SUPPORTING REPORT

1

Ø

PART-E

WATER UTILIZATION PLAN

THE STUDY ON FLOOD CONTROL FOR AMBON AND PASAHARI AREA IN THE REPUBLIC OF INDONESIA SUPPORTING REPORT PART-E

TABLE OF CONTENTS

Table of ContentsList of Tables and Figures

Ť

1

Ľ

CHAPTER 1 CITY WATER DEVELOPMENT PLAN	E-1
1 Water Use and Demand	E-1
1.1.1 Current Water Use	E-1
1.1.2 Future Water Deniand	E-2
1.2 Planning Conditions for Water Development	E-7
1.2.1 Compensation Discharge	15-7
1.2.2 Necessity for City Water Development	E-8
1.3 City Water Development Plan	E-9
1.3.1 Daily Discharge at Dam Sites	E-9
1.3.2 Developed Discharge and Required Reservoir Capacity	E-10
1.3.3 City Water Development Plan	E-15
CHAPTER 2 SMALL SCALE HYDROPOWER GENERATION PLAN	E-16
2.1 Basic Policy	E-16
2.2 Basic Conditions	E-16
2.2.1 Outflow Discharge and Reservoir Water Level in Dam	E-16
2.2.2 Usual and Maximum Utilization Discharge	E-19
2.2.3 Inlet and Outlet Conduit	E-22
2.2.4 Hydropower Turbine Type	E-23
2.3 Hydropower Production for Batu Gajah Dam	E-25
2.3.1 Methodology	E-25
2.3.2 Hydropower Generator Type	E-25
2.3.3 Study Case	E-25
2.3.4 Calculation Results of Hydropower Production	E-25
2.4 Economic Evaluation	E-31
CHAPTER 3 MULTI-PURPOSE DAM PLAN	E-32
3.1 Specification of Multi-purpose Dams	
3.2 Project Cost of the Optimum Flood Control Plan with Multi-purpose Dam	E-34
3.3 Cost Estimate for Water Treatment Plant	E-34

LIST OF TABLES AND FIGURES

LIST OF TABLES

CHAPTER 1	CITY WATER DEVELOPMENT PLAN	
Table-E.1.1	Connection and Sales of Water by PDAM in Ambon City 1995.	E-1
Table-E.1.2	Summary of Future Water Demand (m3/day)	E-3
Table-E.1.3	Future Water Demand Projection	E-5
Table-E.1.4	Maintenance Discharge at Proposed Dam Sites	E-7
Table-E.1.5	Assumed Water Resources (Central Ambon Area)	E-9
Table-E.1.6	Required Reservoir Capacity for Water Utilization	
	Discharge	E-13
Table-E.1.7	Required Reservoir Volume for City Water Development	E-10
Table-E.1.8	City Water Development Plan - Ambon Central Area	E-15
CHAPTER2	SMALL SCALE HYDROPOWER GENERATION	
Table-E.2.1	Outflow Discharge Regime from Batu Gajah Dam	E-16
Table-E.2.2	Outflow discharge regime from Batu Gantung Dam	E-16
Table-E.2.3(1)	Calculation of Utilization Rate of Facility and River Water	
	(Batu Gajah Dam)	E-20
Table-E.2.3(2)	Calculation of Utilization Rate of Facility and River Water	
	(Batu Gantung Dam)	E-21
Table-E.2.4	Usual and Maximum Utilization Discharge	E-22
Table-E.2.5	Relationship between Design Discharge and Diameter of	
	Outlet Conduit	E-23
Table-E.2.6	Basic condition for Hydro-power Generation Plan	E-23
Table-E.2.7	Calculation Results of Hydro-power Production	
	[Batu Gajah Dam]	E-25
Table-E.2.8(1)	Calculation Results of Hydro-power Production	
	[Batu Gajah Dam: qmax = 0.2m3/sec]	E-26
Table-E.2.8(2)	Calculation Results of Hydro-power Production	1
	[Batu Gajah Dam: qmax = 0.3m3/sec]	E-27
Table-E.2.8(3)	Calculation Results of Hydro-power Production	
	[Batu Gajah Dam: qmax = 0.4m3/sec]	E-28
Table-E.2.8(4)	Calculation Results of Hydro-power Production	
	[Batu Gajah Dam: qmax = 0.5m3/sec]	E-29
Table-E.2.8(5)	Calculation Results of Hydro-power Production	
	[Batu Gajah Dam: qmax = 0.6m3/sec]	E-30
Table-E.2.9	Approximate Cost of Hydro-power Station [Batu Gajah Dam]	
	Construction Cost per Annual Hydro-power Production (AHP)	E-31
CHAPTER 3	MULTI-PURPOSE DAM PLAN	
Table-E.3.1	Specification of Multi-purpose Dams and Reservoirs	E-
Table-E.3.2	Project Cost of the Optimum Flood Control Plan	· .
	using Multi-purpose Dams	E-
Table-E.3.3	Estimated Costs of Water Treatment Facilities	E-

LIST OF FIGURES

6

(**]**

Ţ

CHAPTER 1	CITY WATER DEVELOPMENT PLAN	
Figure-E.1.1	Monthly Water Sales (m3) by PDAM : Jan 95 - Sep 96	E-2
Figure-E 1.2	Future Water Demand Projection	E-4
Figure-E.1.3	Variation in Reservoir Volume with Daily Discharge (10 Years)	E-H
Figure-E.1.4	Variation in Reservoir Volume with Daily Discharge (Dry Year)	E-12
Figure-E.1.5	Variation of Required Reservoir Capacity	
A Iguio D. I.o	with Developed Discharge	E-14
Figure-E.1.6	City Water Development Plan - Ambon Central Area	E-15
CHAPTER2	SMALL SCALE HYDROPOWER GENERATION	
	Discharge Regime and Reservoir Water Level	
Figure-E.2.1	In Batu Gajah Dam	E-17
Figure-E 2.2	Discharge Regime and Reservoir Water Level	
(15(10-2.2.2	in Batu Gantung Dam	E-18
Figure-E 2.3	Relationship between annual discharge regime and	:
	maximum utilization discharge	E-19
Figure-E 2.4	Relationship between Utilization Ratio of Intake Facility and	
	Maximum Utilization Discharge	E-22
Figure-E.2.5	Approximate Location of Hydro-power Generation Station	E-23
Figure-E.2.6	Crossflow Turbine	E-23
Figure-E.2.7	Suitable Types of Turbine for Total Water Head and Discharge.	E-24
Figure-E 2.8	Relationship between Prime Production Cost and Specific	
riguie 2020	Construction Cost per Annual Hydro-power Production (AHP)	E-31
CHAPTER 3	MULTI-PURPOSE DAM PLAN	
Figure-E.3.1	Reservoir Storage Allocation	E-33
- igure-15.3.1	teserion storage incommendation	

A

CITY WATER DEVELOPMENT PLAN CHAPTER 1

1.1 Water Use and Demand

1.1.1 Current Water Use

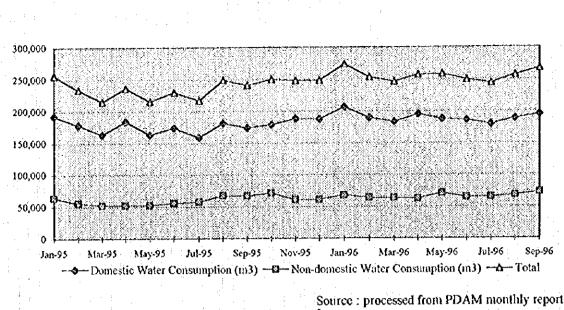
Domestic Water Use (1)

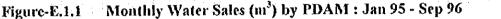
Water for domestic use in Ambon city is provided by PDAM through both individual household connections and public taps. The main water sources are springs and deep wells connected by a distribution network. No water treatment is currently provided although chlorination is sometimes necessary at water supply reservoirs. Drinking water for areas not served by PDAM is usually taken directly from springs or wells.

PDAM currently serves 20 of Ambon's 50 Desa / Kelurahan, mostly within the Study Area. It is estimated that water supply by PDAM reaches 28% of the city residents. Some industry or commercial facilities have their own source of water and others have metered connections with PDAM. Around 70% of PDAM's water is sold for domestic use. The following Table-E.1.1 shows the number of connections, amount of water sold and the PDAM revenue from the sales of water, by category of consumers in 1995. Figure-E.1.1 shows the monthly water sales from January 1995 to September 1996.

Item	Number of Connections*	Amount of Water Sold ('000 m3)	Revenue from Water Sales (Rp million)	Unit Price (Rp/m3)
Domestic Water Sales	8,245	2,456	1012.2	412
Households	8,117	1,897	929.6	490
Public Taps	128	559	82.6	148
Non-Domestic Water Sales	926	1,077	713.6	663
Government	111	544	310.9	572
Commercial	720	214	193.4	904
Industry	6	171	33.5	196
Others	89	148	175.8	1,188
TOTAL	9,171	3,533	1725.8	488

Connection and Sales of Water by PDAM in Ambon City 1995 Table-E.I.I


*as of Dec. 31, 1995


Ð

From the above table, per capita water consumption can be estimated for both household connections and public taps. PDAM assumes that each household has an average of 6.5 occupants which means that approximately 53,000 people obtained water from household connections in 1995. Using the annual total of water sold, the per capita consumption is estimated at 98.5 liters/capita/day (lcd) for consumers supplied by household connections.

It is more difficult to estimate the consumption of the population served by public taps. PDAM assume that each tap supplies 100 people with an average supply of 35 lcd. This estimate appears far too low as the total supplied would be only 164,000 m3/year compared to the actual volume sold in 1995 of 559,000 m3 . However, based on interviews conducted by the JICA Study Team, it was found that the typical charge for use of water from a public tap is Rp 1,500 per household per month. Using this value, the number of households using water from public taps is approximately 4,600, or about 30,000 people assuming 6.5 occupants / household. This figure is equivalent to a per capita consumption of 50 lcd.

Source : processed from PDAM monthly

(2) River Water Use

Water for other domestic uses such as washing of clothes and personal washing is also taken from springs and wells. Springs are often located within the river water course and it is common to see women and children doing laundry at the sides of the rivers.

The rivers through the city are used extensively by the urban population as a means of garbage disposal. Many toilets are also located in the river courses and consequently the water quality is of a very low standard.

1

(3) Non-Domestic Water Use

There are no large industrial water users in the Ambon area. However, non-domestic water sales from PDAM still accounted for 30% of the total sales in 1995. 50% of the non-domestic water sales were to government customers, including government offices, schools, hospitals and other public facilities. PDAM also provides water to over 700 commercial customers, mainly shops, businesses, hotels and restaurants in the central city area of Ambon. Other commercial and industrial users have sunk deep wells to meet water supply requirements.

There is very little agricultural water use within the Ambon study area. Small scale agriculture in the upper river basins is rain fed only.

1.1.2 Future Water Demand

Future demand for domestic and non domestic water use has been predicted for the Sludy Area and for the whole of Ambon City until the Year 2030. The results are summarized in Table-E.1.2 below and given in full in Table-E.1.3. The results are presented graphically in Figure-E.1.2 and explained below.

Table-E.1.	2 Su	amaiy (of Futur	e Water	Deman	d (m³/d	ay)	
Year	1996	2000	2005	2010	2015	2020	2025	2030
Population Projection								
Study Area	160,851	164,670	169,609	174,742	180,078	185,631	191,413	
Ambon Municipality	305,252	326,544	355,261	386,502	420,490	457,469	497,689	541.466
Domestic Water Domand								
Study Area	3,700	5,146	7,208	10,266	12,605	:14,850	16,749	18,757
Ambon Total	7,021	10,205	15,099	22,707	29,434	36,598	43,548	51,439
Non Domestic Demand	·							
Study Area	3,027	4,210	5,898	8,400	10,314	12,150	13,703	15,346
Ambon Total	3,027	- 4,477	6,774	10,595	14,521	17,587	20,403	23,517
Total Future Demand				in the second s				A State of
Study Area	6,726	9,356	13,106	18,666	22,919	27,001	30,452	34,103
Ambon Total	10,048	14,681	21,873	33,302	43,955	54,185	63,951	74,956
System Losses								
Study Area	4,484	6,238	7,057	8,000	7,640	9,000	10,151	11,368
Ambon Total	6,698	9,787	11,778	14,272	14,652	18,062	21,317	24,985
Total Water Requirement							e a taga	
Study Area	11,211	15,594	20,163	26,665	30,559	36,001	40,603	45,470
Ambon Total	16,746	24,468	33,651	47,574	58,607	72,246	85,268	99,942

According to the Water Supply System Development Plan included in the Final Report of the Eastern Island Urban Development Project, the aims of PDAM's regional service plan should be to :

Meet the National Planning target of supplying water to 80% of the population in the serviced region by the planning target year of 2010.

