CONTENTS

S

-

1	٠	Design Introduction	p2
2	٠	Primary data document Zhl.pm (For PMCAD)	P [‡]
3	٠	Structure analysys of Beam ($L1 \sim 5$) result document	p15
4	8	Structure analysys of Beam ($1.6 \sim 10$) result document	p23
5	•	Figures #18	

.

.

.

Office Building (Fuel Supply Depot)

- 2

1 • Design Introduction

I. Name of Project: Shanghai Pudong Airport Aviation Filling Station Office Building

II. Structure type: Tow-floor brick & concrete structure

III. Foundation type: R.C. Strip foundation

IV. Aseismic intensity: 7

V. Site soil type: IV

VI. Soil endurance: R=90KPa/m2

VII. Structure importance parameter: Ro=1.0

VIII.Foundation load-bearing layer elevation: 4.90

IX. Materials: column -- C25 beam board -- C25

wall: clay brick 240mm (5.40KN/m2)

X. Load:

1.	Living load:	roof	1.50KN/m2
		floor	1.50 KN m2

2. Static load:

floor		
	eiling	0.30KN/m2
	structure layer (100mm)	2.50KN/m2
	floor (floor1)	2.20 KN/m2
	total	5.00 KN/m2
roof		
	ciling	0.30KN/m2
	structure layer (100mm)	2.50KN/m2
	roof (roof 1)	3.90KN/m2
	total	6.70 KN/m2

XI. Selection of main members

1. Main beam (L=7200mm) bxh=250x600 bxh=250x550

Main beam (L=5100mm)

bxh=250x550

2. Board thickness: h=100mm

XII. Design basis

1. Current national architecture & structure standards and codes;

2. Shanghai City's << Base Foundation Design Codes >> DBJ08--11--89;

3. Shanghai City's << Base Treatment Technical Codes >> DBJ08--40--94;

4. Shanghai City's << Building Aseismic Design Standards >> DBJ08--09--92;

5. << Shanghai Pudong Airport Oil Depot Rock & Soil Investigation Immediate Report >> made by China Aviation Industry Investigation & Design Institute;

Ĩ.

XIII. Computer programs

China Building Science Research Institue CAD Engineering Department

PMCAD CAD, structure plan CAD; August, 1996

PK Structural calculation & construction drawing making of R.C. Frame, framed bent and continuous beam; August, 1996

JCCAD Independent foundation & strip foundation design; August, 1996

XIV. Conclusion:

I

It is concluded from calculation above, the integral strength and deformation of structure meet the design requirements, the geometric dimensions also meet the requirements of strength and deformation regulated by Codes. The primary data of structural model, major calculation results, combining results of main internal forces of each member, structural layout, internal force drawing, reinforcing results of major members refer the next page, based on which construction drawings are made.

1

.

4

11.00

2 • Primary data document Hys pm (For PMCAD)

WS BL		NIS KU	. N	OC NUN	• 1VI	LOD ALIYE	MAD	MYD BLKD
	3, 26, -1,	4, 7,	0,	3, 1.00,	1,	1, 0.00, 1.00	,100.0	
(HLA((i),i=1,NST)							. •
5.000, 3.:	300, 2.700,							
{MSH	(i),i=1,MST)							• -
1,	2, 3,							
((XY(I,J),J=1,2),I=1	,NJ)						
1,	-13.651,	1.366	:	-				•
2,	-13.651,	6.466						
3,	-13.651,	8.566						
4,	-13.651,	13.666						
5,	-10.051,	1.366						
6,	-10.051,	6.466						
7,	-10.051,	8.566						
8,	-10.051,	13.666						
9,	-6.451,	1.366						
10,	-6.451,	6.466						
11,	-6.451,	8.566						
12,	-6 451,	13.666						
13,	-2.851,	1.366						
14,	-2.851,	6.466						
15,	-2.851,	8.566						
16,	-2.851,	13.666						
17,	0.749,	-0.134						
18,	0.749,	1.366						
19,	0.749,	4.566						
20,	0.749,	6.466						
21,	0.749,	8.566						
22,	0.749,	13.666						
23,	4.349,	-0.134						
24,	4.349,	1.366						
25,	4.349,	4.566						
26,	4.349,	6.466				•		
27,	4.349,	8,566						
28,	4.349,	13.666						· ·
29,	7.949,	0.154						
30,	7.949,	1.366						
31,	7.949,	6.466						
32,	7.949,	8.566						
33,	7.949,	13.666						
34,	11.549,	-2.788						

.

×

0

Calculation B	ook	Office Building (Fi	uel Supply Depot)
<u></u>			
35,	11.549,	-0.438	
36,	11.549,	1.366	
37,	11.549,	6.466	
38,	11.549,	8.566	
39,	11.549,	13.666	
40,	13.501,	-0.593	
41,	13.499,	1.366	
42,	15.149,	-0.634	
43,	15.149,	1.366	
44,	15.149,	6.466	
45,	15.149,	8.566	
46,	15.149,	13.666	
47,	15.149,	32.666	
48,	16.797,	-0.593	
49,	16.799,	1.366	
50,	18,749,	-2.851	
51,	18.749,	-0.438	
52,	18.749	1.366	
53,	18.749,	6.466	
54,	18.749,	8.566	
55,	18.749,	13.666	
56,	22.349,	0.154	
57,	22.349,	1.366	
58,	22.349,	6.466	
59,	22.349,	8.566	
60,	22.349,	13.666	
61,	25.949,	-0.134	
62,	25.949,	1.366	
63,	25.949,	4.566	
64,	25.949,	6.466	-
65,	25.949,	8.566	
66,	25.949,	13.666	
67,	29.549,	-0.134	
68,	29.549,	1.366	
69,	29.549,	4.566	
70,	29.549,	6.466	
71,	29.549,	8.566	
72,	29.549,	13.666	
73,	33.149,	1.366	
74,	33.149,	6.466	
75,	33.149,	8.566	
76,	33.149,	13.666	
77,	36.749,	1.366	
78,	36.749,	6.466	

Ê

(SHARRY)

Ĩ

.

79,	36.749,	8.566
80,	36.749,	13.666
81,	40.349,	1.366
82,	40.349,	6.466
83,	40.349,	8,566
84,	40.349,	13.666
85,	43.949,	1.366
86,	43.949,	6.466
87,	43.949,	8.566
88,	43.949,	13.666

0

C---((AXIS(1),I=1,NAXIS)

1,	4,	1,	2,	3,	4,						-
2,	4,	5,	6,	7,	8,			-			
3,	4,	9,	10,	11,	12,						
4,	4,	13,	14,	15,	16,						
5,	6,	17,	18,	19,	20,	21,	22,				
6,	6,	23,	24,	25,	26,	27,	28,		-		:
7,	5,	29,	30,	31,	32,	33,					
8,	6,	34,	35,	36,	37,	38,	39,				
9,	5,	42,	43,	44,	45,	46,					
10,	6,	50,	51,	52,	53,	54,	<u>55,</u>				
11,	5,	56,	57,	58,	59,	60,					
12,	6,	61,	62,	63,	64,	65,	66,		-		
13,	6,	67,	68,	69,	70,	71,	72,				
14,	4,	73,	74,	75,	76,						
15,	4,	77,	78,	79,	80,			÷.,	-	-	
16,	4,	81,	82,	83,	84,						
17,	4,	85,	86,	87,	88,						
18,	19,	1,	5,	9,	13,	18,	24,	30,			43,
		49,	52,	57,	62,	68,	73,		81,	85,	
19,	17,	4,	8,	12,	16,	22,	28,	33,	39,	46,	55,
		60,	66,	72,	76,		-	88,			•
20,	17,	3,	7,	11,	15,	21,	27,	32,	38,	45,	54,
		59,	65,	71,	75,	79,	83,	87,			
21,	17,	2,	6,	10,	14,	20,	26,	31,		-44,	53,
		58,	64,	70,	74,	78,	82,	86,			
22,	4,	17,	23,	61,	67,						
23,	4,	19,	25,	63,	69,						• • •
24,	2,	48,	49,						-		
25,	2,	40,	41,								2
26,	2,	34,	50,						•		

0

C---(CL(i),i=1,KCL)

.

()

Office Building (Fuel Supply Depot) Calculation Book 0.400, 0.400, 6.000, 1.000. 1.000, 6.000, 0.240, 0.240, 0.400, 6.000, 3.000, 0.240, 1.000, 6.000, 0.300, C---(BE(i),i=1,KBE) 0.600, 1.000, 6.000, 0.250, 0.250, 0.550, 1.000. 6.000, 1.000, 6.000, 0.250, 0.500, 6.000, 0.250, 0.400, 1.000, 0.240, 6.000, 0.240, 1.000, 0.250, 0.870, 6.000, 1.000. -0.010, -0.870, 6.000, 0.250, 1.000, C---((HSLD(i,j),j=1,3),i=1,MLOD) 5.000, 1.500, 1.000, 6.700, 1.500, 2.000. 3.000, 6.700, 0.700, C---QUE JEI DIAN 0 LAYER 1 С ICC IG C---BHOU IC RWB BHC 2 0.100, 20.0,0.015, 20.0, 20.0, C---((AXIS(I),I=1,NAXIS) 4, 3, 2, 1. 4, 1, 8, 7, 6, 2, 4, 5, 9, 10, 11, 12, 3. 4, 4, 13, 14. 15, 16, 4, 22, 17, 18, 19, 20, 21, 6. • 5. 27, 28, 25, 26, 23, 24, 6, 6, 29, 30, 31, 32, 33, 7, 5, 39, 37, 38, 36, 34. 35, 8, 6, 46, 44, 45, 5, 42, 43, 9, 54, 55, 52, 53, 51, 50, 10, 6, 58, 59, 60, 5, 56, 57, 11, 66, 65, 63, 64, 12, 6, 61, 62, 70, 72, 71, 69, 13, 6, 67, 68, 75, 76, 4, 73. 74, 14, 77, 78, 79, 80, 15, 4, 84, 82, 83, 4, 81, 16, 87, 88, 85, 86, 4, 17, 43, 36, 41, 30, 9, 13, 18, 24, 5, 19, 1, 18. 81, 85, 77, 62, 68, . 73, 57, 49, 52, 33, 39, 46, 55, 12, 16, 22, 28, 4. 8, 19, 17,

7

		60,	66,	72,	76,	80,	84,	88,		` • -	<i>.</i>	
20,	17,	3,	7,	11,	15,	21,	27,	32,	38,	45,	54,	
		59,	65,	71,	75,	79,	83,	87,			<i>c</i> .	
21,	17,	2,	6,	10,	14,	20,	26,	31,	37,	44,	53,	
		58,	64,	70,	74,	78,	82,	86,				
22,	4,	17,	23,	61,	67,							
23,	4,	19,	25,	63,	69,							
24,	2,	48,	49,									
25,	2,	40,	41,								-	
26,	2,	34,	50,								-	
)												
C ZHI		_										
	1801,	2,		0.000,		0.000				-		
	1803,	2,		0.000,		0.000						
	1808,	1,		0.000,		0.000					•	
	1812,	1,		0.000,		0.000						
	1817,	2,		0.000,		0.000		-			·	
	1819,	2,		0.000,		0.000						
	1901,	2,		0.000,		0.000						
	1903,	2,		0.000,		0.000						
	1905,	2,		0.000,		0.000						
	1907,	2,		0.000,		0.000 0.000						
	1911,	2,		0.000,		0.000						
	1913,	2,		0.000,		0.000						
	1915,	2,		0.000,		0.000						
	1917,	2,				0.000						
	2001,	2, 2,		0.000,		0.000						
	2003,	2, 2,		0.000,		0.000			`		·	
	2005,	2, 2,		0.000,		0.000						
	2007, 2011,	2, 2,		0.000,		0.000		•				
	2011, 2013,	2, 2,		0.000,		0.000					•	
	2013,	2, 2,		0.000,		0.000						
	2013,			0.000,		0.000		•				
	2017,	2, 2,		0.000,		0.000						
	2101, 2103,	2, 2,		0.000,		0.000		•				
2	2103, 10507,			0.000,		0.000						
4	2108,			0.000,		0.000		-			· · ·	
	2103,			0.000,		0.000					· 23	
	2110,			0.000,		0.000		:			•	
4	2115,			0.000,		0.000						
	2117,			0.000,		0.000	. •					
	20104,			0.000,		0.000	-			• ;		

0

Ø

-168-

Calculation Book		01	lice Building (Fu	el Supply	(Depot)		
	•	0.000	0.000		0		
10000029,	2,	0.000,	0.000,		0		
10000035,	2,	0.000,	0.000,		0		
10000051,	2,	0.000,	0.000,				
10000056,	2,	0.000,	0.000,		0		
10000048,	4,	0.000,	0.000,		0		
10000040,	4,	0.000,	0.000,		0		
0							
C LIANG							
801,	4,	0.000					
902,	3.	0.000					
1001,	4,	0.000					
1003,	3,	0.000					
180811,	· 2,	0.000		-			
2105,	4,	0.000					
210809,	1,	0.000					
2112,	4,	0.000					
2301,	4,	0.000					
2303,	4,	0.000					
2601,	3,	0.000					
10042048,	7,	0.000					
10048051,	7,	0.000					
10035040,	7,	0.000					
10040042,	,, 7,	0.000					
0	••	01000					
C QIANG							
10103,	0.2	40.	0.000				
201,	0.2		0.000				
203,	0.2		0.000				
301,	0.2		0.000				
303,	0.2		0.000				
401,	0.2		0.000				
403,		40,	0.000				
50103,		40,	0.000				
		40,	0.000			-	
505,		40, 40,	0.000				
60103,			0.000				
605,		40,	0.000				
70102,		40,					
704,		40,	0.000				
80203,		40,	0.000		•		
805,		40,	0.000			-	
904,		.40,	0.000				
1002,		:40,	0.000		. *		
1005,		240,	0.000			-	
110102,	0.2	240,	0.000			-	

.

.

.

• •

10

0

0

Calculation DC	.VA			THE Du		(1 41 0	rrij	~ 194	<u>.</u>				
	~ . .												
	04,	0.240,		0.000									
12010		0.240,		0.000								-	
	05,	0.240,		0.000									
1301		0.240,		0.000				-					
	05,	0.240,		0.000									
14	01,	0.240,		0.000									
14	03,	0.240,		0.000									
15	01,	0.240,		0.000								· :	
15	03,	0.240,		0.000									
16	01,	0.240,		0.000									
16	03,	0.240,		0.000									
1701	03,	0.240,		0.000									
1801	04,	0.240,		0.000									
	06,	0.240,		0.000									
	13,	0.240,		0.000									
1815	-	0.240,		0.000									
1901		0.240,		0.000									
2001	-	0.240,		0.000				· .					
2101		0.240,		0.000									
2106		0.240,		0.000									
2110		0.240,		0.000								· .	
2113		0.240,		0.000									
	10, 01,	0.240,		0.000									
	03.	0.240,		0.000									
100290		•0.240,	-	0.050,		0.000							
100290		-0.240,		0.050,		0.000							
	-0,	-v.4V,	•	0.000,		0.000							
) C DONG	VOU									·.			
	VUU	-											
)]a=======				<u></u>	==				====				
Carseras C	==				2							ــــر ۱	
C Cessante				YER									
внои	RWE			ICC		IG					 :	C	
		5, 20.0, 2		2									
C((AXIS(0.0,	61					-				
			3,	4,									
•	4, 1		, 7,	4, 8,									
-	4, 5		-	_									
3, -	4, 9 4 12	-	11,	12,					•				
	4, 13		15,	16, 20					•	-		• •	
			19,	20,	21,	22,	•			-			
5, 0	6, 17					<u>^</u>							
5, 0 6, 0	6, 17 6, 23	, 24,	25,	26,	27,		-		÷			:	
5, 0 6, 0 7, 5	6, 17 6, 23 5, 29	, 24, , 30,	25, 31,	26, 32,	33,	-	•		•			- -	
5, 0 6, 0 7, 5 8, 5	6, 17 6, 23	, 24, , 30, , 36,	25,	26, 32,		-	• •		-	-			

lculation	n Book			01	fice Bu	uilding (F	vel Sug	ply Dej	xx)				
10,	5,	51,	52,	53,	54,	55,							
11,	5,	56,	57,	58,	59,	60,							
12,	6,	61,	62,	63,	64,	65,	66,						
13,	6,	67,	68,	69,	70,	, 71,	72,						
14,	4,	73,	74,	75,	76,	•	-						
15,	4,	77,	78,	79,	80,								
16,	', 4,	81,	82,	83,	84,								
10, 17,	,, 4,	85,	86,	87,	88,								
18,	., 17,	1,	5,	9,	13,	18,	24,	30,	36,	43,	52,		
10,	,	-, 57,	62,	68,	73,	17,	81,	85,					
19,	17,	4,	8,	12,	16,	22,	28,	33,	39,	46,	55,		
17,	• • •	60,	66,	72,	76,	80,	84,	88,	-				
20,	17,	3,	7,	11,	15,	21,	27,	32,	38,	45,	54,		•
<i>-</i> v,	• • •	59,	65,	, 71,	15,	, 79,	83,	87,		-			
21,	17,	2,	6.	10,	14,	20,	26,	31,	37,	44,	53,		
£1,	• ',	- <u>-</u> , 58,	64,	70,	74,		82,	86,	•				
22,	4,	17,	23,	61,	67,		-	-					
22, 23,	4, 4,	19,	25,	63,	69,								
23,	7,	<i>17</i> ,	<i></i> ,	v.,	<u>.</u>								
ZH	11						•						
211	1801,	2,		0.000,		0.000							
	1803.	2,		0.000,		0.000							
	1808,	2, 1,		0.000,		0.000							
	1810,	, 1,		0.000,		0.000							
	1815,	·, 2,		0.000,		0.000							
	1817,	2,		0.000,		0.000							
	1901,	2,		0.000,		0.000							
	1903,	-, 2,		0.000,		0.000							
	1905,	2, 2,		0.000,		0.000							
	1907,	-, 2,		0.000,		0.000						_	
	1907,	2, 2,		0.000,		0.000		-					
	1911,	2, 2,		0.000,		0.000							
	1915,			0.000,		0.000							
	1913,	2, 2,		0.000,		0.000							
	2001,			0.000,		0.000							
	2001, 2003,			0.000,		0.000				·· .			
	2005,			0.000,		0.000							
	2003, 2007,			0.000,		0.000							
	-			0.000,		0.000							
	2011,			0.000, 0.000,		0.000							
	2013,			0.000,		0.000				÷			
	2015,			0.000,		0.000				_			
	2017, 2101,			0.000,		0.000		- -		•			
	- 2101.	<u> </u>		v.vvv,		v.vvv							

.

