CHAPTER 4 INVESTIGATION FOR EMBANKMENT MATERIALS

4.1 Basic Condition for Embankment Material

Embankment Material consists of Core, Rock and Filter material. Basic condition for embankment material is component from quality, quantity and cost. Candidate embankment material should be selected, considering sufficiently each components. Basic quality condition required for each of these material are shown below.

Table-B.4.1 Basic Quality Condition of Embankment Material

Material		Basic	Quality Condi	tion		
Core	1	Non-permeability, Deformation,	Construction A	Aspect		
Rock	1	Strength, Draining, Endurance		. !		
Filter		Strength, Draining, Endurance			·	•

4.2 Candidate Rock

A distinctive feature of rock fill dam is to make a rational zoning of which materials are assorted from various rocks. The assortment of the materials have several cases, therefore, geological field reconnaissance executed by an experienced geotechnical engineer is necessary at an early stage. Usually, data collection, field reconnaissance and physical soil tests are carried out as a initial survey. As a result of field reconnaissance, candidates of embankment materials exposed in the vicinity of the dam sites are selected, as shown in Table-4.5.3.

Table-B.4.2 List of Candidates for Embankment Materials

1 4016-01442		monding to			
Rock	S	Rock N	faterial	Core l	Material
		Quality	Quantity	Quality	Quantity
1. Detritus		×	×	O	· · · ×
2. Terrace deposite		×	×	×	×
3. Coral limestone	(weathered)	×	×	0	0
	(fresh)	×	×	×	×
4. Granite	(weathered)	×	×	×	0
	(fresh)	0	0.	×	×
5. Volcanie rocks	(weathered)	×	×	O	. 0
	(fresh)	0	×	×	×
6. Ultra basic rocks	(weathered)	×	×	0	0
	(fresh)	0		×	×
7. Kanikeh Formation	(weathered)	×	×	0	0
	(fresh)	0		×	ļ ×

: suitable: unsuitable

4.3 Laboratory Test

4.3.1 Contents and Purpose of Laboratory Tests

The purpose of the laboratory tests is to investigate roughly the material quality of several candidate quarries. Tests are carried out for core and rock material, according to the contents focused on as follows.

Table-B.4.3 Contents and Purpose of Laboratory Tests

	# (4 H) I # 17 h	Tio Contents and I	ui pose or raiovillor j	X C 5 C 5
Material	Focusing Item	Contents of L	aboratory Test	Standard
Core	Non-permeability	- Grain Size Analysis	- Grain size distribution	ASTM-D-422-63
		- Plasticity	- Water contents	ASTM-D-4253-83,
!			-	ASTM-D-4254-83
1			- Atterberg limits	ASTM-D-4318-84
			- Specific gravity	ASTM-D-2216-80
Rock	Strength	- Strength of rock pieces	- Specific gravity	JIS-A-1110
			- Absorption	JIS-A-1110

4.3.2 Sampling for Soil Tests

Samples for soil tests are collected, as shown in Table-B.4.4 and Figure-B.4.1.

Table-B.4.4 List of Samples for Soil Tests

Material	Name	Rock	Location	Sampling Depth
	R-A	Fresh Granite	Desa Halai/Soya	River Bed
	R-B	Fresh Granite	Desa Halai/Kayu putih	River Bed
Rock	R-C	Fresh Ultra Basic Rock	Batu Gajah	River Bed
Material	R-D	Fresh Ultra Basic Rock	Batu Gajah	River Bed
	R-E	Fresh Granite	Desa Mahia	River Bed
	R-F	Fresh Granite (Boulder)	Batu Gajah	River Bed
- 11	C-1-1	Weathered Quaternary sediment Rock	Desa Mangga Dua Atás	2 m
	C-1-2	Weathered Quaternary sediment Rock	Desa Mangga Dua Atas	2 m
Core	C-2	Weathered Granite	Desa Mahia	4 m
Material	C-3	Weathered Ultra Basic Rock	Puskesmas Urumesing	4 m
	C-4	Weathered Ultra Basic Rock	Batu Gajah	0.5 m
	C-5	Weathered Ultra Basic Rock	Desa Batu Gajah Kayu putih	0.5 m

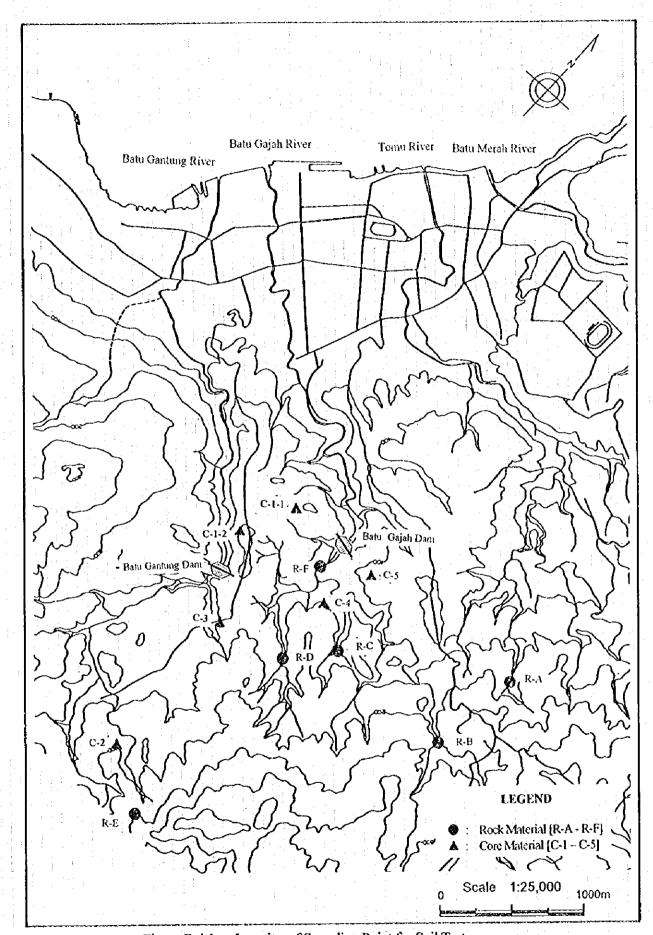


Figure-B.4.1 Location of Sampling Point for Soil Test

4.3.3 Results of Soil Tests

(1) Core Material

Test results for Core Material are indicated in Table-B.4.6. Specific gravity of all sampling is higher than 2.7 and excellent. Natural water contents are mostly between 10-30% with exception of C4 that is very high, 65%. C4 may have been caused by shallow sampling (0.5m) that must have been much weathered. In terms of Atterberg limits, index of plasticity is mostly 10-20 %. However, C4 is 50 % and excellent high, C2 is non-plastic. Grain size distribution consists of mainly silt or sand, secondly clay and there is little gravel. This main reason is that sampling was performed at shallow location. In terms of fine degree that should affect to permeability, clay consists of more than 10 %, fine degree under 0.074 mm consists of more than 40 % with exception of C2.

(2) Rock Material

Test results for rock material is shown in Table-B.4.5. Specific gravity is higher than 2.6 and absorption is generally less than 1.0 %. Therefore it is clear that so far as these samples own is concerned, these have excellent quality.

Table-B.4.5 Results of Soil Tests [Rock Material]

Sampling	Sample		Specific Gravity		Absorption
Location	No.	Apparent	Bulk	SSD	(%)
RA	1	2.71	2.66	2.68	0.69
	2	2.71	2.66	2.67	0.69
	Average	2.71	2.66	2.68	0.69
RB	l	2.71	2.66	2.68	0.73
	2	2.71	2.66	2.68	0.73
	Average	2.71	2.66	2.68	0.73
RC	1	2.72	2.66	2.68	0.81
'	2	2.72	2.66	2.69	0.82
	Average	2.72	2.66	2.69	0.82
RD	1	2,65	2.38	2.48	0.42
	2	2.65	2.38	, 2.47	0.41
	Average	2.65	2.38	2.48	0.42
RE	1	2.61	2.54	2.57	1.05
ì	2	2.62	2.55	2.58	1.05
L	Average	2.62	2.55	2.58	1.05
RF	1	2.76	2.71	2.73	0.69
} 	2	2.76	2.71	2.73	0.68
	Average	2.76	2.71	2.73	0.69

Note: SSD ... Saturated Surface Dry

	Soil	Classification		E	}			SC	; ; ;			NS			2	MH				NGE.	·			M	}		
		Under	0.074mm	86				45				24		:		69	.			89				50			
	nalvsis	Clav	8	\$				1.1				7	-1-			33	1			23				91			
riall	Grain Size Analysis	Silt	8	95		•		31				17	-:			37		ş*		3				4			
re Mate	S	Sand	· %	7.				22				9/		:	1 6	27				31				47			
ests (Co		Gravel	જ	0		:			:			0				n					• •			8	·	· .	
f Soil Te	ts	I _b (%)		24.6	25.1	25.0	24.9	12.7	12.9	11.6	12.4					12.4	12.7	12.0	12.4	47.6	52.4	1.67	49.7	11.3	13.1	12.1	12.2
Results of Soil Tests [Core Material]	Afterberg Limits	W, (%)		29.7	29.1	28.5	29.1	24.0	23.6	23.1	23.6	Non Plastic	Non Plastic	Non Plastic	Non Plastic	43.0	41.8	42.8	42.5	68.4	68.1	68.1	68.2	30.2	30.2	29.9	30.1
	Afte	W _L (%)		54.3	54.3	53.5	54.4	36.7	36.5	34.7	36.0	Z	Z	Z	Z	55.5	54.5	54.8	54.9	116.0	120.5	117.2	117.9	41.5	45.3	12.0	42.3
Table-B.4.6	Water	Contents	Wn (%)	26.2	25.0	25.7	25.6	21.4	21.1	21.0	21.2	13.1	13.0	12.7	12.9	34.9	35.2	35.5	35.2	65.2	65.1	65.8	65.4	26.4	26.3	25.7	26.1
	Specific	Gravity	દુ	2.83	2.83	2.84	2.84	2.79	2.78	2.79	2.79	2.70	2.69	2.71	2.70	2.86	2.85	2.86	2.86	2.97	2.97	2.96	2.97	2.83	2.83	2.82	2.83
	Sample	No.		e-il	2	3	Average	1	2	3	Average	1	2	ťΩ	Average	-	2	Û	Average	- -1	2		Average	4	2	en	Average
	Sampling	Location		C1.1				C.1.2								ິບ								C.S			

4,4 Embankment Material Potential

Potential for embankment material is studied through laboratory test results and is given as follows.