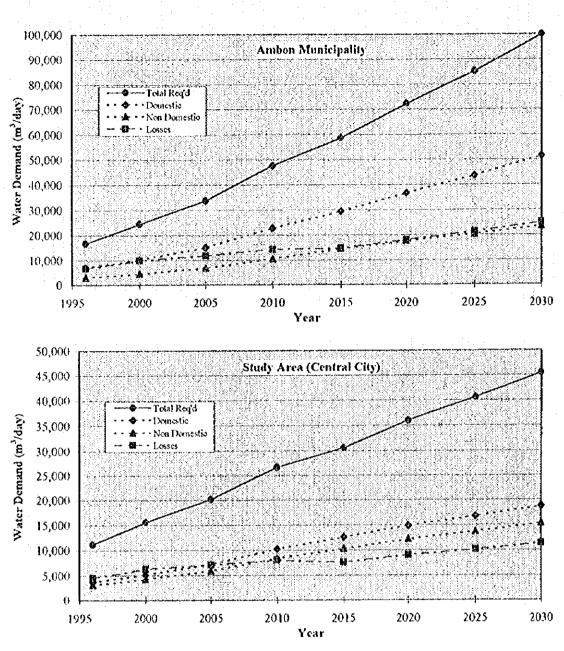
Extend water service to developed areas of Ambon not yet served by water supply.

Improve the water service in the existing serviced area.

Extend water service to planned development areas in accordance with regional urban development plans.

The prediction of future water demand in this Study is based on the objectives stated in the Water Supply System Development Plan, and makes the following assumptions :

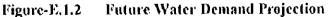
(1) Domestic Water Demand


Population Projection

H

The projection of population growth for the Study Area and for the whole of Ambon city was described in Supporting Report Part-A.

Water Supply Coverage


Currently, less than 30% of Ambon's population is served by the PDAM water supply network. In accordance with National Planning, it is assumed that water supply coverage will be extended to 80% of the population by the target year of 2015. The PDAM plan aims to achieve 80% coverage by 2010 and assumes that 70% of the population will be served by individual household connections and 10% by public taps. This target is considered to be optimistic and the current prediction assumes 60% served by household connections and 20% by public taps by 2015. After this date, it is assumed that water supply coverage will continue to increase, aiming to serve 100% of the population by 2030 with the reliance on public taps reduced to 10%.

()

R

Ĭ

Per Capita Water Consumption

Per capita water consumption is estimated from current PDAM water supply statistics. A value of 100 liters/capita/day (lcd) is assumed for the individual household connections and 50 lcd for the population served by public taps. Although per capita water consumption can be expected to increase with the level of development, it is assumed to remain constant for estimation purposes until such time as the water supply service area is extended to serve most of the population.

			. :	-						1
		н. 1								
· · · · ·				;						
	T. T.	able-	E.1.3	Futur	e Water	. Démar	nd Proje	ction 👘		
	[Ycor	1996	2000	2005	2010	2015	2020	2025	2030
	Population Projection				1		Target			
	Ambon Municipality Total	11	305,252	326,544	355,261	386,502	420,490	457,469	497,689	541,466
	Study Area		160,851	164,670	169,609	174,742	180,078	185,631	191,413	197,437
	Other Areas		144,401	161,874	185,652	211,760	240,412	271,838	306,276	341,029
	Water Supply Coverage	a. 1		25.0	35.0	50.0	60.0	70.0	\$0.0	90.0
	Households	96 96	18.0 10.0	25.0 12.5	15.0	17.5		20.0	15.0	10.0
	Public Taps	%	72.0	62.5	50.0	32.5	20.0	10.0	5.0	0.0
	Not Served DOMESTIC DEMAND		/2.0	<u>+v</u>				<u></u>		96496
	Study Area			<u> </u>	<u>مىنىكە دىنورەت</u>	الشيخية فماعتهمها لأر		, 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999		kan di kana di kana kana ka
	Population Served									
	Households		28,953	41,168	59,363	87,371		129,942	153,130	177,693
	Public Taps		16,085	20,584	25,441	30,580	36,016	37,126	28,712	19,744
	Not Served		115,813	102,919	84,805	56,791	36,016	18,563	9,571	0
	Water Demand	n ³ /d	:	· ·						
1. A.	Households : 100 led		2,895	4,117	5,936	8,737		12,994	15,313	17,769
	Public Taps : 50 lcd	· . ·	801	1,029	1,272	1,529		1,856		987
	Total Demand i	m³/d	3,700	5,146	7,208	10,266	12,605	14,850	16,749	18,757
	Other Areas									
	Population Served	ľ		·		105 000		100.007	245.021	309,626
	Households		25,992	40,469	64,978	105,880 37,058	144,247 48,082	190,287 54,368	245,021 45,941	34,403
	Public Taps		14,440	20,234 101,171	27,848 92,826	68,822		27,184		0
	Not Served		103,969	101,171	72,620	00,022	1,4004	2,.0		
		m³/d	0,000	4.047	6,498	10,588	14,425	19,029	24,502	30,963
	Households : 100 led	l II	2,599 722	4,047 1,012	1,392	1,853				1,720
	Publie Taps : 50 led	m³/d		5,059	7,890			21,747		32,683
	Total Demand t Total Domestic Demand	m 70 .	3,321	2,022	1,670	12,441		21,717		• - • - • - •
		m ³ /d	2 011	10,205	15,699	.22,707	29,434	36,598	43,548	51,439
		n /u Vsec	7,021 81	118	175	263		424	504	595
	NON DOMESTIC DEMA	in an					L			
	Study Area	%	45	45	45	45	45	45	45	-45
		m ³ /d	3,027	4,210	5,898			12,150	13,703	15,346
	Other Areas	%	0,02	.,5	10		白金 希子 人名法法法法法法			20
		m³/d	0	266	877	2,195			6,700	8,171
	Total Non Domestic Deman	· • •	0	200		_,				
		m ^j /d	3,027	4,477	6,774	10,595	14,521	17,587	20,403	23,517
	·	l/sec	35	52	78					272
	TOTAL DEMAND		Ta tra	<u>ি য়ে মন্দ</u>	<u>) </u>	166565				0.2/0 Sta
	فوديكون بواري فيلومها التشايك ببرجوا فتستشر فتتميط والمواسية التراج	m ¹ /d	10,048	14,681	21,873	33,302	43,955	54,185	63,951	74,956
		l/sec	116	170			A 10 10 10 10 10 10 10 10 10		740	868
		m³/d	6,726	9,356	13,106	18,666	22,919	27,001	30,452	34,103
		l/see	78	108	152	4			352	395
	Management and a strategy of the state	60.00		Neosai.						
	System Losses	96	40	40	35	30	25	25	25	25
		m³/d	6,698	9,787	11,778	14,272	14,652	18,062	21,317	24,985
		m³/đ	4,484	6,238			7,640	9,000	10,151	11,368
	TOTAL WATER REQU					<u>n cini</u>	97993		2008/22	
	A DESCRIPTION OF THE OWNER OWNE	m³/d	16,746	24,468	33,651	47,574	58,607	72,246	85,268	99,942
		l/sec	194	283		1				1,157
		m ³ /d	11,211	15,594					40,603	45,470
	•	m 7u I/see	130	180				417	470	526

Ĵ.

 $\mathbf{B}_{\mathbf{r}}$

(2) Non Domestic Water Demand

Non domestic water demand for government, commercial and industrial users currently accounts for 45% of the total water supplied by PDAM in the central Ambon area. The category of government includes schools, hospitals and other public facilities, in addition to government offices. Commercial users include shops, restaurants, hotels and businesses in the central city. It is assumed that the water demand by such consumers will remain at 45% of the total supplied in the central Study Area.

PDAM does not supply water for non domestic use outside the central city at the present time. However, as population grows in the outer areas of Ambon city, the need for facilities such as shops and schools will develop and so non domestic water demand will grow. The level of this water demand is assumed to increase gradually to reach 20% of the total water demand in these areas by the target year of 2015.

(3) System Losses

Current water losses are estimated by PDAM to account for nearly 40% of the total water volume abstracted from the springs and deep wells serving Ambon. This value for system losses is based on the difference between the measured (estimated) volume of water supplied and the known volume of water sold. Although the PDAM Development Plan gives the reduction of system and production losses a high level of priority, the assumed improvement from 40% at present to only 20% by the year 2000 is considered overly optimistic. For the purposes of this water demand projection, the system losses are assumed to remain at 40% until the year 2000 and thereafter reduce gradually to 25% by the target year of 2015. To achieve even this improvement, significant investment to replace leaking transmission and distribution networks would be required. Further reduction of losses beyond 25% of total volume of water produced is not considered feasible.

(4) Total Water Requirement

As shown in Tables-E 1.2 & 3 and in Figure-E 1.2, the total water requirement for the whole of Ambon municipality will increase from the present production of around 16,700 m³/day (194 l/s) to over 58,000 m³/day (670 l/s) in 2015 and to nearly 100,000 m³/day (1,160 l/s) by 2030. This represents an increase of 350% to 2015 and nearly 600% to 2030 over present production levels. The figures for the current Study Area, corresponding to the central city area where the majority of non-domestic water users are concentrated, are 30,000 m³/day (350 l/s) in 2015 increasing to over 45,000 m³/day (520 l/s) by 2030. The percentage increase in required water volume from the current capacity of 11,200 m³/day (130 l/s) is 270% to 2015 and 400% to 2030.

1.2 Planning Conditions for Water Development

It is proposed to utilize the flood control dams described in the optimum flood control plan (Supporting Report Part-D) as a source of water supply for Ambon central city area. The proposed dams on Ruhu, Batu Gajah and Batu Gantung rivers, namely RH-1, GJ-2 and GT-1, will therefore be utilized as multi-purpose dams and the water utilization plan is outlined below. Water from the dam reservoirs will be used to maintain the river discharge at an acceptable level during the dry season (maintenance discharge) and also to supplement other water sources to meet the future water demand in the Ambon Study area (newly developed discharge). The necessary reservoir volume required to meet the shortfall in future supply has been calculated. It was found that the available discharge from the two dams on Batu Gajah and Batu Gantung rivers will be sufficient to satisfy the future deficit in the medium term (until 2015), assuming that PDAM develop and improve existing water sources as proposed in their Water Supply System Development Plan. The discharge developed by the construction of Dam RH-1 on Ruhu river will satisfy demand in the longer term until beyond 2030.

1.2.1 Compensation Discharge

Compensation discharge is the river discharge necessary to be maintained downstream of a dam in order to ensure the normal function of the river (maintenance discharge) and to provide water to existing water users (water use discharge).

Compensation Discharge = Maintenance Discharge + Water Use Discharge

(1) Maintenance Discharge

I.

 \mathbf{J}

The maintenance discharge is the discharge required downstream of a dam to maintain the normal function of the river. This maintenance discharge usually includes the requirements of river transportation, fishing, prevention of salt water intrusion, prevention of estuary sedimentation, maintenance of groundwater levels, preservation of river plants and wildlife, and maintenance or improvement of river water quality. For the five target rivers in Ambon, the problem of river water quality is the most important.

In this water utilization plan, the specific maintenance discharge has been set as 1.0 $m^3/sec/100km^2$ for Ruhu and Batu Gajah rivers, and the maintenance discharge required at each dam site calculated based on the catchment area. For Batu Gantung river, a value of 0.5 $m^3/sec/100km^2$ was used because there is currently no flow in this river during the dry season and therefore such a high level of maintenance discharge is not necessary. The catchment area and maintenance discharge Q_m at the three proposed dam sites and corresponding staff gauges are given in Table-E.1.4.