٠

.

·

Calculation Book		Office Building (Fuel	Supply Depot)	
010007	A A A	0, 0.000		
210507,	2, 0.00 1, 0.00	•		· ·
2108,	-	-		
2110,	-	•		
211113, 2115,	2, 0.00 2, 0.00	-		•
2115, 2117,	2, 0.00 2, 0.00	•		
220104,	2, 0.00 2, 0.00	-	·	
10000029,	2, 0.00	-	0	•
10000056,	2, 0.00		. 0	
10000051,	2, 0.00	-	0	
10000035,	2, 0.00	-	0	
0	2, 0.00	,		
C LIANG				•
80102,	3, 0.00	0	1	
902,	3, 0.00			
904,	3, 0.00			
100102,	3, 0.00	0		
180809,	2, 0.00	00		
2105,	4, 0.00	00		
210809,	2, 0.00			• .
2112,	4, 0.00	00		
2301,	4, 0.00	00		
2303,	4, 0.00			
0				
C QIANG				
10103,	0.240,	0.000		
201,	0.240,	0.000		
203,	0.240,	0.000		•
301,	0.240,	0.000		• .
303,	0.240,	0.000		
401,	0.240,	0.000		
-103,	0.240,	0.000		
50103,	0.240,	0.000	_	
505,	0.240,	0.000		
60103,	0.240,	0.000 0.000		·
605,	0.240, 0.240,	0.000		·
70102,		0.000		
704. 804.	0.240, 0.240,	0.000	•	
804 <u>.</u> 1004,	0.240,	0.000		
110102.	0.240,	0.000		
110102.	0.240,	0.000	· ·	
120103,	0.240,	0.000		
120105,	0.240,	0.000		· .
1,	V. 4 TV,	¥, = = =	·	

-172-

alculation Book		Office Buil	ding (Fuel Sup)	ply Depot)
140103	0.240	0.000		
130103,	0.240,	0.000		
1305,	0.240,	0.000		
1401,	0.240,	0.000		
1403,	0.240,			
1501,	0.240,	0.000		
1503,	0.240,	0.000		
1601,	0.240,	0.000		
1603,	0.240,	0.000		
170103,	0.240,	0.000		
180104,	0.240,	0.000		
1806,	0.240,	0.000		
1811,	0.240,	0.000		
181316,	0.240,	0.000		
190116,	0.240,	0.000		
200116,	0.240,	0.000		
210104,	0.240,	0.000		
210607,	0.240,	0.000		
211011,	0.240,	0.000		
211316,	0.240,	0.000		
2201,	0.240,	0.000		
2203,	0.240,	0.000		
10029035.	-0.240,	-0.050,	0.000	
10051056,	-0.240,	-0.050,	0.000	
10042051,	-0.240,	-0.050,	0.000	
10035042,	-0.240,	-0.050,	0.000	
) C DONG KO) C===================================	*********	LAYER	3	
)=========				======================C
	WB BHC	IC ICC	IG	
	0.015, 20.0, 2	0.0, 2		
:((AXIS(I),I	=1,NAXIS)			
1, 4,	1, 2,	3, 4,		
	5, õ,			
2, 4,		11, 12,		
	9, 10,			
3, 4,	13, 14,	15, 16,		
3, 4, 4, 4,	13, 14,		21, 22,	
3, 4, 4, 4, 5, 6,	13, 14, 17, 18,	15, 16,		
3, 4, 4, 4, 5, 6, 6, 6,	13, 14, 17, 18, 23, 24,	15, 16, 19, 20,	27, 28,	
3, 4, 4, 4, 5, 6, 6, 6, 7, 5,	13, 14, 17, 18, 23, 24, 29, 30,	15, 16, 19, 20, 25, 26,	27, 28, 33,	. · ·
3, 4, 4, 4, 5, 6, 6, 6, 7, 5, 8, 5,	13, 14, 17, 18, 23, 24, 29, 30, 35, 36,	15, 16, 19, 20, 25, 26, 31, 32, 37, 38,	27, 28, 33,	- ·

J

.

}

· · . .

11,	5,	56,	57,	58,	59,	60,						
12,		61,	62,	63,	64,	65,	66,			· .		
12,		67,	68,	69,	70,	71,	72,					-
13,		73,	74,	75,	76,	,	•					
15,		77,	78,	79,	80,							
16,		81,	82,	83,	84,							
17,		85,	86,	87,	88,							
18,		١,	5,	9,		18,	24,	30,	36,	43,	52,	
,		57,	62,	68,	73,	77,	81,	85,				
19,	17,	4,	8,	12,	16,	22,	28,	33,	39,	46,	55,	: •
·		60,	66,	72,	76,	80,	84,	88,		·		
20,	17,	3,	7,	11,	15,	21,	27,	32,	38,	4 <u>5,</u>	54,	
		59,	65,	71,	75,	79,	83,	87,				
21,	17,	2,	6,	10,	14,	20,	26,	31,	37,	44,	53,	
		58,	64,	70,	74,	78,	82,	86,				
22,	4,	17,	23,	61,	67,							
23,	4,	19,	25,	63,	69,							
0												
C Z	HU					-						
	210506,	2,		0.000,		0.000						
	211213,	2,		0.000,		0.000						
	220104,	2,		0.000,		0.000						
0												
C L	IANG											
0								-				•
C Q	IANG											
	50103,		0.240,		0.000							:
	60103,		0.240,		0.000							
	120103,		0.240,		0.000							
	130103,		0.240,		0.000							
	2105,		0.240,		0.000							the second
	2112, 2201,		0.240, 0.240,		0.000						-	
	2201,		0.240		0.000							
0	2203,		0.240	•	0.000							•
	OONG KO)U										
0												
				=====		,		z=#2¤	====	:x===;		====C
•		NV	lB	IY	•	INF	· C	C				
- ••				2.00,			.00					· .
EOF		•	•				-					
	,2 ,3	,4	,5	,6	,7	,8, 7	,9	· ,:	. ,;	,<	3	
						,D			,	,al	,	:
END									•			

-174-

:

9

3

.

OUTPUT DATA 30 19 6 0 19 9 1 0 5 20 20 2 0 90 1.00 0 OUTPUT DATA (1) .00 -2.00 (2) .00 .00 (3) .00 2.00 (4) 7.20 -2.00 (5) 7.20 .00 (6) 7.20 2.00 (7) .00 3.00 (8) .00 5.00 (9) .00 7.00 (10) 7.20 3.00 (11) 7.20 5.00 (12) 7.20 7.00 (13) .00 8.00 (14) .00 10.00 (15) 5.10 8.00 (16) 5.10 10.00 (17) 7.20 8.00 (18) 7.20 10.00 (19) .00 13.00 (20) .00 15.00 (21) .00 17.00 (22) 5.10 13.00 (23) 5.10 15.00 (24) 5.10 17.00 (25) .00 18.00 (26) .00 20.00 (27) .00 22.00 (28) 3.60 18.00 (29) 3.60 20.00 (30) 3.60 22.00 OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 4111 (4) 6111 (5) 7111 (6) 9111 (7) 10111 (8) 12111 (14) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00 (15) 1.00 (16) 1.00 (17) 1.00 (18) 1.00 (19) 1.00		100000	100000	*****		.EXE * /28/1997	****				-	
30 19 6 0 19 9 1 0 9 10 1 20 1 20 1 20 1 20 1 2	OUTPU	τ σάτα	A			_		_	•	20	2	0
.90 1.00 0 OUTPUT DATA (1) .00-2.00 (2) .00 .00 (3) .00 2.00 (4) 7.20-2.00 (5) 7.20 .00 (6) 7.20 2.00 (7) .00 3.09 (8) .00 5.00 (9) .00 7.00 (10) 7.20 3.00 (11) 7.20 5.00 (12) 7.20 7.60 (13) .00 8.00 (14) .00 10.00 (15) 5.10 8.00 (16) 5.10 10.00 (17) 7.20 8.00 (18) 7.20 10.00 (19) .00 13.00 (20) .00 15.00 (21) .00 17.00 (22) 5.10 13.00 (23) 5.10 15.00 (24) 5.10 17.00 (25) .00 18.00 (26) .00 20.00 (27) .00 22.00 (28) 3.60 18.00 (29) 3.60 20.00 (30) 3.60 22.00 OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 4111 (4) 6111 (5) 7111 (16) 25111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	30	19	6 () 19	9	1	0	2	20	20	<i>2</i>	v
OUTPUT DATA (1) .00-2.00 (2) .00 .00 (3) .00 2.00 (4) 7.20-2.00 (5) 7.20 .00 (6) 7.20 2.00 (7) .00 3.00 (8) .00 5.00 (9) .00 7.00 (10) 7.20 3.00 (11) 7.20 5.00 (12) 7.20 7.00 (13) .00 8.00 (14) .00 10.00 (15) 5.10 8.00 (16) 5.10 10.00 (17) 7.20 8.00 (18) 7.20 10.00 (19) .00 13.00 (20) .00 15.00 (21) .00 17.00 (22) 5.10 13.00 (23) 5.10 15.00 (24) 5.10 17.00 (25) .00 18.00 (26) .00 20.00 (27) .00 22.00 (28) 3.60 18.00 (29) 3.60 20.00 (30) 3.60 22.00 OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 4111 (4) 6111 (5) 7111 (1) 1111 (12) 19111 (13) 21111 (14) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00												
OUTPUT DATA (1) .00 -2.00 (2) .00 .00 (3) .00 2.00 (4) 7.20 -2.00 (5) 7.20 .00 (6) 7.20 2.00 (7) .00 3.00 (8) .00 5.00 (13) .00 8.00 (14) .00 10.00 (15) 5.10 8.00 (16) 5.10 10.00 (17) 7.20 8.00 (18) 7.20 10.00 (19) .00 13.00 (20) .00 15.00 (21) .00 17.00 (22) 5.10 13.00 (23) 5.10 15.00 (24) 5.10 17.00 (23) .00 18.00 (26) .00 20.00 (27) .00 22.00 (28) 3.60 18.00 (29) 3.60 20.00 (30) 3.60 22.00 (28) 3.60 18.00 (29) 3.60 18.00 (29) 3.60 18.00 (29) 3.60 18.00 (29) 13 14 (10) 15		1.00										
(1) $.00 \cdot 2.00$ (2) $.00$ $.00$ (3) $.00$ 2.00 (4) 7.20 $\cdot 2.00$ (5) 7.20 $.00$ (6) 7.20 $\cdot 2.00$ (7) $.00$ $\cdot 3.00$ (8) $.00$ $\cdot 5.00$ (9) $.00$ 7.00 (10) 7.20 $\cdot 3.00$ (11) 7.20 $\cdot 5.00$ (12) 7.20 $\cdot 7.00$ (13) $.00$ 8.00 (14) $.00$ 10.00 (15) $\cdot 5.10$ 8.00 (16) $\cdot 5.10$ 10.00 (17) 7.20 8.00 (18) 7.20 10.00 (19) $.00$ 13.00 (20) $.00$ 15.00 (21) $.00$ 17.00 (22) $\cdot 5.10$ 13.00 (23) $\cdot 5.10$ 15.00 (24) $\cdot 5.10$ 17.00 (25) $.00$ 18.00 (26) $.00$ 20.00 (27) $.00$ 22.00 (28) $\cdot 3.60$ 18.00 (29) $\cdot 3.60$ 20.00 (30) $\cdot 3.60$ 22.00 OUTPUT DATA (1) 1 2 (2) 2 $\cdot 3$ (3) 4 $\cdot 5$ (4) $\cdot 5$ 6 (5) 7 $\cdot 8$ (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 $\cdot 21$ (14) 22 $\cdot 23$ (15) 23 $\cdot 24$ (16) 25 $\cdot 26$ (17) $\cdot 26$ $\cdot 27$ (18) 28 $\cdot 29$ (19) 29 $\cdot 30$ (1) 2 $\cdot 5$ (2) 8 11 (3) 14 16 (4) 16 18 ($\cdot 5$) 20 $\cdot 23$ (6) 26 $\cdot 29$ OUTPUT DATA (1) 1111 (2) 31111 (3) $\cdot 4111$ (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) $\cdot 21111$ (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) $\cdot 241111$ (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 ($\cdot 5$) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	0											
(1) $.00-2.00$ (2) $.00$ $.00$ (3) $.00$ 2.00 (4) 7.20-2.00 (5) 7.20 $.00$ (6) 7.20 2.00 (7) $.00$ 3.00 (8) $.00$ 5.00 (9) $.00$ 7.00 (10) 7.20 3.00 (11) 7.20 5.00 (12) 7.20 7.00 (13) $.00$ 8.00 (14) $.00$ 10.00 (15) 5.10 8.00 (16) 5.10 10.00 (17) 7.20 8.00 (18) 7.20 10.00 (19) $.00$ 13.00 (20) $.00$ 15.00 (21) $.00$ 17.00 (22) 5.10 13.00 (23) 5.10 15.00 (24) 5.10 17.00 (25) $.00$ 18.00 (26) $.00$ 20.00 (27) $.00$ 22.00 (28) 3.60 18.00 (29) 3.60 20.00 (30) 3.60 22.00 OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 14 16 (4) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 1111 (2) 3111 (3) 4111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	AUTOU	ም [ኮ ልፕ/										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				00	00	(3)	.00 2.0	ю (4)	7.20 -2	.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				•		•				.00	5.00	
(13) .00 8.00 (14) .00 10.00 (15) 5.10 8.00 (16) 5.10 10.00 (17) 7.20 8.00 (18) 7.20 10.00 (19) .00 13.00 (20) .00 15.00 (21) .00 17.00 (22) 5.10 13.00 (23) 5.10 15.00 (24) 5.10 17.00 (25) .00 18.00 (26) .00 20.00 (27) .00 22.00 (28) 3.60 18.00 (29) 3.60 20.00 (30) 3.60 22.00 OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 14 16 (4) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 1111 (2) 3111 (3) 4111 (4) 6111 (5) 7111 (6) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (-6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	-		•	•					12)	7.20 7	7.00	
(13) $7.20 \ 8.00$ (18) $7.20\ 10.00$ (19) $.00\ 13.00$ (20) $.00\ 15.00$ (21) $.00\ 17.00$ (22) $5.10\ 13.00$ (23) $5.10\ 15.00$ (24) $5.10\ 17.00$ (25) $.00\ 18.00$ (26) $.00\ 20.00$ (27) $.00\ 22.00$ (28) $3.60\ 18.00$ (29) $3.60\ 20.00$ (30) $3.60\ 22.00$ OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 14 16 (4) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 1111 (2) 3111 (3) 4111 (4) 6111 (5) 7111 (6) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (-6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	• •											
(11) 1.00 17.00 (22) 5.10 13.00 (23) 5.10 15.00 (24) 5.10 17.00 (25) .00 18.00 (26) .00 20.00 (27) .00 22.00 (28) 3.60 18.00 (29) 3.60 20.00 (30) 3.60 22.00 OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 14 16 (4) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 1111 (2) 3111 (3) 4111 (4) 6111 (5) 7111 (16) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (-6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	-		•						0) .	00 15.0	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• ·		-						i) 5 .1	10 17.0	0	
(29) $3.60\ 20.00$ (30) $3.60\ 22.00$ OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 14 16 (4) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 1111 (2) 3111 (3) 4111 (4) 6111 (5) 7111 (6) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (-6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	``'		•						3) 3.0	50 18.0	0	
OUTPUT DATA (1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 14 16 18 (5) 20 23 (6) 26 29 29 3111 (3) 4111 (4) 6111 (5) 7111 (6) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 1711 (12) 19111 (13) 21111 (14) 22111	•					-						
(1) 1 2 (2) 2 3 (3) 4 5 (4) 5 6 (5) 7 8 (6) 8 9 (7) 10 11 (8) 11 12 (9) 13 14 (10) 15 16 (11) 17 18 (12) 19 20 (13) 20 21 (14) 22 23 (15) 23 24 (16) 25 26 (17) 26 27 (18) 28 29 (19) 29 30 (1) 2 5 (2) 8 11 (3) 14 16 (4) 16 18 (5) 20 23 (6) 26 29 OUTPUT DATA (1) 1111 (2) 3111 (3) 4111 (4) 6111 (5) 7111 (6) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	(2))	2.22	,									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OUTPU	T DAT.	A									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				2 3	(3)	4 5	(4) 5	6	(5)	7 8	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		89	(7)	10 11	(8)	11 12	-			• •		ł
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(11)	17 18	(12)	19 20	(13)	20 21				15) 2	23 24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(16)	25 26	(17)				-					
OUTPUT DATA (1) 1111 (2) 3111 (3) 4111 (4) 6111 (5) 7111 (6) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (4) 1.00 (5) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (11) 1.00 (12) 1.00 (14) 1.00	(1)	2 5	(2)	8 11	(3)	14 16	(4) 16	18	(5)	20 2	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(6)	26 29										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· .											
(6) 9111 (7) 10111 (8) 12111 (9) 13111 (10) 15111 (11) 17111 (12) 19111 (13) 21111 (14) 22111 (15) 24111 (16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	OUTPU	JT DAT		5						(()	711	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	1111						1) (1) 12	2111	())	15111	a i
(16) 25111 (17) 27111 (18) 28111 (19) 30111 OUTPUT DATA (1)1.00 (2)1.00 (3)1.00 (4)1.00 (5)1.00 (6)1.00 (7)1.00 (8)1.00 (9)1.00 (10)1.00 (11)1.00 (12)1.00 (13)1.00 (14)1.00	(6)	9111										,
OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	(11)									[15]	24111	
(1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	(16)	25111	(17)	27111	(18)	28111	(19)	201				
(1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00												
(8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00	OUTP	JT DAT	A	22.1.00		100 (53 1 00	(.6	a 1 00	(7)	1.00	
(15) 1.00 (16) 1.00 (17) 1.00 (18) 1.00 (19) 1.00 (15) 1.00 (16) 1.00 (17) 1.00 (18) 1.00 (19) 1.00	(1)	1.00 (2	2)1.00 (3) 1.00	· (4) 21111	00 (1)	->)1.0⊽ ∿100	(13)	1.00	(14)1.	00	
	(8)	1.00 ()	9)1.00 (\\.00 \(10) 1.00	(11)1	.00 (12 nn (19)	1.00			. ,		
	(15) 1	.00 (16)1.00 (17) 1.00	(10)1.	w (1)	1.44					
		UT DAT	" A									

