APPENDIX B

0

0

8

CLIMATE AND HYDROLOGY

APPENDIX B

CLIMATE AND HYDROLOGY

Table of Contents

0

0

	CHAPTER	Ĩ	GENERAL	B-1
	CHAPTER	H	GENERAL CLIMATE	B-2
		2.1	Climatic Classification in the Philippines	B-2
	:	2.2	Climatic Features in the Study Area	B-2
	CHAPTER	111	RAINFALL AND FLOOD RECORD ANALYSIS	B-5
4	-	3.1	Availability of Hydrological Data	B-5
	•		3.1.1 Rainfall Data	B-5
			3.1.2 Water Level and Discharge Data	B-5
			3.1.3 Tidal Water Level	B-6
		3.2	Flood Record Analysis	B-6
		· .	3.2.1 Selection of Major Flood	B-6
			3.2.2 Probable Water Level and Discharge	B-7
			3.2.3 Evaluation of Major Floods	B-7
		3 3	Rainfall Analysis	B-7
	• •		3.3.1 Model Hyetograph	B-8
	·		3.3.2 Basin Mean Rainfall	B-8
		-	3.3.3 Probable Rainfall	B-9
	CHAPTER	1V	FLOOD RUNOFF CALCULATION	B-11
		4.1	River System Model	B-11
		4.2	Runoff Model	B-11
			4.2.1 Formulation of Runoff Model	B-11
			4.2.2 Verification of Runoff Model	B-13
		4.3	Probable Flood Discharge	B-13
			4.3.1 Peak Discharge Computed	R.13
			4.3.2 Computation of Probable Flood Discharge	B-13
	+ 1		4.3.3 Verification of Probable Flood Discharge	B-14
	· •.			
	CHAPTER	• V	GAUGING EQUIPMENT	B-15
		5.1	Rainfall Gauging Stations	B-15
			5.1.1 Location	B-15
			5.1.2 Configuration of Equipment	B-15
		5.2	Stream Gauging Station	B-16
			5.2.1 Location	B-16

5,2.2	Configuration of Equipment	B-16
5.2.3	Datum Elevation of Stream Gauge	B-17

0

θ

List of Tables

Table B.2.1	Number of Tropical Cyclones	B-19
Table B 2.2	Rainfall Caused by Tropical Cyclones in N. Luzon	B-20
Table B.2.3	Mean Monthly Rainfall	B-24
Table B.2.4	Monthly Temperature	B-25
Table B.2.5	Mean Monthly Humidity	B-26
Table B.2.6	Mean Monthly Wind Speed and Direction	B-27
Table B.2.7	Mean Monthly Evaporation	B-28
Table B.3.1	Inventory of Daily Rainfall Data	B-29
Table B.3.2	Inventory of Daily Water Level and Discharge Data	B-29
Table B.3.3	Inventory of Average Monthly Discharge	B-29
Table B.3.4	Major Flood Record	B-30
Table B.3.5	Water Level and Discharge Record	B-31
Table B.3.6	Altitude Conversion Factor	B-32
Table B.3.7	Recorded Maximum Rainfall at Laoag Station (1961-1995)	B-33
Table B.3.8	Probable Maximum Rainfall	B-34
Table B.4.1	Constants for Storage Function Model	B-35
Table B.4.2	Basin Mean Rainfall by Model Hyetograph	B-36
Table B.4.3	Comparison of Probable Discharge with Other Studies	B-37

()

Ø

List of Figures

.

Fig.	B.2.1	Climate Classification in the Philippines	B-38
Fig.	B.2.2	General Tracks of Tropical Cyclones Affecting	
	н. С	the North Luzon	B-39
Fig.	B.2.3	Tracks of Major Cyclones Affecting the Study Area	B-40
Fig.	B.2.4	Monthly Rainfall in and around the Study Area	B-41
Fig.	B.2.5	Monthly Rainfall, Temperature and Humidity	B-42
Fig.	B.3.1	Location of Existing Hydrological Stations	B-43
Fig.	B.3.2	Location of Hydrological Stations Constructed by JICA	B-44
Fig.	B.3.3	Relation Between Tidal Bench Mark and National Bench Mark	B-45
Fig.	B.3.4	Probable Water Level and Rating Curve at Gilbert Br.	B-46
Fig.	B.3.5	Track of Typhoon Gloring in 1996	B-47
Fig.	B.3.6	Hyetograph of Typhoon Gloring in 1996	B-48
Fig.	B.3.7	Model Hyetograph	B-49
Fig.	B.3.8	Thiessen Polygon and Coefficient	B-50
Fig.	B.3.9	Altitude Conversion Factor	B-51
Fig.	B.3.10	Probable 2-day Rainfall at Laoag Station	B-52
Fig.	B.3.11	Storm Rainfall Duration	B-53
Fig.	B.4.1	Division of Laoag River Basin	B-54
Fig.	B.4.2	River System Model for Runoff Calculation	B-55
Fig.	B.4.3	River System Diagram for Runoff Calculation	B-56
Fig.	B.4.4	Comparison of Observe and Computed Hydrograph on	
	· ·	Typhoon Gloring	B-57
Fig.	B.4.5	Probable Flood Discharge	B-58
Fig.	B.4.6	Probable Flood Hydrograph at Gilbert Br.	B-59
Fig.	B.4.7	Comparison of Flood Discharges with Other Studies	B-60
Fig.	B.4.8	Comparison of Specific Discharges with Other River Basins	B-61
Fig.	B.5.1	Automatic Rainfall Gauge	B-62
Fig.	B.5.2	Structural Layout of Rainfall Station	B-63
Fig.	B.5.3	Details of Sensors for Stream Flow Gauge	B-64
Fig.	B.5.4	Details of Support of Sensors for Stream Flow Gauge	B-65
Fig.	B.5.5	Details of Electric Equipment for Stream Flow Gauge	B-66
Fig.	B.5.6	Structural Layout of Electric Equipment House for Stream Flow Gauge	B-68

0

0

CHAPTER I GENERAL

This supporting report presents the results of the climatic and hydrological studies in the planning of sabo and flood control facilities. The purpose of the studies is broadly divided into three as follows:

- (1) To grasp the general climatic conditions in the Study Area;
- (2) To analyze past rainfall and flood records; and
- (3) To estimate the probable flood discharge through a flood nunoff model.

For these purposes, the Study was carried out in accordance with the following procedures:

(1) Data collection and field reconnaissance;

0

¢А

A

- (2) Analysis of general climatic conditions including tropical cyclones, rainfall, temperature, humidity and wind;
- (3) Mainly the analysis of rainfall and flood records, confirmation of availability of hydrological data, estimation of past major floods, proposal of a model hydrograph, and computation of basin mean rainfall;
- (4) Calculation of flood runoff for the formulation of the flood runoff model and the estimation of probable flood discharge; and
- (5) Installation of hydrological gauging equipment as provided in the Study.

CHAPTER II GENERAL CLIMATE

2.1 Climatic Classification in the Philippines

The climatic conditions in the Philippines are varied due to the existence of various plateaus and islands that differ in relief. Several climate classifications are commonly used by PAGASA and one of them is the Corona's classification (1920) which is based solely on rainfall characteristics. Using the average monthly distribution of rainfall and taking into consideration the greater or less prevalence of rain periods, climate of the Philippines is divided into four types as shown in Fig. B.2.1.

(1) Type I

There are two pronounced seasons: wet from May to October and dry for the rest of the year. All regions in the western part of the islands of Luzon, Mindoro, Negros, and Palawan belong to this type. The climate of the Study Area also falls under Type I. (÷-)

約

(2) Type II

There is no dry season, and the maximum rain period is very pronounced from November to January. Regions of this type are along or very near the eastern coast and are not sheltered from the northeast monsoons, trade winds and storms.

(3) Type III

There is no pronounced season. It is relatively wet from May to October and dry the rest of the year. Maximum rain period is not very pronounced and the dry season lasts from one to three months.

(4) Type IV

Rainfall is evenly distributed throughout the year. The regions affected by this type are Batanes Province, Northeastern Luzon, the southwestern part of Camarines Norte, western part of Leyte, Northern Cebu, Bohol, and most of Central, Eastern and Northern Mindanao.

2.2 Climatic Features in the Study Area

(1) Tropical Cyclones

The major storms that occurred in the Philippine Area of Responsibility (PAR) have been due to tropical cyclones. Tropical cyclones are, by international agreement, classified as follows:

(a)	Tropical Depression (TD)		with maximum wind speed of up to
			63 km/hr.
(b)	Tropical Storm (TS)	•	with maximum wind speed between 64 and
			1 18 km/hr.
(c)	Typhoon (TY)	•	with maximum winds greater than 118 km/hr.

Fig B.2.2 shows the general tracks of tropical cyclones affecting the northern part of Luzon. The season of tropical cyclones in the Philippines is from May to January. Tropical cyclones form as early as April but these are relatively few in number. Most tropical cyclones usually form in the Pacific Ocean between the Philippines and the

Marianas-Carolinas Islands in the months of July to September. The cyclones deposit a large amount of rainfall while passing overland where their energy is gradually dissipated.

The number of tropical cyclones which occurred in the PAR is presented in Table B.2.1. During the past 48 years (1948-95), a total of 957 tropical cyclones hit or came close to the PAR, averaging 20 cyclones per year, and about 26 percent of them (250 cyclones) hit or came close to Northern Luzon. Around 3 cyclones a year brought to Lacag a maximum daily rainfall of more than 50 mm, 75 percent of which is concentrated in July to September.

Tracks of major cyclones which brought heavy rainfall and flood to the Study Area are presented in Fig. B.2.3. Most of the cyclones which brought major floods battered the northern part of the Study Area from southeast to northwest. All cyclones that affected the Study Area as well as the maximum daily rainfall at Laoag Station (PAGASA) are given in Table B.2.2.

(2) Rainfall

The Philippines experiences two types of monsoon winds, namely, the northeast and southwest monsoons. These monsoons are caused by thermal variations in the Asian mainland. During winter in the northern hemisphere, the Asian Continent is snow bound and the high pressure all over China sends northeasterly winds over the eastern coasts of the Philippines from November to February. During summer in the northern hemisphere, the Asian Continent becomes warmer than the surrounding seas and a low pressure cell develops over the continent. This causes a flow of moist southwest winds over the Philippines. When this southwest flow becomes thick in depth, it persists for a long period causing continuous rains which may last for weeks from June to September.

Thus, aside from tropical cyclones, the southwest monsoon is accountable for the great portion of rainfall during wet season. The southwest monsoon brings rainy season in the western coast, as well as in the Study Area, as shown in Fig. B.2.4.

The average annual rainfall in the Philippines is about 2,530 mm, while in the Study Area, rainfall records from the PAGASA Laoag Station indicate that the average annual rainfall during the period 1961 to 1995 amounted to 2,135 mm, 97 percent of which is concentrated in the wet season, May to October, as shown in Table B.2.3 and Fig. B.2.5.

(3) Temperature

The Philippines, situated in the tropics surrounded by warm seas, with warm air currents flowing over them, is expected to have a generally high temperature. Table B.2.4 and Fig. B.2.5 show the monthly maximum, mean and minimum temperature at the Laoag Station (PAGASA). Records indicate that, on the average, January is the coldest at 24.5°C and May is the warmest at 29.1°C; hence, the annual variation of temperature is small. The hottest months are April and May, while the coldest months are December to February. The annual mean temperature is around 27°C.

(4) Humidity

Throughout the Philippines, relative humidity is rather high. This condition is mainly a result of extensive evaporation from the seas surrounding the country, the moist air stream affecting the Philippines, and the large amount of rainfall. Table B.2.5 presents the monthly and annual relative humidity recorded at the PAGASA Laoag Station.

8

The annual average relative humidity at Laoag is about 78%. Fig. B.2.5 shows high relative humidity from June to October and low relative humidity from December to April.

(5) Wind

The winds are the composite of major air currents, cyclones and local circulation produced by diurnal and topographic effects. During the southwest monsoon season, winds are generally from the southwest quadrant especially along the western coastal areas including the Study Area and, specially in June to September, the area is influenced by southwest monsoons.

0

67

The wind direction over the Study Area tends to the north direction or northeasterly in October to February. With the incoming wet season, the winds blow from the northwest.

The average wind speed over the whole year ranges from 3 to 4 meters per second and large-scale wind variations are infrequent at the Laoag Station.

Table B.2.6 shows the monthly wind directions and wind speed at the Laoag Station.

(6) Evaporation

Table B.2.7 gives the mean monthly open pan evaporation observed at the Batac Station which is located 15 km south of Laoag City. The mean annual evaporation is 1,761.6 mm, and seasonal variations of mean monthly evaporation ranges from 120.1 mm in September to 186.6 mm in April. Records indicate that, on the average, the mean monthly evaporation is around 180 mm in dry season (March to May) and around 130 mm in wet season (June to September).

CHAPTER III RAINFALL AND FLOOD RECORD ANALYSIS

3.1 Availability of Hydrological Data

3.1.1 Rainfall Data

63)

Ħ

Rainfall observations relevant to the Study Area have been made through gauging stations under the control of PAGASA and NIA as shown in Fig B.3.1. The availability of data at these rainfall stations are given in Table B.3.1.

PAGASA operates two (2) stations: one near the Laoag International Airport and the other in Batac, llocos Norte. The Laoag Station, equipped with an automatic recorder and daily rainfall gauge, has been in operation since 1961, while the Batac Station has been operating a daily rainfall gauge since 1977. The Data Information Center (DIC) of PAGASA in Manila undertakes the collection and processing of these data. Some missing daily rainfall data of the Laoag station are supplemented by the automatic recorder. However, some data are still missing even after processing of the automatic recorder.

NIA had carried out daily rainfall observation from 1976 to 1983 at five (5) stations in the Study Area, namely, Manalpac, Lumbad, Alabaan, Quiom and Paoay. Furthermore, NIA has maintained since 1984 daily rainfall gauges at five irrigation dam sites, namely., the Labugaon, Solsona, Madongan, Papa and Nueva Era dams. Residents who live near these rainfall stations are assigned as gauge keepers, and they carry out manual measurement of rainfall. Data of these stations are compiled in NIA, Laoag, but these records are fragmentary.

Before the Study was started, rainfall data of the Laoag Station (PAGASA) were the only available in the estimation of probable flood discharge due to its long observation period and reliability. JICA had installed three (3) automatic rainfall gauging equipment in Piddig, Solsona and Nueva Era as shown in Fig B.3.2.

3.1.2 Water Level and Discharge Data

The DPWH since 1957 has been conducting data collection on streamflow in the Study Area at three (3) stations, namely, Gilbert Bridge, Cauplasan Bridge and Solsona Dam as shown in Fig B.3.1. The inventory of water level and discharge data by DPWH is given Table B.3.2.

The gauge keepers who live near the stations have been observing the water level three times a day, i.e., from 7 to 8 a.m., around 12 noon and from 5 to 6 p.m.. The average of these data is recorded as daily water level data. The DPWH Region I Office has been undertaking discharge observations at these stations, but observation has not been carried out for the past 10 years.

Discharge observations had been performed only at the time of low river stage; hence, river stage-discharge relations are not precise for the high water stage. At present, observation at the Cauplasan Bridge ceased. Whole data on streamflow are available at the Bureau of Research and Standard (BRS), DPWH. Some daily records, however, especially the water level during flood time at Solsona Dam, are not available.

NIA had also observed daily discharge at the five (5) dam sites from 1978 to 1994 but only the average monthly discharge is recorded in NIA, Laoag. The records are fragmentary as tabulated in Table B.3.3.

For the Study, JICA had constructed three (3) automatic water level gauging stations including automatic current meters at Gilbert Bridge (Laoag River), Cauplasan Bridge (Laoag River), and Solsona Dam (Solsona River) as shown in Fig B.3.2.

3.1.3 Tidal Water Level

Based on the Predicted Tide and Current Tables published by the National Mapping and Resource Information Authority (NAMRIA), DENR, 1996, the tidal data at Currimao Port which is the nearest to the Study Area and which is 20 km south of Laoag City is available for the Study. The tidal data and the results of the topographic survey conducted for the Study shows the relation between the tidal data at Currimao Port and the elevation of the National Bench Mark which is the basis of the topographic elevation in the Study Area as illustrated in Fig B.3.3. The relations are tabulated as follows:

Item No.	Water Level	Elevation (m)
1	Mean Spring Higher High Water (MSHHW)	+0.134
2	Mean Higher High Water (MHHW)	-0.018
3	Mean Sea Level (MSL)	-0.302
4	Mean Low Water (MLW)	-0.586

۲

3.2 Flood Record Analysis

Flood record analysis has been carried out by the following procedures:

- (1) Selection of major floods from past records;
- (2) Estimation of flood probability by the probable water level/discharge at Gilbert Bridge. Estimation of flood probability from probable rainfall is not reliable, because there is only one station (Laoag station) in the Study Area where rainfall records for a long period were obtained; and
- (3) Evaluation of the selected major floods by the estimated flood probability.

3.2.1 Selection of Major Flood

Availability of rainfall and water level data is explained in Section 3.1, Availability of Hydrological Data. Based on the rainfall and water level data, the selection of major floods is conducted in line with the following conditions:

- (1) Maximum five (5) water level records at Gilbert Bridge on Laoag River.
- (2) Maximum five (5) flood inundation depth above the road by interview survey.
- (3) Maximum five (5) rainfall data at Laoag Station for various durations such as 3 hrs., 6 hrs., 12 hrs., 1 day, 2 days and 3 days.
- (4) Maximum three (3) flood marks at five (5) irrigation dams, namely, Labugaon, Solsona, Madongan, Papa and Nueva Era.

A total of sixteen (16) major floods are selected as presented in Table B.3.4. Among these major floods, six (6) floods with a higher flood level are selected. The table below shows the six highest flood levels.

	Cyclone	Water Level	Rainfal	l at Laoag ((nun)
	ey olonit	at Gilbert Br.	1-day	2-day	3-day
- 1	Gening, Jun 1967	9.9 m	510	557	558
2	Wanda, Aug 1962	9.8 m	409	468	496
3	Miding, Sep 1986	9.4 m	214	350	476
4	Gloring, Jul 1996	9,3 m	382	519	674
5	Maring, Sep 1992	9.0 m	265	450	467
6	Goring, Jul 1977	8.9 m	240	306	347

3.2.2 Probable Water Level and Discharge

0

8

DPWH had recorded the water level in Laoag River at Gilbert Bridge for 37 years from 1959 to 1995. The annual maximum water levels which are converted to the datum for the Study are given in Table B.3.5. No water level data is available from 1978 to 1983, but it may be noted that there were no heavy rainfall and big flood damage during this period.

The probability plot of water level at Gilbert Bridge is computed from Table B.3.5 and the rating curve is obtained from the records of Typhoon Gloring in July 1996. The probability plot of water level and rating curve are shown in Fig. B.3.4. Based on the calculation, the probable water level in terms of elevation and discharge at Gilbert Bridge is shown below.

Return Period	Water Level (EL.m)	Discharge (m ³ /s)
2-vr.	6,85	4,500
5-yr.	8.29	7,200
10-vr	9.06	8,900
25-st	9,90	10,900
50-yr	10.44	12,300
100-yr.	10.94	13,700

3.2.3 Evaluation of Major Floods

The probability of major floods recorded from 1959 including Typhoon Gloring in July 1996 is listed below.

