Appendix 4 Axle Load Survey Results

Appendix4.1 Survey Sheet - Traffic Count

Station No.	Name of Enumerator	numerator		Direction		Date		Weather		
ı,	Pedestrian Bicycle	Bicvole	Motorcycle	Passenger car Other	Other	Taxi	Bus	Pick-up	Truck	Truck 3 or
				+ 4WD	Tractor	Mini Bus		Truck	2-axie	more axle
					Roadroller					
	0- -	8			6				15	
	7		0		1					
7:00 - 8:00										
9:00 - 00:8										
9:00 - 10:00										
10:00 - 11:00										
11:00 - 12:00										
12:00 - 13:00				[
13:00 - 14:00					`*					
14:00 - 15:00							W	_ -	-	_
15:00 - 16:00										
16:00 - 17:00										
17:00 - 18:00										
18:00 - 19:00										
Total		<u></u>								

Appendix 4.2 Survey Sheet - Axle Load Survey

			_	The whom interviewed		interviewer:		-
Station	Date:	Direction						
		to Kampala		From	10			
0								
		2 1011 7		Destination		Purpose	No. of passengers Commodity	Commodity
	Vehicle Type	Origin		the of the other states of		-	(including driver) 1. No Luggage	1. No Luggage
		Write the place of departure		200		1 Go to office/working place		
	1. Motorcycle	Inside Uganda		Inside Oganda		E CONTRACTOR OF C		3. Timber
	2. Passenger Car	District	Division/Parish	District	Unision/Parish	2, 50 to survey		A Other ancies/Butal
	3. TaxiMini bus	3				G. dusiness		5 Oil
	4, Bus					4. Snopping		6. Mineral
	5. Pick-up Truck					S Other Back tollic		7. Machinery
Sample	6. Truck 2-Axle			111111111111111111111111111111111111111				3. Chemical
<u>п</u>	7, Truck 3-Axle or more							9.Construction Material
	8. Others	Outside Uganda		Outside Oganda				10 Miscellaneous
		Country		Country				
<u> </u>								
		. –						
				17.0	Code			
			Code					
		Code	Code	(Code				
					-			
		Code	Code (1	Code				
			Code	Code	Code			

Appendix4.3 Axle Load Survey Results (1)

(Unit: tonnes)

Sample No.	Direction	Registr.	Туре	Axle1	Axie2		Axle4	Axie5	Axies	Axle7	Model	Loading
1	Jinja - Kam	279 UZU	A	3	4.8	5					Fiart	Loaded
2	Jinja - Kam	KVQ 875	B1	4	. 6		7	5	6		Benz	Loaded
3	Kam Jinja	KWE 491	B2	1.5	1	1.2				ļ	Benz	Unloaded
4	Kam Jinja	UXU 579	A	4.6	1					 	Benz Man	Unloaded Unloaded
<u>5</u>	Kam Jinja	707 UAQ 500 UAH		2	4	1.0		 		 -	Isuzu	Loaded
6	Kam Jinja Kam Jinja	KQR 932	82	3	3	5	3	3			Benz	Loaded
8	Jinja - Kam	265 UAZ	B2	2.4	5.6		9.4	6.2	6.2	-	Fiat	Loaded
9	Kam Jinja	UWU 238	. A.	1.6	1	1	71.	1			Leyland	Unloaded
10	Jinja - Kam	KAC 965 T	A	6.4	13	9.6					ISUZU	Loaded
11	Kam Jinja	060 UCS	Α	1.6	7.4						Benz	Loaded
12	Kam Jinja	089 UAF	С	2	5.8						Isuzu	Loaded
13	Kam Jinja	468 UAR	Α	1	1.4						Fiat	Unloaded
14	Jinja - Kam	KAH 265 G	Α	5.6	11.4	10					Daf	Loaded
15	Jinja - Kam	KAO 583 L	A	7	10.4	7.2				ļ	Mitsubishi	Loaded
16	Jinja - Kam	UWT 699	B1	2.8	10.2		10		40	<u> </u>	Benz	Loaded
17	Jinja - Kam	833 UCE	B2	5			20	14	18	ļ	Benz Tata	Loaded Unicaded
18	Kam Jinja	UWO 064	A	3.6			16.4	11.2	14.4		Fiart	Loaded
19	Jinja - Kam	KAB 542 Q	82 82	3.6			16.2		17.7		Fiant	Loaded
20 21	Jinja - Kam Jinja - Kam	KAB 346 C KAB 563 T	A	3.0			10.2	1			Fiet	Loaded
22	Kam Jinja	804 UBJ	Â	2				·	 	 	-	Loaded
23	Not Recorded	UPB	Ä	2.2	4.4							Loaded
24	Kam Jinia	KTR 093	B2	2.2	10.6		10.8	12.4			Benz	Loaded
25	Kam Jinja	KJR 082	B2	2.2	6	8.2	7	8.8			Benz	Loaded
26	Jinja - Kam	KAE 998 K	Α	5.8	12.2	10.6					Benz	Loaded
27	Kam Jinja	13i 17 B	B1	4,2	4.2		2.2		5		Benz	Loaded .
28	Kam Jinja	TZG 9577	B1	7	12.6		8.6		12.8		Benz	Loaded
29	Kam Jinja	KIQ 410	B2	3.4	11		8.4	10.4		ļ	Benz	Loaded Loaded
30	Jinja - Kam	729 UCD	<u> </u>	2	6		ļ	 -	ļ		Isuzu Tata	Loaded
31	Jinja - Kam	UPF 385	A	3.6			ļ	 	 		Benz	Loaded
32	Jinja - Kam	541 UBA	A	1,4	-						Isuzu	Loaded
33	Jinja - Kam Jinja - Kam	UXT 104 UPG 400	Â	1,4		+		 	 	ļ	Tata	Loaded
34 35	Jinja - Kam	KAG 847 X	c	2.2			 	 			Scania	Loaded
36	Kam Jinja	UPR 730	Č	1.2				1	İ	1	isuzu	Loaded
37	Kam Jinja	376 UBA	Ā	1.6							Isuzu	Unloaded
38	Jinja - Kam	472 UBA	С	3.4							lsuzu	Loaded
39	Kam Jinja	TZ 90495	B1	1.8			3.8	12	16.8	·	Benz	Loaded
40	Jinja - Kam	KAH 784 C	C	2.8						ļ	Nissan	Loaded
41	Jinja - Karn	UPL 180	Δ	1.6				 	 		Tata Bedford	Loaded Loaded
42	Jinja - Kam	579 UCQ	A	1.4			ļ	<u> </u>	ļ	 -	Benz	Loaded
43	Kem Jinja	UWQ 380	A	1,6			 	 			Isuzu	Loaded
44	Jinja - Kam	367 UBR UWM 912	C	1.8			 	. <u></u>	 -	<u> </u>	Tata	Loaded
45 46	Jinja - Kam Jinja - Kam	545 UAX	A	1.6		;	 	 	—	1	Tata	Loaded
47	Jinja - Kam	659 UBM	Â	4.6		8.4		 			Mitsubishi	Loaded
48	Jinja - Kam	707 UAQ	A	7							Tata	Loaded
49	Jinja - Kam	UXU 579	A	3.4	11.2	7.2					Benz	Loaded
50	Kam Jinja	UU 0392	С	3			ļ		 		Leyland	Loaded
51	Kam Jinja	UXE 501	B2	3.4							Benz	Loaded
52	Jinja - Kam	TZG 6294	B1	7.2			<u> </u>	9.2	14.4	 	Benz Fuso	Loaded Loaded
53	Jinja - Kam	784 UBN	A	2.6			 	 	 	 	Tata	Loaded
54	Jinja - Kam	UPA 938	A .	2.6		5 3 9.2		 	 		Fuso	Loaded
55	Jinja - Kam	880 UCK	A	5.2				 	 	 	Bedford	Loaded
56	Jinja - Kam	442 UAH 593 UAV	B2	4.8			1!	5	 	 	Benz	Loaded
57	Kam Jinja		B1	3.6				4 1.4	il		Benz	Unloaded
58 59	Kam - Jinja Kam Jinja	23.97R UXJ 753	B1	3.0							Benz	Unloaded
60	Kam Jinja	UPG 687	c			9	 	T			Isuzu	Loaded
61	Jinja - Kam	816 UAJ	<u> </u>	2	4 7.0	6					Isuzu	Loaded
62	Jinja - Kam	KAG 186 U	Ā	1.6	3 ;	3		L			Isuzu	Unloaded
63	Kam Jinja	UXE 902	B2			2 5.6	7.1	6 2	2		Fiat	Loaded
64	Kam Jinja	UPH 603	A	1.							Bedford	Unloaded
65	Kam Jinja	109 UCG	81	3.7	2 1		3	4 12.4	1 1	4	Benz	Loaded
66	Jinja - Kam	032 UBE	Α		3 5.						Fuso	Loaded
67	Jinja - Kam	573 UAI	A	1.0			·	 			Tata	Loaded Loaded
68	Jinja - Kam	UPA 179	ΑΑ			6 4.6	4		1	 	ISUZU	Loaded
69	Jinja - Kam	UWS 51B	Α		3 12.		- 	+	 	+	Isuzu	Loaded
70	Kam Jinja	472 UBA	Ç.			<u>/</u>	 		 		Tata	Unloaded
71	Kam Jinja	614 UBH	À		3	2					11010	1211040

Appendix4.3 Axle Load Survey Results (2)

(Unit: tonnes)