Calculati	on Bo	ok				Office	e Buildir	ng (Fu	l Supply	Depo	()				
(15)	.00	(16	a 4	20	(17)	.00	(18)	.00	(19)	.00	(20)	.00	(21)	.00	
(22)		-							(26)				(28)	.00	
(22)		(30		00	(2)		(,		()						-
(2)	.00	(50	· · ·						. •						
OUT	PUT	DAT	A						·						
(1))	1.0	00		.25		.55	5	.00		.00		.00		
(2))	1.0	00		.25		.60)	.00	Ì	.00		.00		:
(3))	1.0	00		.25		.50)	.00		.00		.00		
(4)	1.0	00		.24		.24	1	.00	ŀ	.00)	.00		
(5	>	1.0	00		.25		.40)	.00)	.00)	.00		
(6)	1.(00		40		.40)	.00		.00		.00		
(7		1.0	90		50		.25	i	.00		.00		.00		
(8		1.6	00		50		.24	l	.00		.00		.00		
、 (9		1.0	00		24		.24	i	.00		.00		.00		
(19)	9				-			-							
(19) (1 JOIN)1 (IIQQ STIF	= CO: D C0	мрu	87	4) 4 XI	(5 M)3 ((6) 5 XN		÷				
(1 JOIN)1 (IIQQ STIF DEA DAD:	- CO) D CO	MPU DMF JR 0	87 TE VUTE	XÌ	М)3 (кх		
(1 JOIN)1 (IIQQ STIF DEA	= CO: D CO	MPU DMF JR 0 JC	87 TE VUTE	XÌ)3 (XN		×		ĸх		
() MOU)1 (IIQQ STIF DEA DAD:	= CO: D CO	MPU DMF JR 0	87 TE VUTE	XI	М)3 (XN				кх		
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE	= D C0 D C0	MPU DMF JR 0 JC	87 TE VUTE	XI H	M KL		XN P		x		КХ P1		
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D CO	MPU DMF JR 0 JC	87 TE PUTE	XI H	M KL K	ïŁ	XN		x x				
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D CO	MPU DMF JR 0 JC 0 NE	87 TE PUTE	XI H	м КL 2	ïŁ	XN P 7.40		X X .60			1.80	
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D CO	MPU DMF JR 0 JC 0 NE	87 TE PUTE	XI H	м КL 2	ïL	XN P 7.40	3	X X .60 .00		Pì	1.80	
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D CO	MPU DMF JR 0 JC 0 NE	87 TE PUTE	XI H	M KL 2 10	ĩL 3	XN P 7.40 9.00	3	X X .60 .00		Pì	1.80	
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D CO	MPU DMF JR 0 JC 0 NE	87 TE PUTE	XI H	M KL 2 10 4	ïL 3	XN P 7.40 9.00 7.30	3	X .60 .00 .60	.(Pì	1.80	
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D CO	MPU DMF JR 0 JC 0	87 TE PUTE	XI H	M KL 2 10 4 3	ĩL 3	XN P 7.40 9.00 7.30 7.40	3 - 3 - 3	X .60 .00 .60	.(P1 00	•	
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE	,= CO? DCO DCO DCO DCO DCO DCO	MPU DMF JR 0 JC 0	87 TE PUTE	XI	M KL 10 4 3 10	ïL 3	XN P 7.40 9.00 7.30 7.40 9.00	3 - 3 - 3 - 3 3	X 4.60 4.60 4.60 4.60	.(P1 00	•	
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE	,= CO? DCO DCO DCO DCO DCO DCO	MPU DMF JR 0 JC 0	87 TE PUTE	XI	M KL 2 10 4 3 10 2	3 3	XN P 7.40 9.00 7.30 7.40 9.00 8.20	3 - 3 - 3 - 3 3 - 3 - 3	X .60 .60 .60 .60 .60 .60).).	P1 00	•	
(1 JOIN)1 (F LC	IIQQ STIF DEA DAD: LOAE	,= CO? DCO DCO DCO DCO DCO DCO	MPU DMF JR 0 JC 0	87 TE PUTE	XI	M KL 10 4 3 10 2 4	EL 3	XN P 7.40 9.00 7.30 7.40 9.00 8.20 5.10	3 3 3 3 3 3	X .60 .60 .60 .60 .60 .60).)	P1 00	1.80	
(1 JOIN COLL)1 (F LC	IIQQ STIF DEA DAD: LOAE	,= CO? DCO DCO DCO DCO DCO DCO	MPU DMF JR 0 JC 0	87 TE PUTE	XI	M KL 2 10 4 3 10 2 4 10	3 4	XN P 7.40 9.00 7.30 7.40 9.00 8.20 5.10 9.00	3 3 3 3 3 3	X .60 .60 .60 .60 .60 .60 .00).	P1 00 00	1.80	
(1 JOIN COLL)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D C); 1	MPU DMF JR 0 JC 0	87 TE PUTE	XI	M KL 10 4 3 10 2 4 10 3	۲ ـ ـــــــــــــــــــــــــــــــــــ	XN P 7.40 9.00 7.30 7.40 9.00 8.20 5.10 9.00 8.20	3 3 3 3 3 3 3 3 3	X .60 .00 .60 .60 .60 .60 .00 .00).	P1 00 00	1.80 1.80	
(1 JOIN COLL)1 (F LC	IIQQ STIF DEA DAD: LOAE); D CO D C); 1	MPU DMIF JR 0 JC 0 NE	87 TE PUTE 5	XI	M KL 2 10 4 3 10 2 4 10 3 10	۲ L 3	XN P 7.40 9.00 7.30 7.40 9.00 8.20 9.00 8.20 9.00	3 3 3 3 3 3 3 3 3 3	X .60 .60 .60 .60 .60 .00 .60 .60).	P1 00 00	1.80 1.80	
(1 JOIN COLU)1 (F LC	IIQQ STIF DEA DAD: LOAE		MPU DMIF JR 0 JC 0 NE	87 TE PUTE 5	XI	M KL 2 10 4 3 10 2 4 10 3 10 1 1	3 3 4	XN P 7.40 9.00 7.30 7.40 9.00 8.20 9.00 8.20 9.00 3.10	3 3 3 3 3 3 3 3 1	X .60 .00 .60 .60 .60 .00 .60 .00).	P1 00 00	1.80 1.80	

-176-

Calculation	BOOK			ite Duttung	(Fuel Supply	20000		
		1	2	1	8.90	.00		
				6	9.00	1.80		-
		1	3	1	7.00	.00		
				4	7.00	3.60		
				6	4.80	.95		
			•	*DEAD	LOAD**			
	STIF C	OMPUT	Е					
	LIVE C	COMPU	ГЕ					
JOINT	LOAD:	JR	3	M	XN			
	-	0						
COLUM	IN LOAD:	JC		KL	Р	x	КX	
		0						
BEAM	LOAD:	NE	LI	KL	Р	x	. Pl	
		1	5	2	1.60	3.60		
				10	3.60	.00	.00	1.80
				4	11.70	3.60		
				3	1.60	3.60	-	
				· 10	3.60	3.60	.00	1.80
		1	5	2	1.30	3.60		
				4	13.70	3.60		
				10	3.60	.00	.00	1.80
				3	1.30	3.60		
				10	3.60	3.60	.00	1.80
		1	- 1	6	7.20	1.80		
		1	1	6	3.20	1.05		
		1	2	6	3.60	1.80		
	-	-		1	2.30	.00		
		1	3	1		.00		
				4	1.70	3.60		
	2014		DIFTE	6	1.40	.95	-	
	COM	BI COMI						
• .	-			**COMBI	NATION	AND REIN	FORCEME	NT**
-	СС	OLUMN			400, H=	.400, Lx=	2.00, Ly	= 2.00
N	5 I A	ls=		M=	11	N= 36.89		
				M=		N= -36.89		
,								

I

-177-

.

6)

ð

Į.

- -

NO 1 As∺ 0. M≓ -.21 N= -36.89 NO 1 0. M≃ -.11 As= N= 36.89 GG= 320. COLUMN 3 (B=.400, H=.400, Lx=2.00, Ly=2.00)NO₁ As= 0. M= .11 N= 36.89 NO 1 As= 0. M= .21 N= -36.89 GG= 320. COLUMN (B=.400, H=.400, Lx=2.00, Ly=2.00)- 4 • . NO 1 As= 0. .21 N= -36.89 M= NO I As≃ 0. .11 M= N=36.89 GG∓ 320. COLUMN 5 (B = .400, H = .400, Lx = 2.00, Ly = 2.00)NO 1 As= 0. М= -.09 40.96 N= NO 1 As= 0. -.19 M= N≖ -40.96 GG= 320. COLUMN (B=.400, H=.400, Lx=.2.00, Ly=.2.00)6 NO 1 As= 0. M= -.19 N= -40.96 NO 1 As= 0. M= -.09 N= 40.96 GG≕ 320. COLUMN 7 (B=.400, H=.400, Lx=2.00, Ly=2.00)NO 1 As= 0. M= .09 N= 40.96 NO 1 -40.96 As= 0. М= .19 N= GG= 320. COLUMN 8 (B=.400, H=.400, Lx=2.00, Ly=2.00)NO 1 As= 0. M= .19 N= -40.96 NO 1 0. M= .09 40.96 As= N= GG= 320. ÷ - ; COLUMN 9 (B= .500, H= .250, Lx = 2.00, Ly = 2.00) NO 1 As= - 0. М= -.03 N= 41.58

lation l	Book		Of	tice Buildun	g (Fuel Supp	ny Dep	a)	
NO	1		0. 250.	M=	- 07	N=	-41.58	
		COLUMN	10	(B= .	500, H=	.250,	Lx= 2.00, L	y= 2.00)
NO	1	As=	0.	M=	.04	N=	65.67	
NO	1	As=	0.	M=	.07	N=	-65.67	
		GG≓	250.					
		COLUMN	11	(B=	500, H=	.240,	Lx= 2.00, L	y= 2.00)
NO	1	As=	0.	M=	.00	N=	24	
NO	1	As=	0.	M=	01	N=	.24	
		GG=	2 40.					
		COLUM	N 12	(B=	.400, H=	.400), Lx= 2.00,	Ly= 2.00
NO	1	As=	0.	M=	04	N=	22.53	
NO	1	As=	0.	M=	08	N=	-22.53	
		GG=	320.					
		COLUM	N 13	(B=	.400, H=	= .400), [.x= 2.00,	Ly= 2.00
NO	1	As=	0.	M≠	08	N=	-22.53	
NO	1	· As=	0.	M=	04	N≈	22.53	
		GG=	320.					
	-	COLUM	N 14	(B=	.400, H	= .40	0, Lx= 2.00,	Ly= 2.00
NO) 1	As=	0.	M=	.04	N=	22.53	
NO	+ 1	As≓ .	0.	M=	.08	N=	-22.53	
		GG=	320.	· .				•
			N 15		.400, H ^a	= .40	0, Lx= 2.00,	Ly= 2.00
NC) 1	As=			.08	N=	-22.53	
		As=				N≖	22.53	
					• ·	-	· · · ·	
		COLUM	IN 16			24	0, Lx= 2.00,	Ly= 2.00
NC	> 1	As=	0.	M=	02	N≓	11.38	
		As≖			04	N=	-11.38	
		GG=						

S

.

,

.

Calculation Book Office Building (Fuel Supply Depot)

20

()

· · COLUMN 17 (B= .240, H= .240, Lx= 2.00, Ly= 2.00) -.04 N= -11.38 0. M= NO 1 As= 11.38 -.02 N= M= NO 1 0. As= GG= 115. COLUMN 18 (B= .240, H= .240, Lx= 2.00, Ly= 2.00) N= 15.58 -NO 1 0. M= .02 As= М= .04 N= -15.58 NO 1 0. As= GG= 115. (B= .240, H= .240, Lx= 2.00, Ly= 2.00)COLUMN 19 .04 N⋍ -15.58 0. M= NO I As= 15.58 N= NO 1 As= 0. M= .02 GG= 115. 1 (B= .250, H= .550, L= 7.20) BEAM BOTTOM 4 5 6 7 2 3 SECTION 1 .00 -107.88 -185.69 -232.91 -185.69 -107.88 .00 M= 735. 206. 735. 1368. 1822. 1368. As(1)= 206. 1988. 1472. 0. 206. As(2)= 1472. 206. 0. TOP 7 6 3 4 5 SECTION 1 2 .52 .00 M= .52 .00 .00 .00 .00 0. 206. 0. 0. 0. As(1)= 206. 0. 206. 0. 0. 206. 0. 0. As(2)= 0. $V_{I}=$ 99.11 NO 1 $V_{I}=$ 99.11 NO 3 As(3)= 206. Umaxb=.013 Umaxt=.002 Asvis= .06 BEAM 2 (B= .250, H= .600, L= 7.20) BOTTOM 6 7 2 4 5 3 SECTION 1 .00 -117.20 -203.47 -258.38 -203.47 -117.20 .00 M= 1341. 721. 1798. 225. 721. 1341. As(1)= 225. 0. 0. 225. 1934. · 0. 0. As(2)= 225. TOP 6 7 5 3 4 SECTION 1 2

.00

0.

.00

0.

.00

0.

M=

As(1)=

.44

225.

.00

0.

.00

0.

.44

225.

Calcul	lation	Book
	10.10.11	1.000

Î

.

1

.

Office Building (Fuel Supply Depot)

21

As(2)= 225. 0. 0. 0. 0. 0. 225.

VI= 107.14 NO 1 Vr= 107.14 NO 3 As(3)= 225. Umaxb=.012 Umaxt=.001 Asv/s= .05

BEAM 3 (B= .250, H= .500, L= 5.10) BOTTOM 3 4 56 7 2 SECTION 1 .00 -45.76 -78.10 -87.38 -71.09 -31.73 · .00 M= 188. 527. 226. 583. 659. 188. 331. As(1)= 0. 188. 0. 0. As(2) = 188.0. 0. TOP 7 5 6 2 3 4 SECTION 1 22.22 .00 .00 .00 .00 .00 M= .09 188. 0. 0. 0. As(1)= 188. 0. 0. 0. 0. 188. 0. 0. 0. As(2)= 188.

