FEASIBILITY STUDY

PART III

T

J

FOR

URBAN WATER SUPPLY SYSTEM

BASIC CONDITIONS OF THE PROJECT **APPENDIX (E)**

Water Demand Forecast E-1

0

APPENDIX E-1

Ĩ

Water Demand Forecast

- (a) Data of Water Demand Forecast of the New Development Area
- (b) Accounted for Water

Data of Water Demand Forecast of the New Development Area

New Business Center (Case I)

Total area	200	ha.		
Popuration dencity	200	100pp/ha		
p.p.	40,000	habitants		· · · · · · · · · · · · · · · · · · ·
Domestic water	6,600	m3/d	165	Vc/d
Small industry	990	m3/d	15	%
Public Buildin	1,650	m3/d	25	%
Illigation		m3/d	10	%
Total	9.900	m3/d		

(Source : URP)

New Business Center (Case II)

Total area	200	ha.		
Residential area	70	ha.	2,310	
Comercial area	100	ha	7,000	7 lit/m2/d
Other public area	30	ha	601	26% of domestic
				use
Total			9,911	m3/d

(Source : URP)

CBD (Central Business District)

Category	Are	a	Water Co	nsumer	Unit Water	r Demand	Water
							Demand
· . [(ha.)	m2	Q'ty	Unit	Q'ty	Unit	m3/d
Hospital	5.5	55,000	400	bed *1	400	Vc/d	160
School	9.1	90,600	11,000	pp*2	13	Vc/d	143
Conventio n center	8.3	82,900	82,900	m2	7	1/m2/d	580
Commerci al & Business	55	549,800	549,800	m2	6	Vm2/d	3,299
Park, Road	73	734,000		*3	2	%	165
Resident	36	355,000	55,000	pp*4	150	l/c/d	8,250
Others	16	156,000	N/A	N/A	N/A	N/A	0
Total	202						12,597

(Noles)

*1 : Area per facility (200beds/30,000m2)

 $^{\rm +2}$: The percentage of school attendance is estimated 20% of total p.p

*3 : The water demand is accounted for 2 % of domestic water use.

*4: 165,000(total p.p.)/3Phases=55,000(Population in Phase-1)

(Source : Hanol Urban Transportation Report, JICA)

ACCOUNTED FOR WATER

Group	District	Commune					1. PC	PULAT	ION				
			1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
U	Cau	Mai Dich	0	38	75	113	150	188	226	264	301	339	377
	Giay	Dich Vong	0	248	497	745	994	1,242	1,491	1,739	1,988	2 236	2,485
		Trung Hoa & Yen Hoa	0	364	728	1,091	1,455	1,819	2,183	2,545	2,910	3,273	3,637
	Tu Lie	Me Tri	11,750	12,324	12,898	13,473	14.047	14,621	15,195	15,769	16,343	16,917	17,491
		My Dinh	6,622	6,876	7,130	7,384	7,638	7,892	8,146	8,400	8,654	8 908	9,162
D5	Tu Lie	Thuy Phuo	2,973	3.024	3,076	3,127	3,179	3,230	3,281	3,333	3,384	3,436	3,487
		Dong Ngac	17,982	18,333	18,684	19,035	19,386	19,737	20,088	20,439	20,789	21 140	21,491
		Co Nhue	7,419	7,615	7,810	8,006	8,201	8,397	8,593	8,789	8,984	9,180	9,376
	.	Total	46 746	48,822	50,898	52,974	55,050	57,126	59,202	61,278	63,354	65,430	67, 506

Group	District	Commune			2.	DOME	STIC W	ATER [DEMAN	D (m3/c	}		
			1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
U	Cau	Mai Dich	0	5	10	16	22	28	35	41	48	55	62
	Giay	Dich Vong	0	31	66	103	143	186	228	271	316	362	410
	-	Trung Hoa & Yen Hoa	0	46	96	151	210	273	334	397	463	530	600
1 a. 14	Tu Lie	Me Tri	1,410	1,553	1,703	1,859	2,023	2,193	2,325	2,460	2,599	2,741	2,886
		My Dinh	795	866	941	1,019	1,100	1,184	1,246	1,310	1,376	1,443	1,512
D5	Tu Lie	Thuy Phuo	208	233	258	285	312	339	364	390	416	443	471
		Dong Ngac	1,259	1,412	1,569	1,732	1,900	2,072	2,230	2,391	2,557	2,727	2,901
- 11 ⁻		Co Nhue	519	586	656	729	804	882	954	1.028	1,105	1,184	1,266
		Total	4,191	4,732	5,299	5,893	6,512	7,158	7,716	8,290	8, 880	9, 486	10, 108
Unit D	emand	:U	120	126	132	138	144	150	153	156	159	162	165
Unit D	emand	.D	70	77	84	91	98	105	111	117	123	129	135
•							· .						

Group	District	Commune			3. NO	DN-DO	MESTIC	WATE	r dem/	AND (m	3/d)		<u>.</u>
			1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
U	Cau	Mai Dich	0	1	3	5	6	8	10	12	14	16	19
14	Giay	Dich Vong	0	9	20	31	43	56	68	81	95	109	123
		Trung Hoa & Yen Hoa	0	14	29	45	63	82	100	119	139	159	180
	Tu Lie	Me Tri	423	466	511	558	607	658	697	738	780	822	866
	- 	My Định	238	260	282	306	330	355	374	393	413	433	454
D5	Tu Lie	Thuy Phuo	36	41	45	50	55	59	64	68	73	78	82
		Dong Ngao	220	247	275	303	332	363	390	418	447	477	508
		Co Nhue	91	103	115	127	141	154	167	180	193	207	222
· · · ·	· ·	Total	1,010	1,141	1,279	1,425	1,577	1,737	1,871	2,011	2, 154	2, 301	2,454

Unit Demand :30% of domestic water for U

.

.....

Unit Den

Unit Demand 17.5% of domestic water for D

1

T

B1 - 2

Group	District	Commune				4. TOT	AL WAT	TER DE	MAND	(m3/d)			
			1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
U	Cau	Mai Dich	0	6	13	20	28	37	45	53	62	71	81
	Giay	Dich Vong	0	41	85	134	186	242	296	353	411	471	533
		Trung Hoa & Yen Hoa	0	60	125	196	272	355	434	516.37	601	689	780
	Tu Lie	Me Tri	1,833	2,019	2,213	2,417	2,630	2,851	3,022	3,198	3,378	3,563	3,752
		My Dinh	1,033	1.126	1,224	1,325	1,430	1,539	1,620	1,704	1,789	1,876	1,965
D5	Tu Lie	Thuy Phuo	245	274	304	334	366	399	428	458	489	521	553
		Dong Ngac	1,479	1,659	1,844	2,035	2,232	2,435	2,620	2,810	3,005	3,204	3,409
		Co Nhue	610	689	771	856	944	1,036	1,121	1,208	1,298	1,391	1,487
		Total	5,200	5,873	6,578	7,317	8,089	8,894	9,587	10,300	11,034	11, 787	12, 562

				5.ADN	IINISTR	ATION	LOSS	(m3/d)			
Water supply	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Project Area	0	0	0	0	0	0	0	0	1,504	1,504	1,504

		(5.SUMM	IERY O	F ACCO	UNTIN	G FOR	WATER	R (m3/d)	····
Water supply	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Project Area	0	0	0	0	0	0	0	0	8,521	8,846	10,678
To Mai Dich	0	0	0	0	0	0	0	0	20,000	20,000	20,000
To New Developing Area	0	0	0	0	0	0	0	0	6,450	9,675	12,900
Total	0	0	0	0	0	0	0	0	34, 971	38, 521	43, 578

J.

J

APPENDIX (F)

F-1 F-2

F-3

F-4

PRELIMINARY DESIGN

Existing Well List

Existing Geological Column around the Proposed Wellfield

Groundwater Quality in the Priority Project Area

Study for the Design of Contact and Sedimentation Tank

Van-

APPENDIX F-1 Existing Well List

Existing Well List around the Proposed Wellfield (1/3)

()

Ţ

-

Well X Y Q23a 35.670 82.200 Q57a 32.960 74.554 Q58a 28.559 73.004 Q53a 21.085 77.703 Q63a 27.593 81.168 P 8a 25.062 83.625 P 9a 28.730 80.588 P 10a 29.618 83.672 P 12a 24.125 84.685 P16a 28.628 82.253 P15a 28.628 82.253 P15a 31.409 80.208	<u> </u>	D Mar Mar Mar Mar Mar Mar Mar Mar Mar Mar	Date (1 May./'36 8. Jun./'92 6. Jan./'92 7. Jan./92 7. Sep./'89 6. Jan./'90 6. Jan./'90 6. Sep./'89 6.	(ff) (ff) (ff) (ff) (ff) (ff) (ff) (ff)	(m) Dia. (mm) 200 108 45.3 146 50 50 50 50 54.5 50 46 50		Depth(m) rom To - 19.8 - 6.0 - 9.0 - 9.0 - 1.0 - 16.0 - 3.0 - 3.0	(Depth/Elevation) Lowest(m) High 3.72 / 4.47 +1.15 3.72 / 4.47 +1.15 2.36 / 4.38 0.17 2.50 / 3.87 1.57 5.84 / 2.46 2.05 5.84 / 2.46 2.05 22.98 / - 16.77 18.55 13.87 / -7.06 10.53 21.54 / -14.36 20.36 10.70 / 4.44 9.12 13.26 / -7.00 11.76	levation) Highest(m) +1.15 / 9.34 0.17 / 6.57 1.57 / 4.80 2.05 / 5.89 18.55 / -12.34 10.53 / -3.72 20.36 / -13.18 9.12 / -2.85 11.76 / -5.50	
35.670 32.960 28.559 31.085 27.593 28.750 28.750 28.750 28.62 28.750 28.628 28.628 31.409	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Ma Ma Ser So Jan Ser So Jan Ser So Jan			φ v			Lowest(m) 3.72/4.47 2.36/4.38 2.50/3.87 5.84/2.46 2.298/-16.77 13.87/-7.06 21.54/-14.36 10.70/4.44 13.26/-7.00	Highest(m) +1.15 / 9.34 0.17 / 6.57 1.57 / 4.80 2.05 / 5.89 18.55 / -12.34 10.53 / -3.72 20.36 / -13.18 9.12 / -2.85	
35.670 32.960 28.559 31.085 27.593 28.593 28.750 28.618 28.618 24.125 28.628 31.409	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Man Jun Jan No o No o No Set Set Set Set		1	6 6 V		19.8 6.0 9.3 1.0 1.0 3.0 3.0 3.0	3.72/ 4.47 2.36/ 4.38 2.50/ 3.87 5.84/ 2.46 5.84/ 2.46 22.98/-16.77 13.87/ -7.06 21.54/-14.36 10.70/ 4.44 13.26/ -7.00	+1.15/ 9.34 0.17/ 6.57 1.57/ 4.80 2.05/ 5.89 18.55/-12.34 10.53/ -3.72 20.36/-13.18 9.12/ -2.85	
32.960 28.559 31.085 27.593 28.750 28.750 28.750 28.618 28.628 31.409	3 3 8 3 8 <u>8</u> 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Jum Mar No Sr Sr Sr Sr Sr Sr Sr Sr Sr Sr					6.0 9.0 3.0 3.0 3.0 3.0 3.0 3.0	2.36/ 4.38 2.50/ 3.87 5.84/ 2.46 22.98/-16.77 13.87/ -7.06 21.54/-14.36 10.70/ -4.44 13.26/ -7.00	0.17/ 6.57 1.57/ 4.80 2.05/ 5.89 18.55/-12.34 10.53/ -3.72 20.36/-13.18 9.12/ -2.85 11.76/ -5.50	
28.559 31.085 27.593 28.750 28.750 28.618 28.618 24.125 31.409	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ra Ra S R R R R R R R R R R R R R R R R R					9.3 9.0 1.0 3.0 3.0 3.0	2.50/ 3.87 5.84/ 2.46 22.98/-16.77 13.87/ -7.06 21.54/-14.36 21.54/-14.36 10.70/ -4.44 13.26/ -7.00	1.57 / 4.80 2.05 / 5.89 18.55 / -12.34 10.53 / -13.18 20.36 / -13.18 9.12 / -2.85	
31.085 27.593 27.593 28.730 28.730 28.730 28.618 28.628 31.409	8 8 8 8 8 8 8 8 8	An S S S S S S S S S S S S S S S S S S S					9.0 1.0 3.0 3.0 3.0	5.84 / 2.46 22.98 / - 16.77 13.87 / -7.06 21.54 / -14.36 10.70 / -4.44 13.26 / -7.00	2.05 / 5.89 18.55 / -12.34 10.53 / -3.72 20.36 / -13.18 9.12 / -2.85 11.76 / -5.50	
27.593 25.062 28.730 28.730 28.730 2.618 2.618 2.618 2.6125 2.628 2.628 2.628	8 8 8 8 8 8 8 8	Ser					6.0 1.0 3.0 3.0	22.98 / - 16.77 13.87 / -7.06 21.54 / -14.36 10.70 / -4.44 13.26 / -7.00	18.55/-12.34 10.53/-3.72 20.36/-13.18 9.12/-2.85 11.76/-5.50	
25.062 28.730 28.730 28.730 24.125 24.125 28.628 31.409	8 8 8 8 8 8	Aug Sq. IS Sq. IS Sq. IS Sq. IS					1.0 3.0 3.0	13.87/ -7.06 21.54/-14.36 10.70/ -4.44 13.26/ -7.00	10.53 / -3.72 20.36 / -13.18 9.12 / -2.85 11.76 / -5.50	
28.730 29.618 29.618 24.125 28.628 31.409	8 8 8 8 8	Aug Set L				1	16.0 3.0 3.0	21.54/-14.36 10.70/ -4.44 13.26/ -7.00	20.36/-13.18 9.12/-2.85 11.76/-5.50	
1 29.618 24.125 1 28.628 31.409	222	R a R			1.11		3.0 9.0 9.0	10.70 / -4.44 13.26 / -7.00	9.12 / -2.85 11.76 / -5.50	
a 24.125 a 28.628 a 31.409	22	ra P					3.0 3.0	13.26 / -7.00	11.76/ -5.50	
28.628 31.409	2	S		:	5		3.0			
31.409						•		16.62/-10.48	15.96 / -9.48	
	2	Ъ,	Sep./89 6.	11	52 50	. 47 .	50	8.63 / -1.75	6.18/ 0.70	
P 22 33.000 80.000	2	Jul		· .	55	46.5	49.5	· .	•	broken 1992(?)
P29a 27.609 83.117	2	0	Oct./91 6		52 90	•	6.0	16.52/ -9.90	15.72/ -9.10	
P30a 27.707 84.263	Σ.	Aus	Aug./92 7	7.000 5	S2 110	•	6.0	22.17/-15.17	19.97 / -12.97	
P43a 28.564 83.906	2	о С	Oct./91 7.	7.480 6	65.5 110	-	15.0	16.27/8.79	14.68/7.20	
P44a 23.968 77.803	Q	Au			7	•	6.0	7.15 / -1.70	6.70 / -1.25	
P47a 32.976 84.144	3	Jur	Jun./92 7	7.570 4	49 110	•	6.0	4.49/ 3.08	+0.70 / 8.27	
P52a 25.300 81.500	ğ	Jur.	Jun./92 7.	7.570 4	49 110	•	6.0	14.47 / -6.90	13.67 / -6.10	
PSSa 33.900 76.650	2	Jur	Jun./93 9		45 90	•	6.0	5.24 / 4.65	+0.11 / 10.00	
P65a 34.750 82:025	Cux		111/02 0	0 080 5	\$00		6.0	5 68 / 230		