Sample No.	Direction	Registr.	Туре	Axie1	Axie2	Axle3	Axle4	Axie5	Axle6	Axie7	Model	Loading
72	Kam Jinja	UWT 617	Α	5	9						Leyland	Loaded
73	Jinja - Kam	106 UAI	· A	2	3						isuzu	Unloaded
74	Kam Jinja	UPG 916	81	3	9	5	13	14.8		ļ	Benz	Loaced
75	Kam, - Jinja	UPP 914	B2	4	5.2	7	15.2	12	13	 	Benz	Loaded
76 77	Kam Jinja	826 UCG	A	1.6 2.4	7.2 5.4					 	lsuzu Bedford	Loaded Loaded
78	Jinja - Kam Jinja - Kam	995 UBC	A	2.4	5.6					 	Bedford	Loaded
79	Kam Jinja	KV 4691 C	B2	5.6	11.2	10	17	19.6	20	 	Benz	Loaded
80	Kam Jinja	UWS 602	A	4	6			14.4			Isuzu	Loaded
81	Kam Jinja	UWW 816	Α .	2.4	10.2		,		_		SUZU	Loaded
82	Kam Jinja	601 UCS	B1	2	2.4	1.8	2				Fiat	Unloaded
83	Kam Jinja	UPL 099	A	3	8					ļ	Tata	Loaded
84	Kam Jinja	UPD 434	Α	1.2	5.4					ļ	Tata	Loaded
85	Jinja - Kam	UXR 631	A	4.6	10.6					}	Benz Mitsubishi	Loaded
86 87	Jinja - Kam	KAG 186 U KZK 561	A B2	3 3	12	10	20	16	18	 -	Mitsubishi	
88	Jinja - Kam Jinja - Kam	804 UBN	A	5	16	10				 	Suzu	Loaded
89	Kam, - Jinja	UPF 844	A	2.4	10					 	Tata	Loaded
90	Kam Jinja	367 UBR	Ċ	5	9					 	Isuzu	Loaded
91	Kam, - Jinja	KAG 97	C	5	6					<u> </u>	isuzu	Loaded
92	Kam Jinja	UXL 435	Α	4	7.2						Benz	Loaded
93	Kam Jinja	UWT 740	Α	2.6	5.2						Leyland	Unloaded
94	Jinja - Kam	814 UCA	Α	4.6	11	11		ļ		<u> </u>	lsuzu	Loaded
95	Jinja - Kam	262 UBN	A	8	16					 	İşuzu	Loaded
96	Jinja - Kam	714 UCJ	Α	3.6		ļ				J	Fuso	Loaded
97	Jinja - Kam	TZK 4648	B2	1 7		8.4	14.4		8.6	 	Scania	Loaded Loaded
98	Kam Jinja	TZH 1785	B2	5		7.6	16.4		18.8	4	Scania	Loaded
99	Jinja - Kam	UXE 156	82	5.6		8.4	13.6	+	9.8		Benz Benz	Loaded
100 101	Jinja - Kam	TZK 1070 TZK 4640	B2 B2	5 4.4	10	8 6	12.4		8.8		Benz	Loaded
102	Jinja - Kam Jinja - Kam	272 UBK	B2	7	11.6		15		0.0	' 	Benz	Loaded
103	Jinja - Kam	687 UCM	A	2.4		10.0	<u>'</u>	 		+	Fuso	Loaded
104	Kam Jinja	TZH 3566	B2	4		9.2	20	18.2	20)	Scania	Loaded
105	Jinja - Kam	TZJ 9798	B2	5.6			14		12		Scania	Loaded
106	Jinja - Kem	TZK 1072	B2	4	9	8	10.4	8.4			Scania	Loaded
107	Kam Jinja	TZH 3365	82	5.6			20				Scania	Loaded
108	Jinja - Kam	UPS 567	B2	7	11.2	10	16				Benz	Loaded
109	Not Recorded	KAG 085 W	B2	5			20	18	18.2	<u> </u>	Mack	Loaded
110	Kam Jinja	UVY 023	С	4.4				 			Leyland	Loaded
111	Kam Jinja	994 UBC	C	4.4			12	14	12.4		Isuzu Benz	Loaded Loaded
112	Jimja - Kam	127 UCQ UPX 594	B2 A	4.8				14	14.4	'	Bedford	Loaded
113	Jinja - Kam Jinja - Kam	952 UBS	- A	E				 		 	Benz	Loaded
115	Kam Jinja	493 UAZ	B2	1 4			ϵ	6	7.8	8	Benz	Loaded
116	Kam Jinja	UXB 134	A	1						1	Bedford	Loaded
117	Jinja - Kam	UPL 196	B2	1			18	20			Isuzu	Loaded
118	Kam Jinja	UPF 707	B2	4.2	4.6	8.2	12	12.4			Benz	Loaded
119	Jinja - Kam	676 UBJ	A			2	ļ	ļ	ļ		Benz	Loeded
120	Kam Jinja	UPA 938	A	3			<u> </u>	↓	 	 	Tata	Unloaded
121	Jinja - Kam	871 UBK	Α_				<u> </u>	 -	 		Toyota	Loaded
122	Jinja - Kam	UWU 687	A	4.4			 	·	 	+	Tata Nissan	Loaded Loaded
123	Kam Jinja	863 UBB UWW 764	A			+	'	1	·	+	Tata	Loaded
124	Kam Jinja	UWW 764 UWJ 834	A	2.4	8.4		 	· 	 	 	Benz	Loaded
125 126	Jinja - Kam Jinja - Kam	UPF 505	Â				1	 	1	1	Tala	Loaded
127	Jinja - Kam	TZ 89846	B2	1			12	9.2	10.0	6	Benz	Loaded
128	Jinja - Kam	064 UAM	B1	6.2				5		7	Flat	Loaded
129	Jinja - Kam	635 UAM	A		4 8		Τ''''	T	T	\mathbb{L}_{-}	Tata	Loaded
130	Jinja - Kam	UPB 901	A	4.4				<u> </u>	L		Tata	Loaded
131	Jinja - Kam	UXN 902	A			\$					isuzu	l.oaded
132	Jinja - Kam	UPG 715	A	2.0		7	ļ				Isuzu	Loaded
133	Jinja - Kam	UPG 703	A		3 8.		ļ	-		4	Isuzu	Loaded
134	Kam Jinja	367 UAK	A		6 4.	8 4	<u> </u>				Mack	Unloaded
135	Jinja - Kam	UWM 289	A	3.0		4	 				Tata	Loaded Loaded
136	Jinja - Kam	UXR 485	A		4 12.		. 	8 9	9	+	Benz Benz	Loaded
137	Jinja - Kam	UXJ 054	B2	4.		B 14	'	¥ 	'	+	Tata	Unloaded
138	Jinja - Kam	192 UCD 995 UBC	A A	+		6	 	+	+	+	Bedford	Loaded
139 140	Jinja - Kam Jinja - Kam	KAE 897 P	B2		6 12	4 14.	4 1	0 10.4	4		Benz	Loaded
						9	 	 	1		Benz	Loaded
	Jinia - Kam	IDBRIDGE	"									
141	Jinja - Kam Kam Jinja	083 UCK UPO 539	A		ĭ	3					Nissan	Unloaded
	Jinja - Kam Kam Jinja Jinja - Kam	UPO 539 560 UCD	Â	3.	6							Unloaded Loaded Loaded

Appendix 4.3 Axle Load Survey Results (3)

(Unit: tonnes)

Sample No.	Direction	Registr.	Туре	Axle1	Axie2	Axle3	Axle4	Axle5	Axle6	Axle7	Model	Loading
145	Kam Jinja	225 UAZ	B2	6	4	4	2	5	6		Benz	Unloaded
146	Kam Jinja	HZO 928 C	81	4.4	4	4	2	2			Benz	Unloaded
147	Jinia - Karn	KAE 964 Z	B2	7	11.8	10	16	14	12	16	Fiat	Loaded
148	Kam Jinia	KAG 092 W	B2	6	12	14	18	16	20		Internation	Loaded
149	Jinja - Kam	UPF 337	A	6							lsuzu	Unloaded
150	Kam Jinja	664 UCQ	A	4	6	10					Fiat	Loaded
151	Kam Jinja	KAG 942 S	C	3.6	7					l .	Nissan	Loaded
152	Jinja - Kam	UXB 951	A	4							Tala	Loaded
153	Kam Jinja	UXW 441	A	4	8						Tata	Loaded
154	Jinja - Kam	KAG 826 R	B 2	6	12	10	10	12			Benz	Loaded
155	Jinja - Kam	KYU 510	Α	6							Isuzu	Loaded
156	Jinia - Kam	KAE 766 W	B2	7	12.6	12.4	18	12.6	12		Benz	Loaded
157	Jinia - Kam	KAG 824 R	B2	6.6	9	14	13.8	13		<u> </u>	Benz	Loaded
158	Jinja - Kam	UWS 192	Α	5	7			L		<u> </u>	Leyland	Loaded
159	Kam Jinja	UPG 826	A	3						<u> </u>	Fiat	Unloaded
160	Kam Jinja	776 UBN	A	2	3		l	<u> </u>	ļ		Leyland	Unloaded
161	Jinja - Kam	858 UAH	C	5	7.8			<u> </u>		<u> </u>	Suzu	Loaded
162	Jinja - Kam	KAE 475 G	A	7	12	8				ļ	Benz	Loaded
163	Jinja - Kam	162 UAZ	B2	7	10.2	10.2	18		16		Benz	Loaded
164	Jinja - Kam	KAE 698 C	B2	7	10	10	20	16	16	16	Volvo	Loaded
165	Jinia - Kam	UXR 631	Α	5				L			Benz	Loaded
166	Jinja - Kam	302 UBC	A	3.6	5				ļ	<u> </u>	Tata	Loaded
167	Jinia - Kam	ARP 114	B2	4.6	j 4		6			• • • • • • • • • • • • • • • • • • • •	Benz	Loaded
168	Jinia - Kam	KAE 667 S	82	(11.6						Benz	Loaded
169	Jinia - Kam	KAE 665 S	B2	1						2 15	Benz	Loaded
170	Jinja - Kam	UWV 746	B2	T						↓	Benz	Loaded
171	Jinja - Kam	UXT 032	81	7							Benz	Loaded
172	Jinja - Kam	KAG 813 B	B2	7.6						 _	Benz	Loaded Loaded
173	Jinja - Kam	KNH 337	B2					10	·		Fiat	Loaded
174	Jinja - Kam	TZF 4267	81	4				(Fiat Benz	Loaded
175	Jinja - Kam	UPF 949	82		3						Fiat	Loaded
176	Kam Jinja	KTD 083	B1		3 1		<u> </u>	6.4	7.1	9	Benz	Unloaded
177	Kam Jinja	952 UBS	A		2					- 	Fuso	Loaded
178	Jinja - Kam	121 UCA	Α	4.4			<u> </u>	 	 	-}	Tata	Loaded
179	Jinja - Kam	UPF 798	Α	3.0		3	 			- 	Benz	Loaded
180	Jinja - Kam	239 UCN	A		3 1		J	3 10	8.		Benz	Loaded
181	Jinja - Kam	427 UCK	B1	_1			3 !	3 10	<u> </u>	<u> </u>	Bedford	Loaded
182	Jinja - Kam	UPJ 526	Α			В	 	 	 		Tata	Loaded
183	Jinja - Kam	UWR 750	A	4.			 		 		Scania	Loaded
184	Jinja - Kam	KAE 776 M	С	4.		5			 -		Mitsubish	
185	Jinja - Kam	KAG 967 U	Α.		B 1	7	4		 		Isuzu	Loaded
186	Jinja - Kam	552 UBE	C				9		+		Mitsubish	
187	Jinja - Kam	KAG 968 U	A	5.		7			 		Fuso	Loaded
188	Jinja - Kam	714 UCJ	Α_		<u> </u>		7	7	,	 	Benz	Loaded
189	Jinja - Kam	KRY 790	B1_	5.			' 		1	 	Isuzu	Loaded
190	Jinja - Kam	582 UCD	A_	6.			9 -	+			Mitsubish	
191	Jinja - Kam	KAE 362 M	A .	5.			9	 	+		Mitsubish	
192	Jinja - Kam	KAD 756 L	A C			7	<u></u>	┪	+	 	İsuzu	Loaded
193	Jinja - Kam	907 UAJ			4 9	<u> </u>	6	6		1	Benz	Loaded
194	Jinja - Kam	509 UCK	B2					8 1	0 1	2	Fial	Loaded
195	Jioja - Kam	KZK 700	B2					6 1		4	Benz	Loaded
196	Jinja - Kam	787 UAZ	B2			6	" { <u>'</u>	* 		 	Isuzu	Loaded
197	Jinja - Kam	830 UAJ	C		4	6			1	 	Teta	Loaded
198 199	Not Recorded Kam Jinia	867 UAI TZH 2654	Bi		.6		3	2 3.	4 3	2	Benz	Unloaded

Appendix 7 Traffic Assignment for Year 2005

Assignment for year 2005

The proposals for this year comprise:

- junction improvements
 Port Bell junction
 Jinja Road roundabout
 Kibuya roundabout
 Natete roundabout
 Makerere roundabout
- road improvements
 Hoima Road
 Natete Road
 Gaba Road
 Port Bell Road

As with the 2015 network, junction improvements were represented by a 25% increase in the capacity of links connected to the junction. Link improvements were represented by a 25% increase in capacity.

The results of the assignment are shown in the table. In the case of junctions, the flow shown is the total inflow and the nominal capacity in the sum of the inbound capacities on the approach links. In the case of roads, two-way flows and capacities are indicated. As can be seen from the table, where there is route choice, the provision of extra capacity can lead to a flow increase at the location.

The analysis of volume to capacity ratios from the assignments indicates that these improvements go a long way to improving network performance. However, a greater increase in capacity would be preferred, if practical, along Natete Road and the Nsambya Road end of Gaba Road, and at Port Bell junction, Jinja Road roundabout and Kibuya roundabout. The improvement at Hoima Road is motivated by the need to prevent flood damage rather than by a need to reinforce the linehaul.

The current assignment methodology, which does not involve simulation of junctions, is suited to modelling link capacity improvements, but the method of modelling junction improvements is inexact. More detailed analysis will be performed when turning movements and stop line capacities are known.