VI = 56.94 NO 1 Vr = 66.58 NO 3 As(3) = 188. Umaxb = .005 Umaxt = .002 Asv/s = .00

BEAM 4 (B= .240, H= .240, L= 2.10) BOTTOM 7 6 5 2 3 4 1 SECTION -.02 -.65 .00 .00 -.49 .00 .00 M= 86. 8. 10. 0. 0. 0. 86. As(1)= 0. 0. 86. 0. 0. 0. As(2)= 86. TOP 7 6 5 4 2 3 SECTION 1 .75 .00 2.23 4.95 M= 22.13 14.78 9.25 86. 12. 80. 35. 152. 392. 251. As(1)= 86. 0. 0. 392. 0. 0. 0. As(2)==

 V_1 = 22.45 NO 1 Vr = -2.72 NO 2 As(3) = 86. Umaxb= .002 Umaxt= .007 Asy/s = .00

		BEAM	5	(B= .25	0, H= .	.500, L=	5.10)
BOT	том						
SECTION	1	2	3	4	5	6	7
M=	.00	-46.22	-77.19	-87.94	-77.19	-46.22	.00
As(1)=	188.	334.	576.	663.	576.	334.	188.
As(2)=	188.	0.	0.	0 .	0.	0.	188.
TOP							
SECTION	1	2	3	4	5	6	7
M=	.20	.00	.00	.00	.00	.00	.20

 \bigcirc

0

×

÷.,

						_		
As(1)=	188.	0.	0.	0.	0.	0.	188.	
As(2)=	188.	0.	0.	0.	0.	0.	188.	
					-			
VI= 61.58	8 NO 1	Vr≖ (51.58 NO 3	3 As(3)=	188.	Umaxb= .	005 Umaz	xt= .00
Asv/s≖ .	00							
		BEAM	6 (B≈ .250,	H= .4	100, L=	3.60)	
BOT	том							
SECTION	1	2	3	4	5	6	· 7	
M=	.00	-14.95	-24.58	-27.81	-24.58	-14.95	.00	
As(1)=	150.	135.	225.	256.	225.	135.	150.	. '
As(2)=	150.	0.	0.	0.	0.	0.	150.	
TOP								-
SECTION	1	2	3	4	5	6	7	
M=	.09	.00	.00	.00	.00	.00	.09	
As(1)=	150.	0.	0.	0.	0.	0.	150.	
As(2)=		0.	0.	0.	0.	0.	150.	
· ·							•	
VI= 28.63	3 NO I	Vr= 3	9.40 NO 3	As(3)=	150.	Umaxb= .	003 Umay	ct= .00
Asv/s= .								
DELLA		ENTEN						

PK1 COMPUTE END

23

4 • Structure analysys of Beam ($1.6 \sim 10$) result document ***** PK11.EXE ****** DATA: 6/28/1997 OUTPUT DATA 25 2 0 25 1 0 4 0 15 8 28 15 8 Û .90 1.00 0 OUTPUT DATA (4) 7.20 .00 .00 (3) 7.20-2.00 (2) .00 (1) .00 -2.00 .00 5.00 (7) 7.20 3.00 (8) 7.20 5.00 (6) .00 3.00 (5) .00 10.00 (11) 1.81 8.00 (12) 1.81 10.00 (10) (9) ,00 8.00 (16) .00 15.00 (14) 6.91 10.00 (13) 6.91 8.00 (20) 7.20 15.00 (19) 7.20 13.00 (18) 5.10 15.00 (17) 5.10 13.00 (24) .00 20.00 (23) .00 18.00 (22) 12.30 15.00 (21) 12.30 13.00 (27) 3.60 20.00 (28) 3.60 22.00 (26) 3.60 18.00 .00 22.00 (25)OUTPUT DATA 9 10 (4)7 8 (5) (3) 5 (2) 3 4 6 (1) 1 2 (9) 17 18 (10) 19 20 (8) 15 16 (7) 13 14 (6) 11 12 (13) 24 25 (14) 26 27 (15) 27 28 (12) 23 24 (11) 21 22 (4) 12 14 (5) 16 18 (3) 10 12 (2) 6 8 (1) 2 4 (8) 24 27 (7) 20 22 (6) 18 20 OUTPUT DATA 9111 7111 (5) (4) (3) 5111 3111 1111 (2) (1)(9) (10) 19111 17111 (8) 15111 (7) 13111 11111 (6) (14) 26111 (15) 28111 (13) 25111 (12) 23111 21111 (11)OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00 (15) 1.00 OUTPUT DATA (1) .00 (2) .00 (3) .00 (4) .00 (5) .00 (6) .00 (7) .00 (8) .00 (9) .00 (10) .00 (11) .00 (12) .00 (13) .00 (14) .00 (15) .00 (16) .00 (17) .00 (18) .00 (19) .00 (20) .00 (21) .00

(22) .00 (23) .00 (24) .00 (25) .00 (26) .00 (27) .00 (28) .00

Calculation Bo	ok		Of	fice Building	; (Fuel Supply	Depot)		<u></u>	24
OUTPUT	DATA								
(1)	1.00		.30	.55	.00		.00	.00	
(2)	1.00		.25	.50	.00		.00	.00	
(3)	1.00		.24	.24	.00		.00	.00	
(4)	1.00		.25	.40	.00		.00	.00	
(5)	1.00		40	.40	.00		00	.00	
(6)	1.00		24	.24	.00		00	.00	
(7)	1.00		50	.25	.00	•	00	.00	
(8)	1.00		50	.24	.00		00	.00	
OUTPUT	рата							-	
			(4	5 (5)	6 (6)5	(7)5	(8)7	(9)7	
				(14)6		X . y .	、 - /		
					2 (6) 3	(7)2	(8)4		
	llQQ=		n i	,- 、 ,	- 、 ・, ・	()/-	,		_
	• •	OMPUT							
		COMPU							
JOINT LO				XM	XN	-			
		0							
COLUMN	LOAD:	JC		KL	Р	X		KX	
		0							·
BEAM I	LOAD:	NE	LI	KL	Р		x	Pl	XI
		1	5	2	8.50	3.60			•
				10	12.10	.00	.0	0 1.8	0
				4	48.00	3.60			
				3	8.50	3.60			
				10	12.10	3.60	.0	0 1.8	0
		1	5	2	9.40	3.60		: :	2
				- 4	56.50	3.60			
				10	12.10	.00	.0	0 1.8	0
				3	9.40	3.60			
				10	12.10	3.60	.0	0 1.8	0
		1	1	· 1	16.00	.00			
		1	2	1	10.90	• .00	· ·.		
				6	12.10	1.80			<u>.</u>
		1	2	1	3.10	.00			
				6	24.10	1.80		• •	
		1	2	1	1.40	.00	-		
				6	14.10	1.05	, ·	:	
		1	2	1	3.10	.00		:	
		1	Au .	•	0.110				
		ł	÷	6	24.10	1.80		• •	· . ·