	Cyclone	At Gilbe	rt Bridge	Probability
		Water Level	Discharge	of Flood
1	Gening Jun 1967	9.9 m	10,900 m ³ /s	25-ут.
2	Wanda Aug 1962	9,8 m	10,800 m ³ /s	24-yr.
3	Miding Sep 1986	9,4 m	9,700 m ³ /s	15-yr.
· 4	Gloring Jul 1996	9,3 m	9,500 m ³ /s	15-yr.
5	Marino Sen 1992	9.0 m	8,700 m ³ /s	10-yr.
6	Goring Inl 1977	8.9 m	8,500 m ³ /s	9-yr.

Typhoon Gloring in July 1996 is evaluated to correspond to a flood of a 15-year return period. The biggest typhoon for the past forty years is typhoon Gening in June 1967 which corresponds to a flood of a 25-year return period.

3.3 Rainfall Analysis

Hourly rainfall distribution is indispensable to obtain the hydrograph of a probable flood discharge. Among the major floods mentioned above, only Typhoon Gloring in July 1996 gives

the hourly rainfall distribution records of the four stations of Laoag, Piddig, Solsona and Nueva Era.

A point rainfall distribution pattern or a model hyetograph is proposed based on the rainfall records of Typhoon Gloring in July 1996. Furthermore, basin mean rainfall is computed to estimate the temporal and spatial rainfall distributions in the Study Area.

3.3.1 Model Hyetograph

During the Study, Typhoon Gloring hit Northern Luzon and triggered a heavy downpour in the Study Area from July 23 to July 27, 1996. Fig. B.3.5 shows the track of the typhoon. Heavy rainfall took place when the eye of the typhoon was crossing 200 km north of Laoag City.

0

The hyetograph recorded at the four rainfall gauging stations is shown in Fig. B.3.6. The maximum rainfall amount for the duration of 5 days, 3 days and t hour at these stations are given below.

Rainfall Station	5-day Rainfall ¹⁾ (Jul. 23 - Jul.27)	3-day Rainfall ²⁾ (Jul. 24 - Jul.26)	Maximum Hourly Rainfall	
Laoag	705 mi	643 mm	51 mm	15:00 - 16:00, Jul. 25
Piddig	786 mm	741 mm	69 mm	16:00 - 17:00, Jul. 25
Solsona	689 mm	594 mm	30 mni	12:00 - 13:00, Jul. 25
Nueva Era	829 mm	795 mm	52 mm	12:00 - 13:00, Jul. 25

1): 5-day means from 8 a.m. on July 23 to 8 a.m. on July 28, 1996.

2): 3-day means from 12 midnight on July 23 to 12 midnight on July 26, 1996.

Rainfall was concentrated for three days, from midnight of July 23 to midnight of July 26, 1996. The observed rainfall distribution pattern for three days is proposed as the model hyetograph to estimate the hydrograph of a probable flood discharge as shown in Fig. B.3.7. However, the hyetograph at Solsona adopts the average hourly distribution pattern of Piddig and Nueva Era because the rainfall amount at Solsona, especially the hourly maximum rainfall is too small compared to the others.

3.3.2 Basin Mean Rainfall

The proposed model hyetograph which is a point rainfall at each station is converted to basin mean rainfall by the Thiessen polygon method with the altitude conversion factor. Taking the following formula into account, basin mean rainfall is estimated;

$$R_m = f \cdot R_0$$

where;

1

 $R_{in} : \text{ basin mean rainfall} \\ R_{0} : \text{ point rainfall} \\ f : \text{ conversion factor} \\ f = f_{i} \cdot f_{e} \\ \text{ where;} \\ f_{i} : \text{ Thiessen coefficient} \\ f_{e} : \text{ altitude adjustment factor} \end{cases}$

(1) Thiessen Polygon Coefficient

Thiessen polygons and coefficients of sub-basins are given in Fig. B.3.8. Division of basin is described in Section 4.1, River System Model.

(2) Altitude Conversion Factor

Since the four (4) automatic rainfall stations are not located at the average elevation of each sub-basin, the rainfall amount is adjusted by elevation or altitude.

The relationship between the rainfall amounts of various duration (1-hr, 3-hr, 12-hr and 24-hr) and the elevation is derived from five rainfall stations (PAGASA) in western Luzon, namely, Laoag, Vigan, Dagupan, Baguio and Sta. Cruz, with various elevations (3 m to 1,500 m) as shown in Fig. B.3.9, assuming that climatic conditions are similar.

The point rainfall amount is adjusted for the rainfall duration of 3-hr and 24-hr by the altitude conversion factor as shown in Fig. B.3.9: The altitude conversion factor is expressed by the following equation:

 $f_e = \text{EXP} \{ 0.00035 \text{ h} \}$ (rainfall duration = 3-hr.) $f_e = \text{EXP} [0.00043 \text{ h} \}$ (rainfall duration = 24-hr.) where:

···,

 f_e : altitude conversion factor h : altitude or elevation (m)

Table B.3.6 gives the altitude conversion factor. The altitude conversion factor is applied considering the average elevation of each sub-basin and the elevation of rainfall stations.

3.3.3 Probable Rainfall

60

The probable rainfall obtained from the rainfall records of only one station in the Study Area (Laoag Station) is not reliable to estimate the probability of flood, but it is still computed as a secondary data.

(1) Computation of Probable Rainfall

Data of the PAGASA Laoag Station are used to estimate the probable rainfall because the station is the only available and reliable source. The recorded maximum rainfall of 1-day, 2-day and 3-day duration at the station are tabulated in Table B.3.7. Probable maximum rainfall of 1-day, 2-day and 3-day durations are computed by the Hazen, Gumbel, Log-normal, Iwai, Ishihara-Takase methods as presented in Table B.3.8. Fig. B.3.10 presents the probability graphs of exceedance of 2-day duration using the Log-normal method which fit well in the rainfall data plotted by the Hazen method. Results of the Log-normal method are summarized below.

		(Ú	nit: mm)
Return Period	l-day	2-day	3-day
2-51	226	325	377
5-yr.	321	450	516
10-yr.	387	534	608
25-vr.	471	641	725
50-yr.	535	721	811
100-yr.	600	801	898

(2) Storm Rainfall Duration

The duration of storm rainfall is an important factor in setting up the hyetograph for the hydrological design. It has been confirmed by the rainfall mass curves prepared by using hourly rainfall records of big storms, as presented in Fig. B.3.11. Most of the storm rainfalls that triggered a high water level at Gilbert Bridge ceased after 2 days. In the case of Typhoon Gloring, the hystograph of 2-day duration, from July 24 to July 25, brought a peak discharge in the Study Area as shown in Fig. B.4.4.

(3) Estimation of Flood by Probable Rainfall

Since storm rainfall brought major floods after two (2) days, a major flood is estimated by a 2-day probable rainfall. The major floods in Subsection 3.2.3, Evaluation of Major Floods, were estimated by probable rainfall as follows:

	Cyclone	2-day Rainfall at Laoag Station	Probability
1	Gening, Jun 1967	557 mm	
2	Wanda, Aug 1962	468 mm	
3	Miding, Sep 1986	350 min	
4	Gloring, Jul 1996	519 mm	
5	Maring, Sep 1992	450 mm	
6	Goring, Jul 1977	306 mm	

Typhoon Gloring in July 1996 corresponds to around 10-year return period by probable rainfall.

0

CHAPTER IV FLOOD RUNOFF CALCULATION

4.1 River System Model

()

A river system model is constructed for the flood runoff analysis of different river basins according to shape, stream network and topography. The model in the Laoag River Basin comprises all the elements of a river system such as sub-basin and channel. Fig. B.4.1 presents the basin divisions and area of sub-basins which are constructed considering the following locations:

(1) The junction of main stream with major tributaries;

(2) The existing streamflow gauging stations;

(3) The river section bounding catchments with different nunoff characteristics; and

(4) The existing and proposed river structure sites.

The Laoag River Basin is divided into 24 sub-basins related to 19 river channels. Based on the basin divisions, the river system model for the runoff calculation is as shown in Fig. B.4.2 and illustrated in Fig. B.4.3.

4.2 Runoff Model

4.2.1 Formulation of Runoff Model

The Storage Function Method is employed for the flood runoff computation in this study to express the non-linearity of runoff phenomena. The storage function method can show the process of transformation from rainfall to runoff on the assumption that there is a one-on-one functional relation between the volume of storage and runoff.

Through the use of this method, a relationship can be established between the volume of storage (S) of a basin or river channel and discharge (Q). This relationship is expressed as:

 $S = K \cdot Q^{p}$ (K, p: constant)

This equation is used with the equation of motion which expresses runoff as proportional to the exponent of storage volume. In this equation, runoff phenomena is considered to be similar to the runoff from the notch of a container filled with water.

(1) Storage Function Model for River Basin

Runoff calculation for a basin is performed in combination with the following equation of continuity.

dS/dt =	1/3.6	·f·	Tave A	-Q	•
where;					
	0				

S	apparent storage	e volume in the basin (m3/s/hr)
ſ	inflow coefficien	nt i e se s
r _{are}	basin's average 1	rainfall (mm/hr)
A	area of the basin	ι (km²)
Q(t) = Q(t+T)	direct runoff hei	ght with lag time (m ³ /s)
T	lag time (hr.)	

Constants K, p and T for a river basin are determined as follows:

 $K = 2.5 k A^{0.24}$ p = 0.6T = 0.0506 L - 0.31

B - 11

where; A

k

I

N

: catchment area (km²)

L : channel length (km)

: constant of surface flow $(k = (N/I^{0.5})^{0.6})$

: slope of surface

; equivalent roughness coefficient

Land Condition	Equivalent Roughness
· · ·	Coefficient (N)
Paddy field (Farm)	2
Mountain, Forest	0.7
Hill	0.3

()

The constants K and T are given in Table B.4.1. The constant f in the above equation is the inflow coefficient and is used to estimate the effective rainfall. In the Storage Function Model, the coefficient f is not related to rainfall but to the drainage area. It is assumed that in the early stages of rainfall, f is f_1 (termed the primary runoff rate) and that runoff occurs only from the area $f_1 \times A$ (called the runoff area). When Rsa (saturation rainfall) accumulate, then f = 1 (this is termed as the saturation runoff rate), and runoff occurs also from the remaining part $(1 - f_1) \times A$ (infiltration area) due to the rainfall after Rsa. In this Study, the constants f_1 and Rsa are fixed at 0.5 mm and 100 mm, respectively.

(2) Storage Function Model for River Channel

The storage function of the channel is performed in combination with the following equation:

 $dS/dt = \Sigma f j \cdot l j - Q_1$

where;

S	: apparent storage volume of river channel (m ³)
IJ	inflow from the upstream end of a river course
	to the river channel being considered (m ³ /s)
ſj	: Inflow coefficient
$Q_1(t) = Q(t+1)$: discharge at the downstream end of basin under the consideration of lag time (m ³ /s)
T	: lag time (hr.)

Constants K, p and T for river channel are determined as follows:

K = L $p = 0.$	B ^{v.4}	$(n/I^{0.3})^{0.9}/3.6$		* .
T=0	.0010	55LT ⁰³		5
where	,			
B	:	average channel widt	h (m)	
L.		channel length (km)		1
n	•	Manning's roughness	coeffic	ient
I	:	average channel slop	e .	

K and P for river channels are determined assuming the flow as Manning's uniform flow. The determined constants K and T are given in Table B.4.1.

4.2.2 Verification of Runoff Model

The flood runoff model formulated in the previous Subsection 4.2.1 is verified from the viewpoint of conformity of the computed or simulated runoff hydrograph with the observed discharge hydrograph. The computed hydrograph using the proposed runoff model of Typhoon Gloring in July 1996 is verified with the observed hydrograph. The observed point rainfall for the runoff calculation is converted to basin mean rainfall by the Thiessen coefficient and the altitude and areal conversion factors explained in Subsection 3.3.2, Basin Mean Rainfall.

Fig. B.4.4. shows the comparison of the computed and observed hydrographs at Gilbert Bridge, Cauplasan Bridge and Solsona Dam. The comparison indicates that the computed peak discharge and proposed runoff model are appropriate to estimate the probable discharge. The peak discharges compared are as follows:

Location	Discharge (m ³ /s)						
	Observed	Computed					
Solsona Dam	550	630					
Cauplasan Br.	4,800	5,000					
Gilbert Br.	9,500	8,800					

4.3 Probable Flood Discharge

Probable flood discharges are computed for 2, 5, 10, 25, 50 and 100-year return periods in accordance with the following procedures:

- (1) Obtain a peak discharge at Gilbert Bridge from the proposed model hyetograph shown in Fig. B.3.7;
- (2) Compute a probable flood discharge after expanding or contracting the model hyetograph. The probable flood discharge at Gilbert Bridge should correspond to the probable water level and discharge estimated in Subsection 3.2.2; and
- (3) Verify the computation results comparing it with other study results in the Study Area and other river basins in the Philippines.

4.3.1 Peak Discharge Computed from Model Hyetograph

Based on the proposed model hyetograph shown in Fig. B.3.7, the basin mean rainfall of each sub-basin is calculated considering the Thiessen polygon coefficient and the altitude and areal conversion factors. The basin mean daily rainfalls are tabulated in Table B.4.2. (Refer to Subsections 3.3.1 and 3.3.2.)

The peak discharge at Gilbert Bridge computed from the basin mean rainfall is shown in the following Table.

Peak Discharge	Return Period
10,500 m ³ /s	around 20-year

The peak discharge computed from the proposed model hyetograph corresponds to around 20-year return period.

4.3.2 Computation of Probable Flood Discharge

After expanding or contracting the model hyetograph, the probable flood discharges

corresponding to 2, 5, 10, 25, 50 and 100-year return periods are computed. The results are presented in Fig. B.4.5, and the flood discharges and water levels at Gilbert Bridge are shown below.

Return Period	Expand/Contract Rate	Water Level (EL.m)	Flood Discharge (m ³ /s)
2-yr.	0,50	6.85	4,500
5-yr.	0.72	8.29	7,200
10-yr.	0.86	9.05	8,900
25-yr.	1.03	9.90	10,900
50-yr.	1,15	10.44	12,300
100-yr.	1,26	10.94	13,700

The hydrograph of the probable flood discharges at Gilbert Bridge is shown in Fig. B.4.6.

4.3.3 Verification of Probable Flood Discharge

The probable flood discharge in the Study Area had been previously computed in the following studies:

- (1) The Detailed Design on Ilocos Norte Irrigation Project, NIA, 1981
- (2) The Nationwide Flood Control Plan and River Dredging Program, DPWH, 1982
- (3) The Feasibility Study on the Tina-Gasgas-Cura Impounding Reservoir Project at Solsona, NIA, 1983

The probable flood discharges in this present Study and the studies mentioned above are tabulated in Table B.4.3 and compared in Fig. B.4.7. The discharges from upstream sub-basins of this Study are almost the same or slightly larger than those of the other studies. Although the discharge at Gilbert Bridge in this Study is larger than that of the other studies, the probable discharge verified in Subsection 3.2.2, Probable Water Level and Discharge, justifies the appropriateness of flood discharges computed in this Section 4.3.

The specific discharges of a 50-year return period are compared with those estimated for other river basins, as shown in Fig B.4.8. The estimated specific discharge in this Study is larger than those of the other river basins, because rivers in the Study Area have a steeper slope and has no flat or retarding area like those of the other river basins.

Furthermore, the probable discharge is estimated through the probable rainfall which corresponds to a 25-year return period. The probable 2-day rainfall of a 25-year return period is 641 mm in accordance with the Subsection 3.3.3, Probable Rainfall. The 2-day rainfall of Typhoon Gloring is 519 mm. The model hyetograph shown in Fig. B.3.7 is expanded by the ratio of rainfall amounts of 641 mm to 519 mm which is 1.24. The probable peak discharge is calculated by the expanded hyetograph considering its basin mean rainfall, as shown below.

Peak Discharge	Water Level
13,400 m ³ /s	10.9 m

This peak discharge corresponds to the water level of 10.9 m which is equivalent to a 90-year return period based on the probable flood discharge estimated in Subsection 3.2.2, Probable Water Level and Discharge. This peak discharge is not appropriate for this present Study.

0

翰

CHAPTER V INSTALLATION OF HYDROLOGICAL GAUGING EQUIPMENT

Under this Study, three (3) rainfall and three (3) stream flow gauging stations have been constructed at different sites, as indicated in Fig B.3.2.

5.1 Rainfall Gauging Stations

5.1.1 Location

0

1

(1) Piddig Rainfall Gauging Station

Piddig Rainfall Gauging Station is located on top of a small hill inside the campus of Don Salustiano High School, Piddig, Ilocos Norte (Coordinates: N18 10'44.3", E120 43'28.5").

(2) Solsona Rainfall Gauging Station

This rainfall gauging station is located at the left side of the road on a small hill along Solsona-Kalinga-Apayao Road, leading to the boundary of llocos Norte and Kalinga-Apayao. (Coordinates: N18 05'53.4", E120 49'56.5").

(3) Nueva Era Rainfall Gauging Station

This Station is located in front of the Municipal Hall of Nueva Era and within the municipal garden of the said town. (Coordinates: N17 54'56.5", E120 39'49.3").

5.1.2 Configuration of Equipment

The rainfall gauges installed are all identical unit types (Model B-432-01) as shown in Fig B.5.1. Each equipment is an automatic type designed for automatic measurement and recording of rainfall for over one month. This is operated mainly by one dry battery with a power of 1.5V.

The equipment has a single body which stores the sensor and the recorder. Rainwater enters into the inlet and it is collected in one of the two buckets. When a fixed amount of rain, 0.5 mm, is collected, the bucket apparatus tips and the collected rain is drained out at the bottom. The other bucket comes into position to collect rain, and the process is repeated.

The bucket apparatus tips at the fixed rainfall level, namely 0.5 nm, and the tipping movement is detected by the center axle of the tipping apparatus. This is transmitted with a cam linked to the recording pen. The corresponding rainfall is then recorded on the chart in a step format. If data recording reaches the edge of the chart, the recording continues by returning across the width of the chart. A quarts clock is used for the chart drive and can advance the chart at 18 num/hour. One (1) roll of chart is sufficient to contain one (1) month rainfall data in continuos operation.

Fig B.5.2 shows the structural layout of a rainfall station. Fence with a height of 2.0 m made up of interlink wire is provided, and barbed wire is placed on top of the fence. The automatic rainfall gauge is mounted on a rectangular steel plate with steel pipe supports which is elevated at about 1.20 m and anchored to the ground on reinforced concrete.

A Public Notice Board is also placed beside the rain gauge fence with English message translated in Ilocano to inform the public of the use of such equipment. (Refer to Fig B.5.2.)

5.2 Stream Gauging Station

5.2.1 Location

(1) Gilbert Bridge Stream Flow Gauging Station

Sensors are installed at the upstream side of Gilbert Bridge (Coordinates: N18 12'12.1", E120 35'18.7") on Laoag River and 200 meters away from the approach to Laoag City. Gilbert Bridge is approximately 8.3 km away from the Laoag river mouth. The electric equipment house is located beside the bridge at the right bank, on the Laoag city side.

()

()

戲

(2) Cauplasan Bridge Stream Flow Gauging Station

Sensors are installed at the upstream side of the bridge (Coordinates: N18 05'46.6", E120 42'47.9") and it is approximately 500 meters from the approach to the left bank, while the electric equipment house is constructed on the sidewalk of Cauplasan Bridge approximately 460 meters away from the left bank.

(3) Solsona Dam Streamflow Gauging Station

Sensors are installed at the right bank approximately 70 meters upstream of Solsona Dam (Coordinates: N18 15'10.8", E120 48'49.9"). The electric equipment house is constructed at the right bank of Solsona Dam Bridge near the field office of the National Irrigation Administrative (NIA).

