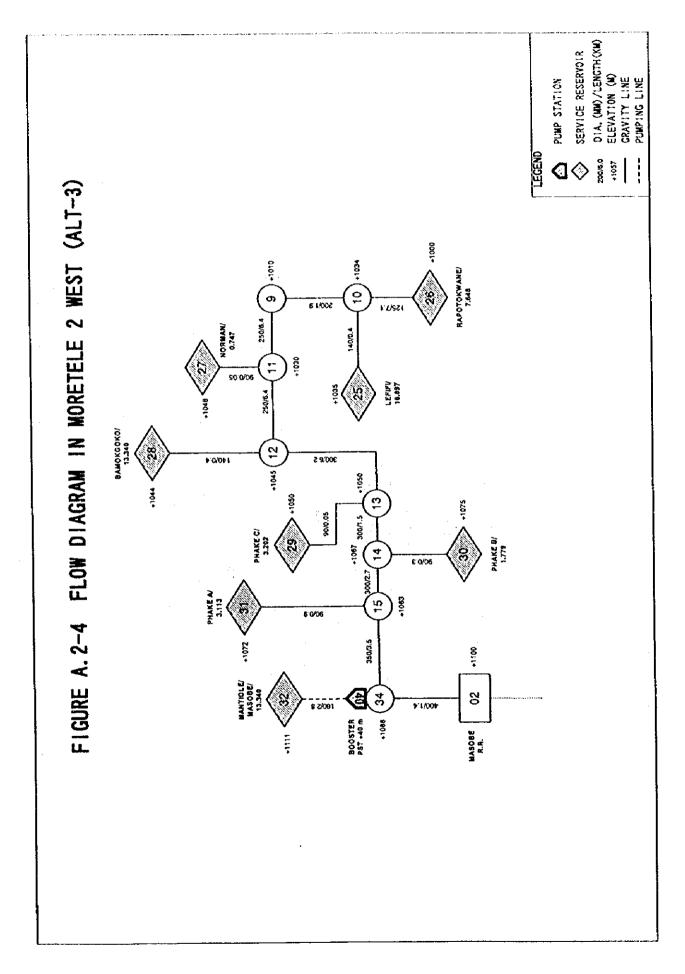


TABLE A.3-1 SUMMARY OF RESERVOIRS

Date:		Required	Height			r for Level					ir for Leve		40.92
Reservoirs	LevelB (m3)	Level A (m3)	C=Ground (m)	Capacity (m3)	r Siumber É finos)	Unit Cost (x1,000 R)	Cost (11.000 R)	Addition (m3)	Capacity (m3)			Add. Cost (x1,000 R)	
Uternative-1 (Moretele 2 East)		<u></u>	<u> </u>	<u> (197</u>	1.000	1		- (ne.)	<u>Uner</u>	(dv)j	1	1	(
Regional Reservoir	8,385	- 3.1 <i>6</i>	C	3,200		1,600	1,600	5,186	5200	· ;	2,000	2,000	3,64
Lefiso R.R	8,385	3,145	Ğ	3,200	i	1,600	1,600	5,186	5200		2,600		3.5
Service Reservoir	7,769	2,914			\overline{n}	1,630	2 (55	7.79		16	- 1,710	3,700	6,1
Lefiso/Mmutlestad	871	327	15	330) .	270	270	541	280	` `	235	470	1
Lefiswane	922	346	is	350) ¦	275	275	572	290	····	240		
Ramantsho	44	17	10	20) 	50		24	.0		60		í
Semohlase	36	i iii	i io		•	50	50	16	20		50		i i
Moletsi Segokgo	· ~ ïšš	50				75	75	83		⊢{	105	Caller a small r	
Marapjane	1.721	615	15			270	540	- <u>1.061</u>	360		285		
Öpgeruind	149	56			1	85	85	89	90		105		-
Ga Ramanishane	2.356	884	15			315	630	1.456	490		315		7.
Kalkfontein	1,537	576	iš	290		240	480	957	430	⊦å	315		fe
Alternative-1 (Moretele 2 West)	1,557	110	<u></u>	47/	<u> </u>	4.40	. 900	731	400	4	1 11	1 600	· · · · ·
Regional Reservoir	····· a	·····	Ġ.	ō	0			ŏ	· · · · · · · · · · · · · · · · · · ·	·		o	·
N.A.	5		Ğ	· · · · · · ·		X				ļ	· · · · · · · · · · · · · · · · · · ·		
Service Reservoir	6,920	2,593	95	- ī,680	1 11	1.385	2.110	1 1 1 1 1					
Lelli	1.947	730				285	The star is a second	4,290	2280		1,660	1	5,1
Rapolokwane	881	330	15				220	1,207	410	<u>3</u>	310		
Kapolokwane Noman	10 10 10 17 17				<u> </u>	220		551	280	<u>-</u>	195		
	85				1	75	75	46	50	.	90		
Banokgeko	1,537					240		957	480	i	315		
Phake C Phake B	205	138	10			135	135	229	210	į <u>1</u>	180		
						95		125	130	!	1X		L
Phake A	359 - 1.537					135	135	219	220	<u></u>	175		
Mantiole/Masabe	1'221	576	10	290	2	200	400	957	480	2	1 265	530	
Alternative-2&3 (Moretele 2 East)		1	ō										
Regional Reservoir	4,926			1,900	1	1,000		3,026	3100	<u> </u>	1,600	1,600	2,0
Lefiso R R	4,926					1,000				1	1,600		
Service Reservoir	7,769							4,799	2130	16			
Lefiso/Mmutlestad	871			33		270			280	2	23		
Lefiswane	922		15	350		275		572	290	Į	240		A state and a second
Marapjane	1,721					270			360		28		
Ramantsho	44					54					61		
Opgeruimd	149					8					10		
Ga-Ramantshane	2,356					315					31		
Kalkfontein	1,53					241		957	480		31		
Moleisi/Segokgo	13.					7			90		10		
Semohlase	<u>x</u>	5 13	1	2), I	I 50	<u>) 50</u>	15	20)	5) 5()
Alternative-2 (Moretele 2 West)			J				I			1	1	.1	· · · · ·
Regional Reservoir	9	0	0	6	1		0	0	0	0	1 (1	
N.A.		2 {)		<u></u> (()	C	0	0	<u>.</u>)]	(
Service Reservoir	5,920					-,							
L266	1,94					2 28					310		
Rapotokwane	88					22					19		
Norman	8					7					9		
Bamekgeko	1.53					2 24					2 31		
Phake C	36					1 13) 	18		
Phate B	20					1 9					1 13		
Phake A	35					1 13					17		
Mantiole/Masabe	1,53	7 57	6 1	0 29	0	2 20	0 40X	957	480		2 26	5 534)
Alternative-3 (Moretele 2 West)	1				1	1			1	T	i	1	Carlos da
Regional Reservoir	3,460							2,160	2200		3,20	1,200	
Masobe R.R.	3,46	0 1,29				1 90			2200)	1 1,20	0 1,20	
Service Reservoir	5,20)					1,18					1,49		
Lefifs	1.94					2 28					3 31		
Rapotokwane	44					1 15					i i i i		
Norman	4					i!6					i ''7		
Barnokgoko	76					1 24					il		
Phake C	18				0	1 - 9					1 12		
Shake B	10				o!	i ź		5 6			1 .9		
Fbale A	17				0;	1 9					1		
			6 1		** · · · · · · · · · · · · · · · · · ·	- 1 - 7	.			× 4	• • • • • •		<u></u>

.

TABLE A.3-2 SU	UMMARY OF	BULK SUPPLY	PIPELINES (Total 3 Sheets)
----------------	-----------	-------------	--------------------	-----------------

Bulk Supplly Pipelines	Unit	Length	Unit Cost x 1000 R	Total Cost x 1000 R
Iternative - 1, Moretele 2 East				
BEFORE LEFISO REGIONAL RESERVOIR			····· ··· ··· ··· ···	
450 mm Dia. Steel incl. materials and construction	m	24,700	0.563	13,900
Sub-Total		24,700		13,90
AFTER LEFISO REGIONAL RESERVOIR				
500 mm Dia. Steel incl. materials and construction	m	15,000	0.582	8,73
450 mm Dia. Steel incl. materials and construction	m	11,200	0.563	
400 mm Dia. Steel incl. materials and construction	 M	1,800	0.495	4
350 mm Dia, Steel incl. materials and construction		1,000	0.428	
300 mm Dia, Steet incl. materials and construction	 	400	0.360	i
250 mm Dia. Steel incl. materials and construction			0.292	
250 mm Dia. uPVC incl. materials and construction		+	0.220	
200 mm Dia. Steel incl. materials and construction	<u>m</u>		0.224	
	- <u>. m</u>	· · · · · · · · · · · · · · · · · · ·	0.166	
200 mm Dia. uPVC incl. materials and construction			0.100	L
160 mm Dia. Steel incl. materials and construction	<u>m</u>	7,900	0.120	
160 mm Dia. uPVC incl. materials and construction	m	7,900	0.120	
140 mm Dia. Steel incl. materials and construction	<u> </u>		0.143	
140 mm Dia. uPVC incl. materials and construction	<u>m</u>	50	0.100	
125 mm Dia. Steel incl. materials and construction		0.200		
125 mm Dia. uPVC incl. materials and construction	<u>m</u>	8,300		• • • • • • • • • • • • • • • • • • •
110 mm Dia. Steel incl. materials and construction	<u>n</u>	7,100		1 ,
110 mm Dia. uPVC incl. materials and construction			0.082	
90 mm Dia. Steel incl. materials and construction	m	5,600	0.075	
90 mm Dia. uPVC incl. materials and construction	<u> </u>	2,250	0.066	
Sub-Total		59,600		19,0
Sub-Total of Alternative-1 (Moretele 2 East)		84,300		32,93
Aternative - 1, Moretele 2 West		<u> </u>		
BEFORE LEFISO REGIONAL RESERVOIR				
N.A.	m	0		I
Sub-Total		0		
AFTER Node 8				1
500 mm Dia. Steel incl. materials and construction	m		0.582	2
450 mm Dia, Steel incl. materials and construction	m		0.56	
400 mm Dia, Steel incl. materials and construction	m		0.49	· · · · · · · · · · · · · · · · · · ·
350 mm Dia. Steel incl. materials and construction	•	10,400	L	
	<u> </u>	12,800		
300 mm Dia. Steel incl. materials and construction	m.		0.30	
250 mm Dia. Steel incl. materials and construction				
250 mm Dia. uPVC incl. materials and construction	<u> </u>	6,200		
200 mm Dia. Steel incl. materials and construction	<u>m</u>		0.22	
200 mm Dia. uPVC incl. materials and construction	ា	10,600		- <u>-</u>
160 mm Dia. Steel incl. materials and construction	m		0.17	0
160 mm Dia. uPVC incl. materials and construction	m	1,900	0.12	0 2
140 mm Dia, Steel incl. materials and construction	m		0.14	3
140 mm Dia, uPVC incl. materials and construction		400		
125 mm Dia. Steel incl. materials and construction	m	7,100		· · · · · · · · · · · · · · · · · · ·
125 mm Dia, uPVC incl. materials and construction		400		
	m		0.00	
110 mm Dia. Steel incl. materials and construction				
	m		0.08	
110 mm Dia. uPVC incl. materials and construction			0.07	5
90 mm Dia. Steel incl. materials and construction	m			
	m m	1,300	0.06	6
90 mm Dia. Steel incl. materials and construction		1,300	0.06	

TABLE A.3-2 SUMMARY OF BULK SUPPLY PIPELINES (Total 3 Sheets)

Bulk Supply Pipelines	Unit	Length	Unit Cost x 1000 R	Total Cost x 1000 R
Alternative - 2 & 3, Moretele 2 East				
BEFORE LEFISO REGIONAL RESERVOIR	• • • • • • • • • • • • • • • • • • • •			
350 mm Dia. Steel incl. materials and construction	m	24,700	0.428	10,572
Sub-Total		24,700	-	10,572
AFTER LEFISO REGIONAL RESERVOIR				
500 mm Dia, Steel incl. materials and construction	m		0.582	(
450 mm Dia. Steel incl. materials and construction	m	2,600	0.563	1,464
400 mm Dia. Steel incl. materials and construction	៣	12,400	0.495	6,138
350 mm Dia. Steel Incl. materials and construction	m	6,300	0.428	2,690
300 mm Dia. Steel incl. materials and construction	m	4,900	0.360	1,76-
250 mm Dia. Steel incl. materials and construction	m		0.292	
250 mm Dia. uPVC incl. materials and construction	m	2,200	0.220	48-
200 mm Dia. Steel incl. materials and construction	m		0.224	[
200 mm Dia. uPVC incl. materials and construction	m		0.165	!
160 mm Dia. Steel incl. materials and construction	m		0.170	
160 mm Dia. uPVC incl. materials and construction	m.	7,900	0.120	94
140 mm Dia. Steel incl. materials and construction	m		0.143	Anner was a second of
140 mm Dia. uPVC incl. materials and construction	ភា	50	0.108	
125 mm Dia, Steel incl. materials and construction	ា	l	0.123	
125 mm Dia. uPVC incl. materials and construction		8,300		And and the second methods
110 mm Dia. Steel incl. materials and construction	m	7,100		
110 mm Dia. uPVC incl. materials and construction	m	1	0.082	
90 mm Dia. Steel incl. materials and construction	m	5,600		+ - · · · · · · · · · · · · · · · · · ·
90 mm Dia. uPVC incl. materials and construction	<u>m</u>	2,250	· · · · · · · · · · · · · · · · · · ·	4
Sub-Total		59,600		15,50
Sub-Total of Alternative-2 & 3 (Moretele 2 East)	l Caracter	84,300		26,078

•

TABLE A.3-2 SUMMARY OF BULK SUPPLY PIPELINES (Total 3 Sheets)

Bulk Supply Pipelines	Unit	Length	Unit Cost x 1000 R	Total Cost x 1000 R
Alternative - 2, Moretele 2 West		T		
BEFORE ====== REGIONAL RESERVOIR				
N. A. (but, share cost required)	ra	0	0	6,150
Sub-Total		0		6,150
AFTER OFFTAKE POINT ON PIPELINE TO NYLSTROOM		+		··· ·····
500 mm Dia, Steel incl. materials and construction	m		0.582	0
450 mm Dia. Steel incl. materials and construction	m		0.563	0
400 mm Dia. Steel incl. materials and construction	m	-	0,495	Õ
350 mm Dia. Steel incl. materials and construction	m		0.428	0
300 mm Dia. Steel incl. materials and construction	m	23,900	0.360	8,604
250 mm Dia. Steel incl. materials and construction	m	4,200	0.292	1,226
250 mm Dia. uPVC incl. materials and construction	m		0.220	0
200 mm Dia, Steel incl. materials and construction	m	20,900	0.224	4,682
200 mm Dia, uPVC incl. materials and construction	m		0.166	C
160 mm Dia. Steel incl. materials and construction	m		0.170	C
160 mm Dia. uPVC incl. materials and construction	m		0.120	C
140 mm Dia. Steel incl. materials and construction	m	1,100	0.143	157
140 mm Dia. uPVC incl. materials and construction	m	·]	0.108	
125 mm Dia. Steel incl. materials and construction	m	7,500	0.123	923
125 mm Dia, uPVC incl. materials and construction	m		0.086	0
110 mm Dia. Steel incl. materials and construction	m		0.102	(
110 mm Dia. uPVC incl. materials and construction	m	-	0.082	(
90 mm Dia. Steel incl. materials and construction	m	1,300	0.075	98
90 mm Dia, uPVC incl. materials and construction	ជា	1	0.066	
Sub-Total		58,900		15,68
Sub-Total of Alternative-2 (Moretele 2 West)		58,900	3 1 T	21,839
Alternative - 3, Moretele 2 West				
BEFORE MASOBE REGIONAL RESERVOIR				•
	·	35,600	0.360	12,81
300 mm Dia. Steel incl. materials and construction	m	35,600		12,81
Sub-Total AFTER MASOBE REGIONAL RESERVOIR	l		···	
S00 mm Dia. Steet incl. materials and construction	 m	·	0.582	
450 mm Dia. Steel incl. materials and construction	m		0.563	· · · · · · · · · · · · · · · · · · ·
400 mm Dia, Steel incl. materials and construction		1,400		· · · · · · · · · · · · · · · · · · ·
350 mm Dia. Steel incl. materials and construction	<u>m</u>	3,500	• • • • • • • • • • • • • • • • • • •	
300 mm Dia. Steel incl. materials and construction	 m	10,400	Jacobard and the second sec	
250 mm Dia. Steel incl. materials and construction		6,400	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
250 mm Dia, uPVC incl. materials and construction		6,400		
200 mm Dia. Steel incl. materials and construction	<u>111</u>	1,900		· · · · · · · · · · · · · · · · · · ·
200 mm Dia. uPVC incl. materials and construction	m		0.160	
160 mm Dia. Steel incl. materials and construction	m		0.170	
	 	2,800		
	· · · · · · · · · · · · · · · · · · ·		0.14	si
160 mm Dia. uPVC incl. materials and construction	rn i			
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction	m m	800)] 0.108	
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction 140 mm Dia. uPVC incl. materials and construction	m	7.100		
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction 140 mm Dia. uPVC incl. materials and construction 125 mm Dia. Steel incl. materials and construction	m m	800 7,100	0.12	87
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction 140 mm Dia. uPVC incl. materials and construction 125 mm Dia. Steel incl. materials and construction 125 mm Dia. uPVC incl. materials and construction	m ro m		0.12	87
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction 140 mm Dia. uPVC incl. materials and construction 125 mm Dia. Steel incl. materials and construction 125 mm Dia. uPVC incl. materials and construction 110 mm Dia. Steel incl. materials and construction	m m m		0.12	87
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction 140 mm Dia. uPVC incl. materials and construction 125 mm Dia. Steel incl. materials and construction 125 mm Dia. uPVC incl. materials and construction 110 mm Dia. Steel incl. materials and construction 110 mm Dia. uPVC incl. materials and construction	m m m m		0.12 0.080 0.100 0.082	87
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction 140 mm Dia. uPVC incl. materials and construction 125 mm Dia. Steel incl. materials and construction 125 mm Dia. uPVC incl. materials and construction 110 mm Dia. Steel incl. materials and construction 110 mm Dia. Steel incl. materials and construction 90 mm Dia. Steel incl. materials and construction	m m m m m	7,100) 0.12 0.080 0.100 0.080 0.07	87
160 mm Dia. uPVC incl. materials and construction 140 mm Dia. Steel incl. materials and construction 140 mm Dia. uPVC incl. materials and construction 125 mm Dia. Steel incl. materials and construction 125 mm Dia. uPVC incl. materials and construction 110 mm Dia. Steel incl. materials and construction 110 mm Dia. uPVC incl. materials and construction	m m m m		0.12 0.08 0.10 0.08 0.07 0.07	87

-

.