ł

-184-

0

X

				4	8,90	3.60		
				4 6	6.40	.95		
				DEAD	104D			
	OTIC C	omput	۲	DEAD	LUAD			
		COMPUT						
JOINT LO	DAD:	JR		XM	XN			
JOINT DO	/10.	0						
COLUMN	LOAD:	JC		KL	Р	х	КX	
		0						
DOLL /		NE	L	KL	Р	x	P1	
BEAM I	JOAD:	1	5	2	1.10	3.60		
		1	5	10	2.70	.00	.00	1.80
				4	8.90	3.60		
				3	1.10	3.60		
				10	2.70	3.60	.00	1.80
		1	5	2	1.30	3.60		
				4	10.50	3.60		
				10	2.70	.00	.00	1.80
				3	1.30	3.60		
				10	2.70	3.60	.00	1.80
		1	1	1	2.90	.00		
		1	2	1	1.70	.00		
				6	2.70	1.80		
				. 6	5.40	1.80		
		-	1	6				
			1	6	5.40 1.30			
-		1 ·	3	4	1.70			
				4 6		.95		
	TADT	COMPL	TTE					
		BICOM						
	COM	51 001						
- 		-		**COMBI	NATION	AND REIN	FORCEME	NT**
	со	LUMN			00, H=	.400, Lx=	2.00, Ly=	2.00)
NO	, ,			М=	- 11	N= 91.66	•	
		ls= ls=				N= -91.66		
NU								
		,						
	~~~	110.01	2	(R= 4	I00 H≖	.400, Lx=	2.00, Ly=	= 2.00)

-185-

.

.

1

行政

t

()

13

91.66 N= 0. M= .11 NO 1 As= -91.66 M= .22 N= Ô. NO 1 As= GG≠ 400. (B=.400, H=.400, Lx=2.00, Ly=2.00)COLUMN 3 N= 100.64 -.12 As= 0. M= NO I -.25 N= -100.64 M= NO 1 0. As= GG= 400. (B=.400, H=.400, Lx=2.00, Ly=2.00)COLUMN 4 .12 N= 100.64 θ. M= NO 1 As= .25 N= -100.64 M= NO 1 0. As= GG= 400. (B= .240 H= .240, Lx= 2.00, Ly= 2.00) COLUMN 5 -16.53 NO 1 As= ΰ. M= -.01 N= 16.53 M= .00 N≃ 0. NO 1 As= GG= 144. (B=.400, H=.400, Lx=2.00, Ly=2.00)COLUMN 6 120.48 -.02 N= 0. M= NO 1 As= N= -120.48 M= -.04 NO 1 As= 0. -GG= 400. (B=.400, H=.400, Lx=2.00, Ly=2.00)COLUMN 7 45.33 .02 N= 0. M= NO 1 As= -45.33 M= .05 N= NO 1 As= 0. . -GG≂ 400. (B=.500, H=.250, Lx=2.00, Ly=2.00)COLUMN 8 N= 53.96 M= .05 NO 1 As= 0. N= -53.96 M= -.10 NO 1 As= 0. . . - : GG= 312. (B=.500, H=.250, Lx=2.00, Ly=2.00)COLUMN 9 0. N= 71.10

M=

NO 1

As≓

.05

-

0 312. N 10 0. 0. 300. IN 11 0. 0. 300. IN 12 0. 0. 144. IN 13	M= (B= M= (B= M= M=	500, H 05 09 .500, H .05 .10 .240, H 02	= .240, N= N= = .240, N= N= = .240, N= N=	71.1 -71.10 Lx= 53.9 -53.9 Lx= 14.2 -14.2	2.00, 0 2.00, 2.00, 6 2.00, 7 7	Ly=	2.0
N 10 0. 0. 300. N 11 0. 0. 300. N 12 0. 0. 144.	M= M= (B= M= (B= M= M=	05 09 .500, H .05 .10 .240, H 02 05	N= N= = .240, N= N= = .240, N= N=	71.1 -71.10 Lx= 53.9 -53.9 Lx= 14.2 -14.2	0 2.00, 2.00, 2.00, 7	Ly=	2.0
0. 0. 300. N 11 0. 0. 300. N 12 0. 0. 144.	M= M= (B= M= (B= M= M=	05 09 .500, H .05 .10 .240, H 02 05	N= N= = .240, N= N= = .240, N= N=	71.1 -71.10 Lx= 53.9 -53.9 Lx= 14.2 -14.2	0 2.00, 2.00, 2.00, 7	Ly=	2.0
0. 300. N 11 0. 0. 300. N 12 0. 0. 144.	M= (B= M= (B= M= M=	09 .500, H .05 .10 .240, H 02 05	N= 240, N= N= = .240, N= N=	-71.10 Lx= 53.9 -53.9 Lx= 14.2 -14.2	2.00, 2.00, 6 2.00, 7 7	Ly=	
300. IN 11 0. 0. 300. IN 12 0. 0. 144.	( B= M= M= ( B= M= M=	.500, H .05 .10 .240, H 02 05	= .240, N= N= = .240, N= N=	Lx= 53.5 -53.9 Lx= 14.2 -14.2	2.00, 96 6 2.00, 7 7	Ly=	
N 11 0. 0. 300. N 12 0. 0. 144.	M= M= ( B= M= M=	.05 .10 .240, H 02 05	N= N= = .240, N= N=	53.9 -53.9 Lx= 14.2 -14.2	96 96 2.00, 27 7	Ly=	
0. 0. 300. IN 12 0. 0. 144.	M= M= ( B= M= M=	.05 .10 .240, H 02 05	N= N= = .240, N= N=	53.9 -53.9 Lx= 14.2 -14.2	96 96 2.00, 27 7	Ly=	
0. 300. IN 12 0. 0. 144.	M= ( B= M= M=	.10 .240, H 02 05	N= - .240, N= N=	-53.9 Lx= 14.2 -14.2	2.00, 27 7		2.(
300. IN 12 0. 0. 144.	( B= M= M=	.240, Н 02 05	= .240, N= N=	Lx= 14.2 -14.2	2.00, :7 7		2.(
IN 12 0. 0. 144.	M= M=	02 05	N= N=	14.2 -14.2	:7 7		2.0
0. 0. 144.	M= M=	02 05	N= N=	14.2 -14.2	:7 7		2.0
0. 144.	М=	05	N=	-14.2	7		·
144.							
	( B=	.240, H	= .240,	l v=		-	
IN 13	( B=	.240, H	= .240,	l v=		-	
				<b>L</b> /12	2.00,	Ly≞	2.9
0.	M=	05	N=	-14.2	7		
0.	M=	02	N=	14.2	27		
144.							
fN 14	<u>(</u> B=	.240, H	= .240,	Lx=	2.00,	Ly=	2.
0.	M=	.02	N=	19.0	61		
0.	M=	.05	N=	-19.0	51		
144.							
AN 15	( B=	.240, H	= .240,	, Lx=	2.00,	Ly=	2.
0.	M=	.05	N=	-19.0	51 .		
0.	M=	.02	N=	19.	61		
144.							•
	1	(B= .30	00, H=	.550,	L=	7.20)	
-		,		c	L		7
<u> </u>	3	4	AA7 64	) 100	0 66	• • • •	,
	2	2 3	2 3 4 -120.66 -207.82 -261.23	2 3 4 -120.66 -207.82 -261.23 -207.82	2 3 4 5 -120.66 -207.82 -261.23 -207.82 -120	2 3 4 5 6 -120.66 -207.82 -261.23 -207.82 -120.66	BEAM 1 (B= .300, H= .550, L= 7.20) 2 3 4 5 6 -120.66 -207.82 -261.23 -207.82 -120.66 .00 804. 1460. 1906. 1460. 804. 413.

金行

.

J

.

•

AS(∠J=	412	Δ	Δ	2047.	Δ	n	413.	
TOP	415.	U.	U.	2047.	υ.	U.	115.	
	1	2	3	4	5	6	7	
				.00				
As(1)=							413.	
As(2)=				0.			413.	
/1= 110.23	NO 1	Vr= 11	.0.23 NC	) 3 As(3)=	413.	Umaxb= .(	)12 Umaxt=	.003
lsv/s= .(								
		BEAM	2	(B= .300	, H= .5	550, L=	7.20)	
	ГОМ							
ECTION								
				-292.41 -				
As(1)=								
As(2)=	413.	0.	1760.	2360.	1760.	0.	413.	
TOP						•		
ECTION								
M=								
As(1)=				0.		0.		
As(2)=	413.	0.	0.	0.	0.	0.	413.	
v1= 121.35 Asv:'s= .0		Vr= 12	1.35 NO	) 3 As(3)=	= 413.	Umaxb= .	013 Umaxt=	.003
		BEAM	3	(B= .250	), H≖ .:	500, L=	1.81)	
BOT	том							
		2	3	. 4				
	1		.00	.00	.00	.00	.00	
SECTION M= As(1)=	1 .00 313.	.00 0.	.00 0.	.00 0 ·	.00 0.	.00 0.	.00 313.	
SECTION M= As(1)= As(2)=	1 .00 313. 313.	.00 0.	.00 0.	.00	.00 0.	.00 0.	.00 313.	
SECTION M= As(1)= As(2)= TOP	1 .00 313. 313.	.00 0. 0.	.00 0. 0.	.00 0. 0.	.00 0. 0.	.00 0. 0.	.00 313. 313.	
SECTION M= As(1)= As(2)= TOP SECTION	1 .00 313. 313.	.00 0. 0. 2	.00 0. 0. 3	.00 0. 0. 4	.00 0. 0. 5	.00 0. 0. 6	.00 313. 313. 7	
SECTION M= As(1)= As(2)= TOP SECTION M=	1 .00 313. 313. 1 .00	.00 0. 0. 2 6.71	.00 0. 0. 3 15.16	.00 0. 0. 4 25.34	.00 0. 0. 5 37.26	.00 0. 0. 6 50.92	.00 313. 313. 7 66.73	
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)=	1 .00 313. 313. 1 .00 313.	.00 0. 0. 2 6.71 47.	.00 0. 0. 3 15.16 106.	.00 0. 0. 4 25.34 179.	.00 0. 0. 5 37.26 265.	.00 0. 0. 6 50.92 367.	.00 313. 313. 7 66.73 486.	
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)=	1 .00 313. 313. 1 .00 313.	.00 0. 0. 2 6.71 47.	.00 0. 0. 3 15.16 106.	.00 0. 0. 4 25.34 179.	.00 0. 0. 5 37.26 265.	.00 0. 0. 6 50.92 367.	.00 313. 313. 7 66.73	
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)=	1 .00 313. 313. 1 .00 313. 313. 313. 0 NO 1 00	.00 0. 2 6.71 47. 0. Vr= 0	.00 0. 0. 3 15.16 106. 0. 52.07 NC	.00 0. 4 25.34 179. 0.	.00 0. 0. 5 37.26 265. 0. = .313.	.00 0. 0. 6 50.92 367. 0. Umaxb= .	.00 313. 313. 7 66.73 486.	
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)= VI= -20.09	1 .00 313. 313. 1 .00 313. 313. 313. 0 NO 1 00	.00 0. 2 6.71 47. 0. Vr= 0	.00 0. 3 15.16 106. 0. 52.07 NC	.00 0. 4 25.34 179. 0.	.00 0. 0. 5 37.26 265. 0. = .313.	.00 0. 0. 6 50.92 367. 0. Umaxb= .	.00 313. 313. 7 66.73 486. 486. 002 Umaxt=	

•

-185-

.

•

0

lculation Book		(	Office Buildi	ng (Fuel Sup	ply Depot)			3
As(1)=	313.	· 0.	311.	486.	477.	296.	313.	
As(2)=				0.	0.	0.	313.	
TOP								
SECTION		2	3	4	5	6	7	
M=				.00	.00	.00	.06	
As(1)=				0.	0.			
As(2)=			0.	0.	<b>0</b> .	0.	313.	
VI= 84.15	NO I	Vr= 5	5.17 NO	3 As(3)=	313.	Umaxb= (	004 Umaxt	= .004
Asv/s= .0					- :			
		BEAM	5 (	(B= .250,	H= .5	600, L=	5.10)	
SECTION								
							. 00.	
As(1)=	313.	380.	673.	767.	627.	294.	313.	
As(2)=	313.	: <b>0</b> .	0.	· 0.	0.	0.	313.	
TOP								
SECTION	1	2	3	4	5	6		
M=	.11	.00	.00	.00	.00			
As(1)=	313.	0.	0.	0.	0.			
As(2)=	313.	0.	0.	0.	0.	0.	313.	
VI= 65.8 Asv/s=				3 As(3)= ( B= .240,			006 Umaxi 2.10 )	
BOT	том							
SECTION	1	2	3	4	5	6	7	
M≖	.00	.00	.00	.00	.00	.00	.00	
As(1)=	144.	0.	0.	0.	0.		144.	
As(2)= TOP		0.	0.	0.	0.	0.	144.	
SECTION	1	2	3	4	5	6	7	
SECTION M=	10 20	13 07	11.36	10.33	11.36	13.97	19.88	
-wi- =(1)=	340	232	187.	169.	187.	232.	340.	
As(2)=	340.	0.	0.	0.	0.	0.	340.	
VI= 16.0 Asv/s=		Vr=	16.07 NC	)3 As(3)=	144.	Umaxb=	.002 Umax	t= .006
-			7	(B= .250	, H= .	500, L=	5.10)	
BOI	TOM							

.

.

鏐

.

.

alculation Book		(	Office Build	ing (Fuel Su	pply Depo	<u>t)</u>		
M=	.00	-41.14	-84.73	-102.16	-90.55	-52.78	.00	
As(1)=	313.	294.	627.	767.	673.	380.	313.	
As(2)=	313.	0.	0.	0.	0.	0.	313.	
TOP								
SECTION	1	2	3	4	5	6	. 7	
M=	19.98	.00	.00	.00	.00	.00	.11	
As(1)=	313.	0.	0.	0.	0.	0.	313.	
As(2)=	313.	0.	0.	0.	0.	0.	313.	
VI= 74.01	NO 1	Vr= 6	5.87 NO	93 As(3)=	313.	Umaxb=	.006 Umaxt	= .002
Asv/s= .(	90							
						 	A (A)	
		BEAM	8	(B≃ .250	, H=	.400, L=	3.60 J	
BOT							-	
SECTION		2				6		
-	.00			-33.53				
As(1)=								•
As(2)=	250.	0.	0.	0.	0.	0.	<b>250</b> .	
TOP								
SECTION	1	2	3	4	5	6	7	
M=	.11	.00	.00	.00	.00	.00	.11	•
As(1)=	250	0.	0.	0.	0.	0.	250.	-
As(2)=	250.	0.	0.	0.	0.	0.	250.	
Asvis= .	00	Vr= 4	17.47 NC	03 As(3)=	≖ 250.	Umaxb=	.003 Umaxt	= .002

.

•

.

.

..

÷

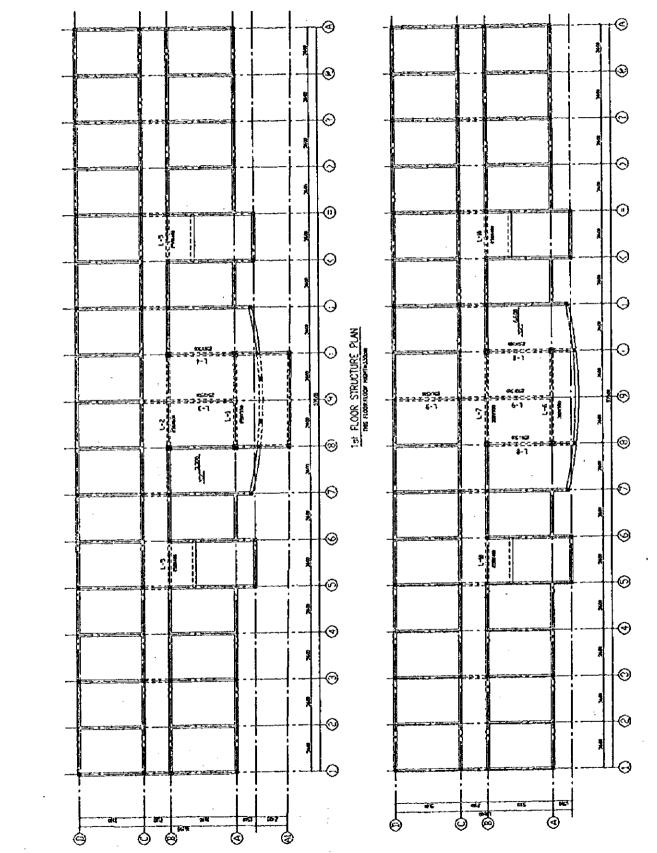
•

.

÷

1.1.4

. • .


.

ſ

-190-

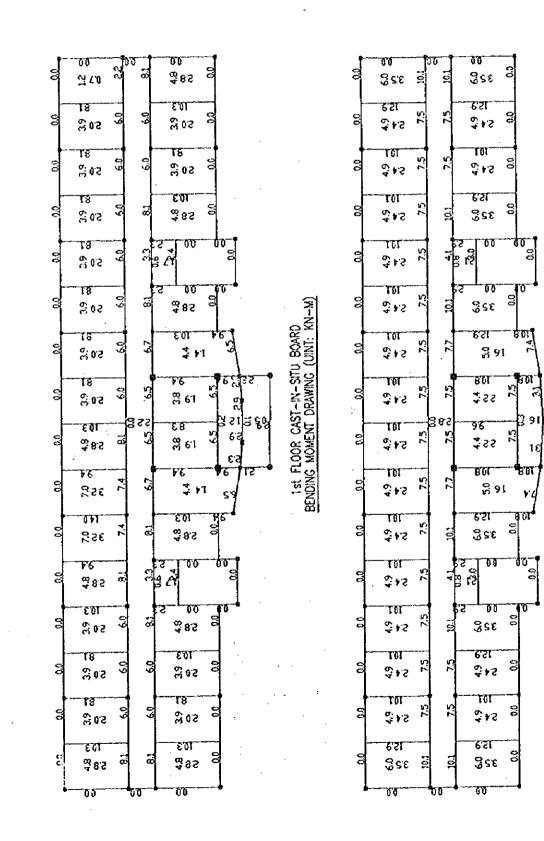
**X** 

•



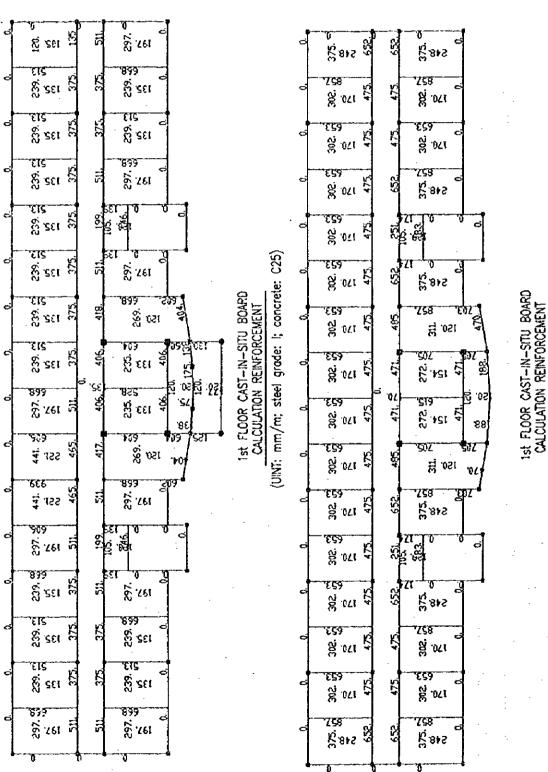
2nd FLOOR STRUCTURE PLAN

Ţ


			_				
	81 81		5 5 1 1 1 1	ઉરા	6.7		
	50 200 11 20				និដ	52 :	6.7
•	5.0		50	ង	63		
	13.0		5.0	38	6.7		
	និសិ		50 150	23	<u>7</u> 51		
	200		3 <u>8</u>	ŭ\$	6.7		
I	- 2°-1		1 5 S	50 2.0 1st FLOOR LOAD (UNT: KN/MM) 67 6.7 15 15 15 15	<b></b>		
	051 150	5.0 1.5 1.5	000 100	50 250 0.7 10 10 10 10 10 10 10 10 10 10 10 10 10	6.7		
	33	10-	หี่งิ่	11 11 11 11 11 11 11 11 11 11 11 11 11	6.7		
	50 50		00 11 N	23	<b>•</b>		
	\$5.0		150	21	67		
	82		-		83 84 84	5°3	53
	ទីស្ព		និស	C.S.	5		
	52			ន្លដ	28	13	
	ទីស		និសី	2.1	2		
	5.0 1.5		5.5 1.5 1.5	58	53		
	•	·······		· · · · · · · · · · · · · · · · · · ·			

1st FLOOR LOAD (UNT: KN/M·M)

<u>(</u>3

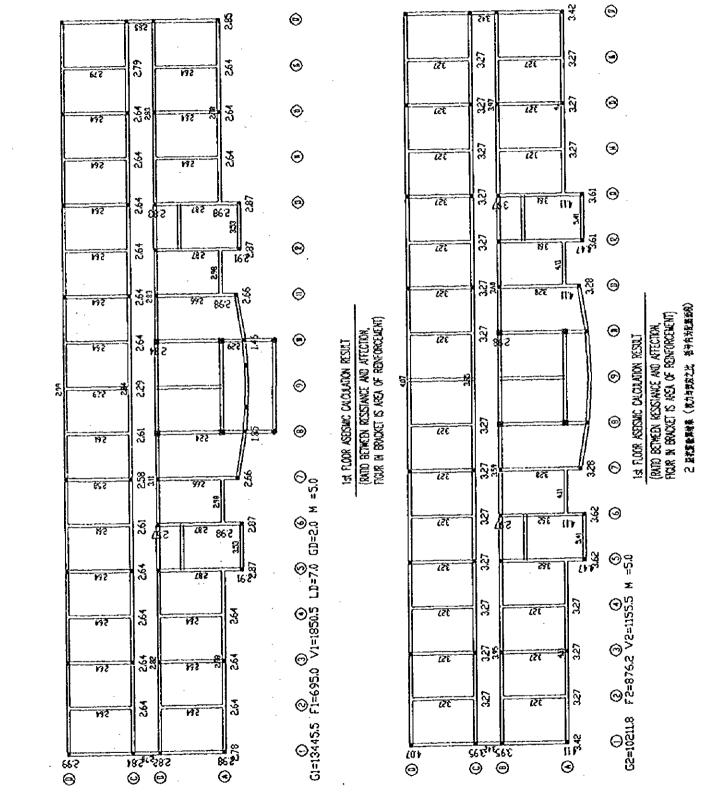

-192-

A S



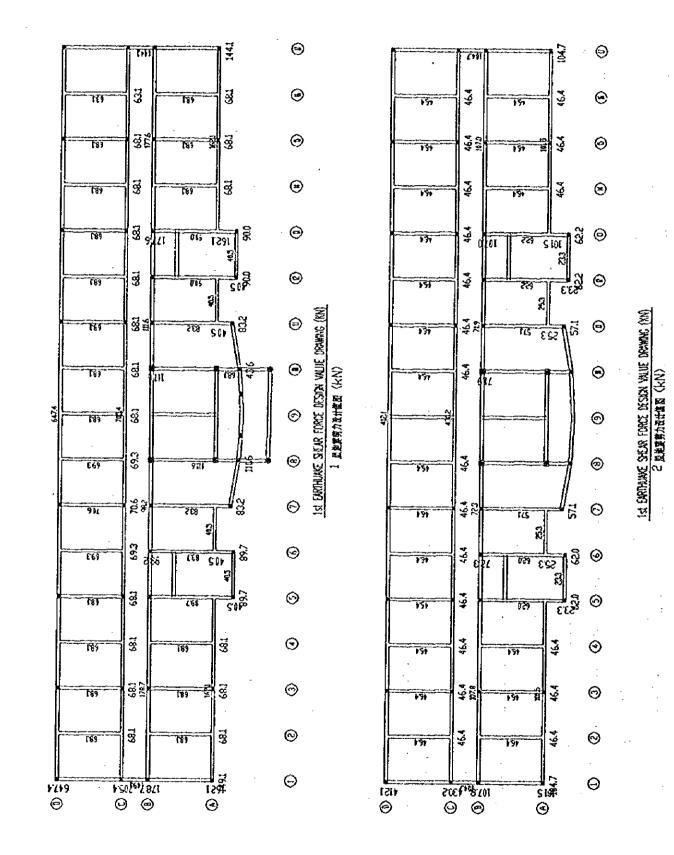
1st FLOOR CAST-IN-SITU BOARD BENDING MOMENT DRAWING (UINT: KN-M)

-193- -:




(UINT: mm/m; steel grade: 1; concrete: C25)

-194-

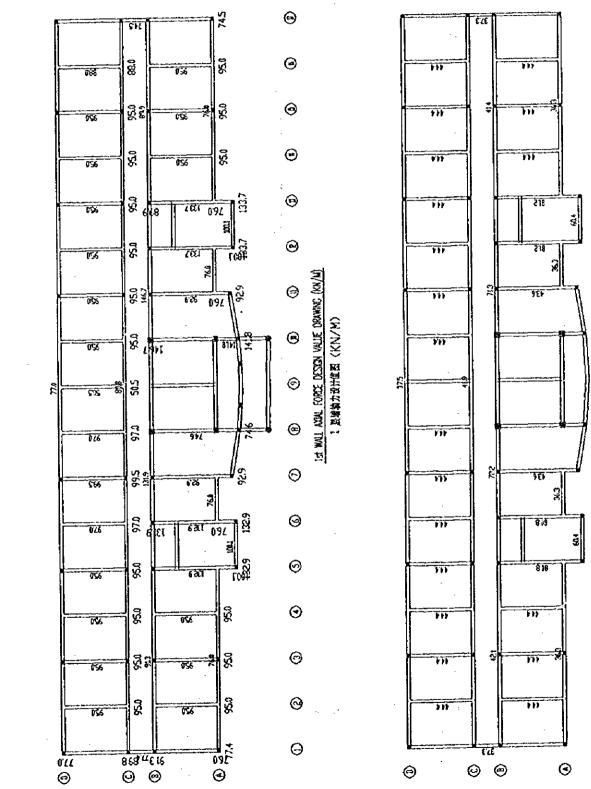

Î.

0



-195-

Ì




-196-

(

0

Į.



14 WALL ADML FORCE DESIGN VALUE DRAWING (KN/M) 2. 原稿省た会社省図 〈KN/M)

 $\odot$ 

۲

0

€

Θ

 $\odot$ 

Θ

Θ

6

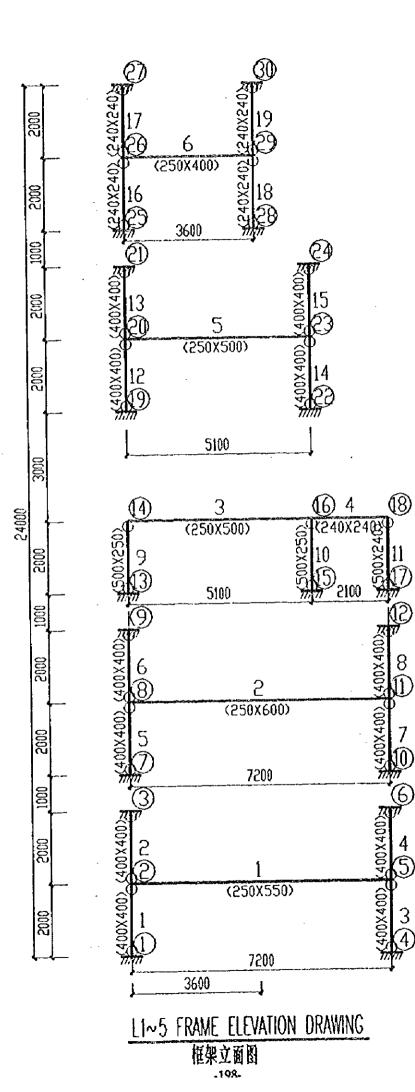
0

Θ

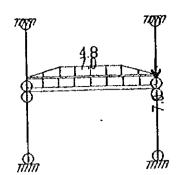
9

ଡ

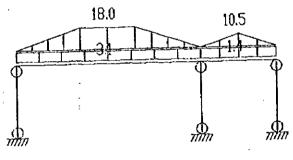
 $\odot$ 

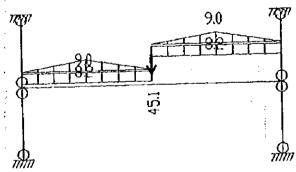

0

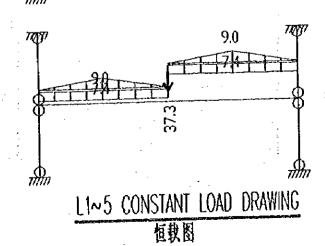
0

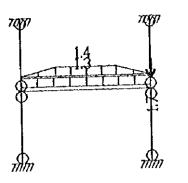

Θ

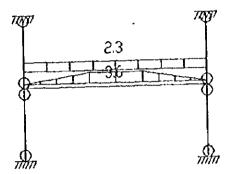
·197•

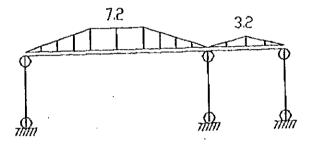

J

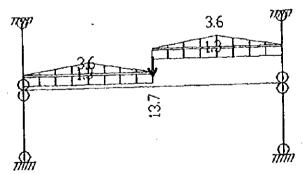


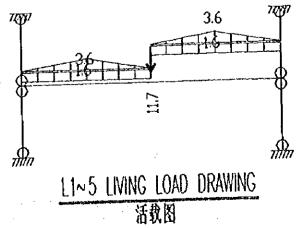


7.4

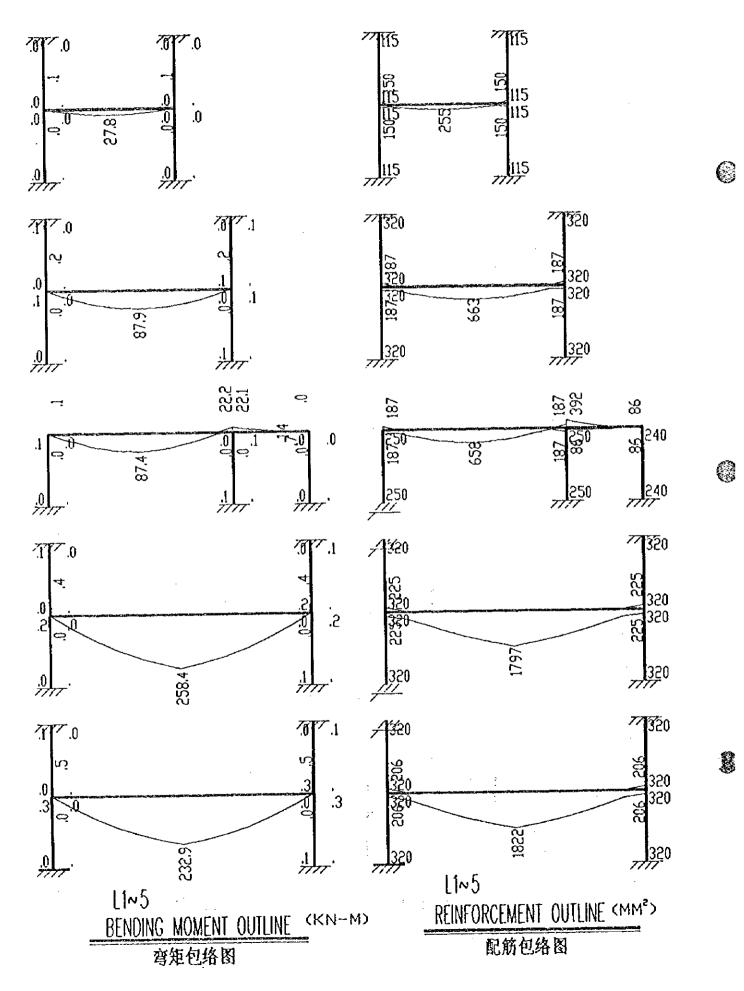


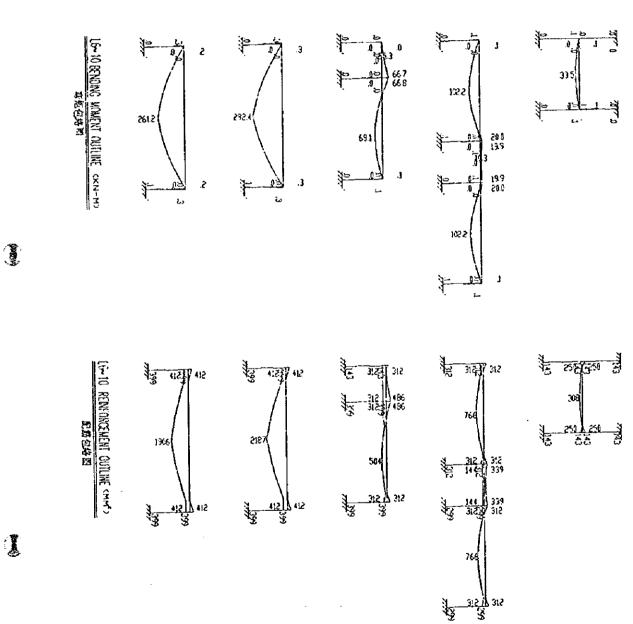












S



-

0

0

e

. · .

• 

## CONTENTS

Sector 1

1 •	Design Introduction	p2
2•	Primary data document St.pm (For PMCAD)	. p4
3•	Beam (L1 $\sim$ 5) date document	p 9
4•	Structure analysys of Beam (L1 $\sim$ 5) result document	p13
5•	Beam ( $L6 \sim 10$ ) date document	p 23
6•	Structure analysys of Beam ( $L6 \sim 10$ ) result document	p26
7•	Figures 附图	

÷

..

-203-

.

.

.

1

Ê

£K.

Calculation	Book	157	April,	1997
-------------	------	-----	--------	------

1, • Design Introduction

I. Name of Project: Shanghai Pudong Airport Oil Depot, Dining Room, Bath Room II. Structure type: one-floor brick & concrete structure

III. Foundation type: R.C. Strip foundation

IV. Aseismic intensity: 7

V. Site soil type: IV

VI. Soil endurance: R=110KPa/m2

VII. Structure importance parameter: Ro=1.0

VIII.Foundation load-bearing layer elevation:

IX. Materials: column -- C25 beam board -- C25

wall: clay brick 240mm ( 5.40KN/m2 )