5.2.2 Configuration of Equipment

The stream flow gauging stations have three (3) component sensors as shown in Fig B.5.3, namely; the radio wave current sensor, the ultrasonic water level sensor, and the temperature sensor which measures air temperature to adjust propagation speed of ultrasonic wave. Staff gauges are also installed at piers of Gilbert Bridge, Cauplasan Bridge and Solsona Dam.

Power in all equipment in the three (3) stations is supplied by the llocos Norte Electric Company (INEC). The power supplied is 220/240V. This power is dropped to 100V to meet the power requirement of the equipment, through the power supply unit. Two (2) 12V batteries with 200 amp and 100 amp, respectively, are provided to maintain the operation of these equipment in case of brownout.

A Public Notice Board is also placed beside the electric equipment house with English message translated in llocano to inform the public of the use of such equipment. (Refer to Fig B.5.6.)

(1) Gilbert Bridge Stream Flow Gauging Station

At the Gilbert Bridge Station, water level, current and temperature sensors are attached to an arm assembly made of galvanized cast iron pipes with a length of 2 m which is welded directly to the web of outer steel girder of the Gilbert Bridge. The current sensor has a depression angle of 30. (Refer to Fig B.5.4.)

The three (3) sensors are connected to the equipment installed in the electric equipment house by (3) three cables with a length of 200 m. The equipment related to water level measurement are the water level converter, IC memory card logger and pen recorder, while those for water velocity or current measurement are the current meter with memory card logger and pen recorder. Power supply unit for brownout is also installed in the electric equipment house. (Refer to Figs B.5.5 to B.5.6.)

The zero point of the water level is set at around 10 m below the water level sensor. The chart speed is set at 2 cm/hr., the lowest speed of the pen recorder and therefore, the chart with a length of 15 m can record one month data. Data recording intervals to

the IC memory card for both water level and flow velocity is set at every 10 minutes and the IC memory card can accommodate one month data at this interval.

(2) Cauplasan Bridge Stream Flow Gauging Station

At Cauplasan Bridge Gauging Station, the sensors are also attached to an arm of two (2) meters long galvanized cast iron pipe assembly which is welded on top of the steel flange of the upstream girder of the bridge. The arm assembly can be rotated to adjust the sensors to the desired position, and it is placed approximately 11 m above the riverbed. (Refer to Fig B.5.4.)

The electric house is constructed on the same side as the sensors. It is located along the sidewalk of the bridge and is modified into a smaller unit to conform with the space requirement of the sidewalk. Charts and pen recorders are not provided for this station. Setup of equipment is the same as the Gilbert Bridge Station. (Refer to Figs B.5.5 to B.5.6.)

(3) Solsona Dam Stream Flow Gauging Station

0

A

At Solsona Dam Gauging Station, the ultrasonic wave water level sensor and radio wave velocity sensor are attached to an arm assembly 2.5 m in length, made up of galvanized cast iron pipe and which can be rotated to adjust the sensors to the desired position. The two sensors are installed on top of the reinforced concrete wall of the intake dam, which is 70 meters away from the constructed electric equipment house. (Refer to Fig B.5.4.)

The water level sensor and the velocity sensor are set at approximately 6 meters above the existing water level. Velocity sensor is installed with a 35 degree angle of depression and the temperature sensor is installed at the top of the electric house. (Refer to Figs B.5.5 to B.5.6.)

The same type of equipment as in the Gilbert Bridge Station is installed in the electric equipment house of Solsona Station. However, the recording interval in storing data in the memory card loggers for water level and velocity is set at every 5 minutes. Pen recorders are also provided at this station.

5.2.3 Datum Elevation of Stream Gauge

The establishment of a Datum Elevation plays a major role in the Study. At the beginning, elevations were obtained at different sites as part of the ground survey activity which were then reflected on the topographic map. This topographic elevations were reckoned from the existing National Bench Mark which is the basis of topographic elevations in the Study Area. Out of these, Datum Line was established in the major point of stream observation, namely, Gilbert Bridge, Cauplasan Bridge and Solsona Dam. The table below shows the Gauge Level and Datum Elevation of these three (3) stations.

Location	Gauge Level (m)	Datum Elevation (m)			
Gilbert Bridge	0.0	0.0			
Cauplasan	0.0	20.0			
Solsona	0.0	110.0			

Staff gauges on which the gauge levels were established are installed at the piers of Gilbert Bridge and Cauplasan Bridge. Another gauge is installed at the side of the concrete wall on which the arm assembly of sensors is attached in the vicinity of Solsona Dam.

These staff gauges are constructed of 2" wide by 1/4" thick flat bars which are fastened to the

piers and concrete walls of the stations. Graduations are painted and stickers are pasted on the flat bar to indicate the rise in elevation per meter. These are constructed to facilitate the observation of water level elevation especially during flood time.

0

ð.-8

0

TABLES

Year P	hilippine	s						· · · · ·			Nor	then	a Luzo	a								
			Apr	М	ау	h	u u	J	hu	A	ug	S	ep	C	×t –	N	ov	L)ec	Others	An	nual
1948	20	•	(-)	•	(-)	-	(.)	•	(•)	•	(•)	-	(•)	•	(-)	•	(-)	•	(-)	•	6	(•)
1949	22	-	(-)	-	(-)	-	(-)	•	(-)	-	(•)	1	(-)	•	(-)	-	(-)	l	(•)	-	4	(•)
1950	14	0	(-)	0	(-)	0	(-)	0	(•)	ł	(•)	1	(-)	1	(-)	0	(-)	0	(•)	0	3	(•)
1951	13	•	(-)	-	(-)	-	(-)	1	(-)	l	(-)	2	(-)	•	(-)	•	(•)	•	(-)	•	5	(+)
1952	27	-	(-)	÷	(.)	i	(\cdot)	1	(-)	2	(-)	•	(-)	-	(•)	2	(-)	•	(-)	-	8	(•)
1953	18	•	(•)	1	(-)	-	(-)	•	(•)	2	(-)	1	(-)	•	(-)	Ĩ	(•)	-	(•)	•	6	(•)
1954	18	0	(-)	0	()	0	(-)	0	(-)	1	(-)	1	(-)	2	(-)	2	(-)	0	(-)	0	6	(-)
1955	15	-	(-)	•	(-)	-	(-)	•	(-)	1	(-)	1	(-)	•	(-)	-	(•)	•	(-)	• •	3	(-)
1956	25	1	(-)	-	(-)	•	(-)	•	(-)	1.	(-)	1,	(-)	1	(-)	3	(\cdot)	•	(-)	• .	9	(-)
1957	15	•	(-)	÷	(-)	i	(-)	1	(-)	•	(-)	3.	(-)	•.	(-)	1	(-)	•	(•)	0	7	(-)
1958	17	•	(-)	-	(-)	•	(-)	1	(-)	.•	(-)	-	(•)	-	(-)	-	(-)	•	(\cdot)	-	2	(-)
1959	18	0	(-)	0	(-)	0	(-)	0	(-)	1	(-)	1	(-)	0	(-)	1	(\cdot)	0	(-)	0	3	(-)
1960	19	1	(•)	1	(-)	-	(-)	-	(~)	1	(-)	1.	(-)	1	·(-)	-	(•)	•	(-)	-	6	(-)
1961	23	0	(0)	1	(0)	0	(0)	2	(2)	4	(2)	0	(0)	0	(0)	0	(0)	0	(0)	0	7	(4)
1962	21	0	(0)	Ŧ	(0)	0	(0)	2	(2)	1	(1)	0	(0)	0	(0)	0	(0)	0	(0)	0	4.	(3)
1963	16	0	(0)	0	(0)	2	(0)	1	(I)	1	(0)	1	(1)	0	(0)	0	(0)	0	° (0)	0	5	(3)
1964	32	0	(0)	0	(0)	0	(0)	0	(0)	1	(1)	3	(2)	2	(0)	1	(0)	0	(0)	Ŷ	7	(3)
1965	21	0	(0)	1	· (I)	1	(1)	3	(1)	1	(1)	0	(0)	0	(0)	0	(0)	0	(0)	0	6	(4)
1966	22	0	(0)	3	(1)	1	(0)	0	(0)	3	(2)	3	(2)	0	(0)	0	(0)	0	(0)	0	10	(5)
1967	21	1	(1)	0	(0)	1	(1)	0	(0)	3	(3)	0	(0)	1	(1)	0	(0)	0	(0)	0	6	(6)
1968	15	0	(0)	0	(0)	0	(0)	1	(1)	2	(2)	2	(2)	0	(0)	1	(0)	0	(0)	0	6	(5)
1969	- 15	0	(0)	0	(0)	0	(0)	2	(1)	0	- (0)	2	(2)	0	(0)	0	(0)	0	· (0)	0	4	(3)
1970	21	· 0	(0)	0	(0)	0	(0)	0	(0)	i	(0)	3	(2)	0	(0)	0 -	(0)	0	(0)	0	4	(2)
1971	27	. 1	(0)	0	(0)	1	(0)	1	(1)	ì	· (l)	l	(1)	1	(1)	Ó.	(0)	0	(0)	0	6	(4)
1972	- 17	0	(0)	0	(0)	0	(0)	1	: (1)	0	(0)	0	(0)	0	(0)	0	(0)	0	(0)	0	1.	(I) -
1973	12	0	(0)	0	(0)	1	(0)	1	(1)	ł	(1)	1	(0)	2	(2)	0	· (0)	0	(0)	0	.6	(4)
1974	23	0	(0)	0	(0)	1	· (I) .	0	(0)	1	(I)	1	(I)	4	(1)	- 1	(I)	· 0	- (0)	0	8	(5)
1975	: 15	0	(0)	0	(0)	0	(0)	0	(0)	0	· (0)	1	· (0)	2	(2)	0	(0)	0	·· (0)	0	3	(2)
1976	22	0	(0)	1	: (I)	l	(1)	0	(0)	l	(0)	. 0	(0)	Ò	(0)	0	(0)	0	(0)	0	3	(2)
1977	19	Ó	(0)	0	(0)	0	(0)	2	(1)	0	(0)	3	(2)	0	(0)	0	(0)	0	(0)	0	5	(3)
1978	25	0	(0)	0	(0)	1	(1)	0	(0)	0	(0)	. 2	(0)	0	(0)	0	(0)	0	(0)	0	3	(1)
1979	22	0	(0)	0	(0)	0	(0)	3	(2)	1	(1)	0	(0)	1	(0)	1	(0)	1	(0)	0	7	(3)
1980	23	- 0	; (0)	2	(0)	0	(0)	- 3	(3)	1	(0)	0	(0)	• 0	(0)	1	(0)	0	(0)	0	7	(3)
1981	23	0	(0)	0	(0)	1	(I) .	0	(0)	0	°. (0)	i	(1)	0	(0)	1	(0)	0	(0)	0	3	(2)
1982	21	0	(0)	0	(0)	0	(0)	- 1	(1)	1	(0)	0	(0)	ļ	(0)	0	(0)	1.	(0)	0	. 4	(1)
1983	23	0	(0)	0	(0)	0	(0)	1	(0)	1	· (I)	1	(1)	2	(0)	0	(0)	0	(0)	0	5	(2)
1984	20	0	(0)	0	(0)	0	(0)	2	(I) ·	2	· (I)	0	(0)	1	(0)	1	(0)	0	(0)	0	0	(2)
1985	17	0	(0)	÷ 0	(0)	1	(1)	0	(0)	0	. (0)	3	(0)	1	(1)	0	(0)	0	(0)	. 0	5	(2)
1986	21	Q	(0)	, t	(I)	1	(0)	1	(I)	1	(1)	0	(0)	1	(0)	0	(0)	0	(0)	0	5	()
1987	16	0	(0)	0	(0)	0	(0)	1	(0)	1	(1)	1	(<u>)</u>	1	(1)	0	(0)	0	(0)	0	4	(3)
1988	19	0	(0)	0	(0)	1	(1)	1	(1)	0	(0)	1	<u>(</u>)	1	(0)	0	(0)	Î	. (0)		2 x	0
1989	19	0	(0)	0	(0)	0	(0)	2	(1)	0	(0)	Z	(2)	1	(0)	ì	(0)	- 0	(0)	, v	р. г	(2)
1990	20	0	(0)	· 0	(0)	2	(2)	0	(0)	2	(2)	1	(1)	0	(0)	0	(0) (2)	~	(0)		.е .е	(2)
1991	. 19	0	(0)	:0:	(0)	0	(0)	l.	(I) (I)	Ì	.(1)	1	(1)	<u> </u>	(I) (I)	1	(0)		(V) (0)		2.	-: (4) - (1)
1992	16	0	(0)	0	(0)	0	(0)	2	(0)	0	(0)	1	(1)	0	(0)	- U - A	(0)	v A	(U) (D)		10	10
1993	32	0	(0)	0	(0)	2	(0)	L.	(0)	1	(1)	4	(2)	4	(0)	0	(9)	: A	(U) (M)	. v	10 /1 -	(1) (1)
1994	25	0	(0)	0	(0)	0	(0)	2	(2)	0	· (U)		·(I)	0	(V) : (D)	U.	(0)	0 A	(U) (A)	· 0	ر ۲	(2) (A)
1995	13	0	(0)	0	(0)	0	(0)	1	<u>(I)</u>	2	(2)	-1-	<u>()</u>	0	(V) (^)		<u>(0)</u>	<u></u>	<u>(0)</u>	- 00	53	$\frac{\psi}{\alpha \nu}$
Meæi	19.9	0.1	I: (0)	0.3	(0)	0.5	(0)	1.0	(1)	1.0	(1)	1.2	: (1)	0.8	(0)	V.3	(0)	<u>V.I</u>	(0)	0.0	250	(107)
Total	957	4	(1)	12	(4)	20	<u>(1)</u>	42	(26)	46	(26)	>>	(28)	30	(10)	19	<u></u>	4	(0)		4.70	(101)

Table B.2.1 Number of Tropical Cyclones (1984 - 1995)

Source : PAOASA

0

0

8

Figure in () indicates number of tropical cyclones in case maximum daily rainfall is more than 50 mm.

• : Not available

No	Year	Categories	Name	Date	Rainfall (mm)		
		U			1 day	2 days	
<u>}</u>	1948	TD	······································	-	•	•	
2	1948	ΤY	GERTRUDE	-	•	•	
3	1948	TY	KIT	•	•	-	
4	1948	ŤÐ	•	•	•	•	
	1948	TY	•		•	-	
	1049	τY	-	-	•	•	
0	1210	TV			•	•	
/	1747	11 7V	OVELIA	Sent 29 • Oct 4		-	
8	. 1949	11	ONICON	otpulle ott		•	
9	1949	11		Dag 9, 13	-	-	
10	1949	11	CAMILUA	Aug 9.32	_	· _ ·	
11	1950	11	IDA	AUG. 7-14	-		
12	1950	14	OSSIA	Sept 28 Oct J	•	-	
13	1950	TS	-	-	-	•	
14	1951	ΤΫ́	LOUISE	July 25 - Aug. 1	•	-	
15	1951	TD	-	•	•	• "	
16	1951	1 Y	NORA	Aug. 27 - Sept. 2		•	
17	1951	TY	ORA	Sept. 13 - Aug. 20		•	
18	1951	TY	PAT	Sept. 22 - 26	-	•	
10	1042	тү	DINAH	June 15 - 22	-	•	
17	1777	τn		•		-	
20	1732	10	HADDIFT	July 26 - 29	· •	•	
21	1952		ALANY	Aug 20 - Cant 20		-	
22	1952	1 Y	MAKI	Aug. 27 + Sept. 20	-	· _	
23	1952	TY	NUNA	AUG. 21 SOPL 2	-	-	
24	1952	TD			-	-	
25	1952	TY	BESS	Nov. 9 - 14	-		
26	1952	TY	DELLA	Nov. 21 - 27	• •	•	
. 27	1953	TY	JUDY	May 30 - June 6	•	•	
28	1953	TS	•	•		•	
29	1953	TY	OPHELIA	Aug. 1 - 13	•		
30	1953	ТҮ	RITA	Aug. 28 - Sept 2	•	•	
11	1053	TY	SUSAN	Sept. 12 - 19	· · · · · · · · · · · · · · · · · · ·	•	
	1053	TV	CORA	Nov. 12 - 19	-	•	
32	1933	11	IDA .	Aug 24-29			
33	1924	11	MADIE	Soot 10-25		•	
- 34	1954	11	MARIE	0-1 20 10			
35	1954	11	NANCI	Oct. 20 - 30			
36	1954	TS	PAMELA	Uct. 27 - Nov. 6		•	
37	1954	TY	RUBY	Nov. 4 - 11	· · · ·	2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
38	1954	TY	SALLY	Nov. 17 - 20	. · •	is dig [●]	
39	1955	TS	•		•	•	
40	1955	ΤY	1818	Aug. 21 - 24	-	•	
41	1955	TY :	KATE	Sept 18 - 24		•	
47	1956	TY	THELMA	Apr. 17 - 24	· •	•	
41	1956	TD	-	•	· •		
- 43	1056	TS	· .		· • 1, · ·		
44	1950	10	CUADIOTTE	Aug 26 . 30		•	
43	1720	5 E E	20100000	Sent 17.22		-	
45	1956	11	UILUA	04 16 34			
47	1956	TY	JEAN	1 UCL 12 - 24 May 12 - 20	•	-	
48	1956	TY	LUCILLE	NOV. 12 - 20		•	
49	1956	TD	MARY	Nov. 13 - 16	•	•	
50	1956	TY	OLIVE	Nov. 25 - 29			
51	1957	TY	VIRGINIA	June 20 - 26	•	•	
52	1957	TD	•	•	-	•	
53	1957	TY	WENDY	July 9 - 16	-	•	
14	1957	TY	CARMEN	Sept. 7 - 15	•	•	
	1917	ŤΥ	GLORIA	Sept. 17 - 22	-	•	
	1047	т	FAYE	Sept. 19 - 26	-	-	
20	1777	- 14 - TV	K17	Nov. 8 - 17	-	•	
57	1937	11	DETTY	101/18.16		-	
- 58	1958	11	DELLI	2013 12 - 10	-		
59	1958	TD	• .		•	-	
60	1959	TY	IRIS	Aug. 19 - 23	•	-	
61	1959	TS	NORA	Sept. 5 - 12	•	•	
62	1959	TY	FREDA	Nov. 12 - 19	•	-	
	1960	ΤY	KAREN	Apr. 19 - 26	-	-	
63				16		•	
63 64	1960	TS	LUCHLE	May 24 - 51	-		
63 64	1960	TS TD	LUCILLE	May 24 - 51	•	•	