(a) Core Material

Results for core material are shown in Table-B.4.7 and Figure-B.4.2. In this table and figure, the suitable condition for embankment material and examples in previous works are indicated, too. C.2 is unsuitable because there is little clay and non-plasticity in C.2. C.1.2 is most suitable because this soil classification belongs to SC that can be generally recommended as core material and this indicates actually high quality results. The remaining (C.1.1, C.3, C.4, C.5) may be expected to be excellent for non-permeability because these contain much fine degree material (clay and sand). However, these may have some problems with deformation and constructability, because these have little coarse degree material (sand and gravel, especially gravel). All material sampling was performed at 2-4m depth which is very weathered. The above may be caused by this condition. From this point of view, it is likely that the sample from deeper location may contain coarse material more than the results above. Therefore it is decided that 5 locations with exception of C.2 should be set as candidates for core material quarries. It is recommended to study quarry quantity and physical characteristics (non-permeability, strength and compaction) through boring, trench and physical prospecting, etc.

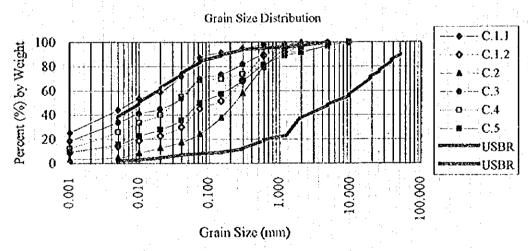


Figure-B.4.2 Grain Size Distribution [Core material]

(b) Rock Material

Results for rock material are shown in Table-B.4.8. All sampling locations can be expected to be suitable as rock material quarries, because rock piece samples at all locations indicate high quality. Therefore it is concluded that all 6 locations should be set as candidates for rock material quarries. It is recommended to study quarry quantity and physical characteristics (strength, compaction, draining, and endurance) through boring, trench and physical prospecting, etc.

			1able-B.4.7	7	Core Mat	ena	Core Material Potential by Laboratory Test Result	تقدر و	oratory 10	est Ke	sult		
Sample No.	C.1.1		C.1.2	14	C.2		C3		C.4		C.S	. 14	Suitable Condition
Soil Classification	H	◁	SC	0	SM	⊲	MH	4	HIM	⊲	ML	√	
Ratio Clay	40	0	14	0	7.	0	33	0	23	0	16	: O	Over 5%
Clay +	98	◁	45	4	24	0	70	4	89	۵	90	◁	10-20%
Gravel	0	◁	~	<	0	◁	3	∇	1	◁	3	∇	△ Previous Works: 5-60%
Natural Water Contents (%)	26	0	21	0	13	0	35	0	\$9	◁	26	Ο,	Previous Works: 10-40%
Index of Plasticity I.P. (%)	25	0	12	0		×	12	0	90	0	71	0,5	Over 10%
Imperviousness [Non-permeability]	Suitable	0	Suitable	0	Suitable	0	Suitable	O	Suitable	0	Suitable	Ó	
Plasticity	Suitable	0	Suitable	0	Non- available	×	Suitable	0	Surtable	0	Suitable	0	
Aspect of Construction	Available	◁	Suitable	0	Switzble	0	Available	◁	Available	٥	Available	4	
Potential	Available	⊲	Suitable	0	Not Available	×	Available	⊲	Available	7	Available \(\triangle \) Available	◁	

			Table-E.4	8	Rock Mai	terial	S Rock Material Potential by Laboratory Test Result	V = 2	oratory I	est Ke	suit			
Sample No.	RA		R.B		RC		ያ የ		R.E	* :	RF		Suitable Condition	dition
Rock Description	Grante	0	Ultra Basic	0	Ultra Basic	O ¹	Ultra Basic	O	Gramite	0	O Ultra O Granite O Granite O Basic	Ο.		
Specific Gravity Gs: Apparent	2.71	O	2.71	0	2.72	0	2.65	0	2.62	0	2.72 O 2.65 O 2.62 O 2.76 O	O	Over 2.5	S
Absorption (%)	0.7	0	0.7	0	0.8	0	0.8 0.4	0	0 1.1 0	0	0 2.0	0	Under 3 %	%
Potentiai	Suitable	0	Suitable	0	Suitable	0	Suitable	0	Suitable	0	Suitable O Suitable O Suitable O	0		

CHAPTER 5 STANDARD PENETRATION TESTS FOR RIVER COURSE

The purpose of the standard penetration test(S.P.T) along the river course of five rivers is to understand the foundation condition necessary for design of river improvement and renewal bridges. This consists of boring investigation at 12 locations (10m depth at each location) and standard penetration test of total 120 times (10 times at each location). Figure-B.5.2 indicates locations where boring and S.P.T were performed. Test results of S.P.T. are shown in Table-B.5.1 and Figure-B.5.1. Most of them indicate that foundation is loose sand and silt. Base rock is confirmed at the location near the hill side of Batu Gantung (SGT-3). N Values of the foundation in shallow depth(0-5 m) are approximately 10 and less than 20 and not so steady.

Table-B.5.1 Latest Results of River Course Investigation

<u> </u>	abie-	D.5.1	Lat	est R	esunts o	IKI	er Cou	rse li	ivesuga	HOH		4
River		Ru	hu			Batu l	Merah		Ton		mu	
Location	SRH	1	SRH	2	SBM	-1	SBM	-2	STM	- l	STM	-2
Depth	Class	N	CL	N	CL	N	CL	N	CL	N	CŁ	N
1	Sand	3	Sand	24	Sand	2	Sand	9	Sand	14	Gravel	-11
2	Gravel	5	Sand	8	Sand	5	Sand	- 5	Sand	10	Gravel	7
. 3	Gravel	8	Sand	10	Sand	9	Sand	5	Sand	11	Sand	-9
4	Gravel	19	Sand	10	Sand	46	Sand	7	Sand	6	Sand	14
5	Gravel	30	Sand	16	Sand	64	Sand	10	Sand	15	Sand	17
6	Sand	19	Sand	18	Sand	.70	Sand	7	Sand	7	Sand	16
7	Sand	20	Sand	16	Silt	39	Sand	9	Sand	13	Sand	12
8	Sand	24	Sand	27	Silt	44	Sand	25	Sand	11	Sand	16
9	Sand	27	Sand	29	Silt	42	Sand	24	Sand	16	Sand	17
10	Sand	29	Sand	30	Silt	42	Sand	33	Sand	16	Sand	19
11								1 /			Sand	20
River	Tonu	u		Batu	Gajah				Batu Gar	itung		
Location	STM	-3	SGJ-	1	SGJ-	2	SGT-1	*1)	SGT-	2	SGT	3
Depth	Class	N	Class	N	Class	N	Class	N	Class	N	Class	N
1	Sand	14	Sand	18	Gravel	50	Sand	5	Sand	15	Sand	24
2	Sand	10	Sand	23	Sand	9	Sand	7	Sand	3	Sand	75
3	Sand	11	Sand	6	Sand	10	Sand	9	Sand	15	Sand	14
4	Sand	6	Sand	9	Sand	11	Sand	12	Sand	14	Sand	5.5
5	Sand	15	Sand	10	Sand	27	Sand	14	Sand	27	Sand	67
6	Sand	7	Sand	16	Sand	23	Sand	.15	Sand	29	Sand	50
7	Sand	13	Sand	22	Sand	5	Sand	10	Sand	13	Rock	50
8	Sand	11	Sand	27	Sand	13	Sand	12	Sand	35	Rock	50
9	Sand	16	Sand	33	Sand	20	Sand	-13	Sand	33		
10	Sand	16	Sand	28	Rock	59	Sand	14	Sand	28		
11	Sand	18										

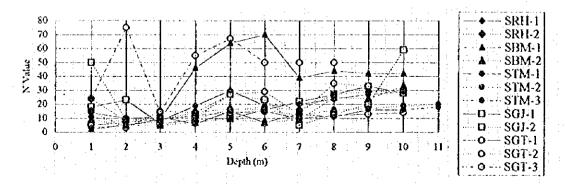
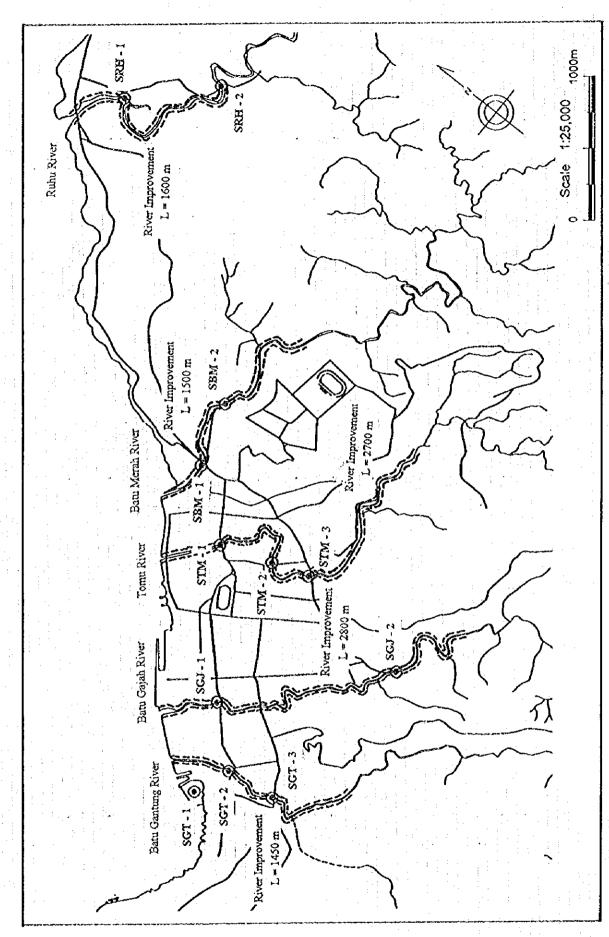