The 2005 assignment summary statistics indicate that these improvements will yield time savings of 5000 peu-hours per hour, a substantial amount.

Summary of Assignment for Year 2005

Improvement Location	[Matrix for y	ear 2005 as	ssigned to		
•	Base year	network		Network for	r 2005	
	Flow	Nominal	Ratio	Flow	Nominal	Ratio
		Capacity	ļ	}	Capacity	
<u> </u>	(Pcus/hr)	(Pcus/hr)	<u></u>	(Pcus/hr)	(Pcus/hr)	
Junctions						
Port Bell junction	4405	3680	1.20	4867	4600	1.06
Jinja Road roundabout	7781	ł	f .	1	1	f
Kibuya roundabout	7846	1	i i	8124	7750	1.05
Natete roundabout	2691	3040	0.89	2717	3800	0.72
Makerere roundabout	3878	4200	0.92	4037	5250	0.77
Roads						
Hoima Road	511	1600	0.32	511	2000	0.26
Natete Road	1925	1280	1.50	2098	1600	1.31
Gaba Road	1438	1600	0.90	1438	2000	0.72
Gaba Road	1950	1600	1.22	1950	2000	0.98
Gaba Road (Nsambya)	3494	2000	1.75	3494	2500	1.40
Port Bell Road	1187	1600	0.74	1187	2000	0.59
Port Bell Road	1937	2000	0.97	2070	2500	0.83

Appendix 9 Design Standard

UGANDA ROAD DESIGN STANDARDS
-GEOMETRIC DESIGN-

			GEOMETRIC DESIGN STANDARDS	GN STANDARDS		
Design parameter		BITUMEN			GRAVEL	
Class of Roads	CLASSI	CLASS II	CLASS III	CLASS A	CLASS B	CLASS C
DESIGN SPEED kph F R M	110 100 80	100 (90) 90 (80) To Suit (60)	80 70 To Suir (50)	28.8	80 60 50	60 50 40
S LEVEL 'C' p.c.u/day DESIGN CAPACITY X 1000	10 -6 =9.0	8-4 26.5	6 - 2 = 5.5	8 - 4 =6.5	6-2 =5.5.	2 > -
ROADWAY WIDTH	11.0	11.0(9.0)	8.6(7.6)	10.0(9.0)	8.6(7.6)	6.4
RESERVE WIDTH	40.0	30.0	25.0	30.0	25.0	15.0
CARRIAGEWAY WIDTH	7.0	6.0	5.6	6.0	5.6	4.0
CAMBER	2.5	2.5	2.5	4.0	4.0	4.0
SHOULDERS WIDTH	2.0	2.0(1.5)	1.5(1.0)	2.0(1.5)	1.5(1.0)	1.2
CAMBER	5.0	5.0	5.0	4.0	4.0	4.0

UGANDA ROAD DESIGN STANDARDS

-SIGHT DISTANCES-

					<u> </u>	Γ	T	T		<u> </u>	<u> </u>
Passing sight distance (m)		Reduced	170	170	240	310	375	445	\$15	280	029
Passing sig		Normai	290	350	420	490	260	620	089	740	008
Anticipatory Sight		Distance (m)	170	.185	210	265	330	410	495	590	700
(m)	Down grade	%9+	13	9+	∞ +	+9	+14	+19	+21	+31	+38
Corrections for Grade (m)	Down	-3%	0	+3	+	+5	9+	+	+9	+13	-17
orrection	ade	+6%	0	ψ	٠, ٠	-7	6-	-12	-15	-20	-25
Ü	Upgrade	+3%	0	0	ů.	.3	-5	-7	ئ	-12	-15
Stopping distance on Level Ground	(m)	Min	50	65	80	95	115	135	155	180	210
Stopping distanc		Des	50	65	80	110	140	175	210	250	290
Design	Speed	(Kph)	40	50	99	70	80	8	100	110	120

UGANDA ROAD DESIGN STANDARDS -MINIMUM RADII-

Design Speed	Minimum I	Minimum Radius (e-7%)	Min.Radius No 'e' (m)	K valu	e (Stoppin	K value (Stopping Sight Distance)	stance)	K Value (Passing)	luc ng)	Valu e
(Kph)	Absolute	Desirable		Crest	est	Sag	31	Crest	St	(Anti cipat ory
	(m)	(m)		Min	Des	Min	Des	Norm al	Redu	Crest
40	50	65		9	8	80	12	8	. 30	140
50	80	115	1000	10	10	12	18	130	30	165
09	125	165	1200	16	17	91	24	190	0,9	210
70	180	225	1500	20	30	20	30	260	001	330
80	240	310	2000	35	45	25	40	335	150	520
8	315	400	3000	45	7.5	30	05	410	210	800
100	400	520	4000	60	115	35	09	200	280	1170
110	500	099	2000	80	160	40	75	580	360	0991
120	9009	840	7000	110	210	50	8	680	450	2300

UGANDA ROAD DESIGN STANDARDS -CURVATURE-

Design	Minimum le	Minimum length of Curve	N	Maximum Gradient	nt
Speed		(H)	add 29	add 2% for light traffic roads	c roads
(Kph)	Min	Des	Flat	Rolling	Mountaineo us
40	30	80	4	9	10
50	40	100	4	7	6
09	45	120	4	9	8
70	50	140	4	9	7
80	09	160	6	. 5	7
06	70	180	3	5	ı
100	75	200	m	5	-
110	85	220	3	ı	1
120	90	240	3	1	,

Appendix 10 Result of Natural Condition Survey

Appendix10.1 Results of Standard Penetration Test (1)

BOREHOLE NO. 1, HOIMA ROAD

DATE: 7TH FEBRUARY, 1997

DEPTH OF GWT 1.5m

DEPTH (M)	SOIL DESCRIPTION	BH LOG	SAMPLE	SPT N-VALUE	REMARKS
1	TOP SOIL DARK GREY CLAY YELLOWISH GREY SILTY SANDY CLAY	******** /	U-100 U-100	2 8 16 38 50++ 50++	GWT WAS ENCOUNTERED AT 1.5 DEPTH. SOFT SOIL. FIRM/STIFF SOIL. VERY STIFF SOIL. HARD SOIL VERY HARD SOIL (HAMMER REBOUNDING) VERY HARD SOIL (HAMMER REBOUNDING) COULD NOT ACHIEVE ANY PENETRATION

Appendix10.1 Results of Standard Penetration Test (2)

BOREHOLE NO. 2, NATETE ROAD

DATE:

8TH FEBRUARY, 1997

DEPTH OF GWT: NOT REACHED

DEPI (M)		SOIL DESCRIPTION	BH LOG	SAMPLE	SPT N-VALUE	REMARKS
		TOP SOIL	*****			GWT WAS NOT REACHED.
1		REDDISH BROWN	1111	U-100	9	STIFF SOIL.
2	_	CLAYEY SILTS			11	
3			1///	U-100	5	FIRM SOIL
4	_		/////		5	
5			/ / / /		7	
6			/ / / /		7	
7			/////		7	
8			/ / / /		5	
9	****		/////		7	
10			/////		10	STIFF SOIL END OF BOREHOLE

Appendix10.1 Results of Standard Penetration Test (3)

BOREHOLE NO. 3, ENTEBBE ROAD

DATE:

12TH FEBRUARY, 1997

DEPTH OF GWT: 7.7M

DEPTH (M)	SOIL DESCRIPTION	BH LOG	SAMPLE	SPT	VALUE	REMARKS
1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 — 10	TOP SOIL LIGHT BROWN SILTY CLAY YELLOWISH BROWN SANDY CLAY WITH FINE GRAVELS	***** / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /			15 9 21 18 40 50++ 57 - 50++ 53 37	GWT IS AT 7.7M DEPTH VERY STIFF SOIL. VERY STIFF/ DENSE SOIL. END OF BORE-HOLE

Appendix10.1 Results of Standard Penetration Test (4)

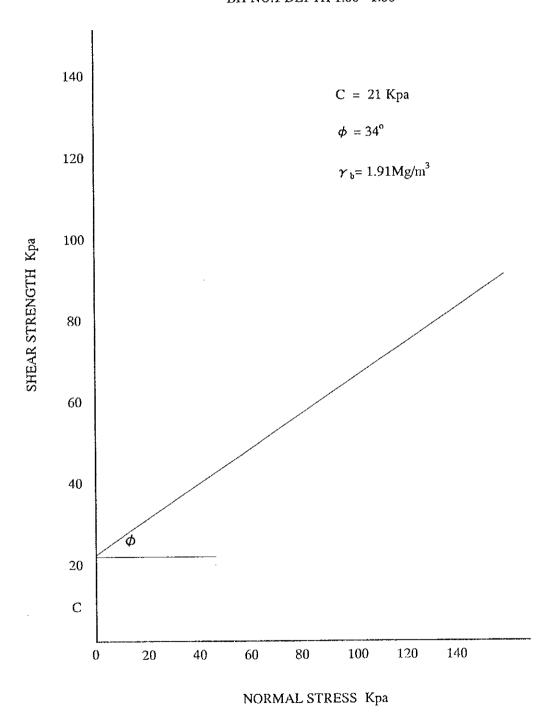
BOREHOLE NO. 4, GABA ROAD

DATE:

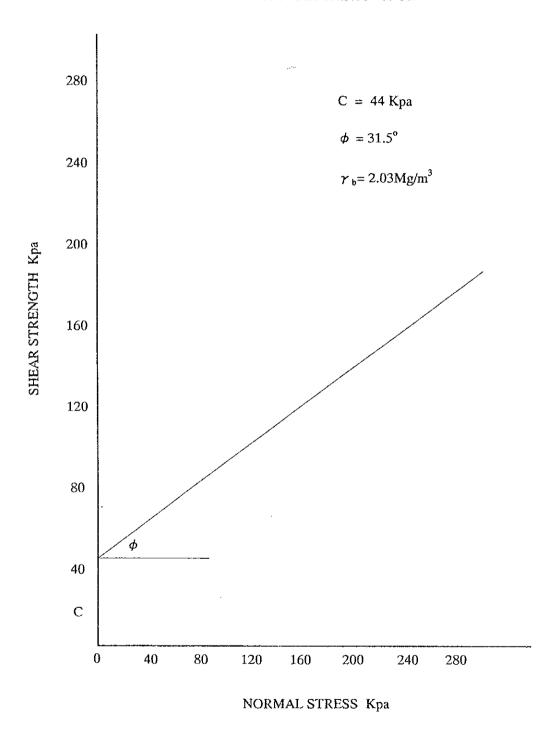
10TH FEBRUARY, 1997

DEPTH OF GWT: 7.5M

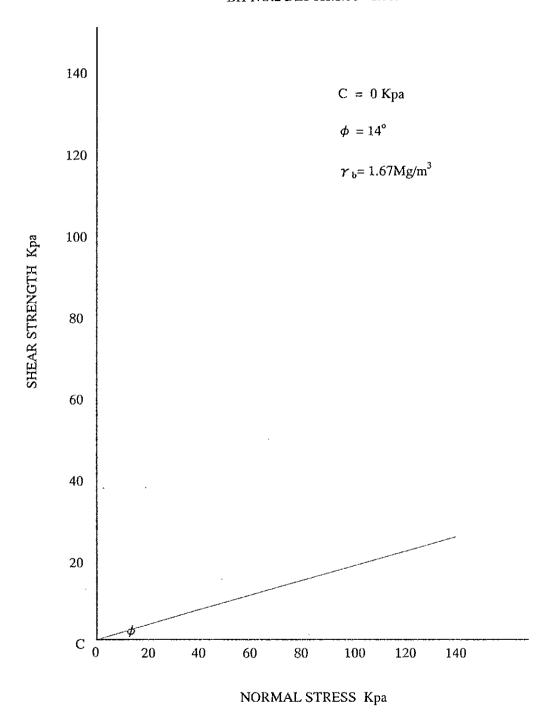
DEPTH (M)	SOIL DESCRIPTION	BH LOG	SAMPLE	SPT VALUE	REMARKS
1	TOP SOIL	*****		8	GWT IS AT 7.5M DEPTH. FIRM SOIL
2	BROWN YELLOWISH	////	U-100 U-100	8	STIFF SOIL
3 -	GREY SILTY CLAY			9	
4 — 5 —		1111	-	14	VERY STIFF
6 —	-	1111		22	SOIL
7		1111		29	
S —		1111		35 43	
10 -		1111		50	END OF BORE- HOLE