Table B.2.2 (1/4) Rainfall caused by Tropical Cyclones in N. Luzon

0

0

8

Source: PAGASA

Note: TY: Typhoon, TS: Tropical Storm, TD: Tropical Depression; -: Not available

	Vay	Calegories	Name	Date	Rainfall (mm)
N0.	रत्य	Categories			1 day	2 days
67	1960	TS	IRMA	Sept. 11 - 18	-	-
40	1960	ΤΫ́	LOLA	Oct. 10 - 15	-	-
€0 €0	1961	τY	BETTY	May 21 - 25	36.1	50.6
70	1961	TD	•	July 10-14	494.8	670.8
71	1961	TS	FLOSSIE	July 16 - 19	137.2	191.0
73	1961	ΤY	JUNE	Aug. 1-9	149.1	152.4
. 23	1961	тр		Aug. 17-19	46.5	54.1
73	1961	TY	LORNA	Aug. 22 - 25	287.8	513.1
74	1961	TS	•	Aug. 27-30	33.5	47.0
75	1962	ŤŶ	HOPE	May 16 - 21	11.7	13.2
70 TC	1962	 TY	KATE	July 8 - 23	254.8	491.3
77	1952	TD	-	July 28-30	80.5	159.2
70	1962	TY	WANDA	Aug. 29 - 31	409.2	468.4
80 -	1963	TS	BEBENO	June 4 - 9	294.9	471.7
91	1963	TS	DIDING	June 25 - 29	43.9	48.7
47	1963	ΤΫ́	ISING	July 18 - 21	172.0	204.0
83	1963	TY	LUDING	Aug. 3-10	10.2	18.8
6J 6A	1963	TY	NENENG	Sept. 1 - 6	245.6	330.9
0' 1 Q (1964	τY	SENIANO	Aug. 4 - 8	77.8	123.0
20 28	1964	TY	YONING	Sept. 1 - 4	162.9	196.9
	1964	ΤY	ARING	Sept. 6 - 10	149.6	221.3
01 00	1964	TY	BASIANG	Sept. 16-20	36.3	59.1
03 90	1964	TY	DORANO	Oct. 2 - 6	33.1	-38.1
87 00	1964	TY	EMANG	Oct. 7 + 13	48.9	56.3
90	1964	TD	ORING	Nov. 16-22	29.5	45.5
. 91	1965	ΤY	GORING	May 30 - June 2	72.1	125.4
72 03	1965	TY	HULING	June 14 - 19	90.9	120.9
01	1965	TS	LUMING	July 5 - 9	28.5	35.1
05	1965	TY	MILINO	July 8 -14	33.0	39.6
95	1965	TD	NARSING	July 16 - 20	212.1	212.9
07	1965	ΤΥ	UNDING	Aug. 31 - Sept. 4	280.6	304.5
08	1966	TD	BISING	May 2 - 4	44.1	84.7
00	1966	ΤY	KLARING	May 6 - 10	52.9	64.6
100	1966	TS	GADING	May 20 -22	21.1	30.5
101	1966	τÐ	HELING	June 28 - 20	19.1	36.1
101	1966	TS	ILIANO	Aug. 4 - 8	. 40.6	60.7
102	1966	TD	MIDINO	Aug. 13 - 16	96.6	179.4
0.104	1966	TD	NORMINO	Aug. 20 23	86.2	165.5
105	1966	17	OYANG	Sept. 2 - 6	136.2	229.2
105	1966	TS	TITANG	Sept. 10 -14	111.0	139.3
107	1966	TS	WENING	Sept. 19 - 24	31.5	44.9
108	1967	ΤY	KARING	Apr. 4 - 13	106.4	108.9
109	1967	TY	GENING	June 27 - 29	510.3	557.2
110	1967	TD	ONIANG	Aug. 11 - 15	52.3	103.9
111	1967	TS	PEPANG	Aug. 18 - 20	79.0	113.5
112	1967	TY	ROSING	Aug. 25 - 30	95.0	163.8
112	1967	ΤY	TRINING	Oct. 14 - 19	113.8	219.5
114	1968	TS	DIDANG	July 21 - 28	248.5	308.2
115	1968	TS	GLORING	Aug. 7 - 11	128.3	170.0
116	1968	TY	HUANING	Aug. 16 - 20	184.7	238.6
117	1968	TY	LUSING	Sept. 1 - 8	57.2	101.6
118	1968	τY	NITANO	Sept. 23 - Oct. 1	198.8	2/1.8
110	1968	TY	TOYANG	Nov. 26 · 29	0.0	0.0
120	1969	τY	ELANG	July 25 - 29	152.1	281.5
121	1969	ΤY	GORING	July 30 - Aug. 2	21.1	52.5
122	1969	TS	LUMING	Sept. 5 - 11	103.0	191.9
123	1959	TY	OPENG	Sept. 29 - Oct. 7	58.7	102.9
123	1970	ТΥ	EMANO	Sept. 11 - 16	51.0	58.3
127	1970	TS	HELING	Aug. 4 - 10	44.4	56.1
125	1970	ΤŸ	PITANG	Sept. 1 - 7	78.5	135.7
127	1970	TD	RUPINO	Sept. 21 - 25	42.1	58.6
147	1071	TS	ETANO	Apr. 28 - May 7	15.0	25.8
120	1071	ΤΫ́	LUDING	June 11 - 18	41.7	49.3
127 130	1071	тү	ROSING	July 16 - 26	101.3	197.6
130	1071	TY	URING	Aug. 7 - 11	153.2	231.7
121	1971	TS	ADING	Sept. 5 - 10	100.4	156.8
171	1273					

Table B	2.2 (2/4)	Rainfall caused b	y Tropical	Cyclones i	in N. Luzon
---------	-----------	-------------------	------------	------------	-------------

0

0

8

Source: PAGASA Note: TY: Typhoon, TS: Tropical Storm; TD: Tropical Depression; -: Not available

No	Year	Catagorias	Name	Date	Rainfall (r	
		*=6	••••••••		1 day	2 days
112	1071	TS	KRISING	018.11	225.2	393
133	1077	TS	FDFNG	- Toly 15 - 18	249.7	368
134	1073	TD	ATRING	hina 20 - July 2	32.6	37
130	1973	TD	KUBINO	1010 27 + 3019 2	105.7	120
135	1973	10	KUKIAU	July 14 - 18	103.7	147.
137	1973	18	HULING	Sept. 1 - 3	320.6	490.
138	1973	18	IBIANG	Sept. 6 - 10	17.8	34.
139	1973	ΤY	LUMING	Oct. 2 - 10	137.1	269.
140	1973	TY	MILING	Oct. 9 + 12	137.1	L48.
141	1974	TY	BISING	June 2 - 5	162.9	274.
[42	1974	TD	LOLENG	Aug. 6 - 10	77.0	107.
143	1974	TS	RUPING	Sept. 24 - 29	113.6	226.
144	1974	TY	SUSANG	Oct. 9 - 12	134.9	194
145	1974	TY	TERING	Oct 14 - 17	5.0	8
145	1074	 TV	UDING	04 21 - 25	40.4	67
140	1274	11	WENDING	04 25 29	39.4	() ()
147	1974	11	WENDING	001.23+29	30.4	21
148	1974	1 Y	ANING	NOV. 4 - 8	21.7	
149	1975	TY	HERMING	Sept. 16 - 18	0.0	0
150	1975	TY -	MANENO	Oct. 9 - 13	67.2	67
151	1975	TS	NENENG	'Oct. 12 - 19	64. I	79
152	1976	TY	DIDANG	May 24 - 27	128.4	219
153	1976	TY	HUANING	June 22 - July 2	77.8	20
154	1976	TS	PARING	Aug 21 - 24	34.6	59
155	1077	TV	FLANG	July 16 - 19	29	1
155	1027	11 TV	COBING	5 hite 22 25	270.0	205
130	1977	11	OUKINO	July 23 - 23	233.7	302
157	1977	10	NARSING	Sept. 11 - 12	20.1	
158	1977	TY	OPENG	Sept. 14 - 22	96.8	159
159	1977	TS	PINING	Sept. 21 - 24	116.9	132
160	1978	TS	KLARINO	June 21 - 24	157.0	202
161	1978	TS	RUPING	Sept. 3 - 9	15.5	3
162	1978	TD	SUSANG	Sept. 13 - 18	46.2	60
161	1979	TY	ETANG	July 1 - 4	104.7	135
164	1979	TS	HERMING	hilv 25 - 28	183.4	276
165	1070	TV	ISINO	July 28 - Aug 1	47.0	29
102	1070			Jun 2 6	06.9	110
100	17/7		LODING	Aug. 3 - 0	10.0	
107	1979	ID	SISANG	0((1-3	4.0	
108	1979	1 Y	YAYANG	Nov. 3 - 7	10.7	
169	1979	TS	KRISING	Dec. 21 - 23	6.0	
170	1980	ΤY	DITANG	May 10 - 20	42.9	48
171	1980	TS	GLORING	May 23 - 26	21.6	20
172	1980	TY	LUSING	July 7 - 11	215.2	280
173	1980	TY	NITANO	July 16 - 19	68.2	106
174	1980	TY	OSANO	July 20 - 26	27.8	86
175	ISRA	TD	PARING	Aug 23 - 25	31.2	. S
176	1090	TV	ADD'O	Nov 1 7	197	7
170	1780	11	ANING	2007, 1 - 7 bass 11 - 14 -	112.6	173
177	1731	13	ELANU DUDUUC	JUNG 11 • 14	113.0	17.
1/8	1981	n	RUBING	Sept 13 - 20	111.0	17.
179	1981	ΤY	ANDING	Nov. 21 - 27	16.2	11
180	1982	TS	EMANG	July I - 4	189.0	- 35(
181	1982	TY	NORMING	Aug. 20 - Sept. 3	28.4	39
182	1982	11	WELINO	Oct 11 - 15	22.0	3:
183	1982	TS	BIDANG	Dec. 8 - 10	0.0	
184	1983	ΤY	KARINO	July 22 - 25	39.0	51
185	1981	TS	FTANG	Aug. 12 - 15	129.4	21
196	1093	. 17	HEDVING	Sant 1 - 7	180.0	20
107	1003	11 TC	DED AVA	C-+ 0 . 14	6.2	
100	1253	10	FEFANU BIO ANO		Q.2 1 Δ	
. 185	1883	18	313ANG	0.1 20 • 22	1.0	
189	1984	IY	BIRING	July I - 3	. 62.4	63
190	1984	TS	KONSING	July 17 - 18	42.2	5
191 -	1984	TD	EDENG	Aug. 11 - 15	46.6	8:
192	1984	TS	MARING	Aug. 27 - 30	149.2	27
193	1984	TD	SENIANO	Oct. 25 - 26	0.0	(
194	1984	ŤΥ	WELPRING	Nov. 14 - 21	5.0	9
195	1044		KIDING	bine 21 - 25	221 8	11
104	1707	1 I Te	NUMBO	Caro 1 A	221.0	
170	1782	10	MILINU	0 cpt 1 * 4	4.J.L L 1	۹۹ ۱
181	1785	15	NARSINU	Sept. 12 • 17	0.2	
198	1095	TD	OPENG	Sect 24.26	6 X	10

Table B.2.2 (3/4) Rainfall caused by Tropical Cyclones in N. Luzon

Source PAGASA

Note: TY: Typhoon, TS: Tropical Storm, TD: Tropical Depression, -: Not available

8

0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	No	Year	Categories	Name	Date	Rainfall (mm)
		• • • •	• •			1 day	2 days
8	199	1985	TY	TASINO	Oct. 23 - 30	125.6	241.2
	200	1986	тз	KLARING	May 24 - 29	70.0	135.0
	201	1986	ΤY	DELINO	June 1 - 9	36.2	51.8
	202	1986	ΤY	OADING	July 7 - 10	93.8	175.0
	203	1986	TY	MIDING	Aug. 30 - Sept. 3	228.2	364.2
	204	1986	TD	SUSANO	Oct. 30 - Nov. 1	9.2	18.0
	205	1987	ΤY	ETANG	July 23 - 27	. 33.0	42.6
	205	1987	TY	ISINO	Aug. 12 - 20	85.4	104.6
	207	1987	ΤY	NENENO	Sept. 4 - 9	111.0	156.1
	208	1987	ΤY	PEPANG	Oct. 23 - 25	157.6	279.7
:	209	1988	TS	KONSING	June 1 - 13	139.7	169.9
	210	1988	TY	HUANING	July 14 - 19	97.4	145.9
	211	1988	TS	MARING	Sept. 19 - 20	131.5	136.7
	211	1088	TY	TOYANG	Oct. 18 - 21	13.0	21.0
	212	1088	TY	APIANG	Dec. 23 - 26	0.0	0.0
	213	1089	TD	ELANG	July 6 - 11	23.0	24.6
	214	1029	TY	GORING	July 11 - 18	86.2	134.0
	212	1020	TV	RUBING	Sept. 29 - Oct. 8	64.9	120.3
	210	1080	TV	TASING	Oct. 13 • 20	16.4	16.4
	217	1252	TY	INSING	Nov. 16 - 23	0.0	0.0
	210	1000	TV	OPENO	Sept. 8 - 11	437.2	658.1
	219	1202	TV	BISING	June 17 - 23	192.0	259.0
	220	1990	TV	E ADING	June 22 - 29	192.0	275.2
	221	1999	TV	HELING	Aug 24-28	83.8	135.6
	111	1990	11	MIDING	Sent 10 - 16	233.2	246.8
	223	1990		U LANG	Ang 29-31	224.4	372.6
	224	1990	11	GENING	htv 16 - 20	164.1	320.7
	225	1991	11	UIDINO	Aug 13 - 15	140.4	141.7
	226	[99]	11	ONIANG	Sect 15, Oct 2	111.6	152.8
	227	1991	- 11 TV	TRINING	Oct 20, 31	127.6	185.6
	228	1991	11	WADI INO	Nov 4 - 14	0.0	0.0
	229	1991	11	KONSING	Toty 9 - 17	3.8	4.2
	230	1592	11	DITANG	bdy 17.21	1.2	1.8
	231	1992	10	MARING	Sect 19 - 27	265.0	450.4
	232	1992	15	ELANCI	June 17 - 20	40	5.8
	233	1993	TU TV	ELAINU CODIN'S	ture 22 - 26	20.4	37.8
	234 .	1993		TELANO	June 11 - 17	19.5	21.1
	235	1993	15	DUDING	Aug. 15 - Sect. 19	139.7	259.1
	236	1993	15	KUDINU WALDING	Sug. 17 - Sept. 17	361.8	385.0
	237	1993	11	VEVENO	Sept. 12 - 16	361.8	378.6
	238	1993	11	ANDING	Sept. 12 - 10	18	1.8
	239	1993	11	KADIANO	Sept 10 - Det 7	40.8	80.6
	240	1993	11	CDANC	04 6-13	40.8	40.9
	241	1993		UISINO	Oct 28 Nov 3	5.2	5.2
	242	[993	11	LOLENO	bity 10 - 11	1437	166.1
	243	1994	11	LULENU	Into 17 - 21	1759	242 5
	244	1994	ID T	NOKMINO	Sant 7 - 11	416 8	450 2
	245	1994	ID	WELING	July 36 21	140 B	197.4
	246	1995	TS	KARING	July 23-31	75 7	88.6
	247	1995	15	DIDING	Aug. 1+7	27.5 2	403 2
	248	1995	TY	GENING	Aug. () -) (2 4 4 5 70 A	110
	249	1995	TS	HELMING	Sept. 2 - 3	67.4 63.7	81.0
	250	1995	TY	LUDING	Sept. 21 - 23		

Table B.2.2 (4/4) Rainfall caused by Tropical Cyclones in N. Luzon

Source PAGASA

.•

Note: TY: Typhoon; TS: Tropical Storm; TD: Tropical Depression; -: Not available --

0

0

B - 23

		·			····							(Unit : n	im)
Year	Jan.	Feb.	Mar.	Apr.	May.	วันก.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annuai
1961	0.0	0.0	2.3	0.0	101.0	529.5	1,306.9	933.7	352.7	0.0	0.0	0.0	3,226.1
1962	0.0	0.0	0.0	0.5	22.9	282.8	1,252.9	852.1	89.7	28.1	14.5	0.0	2,543.5
1963	0.6	0.0	0.5	0.0	10.7	1,134.5	369.5	76.2	628.0	6.4	8.9	43.7	2,279.0
1964	18.5	0.7	21.2	0.0	38.1	304.1	139.6	648.4	601.5	104.3	88.4	120.5	2,085.3
1965	0.0	0.0	0.0	4.6	267.6	585.3	395.4	208.1	393.6	7.5	45.2	2.0	1,909.3
1966	0.0	0.0	1.3	0.3	217.4	49.8	122.8	517.8	600.5	15.6	194.8	4.3	1,724.6
1967	0.0	0.0	0.0	121.9	210.5	1,082.7	231.3	727.1	233.6	229.3	36.1	0.0	2,872.5
1968	0.0	1.0	0.0	6.8	25.4	108.3	582.4	914.6	497.4	24.4	0	0.0	2,160.3
1969	9.4	2.8	4.9	0.0	215.8	327.6	733.7	328.7	1,007.3	115.6	12.8	0.8	2,759.4
1970	0.5	0.0	0.0	7.1	81.4	481.0	217.5	494.8	438.7	77.3	27.9	27.3	1,853.5
1971	0.0	6.2	0.0	0.0	37.2	148.2	269.7	344.8	590.L	495.5	27.0	65.1	1,983.8
1972	0.0	0.0	0.0	2.8	94.3	324.0	1,457.6	303.6	40.2	0.3	0.5	0.0	2,223.3
1973	0.0	0.0	0.0	12.7	22.2	164.3	319.7	218.2	564.7	376.5	49.2	0.0	1,727.5
1974	0.0	0.0	0.0	28.5	125.4	394.3	25.5	988.7	454.0	344.2	118.3	4.5	2,483,4
1975	23.1	0.0	0.0	12.2	\$5.7	375.4	63.0	812.9	65.6	132.6	0.0	5.7	1,546.2
1976	0.0	0.0	0.0	3.3	261.3	283.9	211.1	173.3	154.7	63.4	11.8	0.0	1.162.8
1977	9.6	0.0	0.0	20.4	33.2	189.0	455.8	627.6	621.8	0.0	86.0	0.0	2.043.4
1978	0.0	0.0	0.0	51.6	119.0	429.2	227.8	443.7	259.1	107.2	41.5	0.0	1.679.1
1979	0.0	0.0	0.0	15.9	420.7	95.0	525.6	483.4	114.4	79.6	17.3	6.0	1,757.9
1980	38.8	0.0	0.0	0.0	89.5	80.2	579.5	124.9	475.9	110.2	79.3	0.0	1,578.3
1981	0.5	0.0	0.0	0.2	230.6	507,2	205.9	508.3	235.3	93.7	31.6	0.0	1,813.3
1982	0.0	0.0	0.0	0.8	67.8	345.8	772.5	630.2	160.3	36.8	28.2	15.6	2.058.0
1983	0.3	12.2	26.0	2.2	27.7	249.0	196.6	664.1	353.4	80.6	0.0	4.0	1.616.1
1984	0.0	0.0	0.0	285.2	178.2	248.7	197.4	716.3	60.4	14.3	10.8	0.0	1.711.3
1985	0.0	0.0	0.0	0.0	184.0	1,069.5	41.3	1,015.4	134.9	327.4	23.8	2.2	2.798.5
1986	16.5	0.1	0.0	0.0	540.6	88.0	355.9	1,146.1	514.7	57.7	59.7	0.0	2.779.3
1987	0.0	0.0	0.0	1.0	0.0	250.6	263.8	291.2	243.8	315.1	0.2	3.1	1.368.8
1988	5.3	0.2	0.0	8.0	171.0	293.3	554.6	266.2	238.9	62.3	1.1	0.0	1.600.9
1989	0.0	0.2	2.0	0.0	80.7	160.7	446.0	494.1	1,152.6	136.9	0.0	0.6	2,473.8
1990	8.6	0.0	0.0	17.6	389.0	554.5	320.7	1,029.1	540.0	29.6	1.9	0.2	2.891.2
1991	0.0	0.0	0.0	0.0	3.3	163.8	734.1	511.8	402.6	247.3	0.0	0.0	2.062.9
1992	7.2	9.0	0.0	50.9	405.3	305.3	53.8	751.9	656.8	28.8	0.4	0.0	2.269.4
1993	0.0	0.0	2.7	0.0	83.8	76.3	332.3	393.0	443.4	124.5	10.4	8.2	1.474.6
1994	3.7	18.0	0.0	48.4	262.3	291.3	943.8	660.9	604.4	101.3	0.0	0.0	2.934.1
1995	0.0	0.0	0.0	0.0	327.5	450.5	597.3	986.7	466.3	286.6	141.5	0.0	3.256.4
Mean	4.1	1.4	1.7	20.1	154.3	355.0	443.0	579.7	411.2	121.7	34.4	9.0	2.134.5
0	DIOLO			· ·· ·· ·· ·· ·· ··				····					

