SUPPORTING REPORT

0

đ

PART-C

METEOROLOGY AND HYDROLOGY

THE STUDY ON FLOOD CONTROL FOR AMBON AND PASAHARI AREA IN THE REPUBLIC OF INDONESIA SUPPORTING REPORT PART-C

1

Ţ

Ţ

TABLE OF CONTENTS

Table of Contents List of Tables and Figures	
CHAPTER 1 CLIMATE	C·
CHAPTER 2 NETWORK OF OBSERVATION STATIONS	C
2.1 Existing Observation Stations	C
2.2 Condition of Existing Data	C-
2.3 Organization of Meteorological and Hydrological Observation	C
CHAPTER 3 INSTALLATION OF OBSERVATION STATIONS	C
3.1 Observation Stations Installed by JICA Study Team	C
3.2 Location of Observation Stations	C
C5HAPTER 4 CORRELATION ANALYSIS OF RAINFALL	С
CHAPTER 5 FLOW MEASUREMENT	С
CHAPTER 6 WATER LEVEL AND DISCHARGE ANALYSIS	C
61 H-O Curve	С
6.2 Flow Regime	С
CHAPTER 7 RAINFALL ANALYSIS	С
7.1 Representative Rainfall Station and Basin Mean Rainfall	C
7.1.1 Representative Rainfall Station	C
7.1.2 Basin Mean Rainfall	C
7.2 Probability Analysis	С
7.2.1 Daily and Hourly Probable Rainfall	C
7.2.2 Flood Rainfall	С

(C-i)

LIST OF TABLES AND FIGURES

LIST OF TABLES

CHAPTER 2

CHAPTER 1	CLIMATE	
Table-C.1.1	Weather Conditions in Ambon Area (Pattimura Ambon Station)	C-1
CHAPTER 2	NETWORK OF OBSERVATION STATIONS	
Table-C.2.1	Outline of Meteorological (Rainfall) Stations	C-2
Table-C.2.2	Outline of Hydrological Stations	C-2
Table-C.2.3	Condition of Existing Data at Meteorological Stations	
Table-C.2.4	Condition of Existing Data at Hydrological Stations	C-3
CHAPTER 3	INSTALLATION OF OBSERVATION STATIONS	
Table-C.3.1	Installed Observation Stations	C-5
CHAPTER 4	CORRELATION ANALYSIS OF RAINFALL	
Table-C.4.1	Results of Correlation Analysis of Rainfall in Ambon	C-7
CHAPTER 5	FLOW MEASUREMENT	•
Table-C.5.1	Results of Flow Measurement in Ambon Area	C-8
CHAPTER 6	WATER LEVEL AND DISCHARGE ANALYSIS	
Table-C.6.1	Flow Regime	C-11
CHAPTER 7	RAINFALL ANALYSIS	:
Table-C.7.1(1)) Maximum Annual Daily Rainfall in Pattimura Ambon	C-12
Table-C.7.1(2)) Maximum Annual Hourly Rainfall in Pattimura Ambon	C-13
Table-C.7.2	Daily and Hourly Probable Rainfall [Pattimura Ambon]	C-13
Table-C.7.3	Calculation Results of Daily Probable Rainfall	
	[Daily Rainfall in Pattimura Ambon]	C-14
Table-C.7.4	Calculation Results of Hourly Probable Rainfall 15	
	[Hourly Rainfall in Pattimura Ambon]	C-15
Table-C.7.5	Probable Rainfall Intensity [Pattimura Ambon]	
Table-C.7.6	Flood Rainfall in Ambon [Pattimura Ambon]	C-18
LIST OF FIGU	JRES	• • • •
CHAPTER 1 Figure-C.1.1	CLIMATE Seasonal Fluctuation of Weather at Pattimura Ambon Station	C-1

Figure-C.2.1Location of Meteorological and Hydrological StationsC-2Figure-C.2.2Observatory Organization of B.M.G.C-4Figure-C.2.3Observatory Organization of PUSLITBANG (PU)C-4

NETWORK OF OBSERVATION STATIONS

CHAPTER 3 INSTALLATION OF OBSERVATION STATIONS

Figure-C.3.1	Location of Observation Stations - Ambon Area	C-6
CHAPTER 4 Figure-C.4.1	CORRELATION ANALYSIS OF RAINFALL Results of Correlation Analysis of Rainfall in Ambon	C-7
CHAPTER 6 Figure-C.6.1 Figure-C.6.2	WATER LEVEL AND DISCHARGE ANALYSIS Study of Roughness Coefficient (n=0.050) H-Q Curve for Rivers in Ambon	C-9 C-10
CHAPTER 7 Figure-C.7.1	RAINFALL ANALYSIS Plotting Positions of Daily Probable Rainfall [Daily Rainfall in Pattimura Ambon]	C-14
Figure-C.7.2 Figure-C.7.3 Figure-C.7.4(1 Figure-C.7.4(2)		C-15 C-17 C-19 C-19

(C-iii)

Ţ

্টু

R

AND A

CHAPTER I CLIMATE

The climate in Indonesia can generally be described as marine tropical with high temperatures and much rain. Temperature variation is small and there is a rainy season from October to March and a dry season from April to September. The division of the rainy season and dry season is usually clear in the west region from Sumatra to Bali and in Irian Jaya, but the rainy season is shorter in much of the east region except for Irian Jaya. The weather conditions in the Ambon Study Area are outlined in Table-C.1.1. The average temperature and humidity are as high as 26.1 °C and 83 % respectively, indicating a hot and humid climate. Figure-C.1.1 characterizes the seasonal fluctuation of weather.

Table-C.	Rainfall	Fine Weather	Relative	Maximum	Misimim	Average
Month/Year	Алиан	Ratio	Humidity	Temperature	Temperature	Temperature
	(mm)	(%)	(%)	(°C)	(°C)	<u>(°C)</u>
January	135	54	79	31.5	23.8	26.8
February	100	60	78	31.6	23.8	27.1
March	152	65	80	31.2	23.6	26.8
April	179	63	84	30.7	23.6	26.6
May	396	54	87	29.7	23.6	26.1
June	556	38	88	28.6	23.2	25.3
July	511	37	86	27.8	22.7	24.8
August	367	42	85	27.7	22.7	24.8
September	284	62	85	28.7	22.7	25.2
October	113	71	83	29.9	23.1	26.1
November	74	77	81	31.3	23.6	27.1
December	124	59	81	31.5	23.7	26.9
Total/Average	3,000	57	83	30.0	23.4	26.1

Table-C.1.1 Weather Conditions in Ambon Area (Pattimura Ambon Station)

Note : Figures are average values from 20 years between 1976-1995.

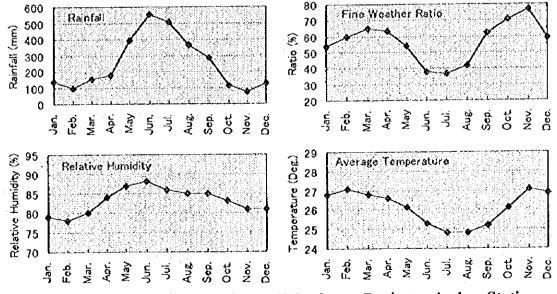


Figure-C.1.1 Seasonal Fluctuation of Weather at Pattimura Ambon Station

C-1

I

I

CHAPTER 2 NETWORK OF OBSERVATION STATIONS

Existing Observation Stations 2.1

Table-C.2.1 and Table-C.2.2 outline the meteorological (rainfall) stations and hydrological stations in Ambon Island. The location of these stations is shown in Figure-C.2.1. There are two meteorological (rainfall) stations in Ambon Island, namely Gunung Nona and Pattimura Ambon. There are five hydrological stations in Ambon island. Of these, three stations are located in the Study Area (Ruhu River, Tomu River, Batu Gajah River).

Station Name	Elevation	Organization	Observati	ion Item	Type of	Observat	ion Period
	(EL m)	~ 0	Rainfall			From	Operation
Gunung Nona	465	PUSLITBANG	0		A, O	1981	Operated
Pattimura Ambon (Ambon Airport)	10	BMG	0	0	A, O	1947	Operated

Table C.2.1	Outline	of Meteorol	logical	(Rainfall)) Stations

Note -

PUSLITBANG: Pusat Penelitian dan Pengenabangan Pengalram in Bandung : Badan Meteorologi dan Geofisika (Departmen Perhubungan) BMG

Others : Temperature, Relative Humidity, Sunshine Hours, Wind Speed, etc.

: Automatic Rainfall Gauge 0 : Ordinary Rainfall Gauge А

Ta

ble-C.2.2	Outline	of Hy	drolog	ical Stations

Station Name Organization		Type of Gauge	Observation Period			
(River Name)			From	Current Condition		
Ruhu River	PU	Automatic Gauge	1983	Closed		
		Staff Gauge		Operated		
Tomu River	PU	Staff Gauge	1994	Operated		
Batu Gajah River	PU	Staff Gauge	1994	Operated		
Tonahitu River	PU	Automatic Gauge	1985	Closed		
Sikula River	PU	Automatic Gauge	1985	Operated		

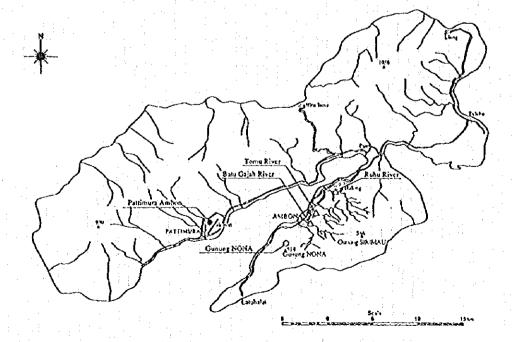


Figure-C.2.1 Location of Meteorological and Hydrological Stations

2.2 Condition of Existing Data

I

Table-C.2.3 and Table-C.2.4 show the condition of data recorded by the meteorological and hydrological stations. For the rainfall data in Ambon area, the station at Pattimura Ambon has kept better records: daily rainfall data for the past 25 years and hourly rainfall data for 14 years is available. The newer station at Gunung Nona only has daily rainfall data for a period of 5 months.

As for river water level records, there is very little available data. In Ambon area, the hydrological stations at Ruhu River, Tomu River, Batu Gajah River only have two years water level data. Regarding discharge measurement data, there are some data from four or five observation surveys conducted for the 5 target rivers in Ambon area. However, there are no flood data nor H-Q curves available.

Station Name	Distance from Study		le Period ing Data	Suitability as Representative
	Area	Daily Rainfall	Hourly Rainfall	Station
Pattimura Ambon	10 km	25 years	14 years	Suitable
Gunung Nona	Inside	5 months	•	Unsuitable

Table-C.2.3 Condition of Existing Data at Meteorological Stations

		Available		
Station Name	Location	Daily Water Level	Flood Peak Discharge	H-Q Curve
Ruhu	within study area	2 years	-	N A
Tomu	within study area	2 years	-	N.A.
Batu Gajah	within study area	2 years	-	N.A.
Tonahitu	outside of study Area		-	N A
Sikula	outside of study Area		-	NA

Table-C.2.4 Condition of Existing Data at Hydrological Stations

2.3 Organization of Meteorological and Hydrological Observation

Meteorological and hydrological stations are controlled by 2 institutions, PUSLITBANG [Research and Development Center of P.U.] and B.M.G.[Meteorological and Geophysical Agency]. These observatory organizations are shown in Figures-C.2.2 and C.2.3.

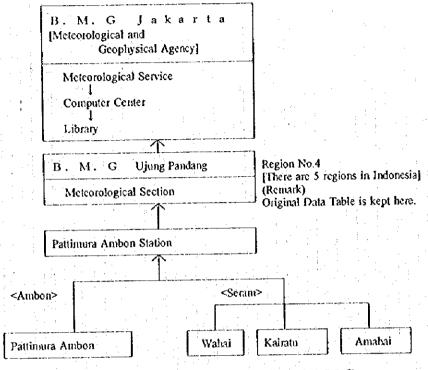
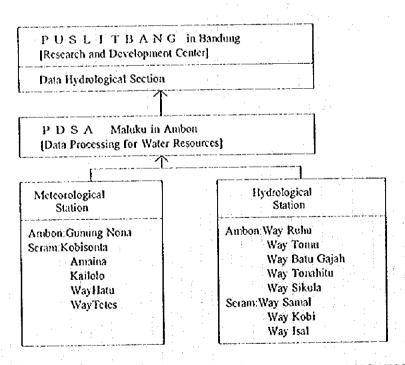
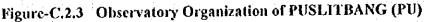




Figure-C.2.2 Observatory Organization of B.M.G

CHAPTER 3 INSTALLATION OF OBSERVATION STATIONS

3.1 Observation Stations Installed by JICA Study Team

In order to verify meteorological and hydrological data in the target river basins, automatic rainfall recorders, automatic water level recorders and water level staff gauges have been installed as part of this Study. The following hydrometric observation stations were installed in the Ambon area by the Study Team :

- Automatic rair	fall recorder	(ARR)	: 1 in Ambon
- Automatic wat	er level reco	rder (AWLR)	: 1 in Ambon
- Staff gauges			: 5 in Ambon (1 on each river)
	A sector for		

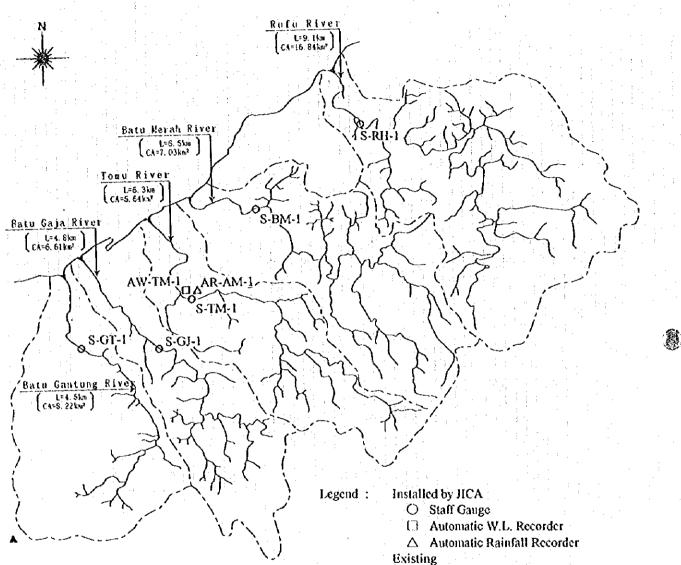
3.2 Location of Observation Stations

昶

1

I

The locations of the observation stations installed by the Study Team in the Ambon area are shown in Figure-C.3.1 and the stations are listed in Table-C.3.1 below. The catchment areas at the location of each staff gauge and for each river basin are also indicated.


There were found to be three existing staff gauges on the Ruhu, Tomu and Batu Gajah rivers in the Ambon area. However, these existing staff gauges were made from wood and therefore it was decided to replace the old gauges with new steel staff gauges. The new gauges were installed in the same location as the existing gauges in order to ensure continuity of river water level data.

New staff gauges were also installed on Batu Merah and Batu Gantung rivers. The location of these gauges was agreed with P.U. and permission obtained from the head of each Desa for installation of the gauges. Installation of the gauges was completed during December 1996. Gauge readers have been appointed and the staff gauges were handed over to the responsibility of P.U. in early January 1997. Collection of daily water level data is now being carried out on all five target rivers in the Ambon area.

Target Area	Farget Area Item		River or Basin	Catchment Area (km ²)	
		i .		Station	Total
		S-RH-1	Ruhu River	14.91	16.84
		S-BM-1	Batu Merah River	6.14	7.03
	Staff Gauge	S-TM-1	Tomu River	3.99	5,64
Ambon Area		S-GJ-1	Batu Gajah River	4.92	6.61
		S-GT-1	Batu Gantung River	5.89	8.22
	AWLR	AW-TM-1	Tomu River	3,99	5.64
a a said	ARR	AR-AM-1	Tomu River	•	5.64

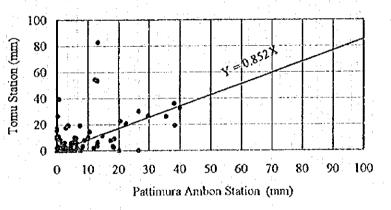
Table-C.3.1 Installed Observation Stations

In addition to the staff gauge at Tomu river, an automatic water level recorder (AWLR) has been installed adjacent to the staff gauge to monitor the hourly variation in river water level. This AWLR was also handed over to P.U. in January and collection of hourly water level data is in progress. P.U. staff are now responsible for the AWLR, including changing the recorder paper on a weekly basis. The automatic rainfall recorder (ARR) for the Ambon area has been installed near to Tomu river, close to the location of the AWLR and staff gauge. The ARR was constructed on land belonging to the Army, adjacent to an existing fuel station. Installation was completed in December 1996 and responsibility for the ARR handed over to P.U. in early January 1997. Rainfall data is now being monitored (since the beginning of January) and P.U. staff are responsible for changing the recorder paper once per week.