Appendix10.2 Results of Laboratory Test for Borehole Sample

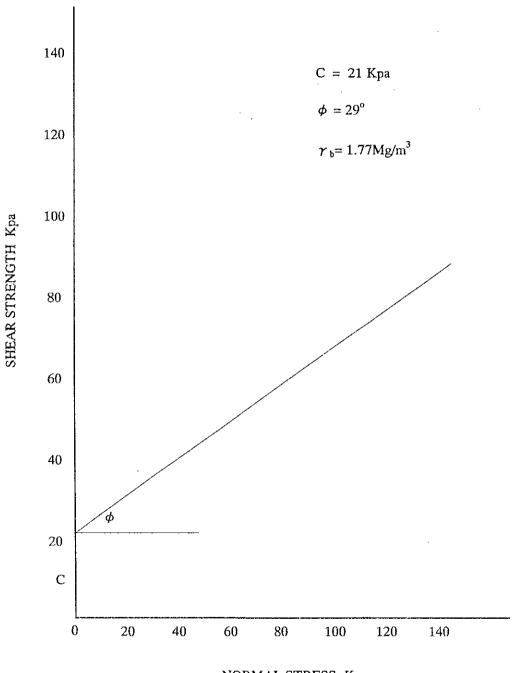
le Bor	Borehole Boring NO.	BH1	11	BH2	42	BH3	13	BH4	[4
Name of Road	Road	HOIMA ROAD	ROAD	RUBAG/	RUBAGA ROAD	ENTEBBE ROAD	E ROAD	GABA ROAD	ROAD
Depth (m)	(m)	2.0	3.0	2.0	3.0	1.0	2.0	2.0	3.0
Grain-Size	BS Sieve								
Analysis	37.5mm								
1	20.0mm			`					
L	10.0mm					100	100		
	6.3mm					96	86	·	
	5.0mm		100			-	1		
_L	2.0mm	100	66	100	100	80	94	100	
	0.6mm	59	87	06	94	79	87	76	
_l.,	0.425mm	47	81	85	91	78	85	95	100
	0.3mm	38	74	08	87	9/	82	93	6
	0.212mm	35	89	75	83	75	62	91	98
	0.15mm	33	62	69	79	73	92	89	97
_1	0.063mm	31	56	64	75	70	72	87	96
Specific Gravity	Gravity	2.71	2.68	2.63	2.63	2.71	2.86	2.43	2.45
Moisture	Natural Moisture Content (%)	21.0	17.0	26.0	25.0	21.0	15.0	36	32.0
Afterberg	L.L.(%)	53.0	52.0	38.0	0.09	56.0	42.0	50	68.0
I imits	P.L (%)	15.7	16.4	18.0	21.2	23.0	21.6	20.3	18.5
1	P.I (%)	37.3	35.6	20.0	38.8	33.0	20.4	29.7	49.5
100	DO Coil Classification	۷۷	E	5	HO	CH	Ü	H	CH


Appendix 10.3 Shear Strength Tests

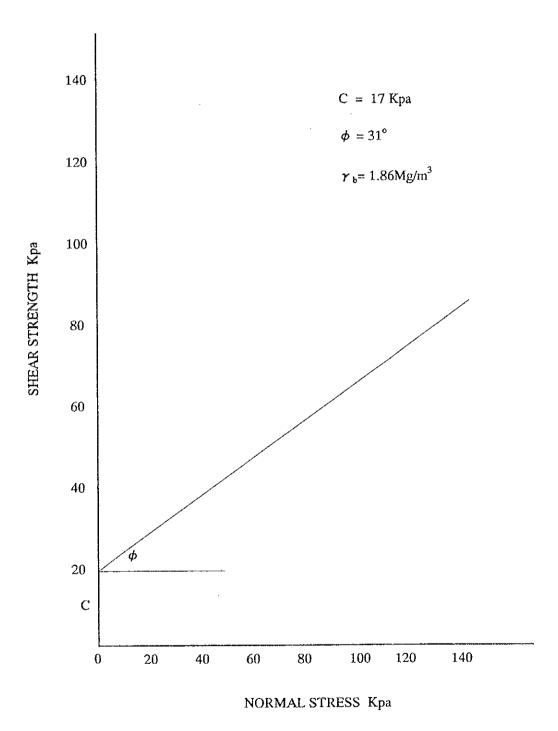
Borehole	Depth (m)	Bulk Density Mg/m ³	Cohesion C, KPa	Angle of Friction degree
Hoima Road BH No. 1	1.50 - 1.95	1.91	21	34
Hoima Road BH No. 1	3.00 - 3.45	2.03	44	32
Rubaga Road BH No. 2	1.50 - 1.95	1.67	0	14
Rubaga Road BH No. 2	3.00 - 3.45	1.77	21	29
Entebbe Road BH No. 3	1.00 - 1.45	1.86	17	31
Entebbe Road BH No. 3	2.00 - 2.45	1.90	32	1.4
Gaba Road BH No. 4	1.50 - 1.95	1.69	40	9
Gaba Road BH No. 4	2.50 - 2.95	1.76	34	12


Result of Shear Strength Test (1) HOIMA ROAD (1) BH NO.1 DEPTH 1.50 - 1.95

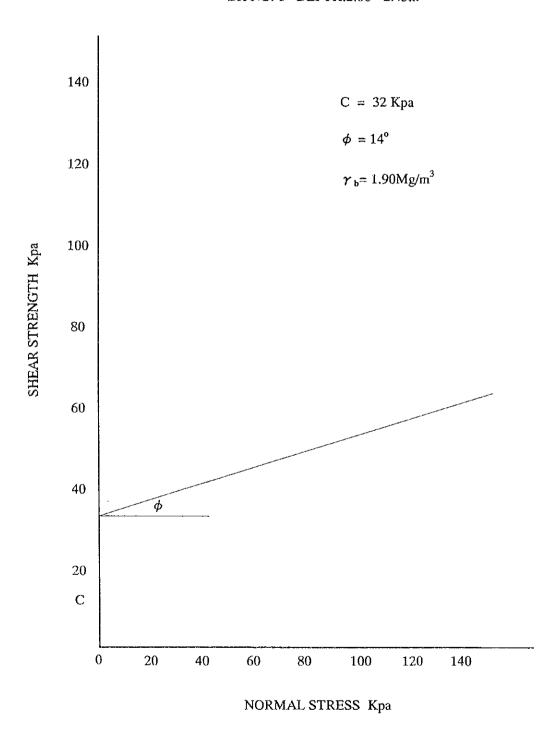
Result of Shear Strength Test (2) HOIMA ROAD (2) BH NO. 1 DEPTH:3.00 - 3.45m



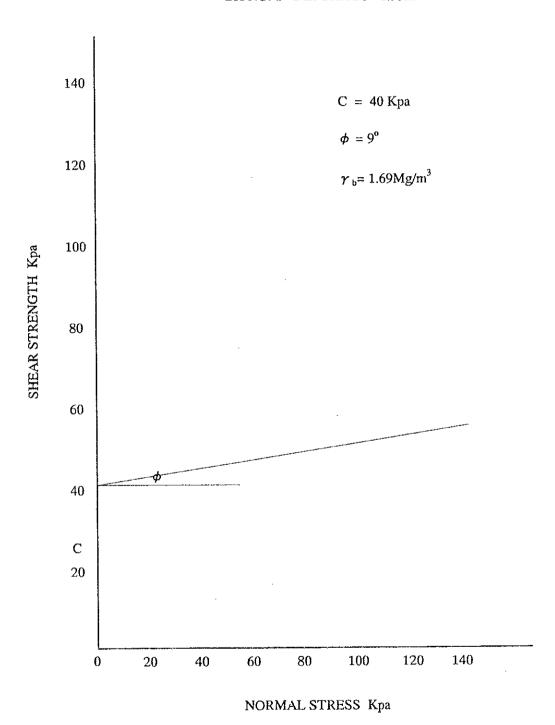
Result of Shear Strength Test (3) NATETE ROAD (1) BH NO.2 DEPTH:1.50 - 1.95m


AP10 - 9

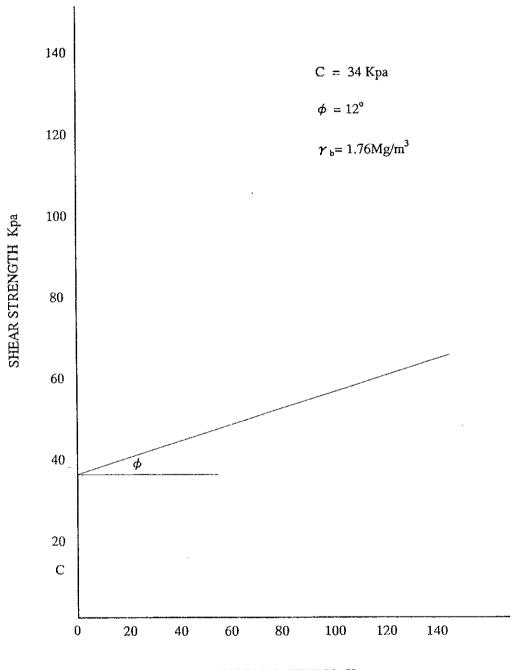
Result of Shear Strength Test (4) NATETE ROAD (2) BH NO. 1 DEPTH:3.00 - 3.45m


NORMAL STRESS Kpa

Result of Shear Strength Test (5) ENTEBBE ROAD (1) BH NO. 1 DEPTH:1.00 - 1.45m


AP10 - 11

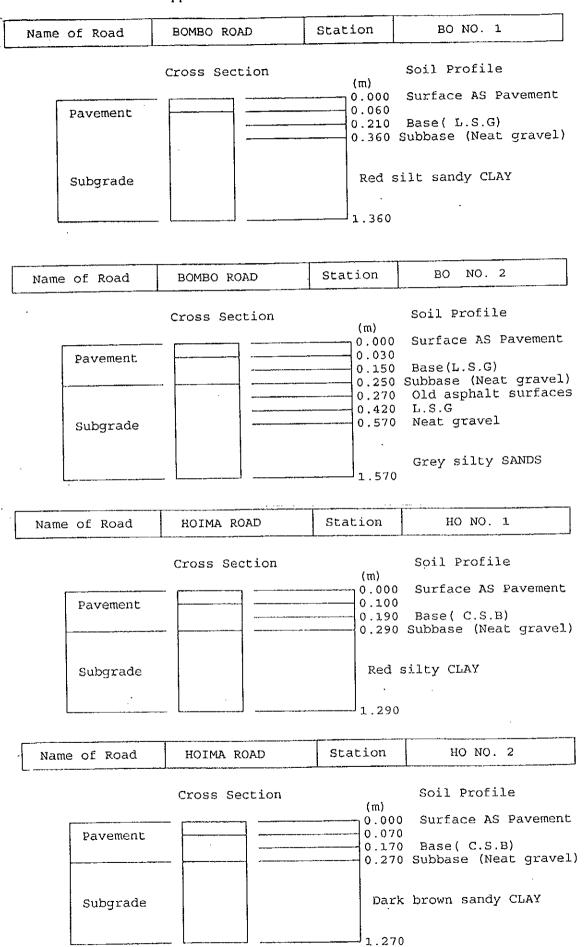
Result of Shear Strength Test (6) ENTEBBE ROAD (2) BH NO. 1 DEPTH:2,00 - 2.45m