FI - 1

No. Name of	Location	tion	Owner	н	Constructed Elevation	Elevation	Depth		Screen		Water Level	cvcl	Remarks
Well	×	۲			Date	B	(E)	Dia.	Depth(m)	p(m)	(Depth/Elevation)	vation)	
								(mm)	From	To	Lowest(m)	Highest(m)	
1 T.TD 3	27.840	84.650	2		•				ł		(13.50)		
2 TTD 12	33.422	80.674	2		•		70	203	38.48	63.20	(2.50)		
3 T.TD 13	32.750	82.620	Q	-	•		20	146		58.29	(4.40)		
4 T.TD 14	32.960	84.250	2	:	•	•	68.9	146	36.12	53.37	(4.46)		
S TLK 4	29.828	80.845	2	•	•		60	146	40.80	53.80	(- 3.70)		
6 TLK 46	30.550	84.201	2		· · ·		56	126	50.00	84.00	(1.16)		
7 TLK 54	33.478	82.753	2		•	•	130	127	52.00	87.00	(4.59)		
8 T.LK813	31.615	84.622	Ø		•	:	58	127	41.80	55.50	(4.00)		
9 TLK816	32.645	80.146	2	-	•		70	127	34,30	59.10	(6.00)		
10 TLK 5a	27.850	84.080	2		· ·•.	·	,	. 1	1	•	(8.96)		
ITTK NG	34.130	76.427	2	2	•		40	127	21.30	34.90	•		
12 TLKT11 30.951	30.951	77.733	2			. * .	30	108	6.00	12.00	•	1	screen set for Ob

Existing Well List around the Proposed Wellfield (2/3)

*All Test Wells have been abandoned after test performance

PI - 2

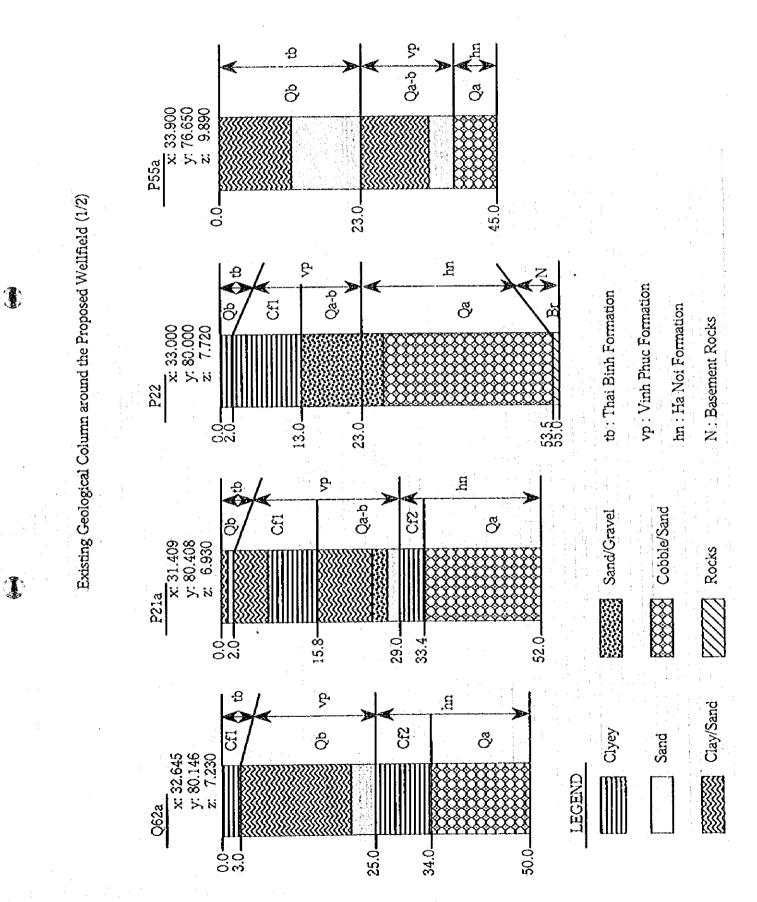
T

3

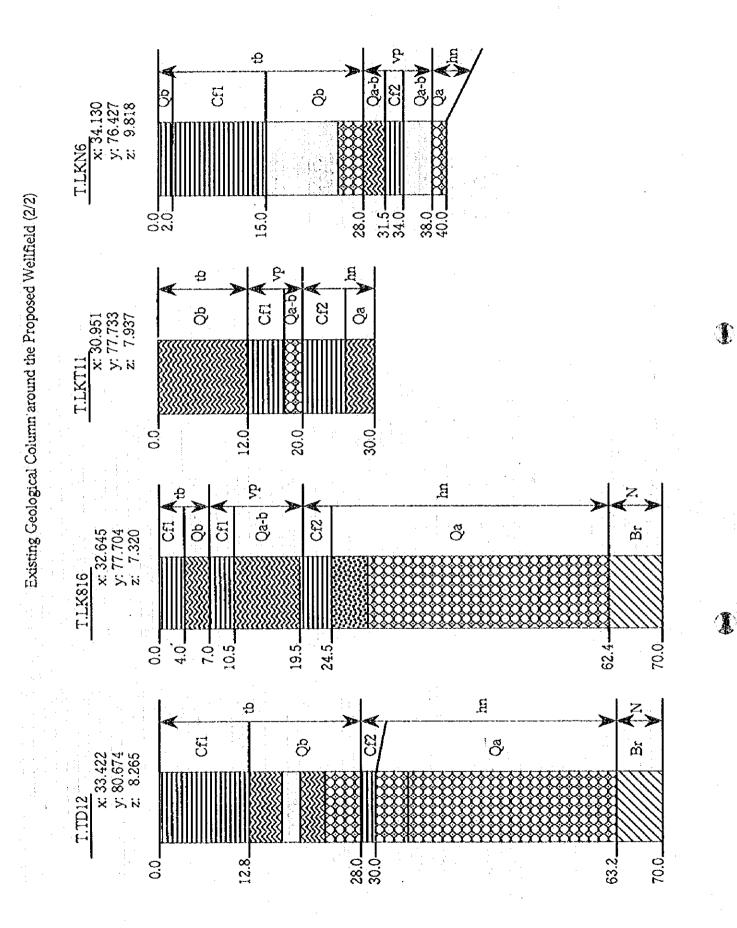
Existing Well List around the Proposed Wellfield (3/3)

T

;						1		**			
No. Nincot		TOCAUOI							~		
NCI	×	}		Date	Ð	(m) Um. (mm)	۵ ۵	Depra(m)	Lowest(m)	(Lopin/Lievauon) st(m) Highest(m)	
à	5	3	Veterinary Med.				1				650
		Ĩ	Contraction of the								270
4. 	۲ 6 ک	5	Conici vovo	•••							166
2 2 2	22	44	Army Fac. No. 4								
P. 15	83	-18	Fac. Z.191	·		, , ,			÷		0CT
5 P-16	88	ጽ	Paint Fac.		• •						240
5 P. IJ		78	Freeze Fac.								88
7 P. 15	5	78	Geolog. Subdiv.10								105
3 P- 24		55	An Khaing Farm			:					289
9 P. 25		ŗ	Army Unit	•	:						285
10 P- 26		78	Chemical Insti-	1. 		•					360
d.		78	Concrete Enter.			· :					150
5 B	• •	F	Army Quarter	•	•						120
13. P. 32		78	Breed Company				•				105
٩	•	6 2	Unit 144								120
d.		5	Unit 2910	· · ·		•••					210
Ċ.		8	Breed Test Center	• • •							100
17 P- 51		2	Air Regiment 280		<						100
	2	4	Mcchanic Fac.				-				285
0 .		8	Army Univ.				•		· · ·		100
	,	8	Army Insti.		•	· · · ·				-	210
		8	MOL Station 190								360
¢,	i.	8	Forest lastı.	•	•			•			220
	-	8	Concrete Fac.			:		•			800
1.1	•	ዩ	Police Univ.	• • • • • •						:	240
1	31	ន	Package Company			4. 	. ·		•		180
	·	8	Geological Univ.		•		:				350
	:	83	Chemical Enter.			:	÷,		:		180
6		78	Hanoi Jail			:.			•		380
<u>.</u>		8	Science Insti-		•	. ,					350
P - 4	31	8	Geological Univ.			•					420
å		8	Finance Univ.	•	•						100
4	`.	78	Poultry Breed Co.			-			· ·	·	480
<u>с</u>	33	8	Army Area								240
۵.	;	3	Orphan School			•	: :			. 1	180
1		Ŧ	Tool Fac.		: : 	-	- 				64 00


F1 - 3

APPENDIX F-2


0

0

Existing Geological Column around the Proposed Wellfield

F2 - 1

F2 - 2

Ð I

APPENDIX F-3

3 Groundwater Quality in the Priority Project Area

					Moni	toring \	Nell : P	21a				Cri	teria
Parameter	Unit	Grou	Indwate	r Qual	ity on	each S	ampling	g Day	Stati	stical V	alues	Drinking	WHO.
		7/92	12/92	4/93	8/93	3/94	9/94	9/95	Min.	Max.	Ave.	Water	Guideline
ρH		6.2	6.3	5.7	6.1	6.0	6.2	6.6	5.7	6.6	6.1	6.5~8.5	
NH4	(mg/l)	1.0	1.8	1.2	0.9	0.5	0.1	0.3	0.1	1.8	0.8	3.0	1.5
Fe ²⁺	(mg/i)	6.7	6.3	6.6	0.1	5.4	0.1	2.5	0.1	6.7	4.0		
Fe ³⁺	(mg/l)	2.0	1.9	0.6	7.3	1.9	11.3	3.0	0.6	11.3	4.0		
Total Iron	(mg/l)	8.7	8.2	7.2	7.4	7.4	11.5	5.5	5.5	11.5	8.0	0.3	0.3

Groundwater Quality in the Priority Project Area (1/4)

Groundwater Quality in the Priority Project Area (2/4)

ſ					·····	Moni	toring V	Vell : Q	62a				Crit	teria
I	Parameter	Unit	Grou	indwate	er Quat	ity on	each S	ampling	Day	Stati	stical V	alues	Drinking	WHO
				12/92		9/93	3/94					Ave.		Guideline
Ì	pH		6.5	5.8	6.4	5.9	5.9	6.7	6.5	5.8	6.7	6.2	6.5~8.5	-
ļ	NH4 ⁺	(mg/l)	0.8	1.9	0.0	0.1		-	3.3	0.0	3.3	1.2	3.0	1.5
Ì	Fe ²⁺	(mg/l)	1.4	0.2	1.0	0.1	0.6	0.0	0.0	0.0	1.4	0.5		
	Fe ³⁺	(mg/l)	2.6	1.8	25.2	0.2	0.4	2.4	2.5	0.2	25.2	5.0		5.
ļ	Total Iron	(mg/l)	4.0	2.0	26.2	0.3	1.0	2.5	2.5	0.3	26.2	5.5	0.3	0.3

Groundwater Quality in the Priority Project Area (3/4)

	1				Moni	toring \	Nell : P	47a				Cri	teria
Parameter	Unit	Grou	Indwate	r Qual	ity on a	each S	ampling	g Day	Stati	stical V	alues	Drinking	WHO
			12/92		9/93			9/95	Min.	Max.	Ave.	Water	Guideline
рН		8.0	7.4	7.3	7.8	7.3	6.3	6.5	6.3	8.0	7.2	6.5~8.5	
NH4 ⁺	(mg/l)	2.3	0.1	0.1	3.2	2.8	3.9	1.0	0.1	3.9	1.9	3.0	1.5
Fe ²⁺	(mg/l)		3.6	5.6	4.3	7.8	4.5	13.5	3.6	13.5	6.6		
Fe ³⁺	(mg/l)	33.0	1.3	1.6	0.2	0.4	16.2	0.5	0.2	33.0	7.6		
Total Iron	(mg/l)	33.0	4.9	7.2	4.6	8.2	20.7	14.0	4.6	33.0	13.2	0.3	0.3

Groundwater Quality in the Priority Project Area (4/4)

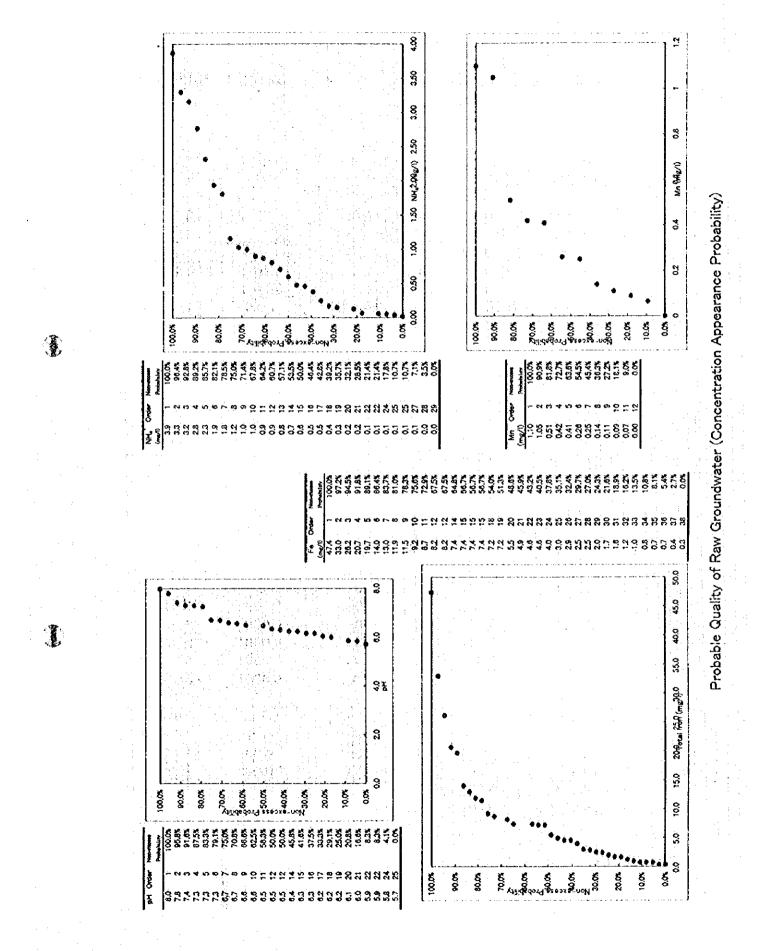
					Moni	toring \	Nell : P	55a				Cri	teria
Parameter	Unit	Grou	indwate	er Qual	ity on	each S	ampling	g Day	Stati	stical V	alues	Drinking	WHO
		-/92	-/92			3/94			Min.	Max.	Ave.	Water	Guideline
pH		1		-	6.7	6.6	6.2	7.3	6.2	7.3	6.7	6.5~8.5	
· NH4 ⁺	(mg/l)	-			5.7	9.2	9.4	8.0	5.7	9.4	8.0	3.0	1.5
Fe ²⁺	(mg/l)				0.6	4.4	3.4	11.6	0.6	11.6	5.0		
Fe ³⁺	(mg/l)	·		-	1.1	0.2	5.8	1.4	0.2	5.8	2.2		
Total Iron	(mg/l)				1.7	4.6	9.2	13.0	1.7	13.0	7.1	0.3	0.3