Automatic Rainfall Recorder

Item	Station Code	River or Basin
	S-RH-1	Ruhu River
	S-BM-1	Batu Merah River
Staff Gauge	S-TM-1	Tomu River
	S-GJ-1	Batu Gajah River
	S-GT-1	Batu Gantung River
Automatic Water Level Recorder	AW-TM-1	Tomu River
Automatic Rainfall Recorder	AR-AM-1	Tomu River

Figure-C.3.1 Location of Observation Stations - Ambon Area


CHAPTER 4 CORRELATION ANALYSIS OF RAINFALL

10

Correlation analysis for daily rainfall was studied using the data from observation stations in Ambon Area, namely Pattimura Ambon by B.M.G and Tomu River installed by JICA last year. The date used in the analysis is daily rainfall data for 6 months (1996. January – June). The result of calculation is shown in Table-C.4.1 and Figure-C.4.1. Data plotting for both Pattimura Ambon and Tomu River is scattered and correlation coefficient is low at 0.53. However, it can be seen that the correlation of the two is generally related as 1:1. Both stations are across Ambon Bay and the distance between both stations is as near as at about 10 km. Judging from the above, it follows that rainfall in Ambon area must be extremely regional.

2 1	X	Y		Correlation Coefficient	Calculation Term	Amount of Data	
	Pattimura Ambon	Tomu River	Y = 0.852 X	0.53	1997, JAN - JUN	172	
Note: Daily Rainfall Data							

Table-C.4.1	Results of (Correlation A	nalysis of Rainfall	in Ambon

CHAPTER 5 FLOW MEASUREMENT

Flow measurement has been carried out for the five rivers in the Ambon area using current meters provided by the Study Team. The discharge in each river was measured three times (with the exception of Batu Gantung) at the location of the existing and new staff gauges. Technology transfer was undertaken to explain river discharge measurement to Team counterparts and staff of the P.U. Hydrological Section who assisted in the river gauging activities.

River discharge was measured using the "velocity-area" method. Flow velocity was measured with a current meter at a number of positions across the river width and multiplied by the cross sectional area to give the total discharge. In the case of Batu Gantung, which has very low flow during the dry season, flow velocity was estimated using the "float" method. The time taken for a surface float to travel a known distance was measured - the average flow velocity is assumed to be equal to 0.7 times the measured surface velocity. The results of the river discharge measurement in the Ambon area are presented in Table-C.5.1 below.

Table-C.5.1 Results of Flow Measurement in Amoon Area									
River	Date	Width (m)	No. of	Section	Water	Average	Discharge		
			Verticals	Area (m ²)	Level (m)	Vel (n/s)	Q (m³/s)		
RUIU	13/11/96	11.2	21	3.22	0.73	0.08	0.251		
	12/12/96	11.2	21	2.54	0.71	0.08	0.207		
	06/01/97	11.0	15	2.50	0.68	0.07	0.185		
B MERAH	10/12/96	6.7	16	0.85	0.18	0.32	0.272		
	12/12/96	6.7	17	0.82	0.17	0.38	0.313		
	06/01/97	6.8	15	0.85	0.16	0.34	0.288		
TOMU	14/11/96	3.4	16	0.43	0.20	0.27	0.115		
	11/12/96	3.4	16	0.35	0.19	0.20	0.072		
· · ·	07/01/97	3.4	10	0.31	0.19	0.22	0.069		
BGAJAH	14/11/96	4.8	15	0.56	0.21	0.58	0.322		
	11/12/96	4.8	22	0.42	0.20	0.50	0.260		
	07/01/97	4.8	15	0.50	0.18	0.49	0.245		
B.GANIUNG	10/12/36	2.0	Floot	0.12	0.10	0.11	0.013		
	08/01/97	1.5	Float	0.10	0.07	0.13	0.013		

able-C.5.1 Results of Flow Measurement in Ambon Area

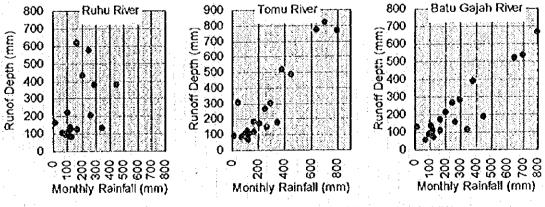
Although river discharge was measured three times during November, December and January, the water level and discharge volume in the Ambon rivers was low in all cases. In order to produce stage-discharge (II/Q) curves for the rivers, it is essential to observe water level and discharge data at higher flows. Further discharge measurement will be undertaken during the rainy season in the next phase of this Study.

CHAPTER 6 WATER LEVEL AND DISCHARGE ANALYSIS

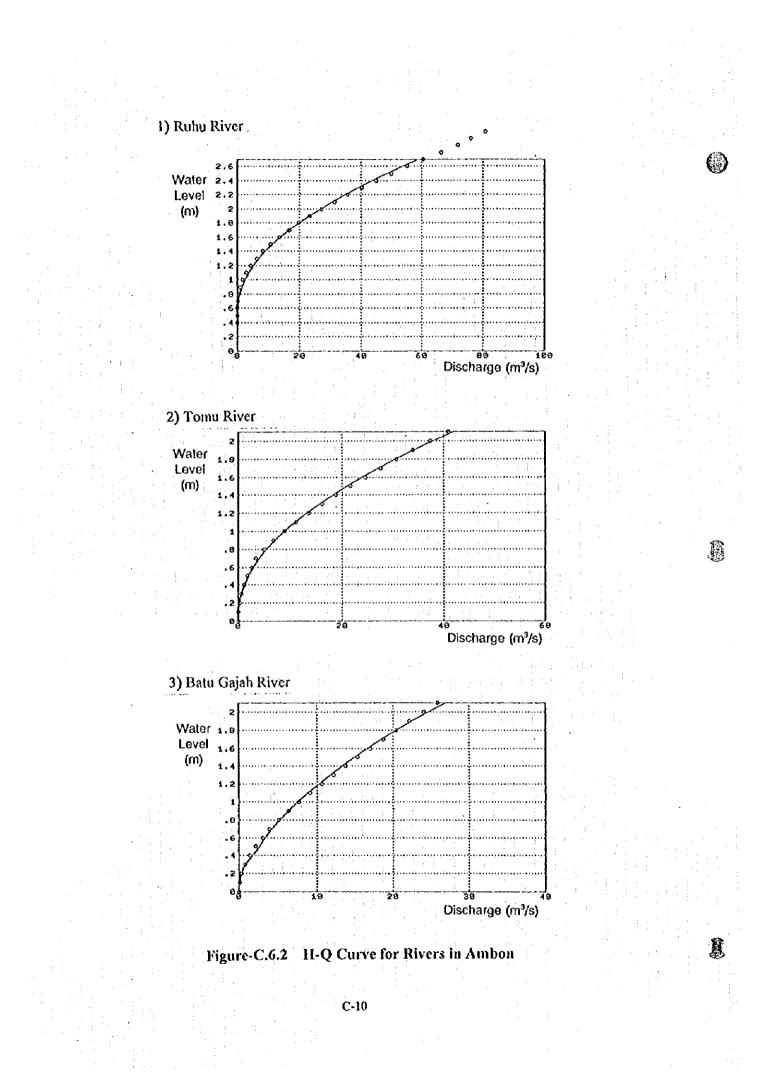
6.1 H-Q Curve

ŝ.

I


Due to lack of discharge observation data, H-Q curves were obtained through calculations of uniform flow at the observation points. Firstly, the roughness coefficient of the river course was estimated as n = 0.030-0.050 during low-flow, taking account of the river condition. Three cases of H-Q curves were then obtained by means of uniform flow calculation. Secondly, by using the obtained curves, daily discharge corresponding to the daily average water level in an available period of 2 years (October 1994 to September 1996) was calculated. The correlation between the monthly run-off depth (mm) obtained and the monthly rainfall recorded at Pattimura Ambon was examined. As a result, a roughness coefficient of n = 0.030-0.040 proved to be unsuitable since the calculated monthly run-off depth is approximately equal to the rainfall. However with n = 0.050, the calculated run-off depth is considered appropriate for the five target rivers during low water condition.

The H-Q curves were thus obtained by using the results of the uniform flow calculation with a roughness coefficient of n = 0.050. The H-Q curves for the three rivers are as follows:


. []	Ruhu River (S-RH-1)	•	$Q = 12.78 (H-0.5488)^2$
	Tomu River (S-TM-1)	: • ·	$Q = 10.08 (H-0.05815)^2$
-]	Batu Gajah River (S-GJ-1)	:	$Q = 9.918 (H-0.0156)^2 : (H<0.3m)$
		•	Q = 9.383 H - 2.0128 : (0.3m <h<0.5m)< td=""></h<0.5m)<>
		:	$Q = 4.928 (H+0.2373)^2 : (H>0.5m)$
	Note: ODischarge(r	n ³ /s). I	IWater Level (m)

For Ruhu River and Tomu River one H-Q equation is sufficient, but for Batu Gajah River, three equations are developed for different ranges of water height, in order to improve the accuracy of the H-Q curves at the low water period. The H-Q curves for the three rivers are shown in Figure-C.6.2.

However, because the rainfall data are from the observation station in Pattimura Ambon which is about 10 km away from the Study Area and the correlation between the actual rainfall in the two area is still not clear, it may be necessary to modify the H-Q curves by using the rainfall observation data to be acquired from the station established by the JICA Study Team.

6.2 Flow Regime

A

Ĵ

Flow regime for the target rivers was obtained by reviewing the data of past 10 years. Since there are only two years' observation data (from October 1994 to September 1996) of daily average water level, those for the other 8 years were estimated by using the daily flow rate data and considering a proportional conversion factor of the annual rainfall. The flow regimes are shown in Table-C.6.1.

Flow Regime (m ³ /s)						Volume of	Depth of		
Year	Mean	Maximum	High	Median	Low		Minimum	Run-off	Run-off
	· · ; Landanananan	(1)	(95)	(185)	(275)	(355)	(365)	(10^6m ³)	(mm)
Ruhu River		· · ·					.	··	<u></u>
1982	1.27	24.23	1.20	0.65	0.40	0.20	0.12	40.06	2,687
1983	2.03	38.86		1.04	0.63	0,32	0.19	64.23	4,308
1985	2.51	47.92	2.37	1.29	0.78_	0.39	0.23	79.22	_ 5.313
1986	1.41	27.01	1.34	0.73	0.44	0.22	0.13	44.65	2,995
1990	2.11	40.26	1.99	1.08	0.66	0.33	0.20	66.55	4.461
1991	1.36	26.05	1.29	0.70	0.43	0.21	0.13	43.06	2,888
1992	1.47	28.11	1.39	0.76	0.46	0.23	0.14	46.46	3,116
1993	1.16	22.22	1.10	0.60	0.36	0.18	0.11	36.74	2,464
1995	1.68		1.58	0.87	0.57	0.47	0.25	53.00	3.552
1996	2.74	45.71	2.60	1.40	0.81	0.22	0.16	86.60	5,811
Mean	1.77	33.91	1.65	0.91	0.55	0.28	0.16	56.06	3,760
Specific Q	11.90	227,44	11.08	6.11	3.72	1.86	1.10	- <u> </u>	
Tomu River			· · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · ·			
1982	0.24	2.85	0.34	0.10	0.09	0.08	0.05	7.55	1,891
1983	0.39	4.58	0.54	0.16	0.14	0.13	0.07	12.10	3,033
1985	0.48	5.65	0.67	0.20	0.17	0.16	0.09	14.92	3.740
1986	0.27	3.18	0.38	0.11	0.10	0.09	0.05	8.41	2,108
1990	0.40	4.74	0.56	0.17	0.14	0.13	0.08	12.54	3.142
1991	0.26	3.07	0,36	0.11	0.09	0.09	0.05	8.11	2,033
1992	0.28	3 31	0.39	0.12	0,10	0.09	0.05	8.75	2,194
1993	0.22	2.62	0.31	0.09	0.08	0.07	0.04	6.92	1,734
1995	0.42	6.65	0.59	0.15	0.15	0.15	0.03	13.10	3.285
1996	0.42	3.30	0.59	0.20	0.15	0.13	0.13	13.20	3,306
Mean	0.34	4.00	0.47	0.14	0.12	0.11	0.06	10.56	2,647
Specific Q	8.45	100.14	11.88	3.52	3.02	2.82	1.61	-	•
Batu Gajah			<u></u>		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
1982	0.28	3.59	0.30	0.15	0.09	0.07	0.00	8.67	1,757
1983	0.44	5.76	0.49	0.25	0.15	0.11	0.00	13.90	2,817
1985	0.54	7.10	0.60	0.31	0.19	0.14	0.00	17.14	3,475
1986	0.31	4.00	0.34	0.17	0.11	0.08	0.00	9.66	1,959
1990	0.46	5.97	0.51	0.26	0.16	0.11	0.00	14.40	2,919
1991	0.30	3.86	0.33	0.17	0,10	0.07	0.00	9.31	1,889
1992	0.30	4.17	0.35	0.18	0.11	0.08	0.00	10.05	2,038
1992	0.25	3.29	0.28	0.14	0.09	0.06	0.00	7.95	1,611
the second s			0.37	0.24	0.18	0.15	0.00	11.90	2,409
1995	0.38	6.15					0.00	18.30	3,714
1996	0.58	6.37	0.69	0.30	0.15	0.09			
Mean	0.39	5.03	0.43	0.22	0.13	0.10	0.00	12.13	2,459
Specific Q	7.84	102.18	8.65	4.41	2.69	1.96	0.00	-	<u> </u>

an	M / 1	TOB a data	Regime
- I anse.	EAL		Reonne
1 0010-	CIVIL.	1.10.11	IVENIN

Notes :

- Rainfall data for the years 1984, 1987-1989 and 1994 are not available.

- Specific Q : Specific Discharge (m³/s/100km²)

CHAPTER 7 RAINFALL ANALYSIS

7.1 Representative Rainfall Station and Basin Mean Rainfall

7.1.1 Representative Rainfall Station

In the Ambon area, since the meteorological station at Pattimura Ambon has both daily and hourly rainfall data for a long period, it can be taken as a representative rainfall observation station for the Study Area. Pattimura Ambon has been used as the representative rainfall station for daily rainfall, hourly rainfall and rainfall intensity analysis.

7.1.2 Basin Mean Rainfall

The rainfall data to be used in the discharge analysis needs to be set with attention paid to the basin characteristics of each target river. In Ambon area, because the representative rainfall station of Pattimura Ambon is on the coast at a low altitude of EL. 10 m, care needs to be taken when applying its data to the upstream mountainous part of the target river basins. However, considering 1) the five target river basins have small catchment areas (6 - 16 km^2), and 2) the highest altitude of the river basins is lower than EL. 500 m, it is decided to use the rainfall data at Pattimura Ambon as the basin mean rainfall for the Ambon area since the difference is not considered significant.

7.2 Probability Analysis

7.2.1 Daily and Hourly Probable Rainfall

Daily and hourly probable rainfall in Ambon area were calculated using annual maximum daily rainfall data for 32 years and annual maximum hourly rainfall data for 14 years from the representative rainfall station, namely Pattimura Ambon as shown in Table-C.7.1.