Figure-B.5.1 N Value along River Course

B - 23

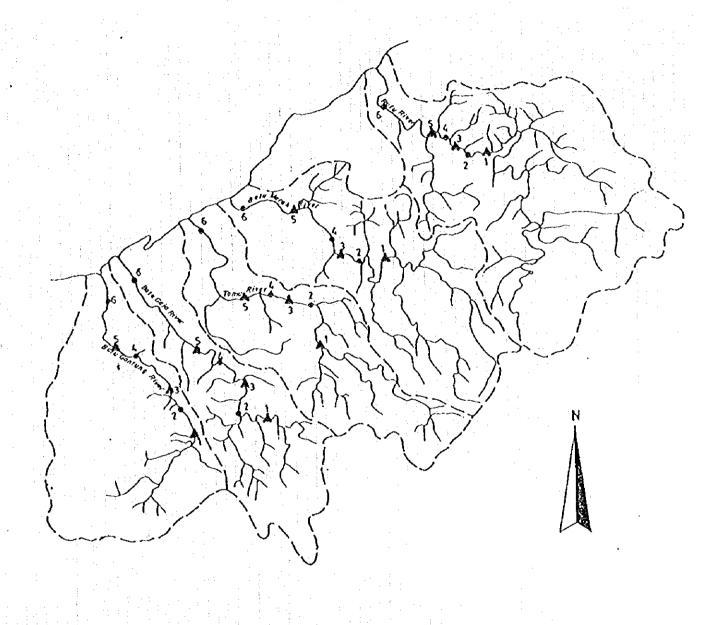
CHAPTER6 RIVERBED MATERIAL AND SEDIMENT LOAD

6.1 Field Survey

The survey of river bed material was carried out under sub-contract to the JICA Study Team. Field work was completed during December 1996 and river bed material was sampled using a bed grab sampler at six locations on each of the five rivers in the Ambon target area. Two samples were taken at each location and the sampling locations are indicated on the map in Figure-B.6.1. The samples were sealed in plastic bags and transported to the laboratory for analysis.

The sediment transport survey was undertaken at the same time as the survey of river bed material. Samples of suspended sediment load and bed load were taken at three locations on each of the five rivers in the Ambon target area. The sampling locations in Ambon city coincided with those of the water quality survey. River discharge was measured using a current meter at the same time as the sediment sampling. Sediment sampling was completed during December 1996 and the sampling locations are indicated on the map shown in Figure-B.6.1.

6.2 Results of River Bed Material Survey


Particle size analysis and specific gravity analysis were undertaken in the laboratory and the results, including specific gravity, classification, grain size and uniformity coefficient C_u, are presented in Table-B.6.1. Summary grain size analysis curves for each of the five rivers are shown in Figure-B.6.2.

6.3 Results of Sediment Load Survey

Suspended sediment sampling was carried by means of the Point Integrated Method using a US-P.61 water sampler. Water samples were taken at a known point depth equivalent to 80% of the maximum river stream depth. Between 300 and 450 cc of water containing suspended sediment was sampled at each location. The sample bottles were then sealed and sent to the laboratory for analysis of suspended sediment concentration.

Bed load sampling was carried out by means of a Pan Sampler. The pan sampler was laid on the bed of the river at the stream center and water containing bed sediment allowed to flow over the fine gauze. Sampling continued for approximately 30 minutes and the accumulated material was removed from the fine gauze and sealed in plastic bags before being sent to the laboratory for analysis. River discharge was measured using a current meter while the bed load samples were collected.

The sediment samples were analyzed in the laboratory and the results, including specific gravity, particle size and sediment concentration, were presented in the Final Report submitted at the beginning of February 1997. The results of the suspended sediment analysis are given in Table-B.6.2 and the results of the bed load sediment analysis are given in Table-B.6.3. As the sampling was carried out during the dry season in Ambon, when river discharge is low, the observed concentrations of suspended sediment were also low. The range of values was typically between 5 and 10 mg/l, at least an order of magnitude lower than expected. Sampling should be repeated during the rainy season when river flows are higher.

Legend:

- Sediment Load Samples (incl. Bed Material Sample) Bed Material Sample only

Sampling Locations for River Bed Material and Sediment Load Surveys (Ambon Area) Figure-B.6.1

Table-B.6.1 River Bed Material Survey - Grain Size Analysis

1	River	Sample	Specific		assification		·	rain Size Ar	
	Kitti	No.	Gravity (t/m ³)	Gravel	Sand	Silt / Clay	่ d∞ (กษา)	d _{io} (mm)	$C_0 = d_0/d_{10}$
		NO.				Sin / Ciay			
	Ruhu	IA.	2.57	55.6	44.1	0,3	9.6	0.6	16.0
ı		1B	2.65	65.3	34.7	0.0	5.4	0.5	10.8
		2A	2.61	21.1	78.2	0.7	1.8	0.3	6.3
		2B	2.59	33.4	65.7	0.9	3.4	0.4	8.4
1		3A 3B	2.55 2.55	45.7 15.2	53.8 84.4	0.5 0.3	5.7 1.8	0.4 0.3	13.5 5.4
1		4A	2.55	35.2	64.5	0.2	3.5	0.5	6.8
1		4B	2.66 2.57	42.7	56.8	0.4	5.4	0.4	12.8
		5A	2.57	44.6	50.0	5,5	6.1	0.1	59.3
		5B	2.59	42.7	56.6	0.7	5.6	0.4	15.2
1		6A	2.49	60.0	39.8	0.3	90	0.6	15.2
1		6B	2.62	61.8	38.2	0.0	11.9	0.7	16.8
-	Batu Merah	-1A	2.58	23.6	75.9	0.4	2.7	0.4	6.7
1		<u>1B</u>	2.50	50.5	49.2	0.3	8.9	0.5	17.4
		2A 2B	2.55 2.57	48.4 23.6	51.4 76.0	0.3 0.4	67 25	0.6 0.4	10.4 5.9
٠		3A	2.58	41,1	55.2	0.8	57	0.5	12.5
	t L	3B	2.47	55.7	55.2 44.1	0.3	6.9	1.2	6.0
		4A	2.58	53.4	46.2	0.4	9.8	0.6	16.6 10.7
		4B	2.58	46.6	53.0	0.4	6.3	0.6	10.7
		5A	2.44	92.7	7.3	0.1	17.3	5.9 5.4	3.0
		5B	2.58	92.6	7.3	0.1	16.3	3.4	3.0
		6A 6B	2.09 2.08	37.8 37.4	61.4 62.0	0.8 0.6	4.3 4.3	0.3 0.3	14.0 14.0
	Tomu	1A	2.62	2.4	97.3	0.3	1.1	0.3	3.1
	Kana	1B	2.61	26	97.1	0.3	1.1	0.3	3.2
		2A	2.64	70	92.8	0.2	1.1	0.5	2.8
:		2B	2.61	8.2	91.4	$0.\overline{4}$	i.i	0.5	3.0
		3A	2.59	39.1	90.4	0.5	4.6	0.3	13.4
1	i i	3B	2.63	37.0	62,6	0.4	4.1	0.4	10.0
		4A 4B	2,59 2,67	52.7 81.6	47.0 18.1	0.4 0.3	7.3 21.2	0,6 2,1	12.3 10.0
1		5A	2.55	39.3	59,9	0.8	4.2	0.3	14.1
1	*	5B	2.51	16.8	81.2	$\begin{bmatrix} 2.1 \\ 2.1 \end{bmatrix}$	1.0	0.2	6.5
	:	6A	2.58	7.2	91.2	1.6	0.7	02	3.5
ı		6 <u>B</u>	2.62	25.4	74.2	0.4	1.8	0.3	5.8
	Batu Gajah	1A	2.60	30.1	69.5	0.4	3.1	0.4	8.2
1	•	<u>1B</u>	2.60	114	88.1	0.5	1.4	0.3	5.1
	-	2A	2.62	16.4	82.6	1.1	1.3	0.3	4.9
I		2B	2.61 2.66	10.7	88.5 55.1	0.8 0.4	1.3	0.3	5.0
		3A 3B	2.66	44.5 36.4	62.9	0.7	5.9 3.1	0.5 0.3	12.9 12.1
		4A	2.57	34,3	61.9	0.9		0.2	15.2
		4B	2.63	36.5	63.2	0.4	3.6 3.9	0.4	11.2
		5A	2.58	46.4	53.0	0.6	6.2	0.6	11.0
		5B	2.62	55.4 37.0	44.3	0.3	8.2	03	27.5
		6A 6B	2,56 2,51	37.0 26.6	62.6 73.0	0.4 0.5	3.9 18.4	0.3 0.3	14.5 6.4
١	Batu Cantung	1A	2.55	58.4	41.0	0.6	9.3	0.5	19.0
	DARG CORRUING	IB	261	63.3	36.3	0.4	11.1	0.5	18.8
	:	2A	2.51	43.1	56.5	0.4	6.4	0.4	15.9
ļ		2B	2.5i	46.7	52.9	0.4	6.9	0.4	19.7
-		3A	2.59	57.5	42.2	0.3	8.5	0.6	14.0
		3B	2.62	58.6	41.0	0.5	8.1	0,6	14.6
		4A	2.55	12.2	87.4	0.4	1.9	0.5	3.7
ļ		4B 5A	2.58 2.61	13.5 37.6	86.1 61.1	1.3	1.9 4.2	0.5	3.8
-		5B	2.56	37.4	62.1	0.6	4.1	0.4	14.5 9.3
		6A .	2.62	54.1	45.3	0.6	8.0	0.5	15.3
l		6B	2.61	14.4	85.4	0.3	1.9	0.6	3.4
	and the second s								