Source : Inventory of water quality of monitoring wells (HWBC)

				· · · ·		1		
Parameter	Fe	Mn	NH4*	NO ₂	NO ₃	Hardness	AI	Sampling
Well Unit	mg/l	mg/l	mg/l	mg/l	mg/I	mg/i	mg/l	Date
TD12	11.9	0.1	-			1		Jan 1996
TD13	47.4	-	0.6	0.0	0.0	2	<u>.</u>	Jan 1996
TD14	7.4	0.0	-	. –		3		Jan.,1996
CD9	7.4	0.4	0.4	0.0	0.1	_	0.5	Apr.25,1996
CD13	19.7	1.1	0.1	0.0	1.6	-	0.4	Jul.8,1996
	0.7	-1.1	-			-	0.5	Jul.16,1996
CD17	1.6	0.4	0.1	0.0	0.0	-	0.1	Apr.14,1996
P58 (Chem Concrete Factory)	2.9	0.3	0.5	0.0	0.4	-	0.0	Feb.1,96/Mar.21,97
Hoang Long Hotel	1.2	0.1	0.2	0.2	0.3			Feb.1,1996
P67 (Chemical Factory) near TD13	3.0	0.5	0.9	0.3	0.6		-	Feb.1,1996
P61 (Xuan Ding Knitting Factory)	0.7	0.1	0.0	0.0	0.2	·		Feb.1,1996
	0.4	0.1	0.2	-	0.7	121	-	Aug.1,1996
P77 (Mining-geological University)	0.8	0.3	0.7	0.1	0.4		-	Feb.1,1996
Average	8.1	0.4	0.4	0.1	0.4	32	0.3	
Max.	47.4	1.1	0.9	0.3	1.6	121	0.5	
Min.	0.4	0.0	0.0	0.0	0.0	. 1	0.0	
Criteria (for drinking water)	0.3	0.1	3.0	0.0	10.0	500	0.2	
Criteria (for water supply (min. req.))	10.0	0.5	. –	1	50.0	500		
WHO Guidelines	0.3	0.5	1.5		50.0	-	0.2	

Groundwater Quality in the Priority Project Area (1/2)

Groundwater Quality in the Priority Project Area (2/2)


Paramete	r As	Zn	Cd	РЪ	CN	Hg	Cu	Cr	Phenol
Well	t mg/i	mg/l	mg/l	mg/l	mg/l	mg/i	mg/I	mg/l	mg/l
TD12	-	_	-	-		~	. 	· _ :	-
TD13	[′]	- 1	-	- ·	<u> </u>	<u> </u>		¹ -	i -
TD14		-	-	÷.			° ↔ ,	·	- '
CD9	0.01	0.0	0.000	0.01	0.01	0.000	0.0	0.00	0.000
CD13	0.00	0.0	0.000	0.00	0.00	0.000	° 0.0 :	0.00	0.001
	0.00	0.0	0.000	0.00	0.00	0.000	0.0	0.00	0.001
CD17	0.02	0.0	0.000	.0.00	0.01	0.000	0.0	0.00	0.000
P58 (Chem Concrete Factory)	-	·	0.005	0.00	 '				
Hoang Long Hotel		- '		_ ·	-	— [•]	_ * *		_
P67 (Chemical Factory) near TD13		-	·		-	- 1 	-	-	- 1
P61 (Xuan Ding Knitting Factory)	- I	1 -	-		<u> </u>	. –			-
	0.00	0.0	0.005	0.02	0.00	0.000	0.2	0.00	0.000
P77 (Mining-geological University)					· ••		-		-
Average	0.01	0.0	0.002	0.00	0.01	0.000	0.0	0.00	0.001
Max.	0.02	0.0	0.005	0.02	0.01	0.000	0.2	0.00	0.001
Min.	0.00	0.0	0.000	0.00	0.00	0.000	0.0	0.00	0.000
Criteria (for drinking water)	0.05	5.0	0.005	0.05	0.10	0.001	1.0	0.05	(0.001)
Criteria (for water supply (min. req.)) 0.10	5.0	0.010	0.05	0.05	0.001	1.5		Water Quality
WHO Guidelines	0.01	3.0	0.003	0.01	0.07	0.001	2.0	0.05	Standard

Source : 1) <u>Preliminary Report on Hydrogeological Results in Cao Dinh - Chem area</u>. Subdivision 64, Hydrogeological Division II, Viet Nam Geological Survey, January 1996

2) <u>Report on the Feasibility Study for Groundwater Exploitation of Cao Dinh Well Field in Hanoi Area</u>, Subdivision 64, Hydrogeological Division II, Viet Nam Geological Survey, June 1996

Note : As for the well P58 (Chem Concrete Factory), supplementary water sampling was done in March 1997 to check Al, Cd and Pb of the nearest well to the project site.

Ŷ

F3 - 3

NO ₂ Order lon-exces	s NO ₃ Order	lon-excess	Hardness	Order	on-exces
(mg/l) Probability	(mg/l)	Probability	(mg/l)	F	Probability
0.26 1 100.0%	1.64 1	100.0%	121	1	100.0%
0.23 2 87.5%	0.70 2	88.8%	3	2	66.6%
0.09 3 75.0%	0.61 3	77.7%	2	3	33.3%
0.03 4 62.5%	0.44 4	66.6%	1	4	.0%
0.02 5 50.0%	0.36 5	55.5%			
0.01 6 37.5%	0.28 6	44.4%	Zn	Orderl	on-exces
0.00 7 .0%	0.20 7	33.3%	(mg/t)	F	Probability
0.00 7 .0%	0.09 8	22.2%	0.04	1	100.0%
0.00 7 .0%	0.00 9	.0%	0.01	2	75.0%
Bernelin zu Christian in Bergerin gescher als und verschlichtigt sicher B	0.00 9	.0%	0.01	3	50.0%
Al Order lon-exces	S	alan di seri di anti se sub di anti se superiore da di di anti se superiore da di di anti se superiore da di d L	0.01	. 4	25.0%
(mg/l) Probability		lon-excess	0.01	5	.0%
0.51 1 100.0%	(mg/l)	Probability	Bearing and his ane over the		
0.45 2 75.0%	0.016 1	100.0%	CN	Order	on-exces
0.44 3 50.0%	0.007 2		(mg/l)		robability
0.07 4 25.0%	0.003 3		0.011	1	100.00%
0.04 5 .0%	0.002 4		0.010	2	75.00%
Participa designativa designation de la construcción de la construcción de la construcción de la construcción d	0.000 5		0.004	3	50.00%
			0.003	4	25.00%
Cd Order lon-exces	s Pb Order	lon-excess	0.000	5	.00%
(mg/l) Probability		Probability		V	.00//
0.0050 1 80.00%	0.017 1	100.00%	Hg	Orderl	on-exces
0.0050 1 80.00%	0.007 2		(mg/l)		Probability
0.0003 3 60.00%	0.007 2		0.0002	<u> </u>	100.00%
0.0003 3 00.00%	0.002 3		0.0002	2	75.00%
0.0002 4 40.00%	0.001 5		0.0001	2	50.00%
0.0001 5 .00%	0.000 6		0.0001	4	25.00%
			0.0001	5	.00%
			0.0001	U U	.00%
Cu Order Ion-exces	s Cr Order	lon-excess	Phenol	Order	on-exces
(mg/l) Probability		Probability	(mg/l)		robability
0.18 1 100.00%	0.003 1		0.001	<u>-</u> 1	100.00%
0.01 2 75.00%	0.003 2		0.001	2	75.00%
0.01 3 50.00%	0.002 3	and the second	0.000	3	50.00%
0.00 4 25.00%	0.002 4		0.000	4	25.00%
0.00 5 .00%	0.000 5		0.000	5	.00%
				V	

Probable Quality of Raw Groundwater (other than pH, Fe, NH_4^+ and Mn)

1

٢

Study for the Design of Contact and Sedimentation Tank

APPENDIX F-4

Ø

Ŀ

Study for the Design of Contact and Sedimentation Tank

In the iron removal process, the contact tank is designed between aeration tower and filter. Its purpose is primarily to provide sufficient time for the oxidation reaction to reach completion and for the iron to come out of solution.

The contact tank which has some detention time can be used for sedimentation tank. The settling efficiency of the tank will depend on the volume of the tank. The most effective contact/sedimentation tank will contribute to reduce the filter operation load.

The water quality analysis of the existing facilities has been conducted in order to compare with the efficiency of the tanks in each water treatment plant. The result of the analysis is shown in the attached table.

Results

1

 The retention time for each contact tank in the existing water treatment plant is shown as below;
Mai Dich, Yen Phu, Ngo Si Lien, Tuong Mai : 30 to 40 minutes

Gia Lam: 60 minutes

- (2) In case of mix iron and manganese, the aeration with contact / sedimentation tank has no effect for manganese removal.
- (3) From the result, maximum rate of oxidizing of ferrous ion is to be 88% under the 30 to 40 minutes retention time and 92% under the 60 minutes retention time. The contact/sedimentation tank which has more than 30 minutes detention time is able enough to oxidize iron.
- (4) The rate of iron removal by the contact tank 26 % with 60 minutes detention time. 16 % with 30 to 40 minutes detention time.

Conclusion (Design Criteria for F/S)

The detention time for the contact / sedimentation tank takes 60 minutes. Under this condition, the rate of iron removal by the contact / sedimentation tank will be estimate about 26%.

Water Analysis for The Equipment Efficiency (Contact & Sedimentation Tank)

Substance	4	Mn (mg/l)	(LL LL	Fe ²⁺ (mg/l)	7)	Fe ³⁺ (<i>mg/</i>))	(I/bu	Tot	Total Fe (<i>mg/</i> /)	g/l)
Water Treatment Plant (Date of Analysis)	Raw Water	¥.	Rate of Mn Remv. (%)	Raw Water	*	Rate of oxidizin g of Fe ²⁺	Raw Water	1.	Raw Water	۲ *	Rate of Fe Remv. (%)
Mai Dich (7 Mar. 1997)	0.58	0.58		0.07	0.031	2	0.29	0.29	0.36	0.32	10
Yen Phu (7 Mar. 1997)	0.48	0.47	L.	6.83	0.683	06	0.06	1.94	6.89	2.63	62
Ngo Si Lien (7 Mar. 1997)	0.66	0.57	13	1.73	0.23	87	0.02	1.66	1.75	1.89	φ
Tuong Mai (7 Mar. 1997)	0.29	0.28	4	13.15	1.55	88	0.20	9.10	13.35	10.55	21
Ave.			2			88					16
					-						
Gia Lam (15 Aug. 1996)									2.57	1.81	30
(16 Aug. 1996)		100 g. 1							3.44	2.67	22
(19 Aug. 1996)									3.82	2.38	25
(Test run data)	0.54	0.54	0	1.75	0.14	92			2.89	2.14	26
Ave.		- 1 				92					26

*1 : Outlet of the contact tank

Ţ

Ð)

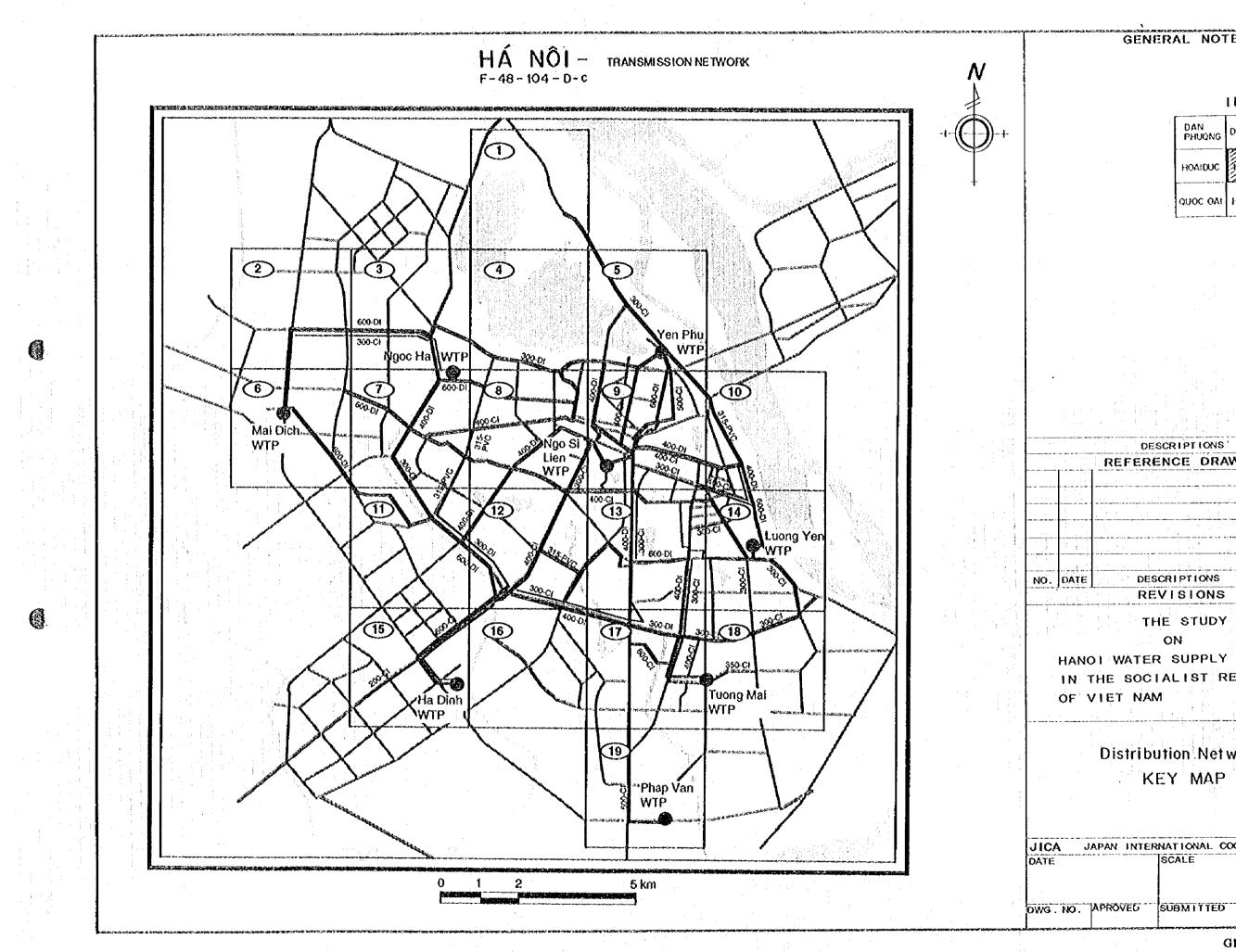
PART IV

DRAWINGS

APPENDIX (G)

0

DRAWINGS PREPARED IN M/P


G-1 Exist

Existing Distribution Networks

APPENDIX G-1

. . .