	Specific Maint.	Dan	Site	Reference Point - Staff Gauge				
River & Dam Site	Discharge m ³ /sec/100km ²	C.A. km ²	Qm m ³ /sec	C.A. km ²	Qm m ³ /sec	Slope	Depth cm *	
Ruhu RH-1	1.0	14.49	0.145	14.91	0.149	1/550	15	
Batu Gajah GJ-2	1.0	4.27	0.043	4.92	0.049	1/160	8	
Batu Gantung GT-1	0.5	4.76	0.024	5.89	0.024	1/160	5	

Table-E.1.4 Maintenance Discharge at Proposed Dam Sites

*assuming Im channel width

(2) Water Use Discharge

There is currently no water abstraction from the rivers in Ambon for consumptive use. This situation is not expected to change and it is not recommended to commence using river water for consumption. Water developed for domestic and other uses in Ambon city should be abstracted directly from the dam reservoir. However, river water is sometimes used for washing and bathing. Table-E 1.4 shows the water depth calculated at an assumed 1m wide channel at each reference point - this depth is thought to be adequate for use for washing and bathing. Therefore, the maintenance discharge descibed above is sufficient for water use discharge downstream of the potential dam sites.

1.2.2 Necessity for City Water Development

(1) Future Water Demand

As described in Section 1.1, total water demand in Ambon municipality is expected to increase from the current level of 16,750 m³/day to around 58,600 m³/day by the medium term target year of 2015. In the longer term, total demand will increase to nearly 100,000 m³/day by the year 2030. In the Study area, corresponding to the central Ambon area, demand is expected to increase from 11,200 m³/day (130 l/s) to almost 30,600 m³/day (354 l/s) by the year 2015, and to 45,470 m³/day (526 l/s) by the year 2030.

(2) Planned Water Resources

The PDAM Water Supply System Development Plan includes plans to develop supplies from springs and boreholes to the east and north of Ambon, including Tulehu spring, deep wells at Poka and Rumah Tiga and abstraction from Wai Lela river. These new water resources will serve the northern and eastern sides of Ambon Bay, including Poka, Rumah Tiga, Paso and Lateri.

In the central Ambon area, according to the PDAM Development Plan, there are plans to sink additional deep wells and to increase production from existing springs and boreholes, as well as to abstract water from a free intake on Air Besar, a tributary in the upper catchment of Ruhu river. The assumed increase in water resources for the central Ambon area, based on the PDAM Development Plan and discussions with PDAM, is shown in Table-E.1.5.

(3) Required Newly Developed Discharge

The timescale of the PDAM Development Plan assumes that the above increases can be achieved by the year 2010. Given that investment is likely to be provided by a Dutch water supply company, this current Study also assumes that the increases shown in Table-E 1.5 can be achieved by 2010. However, the production capacities quoted above have not been verified but are taken from the PDAM report for planning purposes.

Even if production capacity is increased in line with the PDAM plan, the total supply capacity will not be sufficient to meet the increased demand. It can be seen that there will be a shortfall in supply of nearly 9,500 m³/day (110 l/s) in the central Ambon area by the year 2015 and over 24,000 m³/day (282 l/s) by the year 2030. In order to satisfy this shortfall, developed water from the proposed multi-purpose dams can be utilized. The following section explains the calculation of the water resources developed by the dams on Ruhu, Batu

Gajah and Batu Gantung rivers.

	TADIC-1711'9 1222	meu mater res	ources torner				
[Source			apacity	(l/s)
No.	Planned Water Source	Location	Capacity (I/s)	1995	2000	2005	2010
A	SPRING SOURCES				i.		
1 i	Wainitu Spring	Wainitu	80	34	40	50	50
2	Air Keluar Spring	u/s Batu Gantung	13	10	13	13	13
3	Batu Gajah Spring	u/s Batu Gajah	18	13	16	16	18
4	Air Besar Spring	u/s Ruhu	18	18	21	21	- 23
5	Air Panas / Wainiuw Springs	u/s Ruhu	13	10	6	6	8
6	Wai Pompa Spring #	Halong	40	15	20	24	30
1.1	Sub-Total Springs (I/sec)		182	100	116	-130	142
		,	(m³/d)	8,640	10,020	11,230	12,270
В	DEEP WELL SOURCES						
ī	AP/1	Ambon City	17	17 -	- 13	17	17
2	AP / 3	Ambon City			10	- 10	10
3	AP/4	Hative Kecil	15	11:	÷ 10 :	= 10	15
4	AP/4A (Planned 1997)	Hative Kecil			5 5	5	10
5	AP/1A	Ambon City		1 - 5	5	10	10
6	AP/IB	Ambon City		5	5.	10	10
	Sub-Total Wells (l/sec)		42	38	48	62	72
			(m³/d)	3,280	4,150	5,360	6,220
C	RIVER WATER SOURCES					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
ī	Air Besar *	u/s Ruhu			30	30	30
	Sub-Total Rivers (l/sec)				30	30	30
			(m³/d)		2,600	2,600	2,600
•	TOTAL CAPACITY (I/sec)		214	138	194	222	244
1			(m³/d)	11,920	16,770	19,190	21,090
	TOTAL CAPACITY (1/sec)		214		2,600 194		

Assumed Water Resources (Central Ambon Area) Table-E.1.5

C

L

Operated by Ambon Municipality (not PDAM) Noles : #

Pipeline under construction (PU - Cipta Karya)

City Water Development Plan 1.3

1.3.1 Daily Discharge at Dam Sites

The daily discharge at the proposed dam sites on Ruhu and Batu Gajah rivers was calculated from the flow regime compiled using measured daily water level data. As there are only two years of actual data (October 1994 to September 1996), ten years' daily discharge data was generated by applying the 1995/96 data multiplied by the ratio of total annual rainfall for each year to that in 1995/96. Of the two years' available data, the 1995/96 data was chosen as the more extreme case, in that the daily discharge in the dry season was much lower than that for 1994/95, while the flow in the rainy season was considerably higher. Based on the calculated daily discharge data, the lowest flow condition occurred in 1993, with total rainfall equal to approximately two thirds of the ten year mean value. In the case of Ruhu river, the proposed abstraction by PDAM from Air Besar (a tributary of Ruhu) was deducted from the flow data at the start of the calculation.

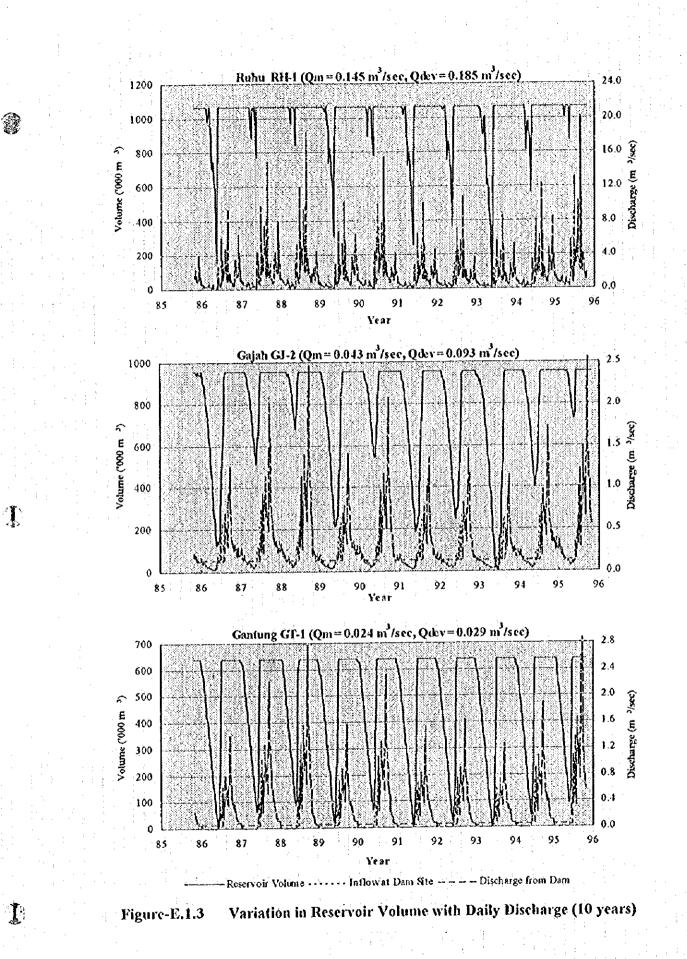
A similar method was used for Batu Gantung, although there is no available daily discharge data for Batu Gantung river. The Batu Gajah data was used for the rainy season (May to October), increased in proportion to the larger catchment area. However, during the dry season, the base flow in Batu Gantung was taken as zero based on the data collected since

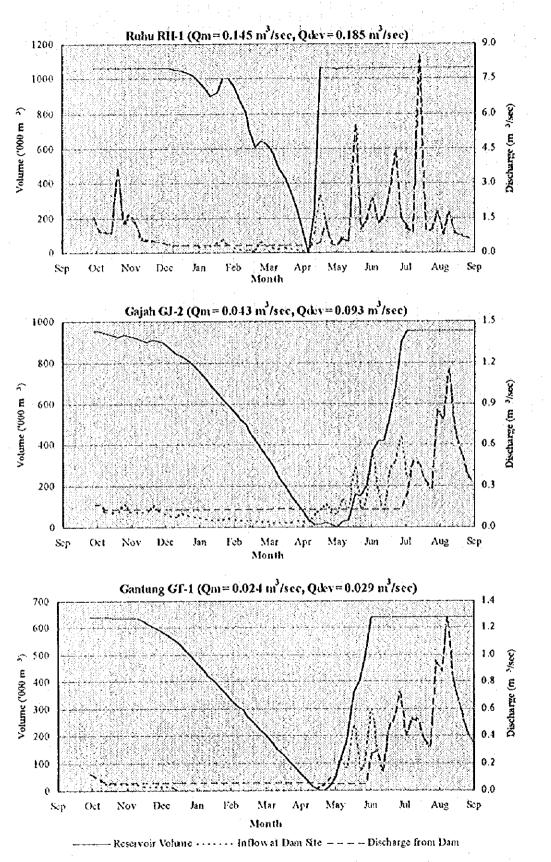
installation of the JICA staff gauge.

The variation in reservoir volume with daily discharge (inflow at dam site) over ten years for the three dams is shown in Figure-E.1.3, assuming maintenance and developed discharge (discharge from dam) as described below. The variation throughout one year is shown for the dry year case (1993 data) in Figure-E.1.4.

1.3.2 Developed Discharge and Required Reservoir Capacity

The developed discharge is the discharge available for water use developed by the construction of a dam and reservoir. Using the assumed 1993 daily discharge data, the necessary reservoir capacity for water development was calculated for a range of values of potential developed discharge for Ruhu, Batu Gajah and Batu Gantung dam sites. The variation of reservoir capacity required with increasing developed discharge is given in Table-E.1.6 and plotted in Figure-E.1.5.


Based on the above, and considering the optimum reservoir size based on hydrological, geological and socio-economic considerations, the developed discharge from each of the three dams was determined as follows :

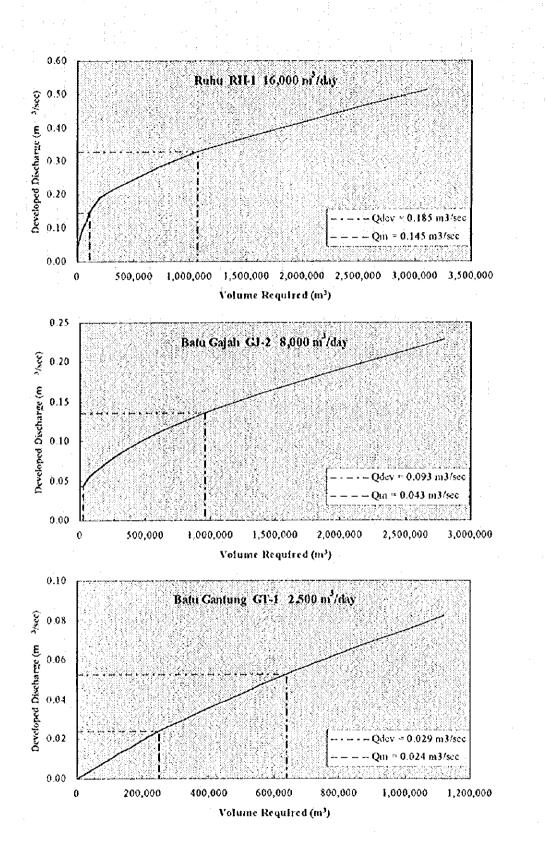

Rohu RH-1		(0.185 m ³ /sec)
Batu Gajah GJ-2	8,000 m ³ /day	$(0.093 \text{ m}^3/\text{sec})$
Batu Gantung GT-1	2,500 m³/day	(0.029 m ³ /sec)

The reservoir volumes necessary to ensure that maintenance discharge of $Q_m = 0.145 \text{ m}^3/\text{sec}$ for Ruhu RH-1, 0.043 m³/sec for Batu Gajah GJ-2 and 0.024 m³/sec for Batu Gantung GT-1 is provided downstream, even under the 10 year drought condition, and newly developed discharge as described above can be attained from each dam, are given in Table-E.1.7.