#### X. Load:

<ol> <li>Living load:</li> </ol>	roof	0.70KN/m2
----------------------------------	------	-----------

2. Static load:	roof	ceiling	0.30KN/m2
	structure layer	(100mm)	2.50KN/m2
	roof(roofl)		2.00KN/m2
	total		4.80KN/m2

XI. Selection of main members

1. R. C. column 350x350mm 2. Main beam (L=6900mm) bxh=250x500 (L=5400mm) bxh=200x450

3. Board thickness; h=100mm

#### XII. Design basis

1. Current national architecture & structure standards and codes;

2. Shanghai City's << Base Foundation Design Codes >> DBJ08--11--89;

3. Shanghai City's << Base Treatment Technical Codes >> DBJ08--40--94;

4. Shanghai City's << Building Aseismic Design Standards >> DBJ08--09--92;

5. << Shanghai Pudong Airport Oil Depot Rock & Soil Investigation Immediate Report >> made

by China Aviation Industry Investigation & Design Institute;

XIII. Computer programs

China Building Science Research Institue CAD Engineering Department PMCAD CAD, structure plan CAD;August, 1996

PK Structural calculation & construction drawing making of R.C. Frame, framed bent and continuous beam; August, 1996

JCCAD Independent foundation & strip foundation design; August, 1996

XIV. Conclusion:

讀

Ĵ.

1

It is concluded from calculation above, the integral strength and deformation of structure meet the design requirements, the geometric dimensions also meet the requirements of strength and deformation regulated by Codes. The primary data of structural model, major calculation results, combining results of main internal forces of each member, structural layout, internal force drawing, reinforcing results of major members refer the next page, based on which construction drawings are made.

.

.

. .

•

4

0

61

Ĩ

.

.....

2 • Primary data document st.pm (For PMCAD)

BLP								
-1,	1, 19, -1,	2, 2, 6	, 1,1.0	0, 1,	1, 0.00, 1.00,	50.0	-	-
	(i),i=1,NST)			-			·	-
4.800,								
	(i),i=1,MST)							•
1,								
	I,J),J=1,2),I=1,							
1,	0.000,	0.000						
2,	0.000,	5.400						
- 3,	0.000,	10.800						
4,	3.600,	0.000						
5,	3.600,	1.200						
6,	3.600,	5.400						
7,	3.600,	10.800						
8,	6.900,	0.000						
9,	6.900,	1.200						
10,	6.900,	5.400						
11,	6.900,	10.800						
12,	10.200,	0.000		•		•		
13,	10.200,	1.200						
14,	10.200,	5.400						
15,	10.200,	10.800						
16,	13.800,	0.000						
17,	13.800,	5.400						
18,	13.800,	10.800						
19,	13.800,	16.200						
20,	13.800,	21.600						
21,	13.800,	23.550					-	
22,	17.250,	23.550						
23,	17.250,	27.000						
24,	20.700,	0.000						
25,	20.700,	5.400						
26,	20.700,	8.100						
27,	20.700,	10.800						
28,	20.700,	16.200						
29,	20.700,	21.600						

-206-

Calculation	Calculation book					por 101			lath Ro				
31,	2	7.600,		0.000									
32,		7.600,		2.700									
33,		7.600,		5.400									
34,		7.600,		8.100							•		
35,		7.600,		10.800									
36,		7.600,		16.200									
37,		7.600,		21.600									-
38,		7.600,		27.000									
39,		9.700,		5.400									
40,		9.700,		8.100									
41,		9.700,		10.800									
42,		1.050,		0.000						-			
43,		1.050,		2.700									
44,		1.050,		5.400									
45,		1.050,		18.150									
46,		1.050,		21.600									
47,		1.050,		27.000									
48,		4.500,		5.400									
49,		4.500,		8.100									
50,		4.500,		10.800									
51,		4.500,		16.200									
52,		4.500,		18.150									
53,		4.500,		21.600									
54,		4.500,		27.000									
0	-												
С((АХ	.IS(I),I	=1,NA	XIS)										
1,	3,	1,	2,	3,									
2,	4,	4,	5,	6,	7,				-				
3,	4,	8,	9,	10,	11,			-					
4,	4,	12,	13,	14,	15,			-					
5,	6,	16,	17,	18,	19,	20,	21,						
6,	7,	24,	25,	26,	27,	28,	29,	30,					
7,	8,	31,	32,	33,	34,	35,	36,	37,	38,				
8,	6,	42,	43,	44,	45,	46,	47,		-	-			
9,	8,	1	4,	8,	12,	16,	24,	31,	42,				
10,	7,	48,	49,	50,	51,	52,	53,	54,					
11,	10,	2,	6,	10,	14,	17,	25,	33,	39,	44,	48,		
12,	3,	39,	40,	41,	-		·	-					
13,	9,	3,	7,	11,	15,	18.	27,	35,	41,	50,			
14,	4,	19,	28,	36,	51,	•	-	-	-	-			
15,	5,	20,	29,	37,	46,	53,							
16,	5,	23,	30,	38,	47,	54,							
17,	3,	5,	9,	13,	,	,					-	-	
				•••									

Î

Calculation book

i

# Oil Depot, Dining Room, Bath Room

6

0

0

	10	•		(2)											
٨	19,	2,	32,	43,											
0	(CL(i	N i-1 1	2CL)												
U.	1.000		000,	0.35	0 03	50,									
	1.000	•	000, 000,	0.33	-	40,					·				
C.	(BE(i	-	-	0.24	0, 0.2	-1 <b>0</b> ,					· .				
<i>.</i>	1.000		000,	0.25	0.05	00,									
	1.000	•	000,	0.20	-	50,									
C-	((QD	•			-	,									
Ũ	0.900		, .,_ <i>,,</i> . 700,	0.90	-	:00,	3.000,	1.8	300,	1.500,	2.7	00.			· .
	1.500	-	800,	4.50		'00,	,		,		2011	,			.:
C-		-			ALOD)								• .		
	1.000		300,	0.70									÷		<i></i>
C-	QUE	-			,						.*		· · :	-	
0	•										. • .		• •		
C=					*****					· ·		<b>n-</b> ::-::-	C		-
С					LA	YER	1						• •		
C												<del>`</del>	C		
C-	ВНО	UH	₹₩B	BH	с іс	IC	C	IG			-		- '		
	0.080	, 20.0,	0.015, 3	30.0,	30.0,	2							-		· .
C-	···((AX	IS(I),I	=1,NA)	XIS)											
	1,	3,	1,	2,	3,						-			-	
	2,	4,	4,	5,	6,	7,					•				·
	3,	4,	8,	9,	10,	11,									
	4,	4,	12,	13,	14,	15,									
	5,	6,	16,	17,	18,	19,	20,	21,							
	6,	7,	24,	25,	26,	27,	28,	29,	30,						
	7,	8,	31,	32,	33,	34,	35,	36,	37,	38,					
	8,	6,	42,	43,	44, ⁻	45,	46,	47,		•			·		
	9,	8,	1,	4,	8,	12,	16,	24,	31,	42,	-	-			
	10,	7,	48,	49,	50,	51,	52,	53,	54,						
	11,	10,	2,	6,	10,	14,	17,	25,	33,	39,	44,	48,			
	12,	3,	39,	40,	41,					• •					
	13,	9,	3,	7,	11,	15,	18,	27,	35,	41,	50,	3		÷	-
	14,	4,	19,	28,	36,	51,						•			<u>.</u> .
	15,	5,	20,	29,	37,	46,	53,	•							
	16,	5,	23,	30,	38,	47,	54,								,
	17,	3,	5,	9,	13,										:
	18,	4,	26,	34,	40,	49,								•	
•	19,	2,	32,	43,									•		
0	7101											-			
U-	ZHU		~		0.000		0.000					С.,			=
		901,	2,		0.000,		0.000				. :	•	-		
		903,	2,		0.000,		0.000								

Calculation book			Ull Depot, Dill	ng Room, Bath F		- 
905,	2,	0.000,	0.000			
903, 908,	2, 2,	0.000,	0.000			
908, 1106,		0.000,	0.000			
110910,	1, 2	0.000,				
	2,	0.000,				
1301,	2, 2,	0.000,				
1305,		0.000,				
130607,	1, ว	0.000,				
1309, 140203,	2,	0.000,				
	l, 1	0.000,				
150203,	l, 1	0.055,				
1505,	1, ว	0.000,				
160304,	2,	0.000,				
1605,	1, 2	0.000,				
1801,	2,	0.000,	0.000			
0 C LIANG						
20203,	2,	0.000				
303,	2,	0.000				
60106,	2,	0.000				
70507,	2, 2,	0.000				
100506,	2, 1,	0.000				
110506,	ı, l,	0.000				
140103,	ı, 1,	0.000				
140105,		0.000				
150104,	1, 1,	0.000			•	
0	1,	0.000				
C QIANG					·	
10102,	0.24	in	0.000			
201,	0.24		0.000			
30102,	0.24		0.000			-
40103,	0.24		0.000			
40103, 50105,	0.24		0.000			
50103, 603,	0.24		0.000	-		
70104,	0.24		0.000			
80102,	0.24		0.000			
805,	0.24		0.000			
	0.24		0.000		: :	
90107,			0.000			
100104,	0.24		0.000			
110104,	0.24		0.000			
110709,	0.24		0.000			
120102,	0.24			-		
130108,	0.24		0.000			
160103,	0.24		0.000			
170102,	0.24	10,	0.000			

?

.

Ţ

Iculation book			epot, Dining			N-C- NOT THE COMPANY		<u>8</u> _
1801,	0.24(	), 0.000	1	+ :				
1803,	0.240		)	. *				
1901,	. 0.240	), 0.000	)		•			
10021023,	-0.240	, 1.010	, 0.00	0			. '	
10046052,	-0.240	, 1.010	, 0.00	0 .				
) .							. •	
C DONG KOU								
402,	1,	3.000,	0.000					
503,	3,	1.200,	0.900	-				
504,	4,	1.950,	0.000				. :	
70103,	1,	0.900,	0.000			• .		
80102,	2,	0.900,	0.900			- -	:	
805,	6,	0.450,	0.000					
901,	3,	0.300,	0.900					
90203,	ł,	1.200,	0.000			-		,
904,	3,	0.300,	0.900				:	
905,	3,	1.950,	0.900				•	
906,	4,	2.700,	0.000					
100102,	2,	0.900,	0.900					
1003,	3,	1.200,	0.900					
1101,	1,	1.350,	0.000					
1104,	l,	1.350,	0.000					
120102,	l,	0.900,	0.000					
1301,	5,	1.050,	0.900					
130203,	5,	0.900,	0.900					
1304,	5,	1.050,	0.900	-				
1306,	6,	1.200,	0.000	1 <u>.</u>			•	•
1307,	1,	0.600,	0.000					
1602,	3,	1.950,	0.900		r	1 - T		
170102,	1,	1.200,	0.000			••	·	
1801,	1,	3.000,	0.000		:	:		
10021023,	3,	1.210,	0.900					
10046052,	3,	1.210,	0.900				•	
0								
C <del></del>				*******	1.31 <b>37 37 11 11</b> 11	C		
CKZDJ N		IY	INF	СС	1. 2	·* . '	•	
4, 1,	7,	-4.00, (	), 1.00		· .*	·		
EOF					t e e	·	- <u>-</u>	
l,,2,	,3,	4,5,	6 ,A	,7 ,B	:",,,			
C ,D ,E	,F				1.1			
END					:.	1,21,2		
					• •, *			
	•							

٠.

•

0

0

!

-210-

÷ 2

3 • Beam (L1  $\sim$  5) date document

C _____ zong xin xi 44,22, 17, 0,22, 5, 1, 0, 4, 30, 30, 2, 0, 0, .90, 1.00, 0,

Cjie dian :	zuo bia	·
.000, -2.000,	.000, .000,	4.200, -2.000,
4.200, .000,	9.600, -2.000,	9.600, .000,
.000, 3.000,	.000, 5.000,	5.400, 3.000,
5.400, 5.000,	10.800, 3.000,	10.800, 5.000,
16.200, 3.000,	16.200, 5.000,	21.600, 3.000,
21.600, 5.000,	27.000, 3.000,	27.000, 5.000,
.000, 8.000,	.000, 10.000,	5.400, 8.000,
5.400, 10.000,	10.800, 8.000,	10.800, 10.000,
16.200, 8.000,	16.200, 10.000,	21.600, 8.000,
21.600, 10.000,	27.000, 8.000,	27.000, 10.000,
.000, 13.000,	.000, 15.000,	5.400, 13.000,
5.400, 15.000,	10.800, 13.000,	10.800, 15.000,
16.200, 13.000,	16.200, 15.000,	.000, 18.000,
.000, 20.000,	5.400, 18.000,	5.400, 20.000,
10.800, 18.000,	10.800, 20.000,	

C _____ zhu guan lian hao

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,

 37, 38, 39, 40, 41, 42, 43, 44,

C _____ liang guan lian hao

2, 4,	4, 6,	8, 10,	10, 12,	12, 14,	14, 16,
16, 18,	20, 22,	22, 24,	24, 26,	26, 28,	28, 30,
32, 34,	34, 36,	36, 38,	40, 42,	42, 44,	

C _____ yue su xin xi

1111,	3111,	5111,	7111,	911 <b>1</b> ,	H111,
13111,	15111,	17111,	19111,	21111,	23111,
25111,	27111,	29111,	31111,	33111,	35111,
37111,	39111,	41111,	43111,		

- 9

## Oil Depot, Dining Room, Bath Room

C _____ zhu ji suan chang du xi su 0. C _____ zhu jie dian pian xin 0, C _____ biao zhun jie mian 1, .20, .45, 1, -.50, .24, 1, -.50, .25, 1, -.35, .35, 1, -.24, .24, C _____ zhu jie mian hao 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 5, 2, 3, 3, C _____ liang jie mlan hao 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, CCC _____ jie dian (jing) he zai 0, CCC _____ zhu jian (jing) he zai 0, CCC _____ liang jian (jing) he zai 1, 2, 1, 8.6, 6, 8.7, 1.65, 1, 2, 1, 2.3, 6. 18.3, 1.65, 1, 2, 1, 2.3, 6, 18.3, 1.73, 1, 2, 1, 2.3, 6, 18.3, 1.73, 1, 2, 1, 2.3, 6, 18.3, 1.73, 1, 2, 1, 2.3, 6, 18.3, 1.72, 1, 2, 1, 6.7, 6, 9.4, 1.73, 1, 2, 1, 2.3, 6, 18.3, 1.72, 1, 2, 1, 2.3, С 10, 7.2, .0, 1.35,

6, 18.3, 1.72,

-212-

10

¥,

1, 2, 1,	2.3,
6,	18.3, 1.72,
1, 2, 1,	2.3,
6,	18.3, 1.72,
1, 2, 1,	2.3,
6,	18.6, 1.72,
1, 2, 1,	2.3,
6,	18.3, 1.73,
1, 2, 1,	2.3,
6,	18.6, 1.72,
1, 2, 1,	2.3,
6,	18.3, 1.73,
1, 2, 1,	2.3,
6,	18.3, 1.72,
1, 2, 1,	6.7,
6,	9.4, 1.72,
CCC	jie dian (huo) he zai
0,	
CCC	zhu jian (huo) he zai
0,	
CCC	liang jian (huo) he zai
1, 2, 6,	1.2, 1.65,
1,	.8,
1, 1, 6,	2.4, 1.65,
1, 1, 6,	2.4, 1.73,
1, 1, 6,	2.4, 1.73,
1, 1, 6,	2.4, 1.73,
1, 1, 6,	2.4, 1.72,
1, 2, 6,	1.2, 1.73,
l,	.6,
	2.4, 1.72,
1, 1, 6,	2.4, 1.72,
C 10,	.9, .0, 1.35,
1, 1, 6,	2.4, 1.72,
1, 1, 6,	2.4, 1.72,
1, 1, 6,	2.5, 1.72,
1, 1, 6,	2.4, 1.73,
	2.5, 1.72,
1, 1, 6,	2.4, 1.73,
1, 1, 6,	2.4, 1.72,
1, 1, 0,	.6,
1, 2, 1, 6,	1.2, 1.72,
•	zhen can shu
1, 5, 2.0	, 0, 0, 1.0, 0,

<u>11</u>

Calculation book

1

88888									
	zhou xi	-							
	.000,								
	.000, .000,	.000,	.000,	.000,	.000,	.000,	.000,	.000,	.000,
	-	o vio vi	:						
	,20000,			0500.20	000.30	500.30	500.200		00.