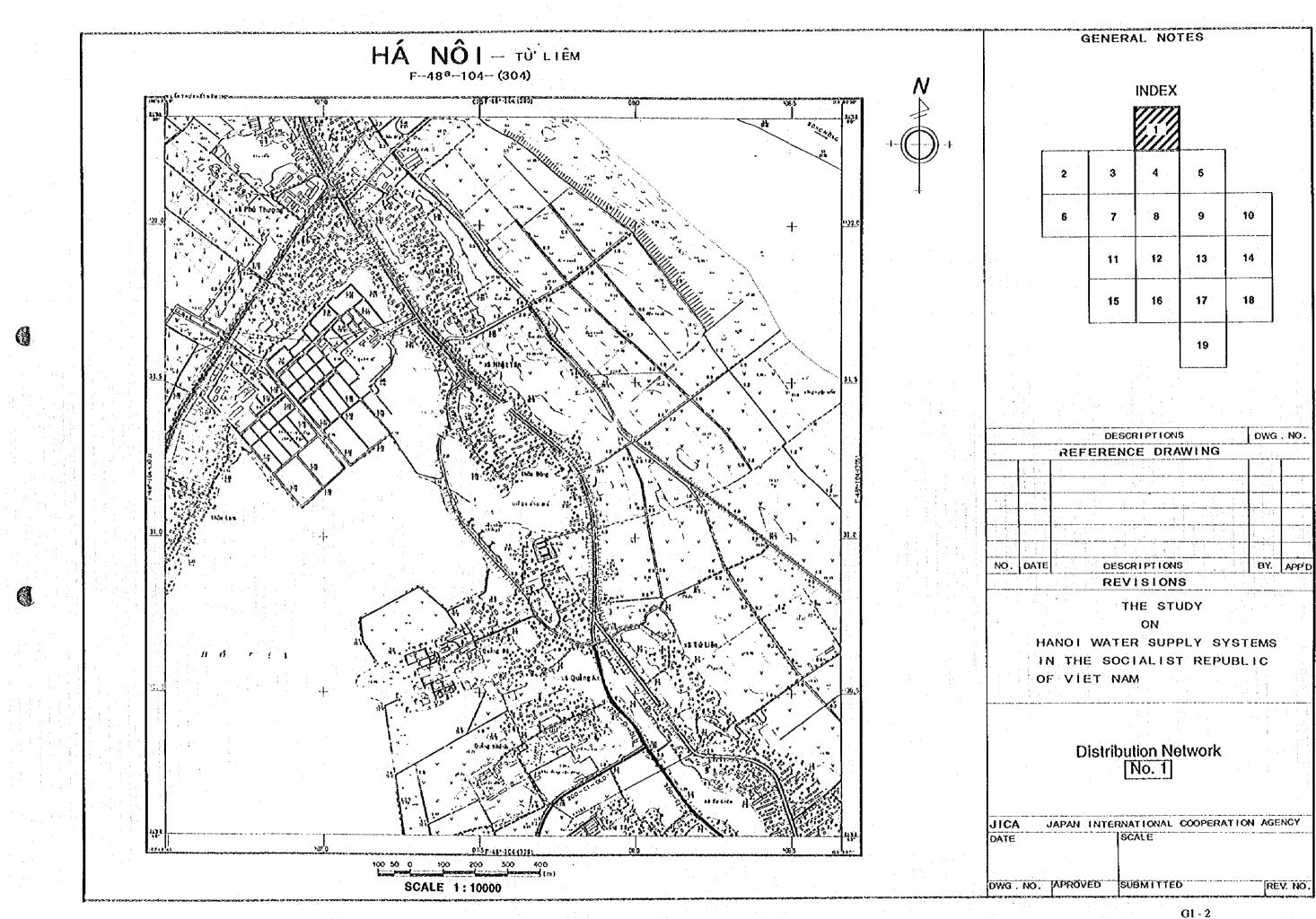
Existing Distribution Networks

GENERAL NOTES

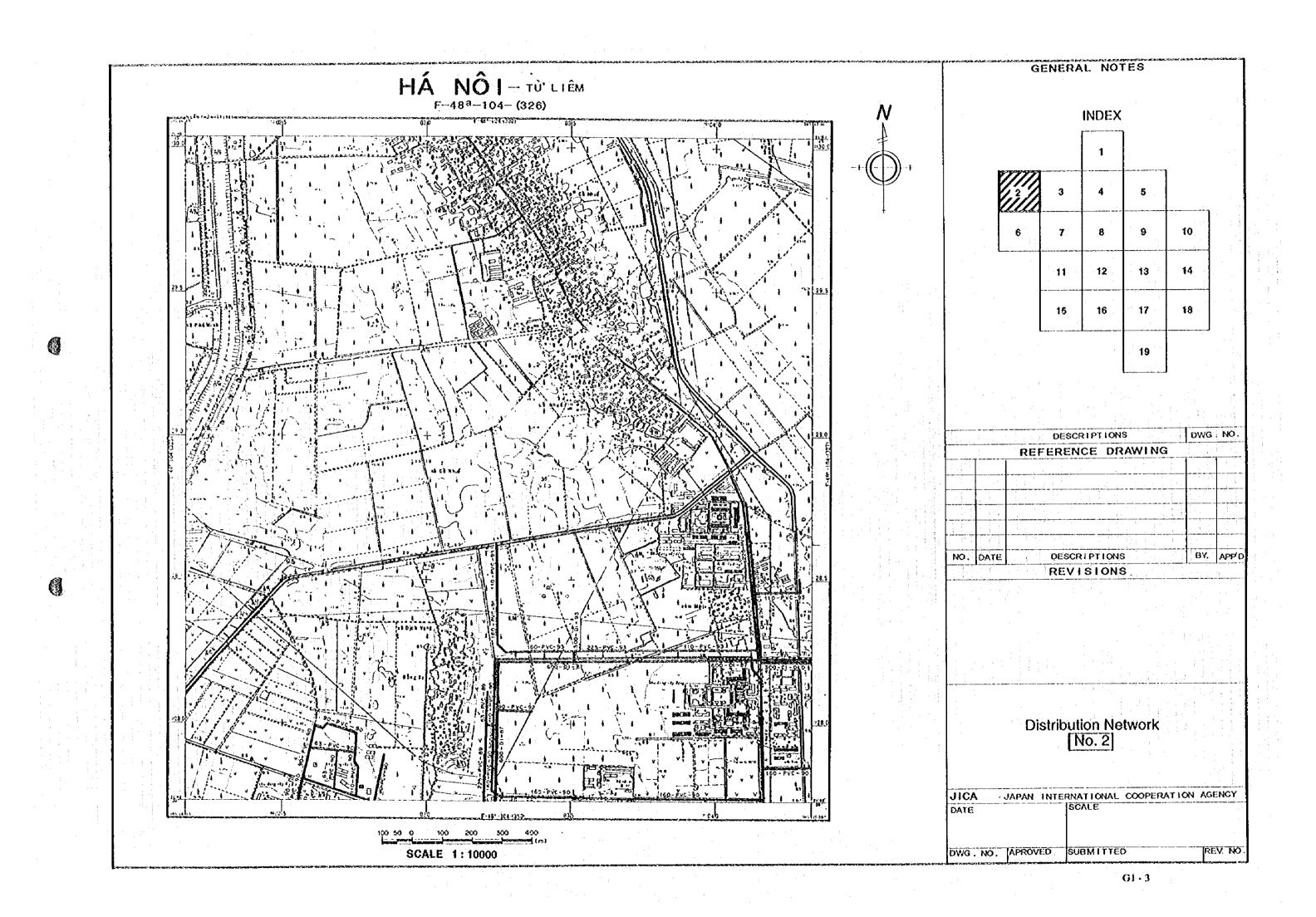
INDEX

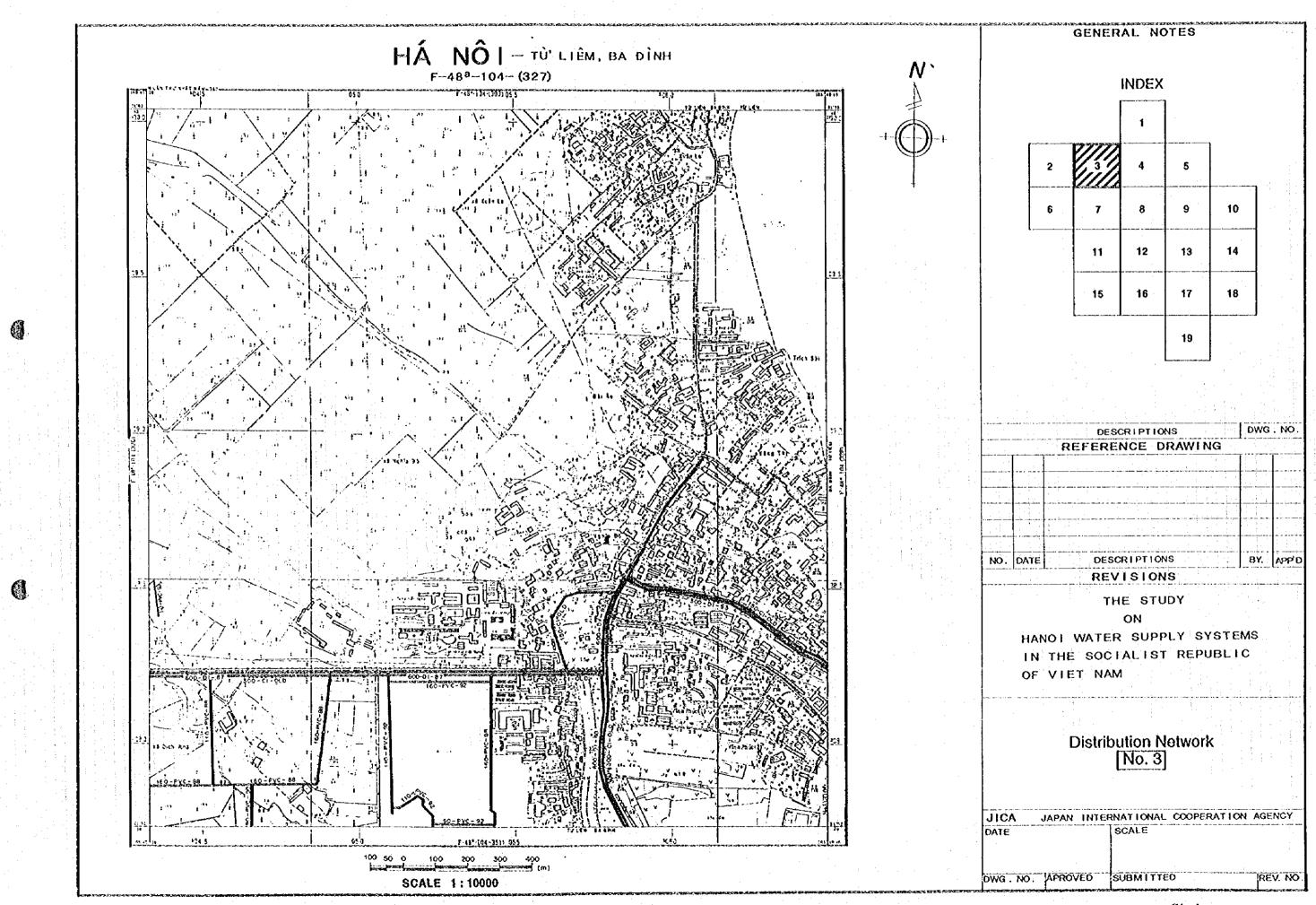
DAN PHUQNG	DONG ANH	TU SON
HOAIDUC	HA NOI:	GIA LAM
QUOC OAI	HA DONG	BAT TRANG

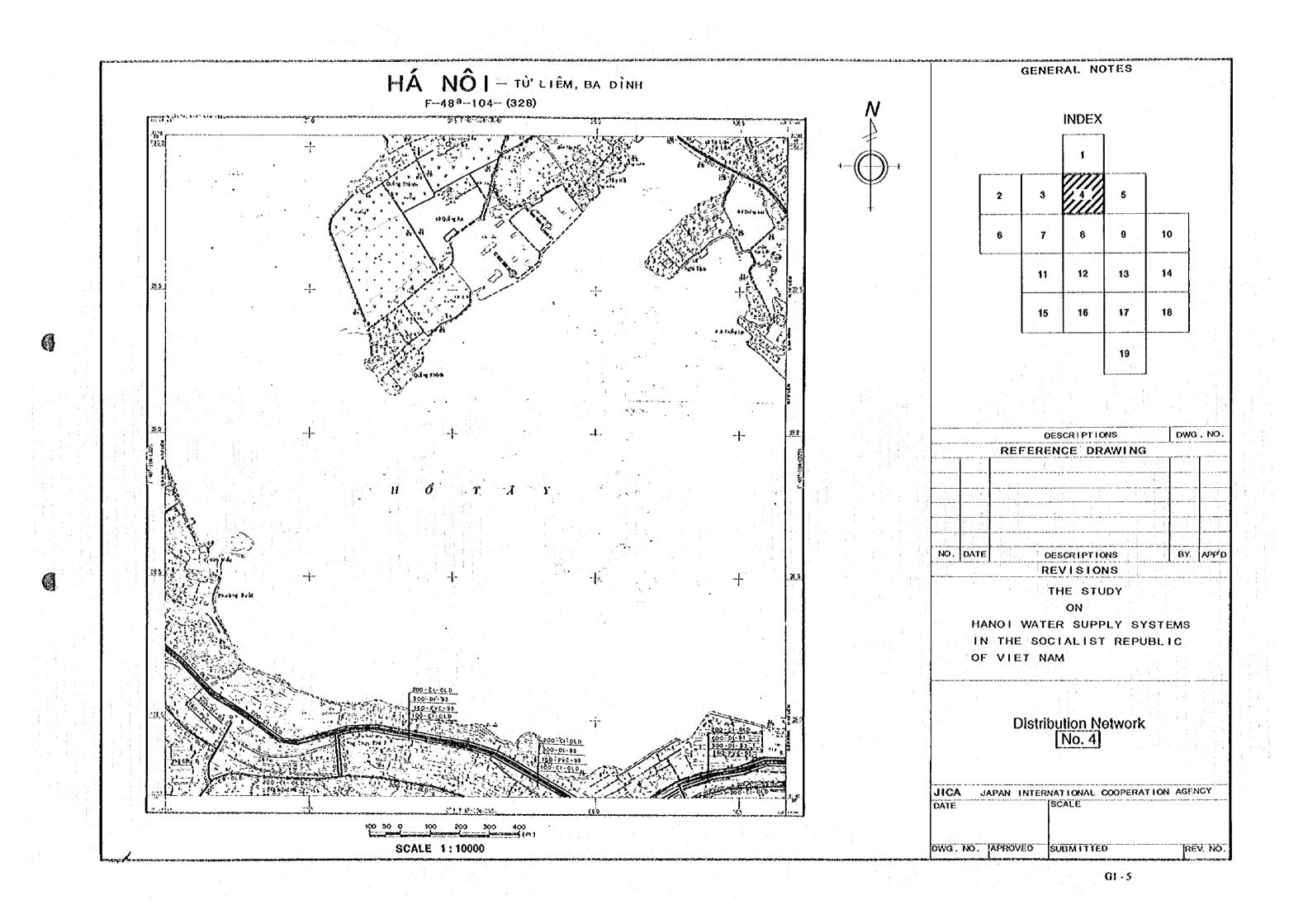
	DESCRIPT	IONS	ta ta afi	OWG.	NO.
REF	ERENCE	DRAWI	NG		
				i i	
			· · ·		
	×		-		
-	DESCRIPT	IONS		BY.	APPC
	REVISI	ONS	· · · · ·	•	