Table B.2.3 Mean Monthly Rainfall

Source : PAGASA

0

0

0

B • 24

													1.		Tabl	ີ ຜູ້	2.4	Nor	ithly	Ten	nper	ature								-				° A)		Ŷ	
Year	ľ	1		 ²	<u>م</u>		×	1		1			×	×		Ϋ́Υ			Ä			Aug			ġ		ľ	1		Nov			ð		ſ	Janne	
1	MAN (Axe. 7	N N	TK V	Υ. Υ	in. M	×	re. M	Ma	×	N.	A. Ma	× ×	E. Min	Mex	Å	N.N.	Max.	Ave.	Min	Max	Ave.	Win.	Asx.	2	Ain. M	× ×	e. Mi	A M	k. Ave	Min	Max	Ave.	Min.	Max.	Ave.	
<u>19</u>	28.9	000	1	5 6.6		8.7 31	•	1	<u>6</u>	8 0	ដ -	2	1 28	8 24.6	5.11.6	27.8	24.0	29.4	26.3	2.1	I.OC	36.8	9.6	6.0	50.6	ព្រ				٠	•	•	,	۰	30.8	292	ឆ្មី
Š	102	0.02	18.8	5	1.7 L	7,0 31	3	- 4 - 12	9 22	5. 27	8. L	Ц	5	0 24.	1 32.5	28.3	24.2	30.3	1.12	23.8	30.9	212	å	5 1	27.5	3.6 3	Z	ส์ กั	Ч	5	21.9	30.3	24.4	18.4	4 E	26.6	ខ្ល
1961	545	511	17.8 3	5.00	1.7 5	7.5 X	5 2	17 15	11 31	8.76	5 21.	.1 33.	6 28	X 24.	30.7	27.2	33.6	30.7	5	3.5	31.9	33.)	5	0	27.5	10	12	5 0	8.	5 20.0	20.8	Coc	26.0	21.7	31.0	26.3	21.6
1.964	30.8	24.9	18.9	10 X 11		9.7 31	5	1	32 32	<u>क्ष</u>	8	9 33.	7 20	-	31.8	27.9	24.0	31.9	27.8	3.0	20.3	27.1	8	30.8	27.3	3,8 3	2	ย ก	4 81	1 26.3	12	28.8	25	3.61	31.5	26.8	ä
1965	38.6	20X	19.1	- 0 - 0	2	8.6 31	21 2	1 2 3	2 2	ه ۲	11 • •	К 9	8, 38	4 24.0	> 30.8	27.3	23.5	30.8	27.3	8 12 12	C.IC	27.5	318		212	32 3.	14 14	0.51	7 22	ñ	0 21.8	31.6	12	19.0	313	26.5	21.8
\$	30.5	24.7	18.8	77 17 11	5.5	0.1 32	1	5.6 21	0 33	.1 28	ି ମ ମ	т 1	四天	4 24.	1 32.7	28.4	24.1	31.9	28.0	222	31.1	27.6	27	30.2	20.0	10.01	स स	1 1 1 1	8	6 262	ខ្ល	20,3	26,0	57	31.6	27.0	អ៊
1967	0	2	18.4	10 17	1	8. F. 3.	21 22	1.4 1.15	10 60	1 21	л П	.S. 33.	- 52 - 14	. 4 	5 30.9	27.1	ŝ	31.4	27.8	24.2	20.5	5.1	ះព	6.00	27.0	е 170	й 70	2		0. 26.1	10	28.8	2.9	19,1	30.8	26,3	912
1968	6.62	7.02	17.6	19.5 22	13 [2.1- M	0.1		22 22	6	1	č.	9 1	2	1 33.2	21.7	ų Vi	32.0	28.1	5	30.0	5.92	ព័	30.7	22	3.8	2 2	2	4 2	ที่	5 19.1	30.7	24.3	17.9	31.4	26.3	19 73
\$9 0-1	10.1	54.7	 2	- - - - - - - - - - - - - - - - - - -	1 1	8,8	či Š	1 2	1.4	5	8	2	8 8	4	in the second se	28.5	24.8	31.7	27.9	24.0	31.7	27.6	33.5	6.00	: 1.12	B.7 3	1.6	22	4 30	4 26.3	33	с: 13	22	20.3	31.6	27.0	22
0261	1.00	24.6	1.61	ti Li		8.2 3.	2	7.0 21	14 33	8	2 9	34	51 52	2	5 33.1	- 28.7	24.3	2.52	28.2	24.1 1	0.10	27.4	กล์	30.8	1.12	с с а	1 6 2	S 23	5 31	6 23	ĥ	31.6	26.5	21.4	0.10	27.3	ន្ល
1971	2	202	171	ਸ 	5.0	9.0 32	н 12	5.7 14	22 29	-	14 21	6 34	32	5	1 32.6	1.22	ໍຄິ	31.6	31.0	23.5	31,5	212	ទំព	31.5	27.5	32 3	0.9	5	0 30	1 26.0	21.9	30.5	25.9	513	31.6	9.92	515
1972	6.62	24.7	5.01	114	10.1	8.6 J.	н П	5.7	22 24	2	् श्र ट	1 35	5	Я). 33.6	0 27	5.5	30.3	5	5.5	31.1	513	23.4	25	28.5	ຕິ 7	4.5 23	12	6 34	Ř	8	32.1	5	19.5	32.7	27.3	21.8 8
(10) (10)	51.3	250	18.7	č N L	g	9.5 J.	. e.	5.8	9.7 34	21 9	2	2 3	.7 20	0.24	2 33.8	29:0	14	22.3	27.9	23.6	31.4	27.4	33	32.8	28.0	1 12	сі 01	ន	ल स्	3 265	а Я	ç	ที่	6'61	32.7	214	์สี
1974	000	2	16.2		4.8	5 27	16	5.6 - 1:	9.6 32	51 6	8	8.34	87 0	6	3.16	27.8	24.0	33.4	28.5	ĩ	30.5	27.1	ໍ່ລໍ	31.5	112	- 	н П	2	ک	22	ñ	30.8	26.0	12	31.5	<u>(</u>))	ន័
1975	30.8	3	2.01	1.5	1.03	9.3		53 53	0.6 . 33	71 0	2	25 0.1	30	.1 24	1.00	28.6	Ч.А.	33.4	28.5	5.5	30.2	27.0	23.8	2:2	28.4	13.2 3	1.8	ม	4 32	6.26	203	30.8	25.7	20.7	32.7	27.4	ទ
9261	30.6	9.40	. د.18	100	1.7	7.9 3.	24	1.1	х 2	1. 2	یں۔ 11	2	5	1	0 33.6	28.3	31.6	32.7	1.82	1	30.1	27.5	28	13.1	27.8	222 1	3.7 2.	51 52	02	8 51	212	31.6	26.0	50 70	32.4	27.1	21.6
1977	55	52	20.1	31.4 2	5.0 -	5.5	3.0	6.4	9.7 35	5	2 2	36	5	4	\$ 35.6	30.0	24.5	32.5	28.1	2.7	31.6	27.8	23.9	31.0	27.3	35 3	3.1	11 22	5	.1 26.	8 J.S	31.4	252	18.9	32.8	27.4	ន័ដ
8461	0.01	23	17.6	31.0 2	3.4	8.6	4	2.0 2	0.9 j	16 21	19 11	26 35	8 5	9 11	9 32.8	28.6	24.3	33.3	28.5	23.7	31.5	21.9	3	51.4	27.6	23.8	2.0	2	Е 0	8 6	4 25	32	26.7	ផ	32.3	11	ដ
6791	707	с.Х.	17.6	31.0 2	5.4	9.9	23	6. 8.9 C	H - 60	.स .पु	24	ц Ц	16-25	N N	5 33.3	282	34.8	52	28.5	24.6	30.7	4) 12	12	32.6	282	C 3.C	3	5	5	5	0 23.1	30.0	24.9	19.8	31.9	272	275
1980	ŝ	32	20.1	21	5.5	9.8	5	7.6	2.4	8	5	(0.1	ы. П.	10.12	9. 34.5	8,07	12	32.0	1.55	24.6	32.5	23.4	24.3	30.9	4.12	24.0 3	5 7	17 22	5	9 2 7.	1 20.	30,4	25.6	20.8	32.0	27.5	ลี
1361	10.1	4.42	18.6	2. 8.10	5.6 1	19.3	57	6.7	1.1.2	3	ล่าส	CC 6.1	5	2	9. 31.6	28.0	24.5	12	28.3	243	5.15	\$12	24.3	32.4	23.4	24.3 3	4	2 2	FC 91	4	4	÷.	25.0	192	220	22	572
<u>18</u>	30.0	24.0	6'21	30.2	4.8	9.4	ંગ	6. N. C	0.1	3	5.23	.s. 3.	11 4	1. 24	32.6	. 23.5	24.9	01.1	28.0	24.7	30.6	27.5	573	31.5	51,9	24.2	а С	7.4	5	Т. с	4	200	2	711.7 1	31.6	27.2	22.7
1983	50.0	25.6	21.3	30.2 2	4.9	9.6	5	6.7		81 23	12 B 12	х. Зч	е Э	5. 25		202	55	33.2	1.62	ភ	31,2	27.7	24 17	32.5	28.3	24.1	5	53	х. С	2 0	9 21.5	200	24.4	18.5	31.8	C.72	8 1
10,04	1.61	575	19.7	30.4	5	:0.2		2.0.0	5.	61 82	8.4	16 6.6	전 61	1 24,	4	28.3	24.5	31.8	28.0	24.7	30.0	27.0	24.1	52.5	28.1	23.9	17.4 12.4	13 13	15 67	S.	से ~	30.2	24.9	19.6	31.4	27.1	8 1
985	30.0	24.0	18,1	111	<u>(</u>)	11.5	0.1	3.5 2	1.4	3,4	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	4.5 DD	11	24	• 30.	22	24.1	31.7	28.1	24.6	30.1	51.5	5	32.5	27.8	1.4	5.7	ក្ត	27 21	.S	हो ०	2	3	20.7	31.4	27.1	ត្ត ដ
980-	9.61 19	4,45	16.1	29.7	67	202	111	1	1.7 3.	н Д	문 동	3.7 31	5	5	4 . 313	28.1	24.4	R	28.3	24.5	101		24,2	30.7	27.2	1.1	11.7 2	55	3.4 30	5	ลี่	. 30.4	24.5	19.2	31.0	36.8	9 22 8
1987	30.0	Ę	17,71	30.5		17.3	1	63	0.5		51	2	5.0	12	3. 33.	1.05	24,8	255	181	24.0	32.2	3X.6	24.0	2	1.12	12	글	5	2	6 27	М	1 21.2	262	Ĩ	* :	11 11	с. 11
1088	31.8	-0.	20.0	5 9 2 C	- 69	11.	3.0 2	7.5	1.7	3. 41	9.2 2.	3.5 3.	ті Сі	17 Z	6 32.1	5, 28,5	24.2	, 32.J	282	24.1	32.4	27.9	14	32.6	28.1	2.7	122	50.2	1.6	З У	8 517	7 30.1	24.1	18.1	32.6	27.6	\$. 5
6.861	52	ŝ	1.61	32.0	5.8	9.61		6.6	0.0	5	ដ		3.8	21 24	4 33.	1.128.7	340	32.6	28.3	24.0	31.9	27.8	23.6	51.5	37.1	0.5	11 12	¥.	5	7 26	e e	202 2	2	1,81	32.3	3.1	มี
0001	1.15	6.12	4 <u>8</u> 1	31.6	5.X	0.0	3	6.6	0.7	10 g	51 98	3.3	3.6	19 24	g a	23.4	24.5	2	28.0	ដ	31.8	28.0	се П	31.7	512	55		7.6	6.7	1.	я Я	2 22	26.6	503	333	27.4	ñ
11001	i.	Ы	19.1	0.2	çı Ş	10.3	11	1.0	0.K	4	X.7 Z.	3.0 3.	2	2.8 2.4	. 34.	5.62	14.7	20	28.0	23.8	32.0	27.9	23.8	31.3	27.4	1	212	60 60	2	•	•	1	146	671	32.6	27.4	ផ
8	2	23.8	18.4	31.0	4.7	18.4	Ð	6.4	0.5	54	5.0 2	25 33	3.5 2.2	5	4 N.	3 28.7	24.5	32.8	28.1	33.5	31.7	27.6	<u>ئى</u>	31.0	27.3	ໍ່ຈິດ	12.0	स २	2	ร. รั	ର୍ ୧	31.5	ŝ	9.91	\$	26.9	2,52
2061	0.00	22	12.6	31.5	1,5,1	18.6 Ĵ		16.2	(n.6)	40 40	स स्र	a	41 1.4	ង	x M	5 29.5	24.4	232	28.6	24.0	2	22	23,8	31,9	27,6	23.4	31.7 2	11 []	н 5	27.	ਜੋ ਜ	5 31.1	26.5	21,8	ŝ	11	ផ
100	33.4	អ	6.61	្តីខ្ល	5.4	19.7	1.5		50	5.00	51	ē.	4.6	22. 22	Ц К	138.7	55	CHC -	27.3	ล่	•	•	•	32.4	27.6	22.7	1.9	8.8 2	1.7	ମ ଶ	5	22	5 26.2	20.5	826	27.1	21.7
ŝ	6.02	e. Z	18,8	30.4	4.0	18.7	2.4	0.0	30.7	4.6 2	5.6 2	2.7 3.	3.5 2	5.8 24	۲. <mark>الم</mark>	242	24.5	32.6	28.2	23.8	32.3	28,1	23.9	32.7	2K.4	24.0	32.8 1	5.3	0.7 3	8 27.	2 22	30.0	\$ 25.6	20.5	32.4	27.4	23.3
Mein	30.2	24.5	18.7	31.0	22.0	1.61	55	.6.	C X 02	3.6	8.7 2	H 62	2. 0.5	9.1 24	2 2	\$ 28.5	24.3	32.0	28.0	24.0	стс ТС	27.6	23.8	31.7	27.6	3:5	32.0 ;	7.5 21	5 61	5 26	7 21	30.7	25.4	20.1	31.9	51.0	1111 1111
Source	PACA	Ş.,																																			
NN.	delinere	¥			•											:																					

6

0

Ŗ

Year	Jan.	Feb	Mar	Anr	Marrie	1				ļ	9	Init: %)	
1961	68.0	75.0.			1411Y.	un.	JUL.	.Suc	Sep.	Oct.	Nov.	Dec.	Annual
6961			0.n.	14.0	0.1/	23.0	89.0	88.0	87.0	•	•	•	79.1
2041	0.07	0.7.0	77.0	0.17	78.0	85.0	. \$8.0	87.0	85.0	0.77	73.0	68.0	77.2
1905	0.00	64.0	70.0	70.0	73.0	83.0	84.0	83.0	88.0	72.0	74.0	76.0	753
1964	73.0	69.0	70.0	73.0	74.0	81.0	82.0	86.0	86.0	80.0	79.0	77.0	
1965	70.0	73.0	70:0	73.0	76.0	85.0	84.0	85.0	83.0	73.0	76.0	012	78.6
1966	75.0	73.0	72.0	73.0	78.0	79.0	\$3.0	85.0	85.0	75.0	84.0	80.0	78.5
1967	71.0	68.0	73.0	77.0	76.0	85.0	\$3.0	88.0	86.0	81.0	75.0	2002	04
1968	72.0	72.0	74.0	70.0	73.0	77.0	83.0	87.0	36.0	72.0	666.0	75.0	7.7.7
6961	78.0	78.0	75.0	73.0	74.0	82.0	\$5.0	84.0	87.0	\$0.0 \$	73.0	202	28.4 78.4
0261	74.0	73.0	72.0	72.0	74.0	81.0	82.0	87.0	88.0	84.0	79.0	78.0	1.01
1971	73.0	71.0	67.0	72.0	75.0	\$3.0	84.0	. 84.0	87.0	81.0	77.0	75.0	1.01
1972	75.0	75.0	68.0	69.0	75.0	79.0	90.06	85.0	82.0	74.0	70.0	74.0	2.75
1973	74.0	73.0	69.0	11.0	71.0	80.0	85.0	87.0	\$5.0	81.0	0.67	70.0) [
1974	69.0	72.0	73.0	75.0	72.0	82.0	77.0	87.0	84.0	85.0	80.0	78.0	77.8
1975	74.0	73.0	73.0	69.0	72.0	82.0	80.0	S9.0	82.0	82.0	74.0	73.0	0.77
1976	68.0	73.0	12.0	72.0	77.0	81.0	84.0	86.0	85.0	80.0	74.0	74.0	5 FF
1977	76.0	70.0	75.0	74.0	74.0	79.0	85.0	87.0	88.0	76.0	75.0	0 9 1	105
1978	70.0	21.0	72.0	72.0	74.0	S0.0	81.0	87.0	S4.0	78.0	71.0	0.07	0.11 9.57
1979	70.0	71.0	70.0	70.0	78.0	78.0	32.0	36.0	80.0	75.0	74.0	68.0	0. 1 1
1980	74.0	71.0	71.0	70.0	81.0	0.64	\$4.0	85.0	87.0	78.0	78.0	0.00	1 F 1 4
1861	65.0	69.0	70.0	70.0	75.0	84.0	0.18	83.0	80.0	77.0	71.0	68.0	74.4
1982	10.0	74.0	74.0	72.0	75.0	81.0	85.0	86.0	85.0	80.0	78.0	30.0	2.87
1985	0.77	81.0	78.0	78.0	75.0	79.0	81.0	87.0	86.0	85.0	76.0	75.0	20 %
1984	78.0	77.0	76.0	76.0	82.0	\$4.0	83.0	87.0	82.0	76.0	77.0	22.0	10.7
5891 1002	12.0	78.0	73.0	70.0	74.0	87.0	\$1.0	0.68	\$3.0	\$2.0	76.0	82.0	78.9
1007	0.67	/0.0/	76.0	77.0	84.0	86.0	86.0	91.0	90.0	84.0	84.0	78.0	82.3
10001	0.4/	0.0	0.64	75.0	70.0	83.0	85.0	85.0	\$6.0	84.0	82.0	76.0	29.67
1000	21.0 20.0	0.77	79.0	74.0	77.0	84.0	89.0	87.0	\$3.0	83.0	76.0	73.0	80.7
1000	0.c/	0.27	0.67	76.0	89.0	83.0	86.0	87.0	89.0	30.0	75.0	75.0	203 203
0661	/8.0	80.0	74.0	76.0	80.0	87.0	88.0	88.0	87.0	82.0	79.0	75.0	813
1661	0.17	73.0	75.0	74.0	72.0	79.0	87.0	\$\$.0	90.0	S4.0	•	75.0	101
7661	0.6/	78.0	80.0	79.0	81.0	\$3.0	85.0	\$8.0	89.0	80.0	76.0	79.0	814
5661	78.0	75.0	74.0	76.0	77.0	80.0	85.0	86.0	88.0	83.0	78.0	74.0	205
7994 2001	/0.0/	0.77.0	70.0	77.0	78.0	85.0	89.0	٠	84.0	78.0	73.0	0.57	78.7
C661	. 14.4	76.5	76.9	76.1	80.5	80.8	85.9	88.5	38.5	82.2	79.1	72.3	80.1
Wichn	15.4	75.5	73.3	73.3	76.3	82.0	\$4.3	86.6	85.7	79.5	1 92	C 74	10.7
Source: PAGA	SA									2	5		707