	),10000,	-	-						
	),30500,	•	,.			,	,,		.,
	ci liang								
1									
0,									
0,									
0,									
0,									
0,									
0,									
0, 0,									
0, 0, 0,	700	00 '	240 - 24	10					
0, 0, 0, 1, 2	.700,	.00, .:	240,24	10,					
0, 0, 0, 1, 2 0,	.700,	.00, .2	240,24	10,					
0, 0, 0, 1, 2	.700,	.00, .2	240,24	10,					
0, 0, 0, 1, 2 0, 0,	.700,	.00, ./	240,24	10,					
0, 0, 0, 1, 2 0, 0, 0,	.700,	.00, .1	240,24	10,					
0, 0, 0, 1, 2 0, 0, 0, 0,	.700,	.00, .2	240,24	10,					
0, 0, 1, 2 0, 0, 0, 0, 0,	.700,	.00, ./	240,24	10,					
0, 0, 0, 1, 2 0, 0, 0, 0, 0, 0,	.700,	.00, .2	240,24	10,					
0, 0, 0, 1, 2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	.700,	.00, .2	240,24	10,					
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,					,D	,E	,F	,A	
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8	,C	,А	"B	,C					
0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	,C ,D	,А	"B	,C					

12

0

83

S.

: ::

. . '

,- ·-- · -

13

0

## 4 • Structure analysys of Beam ( $L1 \sim 5$ ) result document L1~5结构分析结果文件

Ŷ

#### ***** PK11.EXE ****** DATA: 6/17/1997

		•					-					
OU	TPUT	DATA	-									
44	22	17	0	22	5	1	0	- 4	30	30	2	0
	.90	1.00			÷., ->							-

OUTPUT DATA

0

(1) .00 -2.00	(2).00.00	( 3) 4.20-2.00	( 4) 4.20 .00
( 5) 9.60 -2.00	( 6) 9.60 .00	( 7) .00 3.00	0 (8) .00 5.00
(9) 5.40 3.00	(10) 5.40 5.00	(11) 10.80 3.00	(12) 10.80 5.00
(13) 16.20 3.00	(14) 16.20 5.00	(15)21.60 3.00	(16) 21.60 5.00
(17)27.00 3.00	(18) 27.00 5.00	(19) .00 8.00	( 20) .00 10.00
(21) 5.40 8.00	(22) 5.40 10.00	(23) 10.80 8.00	( 24) 10.80 10.00
(25) 16.20 8.00	( 26) 16.20 10.00	(27)21.60 8.00	(28)21.6010.00
(29)27.00 8.00	( 30) 27.00 10.00	(31) .00 13.00	(32) .00 15.00
(33) 5.40 13.00	(34) 5.40 15.00	( 35) 10.80 13.00	( 36) 10.80 15.00
( 37) 16.20 13.00	( 38) 16.20 15.00	(39) .00 18.00	( 40) .00 20.00
(41) 5.40 18.00	(42) 5.40 20.00	( 43) 10.80 18.00	( 44) 10.80 20.00

OUTPUT DATA • . (5) 9 10 (2) (3) 5 6 (4) (1) 2 4 7 8 1 3 (6) 11 (7) 13 14 (8) 15 16 (9) 17 18 (10) 19 20 12 (13) 25 26 (14) 27 28 (15) 29 30 (11) 21 22 (12) 23 24 (18) 35 36 (16) 31 32 (17) 33 34 (19) 37 38 (20) 39 40 (21) 41 42 (22) 43 44 (3) (1) 2 -4 (2) 4 6 8 10 (4) 10 12 (5) 12 14 (8) 20 22 (9) 22 24 (10) 24 26 (7) 16 18 (6) 14 - 16 (13) 32 34 (14) 34 36 (15) 36 38 (11) 26 28 (12) 28 30 (17) 42 44 (16) 40 42

OUTPUT DATA . (2) (3) 5111 (4) 7111 ( 5) 9111 (1) 1111 3111 (8) 15111 -(9) 17111 (10) 19111 (6) 11111 (7) 13111 27111 (15) 29111 (12) 23111 (13) 25111 (14) (11)21111 (20) 39111 33111 (18) 35111 (19) 37111 (16) 31111 (17)

Calculation book

Į.

43111

41111 (22) (21) OUTPUT DATA (1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00 (8) 1.00 (9) 1.00 (10) 1.00 (11) 1.00 (12) 1.00 (13) 1.00 (14) 1.00 .(.15).1.00 . (.16).1.00 . (.17).1.00 . (.18).1.00 . (.19).1.00 . (.20).1.00 . (.21).1.00 (22) 1.00 OUTPUT DATA (1) .00 (2) .00 (3) .00 (4) .00 (5) .00 (6) .00 (7) .00 (8) .00 (9) .00 (10) .00 (11) .00 (12) .00 (13) .00 (14) .00 (15) .00 (16) .00 (17) .00 (18) .00 (19) .00 (20) .00 (21) .00 (22) .00 (23) .00 (24) .00 (25) .00 (26) .00 (27) .00 (28) .00 (29) .00 (30) .00 (31) .00 (32) .00 (33).00 (34) .00 (35) .00 (38) .00 (39) .00 (40) .00 (41) .00 (42) .00 (37) .00 (36) .00 (43) .00 (44) .00 OUTPUT DATA .00 .00 1.00 .20 .45 .00 (1) .24 .00 (2) 1.00 -.50 .00 .00 .25 (3) 1.00 -.50 .00. .00 .00 ( 4) 1.00 -.35 .35 .00 .00 .00 1.00 -.24 .24 .00 .00 ( 5) .00 OUTPUT DATA (1)2 (2)2 (3)2 (4)2 (5)3 (6)2 (7)3 (8)3 (9)2 (10)2 (11)4 (12)4 (13)4 (14)4 (15)2 (16)4 (17)4 (18)4 (19) 5 (20) 2 (21) 3 (22) 3 (1)1 (2)1 (3)1 (4)1 (5)1 (6)1 (7)1 (8)1 ( 9)1 (10)1 (11)1 (12)1 (13)1 (14)1 (15)1 (16)1 (17)1 IIQQ= 219 STIF COMPUTE DEAD COMPUTE . -JOINT LOAD: ЛR ΧМ XN 0 COLUMN LOAD: JC KL Р X KΧ 0 BEAM NE KL Р **P1** XI LOAD: LI Х 2 1 .00 1 8.60 8.70 6 1.65 1 : 2 L 2.30 .00 1

14

6)

窡

18.30

1.65

Calculation book	in som svilt i sen som beskonder		Oil Depot,	Dining Room	, Bath Room		
	1	2	í	2.30	.00		
	1	ć	6	18.30	1.73		
	1	2	1	2.30	.00		
	1	6	6	18.30	1.73		
	1	2	- 1	2.30	.00		
	1	Ŀ	• 6	18.30	1.73		
	1	2	ĩ	2.30	.00		
	•	2	6	18.30	1.72		
	1	2	1	6.70	.00		
			6	9.40	1.73		
	1	2	1	2.30	.00		
			6	18.30	1.72		
	1	2	1	2.30	.00		
			6	18.30	1.72		
	1	2	1	2.30	.00		
			6	18.30	1.72		
	1	2	1	2.30	.00		
			6	18.30	1.72		
	1	2	1	2.30	.00		
			6	18.60	1.72		
	1	2	· · 1	2.30	.00		
			6	18.30	1.73		
	1 -	2	1	2.30	.00		
	•		• 6	18.60	1.72		
	1	2	1	2.30	.00		
			6	18.30	1.73		
	1	2	1	2.30	.00		
		_		18.30			
	1	2		6.70			
			6	9.40	1.72		
			*****	LOAD**			
				LOAD			
JOINT LOAD:	-	-	YM		·		
JOINT LOAD;				AIN			
COLUMN LOAD:	: J	с	KL	Р	х	кх	
							•
BEAM LOAD:	NE	: L	I K	L : P	. <b>X</b>	P1	
					1.65		
				.80	.00	14	
				2.40			

Calculation book
alan di Jang Sanakan Kanakan Kanakan kana salah berdar dari berdar berdar berdar berdar berdar berdar berdar b

# Oil Depot, Dining Room, Bath Room

.

· · · ·

16

9

L

.

1	1	6	2.40	1.73
1	1	6	2.40	1.73
1	1	· 6	2.40	1.73
1	1	6	2.40	1.72
1	2	6	1.20	1.73
		. 1	60	··· .00
1	1	6	2.40	1.72
1	1	6	2.40	1.72
1	1	6	2.40	1.72
1	1	6	2.40	1.72
1	1	6	2.50	1.72
1	1	6	2.40	1.73
1	1	6	2.50	1.72
1	1	6	2.40	1.73
1	1	6	2.40	1.72
1	2	1	.60	.00
	-	6	1.20	1.72
сом	PUTE			

EART COMPUTE

COMBI COMPUTE

**COMBINATION AND REINFORCEMENT**

		BEAM	1	(B= .20	0, H= .•	450, L=	4.20)	
BOT	ТОМ						·	
SECTION	1	2	3	4	5	6	7	
M=	.00	-14.89	-21.68	-17.94	-2.81	.00	.00	
As(1)=	225.	117.	172.	142.	22.	0.	225.	
As(2)=	225.	0.	0.	0.	0.	0.	225.	
TOP								
SECTION	1	2	3	4	5	6	7	
M=	.03	.00	.00	.00	= 4.11	28.50	62.17	
As(1)=	225.	0.	0.	0.	32.	227.	513.	
As(2)≃	225.	0.	0.	0.	0.	0.	513.	
VI= 24.41 Asv/s= .(	-	Vr= 5	5.92 NO	93 As(3)		Umaxb= .0	03 Umaxt	= .006
		BEAM	2	(B= .20	0, H= .4	450, L=	5.40)	
BOT	гом						-	
SECTION	1	2	3	4	5	6	7	·
M=	.00	.00	-39.34	-60.73	-59.37	-36.34	.00	
As(1)=	225.	0.	317.	500.	488.	292.	225.	
As(2)=	225.	0.	0.			0.	225.	

TOP SECTION 1 2 3 4 5 6 7 M = 62.23 6.51 .00 .00 .00 .00 .10 As(1) = 514. 51. 0. 0. 0. 0. 225. As(2) = 514. 0. 0. 0. 0. 0. 225. VI = 67.71 NO 1 Vr = 42.57 NO 3 As(3) = 225. Umaxb = .006 Umaxt = .00 Asv/s = .00 BEAM 3 (B = .200, H = .450, L = 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 $M = .00 -35.24 -57.68 -58.77 -37.12 .00 .00As(1) = .225. 0. 0. 0. 0. 0. 225.TOPSECTION 1 2 3 4 5 6 7M = .11 .00 .00 .00 .00 .00 11.17 66.63As(2) = .225. 0. 0. 0. 0. 0. 552.VI = 41.22 NO 1 Vr = 67.60 NO 3 As(3) = .225. Umaxb = .006 Umaxt = .0 Asv/s = .00 BEAM 4 (B = .200, H = .450, L = 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M = .00 .00 -21.92 -35.95 -27.23 .00 .00As(1) = .225. 0. 174. 289. 217. 0. 225.As(2) = .225. 0. 0. 0. 0. 0. 0. 225.TOPSECTION 1 2 3 4 5 6 7M = .00 .00 -21.92 -35.95 -27.23 .00 .00As(1) = .225. 0. 174. 289. 217. 0. 225.As(2) = .225. 0. 0. 0. 0. 0. 0. 225.TOPSECTION 1 2 3 4 5 6 7M = .00 .00 -21.92 -35.95 -27.23 .00 .00As(1) = .225. 0. 174. 289. 217. 0. 225.As(2) = .255. 0. 0. 0. 0. 0. 0. 225.TOPSECTION 1 2 3 4 5 6 7M = .00 .00 -21.92 -35.95 -27.23 .00 .00As(1) = .255. 0. 174. 289. 217. 0. 225.As(2) = .255. 0. 0. 0. 0. 0. 0. 225.TOPSECTION 1 2 3 4 5 6 7M = .00 .00 .00 .00 .00 .00 .00 .00 .225.TOPSECTION 1 2 3 4 5 6 7M = .00 .00 .0. 0. 0. 225.TOPSECTION 1 2 3 4 5 6 7M = .00 .00 .00 .00 .00 .00 .00 .00 .00 .$					•			
$M_{=}^{(n)} = 62.23  6.51  .00  .00  .00  .00  .10 \\ A_{5}(1)= 514.  51.  0.  0.  0.  0.  0.  225. \\ A_{5}(2)= 514.  0.  0.  0.  0.  0.  225. \\ V = 67.71  NO 1  V_{T}= 42.57  NO 3  As(3)= 225.  Umaxb=.006  Umaxt=.00 \\ Asv/s= .00 \\ \hline M= .00  .35.24  .57.68  .58.77  .37.12  .00  .00 \\ A_{5}(1)= 225.  283.  474.  483.  299.  0.  225. \\ A_{5}(2)= 225.  0.  0.  0.  0.  0.  225. \\ TOP \\ SECTION  1  2  3  4  5  6  7 \\ M= .11  .00  .00  .00  .00  11.17  66.63 \\ A_{5}(1)= 225.  0.  0.  0.  0.  0.  88.  552. \\ A_{5}(2)= 225.  0.  0.  0.  0.  0.  88.  552. \\ A_{5}(2)= 225.  0.  0.  0.  0.  0.  88.  552. \\ A_{5}(2)= 225.  0.  0.  0.  0.  0.  552. \\ V = 41.22  NO 1  V_{T}= 67.60  NO 3  As(3)= 225.  Umaxb=.006  Umaxt=.0 \\ A_{5}(y= 225.  0.  0.  0.  0.  0.  0.  552. \\ V = 41.22  NO 1  V_{T}= 67.60  NO 3  As(3)= 225.  Umaxb=.006  Umaxt=.0 \\ A_{5}(y= 225.  0.  0.  0.  0.  0.  0.  225. \\ TOP \\ SECTION  1  2  3  4  5  6  7 \\ M=  .00  .00  -21.92  -35.95  -27.23  .00  .00 \\ A_{5}(1)= 225.  0.  174.  289.  217.  0.  225. \\ A_{5}(2)= 225.  0.  0.  0.  0.  0.  225. \\ TOP \\ SECTION  1  2  3  4  5  6  7 \\ M=  .00  .00  -21.92  -35.95  -27.23  .00  .00 \\ A_{5}(1)= 225.  0.  174.  289.  217.  0.  225. \\ A_{5}(2)= 225.  0.  0.  0.  0.  0.  0.  225. \\ TOP \\ SECTION  1  2  3  4  5  6  7 \\ M=  66.60  18.77  .00  .00  .00  8.08  50.93 \\ A_{5}(1)=  552.  148.  0.  0.  0.  0.  0.  225. \\ TOP \\ SECTION  1  2  3  4  5  6  7 \\ M=  66.60  18.77  .00  .00  .00  8.08  50.93 \\ A_{5}(1)=  552.  148.  0.  0.  0.  0.  415. \\ V_{1}=  58.46  NO 1  V_{T}=  51.95  NO 3  A_{5}(3)=  225.  Umaxb=.003  Umaxt=.0 \\ A_{5}(y=  .00)  Umaxt=.0 \\ A_{5}(y= $		1	2	3	4	5	6	7
As(1)= 514. 51. 0. 0. 0. 0. 0. 225. As(2)= 514. 0. 0. 0. 0. 0. 225. VI= 67.71 NO 1 Vr= 42.57 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.00 Asv/s= .00 BEAM 3 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.24 -57.68 -58.77 -37.12 .00 .00 As(1)= 225. 283. 474. 483. 299. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 11.17 66.63 As(2)= 225. 0. 0. 0. 0. 0. 88. 552. As(2)= 225. 0. 0. 0. 0. 0. 88. 552. As(2)= 225. 0. 0. 0. 0. 0. 552. VI= 41.22 NO 1 Vr= 67.60 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.0 Asv/s= .00 BEAM 4 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225. 0. 174. 289. 217. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225. 0. 174. 289. 217. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225. 0. 174. 289. 217. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 552. 148. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 66.60 18.77 .00 .00 .00 .00 8.08 50.93 As(1)= 552. 148. 0. 0. 0. 415. VI= 58.46 NO 1 Vr= 51.95 NO 3 As(3)= 225. Umaxb=.003 Umaxt=.0 Asv/s= .00		-						.10
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							0.	225.
Asv/s= .00 BEAM 3 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.24 -57.68 -58.77 -37.12 .00 .00 As(1)= 225, 283, 474, 483, 299, 0, 225, As(2)= 225, 0, 0, 0, 0, 0, 225, TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 11.17 66.63 As(1)= 225, 0, 0, 0, 0, 88, 552, As(2)= 225, 0, 0, 0, 0, 0, 88, 552, As(2)= 225, 0, 0, 0, 0, 0, 88, 552, VI= 41.22 NO1 Vr= 67.60 NO3 As(3)= 225, Umaxb=.006 Umaxt=.0 Asv/s= .00 BEAM 4 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225, 0, 174, 289, 217, 0, 225, As(2)= 225, 0, 0, 0, 0, 0, 225, TOP SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225, 0, 174, 289, 217, 0, 225, As(2)= 225, 0, 0, 0, 0, 0, 0, 225, TOP SECTION 1 2 3 4 5 6 7 M= 66.60 18.77 .00 .00 .00 8.08 50.93 As(1)= 552, 148, 0, 0, 0, 63, 415, As(2)= 552, 0, 0, 0, 0, 0, 415, VI= 58.46 NO1 Vr= 51.95 NO3 As(3)= 225, Umaxb=.003 Umaxt=.0 Asv/s= .00	• •					0.	0.	225.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VI= 67.71	NO I	Vr= 42	.57 NO	3 As(3)=	225.	Umaxb= .	006 Umaxt= .00