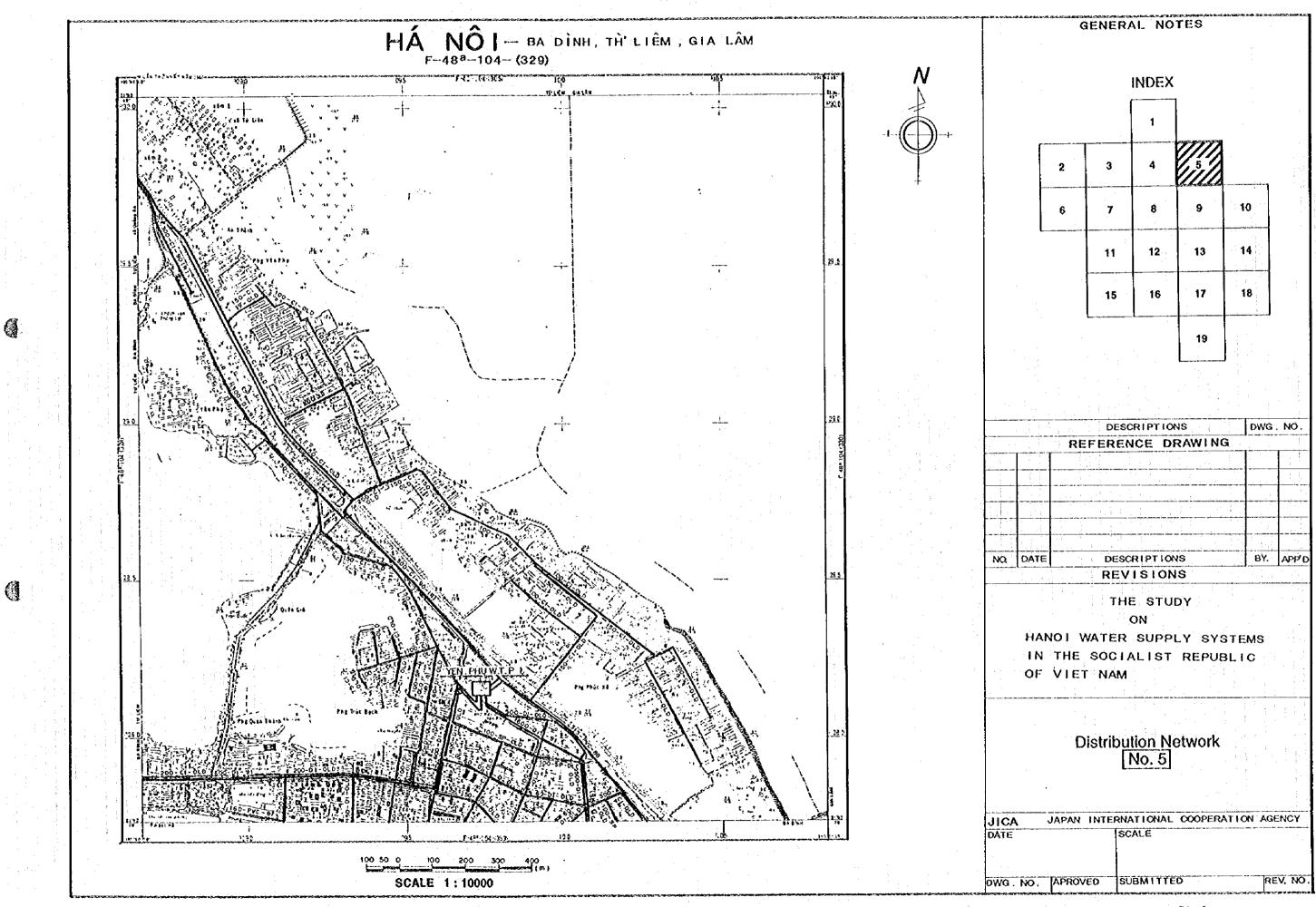

ON

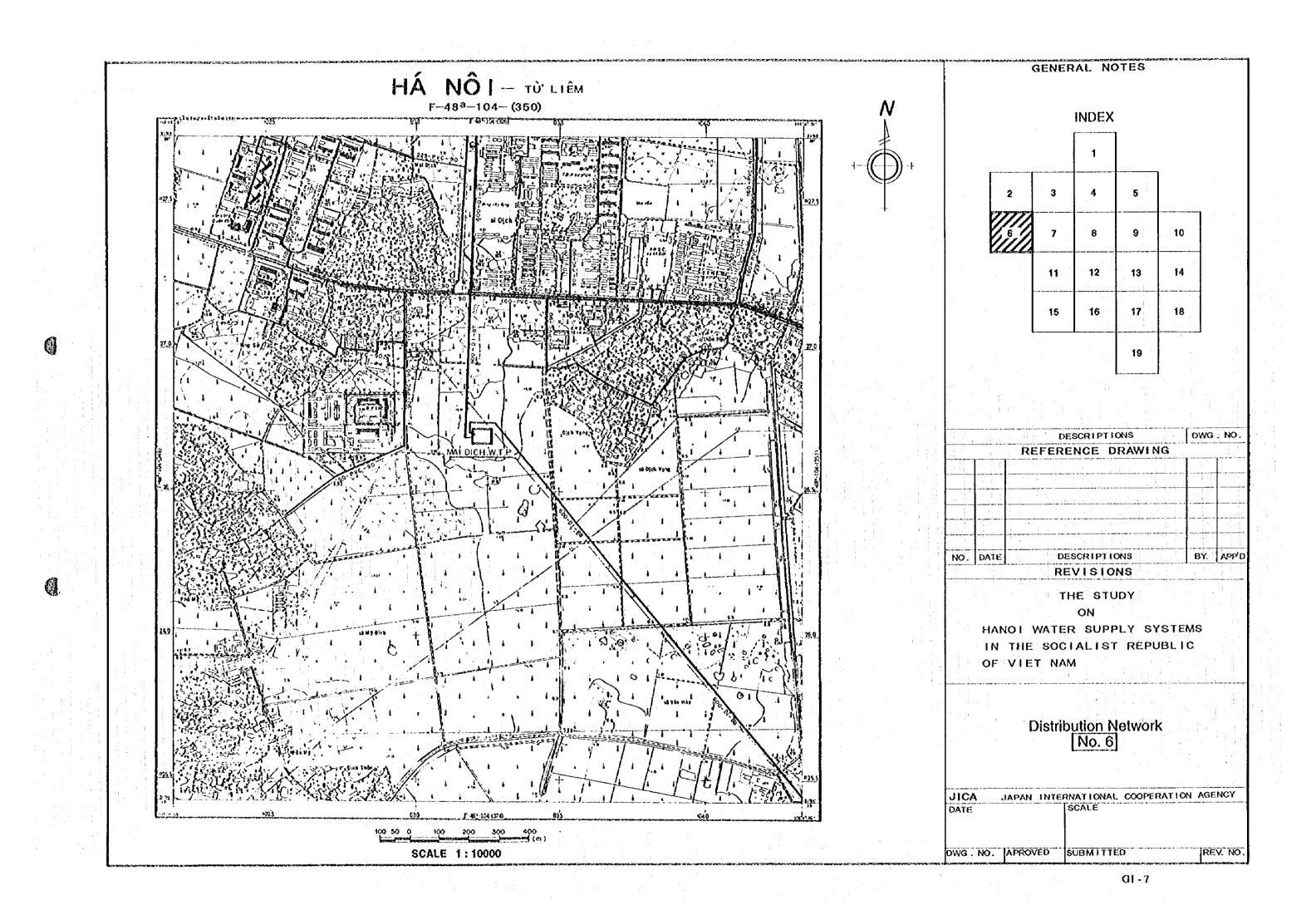
HANOI WATER SUPPLY SYSTEMS IN THE SOCIALIST REPUBLIC OF VIET NAM

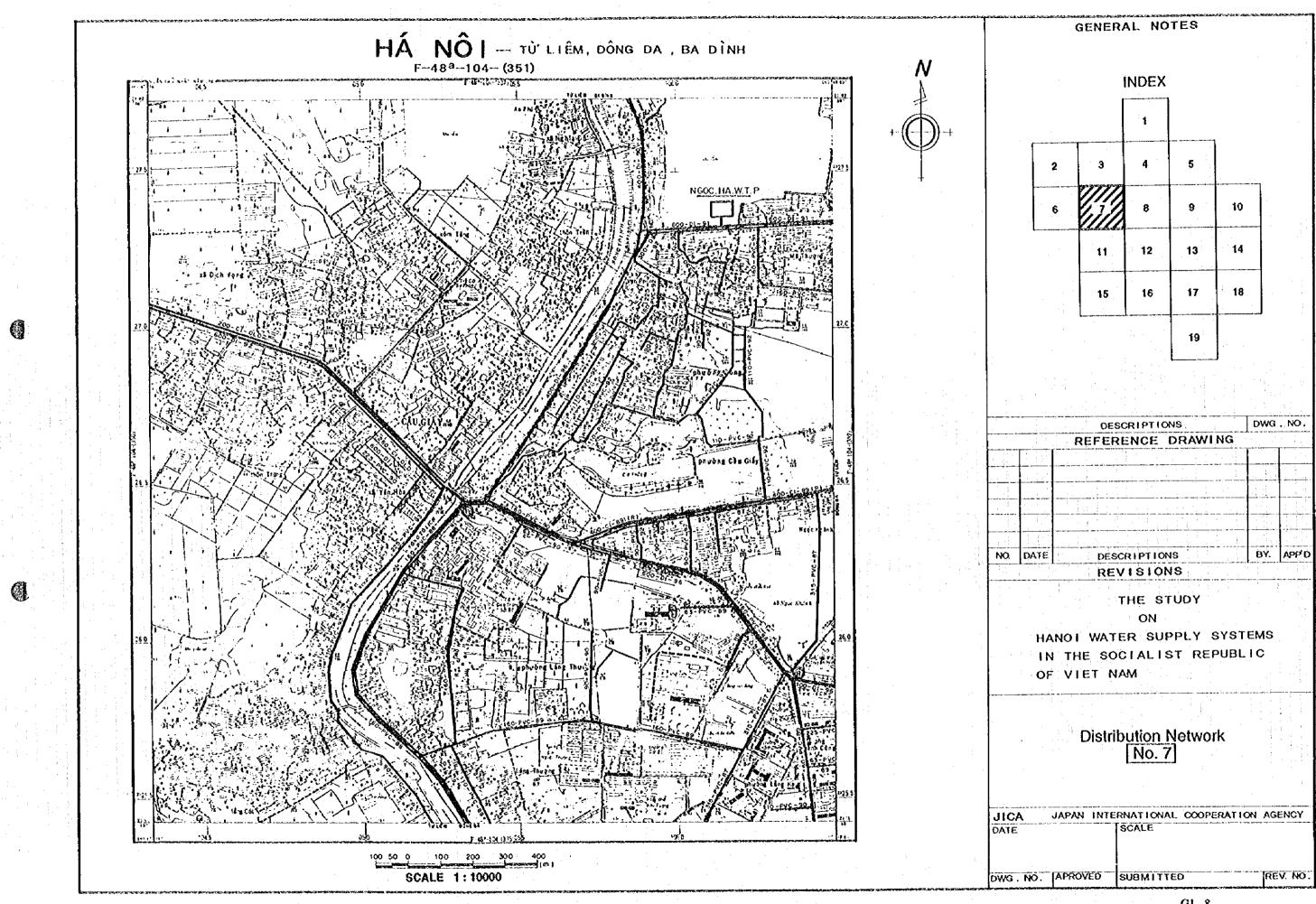

> Distribution Network KEY MAP

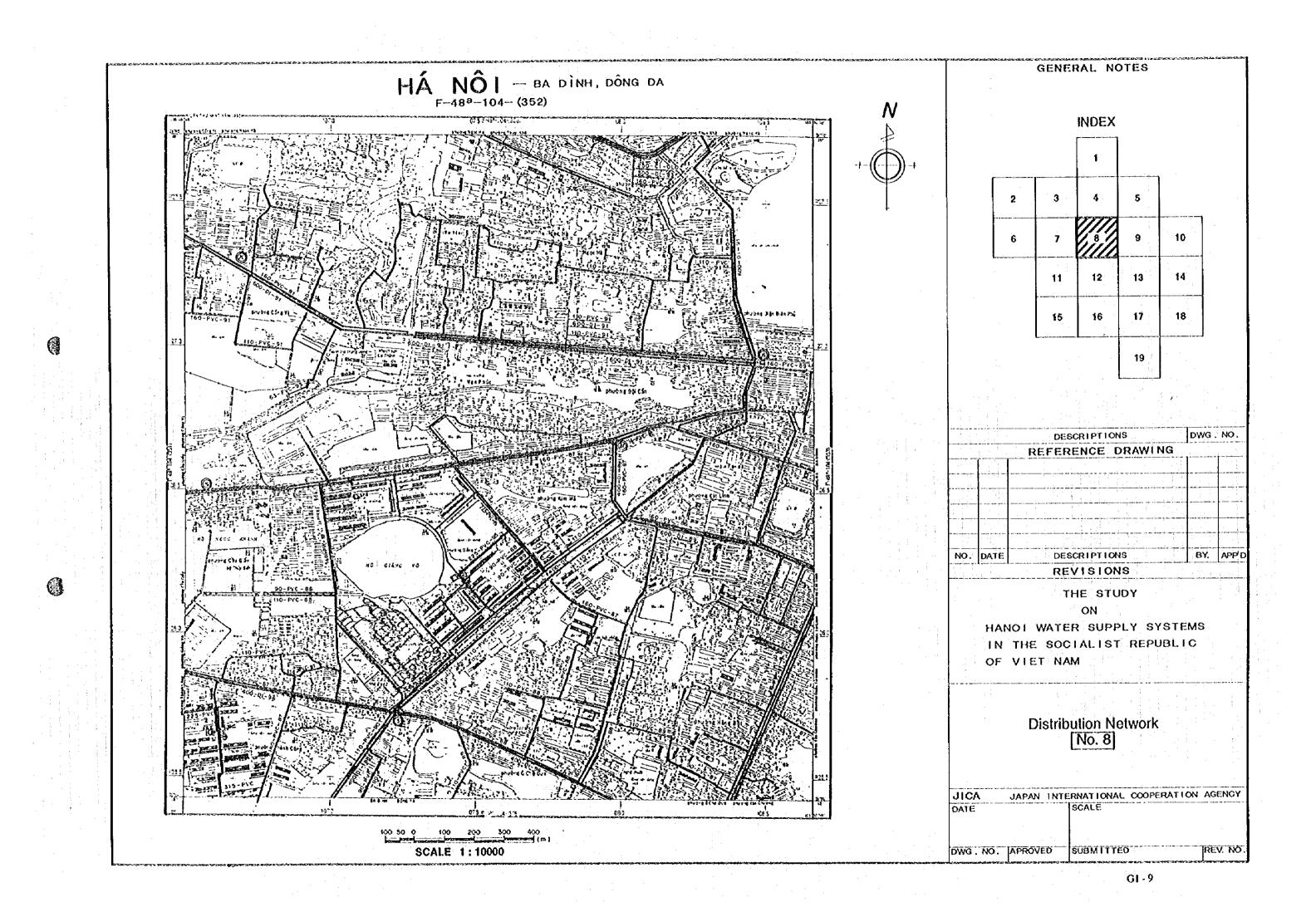

APAN INTE	RNATIONAL COOPERA	TION AGENCY
	SCALE	<u> </u>
LANA TEL	000000000000000000000000000000000000000	IREV. NO.
APROVED	SUBMITTED	REV. NO.
	CONTRACTOR OF THE OWNER OF THE OWNER OF	