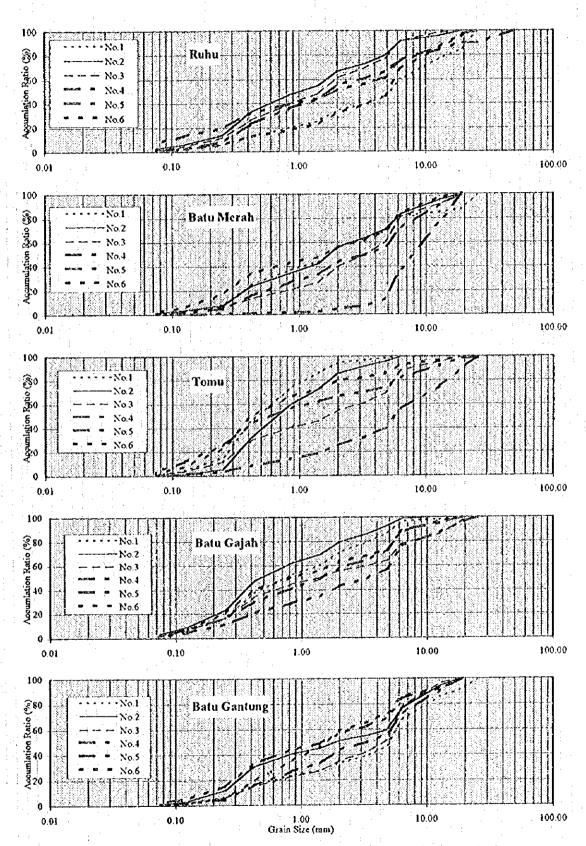
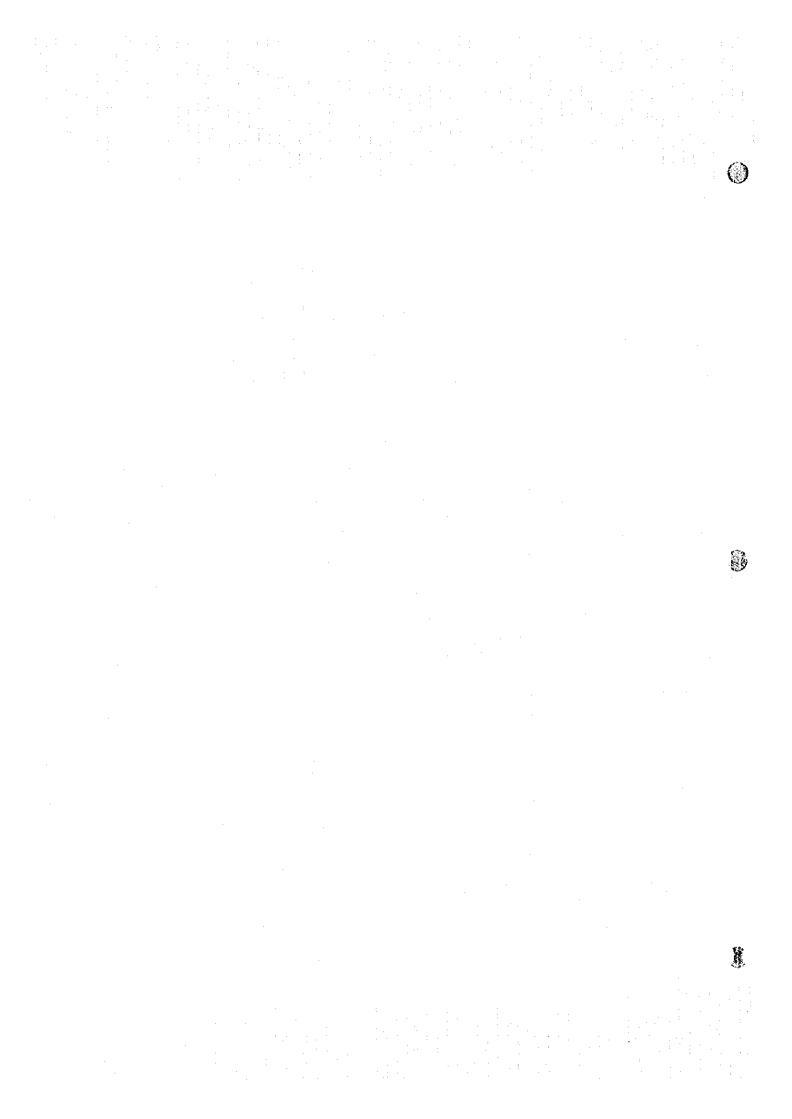
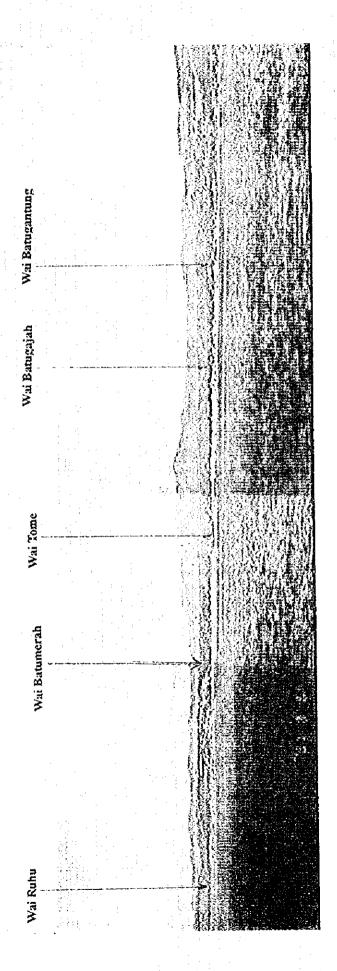


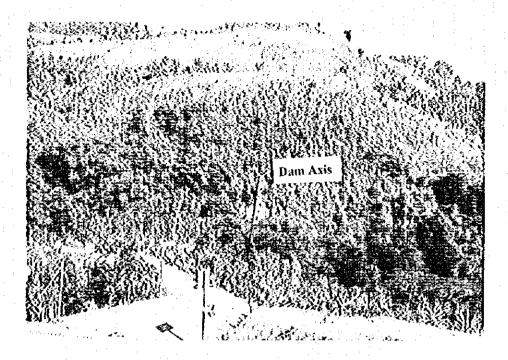
Figure-B.6.2 River Bed Material Survey - Grain Size Analysis

J

Table-B.6.2 Results of Suspended Sediment Analysis

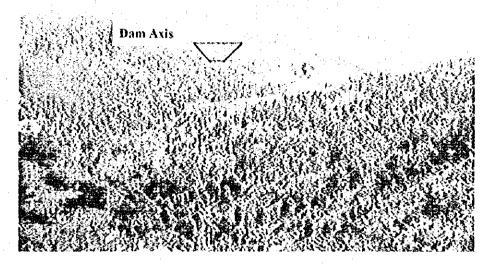

	[Van Princip	Volume of	Weight of	Sediment
River	Sa.	mpling Point	Date of	Time of	Water	Sediment	Concentration
٠	No.	Location	Sampling	Sampling	- (ભી)	(St)	(mg/l)
Ruhu	1		11/12/96	10:45	475	0.0024	5.1
4	3	;	09/12/96	14:53	405	0.0024	5.9
- :	5	Staff Gauge	09/12/96	12:25	405	0.0024	5.9
Bt Merah	1		10/12/96	09:30	350	0.0026	7.4
	3	· ,	10/12/96	10.45	358	0.0032	8.9
	5	Bridge	10/12/96	11:30	475	0.0030	6.3
Tomu	1		12/12/96	16:00	390	0.0014	3.6
	3	: `	12/12/96	16:45	310	0.0028	9.0
	5	Staff Gauge	12/12/96	09.52	295	0.0022	7.5
Bt Gajah	1		11/12/96	14:37	350	0.0019	5.4
	3 ;		11/32/96	09:05	475	0.0024	5.1
	5		10/12/96	15:27	410	0.0018	4.4
Bt Gantung	1	**	08/12/96	09.15	205	0.0016	7.8
	3	1	08/12/96	10:30	375	0.0020	5.3

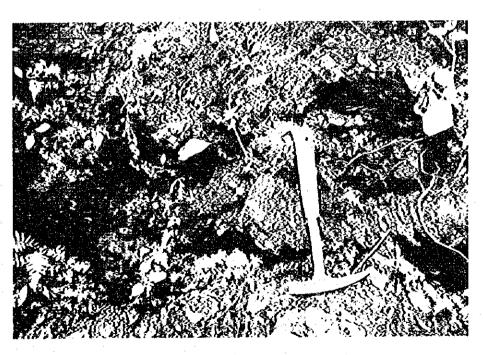

Table-B.6.3 Results of Bed Load Sediment Analysis

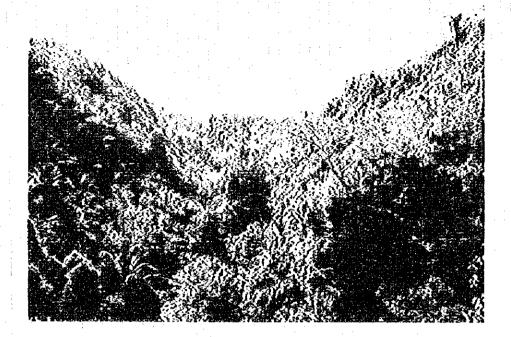

and the second second		E (UIC-DIO)		uits of Dea Y					
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Specific	Weight	Grai	n Size Ana	lysis .
	San	opling Point	Date	Time of	Gravity	of Soil	Gravel	Sand	Silt &
River	No.	Location		Survey	(t/m3)	(gr)	%	%	Clay
Ruhu	1	4	09/12/96	14:50 - 15:25	1.66	0.35	•	91,4	8.6
1	3	1	11/12/96	12:45 - 13:05	2.37	0.19	•	86.3	13.7
	5	Staff Gauge	09/12/96	12:45 - 12:55	0.92	0.11	-	90.5	9.5
Bt Merah	1		10/12/96	09:15 - 09:55	2.44	0.22		91.2	8.8
	3		10/12/96	11:00 - 11:35	2.08	4.19	•	33.1	66.9
	- 5	Bridge	10/12/96	10:27 - 10:55	2.26	1.61	· -	47.3	52.8
Tomu	1		12/12/96	15:30 - 15:50	1.80	1.46		70.3	29.7
	- 3		12/12/96	16:40 - 17:05	1.92	0.96		81.2	18.8
	. 5	Staff Gauge	12/12/96	09:30 - 10:00	2.10	2.12	_	76.5	23.5
Bt Gajah	ī		10/12/96	15:10 - 15:45	1.44	0.26	- ,-	90.2	9.8
	3		11/12/96	08:40 - 09:00	1.40	0.14	-	94.1	5.9
	5		11/12/96	14:00 - 14:30	1.61	0.37	_	92.6	7.4
Bt Gantung	1		03/12/96	09:15 - 09:45	2.13	0.62	-	45.2	81.5
	3		08/12/96	10:15 - 10:45	2.72	1.20		70.8	29.2