I	able-C.7.1(1	lj Maximum Annual	Daily	' Kaiman m	rattimura Ambon
No.	Date	Maximum Rainfall	No.	Date	Maximum Rainfall
		(mni/day)			(mm/day)
1	1954/6/1	180.0	17	1981/7/25	231.9
2	1955/9/1	179.0	18	1982/6/7	140.0
3	1958/9/1	66.0	19	1983/7/5	134.8
4	1959/5/1	161.0	20	1984/6/22	430.7
5	1960/6/1	135.0	21	1985/7/24	151,4
6	1961/6/1	267.0	22	1986/4/3	158.0
7	1963/6/1	280.0	23	1987/2/9	203.0
8	1964/9/1	358.0	24	1988/8/28	455.0
9	1965/4/1	99.0	25	1989/6/22	233.0
10	1966/6/1	154.0	26	1990/8/19	307.4
11	1968/5/1	120.0	27	1991/7/13	145.1
12	1976/6/12	102.0	28	1992/7/18	125.6
13	1977/4/10	79.0	29	1993/6/21	150.2
14	1978/6/21	218.0	30	1994/4/14	133.0
15	1979/6/23	154.0	31	1995/9/13	195.0
16	1980/8/6	111.9	32	1996/8/22	230.3

Table-C.7.1(1) Maximum A	nnual Daily]	Rainfall in Pattin	ura Ambon

Note: Total = 32 years

1-1			1/ · D / C 11 ·
1	No.	Date	Maximum Rainfall
			(nint/hour)
7	1	1983/6/19 7:00	46.6
	2	1984/5/31 8:00	46.6
	3	1985/12/14 10:00	42.4
	4	1986/7/16 17:00	34.0
	5	1987/5/7 10:00	37.9
	6	1988/5/7 19:00	55.5
	7	1989/2/5 3:00	26.9
	8	1990/6/6 8:00	51.0
Ċ,	9	1991/7/13 6:00	31.4
. 1	10	1992/11/28 14:00	43.8
	11	1993/5/8 6:00	42.0
	12	1994/4/14 10:00	60.0
	13	1995/8/5 12:00	49.0
	-14	1996/7/26 9:00	94,0
	Note	• Total = 14 years	

Table-C.7.1(2)	Maximum Annual Hourly Rainfall in Pattimura Ambon

Note: Total = 14 years

Table-C.7.3-4 and Figure-C.7.1-2 show the daily and hourly probable rainfall based on the annual maximum data of daily and hourly rainfall in representative rainfall station, namely Pattimura Ambon. Calculation was carried out using the Least Square Method, Moment Method, Iwai's Method and Gumbel's Method. Of these, the result from the Moment Method is adopted for probable rainfall in the Ambon area as shown in Table-C.7.2 because the result best fits the available data. Using the daily probable rainfall, Maximum daily rainfall can be estimated by probability analysis. Maximum daily rainfall recorded at 455 mm/day on August 28, 1988 is estimated as about 1/50.

Table-C.7.2 Dat	ly and Hourly	Probable Rai	infall [Pattim	ura Ambon]	

	Return Period (year)	2	3	5	10	20	30	50	100	200	
:	Probable Daily Rainfall (mm)	171.8	212.1	259.5	321.9	384,6	421.9	469.9	537.0	606.7	
	Probable Hourly Rainfall (mm)	45.1	52.5	60.7	70.9	80.6	86.2	93.1	102.5	112.0	
		6.43	*								

Note : - Calculated by Moment Method

J

(**]**)

- Annual Maximum Daily Rainfall Data of 32 years from 1959 to 1995

- Annual Maximum Hourly Rainfall Data of 14 years from 1959 to 1995

	Daily Rain	fall in Patti	mura Amb	on]				
Return Period	Da	Daily Probable Rainfall (mm/day)						
(year)	Least Square	Moment	Iwai	Gumbel				
1000	767.4	780.5	790.3	713.8				
500	692.5	703.5	706.9	656.8				
200	598.2	606.7	603.5	581.3				
150	569.7	\$77.4	572.6	557.6				
100	530.2	537.0	530.1	524.2				
80	508.8	515.1	507.3	505.7				
70	496.1	502.1	493.9	494.7				
60	481.6	487.3	478.5	481.9				
50	464.6	469.9	460.6	466.8				
40	444.0	448.8	438.9	448.2				
30	417.7	421.9	411.6	424.2				
20	381.1	384.6	373.9	390.2				
10 ·	319.6	321,9	311.5	331.0				
8	299.9	301.8	291.8	311.5				
7	288.2	289.8	280.1	299.7				
6 6	274.5	276.0	266.7	285.9				
5	258.3	259.5	250.8	269.3				
4	238.2	239.1	231.3	248.4				
3	211.6	212.1	205.8	220.2				
2	171.8	171.8	168.5	176.2				

 Table-C.7.3
 Calculation Results of Daily Probable Rainfall

 [Daily Rainfall in Pattimura Ambon]

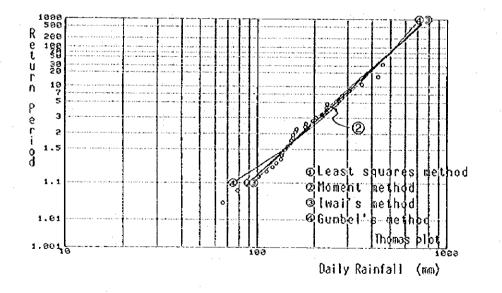


Figure-C.7.1 Plotting Positions of Daily Probable Rainfall [Daily Rainfall in Pattimura Ambon]

C-14

 $(\)$

R

		iniali in Pau						
Return Period	Hourly Probable Rainfall (mm/hour)							
(year)	Least Square	Moment	Iwai	Gumbel				
1000	129.0	134.3	139.4	146.3				
500	120.0	124.6	127.4	135.6				
200	108,3	112.0	112.4	121.4				
150	104.6	108.1	107.8	116.9				
100	99.5	102.5	101.5	110.6				
80	96.6	99.5	98,1	107.1				
70	94.9	97.7	96.1	105.0				
60	93.0	95.6	93.7	102.6				
50	90.7	93.1	91.0	99.8				
40	87.8	90,1	87.7	96.3				
30	84.1	86.2	83.5	91.8				
20	78.9	80.6	77.7	85.3				
10	69.7	70.9	67.8	74.2				
8	66.7	67.7	.64.6	70.5				
7	64.8	65,7	62.7	68.3				
6	62.7	63.5	60.5	65.7				
5	60.0	60,7	57.9	62.6				
4	56.7	57,2	54.7	58.6				
3	52.2	52.5	50.4	53.3				
2	45.1	45.1	44.0	45.0				

 Table-C.7.4
 Calculation Results of Hourly Probable Rainfall

 [Hourly Rainfall in Pattimura Ambon]

1

Ţ

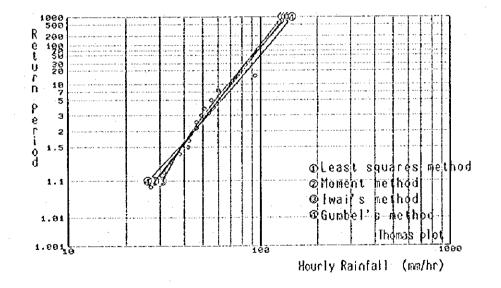


Figure-C.7.2 Plotting Positions of Hourly Probable Rainfall [Hourly Rainfall in Pattimura Ambon]

(2) Rainfall Intensity Curve

The rainfall intensity curves are calculated by the Talbot Formula using the probable daily rainfall and probable hourly rainfall for Ambon and Pasahari areas. Coefficients "a" and "b" in the Talbot Formula are calculated by the specific coefficient method. The calculation results are shown in Table-C.7.5 and Figure-C.7.3.

7.2.2 Flood Rainfall

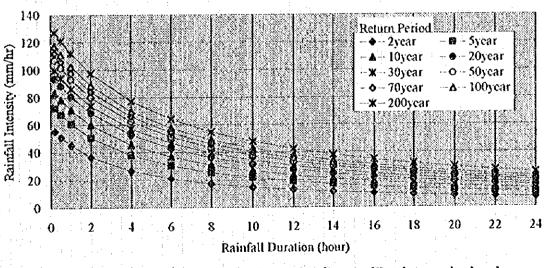
The flood daily rainfall in the Study Areas are shown in Table-C.7.6. The maximum daily rainfall was recorded at 455 mm/day on August 28, 1988. Many of the flood rainfall have no hourly data, notably only two data out of the top 10 daily flood rainfalls. Of these flood rainfalls, hyetographs of the maximum ten (10) floods with hourly rainfall data are shown in Figure-C.7.4. As can be seen from Figure-C.7.4, the hyetographs of these rainfall do not form smooth, mountain-shaped curves, but show many intermittent or sudden increases and decreases. This indicates that rainfall comes sporadically and locally in Ambon area.

Table-C.7.5 Probable Rainfall Intensity [Pattimura Ambon]										
Return Period	(year)	2	5	10	20	30	50	70	100	200
Rn(24)		171.8	259.5	321.9	384.6	421.9	469.9	502.1	537.0	606.7
Rn(1)		45.1	60.7	70.9	80.6	86.2	93.1	97.7	102.5	112.0
ь		3.3	4.0	4.4	4.7	4.9	5.1	5.3	5.4	5.7
а		195.7	302.6	380.5	460.0	507.9	570.2	612.3	658.3	750.9
Rainfall	l= 0.2	55.3	72.3	83.3	93.7	99.7	107.1	112.0	117.1	127.2
Intensity	i= 0.5	51.0	67.5	78.2	88.3	94.2	101.4	106.2	111.2	121.0
In=a/(t+b)	t= 1	45.1	60.7	70.9	80.6	86.2	93.1	97. 7	102.5	112.0
[mm/hr]	t= 2	36.7	50.6	59.8	68.6	73.7	80.0	84.3	88.7	97.5
t(hour)	t= 4	26.7	37.9	45,5	52.8	57.1	62.5	66.1	69.9	77.4
	t= 6	21.0	30.3	36.7	: 43.0	46.6	51.3	54.3	57.6	64.2
	t= 8	17.3	25.2	30,8	36.2	39.4	43.4	46.2	49.0	54.8
	t= 10	14.7	21.6	26,5	31.3	34.1	37,7	40.1	42.7	47.8
	1= 12	12.8	18.9	23.2	27.5	30.1	33.3	35.5	37.8	42.4
an a	t= 14	11.3	16.8	20.7	24.6	26.9	29.8	31.8	33.9	38.1
	1= 16	10.1	15.1	18.7	22.2	24.3	27.0	28.8	30.7	34.6
	t= 18	9.2	13.8	17.0	20.3	22.2	24.7	26.3	28.1	31.7
	t= 20	8.4	12.6	15.6	18.6	20.4	22.7	24.2	25.9	29.2
	t= 22	7.7	11.6	14.4	17.2	18.9	21.0	22.5	24.0	27.1
	t= 24	7.2	10.8	13.4	16.0	17.6	19.6	20.9	22.4	25.3

Note:

Same of

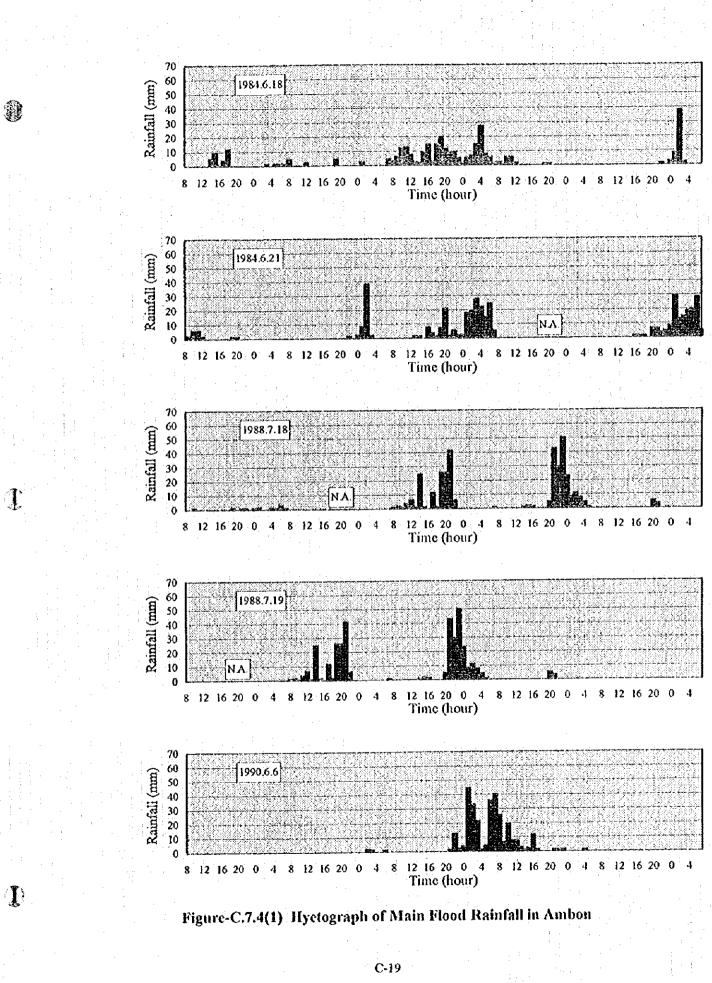
្រ

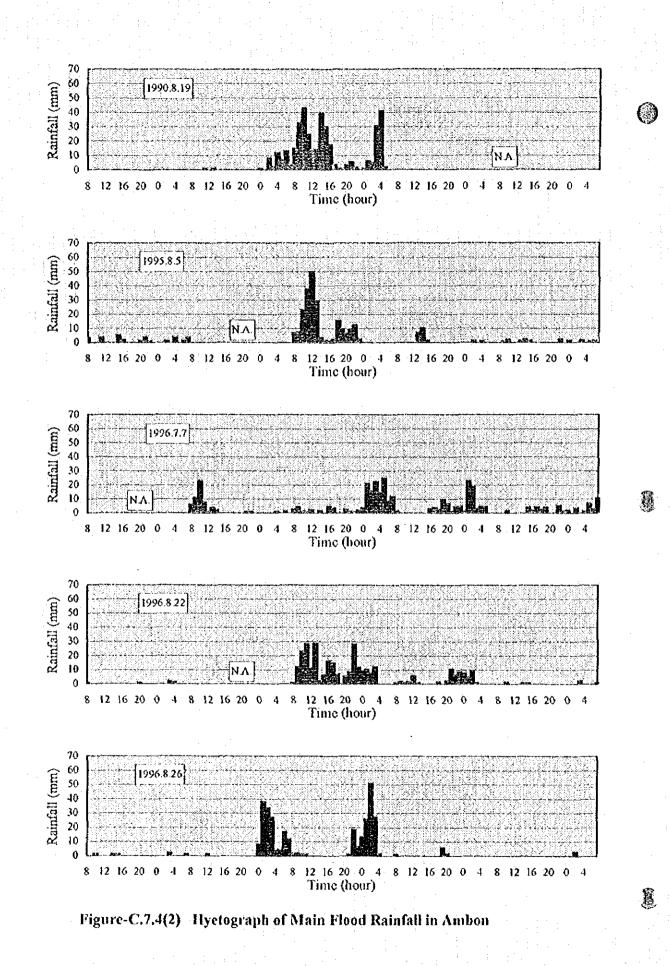

Probable rainfall intensity was calculated using probable daily and hourly rainfall, applying Talbot formula [Talbot Formula]

In=a/(t+b) [mm/hr]

where, In : Probable rainfall intensity (mnt/hr)

t : Rainfall Duration(hour)