Table B.2.5 Mean Monthly Humidity

B - 26

0

0

۲

- : Not available

:												•					Į							Ĭ	Unit :	m/s)
Ycar	la.		Feb.		Ma		<	ž.	Σ	ay.		un.	ŗ	ul.	٩v		S.		ŏ		Ž	č.	്	J	Ya.	lau
1961	ŝ	r Z		MN	~	MN	m	MN	m	SW	'n	SW	4	S	4	SW	4	SW	1	٠	•	۱	ŗ	•	4	SW
1962		Z		MN		MN	m	MN	n	ш	ŝ	SW	4	SW	ŝ	S	m	ω	4	Ζ.	4	Z	4	7.	ষ	z
1963	, vi	7		z	ŝ	MN	4	MN	Ч	8	4	SW	ră	SW	ń	SW	4	SW	4	BNB	m	3 Z	4	z	च	SW
1964	\$	~ Z	~	ш	0	MNN	Ś	MN	ý	MN	ও	SW	'n	SW.	4	ΜS	ŝ	ΜN	m	z	Ś	z	4	Z	ŝ	Z
1965	4	Z		MN	i M	MN	'n	3Z	'n	យ	т	SW	ę.	SW	m	SW	'n	ш	m	ω	ŝ	ω	ŝ	យ	m	យ
1966	2	. ณ	~~~	ណ	3	ш	ý.	ធ	ų	wSw	ę	μ	n	ម	m	ω	m	MSS	'n	പ	'n	UNE UNE	'n	ШZZ	è	ш
1967	. tr	NNE		ເພ	m	MNM	m	WNW	'n	ω	4	MSS	ň	SW	ę	SSW	n.	ω	s,	z	m	Z	च	Ż	ო	ш
1968	(1)	Z		z	3	MN	'n	MNM	4	MNM	'n	យ	4	ល់	ŵ	ŝ	4	μN	'n	e N N	m	പ്പ	2	z	ŝ	យ
6961	. ლ	- 7	~	Z	m	MNW	'n	Ņ	Ч	7.	۳	¥	m	M	7	s	ŝ	A	ы	7.	4	z	4	z	m	Z
1970	, m	z	. 4	z	. ന	₹ N	้ก	Z	2	ß	N	X	ņ	SW .	2	≥	ы	s	-	ല	ri	z	რ	Z	ч	z
161	ŝ	z	~	ЧZ	ŝ	z	÷	Z	N	MN	4	wsw	m	SW	m	SW	ы	SW	'n	ωZZ	e	NNN	Ś	Z	ę	7.
1972	ŝ	z		327	'n	₹ N	0	MN	0	3	2	SW	4	S	ч	Ś	ч	ല	~	ખ્	r>	យ	m	Z	m	ធា
1975	6	NN N		3	i n	Ņ	. (1)	MN	•	A	2	SW	'n	ដ	7	យ	3	ω	ŝ	ENN N	\$	Z	\$	HZZ Z	m	ម
1974	- * 1	UNN	v	z	4	z	ŝ	WSW	ę	WNW	'n	SSW	ы	μ	ሳ	S	ŝ	μ	4	ENE	ŝ	Z	ţ	z	4	Z
\$791	Ŷ	BNN	m	ENE	m	NZ NZ	ŝ	WNW	2	BR	64	SW	64	щ	'n	s	3	ш Ш	ŝ	ш	ŕħ	z	IJ	Z	m	ш
1976	m	z	ы	٤	ġ	Z	ė	MZ	4	ш	ŝ	ω	m	ធ	'n	ш	ч	ш	3	ω	ŵ	Z	m	Z	m	ш
1977	~	z	4	Ż	2	WNW	Ň	WNW	'n	SW	64	SW	'n	MS	'n	SW	ŝ	ц ц	÷	z	4	z	ŝ	ω	m	SW
1978	v.	z	ŝ	Z	5	X	ы	MZ	2	MS	m	SW	ŝ	S	'n	s	3	ω	n	z	4	Z	m	z	tu	Z
6461	- 14	×	. ന	A	Ċ,	≥	N	×	m	ß	64	ືພ	m	¥	ŝ	S	'n	ш	4	Z	4	z	4	z	m	¥
1980	4	Z	4	z	ŝ	3	m	M	,m	M	m	ы	4	ŝ	ŝ	ш	ب ې	មា	ų	ເມ	খ	z	4	Z	ŝ	ш
1981	4	ш	m	MNN	, m	8	m	3	Ń	N	'n	ų	ņ	យ	'n	s	m	ដ	ŝ	ш	থ	Z	থ	Z	'n	ω
1982	ň	ម	•••	ល	ы	ш	ŝ	MNN	m	ω	Ċ	ω	m.	×	rî)	s	m	ម	m	ω	m.	ω	rð.	Z.	'n	ы
1983	4	z	3	ധ	ы	M	ч	M	m,	3	m	ធ	Ч	ម្ព	m	ម	2	យ	ы	ω	4	Z.	m	Z	'n	ω
1984	ц	7	'n	Z	ŝ	3	ų	WNW	2	പ	ę	ា	2	μ	4	s	61	ω	e	Z	'n	Z .	4	Z	'n	Z
1985	m	z	ы	37.	Ċ,	MNN	en.	MNN	ę	ы	4	s	ņ	ш	m	S	ы	ш	'n	×	en.	z	m	z	ŝ	ω
1986	'n	NNE	ŝ	Ż	ŝ	MNN	~	3	67	S	د با	SW	m	\$	m	Ś	m	យ	'n	7.	থ	Z	÷	7.	'n	Z
1987	'n	z	3	Ň	ัก	3	m	X	ŝ	X	m	SW	m	SW	m	ы	41	≽	m	പ	'n	ш	4	7.	n	≥
1988	'n	z	'n	z	ŝ	3	m'	3	'n	SW	m	3	'n	S	m	ພ່	3	យ	m.	NNN NNN	4	7.	e.	Z	ŝ	z
1989	ŝ	ш	ŝ	Z	ń	MNN	~	3	2	≩	2	ພ	m	SW	6 2	SW	m	SW	'n	üΖΖ	च	Z	en	ω	r)	យ
0661	وب 1	z	പ	×	3	MNN	, M	Ņ	2	×	3	CLI ب	Ч	ΜS	ŝ	MSM	2	MN	4	Z	m	ωZZ	'n	Z	3	≥
1661	м	z	ŝ	- HANN	2	WNW	m	×.	М	WNW	m	M	47	ŝ	7	ΜS	ы	s	m	ð	-		'n	យ	ы	≥
1992	ŝ	z	3	z	2	M	2	3	'n	Ŵ	61	×	ы	ESE	<u>ຕ</u> ໍ	SW	'n	MS	च	ωZZ	4	z	2	ш	m	3
5061	ŝ	Z	N	MNN	2	3	n,	NNN	Ņ	A	n 1	M S .	1	SW.	ч	s	3	ш	en '	យ	2	z	V	7.	2	≥.
1994	m	z	÷	े. 1:1	m	z	ė,	M	64	ម	64	ш ,	4	\$	in.	s.	14	យ	ņ,	MZZ Z	m	ម	'n	8	m	យ
\$661	M	z	ŝ	z	ы	λX	4	M	'n	ġ	Ч	SW	2	ບ	3	3	ч	ध्य	2	z	m	ш	m	ыN	~	ш
Mcan	~	z	~	z	m	M	~	я	n	N	m	SΨ	3	SW	ę	S	6	ب د	ъ	-11	4	z	~	z	~	4
Source	2 12	VGASA																								
Note	ž	M. available	Z v	North: V	W:W	st: S: S	outh;	E:East					. •					: *		•				-		

Table B.2.6 Mean Monthly Wind Speed and Direction

0

0

0

B - 27

		Cab.	Mar	And	NANU -	[iin	1.1	4110	Ce.	ţ	VoV	Der U	Annial
750.	110	0.22	2 201		2004	- 1 V I	N 1 N N	S-101	117 0	9.041	1448	1221	C X081
19/0	4. c / I	0.44	C.041	C-077	200.4	7 1 1	1 1 1	(147)	0.111	140.0	0.441	1.001	70201
1977	156.5	175.8	183.3	190.7	194.9	1.191.1	125.9	117.2		157.2	146.1	130.7	ı
1978	147.4	154.4	169.7	157.9	176.6	129.2	154.8	102.8	136.9	135.8	128.9	129.9	1724.3
6261	131.0	125.8	166.6	159.7	150.6	147.4	126.4	109.8	115.8	123.2	124.9	120.3	1601.5
0861	125.5	126.3	162.4	191.9	148.9	146.2	127.7	137.8	102.6	114.1	99.5	126.8	1609.7
1861	135.9	144.2	167.5	192.6	156.7	1	121.5	118.8	124.9	112.6	116.0	136.2	1526.9
1982	136.9	130.3	152.5	183.0	159.3	137.7	•	4	102.9	128.4	ı	ı	•
1983	•		152.9	162.3	186.8	169.3	129.7		6.711	•	126.6	116.9	•
1984	139.0	141.7	175.5	162.2	148.8	126.0	151.5	٠	125.8	125.3	108.3	133.9	٩
1985	127.2	133.0	173.4	191.8	186.5		119.7	1	116.3	118.4	122.9	132.9	ł
1986	143.1	139.1	171.7	173.9	137.2	141.1	142.0	·	107.4	141.6	124.5	131.7	•
1987	164.0	106.2	181.9	189.7	241.2	160.7	180.7	157.9	144.2	152.7	140.7	148.4	1968.3
1988	143.4	164.5	218.7	225.3	228.7	169.5	138.0	157.8	124.7	139.3	161.4	157.4	2028.7
6861	169.0	162.3	193.7	221.6	197.4	153.6	140.0	133.4	111.1	143.7	154.0	141.6	1921.4
0661	154.5	161.4	207.6	217.7	169.7	121.1	-120.2	113.1	129.2	139.8	149.8	171.7	1855.8
1661	150.7	123.5	173.2	199.2	231.1	156.4	114.6	ı	1	140.2	121.6	135.0	,
1992	129.4	151.2	181.8	177.3	130.3	168.4	150.6	108.7	111.5	131.1	131.8	132.0	1704.1
1993	146.3	161.6	185.2	195.2	190.2	166.5	153.2	139.0	122.5	123.8	135.5	158.6	1877.6
1994	135.8	147.7	207.9	6.181	181.1	127.1		140.8	139.8	127.8	132.5	122.5	,
1995	121.3	113.5	116.4	131.7		129.5	126.8	110.1	112.1	119.8	111.9	120.9	: •
Mean	143.7	143.0	176.9	186.6	179.8	149.0	137.1	126.5	120.1	132.4	130.6	135.8	1761.6
Source :PA	VGASA	· ·											
· : Not a	vailable	•	•		• •	•	:	•					

Table B.2.7 Mean Monthly Evaporation

B - 28

8

0

8

0

0

Table B.3.1 Inventory of Daily Rainfall Data

Ź	Station	Elevation												•				:		Ycai																	7
	Name		[3	3	3	3	3	8	67	3	ŝ	8	7	2	2	7	75	26	7	78	۴	8	18	ដ	ß	2	22	8	ţ,	8	62	8	5	8	- R	ż	8
L	PAGASA			-															· ·																		Т
-	Scoul -	5 m 2	<	<	<	<	<	<	<	۲	<	<	<	<	<	<	<	<	<	<	<	۲	<	<	<	<	<	<	¥	<	<	$\overline{\mathbf{v}}$	~	₹	~	7	<
"	Batac	17 m	Ŀ	Ŀ	٠	•	•	٠	1	<u> </u>	•		•	•	•	•	٠		<	<	<	<	<	×	۲	۲	<	×.	<	<	<	<	۲	<	~	<	~
	NA										L																		-1	-						<u>ن</u> ۔	
Ľ	Labugaon Dam	115 m	. <u>-</u>		Ŀ	Ŀ	<u>.</u>	·	ŀ				<u></u>	1	1		•	Ŀ	•	Ŀ	·		٠	٠	1	•	•	e	В	ß	8	â	8	-	ß	B	æ
["	Solsona Dam	113 m	 	Ŀ	Ŀ	Ŀ	•	Ŀ	.	Ŀ	Ľ				Ľ	Ľ	1	Ŀ	•	•	Ŀ	•	•	•	•	1	-	e	8	ß	ß	ß	ø	e	2	-	m
<u> </u>	Madongan Dam	128 m	Ŀ	Ŀ	ŀ	Ŀ	•	Ŀ			<u>`</u>		L.	<u> </u>		.*	<u> </u>	Ŀ	٩.	•	•	•	٠	•	•	•	•	•	ព	9	8	ē	8	8	8	e a	8
1	Pape Dam	140 m	-	ŀ	•	ŀ	Ļ	·			<u> </u>	-	<u>,</u>	•	•				•	•		•	٠	•	٠	•	B	α	8	8	3	n	8	8	, ci	8	3
<u> </u>	Nucva Era Dain	ш 011			1	1	Ŀ		•	-	1	•	•	.ª	1	•	•	•	•	٠	•	•	·	٠		Ð	B	B	8	8	ß	e	2	e	8	Ð	8
്	Manalpac	80 m	Ŀ		•		Ŀ			•	•		•	1	-	<u> </u>	•	9	¢2	ß	ß	ε	a	ĉ	នា	·	•	-	,	•	-	•	•	-,-	•	,	,
5	Lumbad	25 m	Ŀ		<u> </u>	·		-		•				•	*		•	<u>م</u>	<	<	<	<	<	8	•	•	-	1	-	7	-		7	,	-	7	•
Ľ	Alabam	40 m		Ŀ	•			Ŀ		Ŀ			 _		Ŀ	-	•	•		1	·	·	Ē	ස	ø	à	•	•	•	•	•	•	•		-		ī
<u>^</u>	Outom	m011		1	. '	Ŀ	. 4	-		-		Ľ	<u> </u>	-	<u>'</u>	Ŀ	Ŀ	8	B	Ê	·	м	<	-	có	•	•	•	•	•	·	7	-	-1	-	-,-	·
Ĕ) Paoay	25 m	-	•	•	-		•	4	•	•			•	_	•		-		1	•	â	ŝ	æ	8	•	•		·		. .		٠	•	•	•	,
4	Complete data 13 :	incomplete data :	•	Nor	1 Vail	bie																										÷					

Table B.3.2 Inventory of Daily Water Level and Discharge Data

					ļ	ļ	ļ	ļ	ļ			ļ	ļ	ļ	ļ	ļ		ļ	ļ													ł		ļ			ļ		I	ſ
2	River	Location																			Yca	J		1		Ì										ł	ł	ł	ł	
			5	×	ŝ	3	5	- g	3	e x	5 6	8	7 6	8	9 7	0 7	3	2	2	8	%	3	32	۶.	2	5	8	2	3	23	3	~ ۲	3	ទ	× 8	Ť	â	ŝ	,	Σ
Ľ	DPWII			-														· .								-	-1								~				-	_ I
	Lacax R.	Gitbert Br.	•	ī	≥	3	0	0	0		- 0	-	-	L L	2			0		9	٩	۵	•	1	1	•	1	•	≥	≥	Ô	× 3	2	>	3	3				2
11	Bongo R.	Couplason Br.	×	×	×	W	ß	0	0	0	0	6	2	Ļ	-	2	0	<u>a</u>	0	a	9	0	Δ	٠	۵	٠	•	•	¥	3	3	≥	ž	3	3	3	2	$\frac{1}{2}$	2	. 1
\sim	Solsona R.	Solsona Dam	a	۵	0	a	٥	a	0	9	0	0	~		2	1	2	6	-	0	۵	0	Δ	à	۵	ß	۵	2	0	≥	≥	≥	à	≥	3	-	5		2	21
7	Vot available	D : Water level &	Disch	N ^C		Ň	ster le	P	Sino	Son	te da	ta arc	i mis	Sing	1	ipou	cally	0.00	l ved	At 7;	8	8:00	12:0	Ó anc	1 17:0	Ş	<u>8:</u> 0			4										

Table B.3.3 Inventory of Average Monthly Discharge

?	River	Location		1				Ì		Ì	۶	5							Ì	
			78	8	80	81	82	\$3	z	85	36	87	88	63	8	91	8	03	24	8
	VIN			÷			_	_						1						
	Laburaon R.	med nongodal	٠	•	٠	•	•	ຍ	ដ	•		æ	<	<	۲	<	<	IJ	Β	•
~	Solsona R.	Solsona Dam	В	<	<	8	·	•	•	•		•	8	В	<	<	<	23	,	
1	Madongan R.	Mudongan Dum	•	٠		٠	•	~	ъ	•	-	,	<	۷	<	<	<	ខ	·	•
*	Papa R.	Papa Dam				,	•	<	<	•	-	•	×	۲.	<	a	<	3	8	
ñ	Bongo R.	Nueva Era Dam		•	٠	·	•	•	•	,		'	×	۲	<	V	×.	۲	8	•
			1															ĺ		

A : Complete data : B : Incomplete data : - .: Not available

Table B.3.4 Major Flood Record

I	Reco	rd of Cyclone		Maxin	num Rain	fall for V	arious Du	tration (m	(m) ³⁾	Water Level of	ö	served Flo	od Mark at	Dam Site	\$
•	Date	Name ¹⁾	Inundation	3 - hr	6 - hr	12 - hr	I-day	2 - day	3 - day	Laoag River at		Wa	ter Depth (1	n)	
			Depth (m) ²⁾					•••• •		Gilbert Br. 4)	Labugaon	Solsona	Madongan	Papa	Nucva Era
•	1961 Jul 10 - 14	- lar	•	195	310 -	ु `341 ' ए	495	Se 11-24	282		•	•	4	,	
2	1961 Aug 22 - 25	TY Loma	•	117	166	221	288	S13	572	7.78	•	1	1	•	•
3	1962 Jul 18 + 23	TY Kate	•	93	106	170	255	491	672		,		 -	,	•
4	1962 Aug 29 - 31	TY Wanda	•	‴ 165 <i>™</i>	241	<u>345 ≲</u>	. 409	468	496		•	•	•	,	,
S	1963 Jun 04 - 09	TS Bebeng	4	70	139	189	295	472	629					•	
9	1967 Jun 27 - 29	TY Gening			~ 287~	<u>ि 371</u> ्र	510	-557	558	Sec.9.90-55			•		.
5	1973 Sep 01 - 03	TY Huling			3	1	321	⊳~96t ⊰	517			•	,		
8	1977 Jul 23 - 25	TY Goring	3.0	- 75	144	213	240	306	347	8.85	•		1	,	•
6	1984 Aug 27 - 30	TS Maring	•	48	66	85	149	273	366	•		2.1	1.7	18- 3-7 -202	14.0 m
10	1985 Jun 21 - 25	TY Kuring	1.6	•	:	,	222	337	440	1	S	3.2	1.7	0.5	1.9
11	1986 Jul 7 - 10	TY Gading	•	•		1 . 1	94	179	231	8.30	1.8	1.8	1.7	1.7	1.9
12	1986 Aug30-Sep3	TY Miding	2.0	70	84	167	214	350	476	9.42	2.0	2.5	1.9	2.5	Sec. 2. 7. 35
13	1987 Oct 23 - 25	TY Pepang	•	•	i		158	280	309	•		2.9		2.0	3.6
14	1989 Sep 08 - 11	TY Openg	1.2	11 202 ×		344	≤ 437° N	≤ 658 -]	~831~	5.25	2.8	. 2.9	1.0	×2.3	14.3 M
15	1992 Sep 19 - 22	TS Maring	1	•	•	1	265	450	467	1. 1. 1. 100. 6 March 19	2.7	3.8.	1.7	•	1.9
16	1994 Sep 09 - 11	TD Weling	0.1	159 -	. 290	401	447	449	449	7.60	1		•		
ļ	1): TD: Tropica	I Depression;	TS: Tropical	Storm TY	Typhoo	uc]
		•		:											

²¹ Interview survey results on the maximum inundation depth above main road surface.