APPENDIX 1

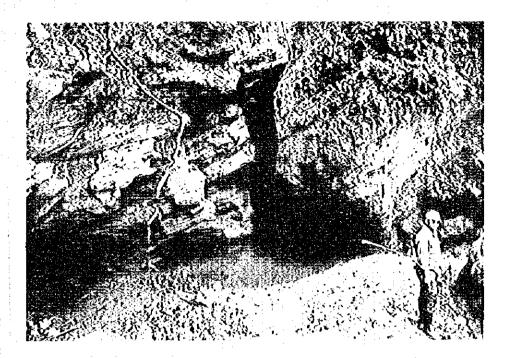
Photograph of Candidate Dam Sites

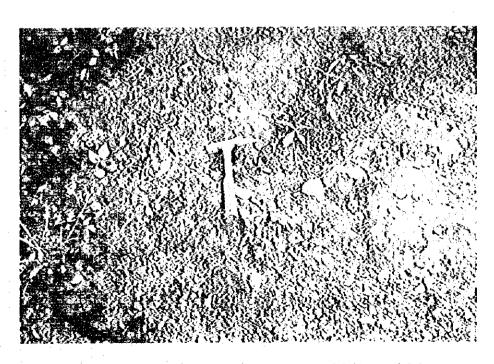


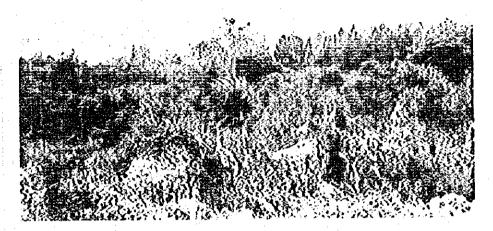

Ph-2 Batugajah Dam Site from Right Bank

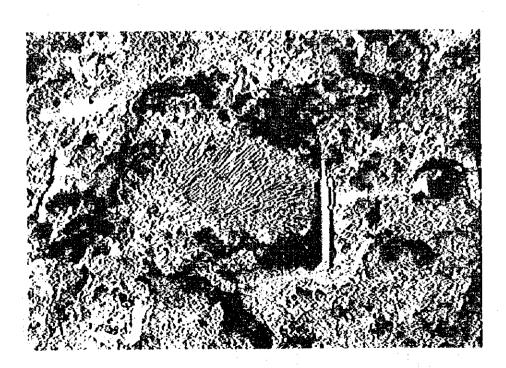

Ph-3 River Bed of Batugajah Dam Site from Downstream

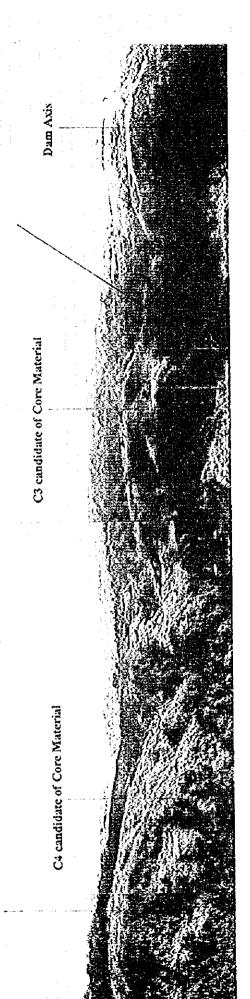
Ph-4 Batugantung Dam Site


Ph-5 Kanikeh Formation at the River Bed (Sandstone and Shale)