AP10 - 12

Result of Shear Strength Test (7) GABA ROAD (1) BH NO. 1 DEPTH:1.50 - 1.95m

AP10 - 13

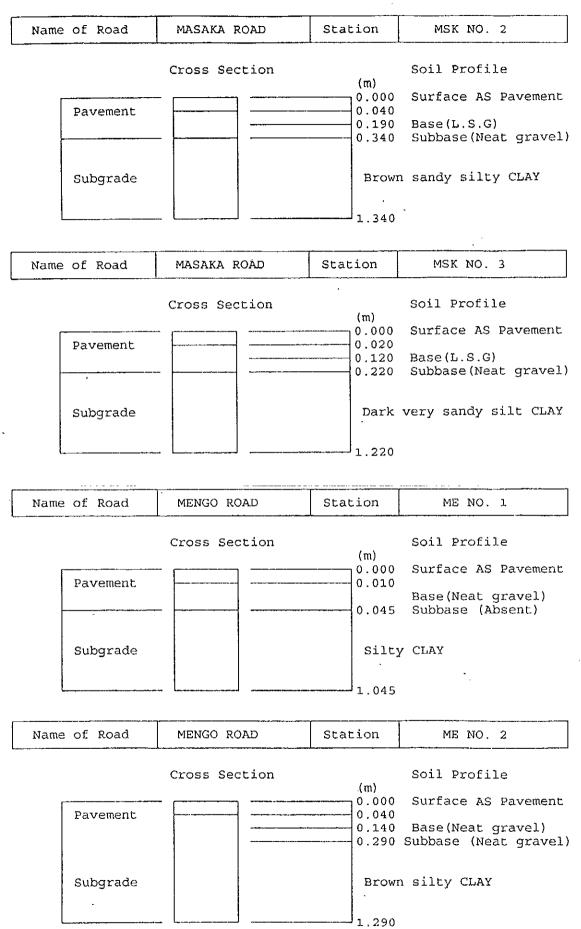
Result of Shear Strength Test (8) GABA ROAD (2) BH NO. 1 DEPTH:2.50 - 2.95m



NORMAL STRESS Kpa

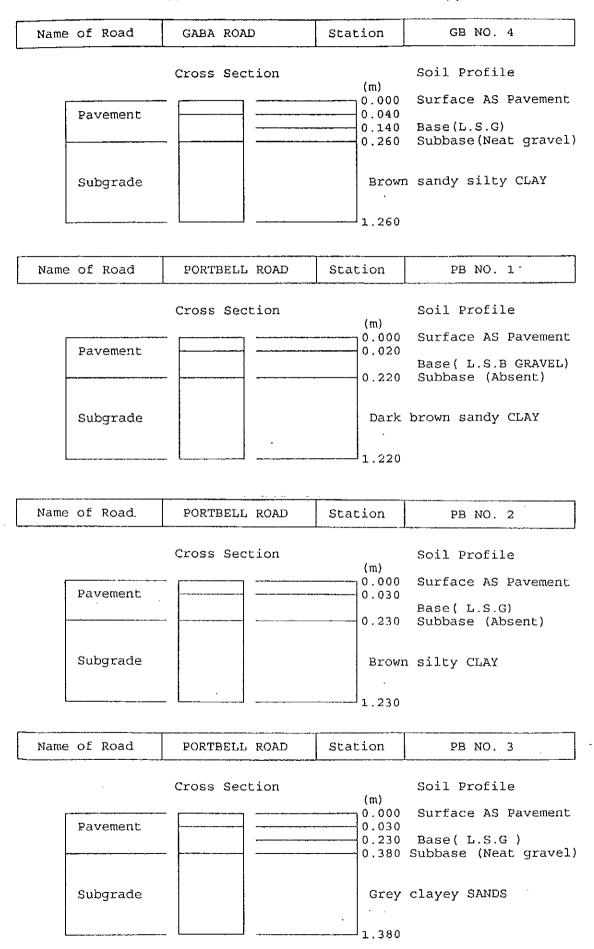
Appendix10.4 Result of Pavement Structure (1)

•	rppendix10.4 result		
Name of Road	GAYAZA ROAD	Station	GA NO. 1
Pavement Subgrade	Cross Section	0.385	Soil Profile Surface AS Pavement Base(L.S.G) Subbase (Neat gravel) silt sandy CLAY
Name of Road	GAYAZA ROAD	Station	GA NO. 2
	Cross Section		Soil Profile
Pavement Subgrade		(m) 0.000 0.020 0.130 0.250 Black	Surface AS Pavement Base(L.S.G) Subbase (Neat gravel) silt-sandy CLAY
Name of Road	GAYAZA ROAD	Station	GA NO. 3
Pavement	Cross Section		(- 0 5)
Subgrade		1,230	•
Name of Road	GAYAZA ROAD	Station	GA NO. 4
Pavement	Cross Section	(m) 0.000 0.030 0.105 0.205	Soil Profile Surface AS Pavement Base(L.S.G) Subbase (Neat grave)
Subgrade		Brov	vn sandy silt CLAY


Appendix 10.4 Result of Pavement Structure (2)

Appendix 10.4 Result of Pavement Structure (3)

	T	Tavoment offuciuse (5)	
Name of Road	HOIMA ROAD	Station HO NO. 3	
Pavement	Cross Section	Soil Profile (m) 0.000 Surface AS P 0.040 0.120 Base(L.S.G) 0.220 Subbase(Neat	avement
Name of Road	HOIMA ROAD	1.220 Station HO NO. 4	
Pavement	Cross Section	Soil Profile (m) 0.000 Surface AS Pa 0.040 0.190 Base(Neat gra 0.240 Subbase(Neat g	avel)
Subgrade		Gravelly silt SANDS	
Name of Road	NAMIREMBE ROAD	Station NA NO. 1	
Pavement Subgrade	Cross Section	Soil Profile (m) 0.000 Surface AS P 0.040 0.190 Base(L.S.G) 0.290 Subbase (Neat Brown sandy silty 1.290	avement gravel
Name of Road	MASAKA ROAD	Station MSK NO.	1
Pavement Subgrade	Cross Section	Soil Profile (m) 0.000 Surface AS P 0.030 Base(L.S.G 0.230 Subbase (Abs Grey silty SANDS)
		1.230	


Appendix 10.4 Result of Pavement Structure (4)

Appendix10.4 Result of Pavement Structure (5)

Name of Road	KATWE ROAD	Station	KT NO. 1
Pavement Subgrade	Cross Section	(m) 0.000 0.030 0.090 Brown	Soil Profile Surface AS Pavement Base(L.S.G) Subbase (Absent) silty CLAY
Name of Road	GABA ROAD	Station	GB NO. 1
Pavement Subgrade	Cross Section	0.065	Soil Profile Surface AS Pavement Base(Neat gravel) Subbase (Absent) sandy silt CLAY
Name of Road	GABA ROAD Cross Section	1.265	GB NO. 2 Soil Profile
Pavement		(m) 0.000 0.030 0.180 0.330	Surface AS Pavement Base(Neat gravel) Subbase(Neat gravel
Subgrade		Yello	owish silt SANDS (FILL)
Name of Road	GABA ROAD	Station	GB NO. 3
La			
Pavement	Cross Section	(m) 0.000 0.040	
Pavement	Cross Section	0.000 0.040 0.190 0.340	Soil Profile Surface AS Pavement Base(L.S.G) Subbase(Neat gravel brown sandy silt CLA

Appendix 10.4 Result of Pavement Structure (6)

Appendix10.4 Result of Pavement Structure (7)

Name of Road	· JINJA ROAD	Station	JJA NO. 1
Pavement	Cross Section	(m) 0.000 0.090 0.240 0.390	
Subgrade		Grey	sand silt CLAY
Name of Road	JINJA ROAD	Station	JJA NO. 2
Pavement Subgrade	Cross Section	(m) 0.000 0.095 0.185 Brown	Base(L.S.G)
Name of Road	JINJA ROAD	Station	JJA NO. 3
	Cross Section	(m)	Soil Profile
Pavement			Surface AS Pavement Base(L.S.G) Subbase (Neat gravel)
Subgrade		Claye	y gravel (Fill)
		——————————————————————————————————————	

Appendix 10.4 Result of Pavement Structure (8)

KIBUYE ROUND	TUOEA-		
PIT C	ROSS SECTION	(m)	
Pavement		0.000 0.020 0.320 0.420	Surface dressing Lime stabilized brown clayey gravel Yellowish clayey gravel
Subgrade		1.000	Red silty clay

JINJA ROAD ROUND	-ABOUT		
PIT CROSS	SECTION	(m)	
Pavement		0.000 0.050	Asphalt Red clay gravel stabilized
ravement		0.300	Yellowish clay gravel (non- stabilized)
		0.450 0.460	Old surface dressing 10mm
Subgrade		0.660	Red silty clay (fill)
		1.500	

Appendix10.5 Results of Surface Thickness Investigation

THICKNESS (mm)	30	ſ	20	10	10
SURFACING TYPE	Asphalt	None	Surface dressing	Surface dressing	Surface dressing
REFERENCE POINT	PB No. 6	GB No. 5	GB No. 6	GB No. 7	GB No. 8
THICKNESS (mm)	20	30	40	10	20
SURFACING TYPE	Surface dressing	Asphalt concrete	Asphalt concrete	Surface dressing	Surface dressing
REFERENCE	NA No. 2	NA No. 3	NA No. 4	PB No. 4	PB No. 5
				,	
THICKNESS (mm)	20	10	10	20	10
SURFACING TYPE	Surface dressing	Surface dressing	Surface dressing	Surface dressing	Surface dressing
REFERENCE POINT	HO No. 5	HO No. 6	HO No. 7	HO No. 8	GA No. 5

Appendix10.6 Results of Test for Subgrade Material (1)

ME No.1	% Passing		ı	'		100	91	88	83	78	73	7.1	2.72	14.0	39.0	15.8	. 23.2	16.4, 16.8, 18.6	ប
MSK No.3	% Passing	-	100	98	95	89	78	75	72	68	63	54	2.75	10.0	39.0	16.3	22.7	16.2, 18.0, 15.4, 3.2, 4.1, 10.2 [16.7, 3.7, 18.1 6.3, 30.5, 28.3, 55.4, 60.4, 50.4,15.5, 17.7, 24.4 [13.4, 10.4, 9.3 [13.2, 12.4, 10.4, 25.5, 26.5, 30.2, 16.4, 16.8, 18.6	ច
MSK No.2	% Passing	1	100	66	66	98	89	85	80	73	99	79	2.64	1.0	38.0	16.4	21.6	13.2, 12.4, 10.9	ರ
MSK No.1	% Passing	•	-	100	86	95	74	63	55	45	34	26	2.80	8.0	22.0	ã	,	13.4, 10.4, 9.3	SM
NA No.1	% Passing	•	100	86	95	93	98	84	80	77	73	69	2.70	21.0	47.0	22.6	24.4	15.5, 17.7, 24.	ם
HO No.4	% Passing	001	94	8.3	76	19	49	47	45	42	40	37	2.78	0.0	43.0	20.6	22.4	55.4, 60.4, 50.9	SM
HO No.3	% Passing	•	100	66	98	26	06	87	84	80	77	73	2.75	19.0	57.0	22.8	34.2	6.3, 30.5, 28.3	3
HO No.2	% Passing	,	100	86	26	95	98	82	75	89	62	56	2.71	12.0	38.0	17.5	20.5	16.7, 3.7, 18.1	CI
HO No.1	% Passing	00!	66	66	86	86	16	88	83	84	74	71	2.61	20.0	49.2	21.0	28.2	3.2, 4.1, 10.2	Ö
BO No.3	% Passing	ı	-	100	66	86	90	85	79	71	62	55	2.78	13.0	38.0	17.4	9'02	16.2, 18.0, 15.0	D
BO No.2	% Passing	2	100	94	68	84	74	89	19	52	45	37	2.65	16.0	27.0	ď	,	8.3, 6.9, 7.4	SM
BO No.1	% Passing	-	,	100	86	76	06	88	85	82	62	76	2.65	24.0	51.0	22.4	28.6	0.7, 1.9, 2.2	8
GA No.4	% Passing	•	100	98	95	93	86	82	78	72	67	62	2.60	12.0	42.0	18.1	23.9	9.3, 6.0, 7.1 31.4, 33.5, 26.8 7.2, 10.6, 10.2	Ü
GA No.3	% Passing	<u> </u>	100	96	68	84	77	74	70	59	09	56	2.85	15.0	38.0	16.1	21.9	31.4, 33.5, 26.8	Ö
GA No.2	% Passing		100	66	96	94	86	83	77	71	64	09	2.65	14.0	40.0	16.2	23.8	9.3, 6.0, 7.1	5
GA No.1	% Passing	100	26	94	85	70	64	62	09	57	54	50	2.67	16.0	48.0	20.2	27.8	1.9, 2.4, 1.0	Ü
No.	(3S Sieve	37.5mm	20.0mm	10.0mm	5.0mm	2.0mm	0.6mm	0.425mm	0.3mm	0.212mm	0.15mm	0.063mm	ravity	Content (%)	LL(%)	P.L (%)	P.I (%)	(%)	sification
Test-pit No.	Grain-Size	Analysis											Specific Gravity	Natural Moisture Content (%)	Atterberg	Limits		Site CBR (%)	BS Soil Classification