^{3):} Rainfall data at Laoag (PAGASA)

4): Elevation of water level converted to JICA datums

Water depth is estimated by : FEL - CEL ; FEL = flood elevation observed by INIP Irrigation Systems of NIA, CEL = crown elevation of dam .. ନ

- : Not available : Biggest five (5) r

: Biggest five (5) rainfall for various duraiton; highest five (5) water level at Gilbert Br. and Cauplasan Br.; deepest five (5) inundation depth; and highest three (3) flood mark water level at Labugaon, Solsona, Madongan, Papa and Nueva Era dams

0

0

B - 30
	<u></u>	1	Water Level (m)			
Year	Date	Gauge	Datu	ims *	(m3/s)	
		Record	1984 Year	1996 Year		
1959	•	5.48	5,21	6.46	3,900	
1960	•	5,52	5.25	6.50	4,000	
1961	Aug. 25	6.80	6.53	7.78	6,200	
1962	Aug. 30	8.85	8.58	9.83	10,800	
1963	Sept. 5	6.87	6.60	7.85	6,300	
1964	Sept. 9	7.00	6.73	7.98	6,600	
1965	Sept. 3	5.63	5.36	6.61	4,100	
1966	Nov. 2	3.00	2.73	3.98	1,100	
1967	Jun 28	-	•	9.9 **	10,900	
1968	Jul. 25	6.78	6.51	7.76	6,100	
1969	Jul. 27	7.83	7.56	8.81	8,300	
1970	Sept. 7	5.46	5.19	6.44	3,900	
1971	Oct. 11	5.50	5.23	6.48		
1972	Jul. 19	6.80	6.53	7.78	6,200	
1973	Oct. 9	7.80	7.53	8.78	8,300	
1974	Oct. 2	3.30	3.03	4.28	1,300	
1975	Jun. 13	3.86	3.59	4.84	1,800	
1976	Aug. 16	3.75	3.48	4.73	1,700	
1977	Jul. 24	7.90	7.63	8.88	8,500	
1978		-	•	• • •	•	
1979	.	• •		-	-	
1980	· •	•	-	-		
1981	-		-	-	-	
1982	· · ·	-	•	-	-	
1983	-	•		-	-	
1984	Aug. 28	4.17	4.17	5.42	2,500	
1985	Oct. 26	4.07	4.07	5.32	2,400	
1986	Sept. 3	8.17	8.17	9.42	9,700	
1987	Sept. 9	5.20	5.20	6.45	3,900	
1988	Jul. 18	5.08	5.08	6.33	3,700	
1989	Sept. 11	4.00	4.00	5.25	2,300	
1990	Oct. 6	6.00	6.00	7.25	5,200	
1991	Jun 22	5.20	5.20	6.45	3,900	
1992	Sep 21	•		9.0 **	8,700	
1993	Aug. 19	3.42	3.42	4.67	1,700	
1994	Sept. 11	6.35	6.35	7.60	5,800	
1995	Aug. 30	3.70	3.70	4.95	1,900	

Table B.3.5 Water Level and Discharge Record

-

*: Datum line of water level gauge was ammended in 1984 by DPWH.

Datum line of water level gauge was converted by JICA Study in 1996.

**: Flood maximum water level was confirmed by interview survey and topographic survey.

 \bigcirc

	Areá	Average	Alti	tude
Basin	(km2)	Elevation	Conversi	on Factor
		(m)	3-hr	24-hr
BOI	57.0	658	1.21	1.26
BO2	45.2	118	1.00	1.00
BO3	24.5	76	0.98	0.98
BO4	68.1	98	0.99	0.99
РА	51.4	682	1.22	1.27
BO5	22.9	93	0.99	0.99
BO6	85.6	70	0.98	0.98
MA1	105.8	812	1.18	1.22
MA2	42.3	726	1.15	1.19
MA3	5.7	274	0.98	0.98
SO2	10.7	487	1.05	1.06
SO1	79.0	742	1.15	1.18
SO4	14.9	77	0.91	0.89
SO3	57.2	72	0.91	0.89
CUI	69.5	643	1.11	1.13
LB	100.5	737	1.15	1.18
ĊU2	21.0	489	1.05	1.06
CU3	83.7	62	0.95	0.94
GU	178.3	162	1.03	1.04
LAI	50.0	63	1.01	1.01
LA2	38.1	38	1.00	1.01
LA3	43.0	27	1.00	1.00
LA4	15.1	4	1.00	1.00
LA5	62.6	37	1.01	1.01
		· · · · · · · · · · · · · · · · · · ·		
Rainfall Station	Laoag	Piddig	Solsona	Nueva Era
Elevation (m)	5	25	350	125

Table B.3.6 Altitude Conversion Factor

 \bigcirc

0

0

Year	Daily		2 Days		3 Days	
	Rainfall	Date	Rainfall	Date	Rainfall	Date
	(mm)		(mm)		(mm)	
1961	494.8	Jul 13	670.8	Jul 12-13	785.1	Jul 11-13
1962	409.2	Aug 30	491.3	Jul 19-20	672.1	Jul 19-21
1963	294.9	Jun 08	471.7	Jun 07-08	629.4	Jun 06-08
1964	162.9	Sep 03	221.3	Sep 09-10	268.6	Sep 08-10
1965	280.6	Sep 02	304.5	Sep 02-03	317.3	Sep 01-03
1966	136.2	Sep 06	229.2	Sep 05-06	261.2	Sep 04-06
1967	510.3	Jun 28	557.2	Jun 28-29	557.5	Jun 27-29
1968	248.5	Jul 24	308.2	Jul 23-24	337.1	Jul 23-25
1969	323.6	Sep 13	482.1	Sep 12-13	526.6	Sep 12-14
1970	93.5	Jun 13	165.6	Jun 12-13	226.8	Jun 12-14
1971	225.2	Oct 09	393.3	Oct 09-10	472.1	Oct 09-11
1972	249.7	Jul 18	358.7	Jul 17-18	438.7	Jul 16-18
1973	320.6	Sep 03	496.4	Sep 02-03	516.8	Sep 01-03
1974	162.9	Jun 04	274.7	Jun 03-04	359.3	Jun 02-04
1975	125.7	Aug 14	221.0	Aug 14-15	261.9	Aug 14-16
1976	128.4	May 26	219.1	May 25-26	228.2	May 25-27
1977	243.0	Aug 20	396.2	Aug 19-20	428.5	Aug 19-21
1978	157.0	Jun 23	195.2	Jun 23-24	240.4	Jun 22-23
1979	183.4	Jul 27	226.3	Jul 27-28	258.7	Jul 27-29
1980	215.2	Jul 09	280.9	Jul 09-10	300.5	Jul 08-10
1981	133.6	Jun 12	143.5	Jun 11-12	203.0	Jun 12-14
1982	189.0	Jul 02	356.0	Jul 02-03	388.7	Jul 02-04
1983	180.9	Sep 06	223.7	Sep 06-07	295.3	Aug 12-14
1984	187.2	Apr 30	284.2	Apr 29-30	365.7	Aug 27-29
1985	221.8	Jun 22	337.2	Jun 22-23	439.6	Jun 21-23
1986	228.2	Aug 22	350.3	Sep 01-02	475.5	Aug 31-Sep 02
1987	157.6	Oct 24	279.7	Oct 23-24	309.3	Oct 23-25
1988	139.7	Jun 01	169.9	Jun 01-02	187.1	May 31-Jun 02
1989	437.2	Sep 09	658.1	Sep 09-10	830.6	Sep 09-11
1990	235.7	Aug 18	372.6	Aug 29-30	467.0	Aug 29-31
1991	240.0	Aug 12	380.4	Aug 12-13	381.7	Aug 12-14
1992	265.0	Sep 21	450.4	Sep 20-21	467.2	Sep 19-21
1993	361.8	Sep 15	378.6	Sep 15-16	378.6	Sep 15-17
1994	446.8	Sep 10	448.6	Sep 9-10	448.6	Sep 9-11
1995	224.2	Aug 30	402.2	Aug 29-30	409.8	Aug 28-30
Average	246.1		348.5		403.8	

Table B.3.7 Recorded Maximum Rainfall at Laoag Station (1961-1995)

0

0

8

، سر

														(Un	it: mm)
Return		Hazen	<u></u>		Gumbel		L	og-norn	nal		Iwai		Isihara-Takase		
Period		Method	I .		Method	1		Method	}		Method			Method	1
(Year)	1-day	2-day	3-day	1-day	2-day	3-day	1-day	2-day	3-day	l-day	2-day	3-day	1-day	2-day	3.day
2	226	325	377	228	327	378	226	325	377	218	325	373	227	333	376
5	320	449	515	324	444	516	321	450	516	321	446	515	323	451	515
10	385	531	606	388	521	608	387	534	608	401	520	613	387	523	607
20	448	611	693	448	596	695	451	615	697	484	587	710	449	589	697
25	468	636	721	468	619	723	471	641	725	512	607	741	469	610	725
30	484	657	744	483	638	746	488	662	748	535	623	766	485	626	748
50	531	715	807	527	692	809	535	721	811	602	666	838	531	671	813
100	594	794	892	586	764	894	600	801	898	699	721	937	593	730	902
150	632	841	942	620	806	943	639	849	949	759	751	996	629	764	955
200	660	874	978	645	836	978	667	883	986	803	772	1,039	655	788	992
500	748	982	1,094	722	931	1,090	757	992	1,103	951	835	1,177	740	863	1,113

Table B.3.8 Probable Maximum Rainfall

0

Constants for	r Sub-basin					
Sub-Basin	Catchment	River	Equivalent	Stope	Con	stants
	Area (km²)	Length (km)	Roughness (N)	I	K	T (hr.)
BOI	57.0	10.4	0.7	0.09529	10.8	0.22
BO2	45.2	11.5	1.0	0.03826	16.7	0.27
BO3	24.5	9.6	1.5	0.00604	31.9	0.18
BO4	68.1	16.5	0.5	0.02521	14.2	0.52
PA	51.4	10.5	0.7	0.09219	10.6	0.22
BO5	22.9	8.8	0.7	0.02977	12.4	0.14
BO6	85.6	11.0	2.0	0.00545	52.6	0.25
MA1	105.8	26.5	0.7	0.05736	14.6	1.03
MA2	42.3	13.5	0.7	0.09778	10.0	0.37
MA3	5.7	1.6	0.7	0.03750	8.2	0.00
SO2	10.7	5.4	0.7	0.14630	. 6.3	0.00
SO1	79.0	18.0	0.7	0.08083	12.3	0.60
SO4	14.9	6.6	2.0	0.00803	30.8	0.02
SO3	57.2	9.5	2.0	0.00832	42.1	0.17
CUI	69.5	16.3	0.7	0.07147	12.3	0.51
LB	100.5	19.8	0.7	0.07222	13.4	0.69
CU2	21.0	11.0	0.7	0.06500	9.5	0.25
CU3	83.7	15.2	1.8	0.00559	49.0	0.46
ดบ	178.3	27.4	1.3	0.01679	34.4	1.08
LAI	50.0	17.0	1.7	0.00588	41.4	0.55
LA2	38.1	9.0	1.8	0.00389	45.7	0.15
LA3	43.0	6.0	1.9	0.00417	46.6	0.00
LA4	15.1	2.0	2.0	0.00050	71.1	0.00
1 1 45	62.6	185	13:0	0.00297	45.0	063

Table B.4.1 Constants for S	Storage Functi	ion M	lodel
-----------------------------	----------------	-------	-------

Consta	ants	for	River	Channel

Constants for	: River Channy	£1				
River	River	River	Manning's	Slope	Cons	stants
Channel	Length (km)	Width (m)	Roughness (n)	I	K	<u> </u>
R1	6.8	350	0.04	0.00667	12.8	0.14
R2	2.5	300	0.04	0.00400	5.1	0.06
R3	2.5	330	0.04	0.00250	6.1	0.08
R4	7.4	220	0.04	0.01250	9.6	0.11
R5	3.9	400	0.035	0.00143	11.5	`0.17
R6	5.9	560	0.035	0.00143	19.6	0.26
R7	1.6	350	0.04	0.01429	2.4	0.02
R8	8.9	300	0.04	0.01000	14.0	0.15
R9	9.5	200	0.04	0.00832	13.4	0.17
R10	6.5	230	0.04	0.01250	8.6	0.10
R11	2.6	260	0.04	0.00286	5.6	0.08
R12	2.1	370	0.04	0.00167	6.1	0.08
R13	1.1	750	0.04	0.00100	5.1	0.06
R14	15.2	410	0.04	0.00593	31.5	0.32
R15	5.3	600	0.035	0.00083	21.3	0.30
R16	7.3	750	0.035	0.00083	32.2	0.42
R17	5.2	1200	0.035	0.00067	29.5	0.33
R18	5.3	800	0.035	0.00067	25.6	0.34
· · · 819	8.3	1200	0.035	0.00053	50.7	0.60

IJ

0

Table	B.4.2	Basin Mean	Rainfall by	Model I	lyetograph
-------	-------	------------	-------------	---------	------------