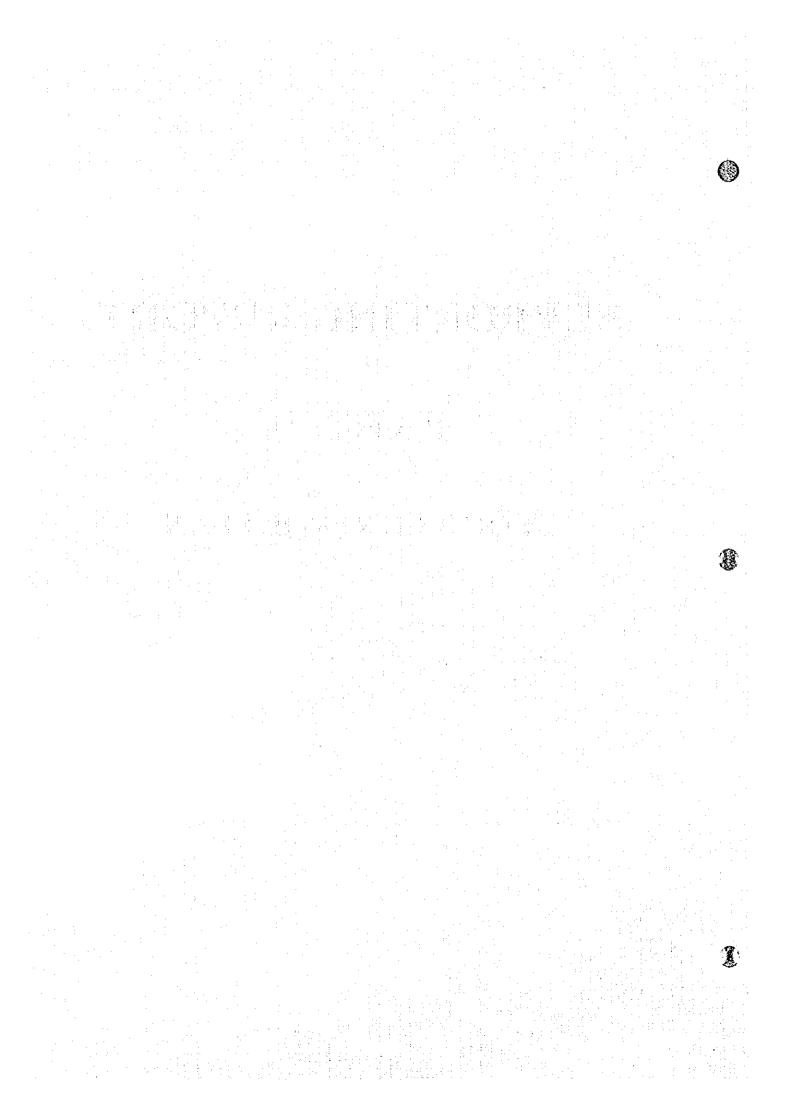

	Table-C.7.6	Flood Rainfal	l in Ambon [Pat	timura Ambon	
н. Т.	Date	Daily I	Rainfall	Maximum of	Ranking of
Rank	(y/m/d)	l day	· 24 hours	Hourly Rainfall	Flood
	· · ·	(mm/day)	(mm/day)	(mm/hour)	Hyetograph
1	1988 / 08 / 28	455.0	·····	-	
2	1984/06/22	430,7	-		
3	1964 / 09 / -	358.0	-	•	
4	1990 / 08 / 19	307,4	315.3	42.1	1 1
5	1963 / 06 / -	280.0	-	-	
6	1961/06/-	267.0	-	•	
7	1989 / 06 / 22	233.0	-	-	
8	1981 / 07 / 25	231.9	-	•	
9	1996 / 08 / 22	230.3	230.3	28.0	2
10	1978/06/21	218.0	-	-	1
11	1984 / 06 / 18	208.1	194.2	26.6	3
12	1987/02/09	203.0	-	-	
13	1978 / 07 / 20	197.0	-	-	,
14	1990/06/06	196.4	190.0	43.7	4
15	1995/09/13	195.0		-	
16	1988 / 07 / 19	194.0	176.6	49.3	5
17	1984 / 07 / 02	189.6		-	
18	1954/06/-	180.0			
19	1995/08/05	179.2	204.4	49.0	6
20	1955/09/-	179.0			
21	1984 / 06 / 21	176.9	179.3	26.9	7
22	1995/08/04	170.2	• · · · · ·		
23	1988/07/09	166.0	•	_	· · · · · ·
24	1959/05/-	161.0	• · · · · · · · · · · · · · · · · · · ·		······
25	1986/04/03	158.0			<u>+</u> :
26	1996/08/26	157.5	157.5	50.0	8
27	1966 / 06 / -	154.0	• :		
28	1979 / 06 / 23	154.0		•	
29	1985/07/24	151,4			
30	1993 / 06 / 21	150.2	•		· · · · · · · · · · · · · · · · · · ·
31	1985/05/02	147.7			
32	1991 / 07 / 13	145,1	115.2	31.4	9
33	1988/07/18	144.0	144.1	40.4	10


.

 \hat{c}_{ij}

9

Note: Above data were selected from the Pattimura Ambon data over 32 years [1959-1996].


SUPPORTING REPORT

PART-D

FLOOD CONTROL PLAN

Ţ

Ĩ

THE STUDY ON FLOOD CONTROL FOR AMBON AND PASAHARI AREA IN THE REPUBLIC OF INDONESIA SUPPORTING REPORT PART-D

TABLE OF CONTENTS

Table of ContentsList of Tables and Figures

Ţ

1

1.1 River Systems D-1 1.2 Urban Drainage Systems D-3 1.2.1 Current Situation D-3 1.2.2 Planned Improvements D-5 1.3 Current Discharge Capacity of Rivers D-9 CHAPTER 2 FLOOD RUNOFF ANALYSIS D-18 D-18 2.1 Flood Rainfall Hyctograph D-18 2.1.1 Flood Hyetograph D-18 2.1.2 Probable Rainfall Depth and Enlarging Ratio D-18 2.1.2 Probable Rainfall Depth and Enlarging Ratio D-18 2.1.2 Flood Runoff Model Used in the Study D-21 2.2.1 Flood Runoff Model Used in the Study D-21 2.2.2 River Basin Division D-22 2.3 Establishment of Runoff Model D-27 2.3.1 Runoff Calculation D-27 2.3.2 Peak Flood Discharge and Flood Hydrograph D-31 2.3.3 Validity of Runoff Model D-37 3.1 Flood Damage Condition D-37 3.1.1 Field Survey D-37 3.1.2 Survey Results D-37 3.2 Flood Forecasting and Warning System D-41 3.2.1 Field Survey D-41 3.2.2 Survey Results D-43 3.3.1	CHAPTER 1 DISCHARGE SYSTEMS FOR FLOOD WATER	D-1
1.2 Urban Drainage Systems D-3 1.2.1 Current Situation D-3 1.2.2 Planned Improvements D-5 1.3 Current Discharge Capacity of Rivers D-9 CHAPTER 2 FLOOD RUNOFF ANALYSIS D-18 2.1 Flood Rainfall Hyetograph D-18 2.1.1 Flood Hyetograph D-18 2.1.2 Probable Rainfall Depth and Enlarging Ratio D-18 2.1.2 Probable Rainfall Depth and Enlarging Ratio D-18 2.1.2 Flood Runoff Modeling D-21 2.2.1 Flood Runoff Model Used in the Study D-21 2.2.2 River Basin Division D-22 2.3.1 Runoff Calculation D-27 2.3.2 Peak Flood Discharge D-27 2.3.1 Runoff Calculation D-27 2.3.2 Peak Flood Discharge and Flood Hydrograph D-31 2.3.3 Validity of Runoff Model D-37 3.1 Flood Damage Condition D-37 3.1.1 Field Survey D-37 3.1.2 Survey Results D-37 3.2	1 River Systems	DI
1.2.1Current SituationD-31.2.2Planned ImprovementsD-51.3Current Discharge Capacity of RiversD-9CHAPTER 2FLOOD RUNOFF ANALYSISD-182.1Flood Rainfall HyetographD-182.1.1Flood HyetographD-182.1.2Probable Rainfall Depth and Enlarging RatioD-182.2Flood Runoff ModelingD-212.2.1Flood Runoff Model Used in the StudyD-212.2.2River Basin DivisionD-222.2.3Establishment of Runoff ModelD-242.3Flood DischargeD-272.3.1Runoff CalculationD-272.3.2Peak Flood Discharge and Flood HydrographD-332.3Validity of Runoff ModelD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.2Flood Damage ConditionD-373.1.2Survey ResultsD-373.2Flood Damage AnalysisD-413.3HohologyD-433.3Estimation of Past Flood DamageD-433.3Estimation of Past Flood DamageD-433.3Estimation of Past Flood DamageD-433.3Estimation of Past Flood DamageD-433.3Estimation of Past Flood DamageD-43	1.7 Urban Drainage Systems	D-3
1.2.2Planned Improvements.D-51.3Current Discharge Capacity of RiversD-9CHAPTER 2 FLOOD RUNOFF ANALYSIS2.1Flood Rainfall HyetographD-182.1.1Flood HyetographD-182.1.2Probable Rainfall Depth and Enlarging RatioD-182.2.1Flood Runoff ModelingD-212.2.1Flood Runoff Model Used in the StudyD-212.2.2River Basin DivisionD-222.3.1Establishment of Runoff ModelD-272.3.1Runoff CalculationD-272.3.2Peak Flood Discharge and Flood HydrographD-312.3.3Validity of Runoff ModelD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.2Flood Damage ConditionD-373.2Flood Damage AnalysisD-413.3.1MethodologyD-413.2.1Field SurveyD-413.2.2Survey ResultsD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.4Estimation of Past Flood DamageD-433.3.5Estimation of Past Flood DamageD-43	1.2 Oroan Drainage Official	D-3
1.3 Current Discharge Capacity of RiversD-9CHAPTER 2FLOOD RUNOFF ANALYSISD-182.1 Flood Rainfall HyetographD-182.1.1Flood HyetographD-182.1.2Probable Rainfall Depth and Enlarging RatioD-182.1.2Probable Rainfall Depth and Enlarging RatioD-182.2.4Flood Runoff ModelingD-212.2.5Establishment of Runoff ModelD-222.2.6Establishment of Runoff ModelD-272.3.1Runoff CalculationD-272.3.2Peak Flood DischargeD-372.3.3Validity of Runoff ModelD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.2Flood Forecasting and Warning SystemD-413.2.2Survey ResultsD-443.3Hood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-44	1.2.1 Current Shunton	D-5
CHAPTER 2FLOOD RUNOFF ANALYSISD-182.1Flood Rainfall HyctographD-182.1.1Flood HyctographD-182.1.2Probable Rainfall Depth and Enlarging RatioD-182.1.2Flood Runoff ModelingD-212.2Flood Runoff Model Used in the StudyD-212.2.1Flood Runoff ModelD-222.2.2River Basin DivisionD-222.2.3Establishment of Runoff ModelD-272.3.1Runoff CalculationD-272.3.2Peak Flood DischargeD-272.3.3Validity of Runoff ModelD-33CHAPTER 3FLOOD DAMAGE ANALYSISD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-413.2.2Survey ResultsD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	1.2.2 Trained Inproventions	D-9
2.1 Flood Rainfall HyetographD-182.1.1 Flood HyetographD-182.1.2 Probable Rainfall Depth and Enlarging RatioD-182.1.2 Probable Rainfall Depth and Enlarging RatioD-182.2 Flood Runoff ModelingD-212.2.1 Flood Runoff Model Used in the StudyD-212.2.2 River Basin DivisionD-222.2.3 Establishment of Runoff ModelD-242.3 Flood DischargeD-272.3.1 Runoff CalculationD-272.3.2 Peak Flood Discharge and Flood HydrographD-312.3.3 Validity of Runoff ModelD-33CHAPTER 3 FLOOD DAMAGE ANALYSIS3.1 Flood Damage ConditionD-373.1.1 Field SurveyD-373.2 Flood Forecasting and Warning SystemD-413.2.1 Field SurveyD-413.2.2 Survey ResultsD-433.3 La Stimation of Past Flood DamageD-433.3.1 MethodologyD-433.3.2 Estimation of Assumed Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-44	1.5 Current Disenarge Cupacity of Factors	
2.1 Flood Rainfall HyctographD-182.1.1 Flood HyctographD-182.1.2 Probable Rainfall Depth and Enlarging RatioD-182.1 Probable Rainfall Depth and Enlarging RatioD-182.2 Flood Runoff ModelingD-212.2.1 Flood Runoff Model Used in the StudyD-212.2.2 River Basin DivisionD-222.2.3 Establishment of Runoff ModelD-242.3 Flood DischargeD-272.3.1 Runoff CalculationD-272.3.2 Peak Flood Discharge and Flood HydrographD-312.3.3 Validity of Runoff ModelD-373.1 Flood Damage ConditionD-373.1.1 Field SurveyD-373.2 Flood Forecasting and Warning SystemD-413.2.1 Field SurveyD-413.2.2 Survey ResultsD-413.3.1 MethodologyD-433.3.2 Estimation of Past Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-44	CHAPTER 2 FLOOD RUNORF ANALYSIS	D-18
2.1.1Flood Hyetograph.D-182.1.2Probable Rainfall Depth and Enlarging RatioD-182.2Flood Runoff Modeling.D-212.2.1Flood Runoff Model Used in the Study.D-212.2.2River Basin DivisionD-222.2.3Establishment of Runoff Model.D-242.3Flood Discharge.D-272.3.1Runoff CalculationD-272.3.2Peak Flood Discharge and Flood HydrographD-312.3.3Validity of Runoff Model.D-33CHAPTER 3FLOOD DAMAGE ANALYSISD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.2Sturvey ResultsD-373.2Flood Porecasting and Warning SystemD-413.2.1Field SurveyD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-44	2.1. Elood Painfall Hyptograph	D-18
2.1.2Probable Rainfall Depth and Enlarging RatioD-182.2Flood Runoff ModelingD-212.2.1Flood Runoff Model Used in the StudyD-212.2.2River Basin DivisionD-222.2.3Establishment of Runoff ModelD-242.3Flood DischargeD-272.3.1Runoff CalculationD-272.3.2Peak Flood Discharge and Flood HydrographD-312.3.3Validity of Runoff ModelD-33CHAPTER 3FLOOD DAMAGE ANALYSIS3.1Flood Damage Condition3.1.1Field SurveyD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-413.2.2Survey ResultsD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	2.1 Flood Hyerograph	D-18
2.2 Flood Runoff ModelingD-212.2.1 Flood Runoff Model Used in the StudyD-212.2.2 River Basin DivisionD-222.2.3 Establishment of Runoff ModelD-242.3 Flood DischargeD-272.3.1 Runoff CalculationD-272.3.2 Peak Flood Discharge and Flood HydrographD-312.3.3 Validity of Runoff ModelD-33CHAPTER 3 FLOOD DAMAGE ANALYSIS3.1 Flood Damage ConditionD-373.1.1 Field SurveyD-373.2 Flood Forecasting and Warning SystemD-373.2.1 Field SurveyD-413.2.2 Survey ResultsD-413.3 Flood Damage AnalysisD-433.3.1 MethodologyD-433.3.2 Estimation of Past Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-46	2.1.1 Probable Rainfall Depth and Enlarging Ratio	D-18
2.2.2River Basin DivisionD-222.2.3Establishment of Runoff ModelD-242.3Flood DischargeD-272.3.1Runoff CalculationD-272.3.2Peak Flood Discharge and Flood HydrographD-312.3.3Validity of Runoff ModelD-33CHAPTER 3FLOOD DAMAGE ANALYSIS3.1Flood Damage Condition3.1.1Field SurveyD-373.1.2Survey ResultsD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	2.2. Flood Runoff Modeling	D-2 1
2.2.2River Basin DivisionD-222.2.3Establishment of Runoff ModelD-242.3Flood DischargeD-272.3.1Runoff CalculationD-272.3.2Peak Flood Discharge and Flood HydrographD-312.3.3Validity of Runoff ModelD-33CHAPTER 3FLOOD DAMAGE ANALYSIS3.1Flood Damage Condition3.1.1Field SurveyD-373.1.2Survey ResultsD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	2.2.1 Flood Runoff Model Used in the Study	D-21
2.2.3 Establishment of Runoff ModelD-242.3 Flood DischargeD-272.3.1 Runoff CalculationD-272.3.2 Peak Flood Discharge and Flood HydrographD-312.3.3 Validity of Runoff ModelD-33CHAPTER 3 FLOOD DAMAGE ANALYSISD-373.1 Flood Damage ConditionD-373.1 Flood Damage ConditionD-373.1.1 Field SurveyD-373.2 Flood Forecasting and Warning SystemD-413.2.1 Field SurveyD-413.2.2 Survey ResultsD-423.3 Flood Damage AnalysisD-433.3.1 MethodologyD-433.3.2 Estimation of Past Flood DamageD-433.3 Estimation of Assumed Flood DamageD-46	2.2.2 Divor Racin Division	D-22
2.3 Flood DischargeD-272.3.1 Runoff CalculationD-272.3.2 Peak Flood Discharge and Flood HydrographD-312.3.3 Validity of Runoff ModelD-33CHAPTER 3 FLOOD DAMAGE ANALYSIS3.1 Flood Damage ConditionD-373.1.1 Field SurveyD-373.1.2 Survey ResultsD-373.2 Flood Forecasting and Warning SystemD-413.2.1 Field SurveyD-413.2.2 Survey ResultsD-413.3.1 MethodologyD-433.3.2 Estimation of Past Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-46	2.2.2 River blishment of Runoff Model	D-24
2.3.1Runoff CalculationD-272.3.2Peak Flood Discharge and Flood HydrographD-312.3.3Validity of Runoff ModelD-33CHAPTER 3FLOOD DAMAGE ANALYSISD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.1.2Survey ResultsD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-413.2.2Survey ResultsD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-43	2.2 Flood Discharge	D-27
2.3.2Peak Flood Discharge and Flood HydrographD-312.3.3Validity of Runoff ModelD-33CHAPTER 3FLOOD DAMAGE ANALYSISD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.1.2Survey ResultsD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	2.3 Flood Discharge	D-27
2.3.3Validity of Runoff ModelD-33CHAPTER 3FLOOD DAMAGE ANALYSISD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.1.2Survey ResultsD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-413.2.2Survey ResultsD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	2.3.1 Renor Calculation	D-31
CHAPTER 3FLOOD DAMAGE ANALYSISD-373.1Flood Damage ConditionD-373.1.1Field SurveyD-373.1.2Survey ResultsD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-413.2.2Survey ResultsD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	2.3.2 Validity of Runoff Model	D-33
3.1 Flood Damage ConditionD-373.1.1 Field SurveyD-373.1.2 Survey ResultsD-373.2 Flood Forecasting and Warning SystemD-413.2.1 Field SurveyD-413.2.2 Survey ResultsD-423.3 Flood Damage AnalysisD-433.3.1 MethodologyD-433.3.2 Estimation of Past Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-46		
3.1 Flood Damage ConditionD-373.1.1 Field SurveyD-373.1.2 Survey ResultsD-373.2 Flood Forecasting and Warning SystemD-413.2.1 Field SurveyD-413.2.2 Survey ResultsD-423.3 Flood Damage AnalysisD-433.3.1 MethodologyD-433.3.2 Estimation of Past Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-46	CHAPTER 3 FLOOD DAMAGE ANALYSIS	D-37
3.1.1Field SurveyD-373.1.2Survey ResultsD-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-413.2.2Survey ResultsD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	3.1 Flood Damage Condition	D-37
3.1.2Survey Results.D-373.2Flood Forecasting and Warning SystemD-413.2.1Field SurveyD-413.2.2Survey Results.D-423.3Flood Damage Analysis.D-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	3.1.1 Field Survey	D-37
3.2 Flood Forecasting and Warning SystemD-413.2.1 Field SurveyD-413.2.2 Survey ResultsD-423.3 Flood Damage AnalysisD-433.3.1 MethodologyD-433.3.2 Estimation of Past Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-43	3.1.2 Survey Results	D-37
3.2.1Field SurveyD-413.2.2Survey ResultsD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	3.2 Flood Forecasting and Warning System	D-41
3.2.2Survey ResultsD-423.3Flood Damage AnalysisD-433.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-43	3.2.1 Field Survey	D-41
3.3 Flood Damage Analysis.D-433.3.1 Methodology.D-433.3.2 Estimation of Past Flood DamageD-433.3.3 Estimation of Assumed Flood DamageD-43	3.2.2 Survey Results	D-42
3.3.1MethodologyD-433.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	3.3 Flood Damage Analysis	D-43
3.3.2Estimation of Past Flood DamageD-433.3.3Estimation of Assumed Flood DamageD-46	3.3.1 Methodology	D-43
3.3.3 Estimation of Assumed Flood Damage D-46	3.3.2 Estimation of Past Flood Damage	D-43
5.5.5 Estimation of Flooring	3 3 3 Estimation of Assumed Flood Damage	D-46
3.3.4 Flood Discharge - Damage Curve	3.3.4 Flood Discharge - Damage Curve	D-48
	2.2.1 1 1 1 0 0 1 2 1 0 0 m B	•
CHAPTER 4 FLOOD CONTROL PLAN. D-51	CHAPTER 4 FLOOD CONTROL PLAN	D-51
4.1 Basic Policy of Flood Control Plan		D-51
4.1.1 Principal Plan Conditions	4 1 1 Principal Plan Conditions	D-51
4.1.2 Policy of Flood Control Measures	4 1 2 Policy of Flood Control Measures	D-53