	River Developed Discharge (m ³ /s				Newly Dev. Q	Required	Reservoir Vol	ume (m ³)
		Maint.	Dev.	Total	m /day	Maint.	Newly Dev.	Total
Ruhu RI	[-]	0.185	0.145	0.330	16,000	115,000	949,000	1,064,000
Batu Gaj	ah GJ-2 ntung GT-1	0.043 0.024	0.093	0.136 0.053	8,000 2,500	20,000 249,000	935,000 390,000	955,000 639,000

Table-E.1.7 Required Reservoir Volume for City Water Development

and and


Figure-E.1.4 Variation in Reservoir Volume with Daily Discharge (Dry Year)

E-12

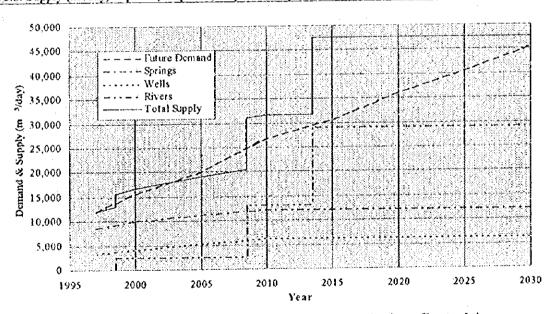
	· .	×					· .		
1		-					1 A.		
:			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	• •					
		:			the second		.s. 1	1	
•			able-E.1.6	Requi	red Reserv	oir Canaci	ty for Wate	r Utilization	
					at Dam Site	·	Reservoir		
		River	Maint Qm	a sea and what search them.	ed Qdev	Total	Capacity	Comments	
2		inter	m ³ /sec	m³/day	m ³ /sec	m ³ /sec	m ³		
	i	RUHU	0.145			0.145	115,000		
		RH-1	00	2,000	0,023	0,168	154,000	1	
				4,000	0.046	0,191	206,000		
				6,000	0.069	0.214	312,000		
				8,000	0,093	0.238	455,000	Ruhu RH-1	
				10,000	0,116	0.261	592,000	$Q_{in} = 0.145 \text{ m}^3/\text{sec}$	
				12,000	0.139	0,284	729,000	$Qdev = 0.185 \text{ m}^3/\text{sec}$	
				16,000	0,185	0,330	1,064,000	Capacity = $1,064,000 \text{ m}^3$	
				20,000	0,231	0.376	1,548,000		
				24,000	0.278	0.423	2,060,000		
				28,000	0.324	0.469	2,562,000		
				32,000	0.37	0.515	3,098,000		1
		GAJAH	0.043	-	-	0.043	20,000		
		GJ-2		- 1,000	0.012	0.055	77,000		
				2,000	0.023	0.066	152,000		
				3,000	0.035	0.078	254,000		
				4,000	0.046	0.089	353,000	Gajah GJ-2	
				5,000	0.058	0.101	484,000	$Q_{\rm III} = 0.043 {\rm m}^3/{\rm sec}$	
				6,000	0.069	0.112	611,000	$Qdev = 0.093 \text{ m}^3/\text{sec}$	
				8,000	0.093	0,136	955,000	Capacity = 955,000 m ³	
				10,000	0.116	0.159	1,367,000		
				12,000	0.139	0.182	1,824,000		
				14,000	0.162	0.205	2,307,000		
				16,000	0.185	0.228	2,790,000		
7	1	GANTUNG	0.024	-	-	0.024	249,000		
		GT-1		500	0.006	0.030	324,000		
				1,000	0.012	0,036	404,000	Gantung GT-1	
		1		1,500	0.017	0.041	472,000	$Q_{\rm m} = 0.024 \text{ m}^3/\text{sec}$	
				2,000	0.023	0.047	\$53,000	$Qdev = 0.029 \text{ m}^3/\text{sec}$	
				2,500	0.029	0.053	639,000	: Capacity = 639,000 m ⁴	1
				3,000	0.035	0.059	738,000		· ·
				4,000	0.046	0.070	919,000		i
		L	L	5,000	0.058	0.082	1,119,000		J

E-13

I

長

Figure-E.1.5 Va


Variation of Required Reservoir Capacity with Developed Discharge

1.3.3 City Water Development Plan

In order to meet the shortfall between demand and supply in the years up to 2015 and on to 2030, newly developed discharge of 16,000 m3/day can be provided from Ruhu RH-1, 8,000 m³/day from Batu Gajah GJ-2 and 2,500 m³/day from Batu Gantung GT-1. This will be more than sufficient to satisfy the shortfall assuming that PDAM develop other water sources in accordance with the Water Supply Systems Development Plan.

Developed discharge from the proposed multi-purpose dams, constructed in accordance with the revised implementation schedule, has been incorporated in the city water development plan, as shown in the following Table-E.1.8 and Figure-E.1.6.

Table-E.1.8	City	Water D	evelopm	ient Plan	i - Ambo	n Centra	il Area	
Year	1996	2000	2005	2010	2015	2020	2025	2030
Future Demand (m³/day)	11,211	15,594	20,163	26,665	30,559	36,001	40,603	45,470
Springs	8,640	10,020	11,230	12,270	12,270	12,270	12,270	12,270
Wells	3,280	1 ÷ 1	5,360	6,220	6,220	6,220	6,220	6,220
Rivers : Air Besar	,	2,600	2,600	2,600	2,600	2,600	2,600	2,600
Gajah GJ-2		, í		8,000	8,000	8,000	8,000	8,000
Gantung GT-I				2,500	2,500	2,500	2,500	2,500
Ruhu RH-1					16,000	16,000	16,000	16,000
Total Supply (m ³ /day)	11,920	16,770	19,190	31,590	47,590	47,590	47,590	47,590

City Water Development Plan - Ambon Central Area Figure-E.1.6

E-15

Ţ

Ţ

CHAPTER2 Small Scale Hydropower Generation

2.1 Basic Policy

The purpose of this section is to study small scale hydropower generation plan at Batu Gajah Dam and Batu Gantung Dam. The basic policy of this study is as follows:

- Hydropower generation should depend on Dam Outflow Discharge and Reservoir Water Level.
- Reservoir type should be applied as hydropower generation type.
- Reservoir volume for hydropower generation will be not prepared.
- Normal discharge (maintenance and water-use discharge) provided from dams can be utilized for hydropower generation.

2.2 Basic Condition

2.2.1 Outflow Discharge and Reservoir Water Level in Dam

Using calculation result (10 years: 1986-1995) of water utilization plan, mean annual outflow discharge and reservoir water level of both Batu Gajah Dam and Batu Gantung Dam are shown as follows.

(1) Batu Gajah Dam

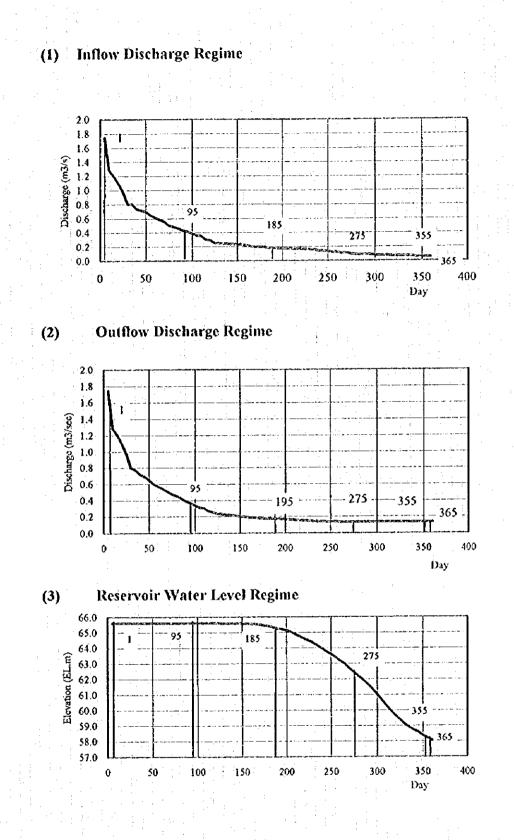
The discharge regime of outflow from Batu Gajah Dam is indicated in Table-E.2.1. Figure-E.2.1 indicates the outflow discharge regime and water level regime of Batu Gajah Dam. The median discharge is 0.18 m^3 /sec and the low, the drought and the minimum discharge are 0.13 m^3 /sec. The minimum is the normal discharge for Batu Gajah Dam.

and the second second	111010 111211 0			in zinn onjin	
Maximum	High	Median	Low	Drought	Minimum
(i)	(95)	(185)	(275)	(355)	(365)
1.744 m3/s	0.366 m3/s	0.175 m3/s	0,130 m3/s	0.130 m3/s	0.130 m3/s

Table-E.2.1 Outflow Discharge Regime from Batu Gajah Dam

特

X


Note; These values are average from 10 years between 1986-1995.

(2) Batu Gantung Dam

The discharge regime of outflow from Batu Gantung Dam is indicated in Table-E.2.2. Outflow discharge regime of Batu Gantung Dam is about 30 % less, compared with that of Batu Gajah Dam. Figure-E.2.2 indicates the outflow discharge regime and water level regime of Batu Gantung Dam. The median, the low, the drought and the minimum discharge for outflow are about 0.05 m³/sec. The minimum discharge is the normal discharge for Batu Gantung Dam.

		A second s			. •	. `	
Maximum	High	Median	Low	Drought	Minimum		
(1)	(95)	(185)	(275)	(355)	(365)		
1.948 m3/s	0.442 m3/s	0,053 m3/s	0.053 m3/s	0.048 m3/s	0.048 m3/s		
Note: These values are granged from 10 years between 1986, 1995							

Note; These values are average from 10 years between 1986-1995.

Ţ

Ţ

Figure-E.2.1 Discharge Regime and Reservoir Water Level in Batu Gajah Dam

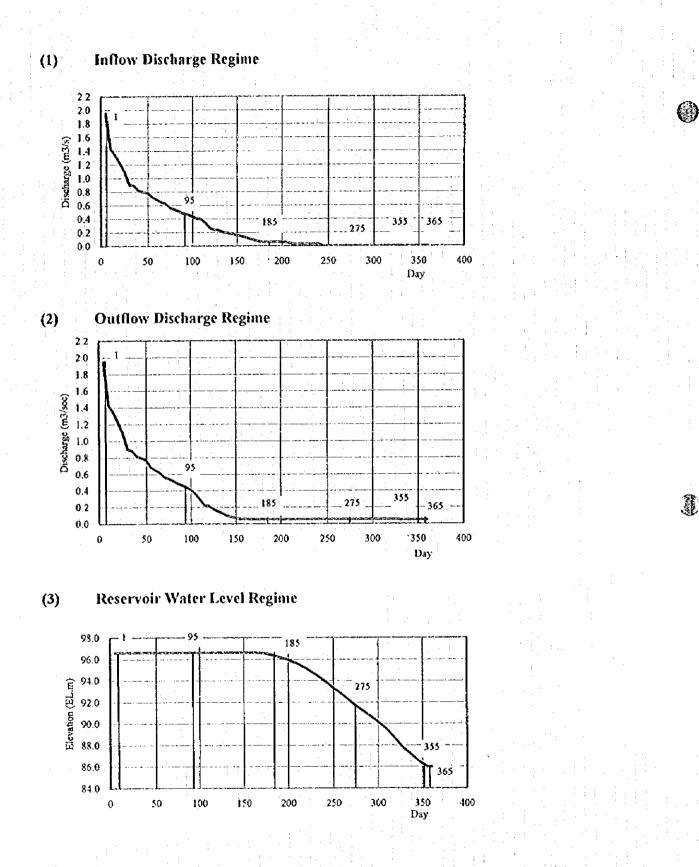


Figure-E.2.2 Discharge Regime and Reservoir Water Level in Batu Gantung Dam

I

2.2.2 Usual and Maximum Utilization Discharge

I

J

In the planning of small scale hydro-power generation, both usual utilization discharge and maximum utilization discharge should be studied. Usual utilization discharge is the discharge which can be used for a whole year and can be set as the normal discharge for both dams (Batu Gajah and Batu Gantung), since both river maintenance discharge and water development discharge are able to be used for hydro-power generation in these dams. Maximum utilization discharge should be set considering water flow regime and hydroturbine capacity and economic evaluation. Based on the examples of high dams in Japan, it is indicated that the best utilization ratio of intake facility is between 45-75% for hydropower generation. This ratio is defined as annual average utilization ratio of the intake facility scale and can be calculated by the following formula.