TABLE A.3-3 SUMMARY OF BOOSTER PUMP STATIONS

	FLOW	FLOW FLOW HEIGHT	THƏIƏ	ON	NO. OF UNIT		FLOW/UNITM REQUIRE! TOTAL	A REQUIRE	TOTAL	COST OF	F	PUMP STATION
	()/sec) ((l/sec) (m3/min) (m)	E	Operation Stand-by	Stand-by	Total	(m3/min)	(Kw)	Pm (Kw)	Pm (Kw) PUMP SET (R)		COSI (K)
Altomative - I - Fast											and the state of the second	389,191
T afico	7 550	0.454	25	2	1	3	0.227	3.7	11.1		1	56,031
T afictuana	8004	0.480	35	2	1	3	0.240	5.5	16.5		1	83,290
	<u> </u>	1 227		6		6	0.614	5.5	16.5		1.00000	83,290
Ga-ramantshane 7		0.800	205	5	, -	5	0.400	11.0			3 14 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -	166,580
Alexandrus 1. West	- 11											787,468
Automatic - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	VV VV	3 6/4	75	2		л Э	1.802	37.0	111.0	196,110	0 $> < < 0$	560,314
Dhala Callallana	18,233		75	2		3	0.547	15.0	45.0	79,504		227,154
I Harren 2 2 Erect												361,932
Autrinutive = 4, 0 Linot	7 550	0.454	25	6	1	6	0.227	3.7	11.1	19,611	1	56,031
LCIISU I aficturana	NON S		35	2		(C)	0.240	5.5			1 - 200 - 200	83,290
1	20 455	1 277	15	5	1	3	0.614	3.7	11.1	119,611	1 [. A to 0	56,031
Ga-ramantshane 2	13.340	.	202			3	0.400	11.0		58,303	0 (states) 0	166,580
Altornative - 2 West												0
		NO RC	TSCC TSCC	NO ROOSTER PIIMP	d							
Alternative - 2 West												113,577
Machhe	13 340	0.800	40	2	F 4	3	0.400	7.5	225	39.752	2 [1] 2] 2	113,577
2000cpv4f												

TABLE A.3-3 SUMMARY OF BOOSTER PUMP STATIONS

	1 av (2011	01 2280 - 63	-1-11-7-1-1		NO OF INIT		FLOW/UNTPM REOURED TOTAL	REOUIREI	TOTAL	COST OF	PUMP STATION
MURTELE 2	FLOW FLOW RELEVAN		_ ⊂	neration Stand-by	nd-by	Total	(m3/min)	(Kw)	Pm (Kw)	Pm (Kw) PUMP SET (R)	COST (R)
		(m) (mm/cm) (338/I)	2		-						389,191
Alternative - I - East	-		· · · · · · · · · · · · · · · · · · ·							10.201	56.031
Tefiso	7.559	7.559 0.454	52	6	4		0.227			110.21	00 60
1 46 611 5 4 5	8 004	0.480	35	2		ന	0.240	5.5	16.5	701'67	N77.00
	1994.00		200				0.614	5.5	16.5	29,151	83,29
Ga-ramantsnane 1	20.455	177.1	07	3 C	•	1	0.400	11.0	33.0	58.303	166,58
Ga-ramantshane 2	13.340	0.200	nc	7		1					787 468
Alternative - I - West							-		· • • • • • • • • • • • • • • • • • • •		10 V/2
Commerciane 2 60 066	60.066	3 604	75	7	F -4	C ł	1.802	37.0	111.0	1011.041	10,000
	10.001	100	75	· · · ·	-		0.547	15.0	45.0	79.504	227.15
Pnake C	1707.01	1.02+	2	1							361.932
Alternative - 2, 3 East			-					•			50 J J
1 45.00	7 550	7 550 0 454	25	2	1	G 3	0.227	3.7	1.11	110'61	100,00
			25	6		0	0.240	5.5	16.5	29,151	83,290
Letiswane		0.400	<u></u>	***	•				111	10.01	56.031
Ga-ramantshane 1	20.455	1.227	15	2		••	0.014		4-4-		166 501
Ga-ramantshane 2	13.340	0.800	50:	5	1:	C 1	0.400	11.0	0.00	ICUCIOC	2000
Alternative - 7 West					ĺ						
	-		NO DOOCTE	CD DITAD	<u>م</u>						
			TTOO/								
			-	-							112 517
Alternative - 3 West			-					-			
Mache	13 340	0.800	64	5			0.400	7.5	22.5	39,752	76.511
AUG00											

TABLE A.3-4 SUMMARY OF INTAKE PUMP STATIONS

	TELOW: ELOW HEIGHT	H MOI	FICHT		NO. OF UNIT		FLOW/UNIT P	'm REQUIRED	TOTAL	FLOW/UNIT Pm REQUIRED TOTAL COST OF P	<u> </u>
STATION	(l/sec) (m3/min) (m)	3/min)	(I	Deration	Operation Stand-by	Total	(m3/min)	(Kw)	Pm (Kw)	VUMP SET (R)	CUS1 (K)
Iternative - 1			· ·							000 000	
	00000	0000	1.0	c		3	5,469	30.0	90.06	129,008	
Moretele 2 (Each) 102.494 10.900	767.274	002 01	3								454,308
tternative - 2, 3										1 20 000	205 124
Town of the second	102 202 10 038	038	- 16			m	5.469	0.05	20.02	ann'scr	
MOFELELE & Edist	102.274	2220	1	ſ							560,314
lternative - 2										011 201	2 L2 U32
12 12 11 11 11 12 12 12 12 12 12 12 12 1	10 750	12 125	51	ſ	-	5	6.563	37.0	N-111	ATT'04T	
MOTELELE 2 WEST	001017	V-14-V									166,580
Iternative - 3										50 202	166 580
Maretele 2 West	63.069 3.784	3.784	21	6	-	ŝ	1-892	11.01	0.00	encreoc	

2	
Beckness and	
Y 252134 TT	

<u>#12</u> #	

i,

4

	EI OW EI	OW HE	СНТ		NO. OF UNIT	VIT.	FLOW/UNI	FLOW/UNIT Pm REQUIRED TOTAL	TOTA	CO CO	COST OF	15	ATION
STATION	(l/sec) (m3/min) (m)	(uin) (0 (1)	peration	eration Stand-by	v Total	(m3/min)	(Kw)	Pm (Kv	INUT (V	Pm (Kw) PUMP SET (K)		CUSI (K) 302.872
Alternative - 1										0.0	106 005		302 872
Moretele 2 (E&W) 68.360		4.102	21	-		1	2 4.102	7.00					

TABLE A.3-4 SUMMARY OF INTAKE PUMP STATIONS

I evel B										
	FLOW	LHOM FLOW HEIGHT	EIGHT	NO. OF UNIT	NIT Totol		m REQUIRED I	B (Kw) PI	Pm (Kw) PUMP SET (R)	FLOW/UNIT Pm REQUIRED IOLAL COST OF LOW/UNIT Pm REQUIRED IOLAL COST (R) (ma/min) (Kw) PUMP SET (R) COST (R)
STATION	(1/Sec)	(l/sec) (m3/min) (m)	- 11	Therador Design		· • • • •				454,308
Alternative - I									150.008	454.308
Moretele 2 (E&W) 182.292 10.938	182.292	10.938	21	2	1	3 5.469	20.0	20.02	CONVCCT	454 308
Alternative - 2, 3										302 /3/
Moretele 2 East 182.292 10.938	182.292	10.938	21	2	1	3 5.469	30.0	-0.06	IONN'ACT	000**0*
Alternative - 2									011 100	+YC'00C
Moretele 2 West 218.750 13.125	218.750	13.125	21	2	1:	3 6.563	37.0	111.0	INTT'OAT	
Alternative - 3				4					505 03	144.580
Moretele 2 West 63.069 3.784	63.069	3.784	21	2		3 1.892	11.0	0.00	100000	20200

	17

	•
	•
A REAL PROPERTY AND A REAL	
L Vision	•
and the second second	
	12
	E C

	I.
	17
	•
	ľ
	•
	87

	A.4. 141 V. A.4.				TINIT OF OU		FLOW/LNY	ELOW/UNIT, Prin REOURED TOTAL C	TOTAL	OST OF	PUMP STATION
ł				_!/	AUCON CONTRACT	Total	(m3/min)	(Kw)	Pm (Kw)	Pm (Kw) PUMP SET (R) COST (R)	COST (R)
SIATION			(m)	operation	In-mano	W VILLE					302,872
Alternative - 1									200	106.005	302.872
Moretele 2 (E&W) 68.360 4.102 21	68.360 4	t.102	21	1			4,102		2000		

TABLE A.3-5 SUMMARY OF RETICULATION PIPELINES (LEVEL B)

			Ì		[A Level Y	ŀ							3	Level B							T
		Number Population	vouletion	Water Demand	Percend	Š	TEVEL A				Ì				F				a much of Pitcellor (or Parch Dispeter (m)	for Fach D	Nameter (m	<u> </u>		-
Moratala 2		2		AADD (Vday)	(Vday)		Level b of	Length of		Prop	ortion (of Pipe	Proportion of Pipe Diameter (%)	L (%)										
		Louisahold	k	I evel A Level B	Level B	ê	Returnation	Keticulation			ŀ			1							4	073	200 Ten.	
				-			(m) - 10	Plan (B)		12	110	10, 125	140	160	200 Tot.	3	- <u>-</u>	}	ł	ł	I	ĺ		T
Settlement	Alternative Name					1			Ľ	00 11 00 11 100 10 100 00	1 1 1 1 1 1 1	N I I	87	4 (6) 2 0	2 m 100.0	10.068	7.94.5	5,902	3,419	5 L	202		5	ř.
1 1 Aften/Mmotlestad	1 1 After/Mmutlestad Muticstad, Geelbeltsvie	850	5,440	163,200	163,200 435,418	82S.0	7					Ł	3			1	14 01 4	11.024	7130	5.168	3,491	2	297. 6	64.YAK
7 1 -Contractor	Radinko Difihagane	<u>8</u>	5,760		172,800 461,030 1,647.0	1,647.0	42,598		_	1 00 22 00	23.00 17.00 11.00		3	1		L.		1 43	-	6	ō	5	0	6,002
		9%	35		16.512 44.054	5.53	5 1,843	3 6,875	775 44.75		215	-		-		3,010			, 2	6	0	0	•	Į.
3 Kumanisno		ç	AAP	L	N2 X 26	45.5	1.328	8 6,142	142 44.75	S 22.10 22.15	2.15	-	-		100.0	1.74	2	201			1410	4		15
4 Semohlaso	Roodekoppies	2		Т		ľ			3N 32.7	32 76 24 23 16.21 11.99	6.21 11.5	78 N. 87	2	•••	100.0	4,468	3,304	2,213	165				1	
5 Moletai	Segokgo -	260	8	44,44	101 CCT 177 Kb	× 1		ľ		100.01 - 100 - 1 - 100 - 1 - 100 - 00	1001-116	800	90.00	4.00 2.00	0 100.0	33,764	26,782	19.795	12,409	2150	100	4,65% 2		
6 Marapyane	Schilpadfontein	3,360	21.50	21,504 645,120 1,721,180	1.721.180	Ĩ		Ì				1	3		100.0	2.402	1	1,189	6628	\$50	436	0	0	7,33
7 Observited		290	1,856	- 1	55,680 148,554	2		Ì	400				2	100	7 00: 100 0	14,250		10.716	6,034	5,043	3,7%2	1. 1252	1,261 6	63.073
S GasRamantshano	Scabo	2,300	14,720		441,600 1,178,189 1,597.5	1,597.	4			20'00 Z1'00 I/I 00'IZ						11.0	11	5.417		{		1.274	537	31,438
0 Kalirfoniein	1	1,500	009'6	288,000	288,000 768,384	746.5	19.393		80	23.00	23.00 17.00 11.00	3	3	3								12,435 6.	6,218 . 34	346,646
Sub-Trial of Moretele 2 East	etele 2 East	9,616	61,542	61,542 1,846,272 4,925,854 8,309.5	4,925,854	8,309.5	215		- 1			1						L.,		1	2306	1,551	775 3	38,766
10 Lefif	Notaneng Rooifontein	1,900	12,160	12,160 364,800 973,256	973,236	935.5	న		166 29.00	818	23.00 17.00 11.00				0 W 1 W 4	3 108	2.670	181	1.267	918	649	459	230	11.475
11 Ranotokwano	Willaagte	860	5,504	165,120	165,120 440,540	191.0	Ň		122 28	11,475 29,00 23,00 17,00		8				10.4	4411	2.957	ō	0	ō	ō	0 1	902-01
12 Norman		84	5381		16,128 43,030	- ł	ٱ		1	13,320 44.75 J.J.10		12	1	10	0.001	101 ×	6407	592 F	3.107	2.260	1,605	001,1	565	24.246
13 Bemokenko	Mmamotlhake	1_500	009'6		288,000 768,384	648.5	2		2K, 240 29.0	nr11 00/1 00'07 00'67				1_			1 912	1 414	- ¥	8	SIK	345	- 10	X 264
14 Phake C		360	2,304	69,120	184,412	103.5			8,20M 29.4	29.43; 23.12; 17.10; 11.4		. 1	3	-	, our	2.451	044	1213	5	109	ò	jõ	0	6,603
15 Phake B		200	1.260	200 1,240 38,400 102,451	102,451		-			4.11	Arct 1021 1117	4	ţ	014		1080	556	121	70	39	124	2021	ō	į,
16 Phake A	Rankaile	350	- 2,240		67,200 - 179,290	. E			NV/2 87/10		H 11 01/1 71/57	- L -		ι.	2001000	7.474	5927	1381	2,835	2,062	1,546	1.00.1	5151	33.772
17 Mantiole	Pankop, Mesebe	1,500	009'6	288,000	288,0001 768,384	581.0	2		IM 82 7/1	2						1001		55 72	14,081	10,210	7,794	1799 2	2,005 /3	207.62/
Sub-Total of Moretele 2 West	relete 2 West	6, 754	43,226	43,226 1,296,768 3,459,777 2,826.0	3, 459, 777	2,826.4	×		2			-			ĺ	1	113,879	83,585	267.62	36,940	1 100'01	17,234 8,	8-100°-2	40.734
TOTAL		16.370	104,768	104,768 3,143,040 8,385,631 11,135.5	8,385,631	11,135	289,601	1 484.243	200		ļ												Ì	
										•						51	8	<u>66</u>	82	86	108	120	166	

-

Moretele 2 East Moretele 2 West Total

~

LANALINA ATTILAN ANALAN ATALANA LINALAN LANALAN LANALAN LANALAN KANANAN AVERTAGE Unit Cost (K/M) : 68.35 5,193,213 4,501,213 3,507,100 3,00,302 3,794,613 7,144,023 1,642,214 1,027,114 72,464,301 3,194,213 4,501,213 4,545,201 1,164,613 117,013 2,144,023 1,642,224 1,027,114 72,464,301 7,304,060 4,277,239 4,241,531 4,144,343 1,154,549 2,154,001 2,054,024 1,377,154 24,1540

Vol.4 Moretele 2

A-16

TABLE A.3-6 SUMMARY OF RETICULATION PIPELINES (LEVEL A)