		a da talen
	n and Design of Structural Flood Control Measures	. D-54
4.2.1	0	
4.2.2		D-55
	Dam and Reservoir	
	Diversion Channel	
4.2.5	Check Dam	D-83
4.3 Alt	ernative Flood Control Plans	D-86
4.3.1	Flood Control Plans for Ruhu River	
4.3.2	Flood Control Plans for Batu Merah River	
4.3.3	Flood Control Plans for Tomu River.	
4.3.4	Flood Control Plans for Batu Gajah River.	
4.3.5	Flood Control Plans for Batu Gantung River.	D-98
	imum Flood Control Plan	D-101
441	Project Cost of Each Alternative Flood Control Plan	D-101
442	Identification of Optimum Plan	D-101
	ulti-purpose Dam Plan and Cost Estimate	
	Plan and Design of Multi-purpose Dams	
4.5.2	Project Cost of the Optimum Flood Control Plan	. 17-114
1.5.2	with Multi-purpose Dam	עון ס
4.5.3	Approximate Cost Estimation of Water Treatment Plant	
	n-structural Flood Control Measures	
4.0 KU	General Outline	. D-113 D-114
4.6.2	Suppression of Flood Runoff	D-115
	Suppression of Flood Kunoir	D-116
4.6.3	Improvement of Flood Proof Function	D-117
4.6.4	Facilitation of Flood Disaster Prevention Activities	
	lementation Schedule and Organization	
471	Implementation Schedule	
4.7.2	Implementation Organization	
	ection of Priority Project	
4.8.1	Criteria for Selecting Priority Projects.	
4.8.2	Composition of Priority Projects	D-128
		-
	ER 5 PLAN OF PRIORITY PROJECT	
	ieral	
5.1.1	Composition of Priority Project	
5.1.2	Objectives of Priority Project	
5.1.3	Basic Conditions.	
	u River Project	
521	Basic Policy	
5.2.2	Planning Criteria.	D-134
5.2.3	River Improvement Plan	D-137
5.3 Bat	a Merah River Project	D-141
5.3.1	Basic Policy	D-141
5.3.2	Planning Criteria	D-141
533	River Improvement Plan	D-146
5.3.4	Diversion Inlet Plan	D-148
5.4 Ton	nı River Project	D-151
5.4.1	Basic Policy	
	Planning Criteria	

D-ii)

5.4.3	River Improvement Plan	 	
5.4.4	River Amenity Improvement	 	
5.5 Bat	u Gajah River Project	 	
5.5.1	Basic Policy	 	
	Planning Criteria		
5.5.3	River Improvement Plan	 	
5.5.4	Flood Regulation Plan by Dam	 	
5.5.5	Batu Gajah Multi-Purpose Dam Plan	 · · · · · · · · · · · · · · · · · · ·	
5.6 Bat	u Gantung River Flood Control Plan	 	
	Basic Policy		
	Planning Criteria		
5.6.3	River Improvement Plan	 . 	
	Flood Regulation Plan by Dam		
	Batu Gantung Multi-Purpose Dam		

Ĵ,

D

D-iii)

LIST OF TABLES AND FIGURES

LIST OF TABLES

CHAPTER 1	DISCHARGE SYSTEMS FOR FLOOD WATER	
Table-D.1.1	Catchment Area of Study River Basins	D-1
Table-D.1.2	Features of Longitudinal Slope	D-1
Table-D.1.3	Summary Result of Discharge Capacity	D-9
Table-D.1.4(1)		D-10
Table-D.1.4(2)		D-10
Table-D.1.4(3)	Discharge Capacity - Tomu River	D-11
Table-D.1.4(4)	Discharge Capacity - Batu Gajah River	D-12
Table-D.1.4(5)		D-12
		* : ·
CHAPTER 2	FLOOD RUNOFF ANALYSIS	
Table-D.2.1	Hourly Rainfall of Main Floods (Pattimura Ambon)	D-18
Table-D.2.2	Probable Rainfall Depth (Pattimura Ambon)	D-20
Table-D.2.3		D-20
Table-D.2.4	River Basin Division	D-22
Table-D.2.5	Basin Modeling	D-26
Table-D 2.6(1)		D-26
Table-D.2.6(2)	Results of Coefficient Analysis for River Course	D-26
Table-D.2.7	f ₁ , f and Rsa for Rivers in Japan	D-27
Table-D.2.8	Peak Discharge	D-29
Table-D.2.9	Design Peak Discharge (Design Flood : 1990/06/06)	D-31
Table-D.2.10	Proposed Values of Runoff Coefficient	D-33
Table-D 2 11	Time Lag (Tp) by Kraven's Formula	D-34
Table-D.2.12	Comparison of Peak Discharges	D-35
	NY OOD DANLED AND AND AND AND A	
CHAPTER 3	FLOOD DAMAGE ANALYSIS	D-37
Table-D.3.1	Investigation Flood of Damage Survey	D-37
Table-D.3.2	Features of Past Flood Damage	
Table-D.3.3	Standard Asset Damage Rate in Japan	D-44
Table-D.3.4	Value of General Assets	D-44 D-45
Table-D.3.5	Estimation of Past Flood Damage	D-43 D-46
Table-D.3.6	Peak Discharge (m3/sec)	D-40
Table-D.3.7	Estimation of Flood Damage with 30-year and	D-46
m 11 · m 2.0	100-year Return Period	D-40 D-48
Table-D.3.8	Preliminary Estimation of Past Flood Discharges	D-48
Table-D.3.9	Estimation of Return Period and Discharge of Past Floods	D-48 D-49
Table-D.3.10	Estimation Method	D-49 D-49
Table-D.3.11	Relationship between Flood Discharge and Damage Value	D-49
CHAPTER 4	FLOOD CONTROL PLAN	
Table-D.4.1	Design Flood Return Period Used in Indonesia	D-52
Table-D.4.1 Table-D.4.2	Recommended Minimum Return Period of Design Flood	D-52
Table-D.4.2 Table-D.4.3	Outline of River Improvement Works.	D-56
	River Improvement Plan (Ruhu River)	D-50
Table-D.4.4	Kiver mijnoventeni rian (Kunu Kiver)	10-37

	Table-D.4.5	River Improvement Plan (Batu Merah River)	D-62
	Table-D.4.6	River Improvement Plan (Tomu River).	D-65
	Table-D.4.7	River Improvement Plan (Batu Gajah River)	D-68
	Table-D.4.8	River Improvement Plan (Batu Gantung River)	D-71
	Table-D.4.9	Comparison of Candidate Dam Sites	D-73
•	Table-D.4.10	Calculation Results of Specific Sediment Volume	
		by Kira's Method	D-75
1	Table-D.4.11	Examples of Proposed Sediment Capacity	
		of Large Dams in Indonesia	D-76
	Table-D.4.12	Proposed Sediment Capacity of Batu Gajah Dam and	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
:		Batu Gantung Dam	D-76
: 1	Table-D.4.13	Design Flood Discharge Before/After Regulation by Dam	D-77
:	Table-D.4.14	Specifications of Dams and Reservoirs	D-78
ł	Table-D.4.15	Specifications of Diversion Channels	D-81
•	Table-D.4.16	Annual Amount of Surface Erosion (Akitani)	D-83
	Table-D.4.17	Proposed Sediment Discharge	D-84
	Table-D.4.18	Proposed Allowable Sediment Discharge	D-84
	Table-D.4.19	Comparison between Sediment Discharge and	4 . ¹
		Allowable Sediment Discharge	D-85
	Table-D.4.20	Outline of Check Dams	D-85
·	Table-D.4.21	Alternatives of Flood Control Plan for Ruhu River	D-87
÷	Table-D.4.22	Alternatives of Flood Control Plan for Batu Merah River	
	Table-D.4.23	Alternatives of Flood Control Plan for Tomu River	D-93
	Table-D.4.24	Alternatives of Flood Control Plan for Batu Gajah River	D-96
	Table-D.4.25	Alternatives of Flood Control Plan for Batu Gantung River	D-99
	Table-D.4.26	Project Cost of Each Alternative Flood Control Plan	D-101
	Table-D.4.27	Summary of Alternative Flood Control Plans.	D-102
	Table-D.4.28	Features of Flood Control Plan in the Study Area	D-104
	Table-D.4.29	Optimum Flood Control Plan	D-105
	Table-D.4.30	Specification of Multi-purpose Dams and Reservoirs	D-112
	Table-D.4.31	Project Cost of the Optimum Flood Control Plan	·
		and the Plan with Multi-purpose Dams	D-114
	Table-D.4.32	Cost Estimation of Water Treatment Plant	D-114
	Table-D.4.33	Non-structural Flood Control Measures for Ambon Area	D-115
•	Table-D.4.34	Work Units for Disaster Countermeasures of Ambon City	D-122
	Table-D.4.35	Implementation Schedule for the Master Plan	D-125
	CHAPTER 5	PLAN OF PRIORITY PROJECT	D 100
i i	Table-D.5.1	Composition of Priority Projects	D-129
	Table-D.5.2	Reference Point and Basin Division	D-134
:	Table-D.5.3	List of Bridges in Ruhu River	D-138
	Table-D.5.4	List of Drainage in Ruhu River	D-138
	Table-D.5.5	Ruhu River Improvement Plan	D-139
1	Table-D.5.6	Reference Point and Basin Division	D-143
I	Table-D.5.7	List of Bridges in Batu Merah River	D-147
	Table-D.5.8	List of Drainage in Batu Merah River	D-148
	Table-D.5.9	Batu Merah River Improvement Plan	D-149
	Table-D.5.10	Reference Point and Basin Division List of Bridges in Tomu River	D-151
	Table-D.5.11	List of Bridges in Tomu River	D-156

Ţ

•

3

Ţ

		1 A A A A A A A A A A A A A A A A A A A
Table-D.5.12	List of Drainage in Tomu River	D-156
Table-D.5.13(1)	Tomu River Improvement Plan	D-157
Table-D.5.13(2)		D-158
Table-D.5.14	Reference Point and Basin Division	D-163
Table-D.5.15	List of Bridges in Batu Gajah River	D-168
Table-D.5.16	List of Drainage in Batu Gajah River	D-169
Table-D.5.17(1)	Batu Gajah River Improvement Plan	D-170
Table-D.5.17(2)	Batu Gajah River Improvement Plan	D-171
Table-D.5.18	Flood Regulation Calculation Result	D-174
Table-D.5.19	Specification of Batu Gajah Multi-purpose Dam	D-176
Table-D.5.20	Reference Point and Basin Division	D-177
Table-D.5.21	List of Bridges in Batu Gantung River	D-183
Table-D.5.22	List of Drainage in Batu Gantung River	D-183
Table-D.5.23	Batu Gantung River Improvement Plan	D-184
Table-D.5.24	Flood Regulation Calculation Result (Batu Gantung Dam)	D-187
Table-D.5.25	Specification of Batu Gantung Multi-purpose Dam	D-189

0

A.

		1
LIST OF FIGUR	<u>tes</u>	н н 1
CHAPTER 1 I	DISCHARGE SYSTEMS FOR FLOOD WATER	
Figure-D.1.1	Basin Boundaries of the Target Rivers	D-2
Figure-D.1.2	Longitudinal Section of the Target Rivers	D-3
Figure-D.1.3	Rivers and Drainage Channels in Central Ambon Area	D-4
Figure-D.1.4	Schematic of Drainage System in Central Ambon Area	D-6
Figure-D.1.5	Proposed Improvements to Drainage System	
	in Central Ambon Area	D-8
Figure-D.1.6(1)	River Width and Discharge Capacity - Ruhu River	D-13
Figure-D.1.6(2)	River Width and Discharge Capacity - Batu Merah River	D-14
Figure-D.1.6(3)	River Width and Discharge Capacity - Tomu River	D-15
Figure-D.1.6(4)	River Width and Discharge Capacity - Batu Gajah River	D-16
Figure-D.1.6(5)	River Width and Discharge Capacity - Batu Gantung River	D-17
CHAPTER 2 E	LOOD RUNOFF ANALYSIS	
Figure-D.2.1	Actual Hyetograph of Selected Five Rainfalls	D-19
Figure-D.2.2	River Basin Division	D-23
Figure D.2.3	Basin Model	D-25
Figure-D.2.4	Peak Discharge at River Mouth	D-28
Figure-D.2.5	Runoff Hyetograph of Ruhu River (Return Period 30 year)	D-30
Figure-D.2.6	Design Flood Hydrograph Comparison of Peak Discharge	D-32
Figure-D.2.7	Comparison of Peak Discharge.	D-36
CHAPTER 3	ROOD DAMAGE ANALYSIS	
Figure-D.3.1	Features of Past Flood Damage	D-38
Figure-D.3.2(1)	Inundation Depth and Area	D-39
Figure-D.3.2(2)	Inundation Depth and Area	D-40
Figure-D.3.3	Assumption of Calculation of Flood Water Level	D-46
Figure-D.3.4	Estimated Flooded Area with 100-year Return Period	D-47
Figure-D.3.5	Flood Discharge / Flood Scale - Damage Value Curve	D-50

CHAPTER 4	FLOOD CONTROL PLAN	
Figure-D.4.1	Current Condition of Frank Far of	D-58
Figure-D.4.2	Chitch Condition of Data meran Kitvi	D-61
Figure-D.4.3	Childen Condition of Tonia Report	D-64
Figure-D.4.4	Current Condition of Batu Gajah River	D-67
Figure-D.4.5	Current Condition of Batu Gantung River	D-70
Figure-D.4.6	Locations of Candidate Dam Sites	D-7 4
Figure-D.4.7	Relationship between Catchment Area and	
Ŭ		D-76
Figure-D.4.8	Water Height and Volume of Dam Reservoir	D-79
Figure-D.4.9	Diversion Channel Plans	D-82
Figure-D.4.10	Location of Components of Alternative Plan (Ruhu River)	D-86
Figure-D.4.11	Distribution of Flood Discharge (Ruhu River)	D-88
Figure-D.4.12	Location of Components of Alternative Plan (Batu Merah River)	D-89
Figure-D.4.13	Distribution of Flood Discharge (Batu Merah River)	D-91
Figure-D.4.14	Location of Components of Alternative Plan (Tomu River)	D-92
Figure-D.4.15	Distribution of Flood Discharge (Tomu River)	D-94
Figure-D.4.16	Location of Components of Alternative Plan (Batu Gajah River)	D-95
Figure-D.4.17	Distribution of Flood Discharge (Batu Gajah River)	D-97
Figure-D.4.18	Location of Components of Alternative Plan	
	(Batu Gantung River)	D-98
Figure-D.4.19	Distribution of Flood Discharge (Batu Gantung River)	D-100
Figure-D.4.20	Optimum Flood Control Plan	D-106
Figure-D.4.21	Optimum Flood Control Plan for Ruhu River	D-107
Figure-D.4.22	Optimum Flood Control Plan for Batu Merah River	D-108
Figure-D.4.23	Optimum Flood Control Plan for Tomu River	D-109
Figure-D.4.24	Optimum Flood Control Plan for Batu Gajah River	D-110
Figure-D.4.25	Optimum Flood Control Plan for Batu Gantung River	D-111
Figure-D.4.26	Reservoir Storage Allocation	D-113
Figure-D.4.27	Off-site Storage System for New Land Development	D-116
Figure-D.4.28	Infiltration System in Lowland Areas	D-117
Figure-D.4.29	Land Use Regulation along River Channel	D-117
Figure-D.4.30	Flood Proof for Town Street	D-118
Figure-D.4.31	Rainfall and Runoff Patterns	D-119
Figure-D.4.32	Transfer System of Flood Information	D-119
Figure-D.4.33	Flood Risk Map for Ambon Central Area	D-120
Figure-D.4.34	National Level Organization for Natural Disaster	
	Countermeasures	D-121
Figure-D.4.35	Local Level Organization for Natural Disaster Countermeasures	D-121
Figure-D.4.36	River Management Zone	D-123
Figure-D.4.37	Organization Structure of Ambon Flood Control Project Office.	:
	for Structural Measures	D-126
Figure-D.4.38	Organization of Special Committee for Non-structural Measures	D-126

Þ

Ĵ.