	(mm:tim)
Period BO1 BO2 BO3 BO4 PA BO5 BO6 MA1 MA2 MA3 SO2 SO1 SO4 SO3 CU1	LB CU2 CU3 GU LAT LA2 LA3 LA4 LA5
Tel 24 000 . 100 000 000 000 000 000 000 005 055 048 043 055 043 041 053 0	034 032 022 006 000 000 000 000 000
100 . 200 000 000 000 000 000 000 024 252 217 194 237 249 195 182 237	242 233 100 026 000 000 000 000 000
	0.67 0.78 0.77 0.67 0.67 0.67 0.61 0.60 0.07
309. 400 000 000 000 000 000 101 224 105 105 210 221 105 105 211 1	8 06 782 396 205 164 146 144 147 143
400 500 534 428 428 414 545 451 551 855 866 855 10 10 10 10 10 10 10 10 10 10 10 10 10	3 22 3.13 2.98 3.48 3.81 3.89 3.99 4.90 4.70
cm 2m 713 570 571 557 737 582 783 504 544 453 474 498 389 4.02 4.75	4.84 4.69 8.18 12 27 13 80 14 59 12 94 5 39 5 68
100, 800 15 44 17 35 17 35 11 96 15 85 12 61 8 66 3 92 5.76 4.41 3.68 3.87 3.03 2.99 3.69	3.76 3.65 4.03 5.11 6.23 5.84 5.45 3.92 3.90
800 - 900 1900 15 20 15 20 14 72 19 51 15 52 10 09 7.55 9.45 7.53 7.10 7.47 5.84 5.58 7.12	7.25 7.04 4.86 4.31 5.09 4.38 5.78 13.72 12.85
900 - 1000 0 59 0 48 0 48 0 46 0 61 0 49 2 75 15 39 13 36 11 92 14 47 15 22 11 90 11 23 14 50 1	4.77 14.33 757 4.35 3.16 3.40 3.36 3.43 3.33
1000 - 1100 16 63 13 30 13 30 12 88 17.07 13 58 10.11 9 23 10 53 8.62 8 68 9.13 7.14 6.87 8.70	8 86 8.60 6.77 6.84 7.64 7.29 8.04 12.74 12.09
11.00 - 12.00 14.85 11.88 11.88 11.50 15.25 12.13 10.80 3.36 5.19 3.92 3.16 3.32 2.60 2.79 3.16	3 22 3.13 7 31 11.70 13.79 14.10 13.15 9.31 9.26
12 00 - 13 00 14 85 11 88 11 88 11 50 15 25 12 13 7 55 13 47 12 18 10 18 10 79 11 34 8 87 8 32 10 81 1	1.01 10.68 4.78 1 59 1 29 0.49 0 56 0 98 0 93
1300 - 1400 5.94 4.75 4.75 4.60 6 10 4.85 4.83 7.55 7.43 6.35 7.10 7.47 5.84 5.61 7.12	7.25 7.04 5.27 5.10 5.25 5.35 5.43 6.37 6.13
1400-1500 891 7.13 7.13 690 9.15 728 638 7.55 7.89 663 7.10 7.47 5.84 5.63 7.12	7.25 7.04 5.69 5.88 6.31 6.32 6.62 8.82 8.43
1500 - 1600 3.56 2.85 2.85 2.75 3.66 2.91 2.07 2.80 2.96 2.43 2.03 2.17 2.10 2.05 2.04	209 201 109 103 109 097 104 147 140
1600 - 1700 0.59 0.43 0.43 0.45 0.61 0.49 0.95 4.20 3.71 3.29 3.95 4.15 3.23 3.00 3.95 4	
1700 - 1800 0.59 0.48 0.43 0.55 0.01 0.49 0.41 1.05 1.54 1.55 1.55 1.00 1.50 1.22 1.55	
1800 - 1900 000 000 000 000 000 000 000 019 1.50 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59	4 84 4 69 201 0 53 0 03 0 00 0 00 0 00
1000 100 000 000 000 000 000 000 124 192 138 302 368 387 303 291 369	376 3.65 2.80 2.76 2.68 2.92 2.88 2.94 2.85
2107.2200 0.59 0.48 0.48 0.46 0.61 0.49 2.81 1.12 1.06 0.92 1.05 1.11 0.87 1.02 1.05	107 104 395 677 762 827 824 882 853
27 00 . 23 00 8 31 665 665 644 8.54 6.79 5.81 2.80 3.70 291 263 2.77 216 220 264	2 69 2 61 4 00 5 77 6 72 6 81 7 26 10 29 9 81
2300 . 000 415 333 333 322 427 3.40 239 1.96 233 188 184 194 1.51 1.46 1.85	1 88 1.82 1.40 1.38 1.57 1.46 2.44 7.84 7.29
14 25 660 - 100 3 56 2 85 2 85 2 76 3 66 2 91 3 71 7 83 7 30 6 36 7 37 7 75 6 06 5 80 7 38	7.52 7.30 5.18 4.73 4.67 4.86 4.80 4.90 4.75
100 - 200 000 0.00 0.00 0.00 0.00 0.00 2.11 12.87 11.09 9.93 12.10 12.73 9.95 9.40 12.13 1	2 36 11 99 6 36 3.69 2 68 2 92 3 34 5 88 5 56
200 - 300 1.78 1.43 1.43 1.38 1.83 1.46 3.58 8.39 7.51 6.63 7.89 8.30 6.49 6.25 7.91	8.06 7.82 623 635 635 681 564 000 033
300 - 400 475 3.80 3.80 3.68 4.88 3.88 7.82 1.96 2.42 1.94 1.84 1.94 1.51 1.91 3.85	1.88 1.82 8.81 15.47 17.68 38.97 17.80 13.23 13.11
400 - 500 23 16 18 53 18 53 17 94 23 78 18 92 13 85 5 87 8 65 6 61 5 52 5 81 4 54 4 56 5 54	5.64 5.47 7.28 10.01 12.02 11.67 10.91 7.84 7.79
500 - 600 19:00 15:20 15:20 14:72 19:51 15:52 9:42 3:64 6:07 4:51 3:42 3:60 2:81 2:72 3:43	3.49 3.39 2.89 3.12 4.20 3.40 3.82 0.37 0.05 409 24 23 1402 0.23 10.60 9.75 9.40 3.94 3.65
600 - 700 46 91 37 53 37 53 36 34 49 17 38 32 25 01 26 01 29 68 24 29 24 46 25 73 20 12 49 07 24 52 2	4 95 24 25 14 07 9 77 10 09 8 73 8 49 7 64 7 65
700 - 800 48.69 38.95 38.95 37.72 50.00 39.77 23.25 19.30 24.17 19.27 14.15 19.09 14.95 14.04 18.19 1	171 71 71 77 73 83 74 75 76 76 76 74 61 18 13 17 98
800 - 900 11.63 9.50 9.20 9.20 9.20 9.20 9.20 9.20 9.20 20 02 20 20 20 20 20 20 20 20 20 20 2	7 07 35 96 23 00 18 52 18 43 17.99 16 53 10 29 10 36
100 - 100 33 87 27 08 27 08 27 08 27 08 27 17 05 27 12 56 16 22 17 39 14 49 15 26 16 05 12 55 11 91 15 29 1	558 15 11 9.14 6.79 7.05 632 601 490 482
11 00 - 17 00 11 85 27 08 27 08 26 22 34 76 27 65 24 97 26 29 27 90 23 33 24 73 26 01 20 34 19 75 24 78 2	5 25 24 49 22 01 24 67 26 91 27 23 23 04 2 94 4 04
1200 - 1300 59 28 49 49 49 47 44 60 32 50 44 34 22 26 29 32 22 25 84 24 73 26 01 20 34 19 52 24 78 2	5.25 24.49 18 30 17.63 20.46 18.48 20.47 32 83 31 14
1300 - 1400 46.17 38 43 33 43 37 26 46.98 39 29 30 09 45 04 46 27 39 07 42 35 44.54 34.84 33 08 42 44 4	3 25 41 95 25 57 19 19 19 24 17 99 15 99 6 86 7 20
1400 - 1500 40.47 33.73 33.73 32.65 41 18 34.44 32.63 64.74 62.15 56.02 62.92 64.74 53.85 51 20 62.32 6	3 53 62 32 39 27 29 39 27 83 27.72 27 21 26 95 26 17
1500 - 1600 42 16 33 73 33 73 32 66 43 30 34 44 36 30 33 97 35 59 31 20 33 02 33 97 28 26 27 83 32 70 3	3 34 32 70 36 08 44 43 45 81 50 57 49 77 49 98 45 50
1600 - 1700 30 88 24 70 24 70 23 92 31 71 25 22 38 13 52 09 48 70 44 00 49 66 51 09 42 50 41 61 49 18 5	0.14 49.18 50.42 59.51 53.35 55.24 52 85 45.05 45.70
17:00 - 18:00 27:91 22:33 22:33 21:62 28:66 22:80 21:55 31:89 31 81 27:11 29:99 31 54 24:67 25:07 30:05 3	0.02 29.70 22.18 21.34 22.11 22.03 23.10 29.40 23.17
1800 - 1900 30.88 24.70 24.70 23.92 31.71 25.22 32 57 22.60 24.31 20.26 21 31 22.41 17.55 17.92 21 55 2	7 73 17 50 16 71 16 77 50 61 50 61 70 17 10 17 64 17 77
1900 - 2000 30 29 24 23 24 23 23 40 33 10 24 74 20 83 18 40 20 00 10 37 17 30 18 20 14 28 13 31 17 49 1 2000 - 11 00 13 02 10 45 10 45 10 13 13 40 10 51 13 30 35 73 33 31 31 03 25 30 35 45 10 91 39 00 34 75 2	4 74 23 97 16 23 14 04 13 68 14 10 12 69 6 37 6 56
2000 - 2100 13 00 10 03 10 04 10 12 13 04 10 07 12 20 23 13 24 21 21 05 24 20 23 43 13 21 13 00 24 23 2	9 85 19 28 12 16 9.60 9 29 9.24 8.43 4.90 4.95
27 00 - 21 00 28 50 22 80 22 80 22 08 29 27 23 28 18 96 11 47 14 30 11 41 10 79 11 34 8.87 8.81 10 81 1	1 01 10 68 12.80 16.85 19.47 19.45 17.97 11.76 11.78
23 00 . 0 00 21 97 17 58 17 58 17 02 22 56 17 95 13 91 13 15 14 73 12 12 12 35 13 00 10 17 9.81 12 39 1	2 62 12 25 9 97 10 38 11 51 11 18 10 20 5 88 5 95
Jul 26 000 - 100 11 28 9.03 9.03 8.74 11 59 9.22 9.41 19.58 18 63 16.12 18 41 19 37 15.15 14.42 18.45 1	8 80 18 24 11 72 9.49 9.12 9.24 8.74 6.86 6.77
100 - 200 20 78 16 63 16 63 16 10 21 34 16 93 13 46 13 71 15 03 12 44 12 89 13 56 10 60 10 22 12 92 1	3 16 12 77 10 20 10 44 11 44 11 18 10 04 4.90 5.06
200 - 300 30 88 24 70 24 70 23 92 31 71 25 22 17 14 8 95 12 49 968 842 885 692 6.76 8.41	8 60 8 34 8 10 9 55 11 57 10 70 9 95 6 86 6 84
300 . 400 8 91 7 13 7 13 6 90 9 15 7 28 7 32 18 74 17 53 15 26 17 62 18 54 14 50 13 73 17 66 1	5 W 17 40 Y 44 0 00 5 80 5 84 5 84 6 37 6 15
	9 40 9 34 10 15 13 46 14 06 15 56 14 05 7 35 7 53
200 - 600 11 25 14 25 12 20 20 20 12 20 20 10 21 622 23 20 12 12 12 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	1 55 11 20 10 76 12 61 13 95 14 10 12 84 7 35 7 44
000 - 100 11.02 14.23 14.03 13 00 10 27 14.23 12.00 12 13 10 00 11 31 12 00 7 30 700 11 31 1 20 7 30 700 11 31 1 20 7 10 70 11 31 1 20 7 10 70 70 70 70 70 70 70 70 70 70 70 70 70	7.52 7.30 662 7.47 806 827 739 3.43 3.56
105 800 831 803 803 044 834 049 043 105 804 049 155 165 804 049 155 165 165 155	8 60 8 31 7.27 7.98 8 34 8.75 8 64 8 82 8 55
900-1000 178 143 143 133 183 146 229 392 365 318 368 387 303 294 369	3 76 3.65 3 21 3 54 3.67 3.89 4.76 9.80 9.22
1000 - 1100 0 59 0 48 0 48 0 45 0 61 0 49 1 19 6 71 588 523 631 664 5.19 4.89 633	6.45 6.25 3.09 1.49 0.93 0.97 1.19 2.45 2.30
11 00 - 12 00 0 59 0 48 0 48 0 45 0 61 0 49 0 33 0 84 0 82 0 70 0 79 0 83 0 65 0 61 0 79	0.81 0.78 0.33 0.09 0.03 0.00 0.08 0.49 0.45
12 00 - 13 00 0.00 0.00 0.00 0.00 0.00 2 19 0 28 0 24 0 22 0 26 0 28 0 22 0 39 0 26	0 27 0 26 3 20 5 99 6 70 7 29 6 51 2 94 3 06
1300 - 1400 0.00 0.00 0.00 0.00 0.00 0.70 7.27 6.27 561 684 7.19 563 527 685	698 677 299 076 900 000 108 686 632
1400 - 1500 238 190 190 184 244 194 128 280 278 237 263 277 216 203 264	269 261 1.11 029 0.13 000 038 245 226
1500 . 1500 7.13 5.70 5.70 5.52 7.32 5.82 7.27 6.71 6.59 5.82 6.31 6.64 5.19 5.18 6.33	0.43 0.23 7.82 (0.49 11:50 12:16 10:08 0:00 0:59
1600 - 1700 1722 13.78 13.78 13.34 17,68 14.07 9.05 3.08 5.32 3.92 2.89 3.04 2.38 2.35 2.90	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1700-1800 594 4.15 4.13 400 010 433 631 013 022 3.28 3.19 607 4.76 4.70 3.80	806 782 479 362 119 340 307 735 401
1800 - 1900 119 035 031 032 1.22 037 232 833 1.42 030 830 830 870 17 731	693 677 496 463 450 486 925 33 32 3092
1000 1000 000 000 000 000 000 000 000 0	242 235 121 065 045 0.49 086 294 273
100. 2200 000 000 000 000 000 239 084 072 065 0.79 083 065 0.81 0.79	081 078 363 635 714 7.78 852 1323 1256
2100 - 2160 238 199 190 184 244 194 248 168 1.81 151 158 166 130 130 158	161 156 211 292 326 340 382 637 603
2300 - 000 119 055 095 092 122 097 087 084 091 075 079 083 065 0.63 0.79	081 078 075 087 096 097 088 049 050
Tetal 937 5 754 8 754 8 730 9 961 3 770 7 696 8 853 0 850 8 743 2 806 9 845 4 668 6 644 8 806 9 1	822 3 799 2 649 6 670 1 715 0 718 8 695 2 629 7 615.1

Table B.4.3 Comparison of Probable Discharges with Other Studies

1. This Study (The Study on Sabo and Flood Control in The Laoag River Basin, JICA)

River	Control	Catchment	Disch	arge (m3/s) / Spec	ific Runoff (m3/s/	km2)
	Point	Area(km2)	10-yr	25-yr	50-yr	100-yr
Bongo	Nueva Era Dam	57.0	620 (10.9)	750 (13.2)	830 (14.6)	920 (16.1)
Papa	Papa Dam	51.4	570 (11.1)	690 (13.4)	770 (15.0)	850 (16.5)
Madongan	Madongan Dam	153.8	1610 (10.5)	1970 (12.8)	2220 (14.4)	2470 (16.1)
Solsona	Solsona Dam	79.0	840 (10.6)	1030 (13.0)	1150 (14.6)	1280 (16.2)
Labraon	Labgaon Dam	100.5	1020 (10.1)	1260 (12.5)	1410 (14.0)	1570 (15.6)
Laoag	Gilbert Br.	1254.4	8900 (7.1)	10900 (8.7)	12300 (9.8)	13700 (10.9)

2. Detailed Design Report on Ilocos Norte Irrigation Project, NIA, 1981

0

ø

4

River	Control	Catchment	Peak Dis	scharge (m3/s) / S	pecific Runoff (m3	/s/km2)
	Point	Area(km2)	10-yr	20-yr	-50-yr	100-yr
Gasgas (Solsona)	Manalpac	73.0	603 (8.3)	760 (10.4)	964 (13.2)	1116 (15.3)

River Control Point		Catchment Area(km2)	Design Discharge (m3/s) 100-yr / Specific Runoff (m3/s/km2)		
Bongo	Nueva Era Dam	57.0	870 (15.3)		
Papa	Papa Dam	51.4	790 (15.4)		
Madongan	Madongan Dam	153.8	2350 (15.3)		
Solsona	Solsona Dam	79.0	1210 (15.3)		
Labugaon	Labugaon Dam	100.5	1540 (15.3)		

3. Nationwide Flood Control Plan and River Dredging Program, DPWII, 1982

River	River Control		Discharge (m3/s) / Specific Runoff (m3/s/km2)		
	Point	Area(km2)	10-yr	25-yr	50-yr
Pada	Banna (Espiritu)	103	880 (8.5)	1240 (12.0)	1420 (13.8)
Boneo	Banna (Espiritu)	108	1030 (9.5)	1280 (11.8)	1460 (13.5)
Madonean	Dingras	193	2070 (10.7)	2550 (13.2)	2930 (15.2)
Solsona	Manalpac	73			1460 (20.0)
Solsona	Dingras	163	1570 (9.6)	1940 (11.9)	2220 (13.6)
Cura	Dingras	289	2470 (8.5)	3060 (10.6)	3500 (12.1)
Guisit	Piddie	162	1360 (8.4)	1680 (10.4)	1920 (11.9)
12032	Laoag	1353	7360 (5.4)	9090 (6.7)	10500 (7.8)

4. Feasibility Study of the Tina-Gasgas-Cura Impounding Reservoir Project at Solsona, NIA, 1983

and the second	· ·				
River	Control	Catchment	Discharge (m3	/s) / Specific Runo	ff (m3/s/km2)
	Point	Area(km2)	10-yr	25-yr	50-yr
Gaseas (Solsona)	Manalpac	73	478 (6.5)	743 (10.2)	979 (13.4)
Tina (Labugaon)	Maananteng	98	658 (6.7)	1024 (10.4)	1350 (13.7)
Cura	Carasi	63	422 (6.7)	656 (10.4)	\$65 (13.7)

FIGURES

ŝ õ ŝ 200 25° 350 5 1350 TRACKS AFFECTING THE PHILIPPINES TRACKS NOT AFFECTING THE PHILIPPINES EON. RESPONSIBILITY 1.20 30° 뜅 AREA d3 PHILIPPINE \langle A 125° 1 DUA LEGEND TAIWAN 17 t MANILA ŝ AOAG 0 E H ∢ SEPT. SABAH z 4 ٩ SOURCE : PAGASA Э 100 ---Ş z ω I ---ò Ś 150 x is o υ 200 20 00 -00

0

۲

8

 THE STUDY ON SABO AND FLOOD CONTROL
 Fig. B.2.2

 IN THE LAOAG RIVER BASIN
 General Tracks of Tropical Cyclones

 JAPAN INTERNATIONAL COOPERATION AGENCY
 Affecting the North Luzon

B-41

0

A

穩

9

14,000 12,000 Discharge (m3/s) Q=150.54 (H-1.40) 10,000 4,500 8,900 8,900 10,900 11,300 12,300 13,700 Discharge (m3/s) Rating Curve at Gilbert Br. 8,000 Elevation 9.90 10.04 10.94 9.71 9.71 9.71 9.71 9.71 6,000 Return Period O Observed Data 4,000 12-00 2-yr. 5-yr. 20-yr. 30-yr. 2,000 0 8 2.00 12.00 10.00 6.00 0.00 8.00 (in) notisvald D: Hozen Plot Probability of Water Level at Gilbert Bridge Ì LEGEND (W)Q 8 Water Level at Gilbert Bridge (ishihara Takase Distribution) o 'n ~ Q n ŝ 88 8 Return Period (Year) Fig. B.3.4 THE STUDY ON SABO AND FLOOD CONTROL Probable Water Level and Rating Curve IN THE LAOAG RIVER BASIN at Gilbert Br. JAPAN INTERNATIONAL COOPERATION AGENCY

B - 46

0

.

A

0

Relation between Rainfall and Elevation

VIGAN

O^{BAGUIO} DAGUPAN

CRU

Rainfal	I Station	Rainfal	l of vario	us duratio	on (mm)
Name	Elevation	l-hr.	3-hr.	12-hr.	24-hr.
Dagupan	3 m	88.3	139.9	294.3	442.7
Laoag	5 m	109.8	219.5	409.7	557.5
Vigan	33 m	109,5	193.7	376.3	452.6
Sta Cruz	100 m	84.0	129.0	222.2	330,6
Baguio	1500 m	92.9	245.4	678.1	852.4

0001 800 Rainfall (mm) 600 400 200 0 1,000 10,000 10 100 3 Elevation (m) ×I-br. 12-hr. •24-hr. **▲**3-hr. • •

THE STUDY ON SABO AND FLOOD CONTROL IN THE LAOAG RIVER BASIN

JAPAN INTERNATIONAL COOPERATION AGENCY

Fig. B.3.9 Altitude Conversion Factor 0

1.2

Return Period (year) 100 50 0 20 10 5 2 9 100 300 1000 (mm) 2 day Rainfall of Laoag LEGEND • Hozen Plot THE STUDY ON SABO AND FLOOD CONTROL IN THE LAOAG RIVER BASIN Fig. B.3.10 Probable 2-day Rainfall at Laoag Station JAPAN INTERNATIONAL COOPERATION AGENCY

 \bigcirc

64

	Record of Cyclone		Rainfall	Water Level / Discharge ²⁾		
:	Date		Name	Duration ¹⁾	at Gilbert Br.	
					WL (m)	Dis. (m³/s)
1	1961	Jul 10 - 14	-	2 days	-	1 • 4
2	1961	Aug 22 - 25	Lorna	2 days	7.78	6,200
3	1962	Jul 18 - 23	Kate	4 days		-
4	1962	Aug 29 - 31	Wanda	2 days	9.83	10,800
5	1963	Jun 04 - 09	Bebeng	4 days	-	-
6	1977	Jul 23 - 25	Goring	2 days	8.88	8,500
7	1984	Aug 27 - 30	Maring	2 days	-	-
8	1986	Aug30-Sep3	Miding	2 days	9.42	9,700
9	1989	Sep 08 - 11	Openg	3 days	5.25	-
10	1994	Sep 09 - 11	Weling	1 day	7.60	-

¹⁾: Duration of rainfall is a 80 % of the total rainfall duration

²⁾: Elevation of Water level is converted to JICA datums

- : Not available

THE STUDY ON SABO AND FLOOD CONTROL IN THE LAOAG RIVER BASIN

Fig. B.3.11 Storm Rainfall Duration

JAPAN INTERNATIONAL COOPERATION AGENCY

[Probable Flood Discharge (m ³ /s)					
· .	2-year	5-year	10-year	25-year	50-year	100-year
Q _{B1}	340	510	620	750	830	920
QCA	190	300	360	440	490	540
Q _{B2}	520	790	960	1,160	1,300	1,440
Q _{M0}	280	450	540	660	740	820
Q _{B3}	860	1,340	1,640	2,000	2,240	2,480
QPA	310	470	570	690	770	850
Q84	1,380	2,150	2,630	3,220	3,620	4,020
QMD	880	1,320	1,610	1,970	2,220	2,470
Qsi	460	690	840	1,030	1,150	1,280
Q _{\$2}	40	70	90	120	130	150
Q _{\$3}	490	760	920	1,120	1,250	1,390
Qcu	170	290	360	460	530	590
Qs4	1,500	2,330	2,860	3,490	3,920	4,360
Qas	2,810	4,390	5,400	6,500	7,000	8,200
Qci	380	580	700	850	960	1,060
QLA	560	850	1,020	1,260	1,410	1,570
QSA	130	190	230	280	310	350
Qcz	1,050	1,580	1,930	2,360	2,650	2,940
Qu	3,760	5,800	7,100	8,700	9,800	10,900
Qou	470	840	1,080	1,390	1,590	1,800
Qu	4,500	7,200	8,900	10,900	12,300	13,700
QL3	4,580	7,300	9,100	11,200	12,700	14,200
* : (Qı	* : (QL3) is flood discharge at river mouth					

THE STUDY ON SABO AND FLOOD CONTROL IN THE LAOAG RIVER BASIN
JAPAN INTERNATIONAL COOPERATION AGENCY

8

Fig. B.4.5 Probable Flood Discharge

0

۲

Probable Maximum Flood Discharge at Gilbert Bridge					
Return Period	Water Level	Flood Dischrge			
2 - year	6.85 m	4,500 m ³ /s			
5 - year	8.29 m	7,200 m ³ /s			
10 - year	9.06 m	8,900 m ³ /s			
25 - year	9,90 m	10,900 m ³ /s			
50 - year	10.44 m	12,300 m ³ /s			
100 - year	10.94 m	13,700 m ³ /s			

100 - year

	• · · · ·
THE STUDY ON SABO AND FLOOD CONTROL IN THE LAOAG RIVER BASIN	Fig. B.4.6
JAPAN INTERNATIONAL COOPERATION AGENCY	Probable Flood Hydrograph at Olivert Br.

50-Year

Study D/D A NFC x F/S

16,000 14,000 ≨^{12,000}

E 10,000 8,000 6,000 4,000

4,000 2,000

0

B - 68

B - 69