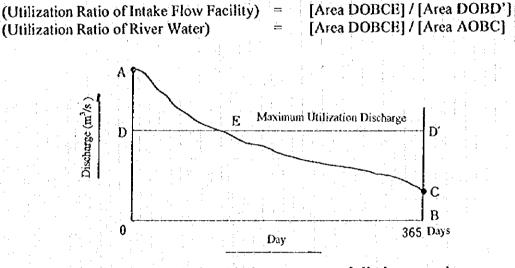


Figure-E.2.3 Relationship between annual discharge regime and maximum utilization discharge

The utilization ratio of intake flow facility and utilization ratio of river water for both dams are calculated as shown in Table-E.2.3. Using these calculation results, the relationship between utilization ratio of intake facility and maximum utilization discharge in each dam as shown in Figure-E.2.4.

÷ .		(B	atu Ga	ijáh D	am)						•	i a com
	Outflow	Case1	Case2	Case3	Case4	Case5	Case6	Case7	Case8	Case9	Case10	Note
Day	average	qrsax=	gmax=	qmax=	qmax=	qmax=	qmax=	qmax=	qmax=	çmэt≖	gmax=	•
5	1.744	0.150	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000	Maximum
	1.285	0.150	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000	
15	1.205	0.150	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000	
20	1.099	0.150	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.000	
25 30	0.970	0.150	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	0.970	
35	0.773	0.150	0.200	0.300	0.400	0.500	0.600	0.700	0.773	0.773	0.773	
40	0.716	0.150	0.200	0.300	0.400	0.500	0.600	0.700	0.716	0.716	0.716	
45	0.692	0.150	0.200	0.300	0.400	0.500	0.600	0.692	0.692	0.692	0.692	· · · · · · · · · · · · · · · · · · ·
<u>50</u> 55	0.652 0.599	0.150	0.200	0.300	0.400	0.500	0.600	0.652	0.652	0.652	0.599	
60	0.569	0.150	0.200	0.300	0.400	0.500	0.569	0.569	0.569	0.569	0.569	
65	0.540	0.150	0.200	0.300	0.400	0.500	0.540	0.540	0.540	0.540	0.540	
70	0.509	0.150	0.200	0.300	0.400	0.500	0.509	0.509	0.509	0.509	0.509	
75 80	0.476 0.453	0.150	0.200	0.300	0.400	0.476	0.476	0.476	0.476	0.476	0.473	
85	0.424	0.150	0.200	0.300	0.400	0 42 1	0.424	0.424	0.424	0.424	0.424	
90	0.389	0.150	0.200	0.300	0.389	0.389	0.389	0.339	0.389	0.389	0.389	-
95	0.365	0.150	0.200	0.300	0.366	0.366	0.366	0.366	0.366	0.366	0.366	high
100	0.337	0.150	0.200	0.300	0.337	0.337	0.337	0.337 0.313	0.337	0.337	0.337	
110	0.301	0.150	0.200	0.300	0.301	0.301	0.301	0.301	0.301	0.301	0.301	
- 115	0.269	0.150	0.200	0.269	0.269	0.269	0.269	0.269	0.269	0.269	0.269	:
120	0.255	0.150	0.200	0.255	0.255	0.255	0.255	0.255	0.255	0.255	0.255	
125 130	0.239	0.150	0.200	0.239	0.239	0.239	0.239	0.239	0.239	0.239	0.239	
135	0.222	0.150	0.200	0.222	0.222	0.222	0.222	0.222	0 222	0.222	0.222	
140	0.219	0.150	0.200	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	
145	0.211 0.202	0.150	0.200	0.211	0.211	0.211	0.211	0.211 0.202	0.211	0.211	0.211	
150	0.196	0.150	0.196	0.196	0.202	0.196	0.196	0.196	0.196	0.196	0.196	
160	0.190	0.150	0.190	0.190	0.190	0.190	0.190	0.190	0.190	0.190	0 190	
165	0.185	0.150	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185	0.185	
170	0.183	0.150	0.183 0.178	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	
180	0.176	0.150	0.176	0.176	0.176	0.176	0.176	0.176	0.176	0.176	0.176	
. 185 .	0.175	0.150	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	0.175	Median
190	0.172	0.150	0.172	0.172	0.172	0.172	0.172	0.172	0.172	0.172	0.172	
195 200	0.171 0.167	0.150	0.171	0.171 0.167	0.171 0.167	0.171 0.167	0.171	0.171	0.171	0.167	0.167	
205	0.165	0.150	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	
210	0.159	0.150	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	0.159	
215	0.153	0.150	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	0.158	
225	0.149	0.149	0.149	0.132	0.132	0.149	0.132	0.149	0.149	0.132	0.149	
230	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	0.144	
235	0.142	0.142	0.142	0.142	0.142	0.142	0.142	0.142	0.142	0.142	0.142	
240 245	0.139	0.139	0.139 0.138	0.139	0.139	0.139	0.139	0.139	0.139	0.139	0.139	
250	0.138	0.133	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134	0.134	
255	0.133	0.133	0.133	0.133	0.133	0.133	0.133	0.133	0.133	0.133	0.133	
260	0.133	0.133	0.133 0.132	0.133	0.133	0.133	0.133	0.133	0.133	0.133	0.133	┉┈╸
265	0.132	0.132	0.132	0.132	0.130	0.132	0.130	0.132	0.132	0.132	0.132	
275	0.130	0.1.30	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	Low
280	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	
285	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	╞╌╌╌┥
295	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	
300	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	· · · · · · · · · · · · · · · · · · ·
305	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	÷
315	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	
320	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	· · · · · ·
325	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	
330	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	<u>1 }</u>
340	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	
345	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	
and the second of the second second		0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	
350	0.130							11720	0.130	0.130		
355	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130			0.130	Drought
	0.130		0.130	0.130 0.130 0.130	0.130 0.130 0.130	0.130 0.130 0.130	0.130	0.130	0.130	0.130	0.130	
355 360 365 Total	0.130 0.130 0.130 23.334	0.130 0.130 0.130 10.446	0.130 0.130 0.130 12.272	0.130 0.130 14.720	0.130 0.130 16.626	0.130 0.130 18.180	0.130 0.130 19.397	0.130 0.130 20.341	0.130 0.130 21.030	0.130 0.130 21.532	0.130 0.130 22.001	
355 360 365	0.130 0.130 0.130 23.334	0.130 0.130 0.130	0.130 0.130 0.130 12.272 84.1	0.130 0.130 14.720 67.2	0.130	0.130 0.130	0.130 0.130	0.130	0.130	0.130	0.130	

Table-E.2.3(1)Calculation of Utilization Rate of Facility and River Water(Batu Gajah Dam)

B

 [U.K.W (%)]
 1
 44.01
 52.01

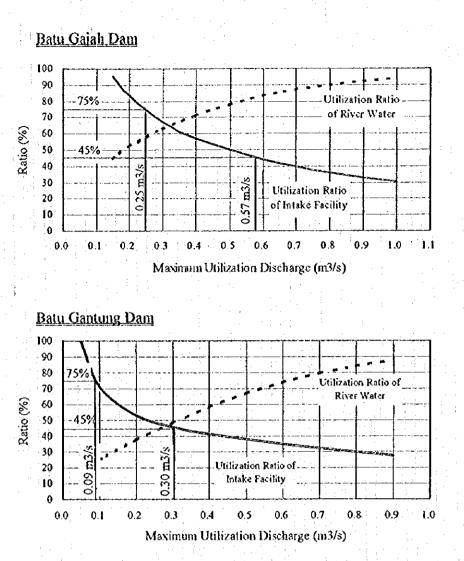
 Note: *1....Average for 10 years (1986-1995)
 *2.....U.R.F: Utilization Rate of Facility (%)

 *2.....U.R.F: Utilization Rate of Vater (%)

	(Batu Gantung Dam)												
- 1		Quiflow	Casel			Case 4	Case5	Case6	Case7	Case8	Case9	Case 10	Note
. 1	Day		quiax=	qmax=	qmax≠	qniax=	qmax≠	ymax=	qmax=	qma¥≠	युव्हाव र =	qayax=	1 : 1
	4	+1	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	
	5	1.948	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	Maximura
- 1	10	1.435	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	
	15 20	1.347	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	[
	25	1.097	0.050	0.100	0.200	0.300	0,400	0.500	0.600	0.700	0.800	0.900	
: }	30	0.902	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.900	
Ì	35	0.881	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700	0.800	0.831	
1	40	0.815	0.050	0.100	0.200	0.300	0,400	0.500	0.600	0.700	0.800	0.815	
9 J	45	0.797	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.700 0.700	0.797	0.797	ii
	50	0.768	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.685	0.685	0.685	
6	55 60	0.650	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.650	0.650	0.650	
	65	0.619	0.050	0.100	0.200	0.300	0.400	0.500	0.600	0.619	0.619	0.619	
	70	0.564	0.050	0.100	0.200	0.300	0.400	0.500	0.564	0.564	0.564	0.564	
<u> </u>	75	0.512	0.050	0.100	0.200	0.300	0.400	0.500	0.542	0.542	0.542	0.542	
	80	0.516	0.050	0.100	0.200	0.300	0.400	0.500	0.516	0.516	0.516	0.516	
	85	0.488	0.050	0.100	0.200	0.300	0.400	0.488	0.4\$8	0.488	0.488	0.458	
·	<u>90</u> 95	0.468	0.050	0.100	0.200	0.300	0.400	0.468	0.442	0.463	0.403	0.412	high
	100	0.411	0.050	0.100	0.200	0.300	0.400	0.411	0.411	0.411	0.411	0.411	
1	105	0.364	0.050	0.100	0.200	0.300	0.364	0.364	0.364	0.364	0.364	0.351	
1	110	0.296	0.050	0.100	0.200	0.296	0.296	0.296	0.296	0.296	0.296	0.296	
	115	0.227	0.050	0.100	0.200	0.227	0.227	0.227	0.227	0.227	0.227	0.227	
	120	0.215	0.050	0.100	0.200	0.215	0.215	0.215	0.215	0.215	0.215	0.215	
14	125	0.179	0.050	0.100	0.179	0.179 0.153	0.179	0.179	0.179	0.153	0.173	0.153	
	130 135	0.133	0.050	0.100	0.127	0.127	0.127	0.127	0.127	0.127	0.127	0.127	
	140	0.100	0.050	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	
1	145	0.083	0.050	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	0.083	
	150	0.068	0,050	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	<u> </u>
	155	0.057	0.050	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	0.057	·
	160 165	0.057	0.050	0.057	0.057	0.057	0.057	0.057 0.057	0.057	0.057	0.057	0.057	<u> </u>
	170	0.056	0.050	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	
	175	0.055	0.050	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	
	180	0.055	0.050	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	
	185	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	Median
·	190	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	195	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
I	200 205	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	210	0.053	0.050	0.053	0.053	0.053	0.053	0,053	0.053	0.053	0.053	0.053	
	215	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	220	0.053	0.050	0.053	0,053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	225	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	2.30 2.35	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
. 1	2.05	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	245	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
:	250	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0,053	0.053	0.053	
· • 1	255	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	260	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	265 270	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	275	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	Low
	280	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	285	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
÷.,	290	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	295	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	<u>300</u> 305	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0,053	
	310	0.053	0.050	0.053	0.053	0.053	0.053	0,053	0.053	0.053	0.053	0.053	
	315	0.053	0.050	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	
	320	0.052	0.050	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	
	325	0.051	0.050	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	
	330	0.050	0.050	0.050	0.050	0.050 0.048	0.050	0.050	0.050	0.030	0.030	0.049	
	335 340	0.043	0.048	0.043	0.045	0.043	0.043	0.043	0.048	0.043	0.048	0.013	
· •	340	0.045	0.048	0.048	0.043	0.048	0.013	0.043	0.043	0.04\$	0.043	0.048	
	350	0.015	0.048	0.048	0.048	0.048	0.048	0.043	0.048	0.043	0.048	0.048	
	355	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.043	0.048	0.049	Drought
1	360	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.043	0.048	0.048	Minimum
	365	0.048	0.018	0.043	0.048	0.048	0.048	13.875	0.048	16.451	17.416	18.112	
	Total U.R.F. (%)	20.005	99.6	71.3	53.2	45.7	41.3	38.0	34.9	32.2	29.8	27.6	
	U.R.W (%)		17.6	25.2	37.6	43.4	And the second s	67.1	74.0	79.6	84.3	87.6	
	Note: *1	Average fo	r 10 years (1986-1995)		1	E- 21						