Appendix10.6 Results of Test for Subgrade Material (2)

MENO.2 KTNO.1 GENO.1 GENO.2 GENO.3 GENO.4 PBNO.1 PBNO.2 PBNO.3 JJANO.1 JJANO.2 JJANO.3 JJANO.4 JJANO.5 JKA	ng % Passing % P	100	001 66 66 66 06 66 001 86 86 - 66	97 100 94 96 98 100 100 93 - 100 80 96 98 98 100	93 99 88 90 93 99 98 87 100 99 64 91 91 96 99	91 98 76 85 85 98 97 80 99 97 55 86 94 94 97	85 93 58 79 79 89 89 65 94 93 45 77 89 88 93	83 90 5 77 77 86 86 60 90 91 43 75 87 84 89	79 86 50 73 75 80 82 55 85 89 41 72 84 81 85	76 80 46 70 73 73 77 50 80 86 39 68 80 77 80	71 73 42 66 71 63 73 46 72 80 37 64 75 72 74	69 70 36 63 69 53 70 41 67 74 33 59 71 63 69	2.72 2.71 2.81 2.83 2.72 2.68 2.77 2.59 2.82 2.83 2.75 2.74 2.76 2.74 2.76 2.74	17.0 17.0 16.0 17.0 17.0 18.0 30.0 20.0 14.0 14.0 15.0 21.0 16.0	45.0 47.0 41.0 46.8 50.5 30.2 41.0 39.0 46.0 44.5 42.0 40.0 38.0 46.0 48.0	17.7 14.2 14.9 20.8 24.6 13.9 18.8 16.2 15.7 19.3 19.6 18.4 17.1 23.0 22.0	27.3 29.8 26.1 26.0 25.9 16.3 25.2 22.8 30.3 25.2 22.6 21.6 20.9 23.0 26.0	27.1. 25.1. 31.319.2. 34.1. 26.23.37, 27.3, 10.3, 6.9, 6.9, 7.3, 22.1, 20.2, 18.427.1, 30.9, 25.3, 7.5, 7.4, 8.0 7.4, 5.7, 6.5 4.5, 6.7, 4.0 3.5, 5.0, 6.3 16.8, 17.6, 14.410.6, 12.9, 10.3 11.8, 9.0, 9.3 25.6, 26.2, 28.8		IO MS
╶╶╶╏╶╶╶╏ ╌ ┈ ┼╌┈┼╌┈┼╌┈┼┈╌┾╼╌┼									_											-
% Passing 100 98 97 86		98 89 89	98 97 89 89	98 89 89	89	89	98)	82	77	73	70	2.69	18.0	41.0	18.8	25.2	 .	5	T
┖╶╶┪ ╌┈┤┈┈┼┈╴╏╶╾┼┈╴╎╴╌┈┼─╌		. 100 88 88 88 88	100 99 98 89 86	66 86 89 89 89	86 89	68	98	_	80	73	63	53	2.68	17.0	30.2	13.9	16.3	1	į	3,
┞ ══┼══┼══┼	98 93 85	98 93	93	93	85		79	77	75	7.3	71	69	2.72	17.0	50.5	24.6	25.9		<u>.</u>	5
1 1 1	100	3	22	96	96	85	79	77	73	70	99	63	2.83	16.0	46.8	20.8	26.0		٦	5
% Passing		100	86	94	88	76	58	S	20	46	42	36	2.81	17.0	41.0	14.9	26.1			Civi
% Passing)		-	100	66	86	93	06	86	80	73	70	2.71	17.0	47.0	14.2	29.8	23.7, 27.3, 10.8	7	ز
ļ		_}	66	76	93	16	85	83	7.0	76	71	69	2.72	17.0	45.0	17.7	27.3	19.2, 34.1, 26.3	7	ز
4_	% Passing 9		100	66	96	63	83	7.0	74	69	64	57	2.82	14.0	46.0	18.0	28.0	7.1, 25.1, 31.3	;	<u>-</u> ز
┿	BS Sieve 9	+	20.0mm	10.0mm	5.0mm	2.0mm	0.6mm	0.425mm	0.3mm	0.212mm	0.15mm	0.063mm	ravity	Content (%)	LL (%)	P.L (%)	P.I (%)			attication
\vdash	Grain-Size	.J	`		<u></u>			_1	. .	.J			Specific Gravity	Natural Moisture Content (%)	Atterberg	simil	J	Site CBR (%)		BS Soil Classification

JRA Jinja Road Roundabout KRA Kibuye Roundabout

Appendix10.7 Results of Pavement Structure Investigation (1)

REFERENCE	TEST	BASI	Ξ	SUBBA	SE	SUBGRA	ADE
POINT	NO.	THICKNESS (mm)	CBR (%)	THICKNESS (mm)	CBR (%)	THICKNESS (mm)	CBR (%)
NA NO.2	1	141	69	190	28	300	6
	2	178	49	140	37	300	4
	3	130	40	130	40	300	8
Average		150	53	153	35	300	6
na no.3	1	245	20	200	20	300	10
	2	250	23	199	23	300	13
	3	222	22	200	22	300	15
Average		239	22	200	22	300	13
NA NO.4	1	166	60	250	26	300	25
	2	164	54	360	25	300	23
	3	148	82	240	30	300	25
Average		159	65	283	27	300	24
GB NO.5	1	150	118	190	51	300	35
	2	150	95	140	61	300	38
	3	164	118	120	78	300	31
Average		155	110	150	63	300	35
GB NO.6	1	140	45	200	36	300	20
	2	155	36	200	36	290	21
	3	160	88	170	53	300	19
Average -		152	56	190	42	297	20
GB NO.7	1	130	302	120	145	300	45
	2	133	341	120	160	300	40
	3	130	302	120	160	300	50
Average		131	315	120	155	300	45
GB NO.8	1	250	64	240	24	300	20
	2	249	80 .	220	37	300	27
	3	265	64	230	29	270	14
Average		255	69	230	30	290	20
PB NO.4	1	214	75	150	163	300	41
	2	197	84	140	169	300	57
	3	200	83	160	160	300	52
Average		204	81	150	164	300	50_

Appendix10.7 Results of Pavement Structure Investigation (2)

REFERENCE	TEST	BAS	BASE		ASE	SUBGRADE		
POINT	NO.	THICKNESS	CBR	THICKNESS	CBR	THICKNESS	CBR	
	ļ	(mm)	(%)	(mm)	(%)	(mm)	(%)	
PB NO.5	1	87	121	150	63	300	29	
	2	87	121	150	63	300	31	
	3	87	121	170	88	300	31	
Average		87	121	157	71	300	30	
PB NO.6	1	145	215	160	73	300	26	
	2	156	200	110	96	300	37	
	3	156	200	120	92	300	40	
Average		152	205	130	87	300	34	
HO NO.5	1	115	73	130	33	300	17	
	2	144	64	150	30	300	13	
	3	103	82	170	35	300	23	
Average		121	73	150	33	300	18	
HO NO.6	1	139	102	200	39	300	19	
	2	130	101	200	38	300	35	
	3	130	101	200	38	300	35	
Average		133	101	200	38	300	30	
HO NO.7	1	133	98	180	34	300	35	
	2	137	95	200	35	300	21	
	3	125	79	280	34	300	25	
Average		132	91	220	34	300	27	
HO NO.8	1	131	79	160	46	300	17	
	2	124	89	170	55	300	35	
	3	139	98	190	37	300	21	
Average		131	89	173	46	300	24	
GA NO.5	1	253	93	200	26	300	11.	
	2	303	72	180	17	300	12	
	3	331	72	180	45	300	10	
Average		296	79	187	29	300	11	

Appendix10.8 Results of Borrow Material (1)

Name of Born	ow Pit	NANSANA	SEGUKU	KANYANYA	MUTUNDWE	MBUYA
Grain-Size	BS Sieve					
Analysis	50.0 mm	100	100		100	100
	37.5 mm	95	95	100	94	90
	20.0 mm	80	85	92	80	81
	10.0 mm	62	59	69	50	62
	6.3 mm	49	41	52	32	47
	5.0 mm	42	37	46	27	41
	2.0 mm	29	29	3.3	17	28
	0.6 mm	24	24	28	17	24
	0.425 mm	22	23	27	16	23
	0.3 mm	21	23	26	16	22
	0.212 mm	19	22	25	15	22
	0.15 mm	18	21	25	15	21
	0.063 mm	16	20	24	14	20
Specific Gr	avity	2.69	2.84	2.75	2.81	2,76
	sture Content (%)	. 23	20	23	21	20
Atterberg	L.L. (%)	41.0	47.5	54.0	47.0	51.0
Limits	P.L. (%)	19.0	23.0	26.0	24.0	25.0
	P.I (%)	22.0	24.5	28.0	23.0	26.0
CBR	OMC (%) MDD (t/m ³)	9.0	11.8	11.5	10.2	11.2 2.02
Modified	4-days soaked (%)	31	26	30	28	20
BS Soil Cla	assification	GC	GC	GC	GC	GC

Appendix 10.8 Results of Borrow Material (2)

Name of Bor	row Pit	NANSANA	SEGUKU	Kanyanya	MUTUNDWE	МВСУА
Grain-Size	BS Sieve					
Analysis	50.0 mm	100	100		100	100
	37.5 mm	90	95		96	93
	20.0 mm	75	80	100	82	80
	10.0 mm	65	60	90	64	63
	6.3 mm	52	42	50	35	46
	5.0 mm	40	38	44	29	40
	2.0 mm	34	32	34	18	29
	0.6 mm	30	28	31	17	25
	0.425 mm	27	26	29	17	24
	0.3 mm	26	24	28	17	23
	0.212 mm	24	21	27	16	22
	0.15 mm	19	19	26	15	21
	0.063 mm	18	17	24	15	19
Specific Gra	nvity	2.72	2.80	2.72	2.80	2.75
Natural Mois	sture Content (%)	23	21	23	. 21	20
Atterberg	L.L. (%)	42.0	46.0	55.0	47.2	50.0
Limits	P.L. (%)	20.0	23.0	27.0	24.1	25.0
	P.I (%)	22.0	23.0	28.0	23.1	25.0
CBR	OMC (%) MDD (t/m ³)	13.7 1.82	14.4	11.8	13.0	14.6 1.85
Proctor	4-days soaked (%)	8	5	13	12	8
BS Soil Clas	sification	GC	GC	GC	GC	GC