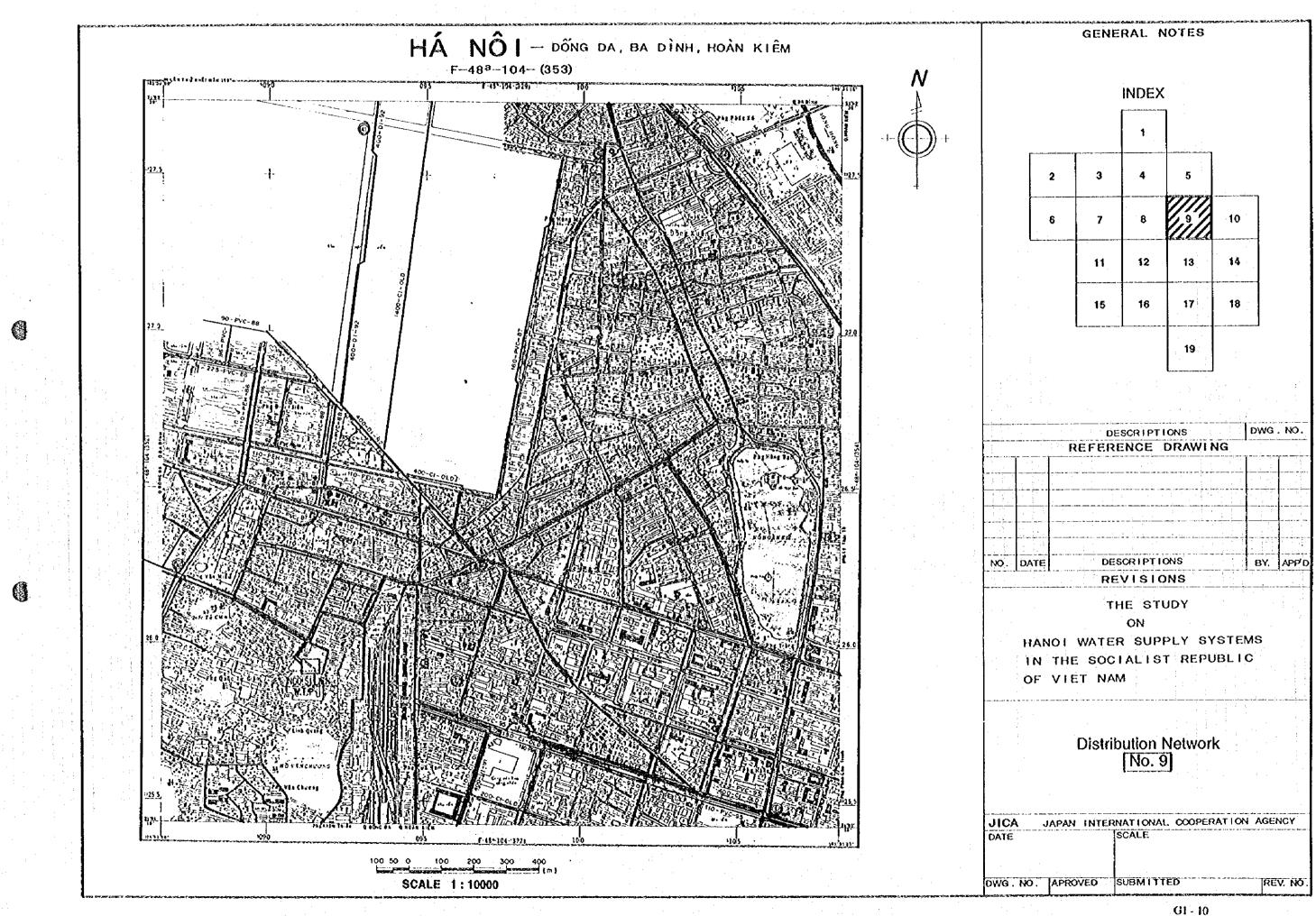

G1 - 1

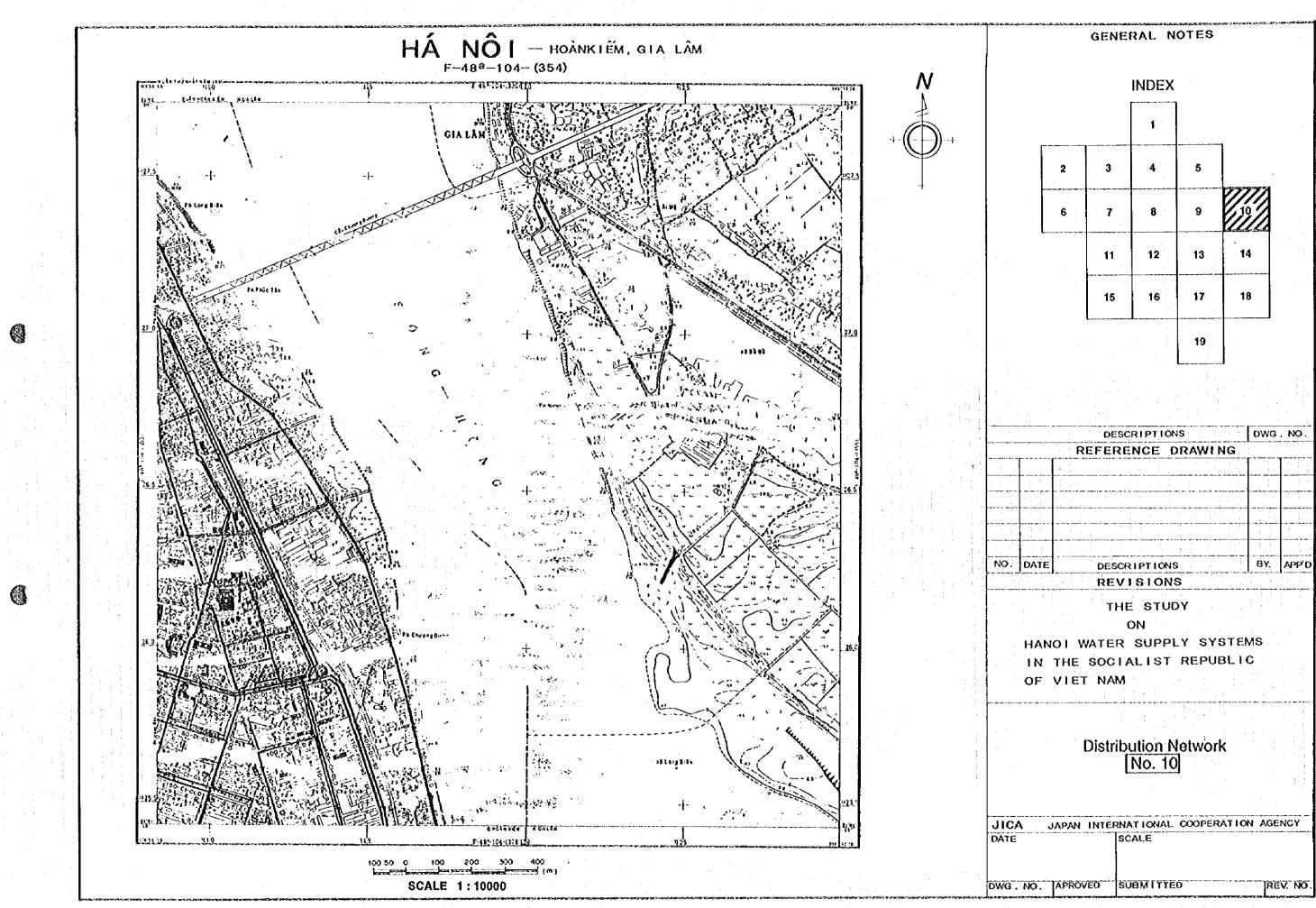



JAPAN INTER	NATIONAL COOPERATION	AGENCY
	SCALE	
APROVED	SUBMITTED	REV. NO.