Table-E.2.3(2) Calculation of Utilization Rate of Facility and River Water

: *1....Average for 10 years (1986-1995) *2....U.R.F: Utilization Rate of Facility (%) *3....U.R.W: Utilization Rate of Water (%)


E-21


ţ

1

Ţ

0

From the above figures, usual utilization discharge and maximum utilization discharge for each dam are given as follows:

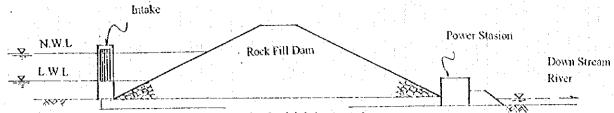

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	osuai and maximu	in Otheatton Discharge
Dam	Maximum Utili	zation Discharge	Usual Utilization Discharge
	Ratio of Intake Facility Utilization		Normal Discharge
	45 %	75 %	365 th
Batu Gajah	0.57m ³ /s (60 th)	0.25m ³ /s (120 th)	0.13 m ³ /sec
Batu Gantung	0.30m ³ /s (110 th)	0,09m ³ /s (145 th)	0.048m ³ /sec

Table-E.2.4 Usual and Maximum Utilization Discharge

2.2.3 Inlet and Outlet Conduit

Figure-E.2.5 indicates the approximate location of inlet and outlet conduits. The discharge velocity of outlet conduit should be generally designed as 2-4 m/sec, so that inner head loss of outlet conduit is reduced. Relationship between design discharge and diameter of outlet conduit is shown in Table-E.2.5 below.

Outlet Conduit L (m) (w)

(Note) Batu Gajah Dam: L=290 m Batu Gantung Dam: L=250 m Figure-E.2.5 Approximate Location of Hydropower Generation Station

Table-E.2.5	Relationship	between	Design	Discharge
	and Diameter	r of Autle	t Cond	nit

	and the second second	and Diame		itte Condu		
Discharge (m ³ /sec)	0,1	0.2	0.3	0.4	0.5	0.6
Diameter (m)	0.25	0.35	0.45	0.50	0.55	0.60
Water Velocity (m/sec)	2.0	2.1	1,9	2.0	2.1	2.1
مستعصي مستعدات والمستعد والمست		······································				

Note; 1) Water Velocity: about 2n/sec (should be generally set at 2-4 m/sec) 2) Roughness Coefficient: 0.012

2.2.4 Hydropower Turbine Type

1

Suitable type of hydropower turbine should be selected, according to maximum utilization discharge and available water head. Figure-E.2.7 is a diagram prepared for appropriate selection, considering characteristics and manufacturing limits of several kind of hydropower turbines. Basic condition of hydropower in Batu Gajah Dam and Batu Gantung dam is shown in the following table.

Item	Batu Gajah Dam	Batu Gantong Dam
Reservoir Water Level	EL.65.6 m - 51.6 m	EL 96.7 m - 85.9 m
Down Stream River Level	EL.30.2 m	EL 74.3 m
Total Water Head	35.4 m - 21.4 m	22.4 – 11.6 m
Range of Utilization Discharge (m ³ /sec)	0.13 - (0.25 - 0.57)	0.05 - (0.09 - 0.30)
Suitable Type	Crossflow Turbine Type	Not Available

Table-E.2.6 Basic Condition for Hydropower Generation Plan

This basic condition should be estimated with the diagram above. It is concluded that Crossflow type turbine is suitable for Batu Gajah Dam (see the below figure). However, no suitable turbine is available for Batu Gantung Dam because both the total water head and discharge is too small in Batu Gantung Dam. It is therefore decided that small scale hydropower generation plan will be studied for Batu Gajah Dam, but not for Batu Gantung Dam.

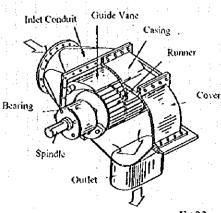
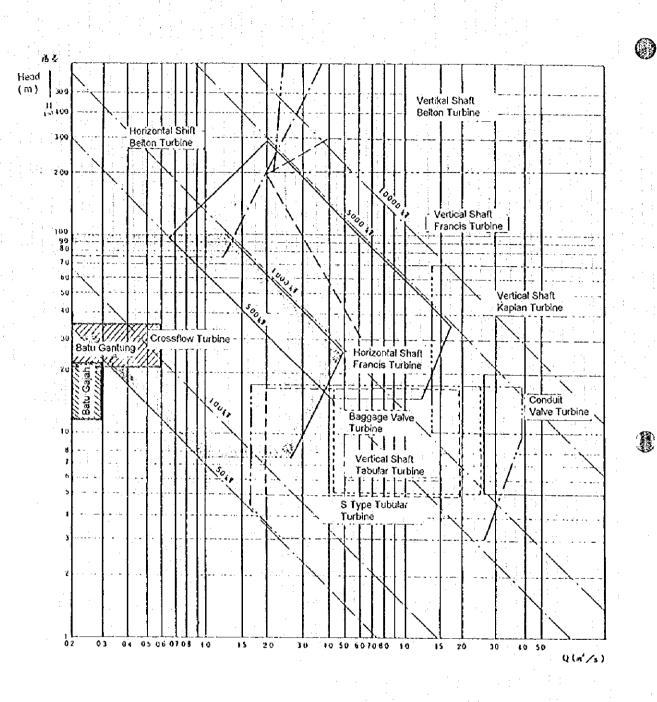



Figure-E.2.6 Crossflow Turbine

2.3 Hydropower Production for Batu Gajah Dam

2.3.1 Methodology

Hydropower can be calculated by the following formula.

$P = 9.8 * Q * H_e * \eta_1 * \eta_e$

P: Hydropower (kW) Q: Utilization Discharge (m³/sec)

H_e: Effective Head (m)

 $H_a = H_i - H_0 - H_{loss}$

 H_i : Reservoir Water Level, H_0 : Down stream river water level

H_{loss}: Head Loss

- η_{t} : Efficiency of hydraulic turbine [Crossflow Type]
- η_{a} : Efficiency of hydropower generator [Synchronous Type]

2.3.2 Hydropower Generator Type

There are two types of Hydropower Generator, namely Synchronous Generator and Induction Generator. Synchronous Generator is more complicated, but it is more flexible and has been used more. Therefore, synchronous generator type should be selected for Batu Gajah Dam.

2,3,3 Study Case

1

Five study cases of hydropower generation are studied as follows, considering range of maximum utilization discharge.

<dam site=""></dam>	Batu Gajah Dam	[1 Case]
<calculation term=""></calculation>	10 years between 1986-1995	[1 Case]
<normal discharge="" utilization=""></normal>	0.1 m ³ /sec (Drought Discharge)	[1 Case]
<maximum discharge="" utilization=""></maximum>	0.2, 0.3, 0.4, 0.5, 0.6 m ³ /sec	[5 Case]

2.3.4 Calculation Results of Hydropower Production

Calculation results of hydropower production for each case are shown in Table-E.2.8. And these results can be summarized in Table-E.2.7. As the table indicates, maximum hydropower corresponds to maximum utilization discharge, but annual hydropower production does not correspond to maximum utilization discharge and has a peak at 0.5 m³/s of maximum utilization discharge. The reason for this is that capacity of hydropower station is too large compared to available discharge level and the efficiency of hydropower station is too low, for the case of the maximum utilization discharge of 0.6 m³/sec.

	Case	Utilization Discharge (m³/sec)		Annual Hydropower Production	Maximum Hydropower (kW) *1	L5 Hydropower (kW) *1	Utilization Ratio of Intake Facility (%)
		Usual	Maximum	(MWh) *1			*1
Ì	1	0.13	0.2	305	37	33	84
ľ	2	0.13	0.3	390	53	40	67
ľ	3	0.13	0.4	437	62	43	57
ł	4	0.13	0.5	462	68	43	50
ľ	5	0.13	0.6	446	70	38	-44

Table-E.2.7 Calculation Results of Hydropower Production [Batu Gajah Dam]

Note; *1 ... Average values from 10 years between 1986-1995

*2...Calculation Condition; [Turbine] Crossflow Type, [Generator] Synchronous Type

*3... L5 is the average between the hydropower production by minimum discharge and

the production by fifth discharge from the minimum.

Table-E.2.8(1)Calculation Results of Hydropower Production
[Batu Gajah Dam: qmax = 0.2m³/sec]

:(1) **Annual Hydropower Production**

A

(Unit:	Mwh)

Year	10	n	[°] 12	1	2	3	÷4	5	6	7	8	. 9	Total	Average
86	29	21	23	21	20	18	16	15	18	31	-31	32	276	23
87	32	29	30	24	22	20	20	21	31	32	31	32	325	27
88	32	30	32	27	23	21	21	27	31	32	-31	32	339	28
89	: 30	23	25	21	21	19	17	17	20	32	31	32	289	24
90	32	29	- 30	25	22	21	20	21	31	32	31	32	326	27
91	30	22	25	21	21	18	16	16	20	32	31	32	285	24
92	31	25	26	22	21	19	17	17	23	32	31	32	295	25
93	27	20	22	21	20	17	14	13	17	28	31	32	264	22
94	32	27	28	22	22	20	19	19	28	32	31 -	32	311	26
95	32 -	29	32	28	24	21	21	30	31	32	31	32	344	- 29
Ave	31	26	27	23	22	19	18	20	25	32	31	32	305	25

Maximum of Hydropower (2)

			•	•	· · ·					:			(U	nit: Kw)
Year	10	11	12	1	2	3	4	5	6	7	8	9	Total	Are
86	43	37	36	- 30	28	26	23	21	28	43	43	43	401	33
87	43	43	43	42	30	29	27	30	43	43	43	43	461	38
88	43	43	43	43	31	30	29	43	43	43	43	43	479	40
89	43	43	42	30	29	27	24	23	30	43	43	43	421	35
90	43	43	43	43	30	29	27	30	43	43	43	:43	462	39
91	43	42	41	30	29	27	23	22	30	43	43	43	417	35
92	43	43	. 43	- 30	29	27	24	-24	43	43	43	43	437	.36
93	43	30	30	30	28	25	22	18	26	43	43	43	381	32
94	43	43	43	35	30	28	26	27	43	43	43	43	449	37
95	43	43	43	43	39	30	29	43	43	43	43	43	487	41
Max	43	41	41	36	30	28	25	28	37	43	43	43	440	37

L5 Hydropower (3)

(Unit: Kw)

											2.4		• • • •	
Үеаг	10	11	12	1	2	3	4	5	6	7	8	9	Total	Ave
86	30	30	30	29	27	23	20	20	23	29	43	43	348	- 29
87	43	43	33	30	29	27	26	26	43	- 43	43	43	431	36
88	43	43	39	30	- 30	29	28	29	43	43	. 43	43	445	37
89	33	32	30	29	27	25	21	22	26	-43	43	43	374	31
90	43	43	34	30	29	28	26	27	43	- 43	43	43	434	36
91	32	30	30	29	27.	24	21	21	25	43	43	43	369	31
. 92	34	-33	30	29	28	25	22	22	26	43	43	43	380	32
93	30	30	30	28	26	22	17	17	21	27:	43	43	335	28
94	40	38	30	30	29	26	24	25	30	43	43	43	402	33
95	43	43	41	31	- 30	29	28	29	43	43	43	43	419	37
Ave	37	37	33	30	28	26	23	24	32	40	43	43	397	33