Appendix 10.9 Results of Quarry Material

Name of Quar	cry Site	MUYENGA	MUYENGA
Grain-Size	BS Sieve	20 mm	14 mm
Analysis	28 mm	100	100
	20.0 mm	100	100
	14 mm	33	90
	10 mm	3	6
	6.3 mm	-	0
	2.36 mm	1	0
	0.075 mm	0	0
Specific Gra	avity		
Flakiness In	ıdex	17	9
Average Line	ear Dimension (ALD %)	10.1	9.6
Aggregate In	mpact Value (AIV %)	16	14
Los Angeles	abrasion Value (LAAV %)	22 .	19
10% FACT	(kN)	215	240

Appendix10.10 Annual Rainfall Data

Year	Annual Total
1974	948.6
1975	1019.8
1976	1263.3
1977	1134.4
1978	1451.3
1979	1220.9
1980	1423.2
1981	1141.2
1982	
1983	1092.3
1984	739.9
1985	1009.4
1986	926.9
1987	1029.9
1988	1427.4
1989	1289.2
1990	1028.0
1991	1411.6
1992	850.5
1993	969.7
1994	1114.0
1995	1052.5
1996	1176.8

Appendix10.11 Rainfall at Kampala

9661	131.1	4.2	54.4	0.0	4.4	5 5		2 89 1	90	4	25.0	0.0	83.8	2.8	40.4	1 986	60	110.01	0.0	51.8	1.7	30.5	0.0	65.9	2.1	44.9	0	31.6	9	0	124.3	0.4	30.1	0.0	62.4	210	0.0	114.5	3.7	25.4	0.0	42.4	4.1	15.0 15.0	0.0	1176.8	777	9
		0.2	6.7	0.0	1 40.0	200	2 5	7,64	100.4	4.7	61.6	0.0	198.9	6.6	90.0	0.0 V XX	1 9	47.6	0.0	32.4	1.1	14.1	0.0	89.7	2.9	36.2	00	42.4	42.4	É	152.9	4.9	32.5	0.0	128.5	35.5	0.0	0.0	III/AIG#	0.0	0.0	0.0	#DIV/0;	0.0	0.0	1052.5	10//01	0:0
1994	33.2	-	17.0	0.0	0.4.	75.7	2 0	2,90	0.07	6.5	17.7	0'0	161.5	5.4	50.5	24.6	2.4	36.4	0.0	34.4	-	18.7	0.0	70.1	23	26.0	0.0	92.3	3.0	2 0	6.98	2.8	22.1	0.0	221.2	509	0.0	169.5	5.5 #	36.0	0.0					1114.0	5.09	0.0
1993	46.6	1.5	22.2	0.0	23.3	0,0	0.0	0.0	5.90	2.0	20:0	0.0	129.7	4.3	40.3	0.0	5.4	43.2	0	77.4	2.6	15.1	0.0	22.7	0.7	20.7	0.0	17.0	C. C. Y	200	134.0	4.3	78.3	0.0	128.2	40.5	0.0	40.6	1.3	19.8	0.0	28.0	6.0	12.7	0.0	969.7	2.5 7.8.3	0.0
1992	55.8	×.	34.0	0.0	33.4	٠,٢١	0.0	24.1	7	1.7	28.3	9. 0	161.0	5.4	30.0	120.2	3.0	50.8	0	82.4	2.7	21.0	0.0	83.9	2.7	22.7	0.0	8.08	22.7	7 0	0	(I)/\IQA	0.0	0.0	0.0	00	e e	85.4	2.8	26.0	0.0	83.4	2.7	24.3	0.0	850.5	#DIV/0#	0.0
1991				0.0			-	1		- 1	- [- 1	- 1	- !		1	1	1	1	1	1	1		- 1	- 1	- 1	- 1	1	-	1	1	H	- 1		1	1	1	1	1	1 1		ı		1	1411.6	5.8	0.0
1-1		- 1	i I	0.0	- 1		1		- [- 1	- 1	- 1	- 1	ΞI															L	1	-	1			1		1	1		!			!	- 1	ı į	1028.0	#D!V/U:	0.0
6861	- !	! 1	1	0.0	- 1	1		- 1	Į	- L		ļ		1		ı		1	ı	1	1	1			- 1	- 1	- 1		1	-	1		1 3			ı		1		3 I				- 1	- 1	1289.2	5.5	0.0
1988				0.0	ı	- 1	-	1		- 1	- 1		- 1	- i	- i	- 1		1	1	1	1	ŀ								ı	1				- 1	- 1			1				l l			1427.4	3.9	0.0
-	1			0.0	1	- 1		- 1	- 1		- 1	- 1	- 1	- 1	- 1	ı	1		ŀ		ł	Į.		1 1		[- 1		- 1		1	1	1				1									1029.9	2.8	0.0
				0.0	- 1		- 1	- 1	- 1	- 1		- 1			- 1	- 1			1			1	1		: 1		- 1	- 1		- 1	- 1		1 3	1 1	- 1	- 1		1	1	1	1	1	1 1	1	1 1	926.9	2.5	0.0
1		i	1	0.0	- 1	- 1			- 1	1	- 1	- 1	- 1	- 1	- 1		-							1 1			- 1		- L	-	-	1			- 1				1		1 1					1009.4	2.7	0.0
1984	19.4	9.0	ŀ.	0.0	- 1	- 1		- 1	- 1	Ŀ	- 1	- 1		≂ 21			- 1		- 1			1	1		1 1		- 1	- 1		- 1	- 1	- 1		1 H		- 1	- 1			F			i I	1		739.9	#DtV/0	0.0
1983	52.5	1.7	40.5	0.0	10.0	2 6	7 (200	\$ 2	2.1	22.0	9	108.2	3.6	30.6	= 2	1.00.1	C.C. X	-	72.1	2.4	42.2	0.0	6.08	2.6	37.0	0.0	81.1	2.0	0.75	200	5.9	51.6	0.0	135.3	9.4	21.5	127.0	4.1	35.0	0.0	20.0	2.3	28.5	0.0	1092.3	3.0	0.0
1982				,	<u> </u>	•	'	•	•	٠		·	-	•	<u>.</u>		'	,								,	,	•	•	,				- (-	-	۰ ,		'	1		'		- 1	- 1		•	,
- 11		l		170	- 1		4	- 1	- 1	- 1	l l			!!	- 1	- 1	- 1			-1	1	ŀ				[- 1	- 1	- 1	1	1 1		- 1	- 1		1	1	į.		1	38.1		1141.2		0.0
1980	36.1	2.1	ļ.,	0.0	_	-4	_		-			_		\Box		_	_	_	1	1	L.	1.	Ļ	ــِـا		_			_	-	1	1	-	0.0	7.7.6 E	_ .	_ _	1		-	<u> </u>	-	2	1 29.0	0.0	1423.2	3.9	, 0
6261	'	2.5		0.0		┙	5.5		-	5.7			153.0	5.1	.]		_	7 6	L	× × ×		L	Ш.						- 1	-		1	19.0	0.0		7			4.8		l.		2 2.	ľ	١.	-		0.0
8761		3 0.3	L		-	4 0		1	-		5 51.6		186.4	7 6.2		- 1	7		770		1	17.0		ļ.,	l			1-1	3 4 ()			İ.	6 32.5	1		5.2						::		3 38.8	L	4 1451.3		0.0
1977	7 102.5	ı	1		0.0	4.5 #DIV/III	0.0	ľ	=		54.5			2 5.7			-1	0.0		=	ł	400	Į.	0.0)/\AIG# 6	3	Ö		6 5.3		1	7 40.0	Γ		-	3.8	1	Ì	VAIG# i	27.0 0.0	0.0			1 28.3		3 1134.4	₹:	0.0
1976	_	2 1.5	<u>L</u>	Ш		- 1	-		=	0, 5.4	5 54.4		_	3 6.2		- 1		2.9].	1	-	Ĺ	0.0	<u>l</u> _	<u> </u>			łĺ	6 2.6	I.	<u>[</u> _	140.0	_	1		7.2.8		-	1	1.		Ĺ	1	.8 39.1	1	8 1263.3	+	0.0
1975	36.9					5 2.6	1	-			2 47.5	L	'	0 3.3	5 24.4	- 1	10.3	L.		108	L	1	0.0			3 8.2			9. 2.6		_[1.151 10	1		LI	9 2.7		1	1	21.0	1		L	.3 28.8		1019.8	-+	0.0
1974	75.		L	0.0		1.5	28	0.0				0.0	125.2		30.5			2.7	<u>~</u>	0.0			ê	165		58.3	L			39.8	4	2.27		0.0			28.0	Ţ		17.0	_				0.0	50	2.6	
	Lioi	Average	Max	Min	Total	Average	Max	Min	Total	Average	Max	Ξ	Total	Average	Max	Min	Total	Average	XE .	S S	1007	2	į į	Total	Average	Max	Œ.	Total	Average	×α	Σ	lotai	y X X	. <u>:</u> X	Total	Average	Max	E ST	Average	×	Σ	Total	Average	Max	M	Annual Total	Annual Average	Annual Max
	Jan				Feb				Mar				Apr	-			χ̈́			1	i i			3				Aug			·	Vep			100			Z	À			Dec	i i			Αυπα	Annual	Annı

Appendix10.12 Maximum Daily Rainfall and Water Level of Lake Victoria

Station	Kam	ipala	Entebbe						
Year	Date	Rainfall	Date	Gage W.L	Sea Level				
1973									
1974	Jul.8	58.3	Jan.8	11.79	1135.22				
1975	Mar.19	47.5	Jan.5	11.63	1135.06				
1976	Mar.27	54.4	May.31	11.72	1135.15				
1977	Mar.18	54.5			_				
1978	Mar.11	52.2	May.11	12.19	1135.62				
1979	Mar.16	52.5	May.23	12.60	1136.03				
1980	Mar.1	51.3	May.26	12.05	1135.48				
1981	Mar.6	42.9	May.30	11.70	1135.13				
1982	-				-				
1983	Sep.11	51.6	May.30	11.67	1135.10				
1984	Aug.7	37.5	May.14	11.65	1134.93				
1985	May.7	47.0	May.31	11.49	1134.92				
1986	Dec.8	47.0	May.19	11.39	1134.82				
1987	Nov.26	55.5	Jun.22	11.42	1134.85				
1988	Apr.16	54.4	Jun.1	11.55	1134.98				
1989	Feb.6	59.3	May.28	11.69	1134.12				
1990	Feb.22	48.5	Jun.13	12.08	1135.51				
1991	Oct.18	68.0	Jun.18	11.90	1135.33				
1992	May.1	50.8	May.27	11.50	1135.39				
1993	Sep.18	78.3	Jun.28	11.45	1134.88				
1994	Oct.2	69.3	Dec.29	11.12	1134.55				
1995	Mar.6	61.6	Jun.3	11.37	1134.80				
1996	May.24	86.5	May.28	11.51	1134.94				

Note: Om of Gage W.L is 1,123,432 at Sea level

Appendix10.13 Frequency Analysis of Rainfall (1)

************** *** PLOTTING POSITION *** *****************

*********** ### BAZEN METHOD ### *********

- STATION : KAMPALA

- DATA : RAINFALL

- STATION : KAMPALA

- DATA : RAINFALL

- ESTIMATION EQUATION

X = 70 + (KK + CV + 1)

XO = 55.859

CV = 0.203 CS = 1.510

KK : SKEW CURVE FACTOR

		MEIBULL	PLOT	HAZEN I	PiOT
i	X(I)	P(I)	F(I)	P(I)	7(1)
· i	86.50	4.35	95.65	2.27	97.73
2	78.30	8.70	91.30	6.82	93.18
3	69.30	13.04	86.96	11.36	88.64
4 5	68.00	17.39	82.61	15.91	84.09
	61.60	21.74	78.26	20.45	79.55
ó	59.30	26.09	73.91	25.00	75.00
7	58.30	30.43	69.57	29.55	70.45
8	55.50	34.78	65.22	34.09	65.91
9	54.50	39.13	60.87	38.64	61.36
10	54.40	43.48	56.52	43.18	56.82
11	54.40	47.83	52.17	47.73	52.27
12	52.50	52.17	47.83	52.27	47.73
13	52.20	56.52	43.48	56.82	43.18
14	51.60	60.87	39.13	61.36	38.64
15	51.30	65.22	34.78	65.91	34.09
16	50.80	69.57	30.43	70.45	29.55
17	48.50	73.91	26.09	75.00	25.00
18	47.50	78.26	21.74	79.55	20.45
19	47.00	82.61	17.39	84.09	15.91
20	47.00	86.96	13.04	88.64	11.36
21	42.90	91.30	8.70	93.18	6.82
22	37.50	95.65	4.35	97.73	2.27