D-vii)

CHAPTER 5	PLAN OF PRIORITY PROJECT	
Figure-D.5.1	Design Hydrograph : 1990/06/06flood	D-130
Figure-D.5.2	Estuary Condition of the Five Target Rivers	D-131
Figure-D.5.3	Ruhu River.	D-133
•	Runoff Model of Ruhu River	D-134
Figure-D.5.4	Ruhu River Basin	D-135
Figure-D.5.5	Design Hydrograph at Reference Points (Ruhu River)	D-136
Figure-D.5.6	Design Discharge Distribution (Ruhu River)	D-136
Figure-D.5.7	Longitudinal Section of Ruhu River Improvement Plan	D-140
Figure-D 5.8	Batu Merah River	D-142
Figure-D.5.9	Runoff Model of Batu Merah River.	D-142
Figure-D.5.10	Batu Merah River Basin	D-144
Figure-D.5.11	Batu Meran Kiver Dasin	D-144 D-145
Figure-D.5.12	Design Hydrograph at Reference Points (Batu Merah River)	D-145
Figure-D.5.13	Design Discharge Distribution (Batu Merah River).	D-145
Figure-D.5.14	Longitudinal Section of Batu Merah River Improvement Plan	
Figure-D.5.14	Runoff Model of Tomu River	D-151
Figure-D.5.15	Tomu River.	D-152
Figure-D.5.16	Tomu River Basin	D-153
Figure-D.5.17	Design Hydrograph at Reference Points (Tomu River)	D-154
Figure-D.5.18	Design Discharge Distribution (Tomu River)	D-154
Figure-D.5.19	Longitudinal Section of Tomu River Improvement Plan	D-159
Figure-D.5.20	Amenity Improvement Plan of Tomu River	D-161
Figure-D.5.21	Amenity Improvement Image of Tomu River	D-162
Figure-D.5.22	Runoff Model of Batu Gajah River	D-163
Figure-D.5.23	Batu Gajah River	D-164
Figure-D.5.24	Batu Gajah River Basin	D-165
Figure-D.5.26	Design Discharge Distribution (Batu Gajah River)	D-166
Figure-D.5.27	Longitudinal Section of Batu Gajah River Improvement Plan	D-172
Figure-D.5.28	Water Level and Reservoir Volume of Batu Gajah Dam	D-174
Figure-D.5.29	Spillway H-Q Curve of Batu Gajah Dam	D-175
Figure-D.5.30	Flood Control Plan of Batu Gajah Dam	D-175
Figure-D.5.31	Flood Discharge Distribution of Batu Gajah River	D-175
Figure-D.5.32	Reservoir Volume Allocation for Batu Gajah Dam	D-176
Figure-D.5.33	Batu Gantung River	D-178
Figure-D.5.34	Runoff Model of Batu Gantung River	D-179
Figure-D.5.35	Batu Gantung River Basin	D-180
Figure-D.5.36	Design Hydrograph at Reference Points (Batu Gantung River)	D-181
Figure-D.5.37	Design Discharge Distribution (Batu Gantung River)	D-181
Figure-D.5.38	Longitudinal Section of Batu Gantung River Improvement Plan	D-185
Figure-D.5.39	Water Level and Reservoir Volume of Batu Gantung Dam	D-186
Figure-D.5.40	Spillway H-Q Curve of Batu Gantung Dam Flood Control Plan of Batu Gantung Dam	D-187
Figure-D.5.41	Flood Control Plan of Batu Gantung Dam	D-188
Figure-D.5.42	Flood Discharge Distribution of Batu Gantung River	D-188
Figure-D.5.43	Reservoir Volume Allocation for Batu Gantung Dam	D-189
*	그는 것 같은 것 같	and the stand

J.

CHAPTER 1 DISCHARGE SYSTEMS FOR FLOOD WATER

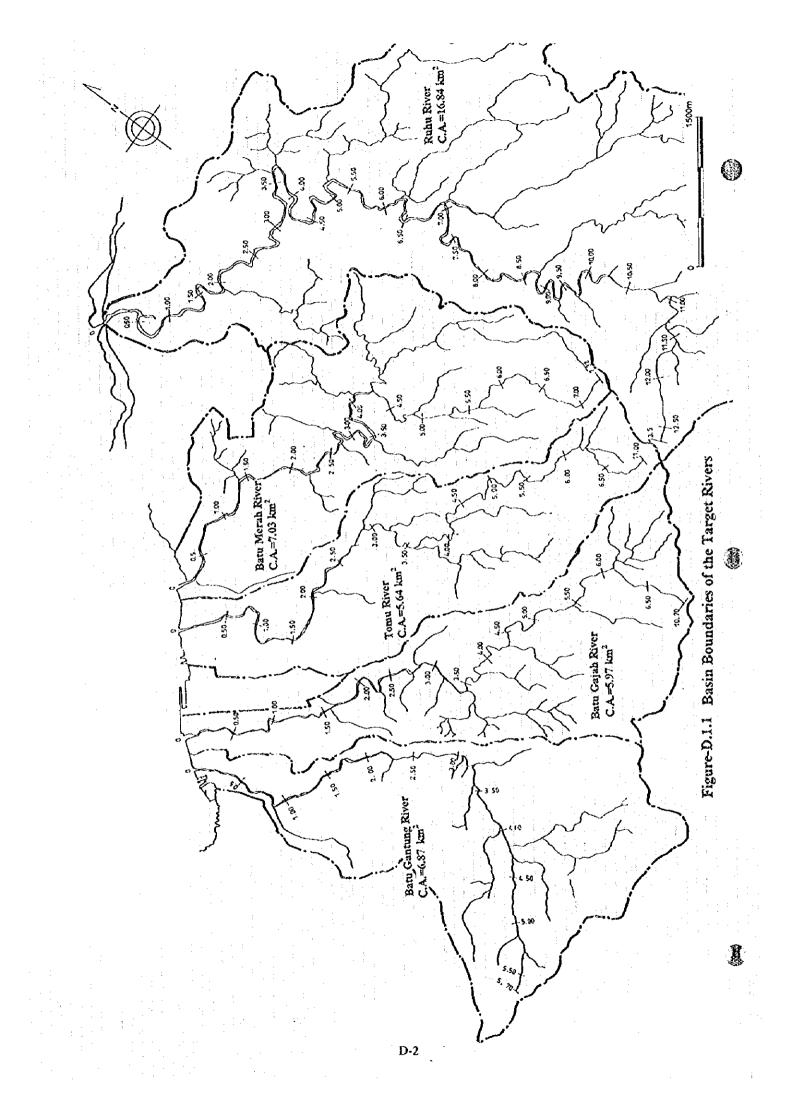
1,1 River Systems

The Study area includes the basins of the five rivers named Ruhu River, Batu Merah River, Tomu River, Batu Gajah River and Batu Gantung River, from the north. The catchment areas and main river length were measured by the Study Team using the topographical map with scale of 1:5,000 and are stated in Table-D.1.1. The basin boundaries are illustrated in Figure-D.1.1.

River Name	Catchment Area (km ²)	Length of Main Course (km)	
Ruhu River	16.84	12.7	
Batu Merah River	7.03	73	
Tomu River	5.64	7.0	
Batu Gajah River	5.97	6.7	
Batu Gantung River	6.87	57	

Table-D.1.1 Catchment Area of Study River Basins

The longitudinal profiles of these five rivers are shown in Figure-D.1.2. The features of longitudinal slope by each river are presented in Table-D.1.2, dividing into downstream, mid-stream, and upstream sections. Features of the five target rivers are summarized as follows:


- Ruhu River, the most northerly of the target rivers and whose downstream and river mouth is away from the other rivers, has the largest basin and the most gentle river slope of the five rivers.
- Batu Merah River, Tomu River and Batu Gajah River, which are located in the center of the central city area, have similar features of basin area and slope. However, Batu Merah River has a slightly more gentle slope than the other two rivers.
- Batu Gantung River, which is located to the south of the target rivers, has the steepest slope of the five rivers. The big tributary which flows in at Desa Kudamati, with a catchment area of 1.8 km², seems not in fact to be a tributary. Although there is a water course to the upstream, it is not continuous to Batu Gantung River. Based on field reconnaissance, the upstream river water seems to infiltrate to groundwater near Desa Kudamati, but the condition at the time of flood has not yet identified.

River	Downstream		Mid-stream	Upstream	
	EL. 0 - 5 m	EL. 0 -10 m	EL. 10 - 100 m	EL. 100 - 200 m	
Ruhu	1/480	1/260	1/68	1/22	
Batu Merah	1/370	1/230	1/39	1/10	
Tomu	1/250	1/160	1/29	1/12	
Batu Gajah	1/260	1/210	1/32	<u></u> //1	
Batu Gantung	1/190	1/150	1/26	1/14	

Table-D.1.2 Features of Longitudinal Slope

Source : JICA Study Team

I

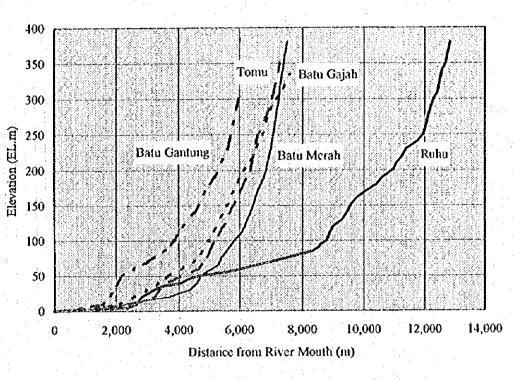
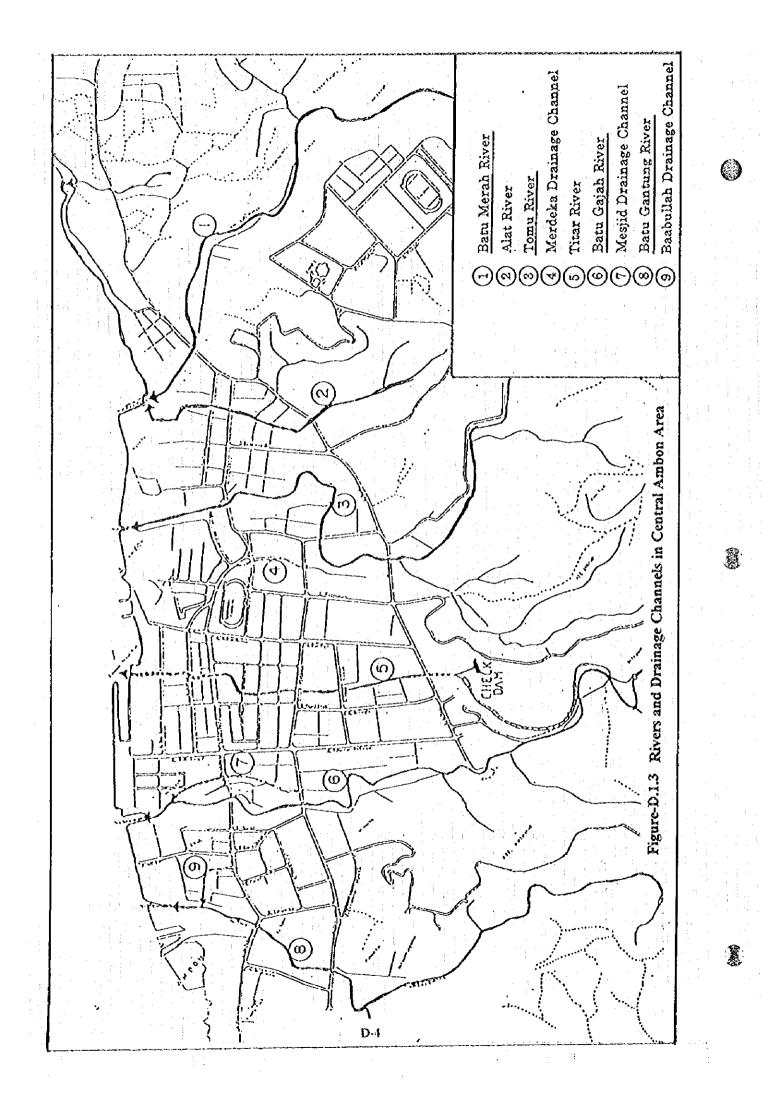


Figure-D.1.2 Longitudinal Section of the Target Rivers

1.2 Urban Drainage Systems

1.2.1 Current Situation


2

Ĵ.

There are four rivers and two primary drainage channels running through the central Ambon City as shown in Figure-D.1.3. The four rivers, i.e. Batu Merah, Tomu, Batu Gajah and Batu Gantung Rivers have mountainous upstream area, but the two drainage channels, namely Alat and Titar Rivers are urban rivers with no flow from the mountain area. There are also three main secondary drainage channels, namely Merdeka, Mesjid and Baabullah channels, as well as numerous smaller drainage channels. The condition of these urban rivers and main drainage channels are described in the following paragraphs.

(1) Alat River

Alat River is an urban river that runs through the central city area between Batu Merah River and Tomu River before merging with Batu Merah River near the river mouth. The channel has a concrete lined structure of width typically between 2.5 and 3.5 meters and depth 1.5m. The river usually discharges domestic waste water from residential area. However when it rains, storm water from road sides and smaller drainage channels flows into the river and fills the channel to capacity. Since large amounts of garbage are often dumped into the channel from the surrounding area, the river discharge capacity has dropped and inundation frequently occurs. There is also a problem with sedimentation and deposits of sand and other debris are evident.

(2) Titar River

Titar River is an urban river of length 1500 m, that runs through the central city area between Tomu River and Batu Gajah River and discharges directly into Ambon Bay. Titar River receives sewage and storm water from many smaller drainage channels. Similar to Alat River, it is a concrete channel of width 2.5 to 3.5 m and depth 1.0 to 1.5 m, with its final 350 m constructed as a culvert through the downtown area before discharging to the sea. Due to the accumulation of garbage discarded from the surrounding houses, the river discharge capacity has dropped and inundation frequently occurs. The condition is worse in the culvert section. Titar River is connected to Batu Gajah River by a channel from the check dam on Batu Gajah. This channel was intended to function as means of flushing Titar River to prevent the build up of sediment and sewage deposits. However, the intake at the Batu Gajah check dam no longer functions and the channel has become blocked in places.