Ph-6 Ruhu Dam Site

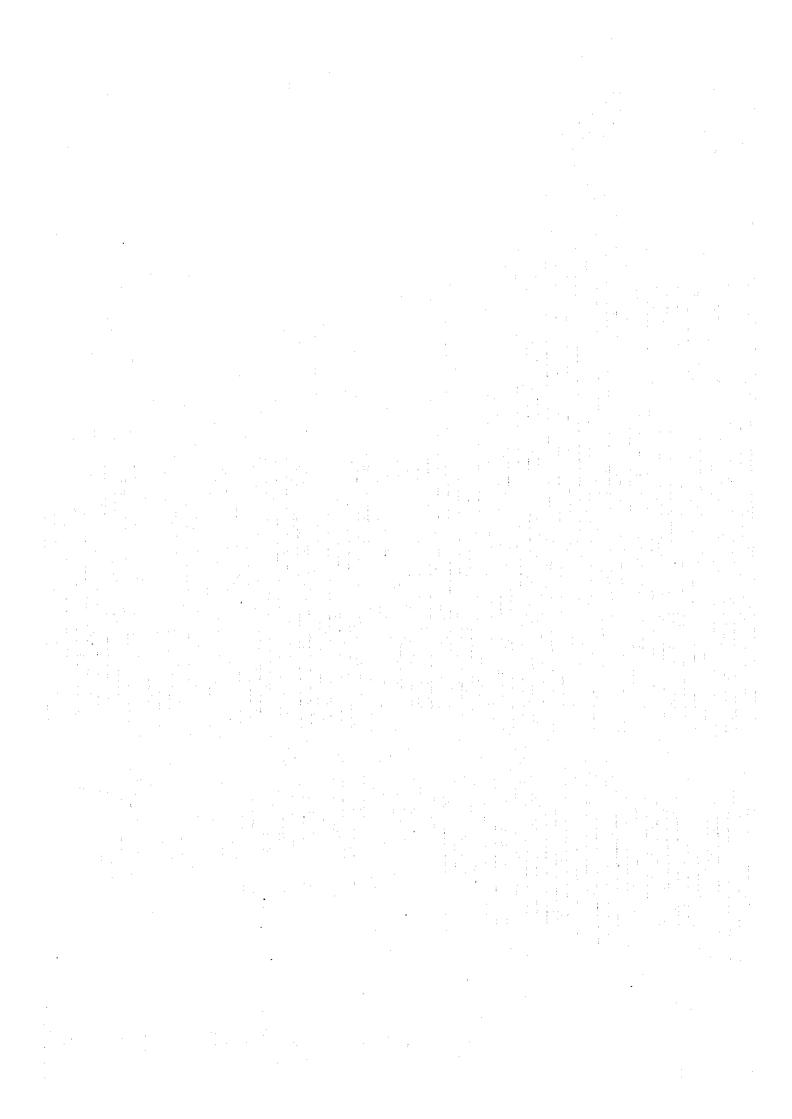

Ph-7 River Bed of Ruhu Dam Site

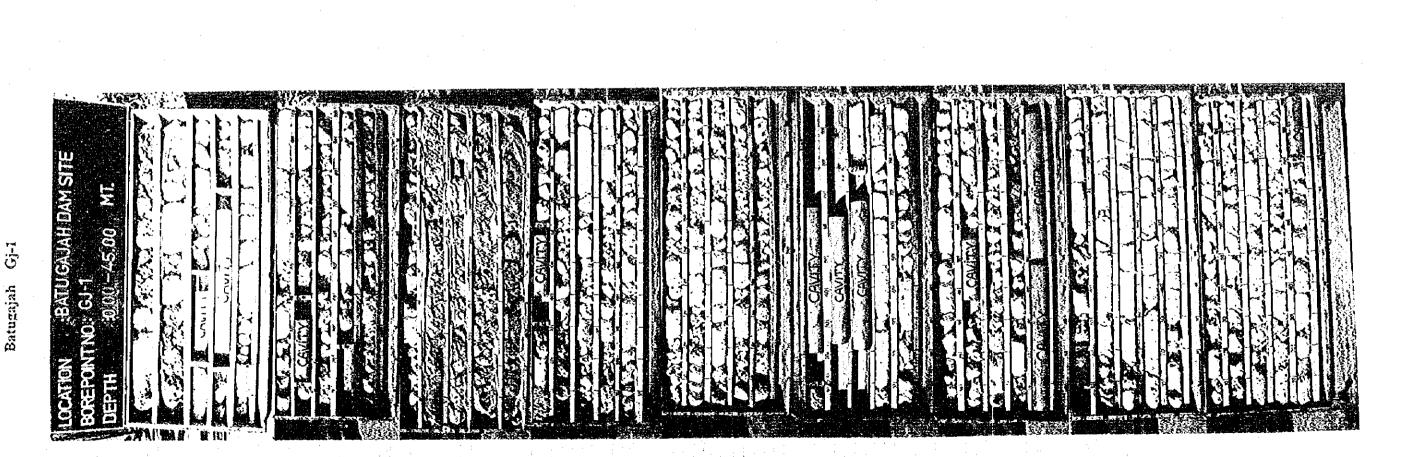

Ph-8 Coral Limestone in the Reservoir of the Batugantung Dam

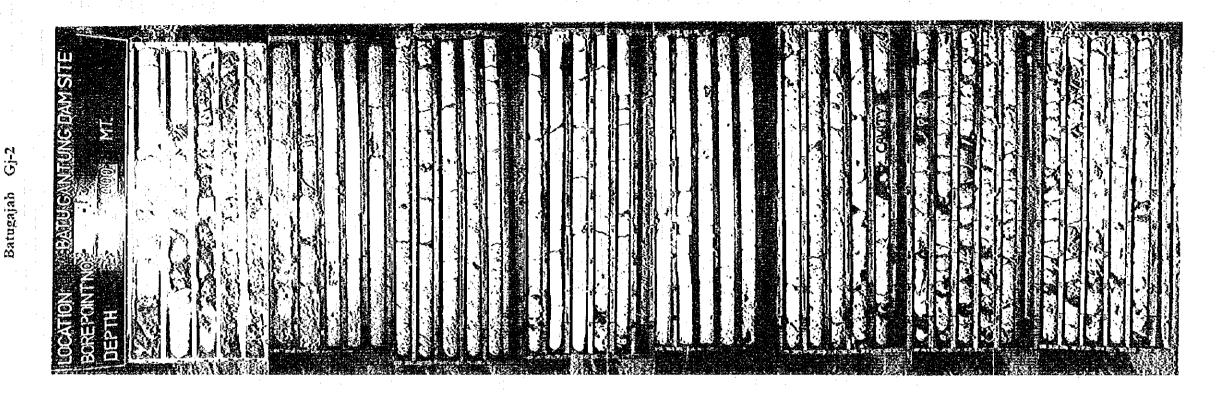

Ph-9 Kanikeh Formation at the Right Bank of the Batogajah Dam

Ph-10 Coral Limestone Plateau near Gunung Nona

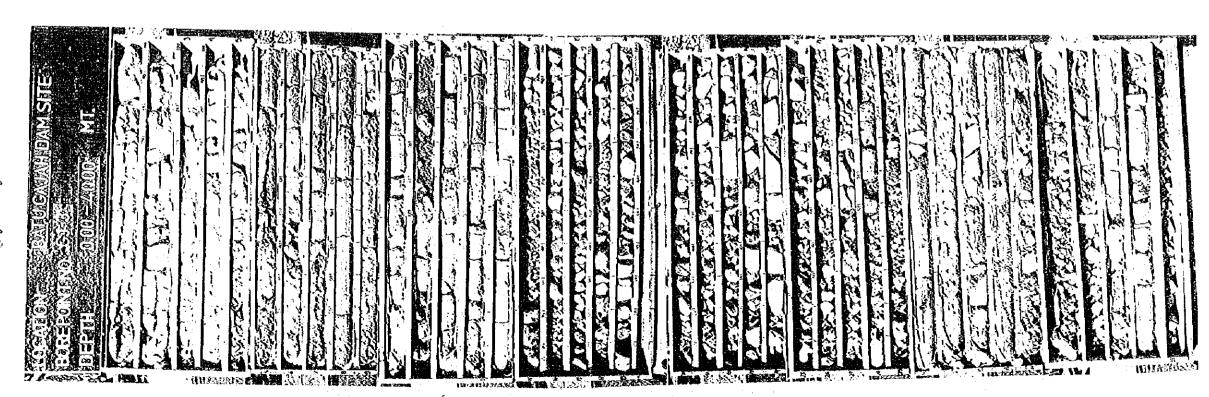
Ph-11 Fossil in the Coral Limestone

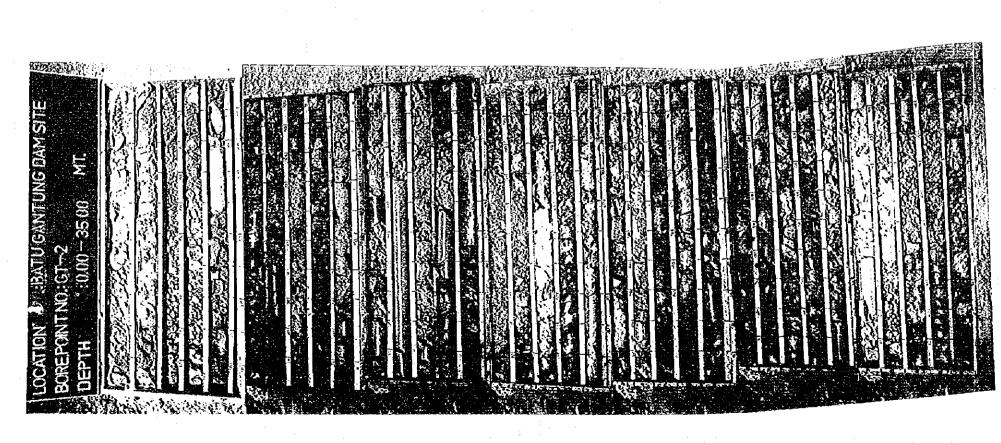



RC candidate of Rock Material


(1)


APPENDIX 2


Photograph of Boring Core in Dam Sites



Batugantung Gt-3

DEPTH 0.000 AT DEPTH

APPENDIX 3

Borchole Log in Dam Sites

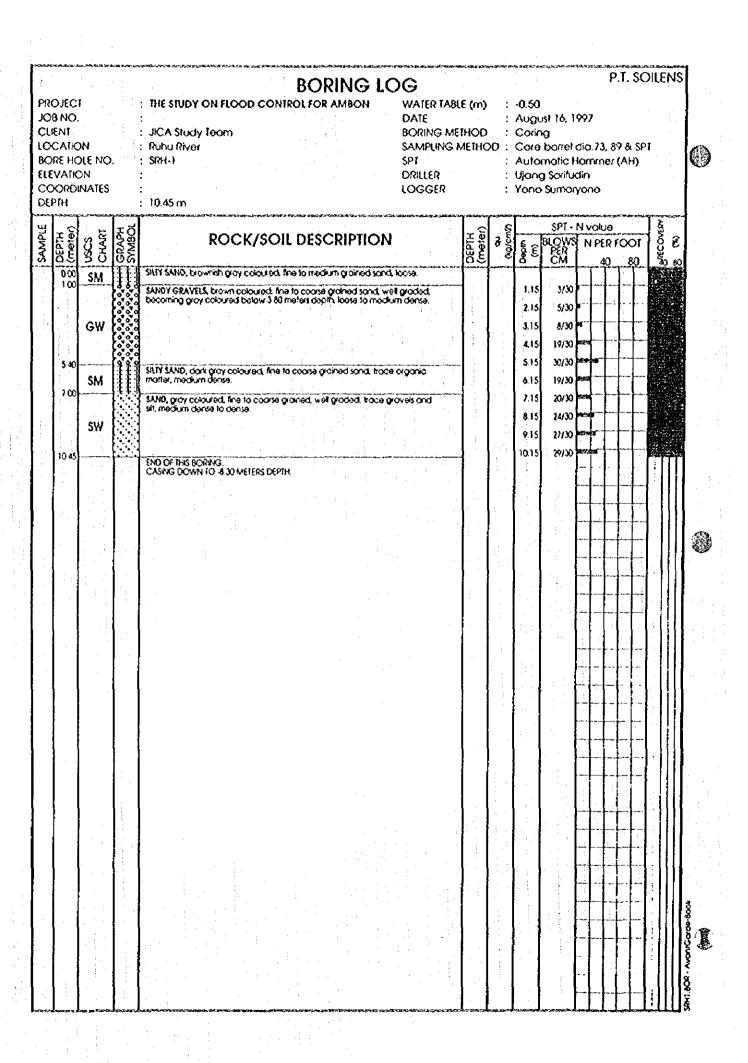
1

			-centura-	BORING LOG	<u> </u>	s apper	ir 31.443 S	et a lected	POPUL BALL BUILD	*****	Ρ.	1. SC	ϽΪĹΕ
JOI CUI LOI BOI ELEI CO	VAR	NC ON 3JC).	: THE STUDY ON FLOOD CONTROL FOR AMBON WATER TAB : DATE : JICA Study Team BORING Mi : Bota Merch River SAMPLING : SBM-1 SPI DRILLER : LOGGER	ETHC	OC	00	Corir Core Auto Ujoni	ust 18 to ng Dorrel malic F	dia.8 Iomr	9, 73 ner (& SP	
NAMP.	DEPTH (moter)	USCS	GRAPH SYMBOL	ROCK/SOIL DESCRIPTION	DEPTH	(meter)	00 (40/cm2)	Deom (m)	SPI BLOWS PER CM		ER FO	10C 80	EPECOVERY
	000	sw		\$4ND, brown coloured, fine to oporse grained, well graded, few gravels, trace shell fragments, medium dense.				1.15 2.15	2/30		: : : : : : : :		
	300	SM		SRTY SAND, brown coloured, fine to coorse grained sand, few gravet, diameter steed 1 to 2 cm, medium dense to danse.				3.15 4.15 5.15	45/30	KARISE 			
1.00	700	МЖ		CLAYEY SILT, whitish brown coloured, trace line grained sand, low plastic, shift to very stiff.				6.15 7.15 8.15	39/30 44/30		G		
	10.45	MA		END OF THIS BORING. CASING DOWN 10-3 20 METERS DEPTH.	-			9.15 (0.15	1	1 1			
			 1										
												- h	
												•	•
								-					
· ·								1					
		,						1.4	. ,				

JO CL LO BC ELE CC DE	VATIO	NO ON 3JC		:		om	D CO	NIRO	taliance rep	AM8()N	BA SA SPI DR	ITE IRING MPUN	ME NG M	E (m) IHOD MEIHC	: : : OC :	Corio Core Auto Aep	ust 12 to ng borrel emotic t Rohmo Sumor	dio don don yor	1.89, nme	73 & er (Al	cspt H)	, .
SAMPLE	DEPTH (meter)	USCS	GRAPH SYMBOL	:	R	loci	(/\$ C	OIL [DESC	RIP	ION	l		1.1	DEPTH (meter)	QU (4Q/cm2)	Cep.	SPI - BLOWS PER CM		PEr	? FOX))	Secovery
	000	SM		SAND, bi diomete	own color rezed 1 - 3 łD, dark g g greona	red, fine I cm, foo oy colou I groy co	to coo se red, tra foured	pelow ca org	ned sor onic mo 5 00 me	id, welf- itter, fini fens dec	graded, a graine ith, loose	gravel d sand a la me	dum				1.15 2.15 3.15 4.15 5.15 5.15 7.15	9/30 5/30 5/30 7/30 10/30 7/30 9/30		4(30	30
	8 30	sw		SANO, go whitish g medium	oy coloure loy coloure dense to d	id, fina lo ed below sense.	9.10 m	e e e e	ed sond el attopi	weil gr w irnesi	oded, b	econii veis	νο				8.15 9.15		;	•	-		
				CASING	HS BORW DOWN TO	∙ co ME	TERS DE	РІН .															
			-		powie destruction	581.456 (2013)	ay kalanda ay ay							-€< -m3r->									