NOTE: I : ORDER NUMBER

X(I) : DATA

P(I): EXCEEDANCE PROBABILITY IN § F(I): NON-EXCEEDANCE PROBABILITY IN 3

	RETURN PERIOD	EXCEEDANCE PROBABILITY	PROBABLE VALUES	SKEW CURVE FACTORS
1	000.00 000.00 500.00 300.00 200.00 100.00 60.00 50.00 40.00 30.00 25.00 20.00 10.00 5.00 2.00 1.50 1.50	0.01 0.10 0.20 0.33 0.50 1.00 1.25 2.00 2.50 3.33 4.00 5.00 10.00 20.00 33.33 50.00 66.67	160.96 126.42 117.50 110.70 105.29 96.77 94.26 88.91 86.37 83.10 81.02 78.48 71.06 63.64 57.92 53.38 49.24 39.91	9.264 6.220 5.434 4.834 4.357 3.606 3.385 2.914 2.690 2.401 2.218 1.994 1.340 0.686 0.181 -0.219 -0.583

Appendix10.13 Frequency Analysis of Rainfall (2)

*************** *** PEARSON III METHOD *** **************

************* *** GUMBEL METHOD *** **************

- STATION : KAMPALA

- DATA : RAINFALL

- ESTIMATION EQUATION

LOG X = XO + SQR (V) * XX

XO = 1.739 V = 0.048 CS = 0.608

KK : SKEW CURVE FACTOR

- STATION : KAMPALA

- DATA : RAINFALL

- ESTIMATION EQUATION

X = X0 + Y / A

x0 = 50.430 x = 10.306

Y : REDUCED VALIATE

	DECORDITED	PROBABLE	SKEW CURVE	RETURN PERIOD	EXCEEDANCE PROBABILITY	PROBABLE Values	REDUCED Valiates
RETURN PERIOD	EXCEEDANCE PROBABILITY	VALUES		10000.00	0.01	145.34	9.209
10000.00 1000.00 500.00 300.00 200.00 100.00 80.00 50.00 40.00 30.00 25.00 20.00 10.00 5.00 3.00 2.00	0.01 0.10 0.20 0.33 0.50 1.00 1.25 2.00 2.50 3.33 4.00 5.00 10.00 20.00 33.33 50.00 66.67	146.79 119.00 110.34 104.38 99.88 92.90 90.66 86.11 83.90 81.14 79.44 77.21 70.68 63.88 58.06 53.82 49.27	5.154 4.055 3.659 3.369 3.138 2.758 2.630 2.361 2.225 2.050 1.939 1.790 1.327 0.797 0.297 -0.100 -0.562	1000.00 500.00 300.00 200.00 100.00 80.00 50.00 40.00 30.00 25.00 20.00 10.00 5.00 3.00 2.00 1.50 1.01	0.10 0.20 0.33 0.50 1.00 1.25 2.00 2.50 3.33 4.00 5.00 10.00 20.00 33.33 50.00 66.67	121.62 114.47 109.19 105.01 97.84 95.53 90.64 88.32 85.31 83.39 81.04 73.62 65.89 59.73 54.21 49.46 34.67	
1.01	99.00	38.33	-1.878				

Appendix10.14 Frequency Analysis of Water Level of Victoria Lake (1)

*** GOBTEM MESABLES ***

- STATION : ENTEBBE

- DATA : WATERLEY

- STATION : ENTEBBE

DATA : WATERLEY

						- DATA :	WATERLEV		
	_	MEIBOLL	PLOT	HAZEN	PLOT	- ESTIMATION	ROITAUĢE		
I	(1)1	P(I)	P(I)	P(I)	P(I)	X = X0	* (XX * CV + 1)	
1 2		4.55					= 1135.086		
3		9.09			92.86		= 0.000		
				11.90			= 0.046		
4 5	1135.48		81.82		83.33	XX	: SKEW CURVE FAC	TOR	
5 6	1135.39	22.73	77.27	21.43	78.57				
	1135.33		72.73		73.81				
7 8			68.18	30.95	69.05	RETURN	EXCEEDANCE		
o ĝ	1135.15 1135.13			35.71		PERIOD	PROBABILITY	VALUES	FACTORS
10				40.48					
10	1135.10 1135.06			45.24		10000.00	0.01	1136.63	3.822
				50.00			0.10		
12	1134.98	54.55	45.45	54.76	45.24		0.20		2.903
13	1134.94	59.09	40.91	59.52	40.48	300.00			
14	1134.93		36.36	64.29			0.50		2.543
15	1134.92			69.05				1136.03	2.354
16	1134.88	12.13	21.27	73.81	26.19	80.00	1.25	1136.00	2.259
17		77.27				50.00		1135.91	2.054
18	1134.82		18.18	83.33	16.67			1135.87	1,956
19	1134.80	86.36	13.54	88.10	11.90	30.00	3.33	1135.82	
20	1134.55 1134.12	90.91	9.09	92.86	7.14	25.00	4.00	1135.79	
21	1134.12	y5.45	4.55	97.62	2.38			1135.75	1.654
HAMP	T . ADD				·	10.00	10.00	1135.59	1.246
NUTE;	I : ORD					5.00	20.00	1135.42	0.838
	X(I) : DAT.				-	3.00 2.00	33.33	1135.23	. 0.367
	P(I) : EXC					2,77	24.00	1135.08	-0.007
	F(I): NON-	~E&C&&UAN(&	r kknrvrif]	ITI IN 8	-	1.50	66.67	1134.88	-0.518
						1.01	99.01	1134.16	-2.291

Appendix10.14 Frequency Analysis of Water Level of Victoria Lake (2)

- STATION : ENTERBE

- DATA : WATERLEY

- ESTIMATION EQUATION

X = X0 + Y / A

X0 = 1134.841A = 0.468

Y : REDUCED VALIATE

RETURN	EXCEEDANCE	PROBABLE	REDUCED
PERIOD	PROBABILITY	VALUES	VALIATES
10000.00	0.01	1139.15	9.209
1000.00	0.10	1138.07	6.907
500.00	0.20	1137.75	6.214
300.00	0.33	1137.51	5.702
200.00	0.50	1137.32	5.296
100.00	1.00	1136.99	4.600
80.00	1.25	1136.89	4.376
50.00	2.00	1136.67	3.902
40.00	2.50	1136.56	3.676
30.00	3.33	1136.42	3.384
25.00	4.00	1136.34	3.199
20.00	5.00	1136.23	2.970
10.00	10.00	1135.89	2.250
5.00	20.00	1135.54	1.500
3.00	33.33	1135.26	0.903
2.00	50.00	1135.01	0.367
1.50	86.67	1134.80	-0.094
1.01	99.01	1134.13	-1.529

Appendix10.15 Catchment Area of Road Crossing Culvert

Name of Channel	Name of Road	Catchment Area (km²)	Remarks
Lubigi Swamp	Mubende	61.5	Corrugated steel Pipe φ800×3
	Semtema	45.0	Corrugated steel Pipe $\phi 800 \times 3$
	Hoima	30.8	Box culvert $1.20 \times 1.20 \times 2$
	Kawaala	24.0	
	Bombo	18.0	Corrugated steel Pipe Φ800×2
	Gayaza (1)	7.2	Corrugated steel Pipe φ600×3
Distributary of Lubigi Swamp	Gayaza (2)	3.8	Corrugated steel Pipe φ600×1
	Natete (1)	0.14	
Distributary of Nalukolon (1)	Natete (1)	1.4	Corrugated steel Pipe φ600×1
Distributary of Nalukolon (1)	Masaka (2)	1.4	Corrugated steel Pipe φ600×1
Distributary of Nalukolon (2)	Masaka (2)	4.1	Corrugated steel Pipe φ600×1
Distributary of Nalukolon (3)	Masaka (3)	2.3	Corrugated steel Pipe φ600×1
Kansanga	Gaba	9.1	Corrugated steel Pipe $\phi 800 \times 2 \times 3$ nos
Vubyabnege	Jinja (1)	5.3	Corrugated steel Pipe φ600×1
	Jinja (2)	1.0	-
Kawaya	Jinja (3)	1.8	Corrugated steel Pipe Φ800×3
Wankolokolo	Jinja (4)	0.9	-
Kironbe Swamp	(Neck portion)	12.0	-
Nakivubo Swamp	Roads of central city	30.0	Rehabilitation Project Nakivubo Channel

Appendix10.16 Design Flood Discharge


Calculating	Dist	Distance	Difference in E.L	e in E.L	Run-off Velocity	Velocity	Con	Concentration time	ime	Rainf. In.	Catch. Ar	Discharge
Point	L1 (m)	L2 (m)	H1 (m)	H2 (m)	W1(m/s)	W2(m/s)	T1(sec)	T2(sec)	t (hr)	r(num/hr)	$A (km^2)$	Q (m ³ /s)
Mubende	7,500	6,300	30	13	0.728226	0.489544	10299.01	12869.12	6.43559	8.357	61.5	71.386
Sentema	7,500	3,800	30	8	0.728226	0.495466	10299.01	7670	4.991265	9.900	45.0	61.878
Hoima	7,500	1,300	30	3	0.728226	0.523524	10299.01	2483	3.550604	12.42303	30.8	53.147
Kawaala	7,500	0	30	0	0.728226	0	10299.01	0	2.860835	14.347	24.0	47.828
Bombo	6,400	0	25	.0	0.717936	0	8914	0	2.476233	15.797	18.0	39.495
Gayaza (1)	5,400	0	22	0	0.736287	0	7334	0	2.037248	17.991	7.2	17.993
Gayaza (2)	3,000	0	15	0	0.832553	0	3603	0	1.000937	28.895	3.8	15.251
Natete (1)	800	0	5	0	0.951827	0	840	0	0.233469	76.256	0.14	1.483
Natete (2)	800	500	8	. 2	1.261915	0.728226	634	687	0.366822	56.423	1.4	10.972
Masaka (1)	1,500	0	10	0	0.989408	0	1516	0	0.421127	51.462	2.4	17.155
Masaka (2)	800	006	8	4	1.261915	0.775748	634	1160	0.498369	45.997	4.1	26.195
Masaka (3)	800	1,100	7	5	1.164756	0.786278	687	1398.995	0.579399	41.602	2.3	13.290
Gaba	2,000	2,500	12	10	0.928797	0.728226	2153	3433.002	1.551757	21.571	9.1	27.266
Jinja (1)	1,500	1,500	12	8	1.103784	0.865425	1358.962	1733	0.858949	31.998	5.3	23.556
Jinja (2)	1,500	1,500	15	8	1.261915	0.865425	1189	1733	0.811645	33.229	1.0	4.616
Jinja (3)	700	1,000	7	Ŋ	1.261915	0.832553	555	1201	0.487733	46.663	1.8	11.667
Jinja (4)	1,000	009	10	3	1.261915	0.832553	792	721	0.420	51.529	0.0	6.442
Kironbe (N.P)	1,500	2,500	12	10	1.103784	0.728226	1358.962	3433.002	1.331101	23.89397	12.0	39.826

Note R24 : Probable daily rainfall = 83.4 mm

Rainf. In. : Rainfall Intensity

Catch. Ar: Catchment Area

N.P. : Neck Portion

.

	-		
			·

.