(3) Other Main Drainage Channels

In addition to the above two rivers, three main drainage channels receive domestic sewage and storm water from the central city area. Merdeka channel is nearly 600 m in length and flows between Tomu and Titar Rivers before merging with Tomu River. Mesjid channel flows between Batu Gajah and Titar Rivers and merges with Batu Gantung River. Mesjid channel flows between long, about half of which is in culvert. There is a serious problem of sediment and rubbish deposits in the channel, as well as a bottleneck beneath the mosque where the building's foundations obstruct the channel. Baabullah channel flows between Batu Gajah and Batu Gantung Rivers before merging with Batu Gantung River. The total length of the channel is 300m, part of which is in culvert.

Figure-D.1.4 outlines schematically the urban drainage system in central Ambon City. Many small drainage channels in the central city are connected with Titar River. However, the discharge capacity of Titar River is very low due to dumping of garbage as described above. In order to prevent flood inundation from Titar River, as well as from the other urban rivers and channels, regular cleaning and maintenance of drainage channels is recommended to keep discharge capacities as high as possible.

1.2.2 Planned Improvements

1

According to the 1993 Final Report of the Technical Planning and Outline Plan for Urban Drainage in Ambon undertaken on behalf of Cipta Karya, the main problems with the existing urban drainage system, leading to localized flooding in the central city area, include :

- river water level being higher than the level in the secondary and tertiary drainage
- channels, due either to heavy rain or high tides.
- dumping of garbage in the drainage channels.
- sedimentation and build of up sand and other deposits.
- poor levels of operation and maintenance, with no evidence of cleaning or dredging of the drainage channels, probably due to limited funding.
- high growth rate in urban housing, often of an illegal temporary nature.
- poor structural condition of the channels.
- bottlenecks caused by the construction of building foundations, bridge piers, etc.

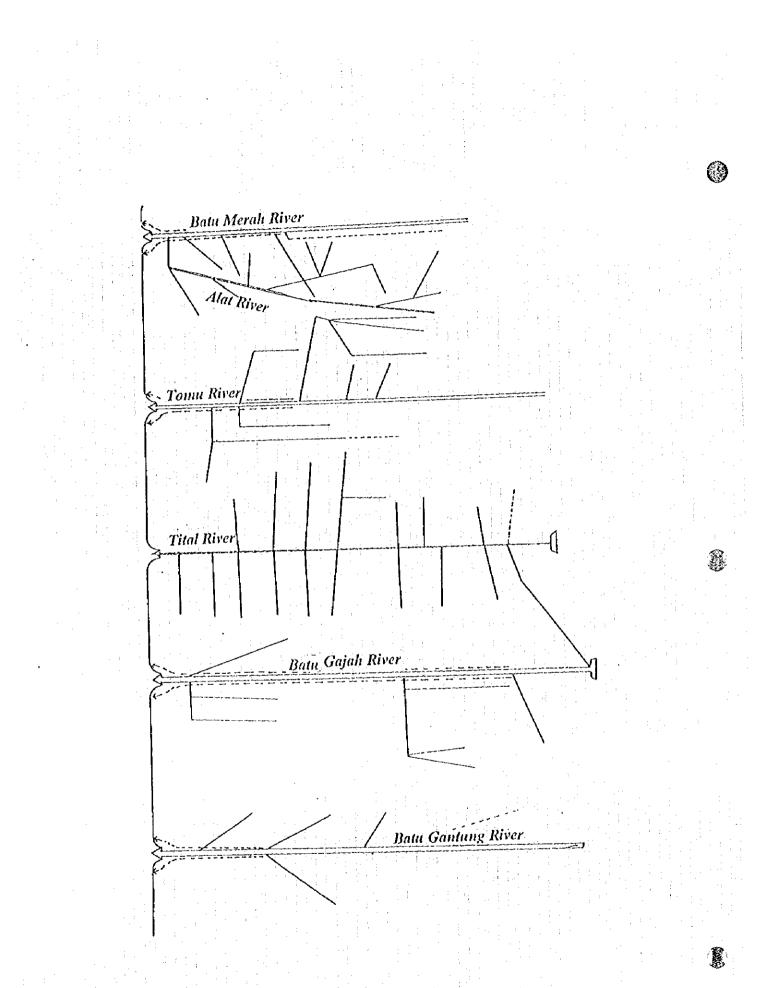


Figure-D.1.4 Schematic of Drainage System in Central Ambon Area

The Report recommendations are described below and Figure-D.1.5 shows the proposed improvements to the urban drainage system in the central Ambon area.

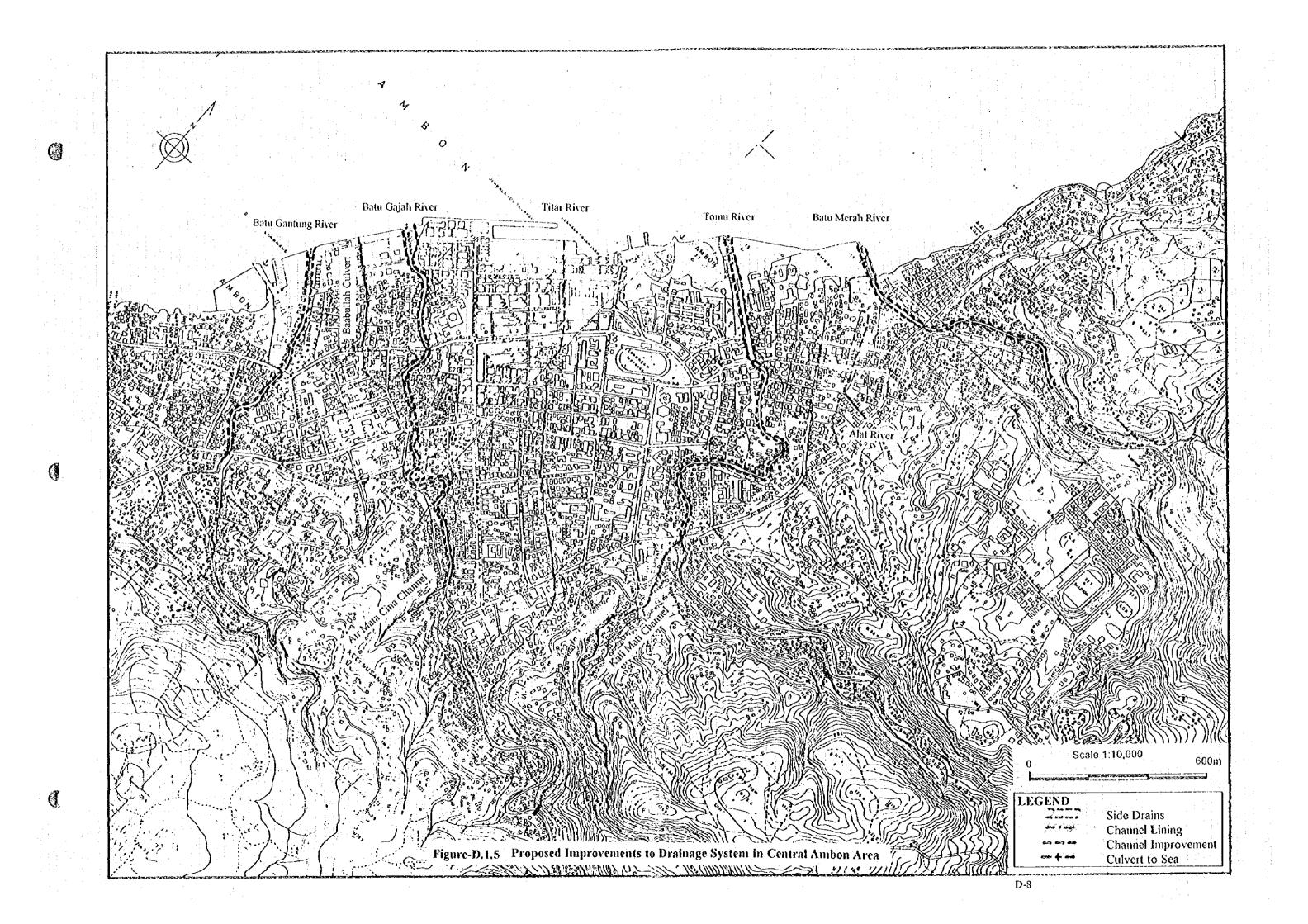
(1) Side Drains

Side drains are proposed for both the left and right sides of the four main rivers, Batu Merah, Tomu, Batu Gajah and Batu Gantung, from the point where runoff from the smaller side drainage channels is unable to flow into the main river to the river mouth. The side drains would collect the storm water run off and domestic sewage from the central city area and discharge directly to the sea. The main obstacles in constructing side drains are land acquisition and demolition of buildings on the route of the proposed drains. The report recommends construction of closed culverts or underground drains, with temporary relocation of residents and demolition of housing during the construction period.

(2) Alat River

Channel improvement and widening of the road culverts for Alat River are proposed. In particular, renovation of the channel and widening of a culvert to 3.5 m wide by 0.6 m deep are recommended for Alat River near to its confluence with Batu Merah, an area prone to localized flooding.

(3) Titar River


1

The renovation and improvement of Titar river is given highest priority in the Ambon Urban Drainage Plan, in particular, the reconstruction and renovation of the flushing duct which connects Titar River to the existing check dam on Batu Gajah. At the downstream of Titar River, discharge capacity needs to be increased by the construction of a second culvert, 2.0 m wide by 1.25 m high and of length 350 m. Dredging and maintenance of Titar River is also emphasized because of the low channel gradient and the limited discharge capacity.

(4) Other Main Drainage Channels

Baabullah Culvert. It is proposed to change the route of the existing Baabullah Channel to flow directly into Ambon Bay, rather than connecting to Batu Gantung. The new route would be constructed as a closed culvert of width 1.5 m and depth 1.1 m, running along existing streets and having a removable concrete plate cover and access manholes for maintenance.

In addition to the improvements described above, the lining of two existing natural drainage channels is proposed; namely for Kali Mati, a tributary of Tomu River, and for Air Mata Cina, a tributary of Batu Gajah River. For Kali Mati, the report recommends lining the channel with masonry over a length of 1 km and a typical section of 3.5 m wide by 1.0 m deep.

1.3 Current Discharge Capacity of Rivers

I

Longitudinal and cross sectional river surveys for the five target rivers were carried out during Phase I of this Study as described in Supporting Report Part-J. The results of these surveys were used to assess the current discharge capacity of the rivers. The river cross sections were surveyed every 50 m over a length of between 1.6 km (Ruhu & Batu Merah) and 2.9 km (Tomu & Batu Gajah). This cross section data was compiled and the non-uniform flow calculation method was used to obtain stage discharge (H / Q) curves for every cross section over a range of flows up to a maximum of 250 m³/sec (400 m³/sec for Ruhu river). The discharge capacity at each section was then estimated by comparing the left and right bank heights to the calculated stage discharge curves.

In addition, the discharge capacity was also calculated for the case when freeboard is considered - a value of 0.6 m was used in accordance with the "Manual for River Works in Japan" for design flood discharge of less than 200 m³/sec. The calculation was repeated using the uniform flow method for both the 'No Freeboard' and '0.6m Freeboard' cases to provide a comparison and to identify any potential bottlenecks which might restrict river discharge capacity.

Based on this analysis, the discharge capacity of each river calculated by both methods is summarized in Table-D.1.3 and shown in more detail in Table-D.1.4. The summary table gives the average and extreme values of minimum discharge capacity. Figure-D.1.6. shows the variation in river width and calculated discharge capacity at each cross section of the five target rivers in Ambon.

	Capacity	(m ³ /sec) -	Non Unife	orm Flow	Capacity (m ³ /sec) - Uniform Flow					
	No Fre	eboard	0.6m Fr	ecboard	No Fre	eboard	0.6m Freeboard			
River Name	Average	Extreme	Average	Extreme	Average	Extreme	Average	Extreme		
Ruhu River	60 - 80	50	40 - 50	34	60 - 80	45	40 - 60	30		
Batu Merah River	30 - 40	24	20 - 30	15	20 - 30	17	15 - 25	9		
Tomu River	40 - 50	22	20 - 30	10	40 + 50	21	20 - 30	8		
Batu Gajah River	30 - 50	23	20 - 40	11	40 - 60	24	20 - 10	10		
Batu Gantung River	40 - 60	36	20 - 40	20	50 -70	- 38	30 - 50	22		

Table-D.1.3 Summary Result of Discharge Capacity

	1911-01081				j Discharge Capacity - Nunu Mirci									
	· · · · · · · · · · · · · · · · · · ·	Discharge Capacity (m3/sec)												
		1	Ban	c Height	NON UNIFORM FLOW UNIFORM							M FLOW		
:	Section	Distance	(n	n) 👘	No Fre	eboard	0.6m Freeboard		No Freeboard		0.6m Freeboar			
	No.	(km)	Left	Right	Left	Right	Left	Right	Left	Right	Lefl	Right		
	Ruh01+	0.000	2.02	2.20	400	400	350	350	400	400	350	350		
	Ruh03+	0.100	2.07	1.46	365	: 245	247	150	216	144	146	88		
:	Ruh05+	0.200	1.96	2.15	- 185	209	118	139	250	288	159	- 192		
	Ruh07+	0.300	2.08	2.23	193	212	120	138	216	244	134	159		
	Ruh09+	0.400	2.04	2.13	- 170	182	95	105	-186	200	104	115		
	Ruh11+	0,500	2.10	1.96	162	140		60	156	138	74	59	l	
1	Ruh13+	0.600	2.12	2.27	127	139		91	62	70	40	46	l	
	Ruh15+	0.700	2.14	2.13		66		43	88	88	57	57		
÷	Ruh17+	0.800	2.05	2.37	- 58	73		47	60	86	39	55		
	Ruh19+	0.900	2.41	2.40		69		43		77	48	48		
	Ruh21+	1.000	2.83	3.19		99		68		144	72	- 99		
	Ruh23+	1.100	3.01	3.42		106		75		145	71	103		
	Ruh25+	1.200	3.14	4.12		145	55	108		184	63	137	Į	
	Ruh27+	1,300	3.64	4.49	1	162	A	124	124	208	85	159		
	Ruh29+	1,400	4.80	4.55	1. 1	172	147	130		150	131	113	ļ	
	Ruh31+	1,500	5,16	3.06		50	1.1	34	158		120	30		
	Ruh33+	1.600	5.51	5.77	192	212	147	166	200	233	153	182		

Table-D.1.4(1) Discharge Capacity - Ruhu River

Table-D.1.4(2) Discharge Capacity - Batu Merah River

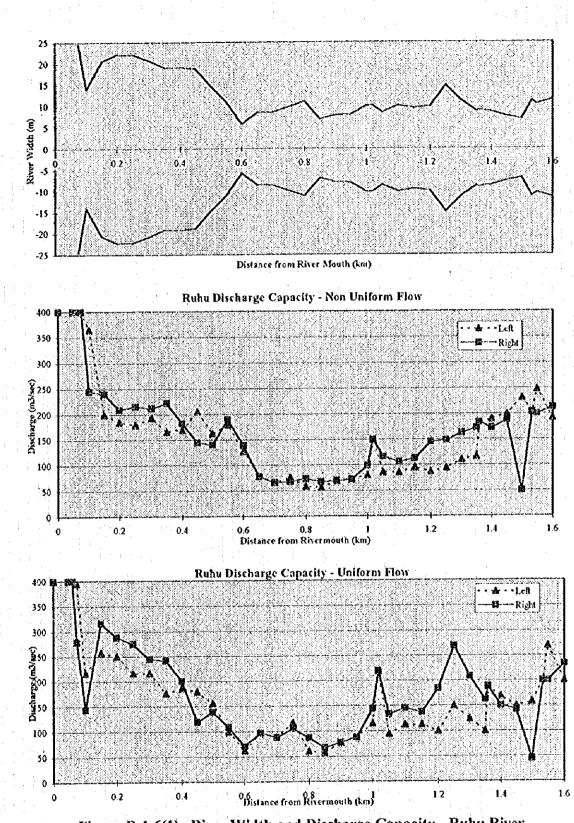
BATU MERAH RIVER			Discharge Capacity (m3/sec)								
		Ban	: Height	NO	N UNIF	ORM FL	OW	L	INIFOR	M FLOW	
Section	Distance	(r	n) –	No Fre	cboard	0.6m Freeboard		No Freeboard		0.6m Freeboar	
No.	(km)	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right
Mer01+	0.000	2.29	2.28	250	250	200	200	250	250	200	200
Mer03+	0.100	2.06	2.32	250	250	200	200	230	. 250	200	200
Mer05+	0.200	1.82	1.68	107	95	57	- 48	123	108	66	- 55
Mer07+	0.300	1.41	1.65	56	- 75	31	39	43	58	24	30
Mer09+	0.400	1.81	1.33	46	-35	31	19	- 44	24	30	13
Mer11+	0.500	2.14	2.04	44	42	- 30	27	36	32	25	21
Mer13+	0.600	2,31	2.11	37	33	24	- 19	- 33	26	21	15
Mer15+	0.700	2.40	2.25	-40	37	28	26	36	32	25	22
Mer17+	0.800	2,69	2.54	30	27	17	14	38	31	22	16
Mer19+	0,900	2.97	3.86	34	63	17	43	22	54	- Se 11	37
Mer21+	1.000	3,37	3.45	36	37	24	26	33	37	22	26
Mer23+	1.100	3.66	3.65	34	34	24	24	27	27	19	19
Mer25+	1,200	4.01	4.92	27	45	16	. 33	21	46	12	34
Mer27+	1,300	4.51	- 4,54	- 32	32	20	20	22	22	14	14
Mer29+	1.400	4.96	4.86	- 31	29	17	. 15	17	17	- 9	: 9
Mer31+	1,500	5.31	5,19	27	25	20	18	23	20	17	14
Mer33+	1.600	5.72	5.82	31	33	22	24	23	25	16	18