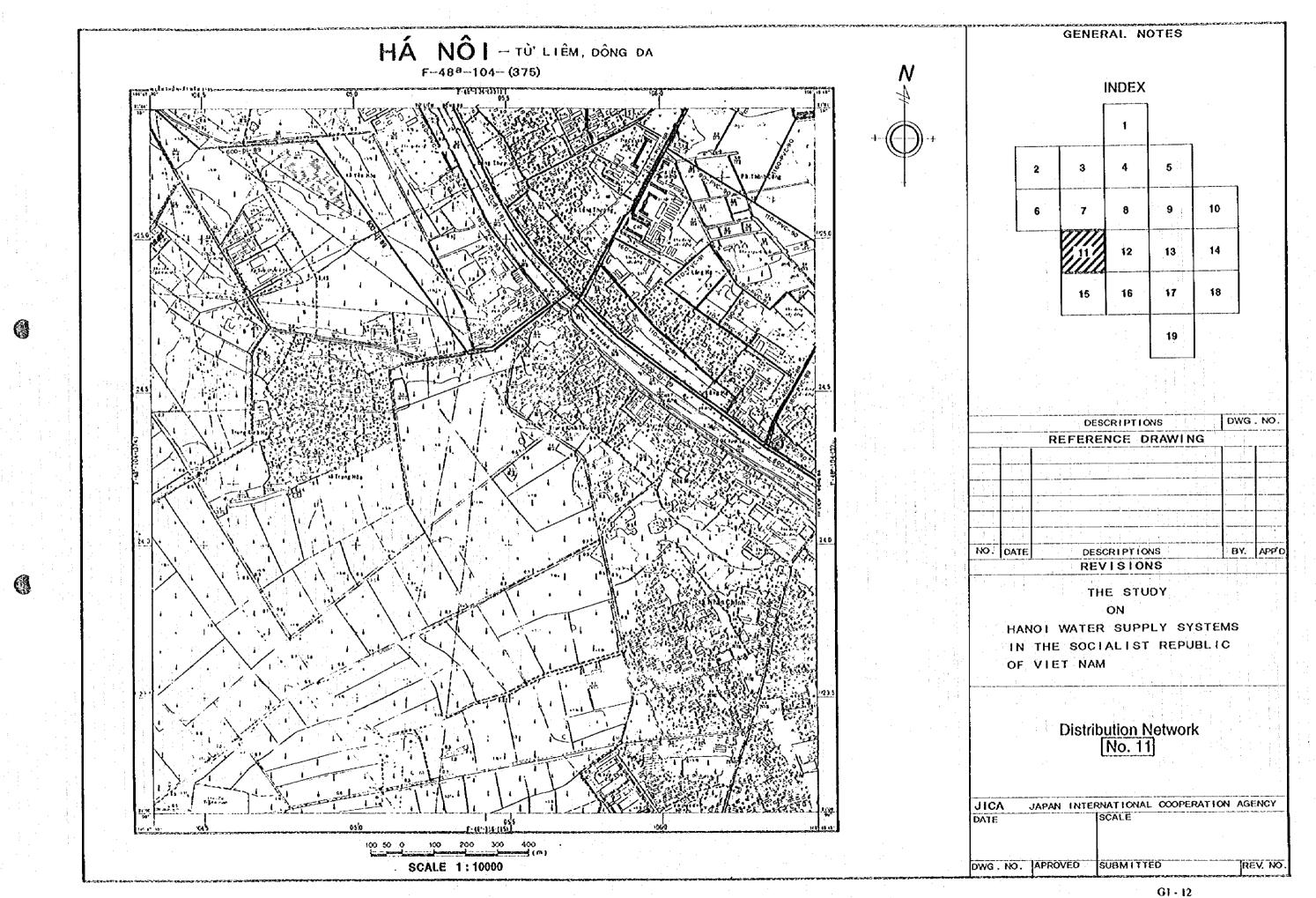


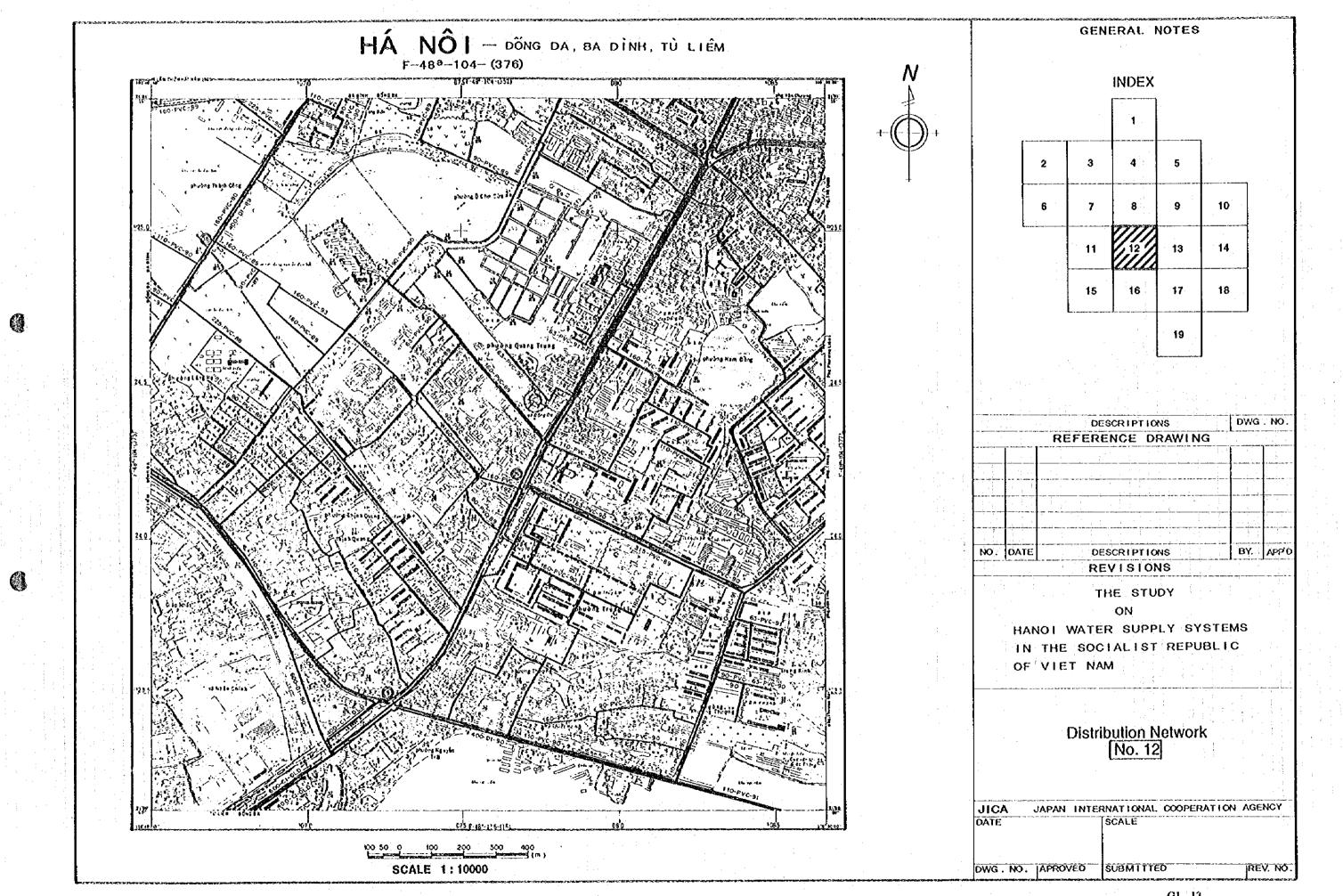


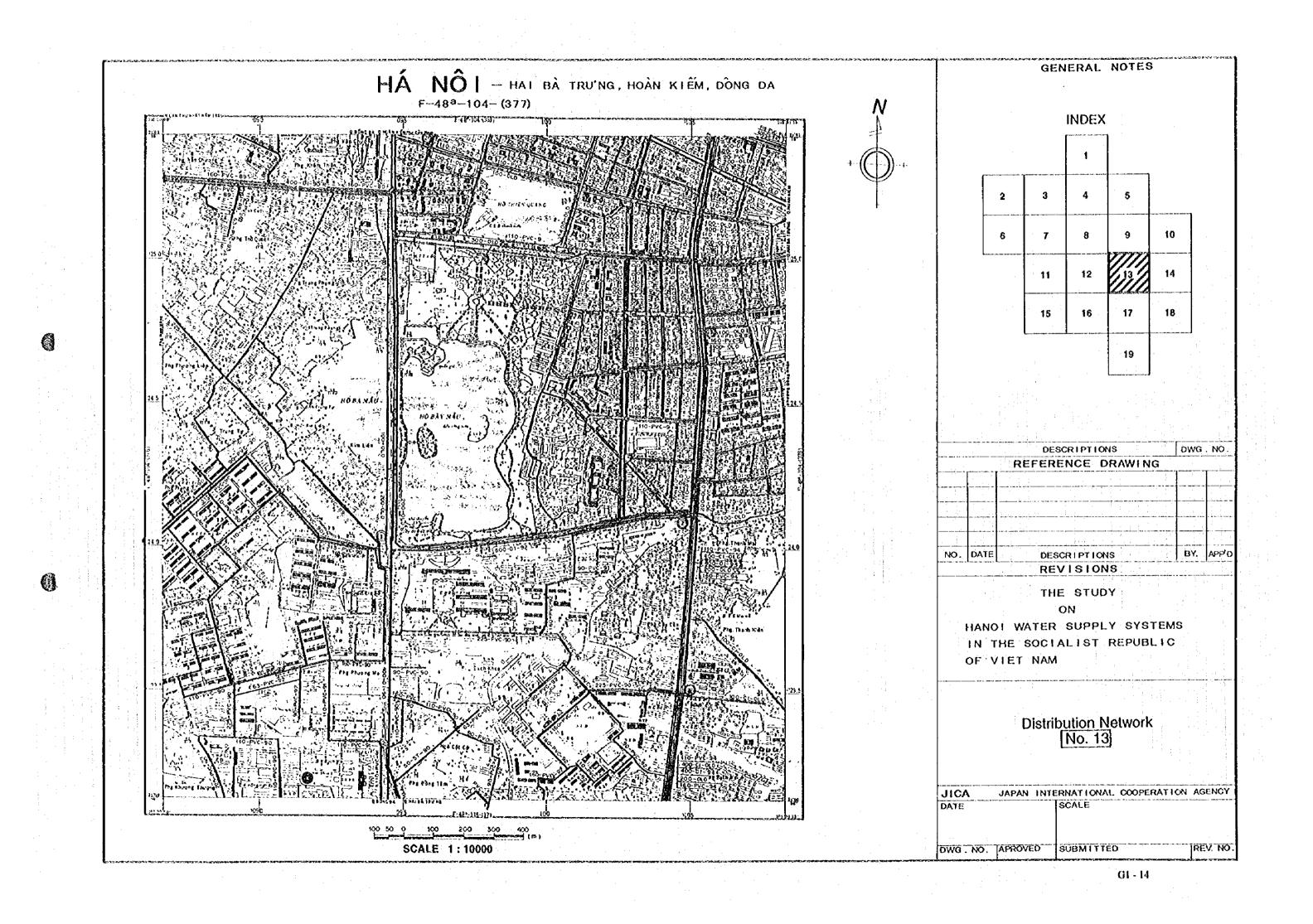


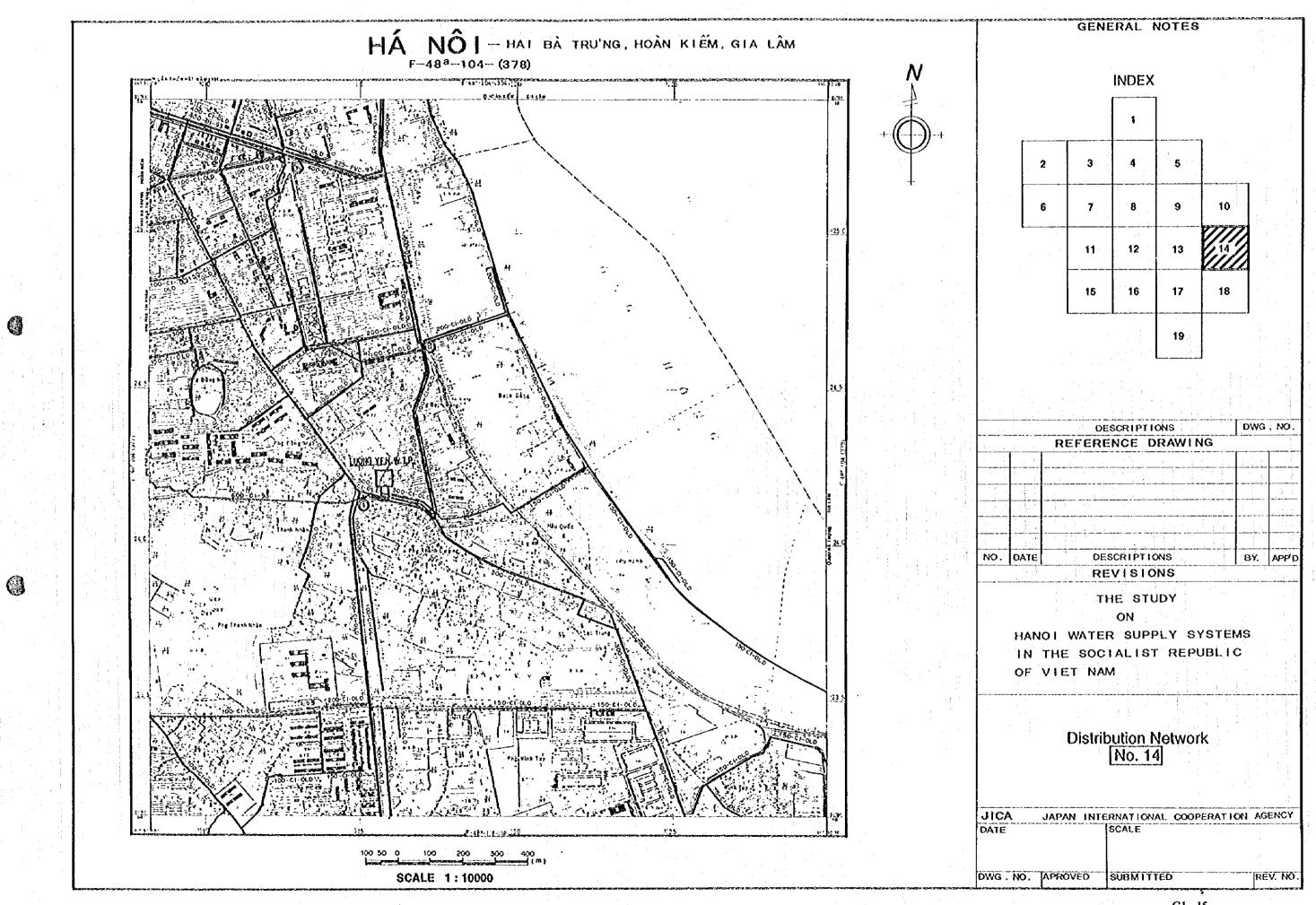


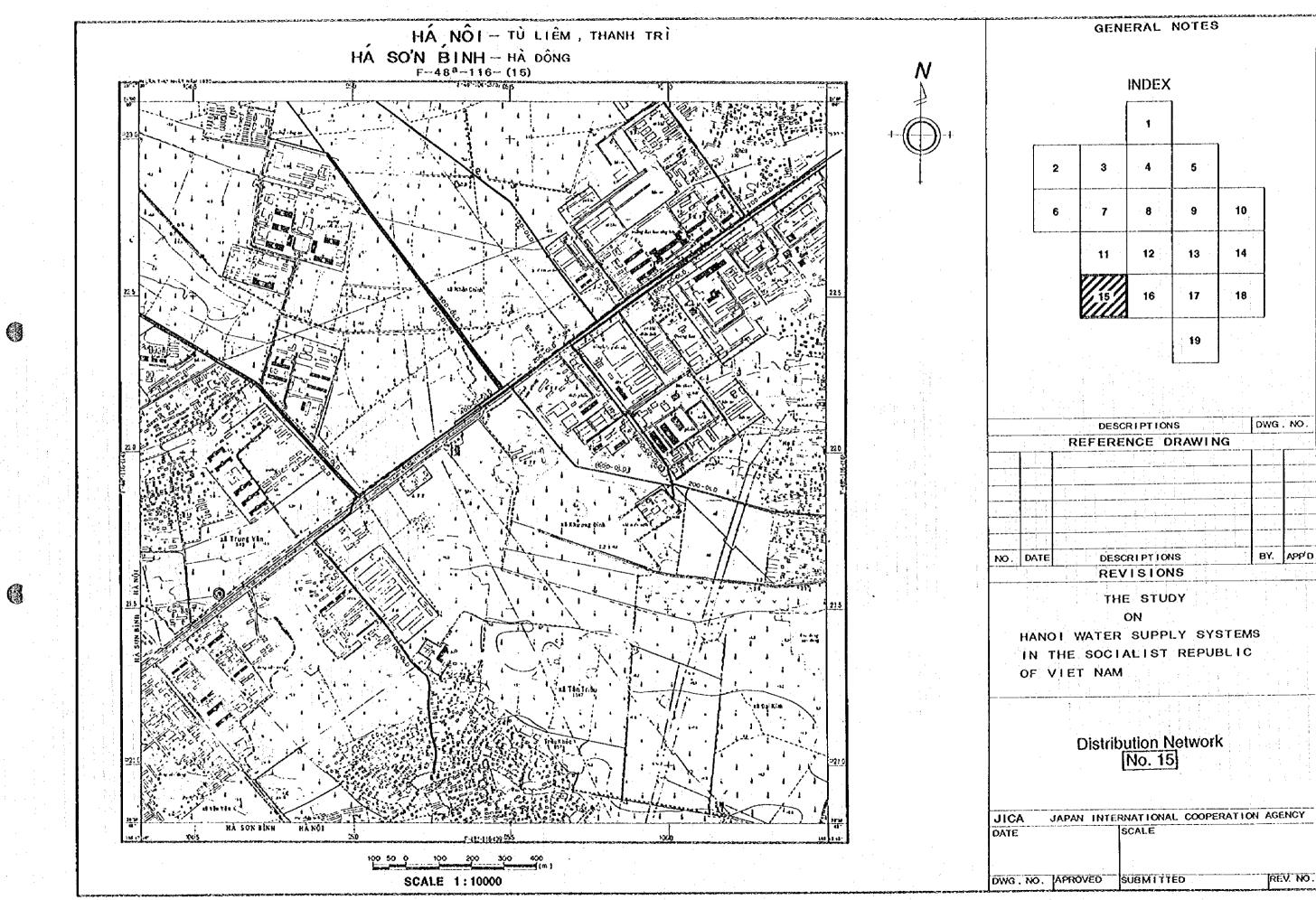
JAPAN INT	ERNATIONAL COOPER	ATION AGENCY
	SCALE	
APROVED	SUBMITTED	REV. NO.