							A loud 1	I aval R							Level A	۲I						
		Number Population	sulation	W BIEL Delighted	Dundia		TCACI V			ļ								I amouth of Binadiane for Warth Diameter (III)	Wards Dian	otter (III)		
More	Moretele 2	oľ	1	(Veb)) (Uday)	(Vday)		Length of	Length of	M	Proportion of Pipe Diameter (70)	I Pipe L	Mameter	(a)			4						
		Hounehold		Level A Level B	Level B	8	Reticulation	Reticulation			Į.	1	1				1	110	1.75:	091 .070		200 Tot.
Carrient	Alternative Name	·					Pipe (m)	Physe (mi)	63 75	90 110	0 1251	1401 16	160 Z00 Tot.		2		L	L	ľ	ľ		11 11 C
		1450	440	161 201 435 418	415.418	825.0		34,716	629 30.47 32.49 29.95	\$2,49 29.9.	5	-		100.0	910	4,468					1	
1 Lefiso/Mmulest	1 Lefixo/Minulestac Mittiostad, Locinersvid					15				12.89 29.0	S 1			100.00	,Kr4 9,	9,146. 9,	9,745 B.	B,K741 5,1	5,148 3,891	91 2.594		*
2 Lefisware	Radijoko, Dithagane	3	0	2007/1	101		ĺ	300 3		n 10				100.0	576	20	55	0	0	0	0	0 1.453
3 Ramentsho		86	ŝ	16,512	- 1		-	C/U'0	00.40 47.10	2.4		1-					0	6	0	0	•	0
4 Semohlavo	Roodekoppies	- 70	44	13,440	35,858	45.5		6,142		2002					1	1	-			1014	- 	0 6.596
5 Moletki	Segokao	560	1,664	49,920	49,920 133,187	250.0	:	13,638	- in -	30.59 30.7		-		ľ		[1		ſ	A 4871 4.65k	503	
6 Maraovane	Schilpedfontein	3,360	21,504	645,120	645,12011,721,180	3,054.5	74,870	116.443	· (32,891 29.9		.		j		1	101 IV	1	1		ļ	
7 Onservind		290	1,856	55,680	55,680: 148,554	78.0		7,333	6 12	30.59 30.7		- -			1			ľ		3 7X2 2 523		
X Gu-Ramantshane	e Sebe	2,300	14.720	14,720 441,600 1,178,189 1,597.5	1,178,189	1,597.5	41,323	63,033	8	30.87 32.89 29.95	2					ļ						Ì.,
0 Kattefontein		1,500	009.6	288,000	288,0001 768,384	746.5		31,838	6.29 30.K7 32.K9 29.95	32,89 29.9	2			100.0	1]]	Ľ	ľ	17		6
Sub Total of Manuale 2 Fast	vetele 2 Fact	9.616	61.542	61.542 1,846,272 4,925,854 8,309.5	1,925,854	8,209.5	215,533	344,866			-					•	1	1	Ľ		1	1
101 456	Nokanene Rooifontein	1.900	12.160	12.160 364,800 973,286	982,676	035.5	24,263	38,766	6.29 30.67 32.89 29.95	32,89 29.9	5			1	v.		ł	Ì		1		1.
	Arithmetical and an article and an article and an article and arti	098	9	165.120	165.120 440.540	191.0	×	11,475	6.29 30.67 32.49 29.95	32. NO: 29.0				100.0	1				1			1
11 Kapolokwalic		100	Ē	C18 16 128	43.030	ł.,		ĺ	31.24 39.06 29.70	04.02	-			100.0	1,993 2-	2,492 1,			ļ			ł
12 Norman	Manual India	2	99	248,000			16	1	6.29 30.67 32.89 29.95	32.89 29.9	- 1			100.0	706 .1.						×	
		99	2 204	69.120	184.412	100.5	2,822	8,268	6.29 30.471 32.491 29.95	32 H9 29.9	2			100.0	R					 		
14 FIMAKU C		200	1,280		38,400 102,451	[6,802	7.08	29.62 31.54 31.76	-			0.00						ľ		
LT FIGHUE	Destrails	950	2 240	67.200	67,200 179,290	61.5	Ē	6,728	6.29 30.87 32.89 29.95	32.89 29.9	2			10.0	1	1				ľ		ł
to Lunke A		1 400	0.00	COD RHC	THE OUT THE THE	1	12		6.29 30.87 32.89 29.95	32.89 29.9	N.			0.0	5	3,079	3,250 2,					
17 Manholo	Fantop, masaoc	1	1.00	A 777 2, 836 0 400 1 400 777 2, 836 0	1 460 777	0 7 5 8 6	24	1						*	1,731 15,	15,876 16.	16,153 13,1	13,020 10,210				
Sub-Total of Moretele 2 Hest	oratele 2 Hest	1	0770	Day in Cyri										14	14.291 62.	62,050 64.	64,945 ST	006,06 811,72	9401 27,092	92 17,234	1 8,303	3. 286.276
TOTAL		16.370	104.768	104,768 3,143,040 8,385,631 11,125	50151		100'497														-	ĺ
															51	56	66	82	86 1(108 120	0, 166	
							•							Ŧ	27 E E	27 2157	17 E 117		THE PART			
									÷								Avei	Average Uni	Unit Cost (VW)			00 .01

202,145) 7,555,744 3,250,277 3,416,626 3,254,150 2,144,264 3,451,200 (,021,183 15,057) 241,251 555,456 1,046,198 1,047,440 873,640 774,552 575,450 3,44,110 4,511,077 244,141 3,414,200 4,246,370 4,453,676 3,175,440 2,955,455 2,045,630 1,371,171 24,124,141 Moretole 2 East Moretolo 2 Wost Total

TABLE A.3-7 SUMMARY OF STANDPIPES (LEVEL A & LEVEL B)

		Number	Population	Water D	emand	Area	Numb	-
Morete	le 2	of		AADD	The second s		Standpipes	Required
		Household		Level A	Level B	(ha)		
Settlement	Alternative Name			· · · · · ·			Level A	Level B
1 Lefiso/Mmutlestad	Mutiestad, Geelbeksvlei	850	5,440,	163,200	435,418	825.0	40	31
2 Lefiswane	Radijoko, Ditlhagane	900	5,760	172,800	461,030	1,647.0	77	- 59
3 Ramantsho		- 86	550	16,512	44,054	65.5	6	5
4 Semohlase	Roodekoppies	70	448	13,440	35,858	45.5	0	(
5 Moletsi	Segokgo	260	1,664	49,920	133,187	250.0	14	11
6 Marapyane	Schilpadfontein	3,360	21,504	645,120	1,721,180	3,054.5	141	108
7 Opgeruimd		290	1,856	55,680	148,554	78.0	6	
8 Ga-Ramantshane	Scabe	2,300	14,720	441,600	1,178,189	1,597.5	75	58
9 Kalkfontein	· · · · · · · · · · · · · · · · · · ·	1,500	9,600	288,000	768,384	746.5	36	25
Sub-Total of Morete	le 2 East	9,616	61,542	1,846,272	4,925,854	8,309.5	395	305
10 Lefifi	Nokaneng, Rooifontein	1,900	12,160	364,800	973,286	935.5	45	3
11 Rapotokwane	Witlaagte	860	5,504	165,120	440,540	191.0	11	1
12 Norman		84		16,128	43,030	241.5	14	1
13 Bamokgoko	Mmametlhake	1,500	9,600	288,000	768,384	648.5	32	2
14 Phake C		360	2,304	69,120	184,412	103.5	7	
15 Phake B		200	1,280	38,400	102,451	63.5	6	
16 Phake A	Rankaile	350	2,240	67,200	179,290	61.5	5	
17 Mantiole	Pankop, Masabe	1,500	9,600	288,000	768,384	581.0	29	2
Sub-Total of Moret	ela 2 West	6,754	43,226	1,296,768	3,459,777	2,826.0	149	11:
TOTAL		16,370	104,768	3,143,040	8,385,631	11,135.5	544	42

Level A			Unit	Total
Cost of Standpipes		Qty.	Cost	Cost
• • • • • •	Moretele 2 East	395	1600	632,000
	Moretele 2 West	149	1600	238,400
	Total	544		870,400
Level B			Unit	Total
Cost of Standpipes		Qty.	Cost	Cost
	Moretele 2 East	305	1600	488,000
	Moretele 2 West	115	1600	184,000
	Total	420		672,000

TABLE A.3-8 SUMMARY OF YARD CONNECTIONS (LEVEL B)

Marata		Number of	Population	Water D AADD (Area	Number of
Morete		Household		Level A	Level B	(ha)	Yard Connection
Settlement	Alternative Name						
1 Lefiso/Mmutlestad	Mutjestad, Geelbeksvlei			163,200		825.0	765
2 Lefiswane	Radijoko, Dithagane	900	5,760	172,800	461,030	· · · · · · · · · · · · · · · · · · ·	810
3 Ramantsho		86	550	16,512		65.5	7
4 Semohlase	Roodekoppies	70	448	13,440			63
5 Moletsi	Segokgo	260	1,664	49,920	133,187		234
6 Marapyane	Schilpadfontein	3,360	21,504	645,120	1,721,180		3,024
7 Opgeruimd		290					261
8 Ga-Ramantshane	Seabe	2,300	14,720	441,600			2,07(
9 Kalkfontein		1,500	9,600		768,384		1,350
Sub-Total of Morete	le 2 East	9,616	61,542	1,846,272	4,925,854	8,309,5	8,654
10 Lefifi	Nokaneng, Rooifontein	1,900	12,160	364,800	973,286	935.5	1,710
11 Rapotokwane	Witlaagte	860	5,504	165,120	440,540	191.0	77
12 Norman		84	538	16,128	43,030	241.5	7
13 Bamokgoko	Mmametlhake	1,500	9,600	288,000	768,384	648.5	1,35
14 Phake C		360	2,304	69,120	184,412	103.5	32
15 Phake B		200	1,280	38,400	102,451	63.5	18
16 Phake A	Rankaile	350	2,240	67,200	179,290	61.5	31
17 Mantiole	Pankop, Masabe	1,500	9,600	288,000	768,384	581.0	1,35
Sub-Total of Morel	and the second s	6,754	43,226	1,296,768	3,459,777	2,826.0	6,075
TOTAL		16,370	104,768	3,143,040	8,385,631	\$1,135.5	14,73

Unit

Total Cost

Cost of Yard Connection	Qty.	Cost	Cost
Moretele 2 East	8,654	1050	9,086,700
Moretele 2 West	6,079	1050	6,382,950
Total	14,733		15,469,650

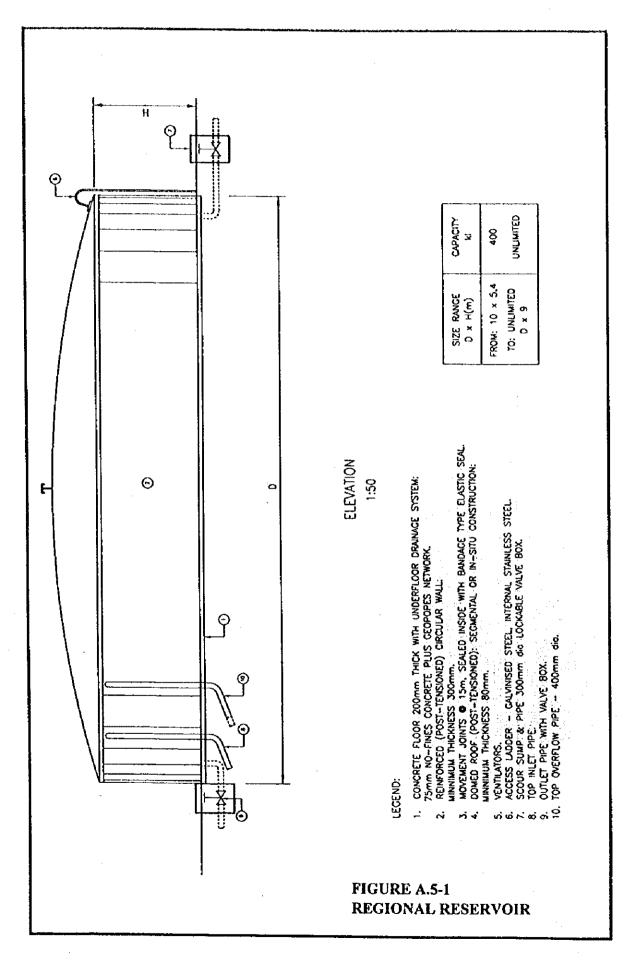
. <u> </u>	(Vsec)	(m3/sec)	H (m)	QxH (m4/sec)	Q (m3/min) AADD	kW	Cost (R/year)
Moretele 2, Alternative - 1		(inclusion)		<u></u>			
Raw Water	ž						
Moretele 2 East	۱· ا	0.153	21.000	3.211	6.116	30.094	29,130
Moretele 2 West	▋ :: · · }	0.133	21.000	0.000	0.110		47,150
WIW -> R.R.	₿ }			0.000			
Moretele 2 East		0.146	196,000	28.538	5.824	267.469	245,371
Moretele 2 Cast Moretele 2 West	• i	0.140	190,000	0.000	5.044	201.407	2-0,071
				<u>v.v.</u> [
Booster Pump East 00	7.559	0.008	25,000	0.189	0.302	1.771	3,32
East 1	8.004	0.008	35.000	0.280	0.320	2.626	4,10
East 7	20.455	0.020	20.000	0.409	0.818	3.834	5,20
East 7 East 8	13.340	0.013	50.000	0.667	0.534	6.251	7,41
East 8	60.066	0.060	75.000	4,505	2.403	42.223	40,17
	18.232	0.000	75.000	1.367	0.729	12.816	13,39
West 13 Total Energy (QxH)	10.232	0.010	75.000	39.166	0.727	12.010	348,12
except raw water			· · · · · ·	35.955			540,11
	╟───┤			000000			
Moretele 2, Alternative - 2	 			:			
Raw Water	<u>ا</u>		A1 000		2 502	17/75	17.0
Moretele 2 East]	0.090	21.000	1.886	3.592	17.675	
Moretele 2 West	J	0.063	21.000	1.325	2.524	12.419	13,0
WIW -> R.R.					2 4 2 0		164.0
Moretele 2 East	[0.086	209,000	17.870	3.420	167.482	154,2
Moretele 2 West	.	0.060	300.000	18,030	2.404	168.986	155,6
Booster Pump							
East 00	7.559	0.008	25.000	0.189	0.302	1.771	3,3
East 1	8.004	0.008	35.000	0.280	0.320	2.626	4,1 4,3
East 7	20.455	0.020	15.000		0.818	2.876	
East 8	13.340	0.013	50.000		0.534	6.251	7,4
		0.000		0.000			
		0.000		0.000			360.0
Total Energy (QxH)				40.553			359,9
except raw water	_ <u> </u>			37.342			÷
Moretele 2, Alternative - 3	1						
Raw Water			L.:				
Moretele 2 East		0.090			3.592	17,675	
Moretele 2 West		0.063	21.000	1.325	2.524	12.419	13,0
WTW -> R.R.							
Moretele 2 East	I	0.086	209.000	17.870	3,420	167.482	
Morelele 2 West		0.060	191.000	11.479	2.404	107.588	99,7
Booster Pump			L			•	
East 00	7.559	0.008			0.302	1.771	
East 1	8.004				0.320	2.626	
East 7	20.455				0.818	2.876	
East 8	13.340				0.534	6.251	
West 34	13.340				0.534	5.001	6,2
		0.000		0.000			
Total Energy (QxH)	1			34.536			310,3
except raw water	1		1	31.325			

TABLE A.4-1 COMPARISON OF ENERGY REQUIREMENTS

TABLE A.4-2 PRESENT VALUE ANALYSIS OF ALTERNATIVE PLANS (Total 3 Sheets)