Table-E.2.8(2)Calculation Results of Hydropower Production
[Batu Gajah Dam: qmax = 0.3m³/sec]

(1) Annual Hydropower Production

Ţ

1

(L) · A	mua	nyun	poner	11001			·			a di ya sa			(Unit:	Mwh)
Year	10	11	12	.] .	2	3	4	5	6	7	8	9	Total	Ave
86	31	21	24	21	20	18	16	15	18	47	50	51	331	28
87	47	35	35	25	22	20	20	21	47	52	50	52	424	35
88	50	43	42	29	22	21	21	35	50	52	50	52	467	39
89	34	24	26	21	21	18	17	17	20	52	50	51	351	29
90	48	36	36	25	22	20	20	21	47	52	50	52	430	36
91	33	23	25	21	21	- 18	16	16	-20	51	50	51	346	29
92	35	26	26	21	21	19	:17	17	26	52	50	52	363	30
93	28	20	22	21	20	17	15	13	17	42	50	49	314	26
94	$-\frac{20}{42}$	30	30	23	22	20	19	19	37	52	50	52	394	33
95	51	43	- 44	31	24	21	21	41	50	52	50	52	480	40
Ave	40	30	31	24	21	19	18	22	33	50	50	51	390	35

(2) Maximum Hydropower

(*)	MIRAIIII		arope			· ·							(Unit	: Kw)
Year	10	11	12	1	2	3	4	5	6	7	8	9	Total	Ave .
86	51	38	37	30	28	26	23	21	28	70	70	70	490	2 41
87	70	67	65	45	30	29	27	29	70	70	70	70	640	53
88	70	70	70	57	31	30	28	70	70	70	70	70	702	58
89	57	47	45	30	29	27	24	23	30	70	70	70	520	43
90	70	69	67	47	30	29	27	30	70	70	70	70	647	54
91	55	45	44	30	28	$\frac{-2}{26}$	23	22	29	70	70	70	513	43
92	59	49	47	30	29	27	24	24	68	70	70	70	566	47
93	46	30	30	29	28	25	22	18	25	70	70	- 70	463	39
94	68	59	57	36	30	28	26	27	70	70	70	70	608	51
95	70	70	70	60	40	30	29	70	70	70	70	70	716	60
Max		54	53	39	30	28	25	33	53	70	70	70	587	53

(3) L5 Hydropower

(3)													(Unit	: Kw)
Year	10	11	12	1	2	3	4	5	6	7	8	9	Total	Ave
86	30	30	30	28	26	23	20	20	23	29	70	61	391	33
87	49	47	33	30	29	27	26	26	54	70	70	70	530	44
88	61	58	41	30	30	29	28	29	66	70	70	70	580	48
89	34	32	30	29	27	24	22	22	26	70	70	67	451	38
90	51	48	34	30	29	28	26	27	56	70	70	70	538	45
91	32	30	30	29	27	24	21	21	25	66	70	65	440	37
92	35	33	30	29	27	25	22	22	26	70	70	69	459	38
93	30	30	30	28	26	22	18	18	21	27	67	56	372	31
94	42	40	30	30	28	26	24	25	29	70	70	70	484	40
95	64	62	44	31	30 :	29	28	29	69	70	70	70	595	50
Ave	43	41	33	29	28	26	23	24	40	61	69	67	484	40

Table-E.2.8(3) Calculation Results of Hydropower Production [Batu Gajah Dam: qmax = 0.4m³/scc]

(1) Annual Hydropower Production

(Unit: Mwh)	

Year	10	- 11	12	1	2	3	4	5	6	7	8	9	Total	Ave
86	30	21	23	21	20	17	15	15	18	58	64	59	360	30
		35	34	24	$\frac{20}{21}$	20	19	20	58	69	- 66	69	484	40
87	49				22	21	20	39	61	69	66	69	541	45
88	59	44	43	28		L		16	20	69	65	63	390	32
89	34	23	_25	21	20	18	16				66	69	491	41
90	51	. 36	36	25	22	20	19	21	58	69			380	32
- 91	32	22	24	21	20	18	16	16	19	66	65	62		
92	35	25	25	21	20	18	17	17	26	69	66	64	402	34
93	27	20	22	20	19	i : 17 ≦	10	5.	<u> </u>	50	62	56	<u>· 323</u>	27
94	42	29	29	22	21	19	18	19	42	69	66	67	443	37
95	62	46	46	30	23	21	21	45	62	69	66	69	559	47
Ave	42	30	31	23	21	19	17	21	38	65	65	65	437	40
L		L	1	1		1	<u> </u>	· · · · · · · · · · · · · · · · · · ·						11 A. 1

(2) Maximum Hydropower

(Unit: Kw)

10	11	12		2	3	4	5	6	7	8	9	Total	Ave
			29	27	25	22	21	27	92	92	92	549	46
	· · · · · · · · · · · · · · · · · · ·		45	29	28	26	29	92	92	92	92	741	62
	84	81	56	30	29	28	92	92	92	92	92	861	72
		45	29	28	26	23	23	29	92	92	92	584	49
	71	68	17	29	28	27	29	92	92	92	92	752	63
55	45	43	29	28	26	23	22	29	92	92			48
.58	49	47	29	28	26	24	23	69	92	92	92		53
46	29	29	29	27	25	21	18	25	92	92			-44
70	58	56	33	29	27	25	26	92	92	92			58
92	88	86	60	38	29	28	92	92	92	92			74
69	58	56	39	29	27	25	38	64	92	92	92	680	62
	58 46 70 92	51 35 81 68 92 84 57 47 84 71 55 45 58 49 46 29 70 58 92 88	51 35 35 81 68 66 92 84 81 57 47 45 84 71 68 55 45 43 58 49 47 46 29 29 70 58 56 92 88 86	51 35 35 29 81 68 66 45 92 84 81 56 57 47 45 29 84 71 68 47 55 45 43 29 58 49 47 29 46 29 29 29 70 58 56 33 92 88 86 60	51 35 35 29 27 81 68 66 45 29 92 84 81 56 30 57 47 45 29 28 84 71 68 47 29 55 45 43 29 28 58 49 47 29 28 46 29 29 27 70 58 56 33 29 27 70 58 56 33 29 28 33 29 27 92 88 86 60 38 36 37 38	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

(3) L5 Hydropower

(Unit: Kw) Total Ave Ycar $\overline{22}$ Ave

E-28

L

Table-E.2.8(4)Calculation Results of Hydropower Production[Batu Gajah Dam: qmax = 0.5m³/sec]

(1) Annual Hydropower Production

(Unit: Mwh)

1	Year	10	11	12	1	2	3 -	4	5	6	7	8	. 9	Total	Ave
	86	29	20	23	20	19	14	0	0	12	68	75	63	344	29
1	87	49	33	34	24	21	19	19	20	66	86	83	83	537	45
:	88	61	44	42	28	22	20	20	40	. 72	86	83	86	604	50
ł	89	32	23	24	21	20	18	0	0	19	85	77	68	387	32
	90	51	35	35	24	21	20	19	20	67	86	83	84	545	45
	91	31	22	24	20	20	18	0	· 0 ·	19	79	76	67	375	31
	92	34	25	25	21	20	18	3	3	25	85	78	271	408	34
	93	27	19	21	20	19	9.	0	0	9	55	73	59	310	26
Ì	94	:41	28	29	22	21	19	18	18	44	86	82	78	486	40
1	95	65	46	: 45	30	23	21	20	47	73	86	83	86	625	52
	Ave	42	30	30	- 23	21	18	10	15	4]	80	79	75	462	43

(2) Maximum Hydropower

		e - 1												(Unit	: Kw)
	Year	10	11	12	1	2	.3	4	5	6	7	8	9	Total	Ave
	86	48	36	35	29	27	25	0	0	27	116	116	116	574	48
·	87	81	68	66	42	29	28	26	28	116	116	116	116	831	69
	88	101	84	81	55	- 29	29	27	104	116	116	-116	116	973	81
	89	56	44	42	29	28	26	0	0	29	116	116	116	600	50
	90	84	71	68	44	29	28	26	29	116	116	116	116	842	70
	91	53	42	40	29	27	25	0	0	28	116	116	116	593	49
	92	58	47	44	29	28	26	23	23	69	116	116	116	694	58
	93	43	29	29	28	27	24	0	0	24	111	116	116	547	46
	94	70	58	55	34	28	27	25	26	116	116	116	116	786	66
	95	107	90	87	60	38	29	28	110	116	116	116	116	1011	84
	Max	70	57	55	38	29	27	16	32	76	115	116	116	745	68

(3) L5 Hydropower

					•			÷ 1						(Unit	<u>: Kw)</u>
1	Year	10	11	12	1	2	3	4	5	6	7	8	9	Total	Ave
	86	29	29	29	27	25	0	0	0	0	28	74	61	303	25
	87	46	43	31	29	28	26	25	25	53	116	115	98	636	53
	88	61	57	38	29	29	28	27	28	67	116	116	116	711	59
Ì	89	32	30	29	28	26	23	0	0	25	107	83	68	451	38
	90	49	46	33	29	28	26	25	26	. 55	116	116	102	650	54
	91	31	29	29	28	26	23	0	0	24	67	80	66	402	33
	92	33	32	29	28	26	24	0	0	25	110	86	71	465	39
•	93	29	29	28	27	25	0	0	0	0	26	68	55	287	24
	94	39	37	29	29	27	25	23	24	28	116	102	84	564	47
	95	65	62	40	29	29	28	27	28	72	116	116	116	728	61
	Ave	41	39	32	28	27	20	13	13	35	92	96	84	520	-43

Table-E.2.8(5)Calculation Results of Hydropower Production[Batu Gajah Dam: qmax = 0.6m³/sec]

Annual Hydropower Production (1)

	· · ·												(Unit:	Mwh)
Year	10	11	12	1	2	3	4	5	6	7	8	9	Total	Ave
86	29	19	22	13	0	0	0	0	0	72	87	65	307	26
87	48	33	33	23	20	0	0	4.	70	104	98	93	527	44
88	60	43	42	27	20	13	0	36	-81	104	- 101 -	101	628	52
89	32	22	24	16	0	0	0	0	10	96	89	72	360	30
90	50	34	34	23	20	0	0	7	73	104	99	95	540	45
91	31	21	23	16	0	0	0	0	6	88	88	70	343	29
92	33	24	24	19	0	0	0	0	16	98	90	74	379	32
93	26	18	20	6	0	0	0	0	0	49	85	60	265	22
94	40	28	28	21	10	0	0	0	47	103	94	84	454	38
95	65	45	45	29	22	16	0	46	84	104	101	103	659	55
Ave	41	29	-30	19	9	3	.0	9	39	92	93	82	446	41
···														

Maximum Hydropower (2)

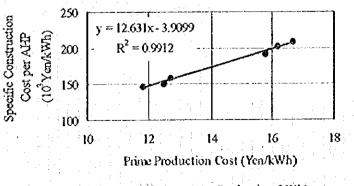
(Unit: Kw)

Ycar	. 10	11	12	1	2	. 3	4	5	6	7	8	9	Total	Ave
86	47	35	35	27	0	0	0	0	0	140	140	137	561	47
87	82	67	64	43	27	0	0	27	140	140	140.	140	870	73
88	101	84	82	52	28	27	0	105	140	140	140	140	1039	87
89	53 -	44	43	27	0	0	0	0	27	140	140	140	615	51
90	85	71	67	-44 -	27	0	0	27	140	140	140	140	881	73
91	50	43	42	27	0	0	0	0	27	140	140	140	609	51
92	55	46	45	27	0	0	0	0	68	140	140	240	662	55
93	- 44	27	27	27	0	0	0	0	0	114	140	128	507	42
94	69	55	52	33	27	0	0	· 0	140	140	140	140	796	66
95	108	90	87	57	38	27	0	112	140	140	140	140	1079	90
Max	69	56	54	37	15	5	0	27	82	137	140	138	762	70

L5 Hydropower (3)