	3			BORING L	OG		:	• .	1		Ρ	.T. \$0	OILE
	OJEC		1 1	THE STUDY ON FLOOD CONTROL FOR AMBON	WATER TABLE	E (m)	::	none		i			
	8 NO.				DATE				ist 7. 19	×97			
	IENT			JICA Study Team	BORING MET	_		Corin					
_	CAIK			Botu Gojoh River	SAMPLING N	4ETHC							
-	RRE HC	ON BJC	•	SGJ-1	SPT DRILLER				matic t		meri	(AH)	
-		JN NATES			LOGGER				Rochm Sumai		`		
	PTH	ii wateo		10.45 m	EU-GGER .			1010	, gori Kali	уснк	,		
, ,		7567.70 B 76 5		n, p took to the victorian made to have provided that the second the second term and the second of t	(100 克·斯·伊伊 (104 克斯·斯 萨·巴勒·达·巴				SPI -	N uc	ener No	-	È
}	DEPTH (meter)	25.5	출	ROCK/SOIL DESCRIPTION	1	돌 호 호	90 (40/cm ²	£ _	BLOWS			001	COVERY
•	äĚ	USCS	GRAPH SYMBOL			DEPTH (meter)	ફ	(E)	PER CM		40	80	Š
	000	ČI.		SAND, don't gray coloured, fine to coarse grained sond, well gro diameter sized 1 to 3 cm, medium danse.	ted few grovers				. :		Τ		
	3.00	SW			and the second		:	3.15	10.77				
	"	611		SAND, blockish gray coloured, fine to coorse grained, well grade mixtured, trace organic matter, loose.	d few sit		1	2.15					
		SW	$ \cdot,\cdot,\cdot $					3 .15		1 1	7		
	4 00		:::	SAND, gray coloured, fine to coarse grained sond, well graded, medium dense.	oose to		:	415	9/30	1	1		
		. :	:::	Higoort Oglog	:			5.15	10/30				
		SW						5.15	16/30	56.NE	+		
	- [*				7.15	22/30	M-85		- -	
	800		r r z	SILLY SAND, groy coloured fine to medium critical your conduction	oroged			8.15	27/30	255	+-		
		SM		SILIY SAND, gray coloured, fine to medium grained sond, poorly medium dense to dense.	*	}		9.15	33/30	1 1	4-		
		SIVI						10.15		1 1	- 1	<u> </u>	
	10 45		المععد	END OF THIS BORING.					: 10730				
		1 1		CASING DOWN TO 9.00 METERS DEPTH.		. 1	: :	[:				_ _	
1		1.0			;						1.		
		1 .											
		*]
	 					 				 			
							+ 1			- -	1-		
						1				┟╌┼			1 1
										 - - ·	1	-	1
		:						. [
											· [·]		
	[. i				į	. [4-	!	H
										-			
									:				
													1
								ļ					
					[
	.	į.						İ					1
			\			\	1		İ				1 1
								•					
											11		
		- 1 }				· [•					
												:	
	7						1			-	·	• .	
			[[- 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+ 1	• • •	
						· . [Ì	İ		الله أحدا	. []		t
		1	.				.]				- -		
						: [ł			_ _	-		
		i					ا ا				-		
						•	`						
							į.						

P.T. SOILENS BORING LOG PROJECT : THE STUDY ON FLOOD CONTROL FOR AMBON WATER TABLE (m) : -1.40 JOB NO. STAG : August 12 to August 13, 1997 CLIENT BORING METHOD JICA Study Team : Coring LOCATION Batu Gajoh River SAMPLING METHOD: Core borrel did.73 & SPT () BORE HOLE NO. SGJ-2 SPI : Automotic Hommer (AH) **ELEVATION** DRILLER : Ujong COORDINATES LOGGER : Yong Sumaryong DEPTH 10.45 m (co)(cw) SPI - Nivolue GRAPH DEPTH (mater) OEPTH (meter) USCS **ROCK/SOIL DESCRIPTION** BLOWS PER CM N PER FOOT (E) SM 13: SILTY SANO, brown coloured, fine to medium grained sand, loose 0.60 N > 100 SW \$AND, gray coloured, fine to coorse grained sand, few gravels, dense. 50/10 SANDSIONE BOULDER, gray coloured, strong. 2.15 9/30 \$10.7 \$2,000, greenish gray coloured, fine grained sand, madium dense. 10/30 3.15 \$M 4.15 11/30 5.15 27/30 51 SANO, brown coloured. In a to coorse grained, well graded, few grave's diameter sized $I\!-\!2\,\text{cm}$ medium dense. SW 6.15 23/30 67 SILTY SAND, gray coloured, fine grained sand, loose. 7.15 5/30 SM 13/30 8 30 8.15 SANO, brown coloured, fine to coarse groined sond, well groded, few grovels, diameter sized 1 to 2 cm, found sondstone boulder of 9.00 - 9.40 meters depth, medium dense to dense. SW 9.15 20/30 0.01 10.15 59/25 BRECCIA, blacksh brown coloured, sandstone fragments, strong, 10:45 END OF THIS BORING. CASING DOWN TO -9.45 METERS DEPTH.


S4300 401	tede the graves	actor death at a said	to Apropri _a ce _e in	BORING LOG	r Mekapitan akama	LO REPTIONS	***************************************	er bycer b	******	F CRAA	P	.T. S	Oil	<u>.</u>
	OJEC		•	: THE STUDY ON FLOOD CONTROL FOR AMBON WATER	TABLE	(m)		-0.40				:		
	B NO IENT			: DATE : JICA Study Team BORING	S MED	100		Corir	ist 2, 19 19	77				
	CAIK			: Mayome Dock SAMPLIF	NG M	ETHC								
	RE HO	ON 3JC		: SGT-1 SPT : DRILLER	}				matic I Rohma		mer	(AH)	1	÷
CC	XORD	INATES		: LOGGE					Sumai		٥			
DEI	PIH	n gertanisken:	****	: 10.45 m	O september et al		ranarar.	ense all and	all gridges as an	ار کام د کوال موس	-SVE-FILE	toer to the least of		-
'n	<u>د</u> څ	≂	ΣQ	DOOM OOF DECORION		- Ç	12)		SPI -				CONFR	3
SAMPLE	DEPTH (meter)	USCS	GRAPH SYMBOL			DEPTH (meter)	Co/cm	₹ <u>€</u>	BLOWS PER CM	N	PER 1	OO:		o i
	100	SM		Sitty SAND, brown coloured, fine to coorse grained sand, few graves, loose (FILL MATERIAL)				١,,,	6/20				_	
		1.		SILTY SUND, do't gray coloured. The to coarse grained sand, trace gravets, organic matter included, medium danse.			1	2.15	i. ` .	1 1				
		SM						3.15	•	• •			-	
		7.5						4.15		1 1	+	╁╌╂	_	
	500	-		SAND, gray coloured, fine to medium grained sand, poorly graded, trace sit				5 .15	ì	, ,	- -	╁╌╂	- 🕷	
		SP		mixtured, medium dense.			1	6.15	1	11			-	
	700			SANO, gray coloured, fine to coarse grained sand, found few gravels at 8 00 to 9 00 meters depth, diameter sted 0 50 to 1 00 cm, medium dense.				1,15	10/30	┢╌┼	+	╁╼╁	- 1	
			·	to 9 00 meters depth, diameter sted 0 50 to 1,00 cm, medium dense.	:			8,15	12/30	a	+	 		
		SW			- 1			9.15	13/30		+	-	-	
	10.45		 ::: :	END OF THIS BOOMS			:	10.15	14/30	p.27	十	-	-	奪
				END OF THE BORNIG. CASING DOWN TO 9 COMETERS DEPTH.	- , }	١	: :							П
		11.				.					- -		-	
						Į								į
]	
							,							
			1		1								_	1
:]		1			. [_ _		•	
1		1							:		_	. 	[]	
:]								i
٠.						J					-			ال
					- }					-	-		4.	
		1						1		- -	- -		-	ĺ
											-		-	ļ
]]			1					-1-	 - }·	-	
												├╌┟	-	
				· 	-					- -	+-	-	-	
, : - -		3.7				İ					<u> </u>		-	-
														Ì
:									. :					
						, I		, ,			_ _		╌╏╌╏	
									:					
			٠. ا							_ -			-	
						1					-	- -	_	1
			.				. ,	• "	1.50				-[-[
	[:]					- [
			•			-]	- }]						
									:		- -		-[[[
: ;	Į	l	L		AND THE RESERVE		WE 78-2		CCD-4 BE	. بأم ديد				L

()

antice.	·	**************************************	***************************************	BORING LO)G	The BETT A	/24 PO	काल व्यक्तिकार	ecuerio evene	P.T. SC	HENS	
OB CUE OC OR LEV	ATIC E HO /ATIC ORDI	ON ON 3JC		: THE STUDY ON FLOOD CONTROL FOR AMBON : JICA Study Team : Batu Gantung River : SGT-2 : : 10.45 m	WATER TABLE DATE 80RING MEE	THOO	0 :	Corin Core Autor Aep I	st 3 to g borret			0
	(meter)	USCS	GRAPH SYMBOL	ROCK/SOIL DESCRIPTION		DEPTH (meter)	(c)cm2)	(£		N volue N PER FOOT 40 80	S (%)	
	0.06	SW	7/7	SILTY CUAY, brown coloured, frace fine grained sand, solf, SAND, gray coloured, fine to coorse grained sand, well graded, fer diameter sized 1 to 2 cm, toose.				1.35	15/30			
	2.45	-311	EI	SILIY SAND, gray coloured, fine to medium grained sand, medium	. 11.1			215	3/30	 		
		SM			3.3			3 15 4 15	15/30 14/30			
	5 60							5.15	27/30	1 1 1 1 1		
				SAND, gray coloured, fine to coorse grained sand, well graded, tro shell fragments, medium danse to dense.	×θ		:	6.15	29/30			
ŀ		SW						7.15 8.15	13/30 35/30	in the date		
		:						9.15	33/30	1		
	10.45	1		END OF THIS BORING. CASING DOWN 10-900 METERS DEPTH.				10.15	28/30	25-7-26		
	: :			S. S. S. S. S. S. S. S. S. S. S. S. S. S		31 1	:					
												. 1
							k -					
					1 . *		:		 			•
		:										
l												
Ì	:											
1	.						:					
									- 44 - 5 - 1			:
							ı					
							ļ					
									1			
									}			
			, i								*	
			: .					:			G12.808 - Avantacroe-8008	A.
	•										346	
											¥ • • • • • • • • • • • • • • • • • • •	
					: *]					╍╂╼╂╼╂╼┨		