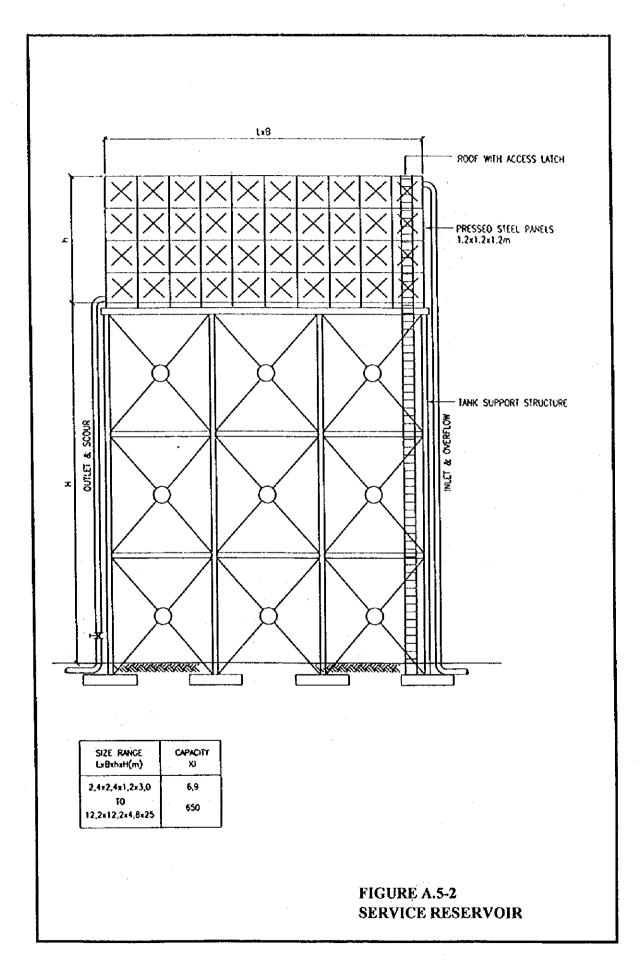
Text Text <thtext< th=""> Text Text <tht< th=""><th></th><th>Í</th><th>Capital Costs</th><th></th><th></th><th></th><th>Capital Costs</th><th></th><th></th><th></th><th>apilar costs</th><th></th><th>Tatel</th><th></th></tht<></thtext<>		Í	Capital Costs				Capital Costs				apilar costs		Tatel	
Name Name <th< th=""><th></th><th></th><th></th><th></th><th>Total</th><th></th><th></th><th></th><th>Total</th><th></th><th>West</th><th></th><th>104</th><th></th></th<>					Total				Total		West		104	
International state Alternation Alternation Alternation 36 34			205 000	000 220 7	157		55.575.000		134,725,000		51,241,000	79,150,000	130,391,000	
		<u></u>		Aherne	1.			Alteroal	Hve-2			Alterus		
Discrete Mail Total Terrete Visit Total Terretee Visit Total Terrete	;			ł	2	citics	Capital	Costs	O/M(Ele	sctric)	-	Costs	O/M(Ele	
Total 113, 51, 32 113, 51, 32 100, 500, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Discount Rate		- ני	5				<u> </u>	1997 price	P. V.		P. <.	1997 pnce	۲. <u>۷</u> .
Total Preset Value Luk Ast, Luk Luk Ast	\$C	Ī						112 KI	1 7 18			109.60	9,031	
Total 122,613 (000 (00,40,97) 5.700 (00,40,97) 5.700 (00,40,407) 0	[Total Present	Value			2'T 24 12 12 12 12 12 12 12 12 12 12 12 12 12		の後のようというものがのでのの		1.			100	7757 575	3 426 71
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total		122,421,000	100,403,877		3,844,313	134,725,000	21	8,999,200	11.6/4.6	WW,140,001	100747-001		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1001		0		Ò		0		0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1000		0		ð		0	· — -					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0001		0		0		0		0		_1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		No.	76 110 800	22 555 401		0	23,745,000		—	0	_	- 1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			K0 075 700	<u>50125 113</u>		0	55,405,000			O I				
			35 385 000	27 775 073		0	55.575,000	L		•		40,148,00	000 000	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2002	2224200400	0	348.	259.775			359,968	268,614			100010	
1000 16 346 255 10 346 10 346 10 346 10 346 10 346 10 346 10 346 10 346 10 310 300 10 310 300 10 310 300 10 310 300 10 310 300 10 310 300 10 310 300 10 310 300 10 310 300 10 310 300 310 300 310 300 310 300 310 300 310 300 310 300 310 300 310 300 310 300 310 300 310 300 310 300 300 300 310 300 3100 3100 3100 3100 3100 3100 3100 3100 3100 3100 3100		2002		0		247,405		0	359,968	255,823			000010	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0		235.623	:	0	359,968	243.641				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						224,403		0	359,968	232,039		o [510,507	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						213.717		Ģ	359,968	220,989		0	310,307	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2000				2012 540		0	359,968	210,466			310,-07	101
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						107 848		0	359,968	200,444			310,307	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					LAVE	184 617			359,968	190,899		0	310,307	Ϋ́δ
2011 0 359,966 171,151 0 310,307 2013 0 348,123 159,479 0 359,966 171,151 0 310,307 2014 0 348,123 159,479 0 359,966 164,905 0 310,307 2014 0 348,123 134,653 0 359,966 145,574 0 310,307 2014 0 348,123 134,956 0 359,966 145,574 0 310,307 2017 0 348,123 134,956 0 359,966 125,568 0 310,307 2018 0 346,123 134,956 0 359,966 125,568 0 310,307 2019 0 346,123 134,956 0 310,307 0 310,307 2017 0 346,123 134,956 0 359,966 117,105 0 310,307 2020 0 346,123 10,956 0 3						175 826			359,968	181,808		0	310,307	1.001
2014 2014 0 359,568 164,903 0 310,507 2013 0 348,123 151,885 164,903 0 310,507 2014 0 348,123 151,885 144,652 0 359,968 147,653 0 310,207 2015 0 348,123 137,764 0 359,968 147,452 0 310,207 2016 0 348,123 137,764 0 359,968 147,452 0 310,207 2017 0 348,123 119,006 0 359,968 137,568 0 310,207 2018 0 348,123 119,006 0 359,968 127,950 0 310,207 2019 0 348,123 113,339 0 359,968 117,195 0 310,207 2023 2021 0 348,123 103,807 0 310,207 2023 0 348,123 103,802 0 310,206	+ +				1 0 V C	167 453		0	359,968	173,151		0	310,307	149,2
2013 2013 348,123 151,885 0 359,968 157,053 0 310,307 2014 0 348,123 151,885 0 359,968 147,573 0 310,307 2015 0 348,123 131,206 0 359,968 142,452 0 310,307 2016 0 348,123 131,206 0 359,968 135,668 135,668 0 310,307 2016 0 348,123 131,206 0 359,968 135,668 130,307 0 310,307 2017 0 348,123 113,339 0 359,968 127,055 0 310,307 2018 2021 0 348,123 113,339 0 310,307 0 310,307 2022 2021 0 348,123 113,339 0 310,307 0 310,307 2022 0 348,123 107,992 0 310,307 0 310,307	2	2102			for c	1 20 170		C	359.968	164,905	:	0	310,3071	1421
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	2013				151 205			359.968	157,053		0	310,307	135.3
2013 2015 0 346,123 177,004 0 359,968 147,452 0 310,307 2016 0 348,123 131,204 0 359,968 135,668 162,452 0 310,307 2017 0 348,123 131,204 0 359,968 125,668 10 310,307 2018 0 348,123 119,006 0 359,968 127,165 0 310,307 2019 0 346,123 113,339 0 319,906 0 310,307 0 310,307 2019 0 348,123 113,339 0 319,968 117,165 0 310,307 2023 0 348,123 107,992 0 310,305 0 310,307 2023 0 348,123 107,992 0 310,305 0 310,307 2023 2024 0 348,123 93,246 10,1265 0 0 310,307 202	17	2014				000111			350.958	149.574		0	310,307	128.9
2016 0 346,125 131,204 0 310,307 310,307 2017 0 346,123 131,204 0 310,307 0 310,307 2018 0 346,123 131,204 0 359,968 125,668 0 310,307 2019 0 348,123 119,006 0 359,968 127,195 0 310,307 2020 0 348,123 119,309 0 359,968 117,195 0 310,307 2021 0 348,123 1107,942 0 359,968 117,195 0 310,307 2022 0 348,123 107,942 0 359,968 117,195 0 310,307 2023 0 348,123 107,922 0 310,307 0 310,307 2024 0 348,123 107,926 0 310,307 0 310,307 2023 0 348,123 97,906 0 359,968	18	2015			1.040	700,441		C	350 068	142.452		0	310,307	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	2016				50° 10'			359.968	135.668		0	310,307	116.95
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	2017				107101			890 055	129.208		0	310,307	<u>е</u> 113
2019 0 348,123 348,123 111,7,106 113,339 0 310,307 2020 0 348,123 113,339 0 310,307 0 310,307 2021 0 348,123 107,922 0 359,968 111,615 0 310,307 2022 0 348,123 102,802 0 359,968 101,238 0 310,307 2023 0 348,123 97,966 0 359,968 101,238 0 310,307 2024 0 348,123 97,966 0 359,968 101,238 0 310,307 2024 0 348,123 93,3,344 0 310,307 0 310,307 2024 0 348,123 93,3,344 0 359,968 96,417 0 310,307 2025 0 348,123 93,3,244 0 359,968 91,826 0 310,307 2025 0 348,123 94,375 0 359,968 </td <td>21</td> <td>2018</td> <td></td> <td></td> <td>1040</td> <td>004,421</td> <td></td> <td></td> <td>340 055</td> <td>123,055</td> <td></td> <td>0</td> <td>310,307</td> <td>106,07</td>	21	2018			1040	004,421			340 055	123,055		0	310,307	106,07
2020 348,123 113,329 0 348,123 107,942 0 359,968 111,615 0 310,307 2021 0 348,123 107,942 0 359,968 106,300 0 310,307 2022 0 348,123 97,900 0 359,968 101,238 0 310,307 2023 0 348,123 97,900 0 359,968 101,238 0 310,307 2024 0 348,123 97,300 0 359,968 101,238 0 310,307 2024 0 348,123 97,304 0 310,307 0 310,307 2024 0 359,968 91,876 91,876 0 310,307 2024 0 359,968 91,876 0 310,307 2024 0 359,968 91,876 91,876 0 310,307 2025 0 348,123 93,2948 91,876 91,876 0 <td< td=""><td>3</td><td>2019</td><td></td><td>0</td><td></td><td>000,411</td><td></td><td></td><td>1800 051</td><td>117 195</td><td></td><td>0</td><td>310,307</td><td>101,0</td></td<>	3	2019		0		000,411			1800 051	117 195		0	310,307	101,0
2021 0 348,123 107,942 0 349,100 0 310,307 2022 0 348,123 107,902 0 359,968 106,300 0 310,307 2023 0 348,123 97,566 0 359,968 101,228 0 310,307 2024 0 348,123 93,246 0 359,968 96,417 0 310,307 2024 0 348,123 93,246 0 359,968 96,417 0 310,307 2024 0 348,123 93,246 0 359,968 96,417 0 310,307 2024 0 348,123 93,246 0 310,307 0 310,307 2025 0 348,123 93,246 0 359,968 87,433 0 310,307 2025 0 348,123 94,575 0 0 310,307 0 310,307 2025 0 348,123 94,575	ព	2020		•	348,1	655,611			1004,200	217111		0	310.307	96,2
2022 0 348,125 102,802 0 539,968 101,238 0 510,307 2023 0 348,123 97,906 0 359,968 101,238 0 310,307 2024 0 348,123 93,244 0 359,968 91,826 0 310,307 2024 0 348,123 93,244 0 359,968 91,826 0 310,307 2024 0 348,123 88,804 0 359,968 91,826 0 310,307 2025 0 348,123 88,804 0 359,968 87,453 0 310,307 2026 0 348,123 84,575 0 359,968 87,453 0 310,307	24	2021		0	348,1	107,942			200.000	005 201				916
2023 0 348,123 97,900 0 535,906 66,417 0 310,307 2024 0 348,123 93,244 0 359,968 96,417 0 310,307 2024 0 348,123 93,244 0 359,968 91,826 0 310,307 2025 0 348,123 88,804 0 359,968 91,826 0 310,307 2026 0 348,123 88,804 0 359,968 87,453 0 310,307 2026 0 348,123 84,575 0 359,968 87,453 0 310,307	52	2022		•	348,1	102,802			006 660	226 101		0		872
2024 0 348,123 93,244 0 339,906 0 310,307 2025 0 348,125 88,804 0 359,968 91,826 0 310,307 2025 0 348,125 88,804 0 359,968 87,453 0 310,307 2026 0 348,125 84,575 0 359,968 87,453 0 310,307	26	2023		0	348,1	606 200			006,600	217 YO			310.307	8.1
2025 0 348,122 88,804 0 359,906 71,000 0 330,207 0 310,207 0 310,207 0 3259,966 87,453 0 310,207	27	2024		0	348,1	93,244			100 ACC	114/06			310-307	2
2026 0 348,123 84,575 0 359,988 0,1400 0 310,307	28	2025		0	348,1	88,804		3	806 601	070"16			310.207	75.3
	20	2026				84,575		ō	205 605	000000	·			

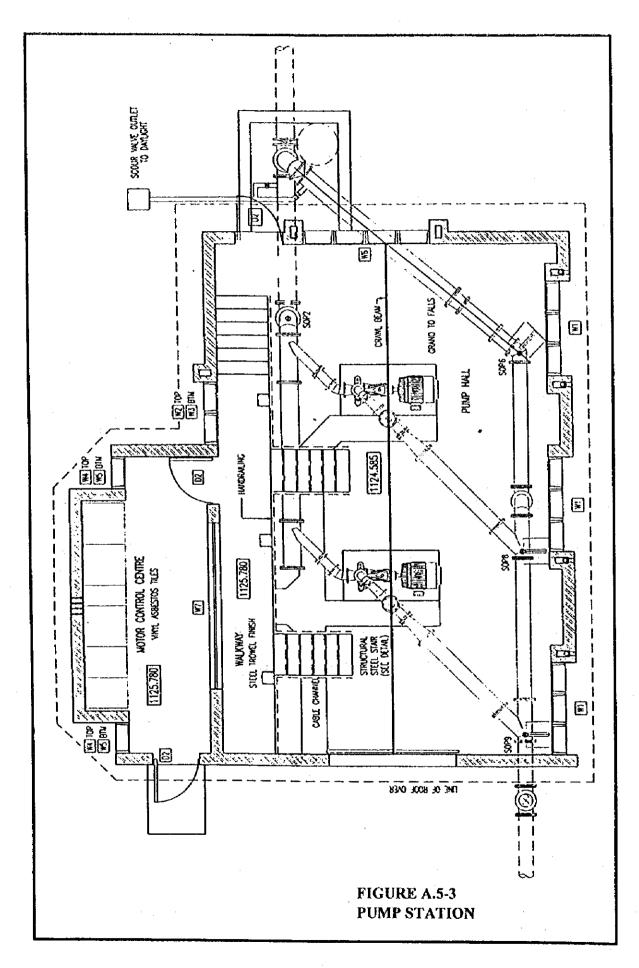
ພພ≯

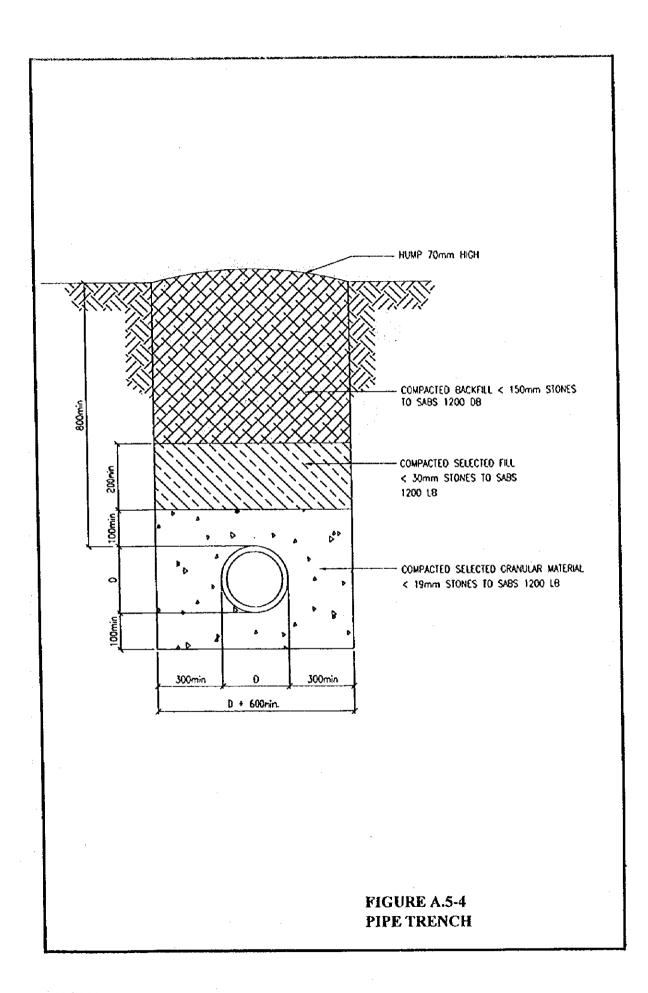

TABLE A.4-2 PRESENT VALUE ANALYSIS OF ALTERNATIVE PLANS (Total 3 Sheets)

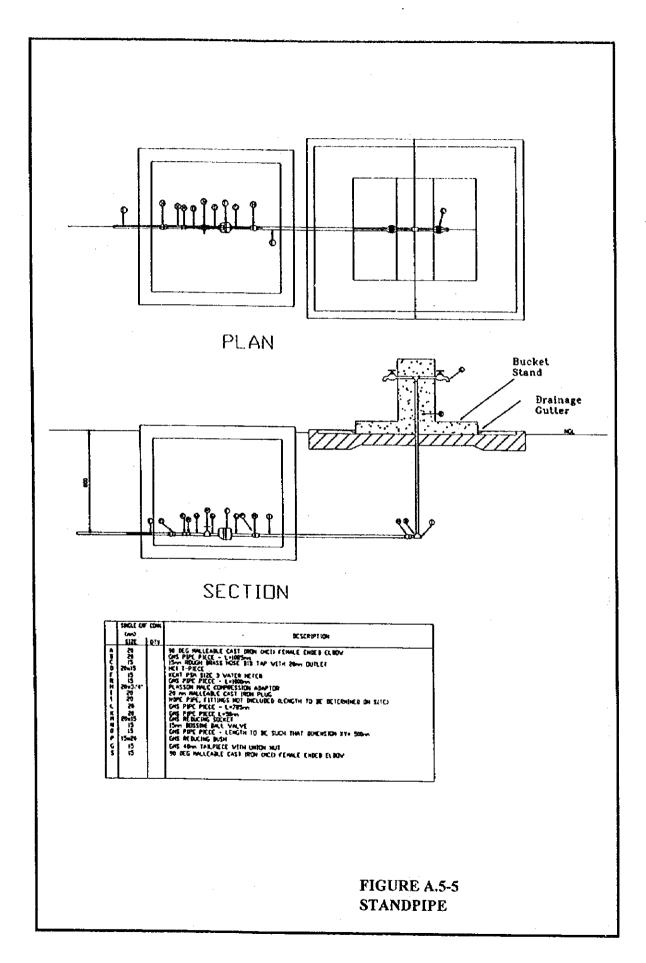
		al Costs				CIENT INITIA		Trial		West	Fast	Total	
		West 385 000	East 10tal	101a1 122 421 000		S5.575.000	79,150,000	134,725,000		,241,000	ിനി	130,391,000	
		2225224522	Alternative -	1			Alternative	tive -				Alternative - 3	
Discussion Date		Cunital	č	O/M(Electric)	ctric)	Capital	l Costs	O/M(Electric)	setric)	Capital	Ö	O/M(Electric)	
UISCOUNT NAIC		1007 0010	p V	1997 price	P. V.	1997 price	P. V.	1997 price	P. V.	1997 price	ai	1997 price	: بە
Trtal Procent	but Value		RR 543 516	3 516			96,003,769	3,769		and the second second	92,869,930	9,930	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
		122 421 000	86.321.098	8.703.075	2,222,418	134,725,000	93,705,732	8,999,200	2,298,037	130,391,000	90,888,930	7,757,675	1,981,00
1010	1001		0	-	0		0		0		0		ĺ
	1908		0		0		0		0	_	0		
	1909		0		0		0		0				
- L	2000	26.110.800	20,162,328		Ö	23,745,000			0	23,745,000	- 1		
	1001	1	1		0	55,405,000	39,250,299		0	55,405,000	39,250,299		
	2002	1000 285 25	1		0	55.575.000			0	51,241,000			
			1.	121 845	207.574		1	359,968	214,637				185,026
				148 123	190,435			359,968	196.915		¢		169,749
	2004			1001 240	112 921		0	359.9681	180.656		0		155,733
	2000			1241 244	160 285		0	359,968	165,739		0	310,307	142,874
<u>}</u>	20002			121 241	147.051		0	359,968	152,054		0		131,07
2	1007			121 845	1 34 900		0		139,499		0		120,254
				121 845	123.770		0		127,981		0		110,3
1.1				148 123	113,550		0	359,968	117,414		0		101,216
C7	100			148 173	174 175		0	359,968	107,719		0		92,858
***	1100			128 123	95.573			359,968	98,825		0		85,191
	2102			348 123	87.682		0		90,665		0		78,157
- 1- 01	2017		, c	348,123	80.442				83,179		0		71,704
	5100				73,800		0		76,311		0		65,783
0	2010		0		67.706		0		70,010		0		ର୍ଚ୍ଚ
20	2017				62.116		0	359,968	64,229		0		55,368
21	2018		0		56.987		0	359,968	58,926		0		ŝ
	2010				52.282		0	359,968	54,061		0		46,602
100	ocuc			148, 123	47,965		0	359,968	49,597		0		42,7
172	2021			348,123	44,004		0		45,502		0		<u>8</u>
50	2022		0	348.123	40.371		0	359,968	41,745		0		ห้
96	2023		0	348,123	37.038		0		38,298		0		33,014
27	2024			348,123	33,980		0		35,136		0		205
28.	2025			348.1231	31.174		0	359,968	32,235		•		212
29	2026		0	348,123	28,600		0		29,573		0		25,493
	0000			Tores Of C	1000 20		C	250 062	121 24		9	310 307	1