									1.1.1	1. t. t. t.			Unit (Unit	: Kw)
Үсаг	10	11	12	1	2	3	4	5	6	7	8	9	Total	Ave
86	28	27	27		0	0	0	. 0 .	: 0 .	27	75	59	242	20
87	46	44	30	27	27	0	0	0	50	140	120	98	582	48
88	58	54	39	27	27	0	0	0	66	140	140	122	673	56
89	31	29	27	0	0	0	0	0	0	108	83	67	346	29
90	47	46	32	27	27	0	0	0	52	140	124	102	597	50
91	29	28	27	0	0	0	0	0	0	66	80	64	294	25
92	33	30	27	27	0	0	0	0	. 0	113	87	-71 -	387	32
93	27	27	27	0	0	0	0	0	0	0	67	52	201	17
94	40	38	27	27	0	0	0	0	27	131	102	84	477	40
95	63	59	42	28	27	0	. 0 :	27	71	140	140	129	727	61
Ave	-10	38	31	16	11	0	0	3	27	100	102	85	453	38
			1	· .										1.1.1.1

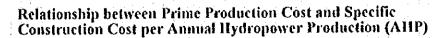
2.4 Economic Evaluation


Approximate cost of hydropower station in Batu Gajah Dam are shown in the following Table-E.2.9. From this table, the prime production costs of hydropower station are approximately 300 Rp/kWh and nearly equal to that (285 Rp/kWh) produced by diesel turbine station in Ambon (by PT.PLN in 1997). Therefore, it follows from this that the validity for project of small scale hydropower generation in Batu Gajah Dam must be reasonable in the future when fuel cost may increase, although the hydropower production volume is little.

e jage to s					. :	: (Unii	; Milli	on KD
	Item		Unit			Case		L
				1	2	3	4	5
Maximum Utiliza	ation Discharge		m ³ /sec	0.2	0.3	0.4	0.5	0.6
Maximum Hydro	power [Pmax]		kW	37	53	62	<u>68</u>	70
	wer Production [A	H.P.]	MWh	305	390	437	462	446
(1)Building	<u></u>		Mil.Rp	110	154	165	172	176
(2)Civil	1)Channel	a Pipe	Mil.Rp	207	207	207	207	207
Engineering		b. Outlet	Mil.Rp	110	110	110	110	110
, i i i i i i i i i i i i i i i i i i i		c. Other Work	Mil.Rp	3 ·	3	3	3	3
	2)Substructure	a. Substructure	Mil.Rp	22	31	42	59	- 70
		b. Other Work	Mil.Rp	11	11	11	12	12
	3)Temporary Wor	ks	Mil.Rp	7	7	7	8	8
(3)Electric Facili	ty [Turbine, Gener	ator, etc]	Mil.Rp	594	792	924	990	1,034
(4)Power Transm			Mil.Rp	72	72	72	72	72
(5)Construction F	Running Cost	1. 	Mil.Rp	79	97	108	. 114	118
(6)Total Construct	ction Cost		Mil.Rp	1,215	1,484	1,649	1,747	1,811
Specific Cost 1	(Total Cost) / (Pn	lax)	Mil.Rp/kW	32.8	28.0	26.6	25.7	25,9
	(Total Cost) / (A.		Rp/kWh	3,984	3,805	3,774	3,781	4,061
Prime Production			Rp/kWh	316	302	299	300	322

Table-E.	2.9	Approximate	Cost of II	ydropower	Station	[Batu Gajah I	Dam

Note: Construction cost is calculated using relationship between several cost items and maximum hydropower, effective water head, etc. This relationship is based on example of hydropower stations in Japan.


The prime production cost is obtained from the following figure that indicates relationship between prime production cost and specific construction cost based on example of hydropower station in Japan.

Note: AHP... Annual Hydro-power Production (kWh)

Figure-E.2.8

Ţ

CHAPTER 3 MULTI-PURPOSE DAM PLAN

3.1 Specification of Multi-purpose Dams

The flood control dams in Ruhu, Batu Gajah and Batu Gantung Rivers were proposed in Supporting Report Part-D as part of the optimum flood control plan. After consideration of water utilization for domestic use in Ambon central area, RH-1 Dam, GJ-2 Dam and GT-1 Dam were planned and designed as multi-purpose dams. The specification of these dams are presented in Table-E.3.1. These plans are adopted for the Master Plan involved with water utilization. The reservoir storage allocations are presented graphically in Figure-E.3.1.

Table-E.3.1 Specific	ation of Mu	ilti-purpose D		ryours	
Items		Ruhu River	Batu Gajah River	Batu Gantung River	
		RH-1 Dam	GJ-2 Dam	GT-1 Dam	
Code of Alternative Flood Control Plan		FCP-RH2	FCP-GJ3	FCP-GT3	
Design Scale of River Improvements		1/5	1/10	1/10	
Catchment Area (km ²)		14.49	4.37	4.76	
Unregulated peak discharge (m ³ /sec)	Dam	273	90	99	
(30-year return period)	River Mouth	314	123	143	
Outflow at peak inflow (m ² /sec)	1)am	114	68	67	
Regulated peak discharge	Dam	136	72	73	
(m ³ /sec)	River Mouth	168	100	110	
Cut discharge (m ³ /see)	Dam	159	22	32	
	River Mouth	146	23	33	
Newly Developed Discharge (m ³ /day)	<u> </u>	16,000	8,000	2,500	
Sediment Capacity (1000 m ³)		580	175	191	
Water Utilization Capacity (1000 m ³)		1,064	955	639	
: River Maintenance Capacity (1000 m	2	115	20	249	
: New Development Capacity (1000 m ³)	949	935	390	
Flood Storage Capacity (1000 m ³)		2,763	380	513	
Effective Storage Capacity (1000 m ³)		3,827	1,335	1,152	
Total Storage Capacity (1000 m ³)	·······	4,407	1,510	1,343	
Low Water Level (EL.in)		46.4	57.2	86.4	
Normal Water Level (EL.m)		54.3	71.2	97.5	
Surcharge Water Level (EL.m)		63.7	74.6	102.9	
Dam Top Elevation (m)		67.7	78.6	106.9	
Dam Base Elevation (m)		23.0	38.0	66.0	
Freeboard (m)		4.0	4.0	4.0	
Dam Height (in)		41.7	40.6	40.9	
Dam Crest Length (m)	•	112.0	200.0	139.0	
Dam Foundation Length (m)		10.0	54.0	23.0	
Cenduit		B3.9m*H3.9m	B8.0m*H3.40	B4.1m*H4.1m	
Upstream Slope		1:3.0	1:3.0	1:3.0	
Downstream Slope		1:2.5	1:2.5	1:2.5	
Dain Top Width (m)		5.0	5.0	5.0	
Dam Volume (1000 m ³)		235	404	262	
Land Acquisition Area (1000m ²)		515,000	148,000	139,000	
Resettlement Household (number)		+	30	•	
Construction Cost of Multi Purpose Dam (Rp. Mil)	36,616	49,480	35,306	
Total Project Cost (Rp. Mil)	<u> </u>	76,491	82,751	60,627	
A : Construction Cost (Rp. Mil)		47,339	60,001	43,963	
B Indirect Cost (Rp. Mil)		14,202	18,000	13,189	
C: Land Acquisition and Compensation	Post (Ro Mil)	14,950	4,750	3,475	

able-E.3.1 Specification of Multi-purpose Dams and Reservoirs

RII-1 Dam	in Ruhu River
S.W.L. 63.7 m	
Flood Storage Capacity 2,763,000 m ³	
N.W.L. 54.3 m	Effective Storage Capacity 3,827,000 m ³
Water Utilization Capacity 1,064,000 m ³ River Maintenance Capacity : 115,000 m ³ Newly Developed Capacity : 949,000 m ³	Total Storage Capacity 4,407,000 m ³
L.W.L. 46,4 m	
Sediment Capacity 580,000 m ³	
Dam Base Elevation 23.0 m	
Dam Top Elevation 78.6 m GJ-2 Dam	in Batu Gajah River
S.W.L. 74.6 m	na series de la construcción de la En esta de la construcción de la con
Flood Storage Capacity 380,000 m ³	
N.W.L. 71.2 m	Effective Storage Capacity 1.335.000 m ³
Water Utilization Capacity 955,000 m ³ r River Maintenance Capacity : 20,000 m ³	Total Storage Capacity 1.510.000 m ³
Newly Developed Capacity : 935.000 m ³ L.W.L. 57.2 m	
Sediment Capacity 175,000 m ³	
Dam Base Elevation 38.0 m	and a second and the second
Dam Top Elevation 106.9 m GT-1 Dam i S.W.L. 102.9 m	n Batu Gantung River
Flood Storage Capacity 513.000 m ³	
N.W.L. 97.5 m Water Utilization Capacity 639,000 m ³	Effective Storage Capacity 1,152,000 m ³
(River Maintenance Capacity : 249,000 m ³	Total Storage Capacity 1.343.000 m ³
L.W.L. 86.4 m	
Sediment Capacity 191,000 m ³	
Dam Base Elevation 66.0 m	

I.

J

3.2 Project Cost of the Optimum Flood Control Plan with Multi-purpose Dam

The estimated project cost of the optimum flood control plan and the plans using multipurpose dams are shown in Table-E.3.2.

			5					Un	it: Millie	n Rupiah	
Alternative	Al: Rive	ruction C r Improve rsion Cha	emient, A2		Dain	B: Indirect Cost	C1: Land	Acq. & C I Acquisit	Acq. & Comp. Acquisition pensation		
	Al	Λ2	A3	Λ4	Total	Total	сı	C2	Total		
<ruhu river="" system=""></ruhu>											
FCP-RH2: R/I(5) only	9,323	-	-	•	9,323	2,797	675	1,400	2,075	14,195	
FCP-RH2: R/I(5)+Dam	9,323	31,344	-	1,370	42,037	12,611	10,950	1,400	12,350	66,998	
FCP-RH2: RA(5)+Dam (Multi-purpose Dam)	9,323	36,646	-	1,370	47,339	14,202	13,550	1,400	14,950	76,491	
<batu merah="" river="" system=""></batu>											
FCP-BM4; R/I(5)+Div.	9,966		29,055	-	39,021	11,706	158	350	508	51,235	
<tomu river="" system=""></tomu>								. :			
FCP-TM1: RЛ(30)	18,753	÷	-	1,470	20,223	6,067	0	0	0	26,290	
<batu gajah="" river="" syst<="" td=""><td>em></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></batu>	em>										
FCP-GJ3: RA(10)+Dam	9,091	32,485		1,430	43,006	12,902	2,325	700	3,025	58,933	
FCP-GJ3: R/I(10)+Dam (Multi-purpose Dam)	9,091	49,480	-	1,430	60,001	18,000	3,700	1,050	4,750	82,751	
<batu gantung="" river="" s<="" td=""><td>stem></td><td></td><td></td><td></td><td></td><td></td><td></td><td>·····</td><td></td><td></td></batu>	stem>							·····			
FCP-GT3: R/I(10)+Dam	7,327	24,284	-	1,330	32,941	9,882	2,375	. 0	2,375	45,198	
FCP-GT3: R/l(10)+Dam (Multi-purpose Dam)	7,327	35,306		1,330	43,963	13,189	3,475	0	3,475	60,627	
Flood Control Plan	54,460	88,113	29,055	5,600	177,228	53,168	15,808	2,450	18,258	248,654	
Flood Control Plan with Multi-purpose Dam	54,460	121,432	29,055	5,600	210,547	63,164	20,883	2,800	23,683	297,394	

Table-E.3.2 Project Cost of the Optimum Flood Control Plan using Multi-purpose Dams

3.3 Cost Estimate for Water Treatment Plant

Costs of water treatment plant and pipelines were estimated assuming the following unit costs :

- Unit cost of treatment plant per cubic meter discharge : Rp. 880,000 /m³
- Unit cost of pipe line per meter : Rp. 160,000 /m

Water treatment plant and pipe line costs are estimated as shown in Table-E.3.3.

J AUL	Calvera in Frathing	itti Ovata (A TRACE LICAUM	che a acuitte		
	Developed Disch.	Pipe Line	Cost of Treatment	Cost	Total Project	
Dam	(Treated Disch.)	•	Facilities	of Pipe Line	Cost	
	(m³/day)	(11)	(Rp. million)	(Rp. million)	(Rp. million)	
Rohu Dam	16,000	800	14,080	128	14,208	
Bata Gajah Dam	8,000	2,000	7,010	320	7,360	
Batu Gantung Dam	2,500	1,700	2,200	272	2,472	
Total	26,500	4,500	23,320	720	24,040	

Table-E.3.3 Estimated Costs of Water Treatment Facilities