錢

X

	Table-D.1.4(3) Discharge Capacity - Tomu River													
:		TOMU R	IVER		Discharge Capacity (m3/sec)									
			Banl	c Height	NO		ORM FL		UNIFORM FLOW					
	Section	Distance	()	n)	No Fre	cboard	0.6m Fr				0.6m Freeboard			
	No.	(km)	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		
	Tom01+	0.000	1.82	2.82	250	-250	194	250	248	300	192	300		
	Tom03+	0,100	2.09	1.91	176	157	117	100	179	163	119	104		
5	Tom05+	0.200	1.87	1.96	= -113	120	68	-75	138	145	83	91		
Ĩ.	Tom07+	0.300	2.29	2.15	128	117	80	70	131	120	82	72		
. :	Tom09+	0,400	3.25	3.56	s - 144	168	105	326	285	300	208	225		
÷	Tom11+	0.500	4.32	3.81	250	217	206	154	215	171	E 177	121		
	Tom13+	0.600	4.00	3.87	150	140	104	95	176	164	122	111		
ŝ	Tom15+	0.700	4.24	4.15	84	80	59	56	152	145	107	102		
	Tom17+	0,800	4.44	4.35	117	111	75	68	.80	75	51	46		
:	Tom19+	0.900	5.04	4.70		78	68	.54	i i 100	85	75	- 59		
:	Tom21+	1.000	5.15	4.92			54	50	135	117	97	87		
	Tom23+	1.100	5,30	5.54		- 79	48	56	143	170	98	121		
, ÷	Tom25+	1.200		5,51		73	65	51	214	162	160	113		
-	Tom27+	1.300		6 41		106		82	218	238		184		
- 1	Tom29+	P 1,400		6.11	115	.93	89	62	188	120	145	80		
	Tom31+	1,500				132		94	· · · 133	145	- 91	103		
::	Tom33+	1.600		7.01	48					58	36	33		
	Tom35+	1 700	1 . 1	7.15				25	42	42	22	22		
	Tom37+	1.800		7.65		44	21	24	43	52	24	28		
÷	Tom39+	1.900		7.99		47	24	25	40		20	21		
	Tom41+	2.000		8.60		42	38	24		- 68	60	39		
	Tom43+	2.100		10.65		120		92	38	⇒. 18 0	25	138		
•	Tom45+	2.200		9.11	in 161	27	40	17	96	40	63	25		
	Tom47+	2.300		11.91	82	131	55	92	90	142	60	100		
	Tom49+	2.400	· · ·	12.46		117	34	84	57	117	36	84		
	Tom51+	2.500		12.61	72	68		39	79	75	47	43		
	Tom53+	2.600		14.20		92	90	65	: 125	95	91	67		
	Tom55+	2.700				42		25	57	75	35	45		
	Tom57+	2.800		17.95		150		107		300	226	214		
۰.	Tom59+	2.900	18.01	18.42	120	150	47	97	: 137	181	54	117		

3

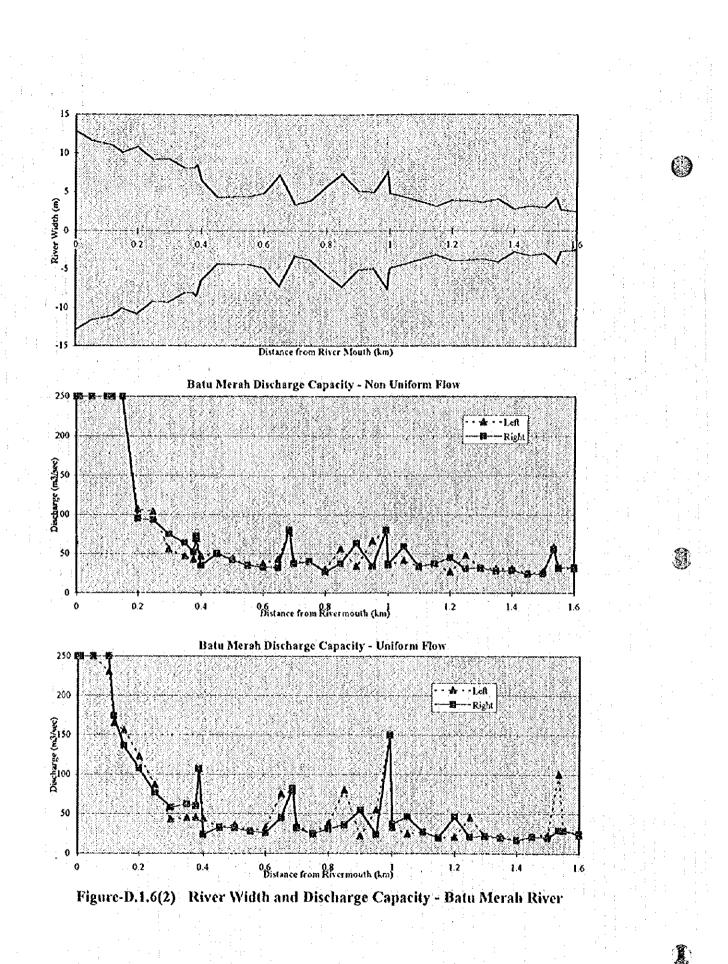

Ĩ

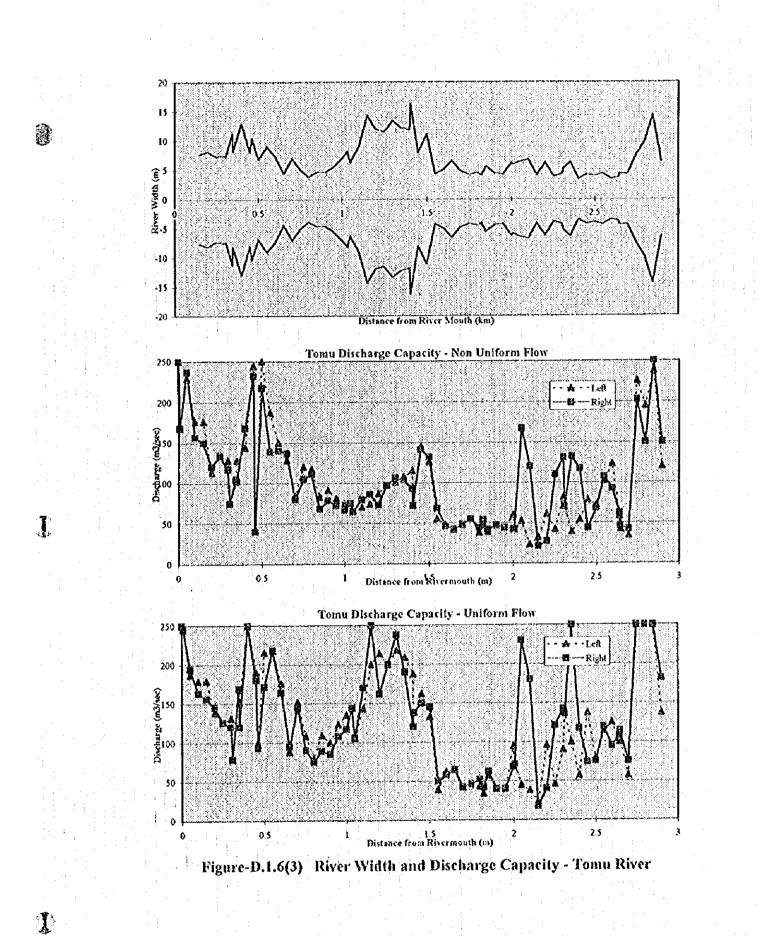
·				Discharge Capacity - Batu Gajah River										
BATU GAJAH RIVER							pacity (m3/sec)							
*		Banl	k Height		N UNIFO			UNIFORM FLOW No Freeboard 0.6m Freeboard						
Section	1 Distance	<u>(</u> 1	<u>(m)</u>		<u></u>		0.6m Freeboard							
No.	(km)	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right			
Gaj01+	0.000	1.87	1.90	250	250	250	250	250	250	250	250			
Gaj03+	0.100	2.05	1.95	200	182	104	. 91	250	250	130	325			
Gaj05+	0.200	2.17	2.18	121	121	66	66	100	100	-55	55			
Gaj07+	0.300	2.64	2.56	61	57	35	31	75	70	43	38			
Gaj09+	0.400	3.45	3.00	77	57	51	- 34	152	107	101	64			
Gaj11+	0.500	3,43	3.38	67	65	35	32	50	48	26	24			
Gaj13+	0.600	3.76	3.67	45	42	25	23	50	48	28	26			
Gaj15+	0.700	3,99	3.98	: 45	45	23	23	38	38	19	19			
Gaj17+	0.800	6.03	6.21	94	101	72	78	160		123	134			
Gaj19+	0.900	6.36	6.60	103	114	76	87	131	146		· · . 111	+		
Gaj21+	1.000	6,70	7.37		146	85	118		163	90	132			
Gaj23+	1.100	6,96	7.36	87	110	56	75	100	125	64	85			
Gaj25+	1.200	8.07	7.72	140	116	100	80		100	86	<u>69</u>			
Gaj27+	1 300	7.85	7.88		67	44	45	100	100	66	67	÷		
Gaj29+	1.400	7.03	7.32		38	11	18	25	37	11	18			
Gaj31+	1.500	7.97	8.24		54	19	. 25	41	57	19	26			
Gaj33+	1.600	9.21	9.29		66	31	- 35	55	58	28	31			
Gaj35+	1.700	10.45	10.07	78	62	53	37	123	88	84	53			
Gaj37+	1.800	11.24	12.16	110	179	71	133	100	160	65	119			
Gaj39+	1.900	11.31	11.85	ing 67	91	42	65		140	55	100			
Gaj41+	2.000	12.68	13.09		120	66	86	79	96	54	69			
Gaj43+	2.100	12,85	14.87		140	37	113	62	163	40	132			
Gaj45+	2,200	13,84	13,64		42	32	26		92	69	57			
Gaj47+	2.300	15.13	15.70		77	33	57		175	60	130	• •		
Gaj49+	2,400		17.01		100	102	64	236	154	160	- 99			
Gaj51+	2.500		17.78		41	24	21	72	61	35	31			
[le-D.1.4		lischarge Capacity - Batu Gantung River										
BA	TU GANTU			Discharge Capacity (m3/sec) NON UNIFORM FLOW UNIFORM FLOW										
			Height	NON UNIFORM FLOW No Freeboard 0.6m Freeboard				the second second second						
Section			n)							0.6m Fr		•••		
No.	<u>(km)</u>	Leît	Right	Left	Right	Left	Right	Left	Right	Left	Right			
Gan01+		2.76	2.16			250		250	231	250	173	,		
Gan03+									143		91			
Gan054									87	53	53			
Gan074						53			73	39	47			
Gn9B1					78		58		250	186	186			
Gan11+					- 35 - 47		22 30		77 77	52 44	48			
Gan13+ Gan15+			3.57 3.99						93	44	49 58			
Gan15+					83	1			93	50	58 62	:		
Gan194									117		83			
Gan21+			6.42						80					
Gan214									80 57		56 39			
							20		105					
Gan25+ Gan27+					60 58				63	41 43	35 42	÷.		
Gan274									67		+2	÷		
Gan291									250		250	14		
Gan314									250		250			
Gan35t					250		250		250		250			
Gan37									250		250			
Gan39						45			200		154			
Gan43+									210		159			
Contra		33.32	55.52	II	L			410	210	1.39	1.77			

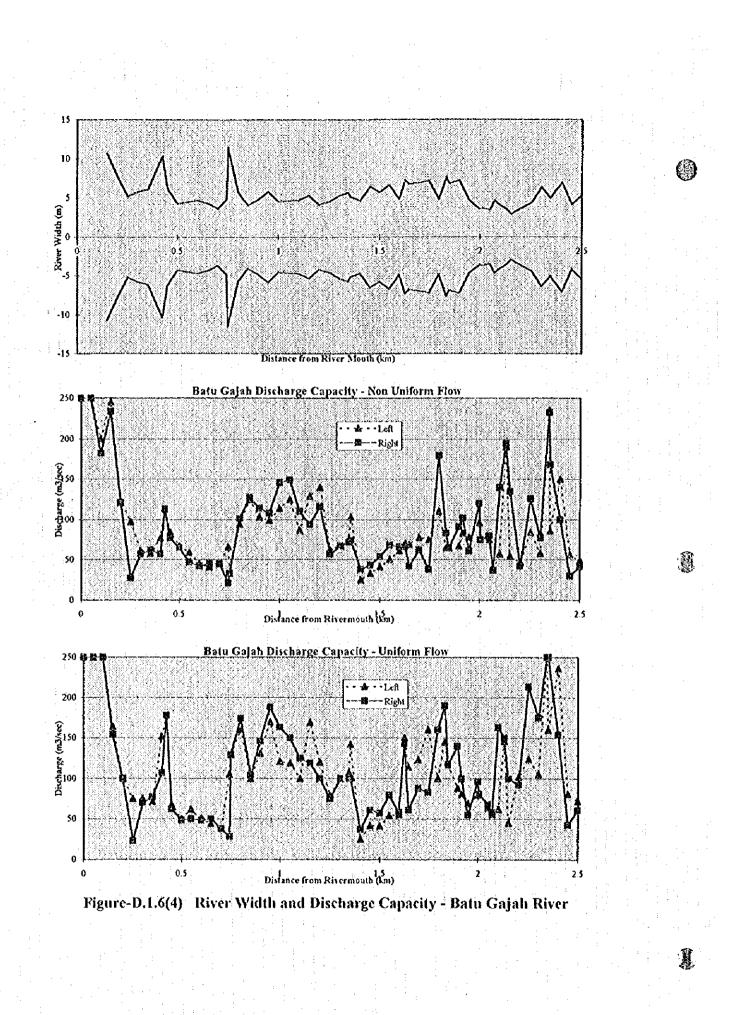
D: . ٠

,

D-12

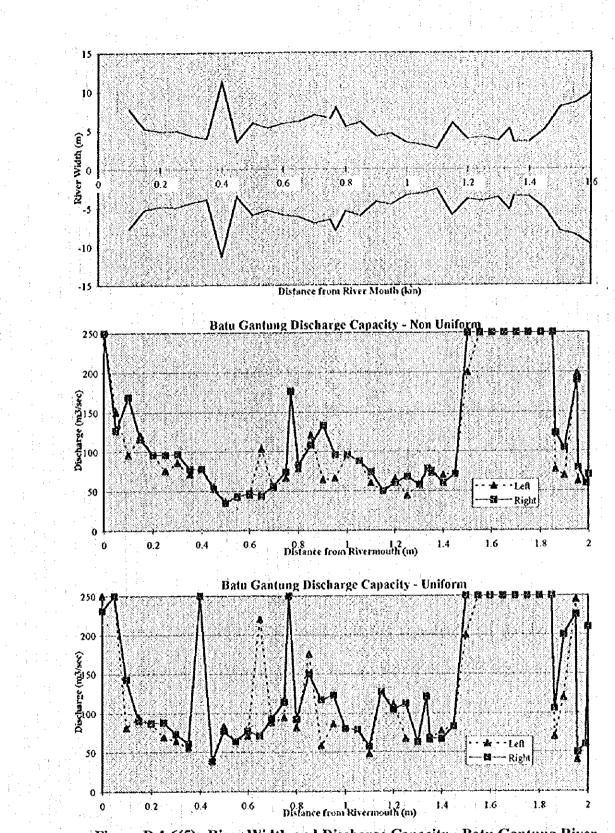



P


Ţ

1

Figure-D.1.6(1) River Width and Discharge Capacity - Ruhu River



D-16

.

13

T)

Ţ