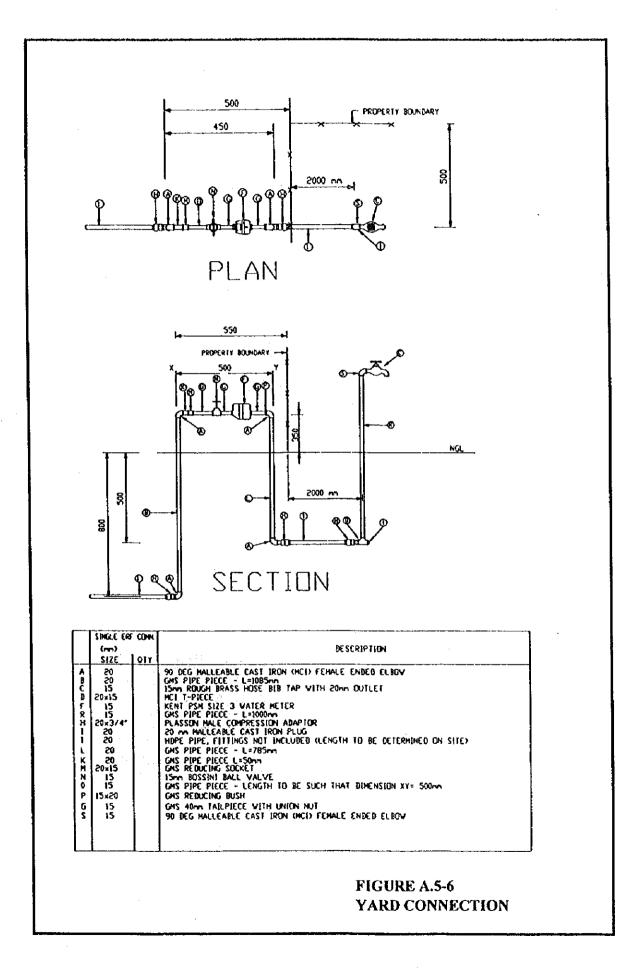
TABLE A.4-2 PRESENT VALUE ANALYSIS OF ALTERNATIVES (Total 3 Sheets)


								The second secon				
					West	Fact	Total		West East	S	Total	
		East	10131	Ī	A76 000	0 1 50 000	134 725 000		51,241,000	79,150,000	79,150,000 130,391,000	
	35,385,000	81,030,000	- I -			Alternative	tive - 2			Alternative -	tive - 3	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Alterbadye				ł	O/M/Flectuc)	100	Capital Costs	0,15	O/M(Electric)	ctric)
Discount Rate	Capital Costs	Costs	O/M(Electric	ctnc)	1007 0010		1997 price	P. V.	1997 price	P. V.	1997 price	P. <.
46.1	1997 phee				. Ч.	79 0T	7 660			68.580.2	0.272	
Total Present Valu			10.50 Jac. 770 (51			<u>67 763 151</u>	7757 675	816.12
	122,421,000	64,955,044	8,703,075	915,579	134,725,000	69,740,937	8,999,200	10,044	NNN'166'NC1	0		
0 1997	L	0	·									
1 1998		o		0				5				0
	6	0		ð		0			000 345 54	012 202 11		
3 2000	0 26,110,800	16,302,815		0	23,745,000					20 566 881	-	
41				0	55,405,000					202 12 20		
100% 5 2002	L			0	- 1	25,348,37	020020	000000	NNN 144717		310.307	120.97
9		1	348,1	135,712			359,908	670001		Ċ	310,307	103.393
		0		115,993		0	359,968	119,940			310 307	32
		0	348,123	99,139		0	359,968	102.01			202.012	15 34
				84.734		0	359,968	87,618			1000010	
10. 2002				72,423		0	359,968	74,857			100010	
		0	348.123	61.900		0	359,968	64,006			incore .	
	0		348.123	52,906		0	359,968	54,706	-	5	inchic la	NE OF
			348,123	45.219		0	359,968	46.757				
			348,123	38,648		0		39,963			100010	
ļ				33,033		0		34,157				
	1	0		28,233		0		29.194		o c	100,010	
	4			24,131		0		24,952	-		UC VIE	
181 2015				20,625		0		21.326			1000010	
	9	0	348,123	17,628		0		18,228			210 207	13,430
20 2017	-	0	348,123	15,067		0		<u> </u>			102 012	114
ĺ	8	0		12,877	-	0					310 207	0.81
	6	0		11,006				105 11			310.307	8
	0	0	348,123	9,407		0		6 17 1			310,307	2.16
		0	348,123	8,040		0		817.8			10-012	6.12
25 2022	12	0	348,123	6,872		0		9 2 2			310 307	
		0	348,123	5,874		0		0.1/2			100-015	4
27 2024	4	0	348,123	5,020		0	·				102.012	38
	2	0		4,291		0		4 457				3.2
	9	0		3,667		0		5.75				
							320 025					


ല ല ≩




Vol.4 Moretele 2


A-24

ANNEX B

.

ENVIRONMENTAL

FESAIBILITY SUTUDY FOR MORETELE 2 ANNEX B : ENVIRONMENTAL

B.1	TOR	and Scope of ROIP	B-1
	1.1	Terms of Reference	B-1
	1.2	Scope of the ROIP	B-2
B.2	Repo	rt of ROIP 2	B-3
		Executive Summary	
	2.2	Terminology	B-7
	2.3	Main Report of ROIP 2	B-8
B.3	Minu	ites of Meeting	B-46

B.1 TOR and Scope of ROIP

1.1 Terms of Reference

This study constitutes an assessment of the potential environmental impacts which can be expected from options considered as part of the Master Plan to expand the capacity of Magalies Water. Inevitably, development leads to modifications in the environment and negative environmental impacts, which often result from inappropriate management of development activities because of a lack of appreciation of the potential problems. All components of the environment that might be involved were identified so that appropriate ameliorative actions can be integrated with the project as a whole to obtain the best possible results.

It is important to note that the environmental study at this stage of the project preparation is at a feasibility level to prepare a prognosis of relevant issues. Accent has been placed on the impacts of the proposed pipelines and other related surface structures as these were seen as the element causing greatest concern.

Relevant data from preliminary investigation reports were extracted to provide baseline information. Additional, more detailed information was obtained to update the existing information as was presented in the ROIP 1 Report.

The construction of pipelines, reservoirs and treatment works could have an impact on the socio-economic aspects, i.e land use, settlement, infrastructure and population, and the ecological aspects, i.e. the vegetation, fauna, habitat, changes in flow regime and changes in water quality. The study was undertaken on an incremental basis with the relevant environmental impact prognosis phase 2 (ROIP 2) as the second feasibility phase.

The ROIP 2 will identify the anticipated environmental impacts and state the feasibility of the proposed options from an environmental, both ecological and socioeconomical, viewpoint. The socio-economical impacts are presented in another module. The need for further more detailed studies will be identified from the data available at this point. The extent of further work needed on the ecological and socioeconomical aspects will be defined in the ROIP 2 report.

1.2 Scope of the ROIP 2

The ROIP 2 constitutes an assessment of the potential environmental impacts which can be expected from options for extending the water supply network in the Project Area.

The scope of this assessment is to investigate the environmental impacts associated with the proposed water treatment works, pipelines, reservoirs, elevated tanks and pump stations to increase the existing capacity of Magalies Water. This scheme is the preferred option which has been proposed to augment the water supply in the Project Area. Accent has been placed on the impacts of the proposed pipelines and the other surface structures as this is seen as the component likely to cause the greatest impact over the largest area.

Three technical alternatives were evaluated during the Master Plan stage. As part of this Feasibility Study, those alternatives were re-examined using the Case B water demand. At Service Level B (Case B) 90 % of households will be supplied through yard connections (85.6 lcd) and the remaining 10 % through stand pipes (30 lcd) in accordance with the RDP level of service, giving a weighted average per capita consumption rate of 80 litre per capita per day including an allowance of approximately 15 % for leakage.

The aspects that will be addressed in this report are:

- the effect of abstraction from Mkombo Dam and the Elands River downstream of the dam.
- the impact of the construction of pipelines, pump stations, reservoirs and elevated tanks.

The main activities to be expected during the construction of the proposed developments are the following:

- Pre-construction phase: Surveying, clearing of vegetation and construction of access routes.
- Construction phase: Typical activities will be clearing of vegetation, stripping and stockpiling topsoil, excavations, disposal of excess material, transport of pipes, drilling, blasting additions or alterations to existing infrastructure and the importation of foreign workers, including their accommodation and recreational facilities.
- Post-construction and operational phase: Rehabilitation of disturbed areas, implementation and maintenance of the pipelines, reservoirs, elevated tanks and pump stations. Also included will be the impacts on sanitation due to the increased water consumption.

B.2 Report of RIP 2

2.1 Executive Summary

2.1.1 General Project Desecription

The Moretele 2 Feasibility Study Area comprises Moretele 2 Magisterial District of Mpumalanga Province. The area is essentially rural in nature. Average annual rainfall is approximately 510 mm and summer rainfall predominates falling mainly between October and March. The area drains to the Gotwane, a tributary of the Elands River, and Mkombo Dam. Annual average evaporation is over 2,200 mm and is higher in summer than in winter and annual monthly temperatures vary from 12 to 25° C. Prevailing winds are light to moderate in a north-casterly direction and typical wind speeds are 2.5 to 3.5 m/s. The Area does not include any Nature Reserves or National Parks which merit particular consideration from an environmental perspective.

The project components are the following and describes the most feasible option from the three alternative options investigated:

As a general principle, water from a treatment works will be pumped to a regional reservoir from where it will be distributed through bulk supply pipelines to service reservoirs which will be constructed in each community.

Under the recommended scheme for the Moretele 2 Area, all communities will be served from a new extension of the existing Weltevreden Water Treatment Works. The works is supplied with raw water from Mkombo Dam on the Elands River and via transfers from Loskop Dam.

It is proposed that the process units for the extension should mirror the existing process which comprises flocculation, sedimentation and filtration. There is space at the site for up to an additional 60 Mld of treatment capacity to be provided. The existing plant does not include facilities for dissolved air flotation however based on raw water quality data obtained from the DWAF database, the risk of microcystis blooms in Mkombo Dam is medium to slight and the water body is oligotrophic therefore DAF appears to be unnecessary. Water quality data for the existing works at Weltevreden has not been made available to date so a proper assessment of the suitability of the existing process has not been possible.

Under the recommended water supply plan, a new rising main from Weltevreden Water Treatment Works will feed a regional reservoir at Lefiso. A booster pumping station will be required to supply Lefiso and Mmutlestad to the east. Most of the flow will gravitate to the west from the regional reservoir. A booster pumping station will be necessary on a branch northwards to Lefiswane. Just upstream of Marapjane a branch to the south will provide a gravity supply to Moletsi and Sehoko with subbranches eastwards to Ramantsho and Semohlase. The gravity main from the Lefiso Regional Reservoir extends eastwards beyond Ga Ramantshane with gravity fed branches to Marapjane and Opgeruind and pumped branches to Ga Ramantshane and Kalkfontein.

Beyond Ga Ramantshane an in-line booster pumping station is required to supply westwards to Phake C with branches to Rapotokwane and Lefifi, Norman, Bamokgoko and Phake C. A further in-line booster is required in Phake C to supply the western extremities of the system including branches to Phake A, Phake B and Mantiole and Masobe.

This ROIP 2 gives an overview of expected impacts and recommends further environmental investigations to be done during the detail design phase.

2.1.2 General Environmental Description

The dominant vegetation types in the Moretele 2 Project Area are mixed bushveld and sourish mixed bushveld.

The proposed pipelines within existing road or pipeline reserves are not seen as areas of major impact as the areas are seen as having low aesthetic values and a highly disturbed natural environment. Construction activities could cause further disturbance of the area, which could result in the infestation of invasives which could be transported to the area in a number of ways.

The conservation status of the rivers is likely to be poor in most instances, as all the rivers are regulated by dams and weirs. The impact on the rivers as a result of the proposed project is seen as negligible although it will depend on future management of the dams and future return flows from the catchments.

2.1.3. Important Environmental Impacts

(1) Negative impacts:

The list of disadvantages that could arise due to the construction of the pipelines and related surface works are presented. This is a comprehensive list and many of these

impacts are not considered to be severe.

- a. The construction of the pipelines and its related infrastructure could:
- cause disturbance within the existing road reserves;
- have a negative impact on the aesthetic value of an area;
- cause erosion on the exposed slopes;
- cause/accelerate the invasion by exotic terrestrial plants;
- cause disturbance of a section of the river channels where pipelines crosses the channels;
- cause increased sediment loads within the rivers.
- noise pollution;
- water pollution;
- the introduction and encroachment of alien plants;
- inconveniences to affected local farmers and other local residents;
- social disruption;
- inconveniences to affected road users.

All these impacts are of a temporary nature during construction except for the invasion of exotic terrestrial plants.

- b. Three technical alternatives were evaluated during the Master Plan stage. As part of this Feasibility Study, those alternatives were re-examined using the Case B water demand. At Service Level B (Case B) 90 % of households will be supplied through yard connections (85.6 lcd) and the remaining 10 % through stand pipes (30 lcd) in accordance with the RDP level of service, giving a weighted average per capita consumption rate of 80 litre per capita per day including an allowance of approximately 15 % for leakage.
- c. At present very little information is available on the occurrence of archaeological and historical sites and a field survey is proposed before any construction is started.

In summary, the major negative impact includes the disturbance of an already highly disturbed area of low ecological value, coupled with a low conservation status and aesthetic value.

No fatal flaw has been found that renders the proposed project non-viable from an environmental impact point of view but certain aspects must be addressed in more detail in later phases of the project.

(2) **Positive impacts:**

- a. A reliable water supply to an increased number of people in the Project Area.
- b. The construction activities could cause temporary economic upliftment in the immediate vicinity.

2.1.4 Conclusion

The construction of pipelines and related infrastructure will not cause substantial disturbance. The environmental consequences associated with these impacts are not considered to be significant if managed during and after construction as stipulated in the environmental management plan.

The impacts of abstraction from dams on the dam itself and downstream of the dams are not considered to be insignificant, but with a degree of uncertainty.

2.1.5 Recommendations

The issues to be determined in the detail design phase of the scheme are summarised as follows:

(1) Social impacts

- The social and economic impacts associated with construction disturbances on the farming activities along the pipeline routes.
- This investigation should include meetings with the local communities to determine the preferences of the communities to any options or alternative developments, especially in the siting of the regional and service reservoirs.
- The lack of existing sanitation facilities need to be investigated.

(2) Ecological impacts

- A Phase 1 archaeological survey of the proposed pipeline routes and especially the reservoir sites are recommended.
- General rehabilitation measures.
- Identify birds and their nesting sites where appropriate.
- Liaise with all the interested and affected parties.
- Compile an Environmental Management Plan for the construction phase and draw up appropriate rehabilitation guidelines to mitigate the disturbances and aesthetic impacts caused by the construction of the pipeline and associated infrastructure.
- Alert the contractor and labourers to the ecological and social impacts associated with the construction activities.
- Landscaping specification for the river and canal crossings as well as the permanent access roads.

2.2 Terminology

Abbreviations used in the ROIP 2 are the following (for the purpose of simplicity some Afrikaans abbreviations are used in the English version of the ROIP):

AV	AVERAGE
DCD	DATA CONFIDENCE DEGREE
EC	ELECTRICAL CONDUCTIVITY
ENDAN	ENDANGERED
IEM	INTEGRATED ENVIRONMENTAL MANAGEMENT
IMP	IMPORTANCE
INDETERM	INDETERMINATE
ISD	IMPACT SEVERITY DEGREE
MAP	MEAN ANNUAL PRECIPITATION
MAR	MEAN ANNUAL RUNOFF
MAX	MAXIMUM
MIN	MINIMUM
MCD	MITIGATION IMPACT CONFIDENCE DEGREE
MDC	MITIGATED DATA CONFIDENCE
MID	MITIGATED IMPACT DEGREE
ROIP	Relevante Omgewingsinvloedprognose
	- RELEVANT ENVIRONMENTAL IMPACT PROGNOSIS
SCD	SEVERITY CONFIDENCE DEGREE
SRCE	SOURCE OF INFORMATION
TDS	TOTAL DISSOLVED SALTS
VULNER	VULNERABLE

2.3 Main Report of ROIP 2

Chapter 1. In	ntroduc	tion	B-9
Chapter 2, 1	ocality	of the Area	B-10
Chapter 3. F	Project E	Description	B-12
Chapter 4. H	Environr	mental Description	B-18
Chapter 5, I)escripti	ion of the Impacts of the Proposed Development	B-19
5.1	Physic	al environment	B-19
	5.1.1	Climate	B-19
	5.1.2	Geology	B-19
	5.1.3	Topography	B-20
	5.1.4	Soils	B-20
	5.1.5	River characteristics	B-21
	5.1.6	Water quality	B-23
5.2	Aesth	etics	B-24
5.3	Natura	al environment	B-26
	5.3.1	Flora	B-26
	5.3.2	Fauna	B-29
	5.3.3	Habitat	B-33
5.4	Socio	-economic/Political	B-36
	5.4.1	Recreation	B-36
	5.4.2	Land use	B-36
	5.4.3	Cultural/Historical	B-38
	5.4.4	Infrastructure	B-40
	5.4.5	Population	B-42
	5.4.6	Interested and affected parties	B-43
Appendix ;	Referen	ICES	B-45

Chapter 1, Introduction

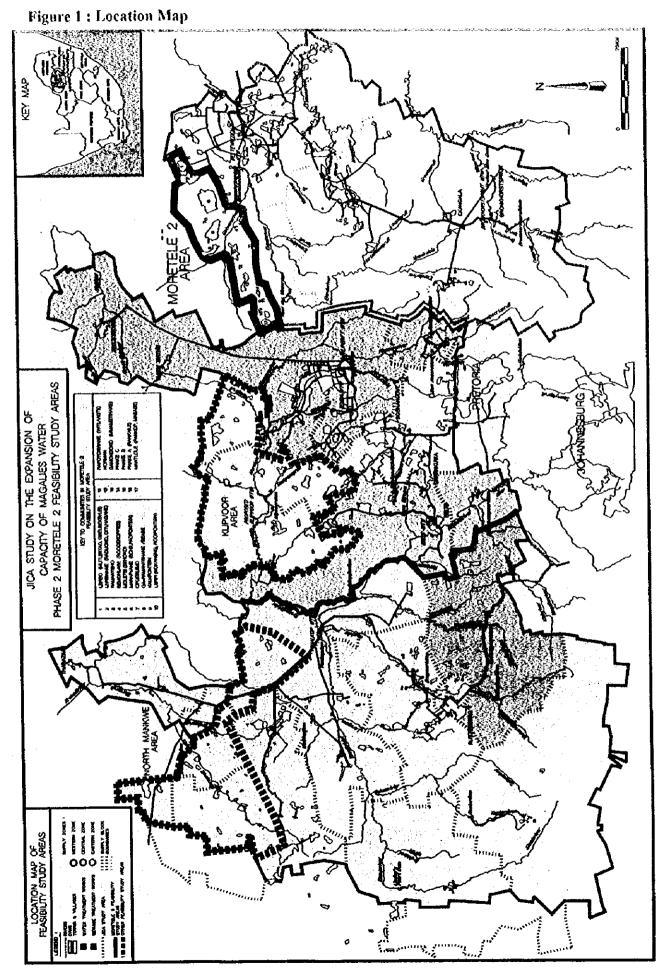
The Department of Water Affairs and Forestry (DWAF) follows a procedure of Integrated Environmental Management (IEM) for all proposed developments. This IEM procedure consists of certain successive levels of impact studies of which the Relevant Environmental Impact Prognosis 2 (ROIP - the Afrikaans acronym), which relates to a feasibility phase, is the second.