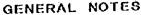




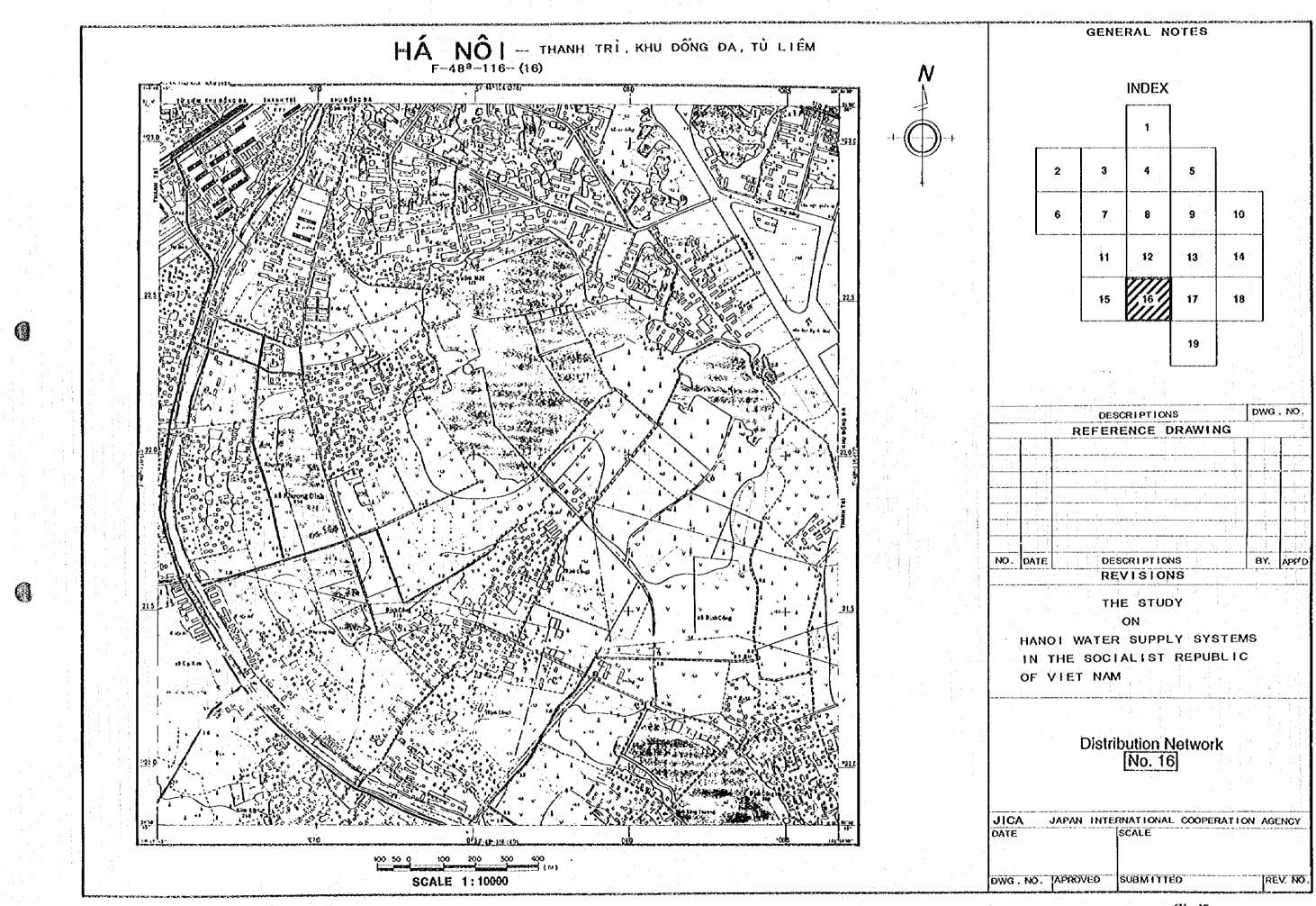

JAPAN INTERNATIONAL COOPERATION AGENCY				
	SCALE			
APROVE		REV. NO.		

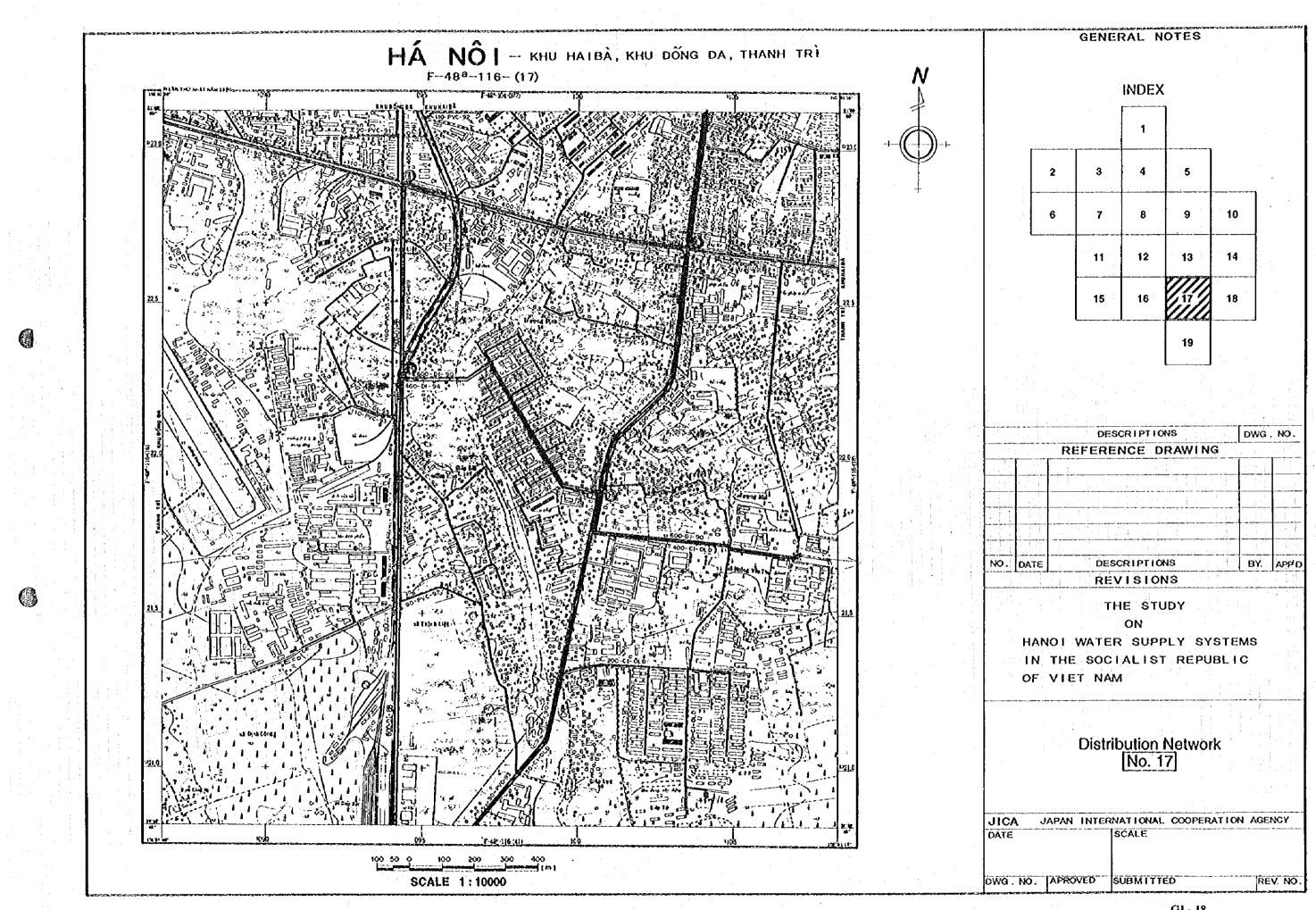

G1 - 11





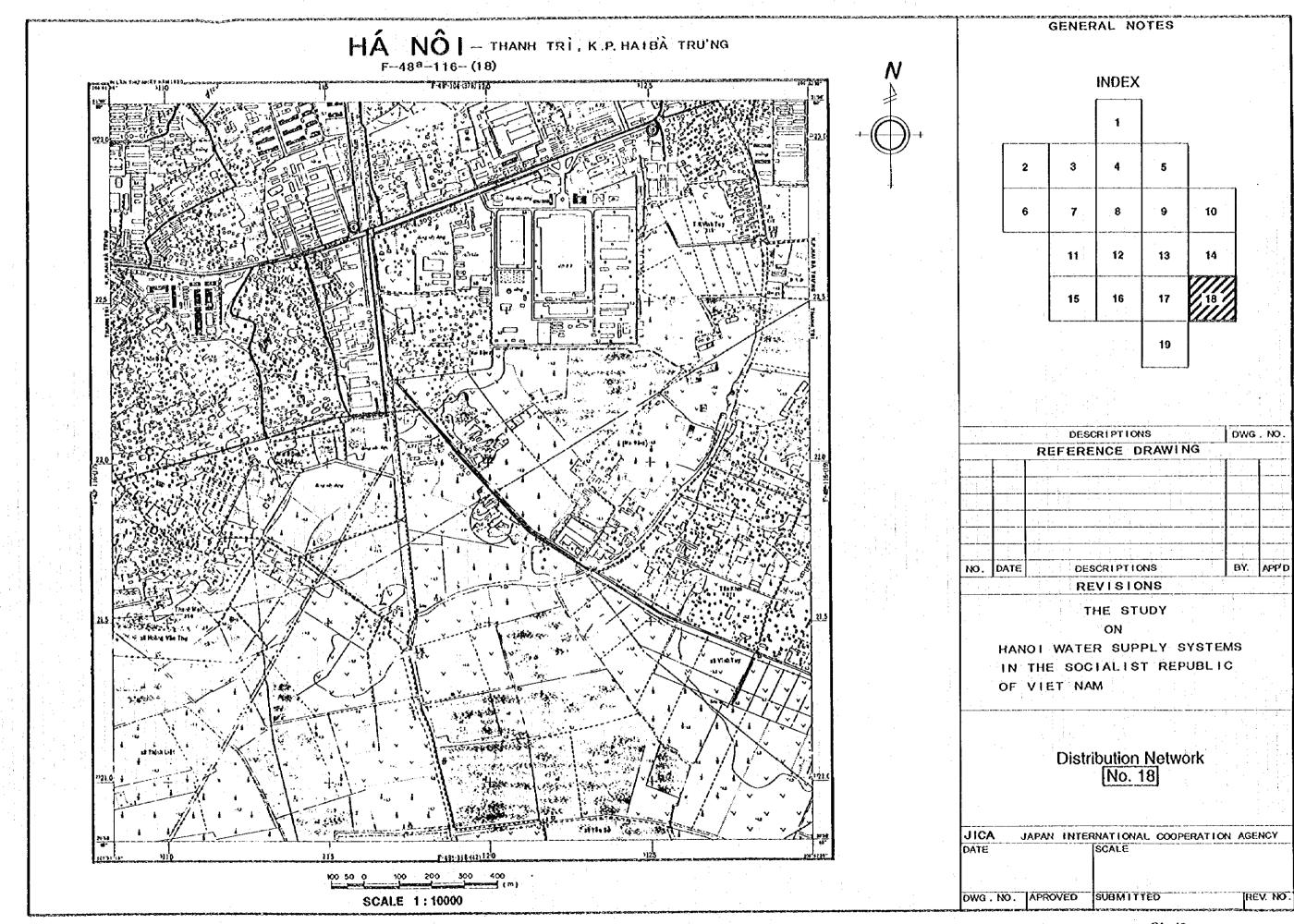
GI I3



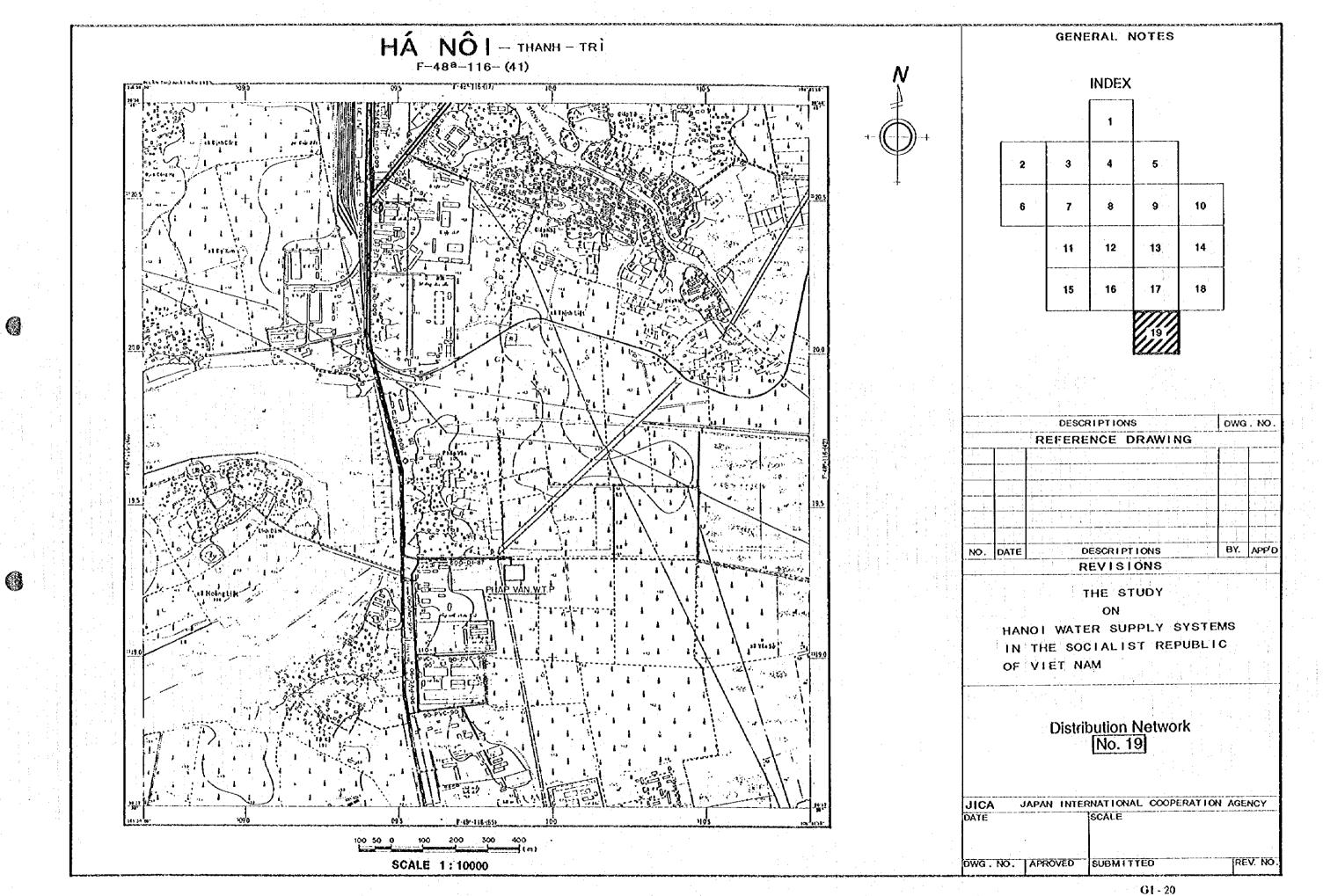


REV. NO.

G1 - 16



JAPAN	INTERNATIONA	L COOPERATION	AGENCY
, <u></u> , <u></u> , <u></u>	SCALE		
	1		
APROVI	D SUBMITT	ÉD	IREV. NO.


DESCR P1	TIONS		DWG.	NO.
REFERENCE	DRAWI	١G		
				:
		÷).		
DESCRIPT	IONS		BY.	APP'D
REVISI	ONS		·	
				10 T []

APAN INTER	NATIONAL COOPERATION	AGENC	Y
	SCALE		
APROVED	SUBMITTED	REV.	NO.

0

PAN INTE	RNATIONAL COOPERA	TION AGENCY
	SCALE	
:		
PROVED	SUBMITTED	REV. NO.