PRO	OJEC]	COLUMN	BORING LOG THE STUDY ON FLOOD CONTROL FOR AMBON WATER TABLE	.E (m	n) :	none) :		P.T. S	OIL	Ē
CLI ELE	VATIO	ON 3JC		DATE UICA Study Team 80RiNG ME Batu Gontung River SAMPLING SGT-3 SPT ORILLER	THO	D 100 :	Cori Core Auto Aep	borrel matic l Rohmo	dio 89 Homm	. 73 & 9	èr Sèr	
DEF	YH	NATES	***************************************	: 8.06 m : 8.06 m	7	-1		Sumo	71F SATURAL	and Above sources	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Olica
SAMPLE	DEPTH (meter)	USCS	GRAPH SYMBOL	ROCK/SOIL DESCRIPTION	HIG3C	(meter)	e (£)	A	N VOIC	ie R FOO 0 80	1 7	, ,
	0.00	sw		SAND, some gravels brown coloured, fine to coarse grained, well graded, gravel diameter steed 1 to 3 cm, medium dense to dense.			1.15	24/30	of sky		2	
	2.60			SUND, whitsh gray coloured, fine to coalse grained, well graded, some coral grave's, dense to very dense.			3.15	14/150	}			A
	6.30	SW			:		4.15 5.15 6.15	67/25				A STATE OF THE PARTY.
	8.06		選	UMESTONE, white coloured corollic fragments, hard.			2,15 800	50/15	era Historia			
				END OF THIS BORING. CASING DOWN TO -7.00 METERS DEPTH.							-	
								111			_	
	:											
							: -		(1 : 1		-	
								•				
											-	
	:											
									:			
										- - -		1
	*:	1				:						
					·	::						

()

SW SW dometric relative of the process grained well graded, few graves. SW SW SW SW SW SW SW SW SW SW SW SW SW S			
DIRECT : THE STUDY ON FLOOD CONTROL FOR AMBON WAIRR TABLE (m) : -0.50 B NO. : ISH		SAMPLI	JO CL IO BC ELE CC DE
THE STUDY ON FLOOD CONTROL FOR AMBON WARR TABLE (m): -0.50 DATE August 14 to August 15, 1997 POR ROTH River SMAPPLINS METHOD: Core borrel did 73, 89 & SPT Automotic Hommer (AH) DRILER Upong Sorinkon BORN SMAPPLINS METHOD: Core borrel did 73, 89 & SPT Automotic Hommer (AH) DRILER Upong Sorinkon BORN SMAPPLINS METHOD: Core borrel did 73, 89 & SPT Automotic Hommer (AH) DRILER Upong Sorinkon BORN NER FOOT STATE STAT			B NO IENT CATIO PRE HO EVATIO XORO
THE STUDY ON PLOOD CONTROL FOR AMBON WAIGR TARLE (m) JACA Study Team Roha River SRING SAMPLING METHOD: Coring Roha River SRH-2 SPI DRILLER LOGGER Tono Sumaryona TONO SUMARYON NER FOOT GOTHER RIVER SPI - N VOUS SPI - N VOUS SPI - N VOUS SPI - N VOUS SPI - N VOUS SAMPLING SILL DESCRIPTION SPI - N VOUS SPI			ON OLE NO ON
THE STUDY ON FLOOD CONTROL FOR AMBON WATER TABLE (m): -0.50 DATE August 14 to August 15, 1997 ROTHING REHOD Coring SAMPLING METHOD Coring Grid of August 15, 1997 ROCK/SOIL DESCRIPTION ROCK/SOIL DESCRIPTION ROCK/SOIL DESCRIPTION SAMPLING METHOD Coring Spring of August 15, 1997 SAMPLING METHOD Coring Grid of August 15, 1997 Automotic Harmer (AH) DRILLER Upong Sorthodn ROCK/SOIL DESCRIPTION SAMPLING METHOD ROCK/SOIL DESCRI		GRAPH SYMBO	
(m) : -0.50 August 14 to August 15, 1997 HOD : Coring ETHOD : Core barrel dia 73, 89 & SPT Automatic Hammer (AH) Ujang Sorifudin : Yono Sumaryono SPT - N value E BLOWS N PER FOOT CM 40 80 1.15 24/30 24 2.15 8/30 25 3.15 16/30 25 3.15 16/30 25 3.15 16/30 25 3.15 27/30 25 3.15 29/30 25 3.15 29/30 25 3.15 29/30 25 3.15 30/30 25 3.15	END OF THIS BORING.		: THE STUDY ON FLOOD CONTROL FOR AMBON : DATE : JICA Study Team : Ruhu River : SRH-2 : ORILLER : ORICER
-0.50 August 14 to August 15, 1997 Coring D: Core barrel dia 73, 89 & SPI Automatic Hammer (AH) Ujang Sarifudin : Yano Sumaryano SPI - Nivolue SPI - Nivo		OEPTH (meter)	HOD
August 14 to August 15, 1997 Coring Core barrel dia 73, 89 & SPI Automatic Hammer (AH) Ujang Sorifudin Yana Sumaryana SPI - N volue SPI - N		Cro/on2	0
ust 14 to August 15, 1997 ng borrel dia 73, 89 & SPI matic Hammer (AH) g Sorifudin Sumoryono SPI - N Volue BLOWS N PER FOOT PER CM 40 80 24/30 24 8/30 25 16/30 25 16/30 25 27/30 25 30/30 27/30 25 30/30 27/30 27/30 28/30	3.15 4.15 5.15 5.15 7.15 8.15 9.15		Augu Corir Core Auto Ujan
o August 15, 1997 dia 73, 89 & SPI Hammer (AH) din Hyono N Volue N PER FOOT 40 80	10/30 10/30 16/30 18/30 16/30 27/30	BLOWS PER CM	ust 14 forg borrel motic I g Sorifu i Sumo
Qust 15, 1997 73, 89 & SPI mer (AH) D D D D D D D D D D D D D D D D D D D	23	N	dia Ham Idin Iyon
FOOT 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			gus 73, a arnea
N 1997 R SPI H)			1 15 89 8 1 (A
DI CONTRACTOR CONTRACT		OT 80	5, 19 & SF
	等。 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A CONTRACT)))) >1
		(F) S	
S (*) 8 (*)			

P.T. SOILENS **BORING LOG PROJECT** : THE STUDY ON FLOOD CONTROL FOR AMBON WATER TABLE (m) : -3.00 JOB NO. DATE : August 8 to August 9, 1997 CUENT BORING METHOD JICA Study Team : Coring Tomu River LOCATION SAMPLING METHOD: Core borrel dia.73, 89 & SPT BORE HOLE NO. SIM-1 SPI : Automatic Hammer (AH) **ELÉVATION** DRILLER : Aep Rochmat COORDINATES LOGGER : Yono Sumaryono DEPTH : 10.45 m (kg/cm2) SPI - Nivalue DEPTH (meter) USCS CHARY GRAPH SYMBO DEPTH (meter) **ROCK/SOIL DESCRIPTION** BLOWS PER CM N PER FOOT **6** (3) SAND, brownish gray coloured, fine to coase grained sond, well graded, bace grave's mixtured, diameter sted 1 - 2 cm, at 1.45 to 2.00 meters depth found white coloured limestone boulder, medium dense. 000 SW 1.15 14/30 200 215 10/30 SAND, gray coloured, fine to coorse grained, well graded, medium dense. SP 11/30 3.15 SLITY SAND, dark gray coloured, trace organic matter, fine to medium grained sond, poorly graded, loose to medium dense. 6/30 5.15 15/30 4.15 7/30 13/30 SM 11/30 8.15 9.15 16/30 18/30 10.15 10.45 END OF THIS BORING. CASING DOWN TO 9.00 METERS DEPTH.

P.T. SOILENS **BORING LOG** THE STUDY ON FLOOD CONTROL FOR AMBON WATER TABLE (m) : -3.00 **PROJECT** : August 8 to August 9, 1997 JOB NO. DATE CLIENT **BORING METHOD** : Coring JICA Study Teom LOCATION : Tomu River SAMPLING METHOD: Core barrel dia.73, 89 & SPT SPT BORE HOLE NO. : STM-2 : Automatic Hammer (AH) **ELEVATION** DRREER : Aep Rochmot COORDINATES LOGGER : Yono Sumaryono DEPTH 11.45 m PRCOVERY SPI - Nivolue DEPTH (meter) DEPTH (meter) CHART ROCK/SOIL DESCRIPTION BLOWS PER CM δ N PER FOOT 3 SANDY GRAVELS, brownish gray coloured, fine to coarse graned sand, well graded, gravet diameter sized 1 to 2 cm, trace sit, loose to medium dense. 000 GW 11/30 7/30 SILTY SAND, greensh gray coloured, fine to medium graned sand, poorly graded, trace dark gray coloured organic motter at 3 00 to 5.50 metes depth, medium darke. 3.15 9/30 415 14/30 17/30 5.15 16/30 6.15 SM 7.15 12/30 8.15 16/30 9.15 17/30 19/30 10.15 11.15 20/30 END OF THIS BORING. CASING DOWN TO 11 00 METERS DEPTH.

	,i		:	BORING L	OG				P.T.	SOILENS
tEV.	NO. NT. ATIC E HC ATIC PROI	ON 3JC		THE STUDY ON FLOOD CONTROL FOR AMBON JICA Study Team Tomu River STM-3	WATER FABI DATE BORING ME SAMPLING I SPT ORILLER LOGGER	THOO METHOO	Cori Core Auto Aep	ust 10 to . ng oboiret d	ommer (Al t	cSPT
DEPTH	ie.)	S 25	FŠ	ROCK/SOIL DESCRIPTION		DEPTH (meter)) 		volue	S 60 80
	(meter)	H CHART	GRAPH SYNBOL		tra vitra rimanatako ni na ununusu u	CEPTH (meter)	S E	PER CM	N PER FOO	30 30 8 30 8
'	100	SW		SHTY CLAY, brown coloured, frace fine grained sand, soft. SAND, whitish gray coloured, fine to coorse grained sand, well grained graves, diameter sized 1 - 2 cm, medium dense.	ided.		1.15	l I.	1 1 1	
;	3∞			SAND, dark gray coloured, fine to coarse grained sand, trace gra- organic matter, medium dense.	vals some	-	3.15		1 1 1	
١.		1		organic matter, measum assiss.			415	1)		
		SW					5.15 6.15	1		
	1						7.15	1	.	
	8 20			SILIY SAND, don't gray coloured, fine to medium grained sand, fer mother, modium dense.	A orbasic		8.15 9.15		111	_
		SM					10.15	1	a	
ŀ	1,45			END OF THIS BORING. CASING DOWN TO -9.00 METERS DEPTH.						
				Como porte to reconcerne				- -		
			1				:			
	.:							· · · · · · · · · · · · · · · · · · ·		
		÷						-		
		.*								
				•						
								-		
			. '					- C	-	
								. 		
								-		
	:									
	1				* 1					
						3 7 : 1		-		
	-	:							-	
									- - -	
								}	+++	
1								 -	╂╂╂	