The numerical values used in the ROIP are as follows:

SOURCE (Column 3):	The source of the information given in column 3 is given a letter which correlates with the source, as listed
	in the references.
DCD (Column 4) :	Data Confidence Degree is rated on a scale from 0 to 4
	from no data available with unreliable conclusions to
	data sufficient and adequately verified.
ISD (Column 5) :	Impact Severity Degree relates to the severity of the
	proposed scheme on the aspect that is being evaluated
	and is rated on a scale from 0 to 4 with 0 being no
	impact and 4 being an impact of the most important
	significance.
SCD (Column 6) :	Severity Confidence Degree of the identified impact is
, , ,	rated so that the reliability increases with an increase in
	numeric value, on a scale from 0 to 4. Source of the
	mitigation measure relates to the listed reference.
MDC (Column 8) :	Mitigation Data Confidence is rated on a scale from
	0 to 4, with totally reliable information receiving a
	rating of 4 and totally unreliable information receiving a
	rating of 0. This refers specifically to an evaluation of
	the suggested mitigation measure.
MID (Column 9) :	Mitigated Impact Degree or impact (as determined in
· · ·	column 5) after mitigation is rated on a scale from 0 to
	4, with a severe impact after mitigation receiving a
	rating of 4 and no impact after mitigation receiving a

MCD (Column 10) : Mitigation Impact Confidence Degree of the proposed

Vol.4 Moretele 2


rating of 0.

mitigation increases with an increase in numeric value, on a scale from 0 to 4.

ADVANTAGES: 1 : Unimportant advantage 2 : Medium important 3 : High important FURTHER WORK: 1 Necessity of work needs to be determined (low or high : importance) Medium priority work - to be undertaken after an 2 : option is deemed acceptable 3 High priority - to be undertaken immediately - before : determining the preferred option/acceptability of any option

Chapter 2. Locality of the AREA

The attached map illustrates location of the project Area.

Chapter 3. Project Description

NO	COMPONENT	DATA DES	SRCE				
3.1	NAME OF SCHEME	Study on th	e Expans	sion of the	3		
		Capacity of	1				
3.2	PURPOSE OF THE PROJECT	To confirm		• -	-		
		for the three				1	
		(North Mar		ipvoor an	d		
2.2	OT A BTINIC DATE	Moretele 2) Moretele 2	,	licoused i	in this		
3.3 3.4	STARTING DATE	ROIP 2 doc		iscusseu i	11 (1115		
3.4 3.5	WHITE PAPER NO	1997					
3.6	PLANNING REPORT	1997	2				
3.7	COSTS (R X 10 ^s)	Not applica		•			
		Interim Rep					
		Not applica	able				
3.8	LOCALITY						
510						-1	
	Province	GAUTE	мрим	NP	NWP		
	Districts	Moretele 2, Brits, Moretele 1, Odi 1, Mankwe, Bafokeng, Rustenburg, Koster, Swartruggens,					
		KwaNdebele, Cullinan, Bronkhorstspruit,					
		Wonderboom, Waterberg (part), Thabazimbi (part) and					
		Warmbathh (part)					
	Game-, Nature Reserve, Wilde	Rust de Winter Dam, Klipvoor Dam,					
	rness Area, National Heritag e site (Study Area)	Pilanesberg		-		theesnoor	
	e sue (Study Asca)	Dam	g,noodej	piaat Dau	i anu 11ai	urespoor	

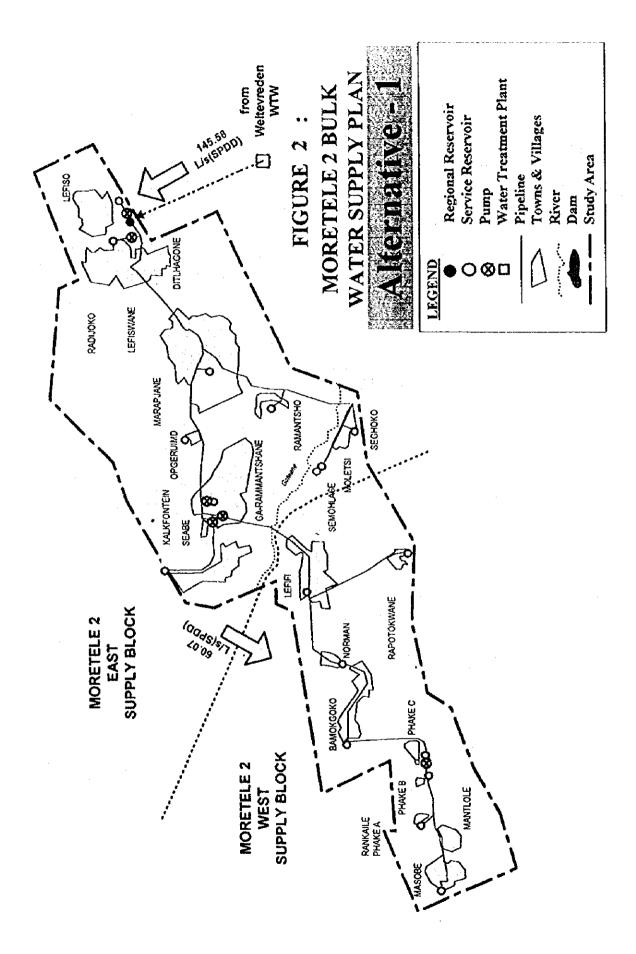
3.1 Project Detail

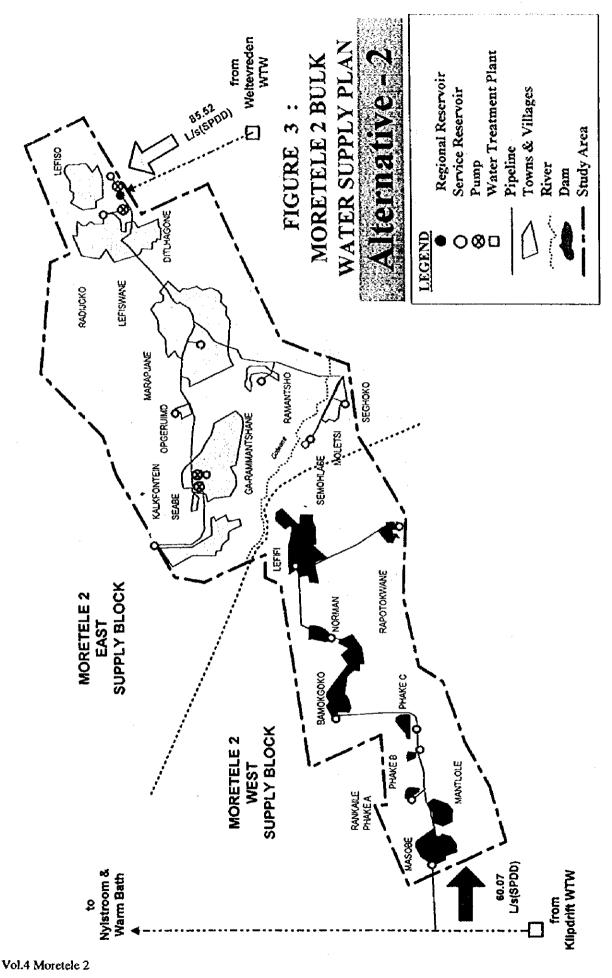
Three technical alternatives were evaluated during the Master Plan stage. As part of this Feasibility Study, those alternatives were re-examined using the Case B water demand. At Service Level B (Case B) 90 % of households will be supplied through yard connections (85.6 lcd) and the remaining 10 % through stand pipes (30 lcd) in accordance with the RDP level of service, giving a weighted average per capita

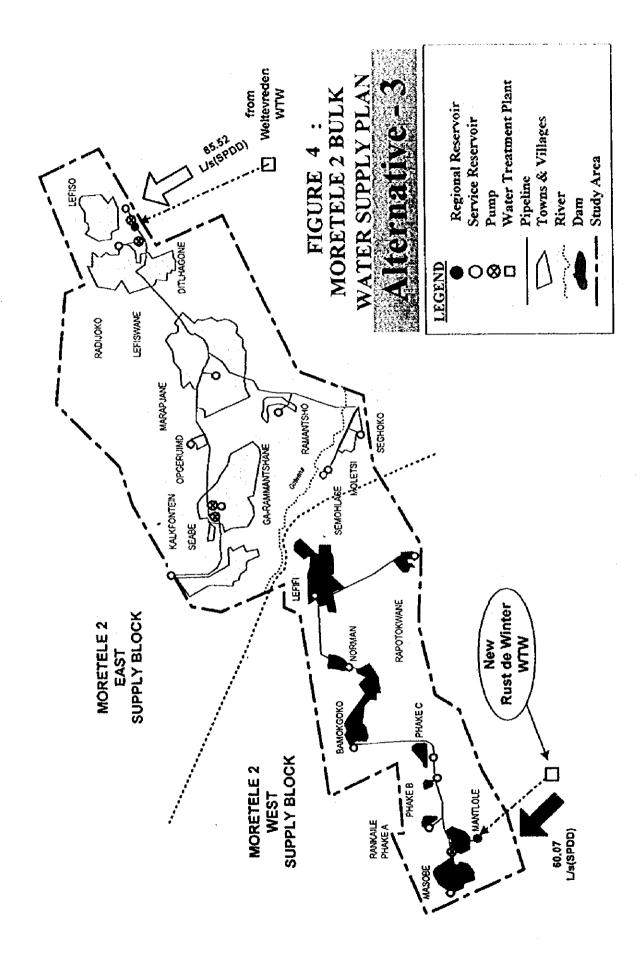
consumption rate of 80 litre per capita per day including an allowance of approximately 15 % for leakage. Figures 2, 3, 4 and 5 illustrate these alternative water supply plans.

Under Alternative-1, the entire Area which consists of Moretele 2 West and Moretele 2 East Supply Blocks is assumed to be supplied from the existing Weltevreden WTW.

In Alternative-2, only Moretele 2 East Supply Block is supplied from Weltevreden WTW while Moretele 2 West Supply Block is assumed to be supplied from Klipdrift WTW either through the existing Klipdrift-Nylstroom pipeline or through a new pipeline.


Alternative-3 is similar to Alternative-2, but Moretele 2 West Supply Block is assumed to be supplied from a new water treatment works which would be built at Rust de Winter Dam.


3.2 Description of Recommended Water Supply Plan


Under the recommended scheme for the Moretele 2 Area, all communities will be served from a new extension of the existing Weltevreden Water Treatment Works. The works is supplied with raw water from Mkombo Dam on the Elands River and via transfers from Loskop Dam.

It is proposed that the process units for the extension should mirror the existing process which comprises flocculation, sedimentation and filtration. There is space at the site for up to an additional 60 Mld of treatment capacity to be provided.

Under the recommended water supply plan, a new rising main from Weltevreden WTW will feed a regional reservoir at Lefiso. A booster pumping station will be required to supply Lefiso and Mmutlestad to the east. Most of the flow will gravitate to the west from the regional reservoir. A booster pumping station will be necessary on a branch northwards to Lefiswane. Just upstream of Marapjane a branch to the south will provide a gravity supply to Moletsi and Schoko with sub-branches eastwards to Ramantsho and Semohlase. The gravity main from the Lefiso Regional Reservoir extends eastwards beyond Ga Ramantshane with gravity fed branches to Marapjane and Opgeruind and pumped branches to Ga Ramantshane and Kalkfontein.

Beyond Ga Ramantshane an in-line booster pumping station is required to supply westwards to Phake C with branches to Rapotokwane and Lefifi, Norman, Bamokgoko and Phake C. A further in-line booster is required in Phake C to supply the western extremities of the system including branches to Phake A, Phake B and Mantiole and Masobe.

3.3 Special Remarks

This ROIP 2 gives an overview of expected impacts and recommends further environmental investigations to be done during the detail design phase.

Chapter 4	Environmental	Description
------------------	----------------------	-------------

NO	COMPONENT	DATA DESCRIPTION	SRCE
4.1	State of habitat disturbance	See remarks	1, 3, 4
4.2	Ground cover	See remarks	5
4.3	Game-, Nature Reserve, Wilderness Arca, National Heritage Site	None	5
4.4	Aesthetic value	See remarks	1, 3
4.5	Land use	See remarks	1,2

REMARKS

- 4.1 The proposed development is within a rural development area where the roads and housing facilities have already disturbed the area from its original state.
 - The route of the proposed pipelines are where possible along existing pipeline routes and road reserves. These areas are already disturbed.
 - The pump stations, reservoirs, elevated tanks are also along the pipeline routes and one could assume at least some form of habitat disturbance.
- 4.2 The Moretele 2 Project Area is predominantly a mixed bushveld and sourish mixed bushveld. veld type.
- 4.4 Many parts have low aesthetic value due to the rural development taking place.
- 4.5 The major land use in the area is agriculture, rural development and natural veld.

Chapter 5. Description of the Impacts of the Proposed Development

5.1 Physical Environment

5.1.1 Climate

NO	COMPONENT		DATA DESCRIPTION								TA
	COMIT OF LATE									SRCE	DCD
а.	WIND Prevailing wind directions						1				
	summer:	N	NE	E	SE	s	sw	w	NE	2	2
	winter:	N	NE	E	SE	s	SW.	w	NW		
Ъ.	TEMPERATURE (EC) Summer: Winter:	A	dv]	<u>Max</u>		<u>Min</u>				
с.	RAINFALL (mm per year)	MAP =	510			SUN	IMER	WIN	TER	6	2

MEASURING STATION : LOCALITY

The following representative weather stations were used in the study: Marble Hall, Warmbad, Pilanesberg and Pretoria.

- a. Wind: The prevailing winds are light to moderate in a north-easterly direction, and typical wind speeds are 2,5 to 3,5 m/s.
- b. Temperature: The averages minimum temperature for this area is 12,2EC and the average maximum temperature is 25,3EC.
- c. Rainfall: The average annual rainfall is approximately 510 mm. Annual average evaporation is over 2 200 mm and is higher in summer than in winter.

5.1.2 Geology

NO	COMPONENT	DATA DESCRIPTION	DATA		
NO COM	COMPONENT	DATA DESCRIPTION	SRCE	DCD	
	GEOLOGY	See remarks	7	2	

REMARKS

- See the report on the geology for detailed information ⁽⁷⁾. The geology will however not be impacted upon by the proposed development.

5.1.3 Topgraphy

		DATA		IMPACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
	TOPOGRAPHY	8	2	0	3	Not applicable			

DATA

- The majority of the pipeline routes follow the road and existing pipeline routes and are within an existing reserves.

IMPACT

The pipelines will be buried and therefore there will be no impact on the topography.

5.1.4 Soils

		DATA		IMPACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
	SOIL SERIES/TYPE	7	2	Not applicable					

DATA

_

Soil series/type : The soil types occurring within the Project Area are diverse and complex. This is due to the variety and the complex distribution of rock types in the Project Area and the fact that the geological substratum generally enjoys a close relationship to soil and land type. See the report on the soils for detailed information⁽⁷⁾. The project will not have an impact on the soils but the soils may have an impact on the project and need to be examined before detailed design takes place.

IMPACT

Construction activities on slopes could trigger and accelerate soil erosion.

MITIGATION MEASURE

- Careful planning of construction activities accompanied by landscape rehabilitation measures in the immediate vicinity of the pipeline could minimise the problems associated with erosion.
- The topsoil which is removed during construction should be replaced after construction. The seeds in the topsoil will accelerate the rehabilitation process.

IMPACT AFTER MITIGATION

- Success of the landscape rehabilitation measures on the pipeline routes are likely to be relatively high, especially if the topsoil removed during construction is replaced with that same topsoil. The impact after mitigation is likely to be relatively low.

	SOILS	SRCE	IMP
FURTHER WORK	 Landscape rehabilitation measures should be determined Problem soil areas need to be investigated 	3	2
ADVANTAGES	Not applicable	3	

5.1.5 River Characteristics

		DATA		IMP	ACT	MITIGATION			
NO	COMPONENT	SRCE	DCD	iSD	SCD	SRCE	MDC	MID	мср
al	FLOW REGIME - see data	1,8	2	3	2	3	2	2	2

DATA

The Moretele 2 Area falls in the Olifants River catchment. The principal source of water for the proposed scheme is Weltevreden Water Treatment Works which treats water from Mkombo Dam on the Elands River. As far as is knows none of these rivers have an allocation of water on a regular basis but is dependent on overflows from the dam⁽²⁾. Water is only released from the dams for other downstream users.

IMPACT

- Dams will probably not have much less water as most of the water extracted from the dam will be from the incremental increase of return flows from the catchment to the system.

MITIGATION MEASURE

- If a situation should develop where overflow is less frequent appropriate water releases for the downstream environment may be a solution. This could however impact on the availability of water for the other downstream users.

IMPACT AFTER MITIGATION

- The impact after mitigation will be decreased, but the confidence level is low.

		DA	DATA		ACT	MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
a2	FLOW REGIME - Pipeline	3	2	1	3	3	1	0	3

DATA

The pipelines will have an impact on the river flows during construction as it crosses the rivers. The pipelines will be buried and will only cause a temporary obstruction of flow which is negligible.

IMPACT

- The flow in the rivers will be temporarily disrupted during construction at the site where the pipeline crosses the river. The whole river bed will not be closed off, but only half of it at any given time during construction.

MITIGATION MEASURE

- Work in the river bed should be done during low flow periods such as during the winter months. Only half of the river bed should be closed off at any given time and all obstructions cleared after construction.
 - Areas of construction disturbance should be clearly defined, so as to minimise the impact on the flow regime.

IMPACT AFTER MITIGATION

The impact after mitigation will be insignificant as after construction the flow regime should not be modified.

NO	COMPONENT	DATA		ІМРАСТ		MITIGATION			
	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
ь	SEDIMENT LOAD	9	3	2	3	3	3	0	3

DATA

The vegetation and stone/rock cover at the site where the pipelines crosses the rivers will be removed exposing the bottom alluvium of the river bed thus potentially increasing the sediment load of the river in that particular area.

IMPACT

- Construction activities within a section of the river will disturb riverine habitats and lead to increased sediment loads entering the river. This is a short term impact.

MITIGATION MEASURE

- Work in the river bed should be done during low flow periods such as during the winter months. Only half of the river bed should be closed of at any given time.
- Disturbance within the river channel should be minimised and appropriately rehabilitated

IMPACT AFTER MITIGATION

- The impact after mitigation will be insignificant.

R	IVER CHARACTERISTICS	SRCE	IMP
FURTHER WORK	Landscaping specifications required for erosion protection, specifically at the river and canal crossings	9	2
ADVANTAGES	Not applicable	3	

5.1.6 Water Quality

REMARKS

- Based on raw water quality data obtained from the DWAF database, the risk of microcystis blooms in Mkombo Dam is medium to slight and the water body is oligotrophic. Water quality data for the existing works at Weltevreden has not been made available to date.
- The project will have no impact on the water quality but the water quality may have an impact on the project. If the water quality deteriorates, the purification costs will increase. The water quality changes that will take place will depend on the present and future land use activities.
- The increase of the availability of drinking water in the Study Area may have an impact on the sanitation of the area. As no sanitation facilities exist it is expected that the area could be negatively impacted by the increase of water. It is expected that the

waste and excess water will be discarded randomly. The areas surrounding the houses and stand pipes may become wet depending on the drainage potential of the soils in the area. This may also lead to an increase in the potential for polluting the surface water in the area. Depending on the soils and the groundwater potential of the area it may also impact the groundwater quality of the area. The lack of sanitation facilities can also have a health implication for the communities.

WATER QUALITY		SRCE	IMP
FURTHER WORK	Water quality monitoring programme should be established	3	2
ADVANTAGES	Not applicable	3	-

5.2 Aesthetics

		DA	TA	ІМРАСТ		MITIGATION			
NO	COMPONENT	SRCE	DCĐ	ISD	SCD	SRCE	MDC	MID	MCD
a	EXCEPTIONAL	Not applicable							

		DATA IMPACT			ΜΠΙGATION				
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
b	ЯКGH				Not a	pplicable			

		DATA		IMPACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
cl	LOW : Dams	3	2	0	1	Not applicable			

DATA

_

The aesthetics of the Study Area is generally low as most of the area is developed into rural settlements.

IMPACT

The riparian vegetation will possibly be impacted by additional abstraction from dams if there are less frequent spills from the dam walls. This impact is expected to be negligibly small.

MITIGATION MEASURE

No mitigation measures will be possible from the project point of view, except perhaps improving the operating rules of the dams.

		DATA		IMPACT		MITIGATION				
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	мсд	
c2	LOW: Pipeline routes	3	3	2	3	3	3	0	2	

DATA

- Some of the pipeline routes are in areas that have been developed and these areas are of a relatively low aesthetic value. The status of the proposed areas for reservoirs, elevated tanks and pump stations are not always low and special care should betaken in the final siting of the reservoirs.

IMPACT

- The construction of the pipeline in the road reserve will cause some disturbance and scar the roadside on a temporary basis rather than a permanent basis as the pipeline will be buried. Erosion could be accelerated during construction.
- The manholes with section, air and scour valves will be visible.
- The construction of the reservoirs, elevated tanks and pump stations will cause some disturbance and will have to be sited carefully because they will be a permanent feature on the landscape.
- The disposal of domestic and construction wastes will have a negative impact on the surrounding area.

MITIGATION MEASURE

- Appropriate rehabilitation procedures should be detailed to reduce the disturbance of the pipeline. The placing of the reservoirs, elevated tanks and pump stations should be done in such a manner as to make them as inconspicuous as possible.
- The location of waste dumps and spoil heaps, as well as the development of an appropriate protocol for the disposal of wastes, requires careful attention.

IMPACT AFTER MITIGATION

- It is likely that the disturbances associated with the construction of the pipelines can be almost totally mitigated except for the section, air and scour valves at manholes and the other surface structures.

	AESTHETICS	SRCE	IMP
FURTHER WORK	 The siting of the reservoirs have to be done in consultation with the local people. Suitable rehabilitation measures to be identified and enforced. Remedial works for the rehabilitation of disturbed areass hould be planned as an integral part of the project. 	9	2
ADVANTAGES	Not applicable	3	-

5.3 Natural Environment

5.3.1 Flora

		DATA		IMPACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
а	VEGETATION	4.10	3	1	3	3	2	1	3

DATA

- The dominant vegetation types in the Moretele 2 Project Area are mixed bushveld and sourish mixed bushveld.

IMPACT

- The impact on the flora will be small as the proposed pipelines are along roads and other pipeline reserves where possible and this has already been disturbed from its original state.
- The impact on the flora will be more significant for the proposed reservoirs, elevated tanks and pump stations but these impacts will be localised within the construction area.

MITIGATION MEASURE

- Construction activities and disturbance should be limited to a minimum area of disturbance.
- After the pipelines have been laid the areas must be revegetated with grass, especially where there are slopes.
- Fill material or topsoil for rehabilitation purposes should be taken from areas which have an appropriate seed bank to help with the revegetation process.

IMPACT AFTER MITIGATION

- Slight to no impact as the area is already disturbed and after mitigation the area should practically be the same as before pipeline construction. The same cannot be said for the other structures but the impact is not seen as severe.

		DATA		IMPACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	1ŞD	SCD	SRCE	MDC	MID	мср
Ь	AQUATIC FLORA	3	2	0	3	Not applicable			

DATA

Aquatic flora will be present to a lesser or greater extent in all the dams.

IMPACT

- Aquatic flora should not be affected by the proposed developments.

			DATA		ACT	ΜΠΙGATION		
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE MDC	MID	MCD
с	INVASIVE AQUATIC PLANTS	3	3	0	3	Not applicable		

DATA

There are *Potamogeton* and *Cladophora* in some of the existing canals as a result of the nutrient enrichment of the water. These plants and other smaller unicellular algae cause problems at the purification works.

IMPACT

The proposed development options will not be impacted upon by the invasive aquatic plants in the canals.

			DATA		ACT		MITIGATION		
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
d	INVASIVE TERREST. PLANTS	3.5	1	2	2	2	2	0	2

DATA

- The presence of alien plant species has a number of serious ecological implications for both indigenous vegetation and the production potential of the land. The banks of rivers are the habitats which are most affected by the presence of alien plant species. The most significant of these alien plant species are; *Syringa*, the grey poplar (*Populus canescens*) and the giant reed (*Arundo donax*). In places where the *Syringa* is present, it becomes the dominant canopy tree and is a serious threat to indigenous riverine vegetation and the associated fauna. The grey poplar occurs in dense thickets, which suppress indigenous vegetation, as well as blocking and narrowing river courses. The giant reed, invades water courses and tends to go largely unnoticed at the expense of the indigenous riparian vegetation.
- Few invasive terrestrial plants have been identified along the pipeline route.
 - In roadside and veld habitats the following are potential invaders: Sweet prickly pear (Opentia ficus-indica), syringa (Melia azedarach), as well as lantana (Lantana camara), queen of the night (Cereus peruvianus), Jacaranda (Jacaranda mimosifolia) and sisal (Aqave sisalana).

IMPACT

- Construction activities could cause disturbance of the area, which could result in the infestation of invasives which could be transported to the area in a number of ways.

MITIGATION MEASURE

- Limited, well demarcated pipeline corridors and construction sites should be identified. Disturbed areas should be appropriately vegetated before aliens can become established and an ongoing programme should be implemented if aliens are identified.
- Fill material or topsoil for rehabilitation purposes should be taken from areas which have an appropriate seed bank and are free of aliens.

IMPACT AFTER MITIGATION

- The appropriate mitigation measures should minimise the impact of disturbance by construction.
- Seeds of invasive weeds that could be brought in with fill material could remain dormant in the soil for long periods. An ongoing weeding programme of the contaminated areas should be implemented to prevent aliens becoming established.

	FLORA	SRCE	IMP
FURTHER WORK	 Follow an approved eradication programme for floral invasives. Suitable landscaping specifications to be enforced. 	9	2
AÐVANTAGES	Not applicable	3	-

5.3.2 Fauna

		DA	DATA IMPACT MITIGATIO				ATION		
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
a	MAMMALS	5	2	1	3	3	2	0	2

DATA

- The northern and central regions of the Project Area have a variety of rare and vulnerable mammal species. Eastwards towards the Olifants River Basin, a variety of mammal species are encountered some of which are noted as red data species.

IMPACT

- No severe impact on mammals is expected as the area is already mostly developed.
- A temporary impact could be poaching and disturbance associated with construction activities, although it is doubtful whether it will be serious as the area is already heavily utilised.

MITIGATION MEASURE

Construction workers should be educated as regards environmental issues.

IMPACT AFTER MITIGATION

The impact after mitigation will probably be slight to none as the impact before mitigation is also seen as slight.

			TA	IMP.	ACT		MITIGATION		
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
Ь	BIRDS	5	2	1	2	3	3	0	2

DATA

- Eastwards towards the Olifants River catchment, it is found that the number of bird species present in each region varies greatly. The greatest variety of bird species are found near Settlers, the Loskop Dam and the Wilge River. A large variety of bird species are found near the Elands River (250 - 300 species).

IMPACT

- The impact is relatively low as other similar habitats exist for birds in the area. A temporary impact is envisaged for birds having nesting sites within the construction area.

MITIGATION MEASURE

- No practical mitigation measures exist to minimise noise pollution and human activities associated with construction activities.
- Limit disturbance of area as far as possible.

IMPACT AFTER MITIGATION

- Once construction is completed and the road reserve rehabilitated the loss of habitat should be alleviated.

		DA	ТА	IMP.	ACT		MITIGATION SRCE MDC MID MCE				
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD		
c	REPTILES & AMPHIBIANS	5	2	1	3	3	2	0	2		

DATA

There are no endangered reptile and amphibian species within the Elands River region.

IMPACT

A temporary impact could be poaching of tortoises and snakes and disturbance associated with construction activities, although it is doubtful whether it will be serious as the area is reasonably developed.

MITIGATION MEASURE

Construction workers should be educated as regards environmental issues.

IMPACT AFTER MITIGATION

- The impact after mitigation will probably be slight to none as the impact before mitigation is also seen as slight.

			TA	IMP	ACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	мср	
d	FISH	5	2	1	1	Not applicable				

DATA

- No specific data have been found for the fish species in the Elands River.

IMPACT

- The abstraction of water from the dams will probably not influence fish in the dams and downstream in the rivers even if species of conservation importance do occur.
- The construction of the pipelines, reservoirs, elevated tanks and pump stations will have no impact on fish.

			DATA		АСТ	ΜΠΙΘΑΤΙΟΝ			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
e	TERRESTRIAL INVERT	3	1	1	2	Not applicable			

DATA

- No data have been collected for terrestrial invertebrates but the project will not impact on invertebrates and this is not seen as an important component.

IMPACT

It is envisaged that even if terrestrial invertebrates of conservation importance do occur, the impacts associated with the pipeline construction are unlikely to be significant.

		DA	TA	IMP	ACT				
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MÌĐ	MCD
ſ	AQUATIC INVERT COMMUNITY	3	2	1	2	Not applicable			

DATA

- No surveys have been undertaken for this study for aquatic invertebrates within the different rivers.

IMPACT

- It is envisaged that even if aquatic invertebrates of importance do occur within the river, the impacts associated with the abstraction of water from dams are unlikely to be significant.
- There will be no impact on aquatic invertebrates due to the construction activities.

		DATA		ІМР	ACT		MITIGATION		
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
g	EXOTIC TERRESTRIAL	3	2	1	2	3	2	0	2

DATA

- No data are available, but the project will have a negligible impact on exotic terrestrial animals.

IMPACT

- During the duration of pipeline construction, there may be a danger to goats and cattle while the trenches are open. This is not seen as a major impact as not many stray animals are expected.

MITIGATION MEASURE

- Large areas of open trenches should not be left unattended or unfenced.
- The area around open trenches should be fenced off if practical and/or filled up as soon as possible.

IMPACT AFTER MITIGATION

- The impact after mitigation will be low as the impact before mitigation is not deemed significant.

	COMPONENT	DA	TA	IMP	ACT		MITIGATION		
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
h	EXOTIC AQUATIC	3	2 .	0	2	Not applicable			

DATA

- No data are available on exotic fish species or any other exotic aquatics. It is expected that exotic fish species do occur in some of the dams and probably also in the rivers. The project will however not have an impact on the exotic aquatic organisms.

ІМРАСТ

- The abstraction of water from dams is unlikely to have an impact on exotic aquatic species.
- The construction activities are unlikely to have an impact on exotic aquatics.

	FAUNA	SRCE	IMP
FURTHER WORK	Not applicable	3	2
ADVANTAGES	Not applicable	3	-

5.3.3 Habitat

		DATA		IMPACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MD	MCD
a	CURRENT DISTURBANCE : BADLY DISTURBED	3	3	1	3	3	- 3	1	2

DATA

Some of the proposed pipeline routes are within a badly disturbed area, i.e. in an existing road or pipeline reserve.

IMPACT

- The pipelines will represent a temporary disturbance of the road or pipeline reserves which should revegetate and hardly leave any scar.

MITIGATION MEASURE

- Appropriate rehabilitation procedures should be followed.

IMPACT AFTER MITIGATION

- Hardly any impact will be noticeable after rehabilitation except for manholes along the pipeline route.

NO	COMPONENT	ÐATA		IMPACT		MITIGATION			
		SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
b	CURRENT DISTURBANCE : DISTURBED	3	3	2	2	3	2	1	2

DATA

- All the rivers within the Project Area are regulated by dams and weirs and as such are disturbed systems.

IMPACT

Dams will probably not have much less water as most of the water extracted from the dams will be from the incremental increase of return flows from the catchment to the system. If there is less water in the dam overflow from the dam will be less frequent. The proposed project would probably not disturb the rivers downstream of the dams any further.

MITIGATION MEASURE

If a situation should develop where overflow is less frequent, appropriate water releases for the downstream environment may be a solution.

IMPACT AFTER MITIGATION

- The impact after mitigation will be decreased, but the confidence level is low.

NO	COMPONENT	DATA		IMPACT		MITIGATION			
		SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
c	CURRENT DISTURBANCE: HARDLY ANY DISTURBANCE	Not applicable							

		DATA		IMP	ACT	MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
đ	CONSERVATION STATUS OF RIVER	4	2	1	2	Not applicable			

DATA

Changes are apparent, such as locally severe pollution, dominant alien species, major water regulations etc. in most of the Project Area. More specific data are not available at present and very little can be said about the conservation status of the specific rivers.

IMPACT

- The impact of the pipelines and other surface structures on the rivers will be negligible as the construction activities and structures will not constitute a permanent disturbance to the river.
- The dams will probably not have much less water, as most of the water extracted from the dam will be from the incremental increase of return flows from the catchment to the system. If there is less water in the dam overflow from the dam will be less frequent.

MITIGATION MEASURE

If a situation should develop where overflow is less frequent appropriate water releases for the downstream environment may be a solution. This could however impact on the availability of water for the other downstream users.

IMPACT AFTER MITIGATION

The impact after mitigation will be decreased, but the confidence level is low.

	HABITAT	SRCE	IMP
FURTHER WORK	- Define a suitable operating rule for dams taking into account the recreation and tourism activities as well as the downstream ecological requirements.	9	2
ADVANTAGES	The river stretches downstream of dams may improve ecologically if the instream flow requirements are met.	3	3

5.4 Socio-Economic/Political

5.4.1 Recreation

		DA	TA	IMPACT		MITIGATION				
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD	
	RECREATION	8	2	1	2	Not applicable				

DATA

- There are no recreational facilities that will be influenced by the proposed development

IMPACT

- The pipelines and other surface structures will have no impact on recreation.

	RECREATION	SRCE	IMP
FURTHER WORK	Not applicable	3	2
ADVANTAGES	Not applicable	3	2

5.4.2 Land Use

(Grazing, Agronomy, Mining, Industrial, Tourism, Rural, Forestry, Conservation/Wilderness etc)

	COMPONENT	DATA IMPACT		ACT	MITIGATION				
NO		SRCÉ	DCD	ISD	SCD	SRCE	MDC	MD	MCD
a	TYPE : AGRICULTURE	1,2	1	2	2	3	2	. 1	2

DATA

- Parts of the pipelines may cross small areas of agricultural land.

IMPACT

- Some agricultural land will be lost if pipelines pass through it. Non-permanent crops can still be cultivated within the pipeline servitudes.

MITIGATION MEASURE

- The pipelines should be aligned so that they cross as small as possible areas of cultivated land. The area should be appropriately rehabilitated after construction.
- Appropriate compensation should be made to the land owners for the loss of crop and/or lands. This compensation should probably take the form of financial compensation.

IMPACT AFTER MITIGATION

- The impact after mitigation is small, as cultivation can continue as long as it is not permanent crops.

	NO COMPONENT	DATA		IMPACT		MITIGATION			
NO		SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
b	TYPE: RURAL	1,2	2	1	2	Not applicable			

DAТА

- Parts of the pipelines and the reservoirs, elevated tanks and pump stations will be situated close to existing rural development.

IMPACT

- The construction sites will have to be acquired and some land loss will occur.
- During construction there will be an impact on the local residents of the rural areas. These impacts will be of a temporary nature and include noise and dust pollution and the safety of the local residents.
- A danger of physical injury exists for people and animals during construction, especially where housing is close to the construction activities.

MITIGATION MEASURE

- Appropriate compensation should be made to the land owners for the loss of land. This compensation should probably take the form of financial compensation.
- The construction activities should be such as to minimize disturbances to the local communities.
- Proper supervision on the construction site, especially during excavations, is essential in safeguarding people and animals as the trenches may sometimes be as deep as 2,5m.
- If any blasting is needed, careful planning is essential, and even more so where work is done close to housing or grazing areas.

IMPACT AFTER MITIGATION

- The impacts should be small after mitigation but the confidence degree is low.

		DA	ATA IMP/		АСТ		MITIGATION		
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	мср
c	TYPE : MINING AND INDUSTRIAL	1,2	2	0	2	Not applicable			

DATA

- There are limited industrial activities within the Project Area.

IMPACT

- The proposed extension of Magalies Water will not influence the industrial activities in the Project Area. The proposed development will enhance the potential for industrial activities by creating amore assured water supply.

LAND USE		SRCE	IMP
FURTHER WORK	 Work out suitable compensation measures with the affected parties for the land and/or agricultural loss. Identify appropriate measures for minimizing impacts on the local communities. 	3	2
ADVANTAGES	Not applicable	3	-

5.4.3 Cultural/Historical

(Archaeology, national monuments, historical areas, areas of special significance, etc.)

NO	COMPONENT	DATA		IMPACT		MITIGATION				
		SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD	
a	TYPE : ALL	11	3	2	1	3,11	2	1	1	

DATA

- Archaeological research consisting of surveys and extensive excavations of Stone Age and Iron Age sites as well as of the recording of rock art sites has been conducted in the Magaliesberg Valley and in the Central Bankeveld during the past three decades. This region, which ecologically speaking, is situated between the Highveld in the south and the Bushveld in the north, has a rich archaeological heritage comprised of remains dating from both the prehistoric and the colonial periods of South Africa. These archaeological and historical remains include:
 - Stone Age sites which may be associated with the San people and which date back thousands of years;
 - X Iron Age sites occupied by Bantu Groups during the past two millennia; and
 - X Remains dating from the previous century when the first Colonists settled in various places to the north and the west of the Magaliesberg.
- The Project Area is part of the spheres of influence of Iron Age and historical Batswana and Ndebele clans who occupied these areas for the last half a millenniam.
- In order to comply with legislation knowledge is required of the presence and of the significance of any archaeological or historical remains which may occur in these development areas and if such remains could be affected, damaged or destroyed by the proposed development activities.

IMPACT

From this study on the basis of the available data it cannot be stated whether or not the proposed development will have a negative impact on any cultural resources.

MITIGATION MEASURE

 Mitigation may be necessary and measures will be determined by archaeological and historical experts.

IMPACT AFTER MITIGATION

- If mitigation measures are satisfactory the impact after mitigation is low. The confidence level is not high.

	CULTURAL/HISTORICAL	SRCE	IMP
FURTHER WORK	Before any construction activities can commence a Phase 1 archaeological survey of the proposed development areas should be commissioned in order to establish the nature, the extent and the significance of any archaeological or historical remains in these areas.	11	2
ADVANTAGES	Not applicable	3	•

5.4.4 Infrastructure

(Roads, Railways, Power lines, Telephone lines, pipelines, dams, canals, etc)

NO		DATA		ІМРАСТ		MITIGATION				
	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD	
a	TYPE : ROADS	3	2	2	2	3	2	1	2	

DATA

- Some entrance roads may be temporarily closed as the trenches are dug and the pipeline installed.
- Where the proposed pipelines are within a road reserve there will be temporary disruptions to the road users.

IMPACT

- Access to secondary roads may be temporarily disrupted.
- Traffic will probably be inconvenienced during some stages in the construction of the pipelines if the road is blocked for whatever reason. This is a temporary impact.
- The construction activities may also result in the premature degradation of the existing road surface due to the increase in heavy vehicle traffic.
- Fences may be temporarily broken during construction and local residents should be aware of this in good time, in order to remove any live stock and children in those particular areas.
- It was assumed that the proposed pipelines will cross roads in certain instances. Temporary traffic deviations will be necessary and will cause traffic hazards. The road surface will have to be retarred as soon as possible after the pipes have been laid.

MITIGATION MEASURE

- Warning of the day on which the entrance roads will be blocked should be given to affected parties. Work should be expedited. Any broken fences should be replaced as soon as possible.
- No mitigation is possible for inconveniences caused to other road users.
- Degradation of the existing road should be avoided where possible, and mended where necessary.

IMPACT AFTER MITIGATION

- Inconveniences should be minimised.
- The road should be in an acceptable condition after construction.

		DATA		IMPACT		ΜΠΙΘΑΤΙΟΝ			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
b	TYPE : POWER& TELEPHONE LINES	3	2	2	2	3	2	0	2

DATA

- Power, telephone and railway lines are within the proposed area of development and need to be considered during the final placing of the proposed developments.

IMPACT

- Disturbance of any existing infrastructure will have a temporary disruptive impact.

MITIGATION MEASURE

- Work at the construction sites should be expedited.

IMPACT AFTER MITIGATION

- The appropriate mitigation measures should minimise the impact of disturbance during and after construction.

IN	FRASTRUCTURE	SRCE	ІМР
FURTHER WORK	- Determine the exact route of the pipelines and location of other surface structures in relation to	3	2
	existing infrastructure - Specify suitable measures to inform the users of secondary roads timeously of the possibility of blocked access roads and broken fences.	3	3
ADVANTAGES	Not applicable	3	-

5.4.5 Population

NO	COMPONENT	DATA		IMPACT		MITIGATION			
		SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
	POPULATION	2	2	2	1	3	1	1	2

DATA

- A comprehensive study on demographic and socio-economic conditions in the Master Plan Study Area was conducted during Phase 1 of the JICA Study. With regard to the three feasibility Project Areas, the Study concluded that there will be no future growth in population. It is foreseen that the natural growth of population in the areas will be offset by migration of an approximately equal number of people to urban areas.

IMPACT

- The construction activities will cause some disturbance and inconvenience to the people.
- Construction activities will cause a temporary influx of people which could lead to an artificial economic boom for the area. The influx of people could also lead to poaching and littering. These impacts could also include increased pressure on local resources for food and for accommodation and on community life. This impact is temporary and may not present a large impact.
- There will be some employment opportunities for local people.
- Apart from the visual impacts of construction work, there will also be a considerable level of noise, dust, vibrations and increased traffic. This could have an adverse effect

on the inhabitants of the area close to the construction activities, as well as on the aesthetics of the area. These effects are temporary.

MITIGATION MEASURE

- The pipeline route should be aligned so as to minimise disturbances to the local population.
- Appropriate information and educational aspects regarding environmental issues should be conveyed to the workforce.
- Negotiations between the local population and the construction team should be appropriately and timeously organised.

IMPACT AFTER MITIGATION

- The social structure of the surrounding population is unlikely to be severely disrupted.

	POPULATION	SRCE	IMP
FURTHER WORK	 The specific people along the pipeline routes and other surface structures that will be impacted must be identified. The anticipated impact with reference to a temporary economic boost to the local people should be addressed. 	3	2
ADVANTAGES	- The people in the Project Area will have a more assured supply of water.	3	3
	- Local people could get work during construction.	3	3

5.4.6 Interested and Affected Parties

		DATA		IMPACT		MITIGATION			
NO	COMPONENT	SRCE	DCD	ISD	SCD	SRCE	MDC	MID	MCD
	INTERESTED AND AFFECTED PARTIES	2	1	2	1	3	1	1	1

DATA

The current stakeholders in the Moretele 2 area are the Highveld District Council, the Highveld Water & Sanitation Authority, Magalies Water, Department of Water Affairs and Forestry and the local authorities. No formal local authorities are yet in

place.

IMPACT

- The impacts of the project on the interested and affected parties are uncertain, however by not involving the necessary people the project could be detrimentally influenced.

MITIGATION MEASURE

- Identify and involve the interested and affected parties.

.

IMPACT AFTER MITIGATION

- The impact after mitigation should be negligible.

INTERESTED AND AFFECTED PARTIES		SRCE	IMP
FURTHER WORK	The interested and affected parties must be involved in the project in a public participation programme.	3	3
ADVANTAGES	More assured water supply to the Project Area.	3	3

. . . .

Appendix ; References

- 1. Consultburo and EVN, September 1996. 1:250 000 scale map on: Existing Infrastructure. Study on the expansion of the capacity of Magalies Water.
- 2. JICA Study Team, July 1997. The study on the expansion of capacity of Magalies Water in the Republic of South Africa (Phases 2 & 3). Interim Report.
- 3. MetsiQual cc, 1997. Environmental Scientist; Linda Rossouw
- 4. O'Keefe, J.H., 1985. The Conservation Status of South African Rivers. 1:250 000 Map, Ecosystems Programme.
- 5. EVN and Consultburo, June 1996. Inventory survey on the water supply sector within the area of supply of Magalies Water. Appendix A. Background study: Part 1. Climate, topography and environment. For: Japan International Cooperation Agency and the Department of Water Affairs and Forestry.
- 6. EVN/Consultburo Joint Venture, March 1996. Study on the expansion of Magalies Water. Engineering Group Inventory Survey (Data collection phase). Appendix A. Climate, topography and environment.
- 7. EVN and Consultburo, June 1996. Inventory survey on the water supply sector within the area of supply of Magalies Water. Appendix C. Background study: Part 3. Geology and hydrogeology. For: Japan International Cooperation Agency and the Department of Water Affairs and Forestry.
- 8. EVN and Consultburo, June 1996. Inventory survey on the water supply sector within the area of supply of Magalies Water. Main Report. For: Japan International Cooperation Agency and the Department of Water Affairs and Forestry. 1:250 000 Topographical sheet 2528 Pretoria, 1984, third edition.
- 9. Consultburo, November 1994. KwaNdebele Water Augmentation Feasibility Study. The relevant environmental impact prognosis of the proposed Roodeplaat Dam option. Department of Water Affairs and Forestry, Directorate Project Planning
- 10. Acocks, J.P.H. 1988. Veld Types of South Africa. Memoirs of the Botanical Survey of South Africa No 57. O.A. Leistner (ed), third edition. Botanical Research Institute, Department of Agriculture and Water Supply.
- 11. Pistorius, J.C.C.1997. Motivation for Phase I archaeological survey in Magalies Waters intended development areas.

B.3 Minutes of Meeting

STUDY ON THE EXPANSION OF CAPACITY OF MAGALIES WATER ENVIRONMENTAL STUDY

MINUTES OF THE SECOND ECOLOGICAL TASK GROUP MEETING

MONDAY 20 OCTOBER 1997

AT 07:30 IN ROOM 344 RESIDENSIE BUILDING

185 SCHOEMAN STREET, PRETORIA

1. WELCOME AND OPENING

The Chairman, Mr C Mannall, welcomed all the participants to the meeting.

2. ATTENDANCE AND APOLOGIES

Attendance

S Kadowaki	JICA Study Team, Team Leader
B Sawara	JICA Study Team
C Mannall	JICA Study Team
G V Munro	Department of Water Affairs and Forestry: Environmental Studies
S C Vogel	Department of Water Affairs and Forestry: Project Planning
J J de Vries	North West Parks Board
J de Vries	North West Parks Board
L Rossouw	MetsiQual cc

Apologies

S Davis	Department of Environment Affairs & Tourism: Mpumalanga
K R Legge	Department of Water Affairs and Forestry: Environmental Studies
D Swart	Department of Environment Affairs & Tourism: North West
R Strydom	Magalies Water

3. ACCEPTANCE OF MINUTES

The Minutes of the First Ecological Task Group Meeting were accepted.

4. ACCEPTANCE OF AGENDA

The Agenda was accepted. One additional issue was raised, that of the concerns of North West Park Board regarding development in Borakalato National Park.

5. FEEDBACK ON STUDY ACTIVITIES

5.1 Technical component

Initially in Phase 1 of the JICA study a large area was investigated at a Master Plan level for water supply up to 2015. The villages in the Study Area were mostly unserved and relied on poor quality groundwater for potable water. Three areas were identified as priority areas to supply surface water to. They were North Mankwe, Moretele 2 and the Klipvoor Water Supply Areas. These priority areas were investigated in Phase 2, the feasibility phase, of the project. A pilot project was conducted in each of the priority areas during the current study.

Three alternative supply options were investigated for both Moretele 2 and Klipvoor Water Supply Areas. The options were briefly discussed. The most viable option for Klipvoor Water Supply Area is from a new Water Treatment Plant downstream of Klipvoor Dam. The best option for supplying water to the Moretele 2 Water Supply Area was from the Weltevreden Water Treatment Works at Mkombo Dam. Only one option was viable to supply water to the North Mankwe Water Supply Area, that of supplying water to the area from Vaalkop Water Treatment Works at Vaalkop Dam.

5.2 Environmental component

A ROIP 2 feasibility study was completed for Klipvoor FS Area. This project area was found to include an environmentally sensitive area, Borakalalo National Park, and more detailed studies were required to determine the expected impacts.

The Environmental Impact Assessment as described in the ROIP 1 Report was sufficient for the expected impacts in the Moretele 2 and North Mankwe FSAreas and no further work was done after the site investigations. More detailed project descriptions of these two areas were presented in short reports summarising the expected impacts from the proposed development.

Comments from North West Parks Board

• The Parks Board do not object to the construction of an intake pump station at the

existing weir downstream of Klipvoor Dam. However, they do object to any further development within the Park Boundaries. They appreciate the need to supply drinking water to the communities in the area, but propose that the water treatment works and regional reservoir be constructed outside the Park boundaries. Negotiations are ongoing.

Mr Vogel explained that Klipvoor Dam is a water resource that has been reserved for future use depending on economic development. It is expected that further abstractions will be made from Klipvoor Dam in future. A pump station in the Park in the short term will probably serve its purpose. It is expected that further water resource development will take place probably requiring infrastructure within the Park in future.

• There are land claims for areas of the Borakalalo National Park. This may have implications for the future development of the National Park as well as the proposed water project. The three communities involved are Bultfontein 2, Klipvoorstad and Jonathan. This issue is being investigated.

It was pointed out that possibly the proposed water supply scheme could alleviate some of the problems with the communities by ensuring a more assured drinking water supply.

- Concern was expressed as to the draw down level of the dam during drought conditions. During droughts some of the exposed areas around the dam become muddy and can trap animals. There was an agreement between the Department of Water Affairs and Forestry and the former Bophuthatswana Government not to release water for irrigation if there is 10% water in the dam. The operating rule of the dam will have to be evaluated for the future water resource management of the system to ensure sufficient water is released for most of the time for primary use.
- Concern was also expressed regarding the danger posed by fences around the proposed infrastructure to the animals in the Park especially during game counting drives.

6. **REVIEW OF ENVIRONMENTAL REPORTS**

The three Project Area reports were distributed to the ETG Members for comment.

Comment was received from Mpumalanga Department of Environment Affairs & Tourism.

Their main comment was that an acceptable Environmental Management Plan for the Construction and Operational Phases should be produced, before any construction commences.

Ms Munro, DWAF: Environmental Studies, raised the following issues:

It was stated that the impact of the abstraction for drinking water on the river downstream of the dam would be minimal. The motivation for this statement was absent.

Motivation:

The mean annual runoff in the catchment is 80,7 million m³. The full supply volume of Klipvoor Dam is 43,8 million m³. The irrigation demand from the dam is 62 million m³per annum. The total drinking water demand can range from 1,3 to 3,4 million m³per annum depending on the level of service supplied. This drinking water supply will be abstracted downstream of the dam and the percentage is relatively small compared to the irrigation demand.

 A commitment was required that the expected negative impacts should be mitigated and during both the detailed design stage and construction due cognisance of the need to minimise adverse impacts is required.

7. FURTHER ACTIONS

• A Project Steering Committee need to be formalised before the necessary funding becomes available. Once funding is available it is foreseen that the projects will progress rapidly.

A meeting between all the stakeholders in the Borakalalo National Park will be organised by Ms Munroe as soon as possible. Stake holders involved include North West Parks Board, North West Province Department of Environment Affairs and Tourism, Department of Water Affairs and Forestry: Environmental Studies and Project Planning. These stakeholders will also be part of the Project Steering Committee. Issues to be addressed at this proposed meeting should include the land claims on the Park as well as future development in the Park. The issue of land claims should involve legal expertise.

• It was recommended by Mr Vogel that the environmental impact assessment reports be accepted as a basis to move forward.

- The following recommendations were made in the reports and need to be addressed before and during the detailed design phases of the project:
 - 1. This investigation should include meetings with local communities to determine the preferences of the communities to any options or alternative developments, especially in the siting of the regional and service reservoirs.
 - 2. The lack of sanitation facilities and the impact of increased water usage needs to be investigated.
 - 3. Investigate the land claims issues at Borakalao National Park.
 - 4. Liaise with all the interested and affected parties.
 - 5. A Phase 1 archaeological survey of the proposed pipeline routes and especially the reservoir sites is recommended.
 - 6. Compile an Environmental Management Plan for the construction phase and draw up appropriate rehabilitation guidelines to mitigate the disturbances and aesthetic impacts caused by construction of the pipelines and associated infrastructure.
 - 7. Alert the contractor and labourers to the ecological and social impacts associated with construction activities.

8. CLOSURE

The meeting was closed at 9:00 and the Chairman thanked everyone for their attendance.

.