BOTTOM         SECTION         1         2         3         4         5         6         7           M=         .00         -35.24         -57.68         -58.77         -37.12         .00         .00           As(1)=         225.         283.         474.         483.         299.         0.         225.           As(2)=         225.         0.         0.         0.         0.         0.         225.           TOP         SECTION         1         2         3         4         5         6         7           M=         .11         .00         .00         .00         .00         1.17         66.63           As(1)=         225.         0.         0.         0.         88.         552.           As(2)=         225.         0.         0.         0.         0.         552.           VI=         41.22         NO 1         Vr=         67.60         NO 3         As(3)=         225.         Umaxt= .0           Asv/s=         .00         .00         -21.92         -35.95         -27.23         .00         .00           As(1)=         .25.         0.         174.         289. <td>Asv/s≕ ···.</td> <td>00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Asv/s≕ ···.	00						
SECTION       i       2       3       4       5       6       7         M=       .00       -35.24       -57.68       -58.77       -37.12       .00       .00         As(1)=       225.       283.       474.       483.       299.       0.       225.         As(2)=       225.       0.       0.       0.       0.       0.       225.         TOP       TOP       5       6       7       .00       .00       1.17       66.63         As(1)=       225.       0.       0.       0.       0.       88.       552.         As(2)=       225.       0.       0.       0.       0.       552.         VI=       41.22       NO1       Vr=       67.60       NO3       As(3)=       225.       Umaxt=.0         Asv/s=       .00       .00       -21.92       -35.95       -27.23       .00       .00         BOTTOM       1       2       3       4       5       6       7         M=       .00       .00       -21.92       -35.95       -27.23       .00       .00         As(2)=       .225.       .0       .0       .0 <td></td> <td>F</td> <td>BEAM</td> <td>3 (</td> <td>( B= .200,</td> <td>H= .</td> <td>450, L=</td> <td>5.40)</td>		F	BEAM	3 (	( B= .200,	H= .	450, L=	5.40)
$M = 00 -35.24 -57.68 -58.77 -37.12 0.0 0.0$ $A_{S}(1) = 225. 283. 474. 483. 299. 0. 225.$ $TOP$ $SECTION 1 2 3 4 5 6 7$ $M = .11 0.0 0.0 0.0 0.0 11.17 66.63$ $A_{S}(1) = 225. 0. 0. 0. 0. 0. 88. 552.$ $A_{S}(2) = 225. 0. 0. 0. 0. 0. 0. 552.$ $V  = 41.22 \text{ NO } 1 \text{ Vr} = 67.60 \text{ NO } 3 \text{ As}(3) = 225. \text{ Umaxb} = .006 \text{ Umax}(= .0 \text{ Asv/s} = .00)$ $BEAM 4 (B = .200, H = .450, L = 5.40)$ $BOTTOM$ $SECTION 1 2 3 4 5 6 7$ $M = .00 0.0 -21.92 -35.95 -27.23 0.0 0.0$ $A_{S}(1) = 225. 0. 0. 0. 0. 0. 0. 225. \text{ TOP}$ $SECTION 1 2 3 4 5 6 7$ $M = .00 0.0 -21.92 -35.95 -27.23 0.0 0.0$ $A_{S}(2) = 225. 0. 0. 0. 0. 0. 0. 0. 225. \text{ TOP}$ $SECTION 1 2 3 4 5 6 7$ $M = .66.60 18.77 0.0 0.0 0.0 8.08 50.93$ $A_{S}(2) = 552. 148. 0. 0. 0. 0. 415.$ $V  = 58.46 \text{ NO } 1 \text{ Vr} = 51.95 \text{ NO } 3 \text{ As}(3) = 225. \text{ Umaxb} = .003 \text{ Umaxt} = .0 \text{ Asv/s} = .00$	BOT	ТОМ		•• .		••		
As(1)=       225.       283.       474.       483.       299.       0.       225.         As(2)=       225.       0.       0.       0.       0.       0.       225.         TOP       SECTION       1       2       3       4       5       6       7         M=       .11       .00       .00       .00       .00       .00       ii.17       66.63         As(1)=       225.       0.       0.       0.       0.       88.       552.         As(2)=       225.       0.       0.       0.       0.       88.       552.         VI=       41.22       NO 1       Vr=       67.60       NO 3       As(3)=       225.       Umaxb=.006       Umaxt=.0         Asv/s=       .00       .00       -21.92       -35.95       -27.23       .00       .00         BOTTOM       2       3       4       5       6       7         M=       .00       .00       -21.92       -35.95       -27.23       .00       .00         As(1)=       225.       0.       174.       289.       217.       0.       225.         TOP       SECTION	SECTION	1	2	3	4	5	6	7
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M=	.00	-35.24	-57.68	-58.77 -	37.12	.00	.00
TOP TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 i1.17 66.63 As(1)= 225. 0. 0. 0. 0. 0. 88. 552. As(2)= 225. 0. 0. 0. 0. 0. 552. VI= 41.22 NO 1 Vr= 67.60 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.0 Asv/s= .00 BEAM 4 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225. 0. 174. 289. 217. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 66.60 18.77 .00 .00 .00 8.08 50.93 As(1)= 552. 148. 0. 0. 0. 63. 415. As(2)= 552. 0. 0. 0. 0. 0. 0. 415. VI= 58.46 NO 1 Vr= 51.95 NO 3 As(3)= 225. Umaxb=.003 Umaxt=.0 Asv/s= .00	As(1)=	225.	283.	474.	483.	299.	0.	225.
SECTION       1       2       3       4       5       6       7         M=       .11       .00       .00       .00       .00       11.17       66.63         As(1)=       225.       0.       0.       0.       0.       88.       552.         As(2)=       225.       0.       0.       0.       0.       0.       552.         VI=       41.22       NO 1       Vr=       67.60       NO 3       As(3)=       225.       Umaxb=.006       Umaxt=.0         Asv/s=       .00       .00       -21.92       -35.95       -27.23       .00       .00         BOTTOM       .2       3       4       5       6       7         M=       .00       .00       -21.92       -35.95       -27.23       .00       .00         As(1)=       225.       0.       174.       289.       217.       0.       225.         TOP                SECTION       1       2               SECTION       1       2      <	As(2)=	225.	0.	0.	0.	0.	0.	225.
$M = .11   .00   .00   .00   .00   11.17   66.63 As(1)= 225.   0.   0.   0.   0.   0.   88.   552. As(2)= 225.   0.   0.   0.   0.   0.   0.   552. V_1 = 41.22   NO 1   V_r =   67.60   NO 3   As(3)=   225.   Umaxb=.006   Umaxt=.0 Asv/s=   .00 BEAM   4   (B=   .200,   H=   .450,   L=   5.40) BOTTOM SECTION   1   2   3   4   5   6   7    M=   .00   .00   .21.92   .35.95   .27.23   .00   .00    As(1)=   225.   0.   174.   289.   217.   0.   225.    As(2)=   225.   0.   0.   0.   0.   0.   0.   225.    TOP SECTION   1   2   3   4   5   6   7    M=   66.60   18.77   .00   .00   .00   8.08   50.93    As(1)=   552.   148.   0.   0.   0.   0.   63.   415.    As(2)=   552.   0.   0.   0.   0.   0.   0.   0.   $	ТОР							
As(1)=       225.       0.       0.       0.       0.       88.       552.         As(2)=       225.       0.       0.       0.       0.       0.       552.         VI=       41.22       NO 1       Vr=       67.60       NO 3       As(3)=       225.       Umaxb=.006       Umaxt=.0         Asv/s=       .00       BEAM       4       (B=       .200,       H=       .450,       L=       5.40       Dimaxt=.0         BOTTOM       BOTTOM       SECTION       1       2       3       4       5       6       7         M=       .00       .00       -21.92       -35.95       -27.23       .00       .00         As(1)=       225.       0.       174.       289.       217.       0.       225.         As(2)=       225.       0.       0.       0.       0.       225.       7         SECTION       1       2       3       4       5       6       7         M=       66.60       18.77       .00       .00       .00       8.08       50.93         As(2)=       552.       0.       0.       0.       0.       0.	SECTION	1	2	3	4	5	6	. 7
$A_{S}(2)=$ 225.0.0.0.0.0.552. $V_{I}=$ 41.22NO 1 $V_{I}=$ 67.60NO 3 $A_{S}(3)=$ 225.Umaxb=.006Umaxt=.0 $A_{SV}/s=$ .00.00.03 $A_{S}(3)=$ 225.Umaxb=.006Umaxt=.0BOTTOM.00.00.21.92.35.95.27.23.00.00 $A_{S}(1)=$ .00.00.21.92.35.95.27.23.00.00 $A_{S}(1)=$ .2250174289217225. $A_{S}(2)=$ .225000225.TOPSECTION123456M=.66.6018.77.00.00.008.0850.93 $A_{S}(1)=$ N=.5521480Vi=.58.46NO 1Vr=Vi=	M=	.11	.00	.00	.00	.00	11.17	66.63
$V_{I} = 41.22 \text{ NO 1 } V_{T} = 67.60 \text{ NO 3 } As(3) = 225. \text{ Umaxb} = .006 \text{ Umaxt} = .006 \text{ Asv/s} = .000 \text{ BEAM 4 (B = .200, H = .450, L = 5.40)} BOTTOM BOTTOM SECTION 1 2 3 4 5 6 7 M= .000 .00 -21.92 -35.95 -27.23 .00 .00 As(1) = 225. 0. 174. 289. 217. 0. 225. As(2) = 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 66.60 18.77 .00 .00 .00 8.08 50.93 As(1) = .552. 148. 0. 0. 0. 63. 415. As(2) = .552. 0. 0. 0. 0. 0. 0. 0. 415. VI = .58.46 \text{ NO 1 } V_{T} = .51.95 \text{ NO 3 } As(3) = .225. \text{ Umaxb = .003 } \text{ Umaxt} = .004 \text{ Asv/s} = .004  As$	As(1)=	225.	- <b>0.</b> .	0.	0.	0.	88.	552.
Asv/s= .00 BEAM 4 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -21.92 -35.95 -27.23 .00 .00 As(1)= 225. 0. 174. 289. 217. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 66.60 18.77 .00 .00 .00 8.08 50.93 As(1)= 552. 148. 0. 0. 0. 63. 415. As(2)= 552. 0. 0. 0. 0. 0. 415. VI= 58.46 NO1 Vr= 51.95 NO3 As(3)= 225. Umaxb=.003 Umaxt=.0 Asv/s= .00	As(2)=	225.	0.	0.	0.	0.	0.	552.
BOTTOM         SECTION       1       2       3       4       5       6       7         M=       .00       .00       -21.92       -35.95       -27.23       .00       .00         As(1)=       225.       0.       174.       289.       217.       0.       225.         As(2)=       225.       0.       0.       0.       0.       0.       225.         TOP                 SECTION       1       2       3       4       5       6       7         M=       66.60       18.77       .00       .00       .00       8.08       50.93         As(1)=       552.       148.       0.       0.       0.       63.       415.         As(2)=:       552.       0.       0.       0.       0.       0.       415.         VI=       58.46       NO 1       Vr=       51.95       NO 3       As(3)=       225.       Umaxb= .003       Umaxt= .0         Asv/s=       .00					5 113(5)		Omax0	
SECTION1234567M=.00.00 $-21.92$ $-35.95$ $-27.23$ .00.00As(1)=225.0.174.289.217.0.225.As(2)=225.0.0.0.0.0.225.TOPTOP77777SECTION1234567M=66.6018.77.00.00.008.0850.93As(1)=552.148.0.0.0.63.415.VI=58.46NO 1Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0Asv/s=.00		.00	· ·					
M=.00.00.21.92.35.95.27.23.00.00As(1)=225.0.174.289.217.0.225.As(2)=225.0.0.0.0.0.225.TOPTOPSECTION1234567M=66.6018.77.00.00.008.0850.93As(1)=552.148.0.0.0.63.415.Vi=58.46NO 1Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0Asv/s=.00.00.01Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0	Asv/s≠ .	.00 · ·	BEAM	4				
As(1)=225.0.174.289.217.0.225.As(2)=225.0.0.0.0.0.225.TOPSECTION1234567M=66.6018.77.00.00.008.0850.93As(1)=552.148.0.0.0.63.415.VI=58.46NO 1Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0Asv/s=.00.00.01Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0	Asv/s= BOT	.00 I TOM	BEAM	<b>4</b>	( B= .200,	, H= .	450, L=	5.40)
As(2)=225.0.0.0.0.0.0.225.TOPSECTION1234567M=66.6018.77.00.00.008.0850.93As(1)=552.148.0.0.0.63.415.As(2)=552.0.0.0.0.0.415.Vi=58.46NO 1Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0Asv/s=.00.00.01Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0	Asv/s= BOT SECTION	.00 I TOM I	BEAM 2	4 3	( B= .200, 4	, H= . 5	450, L= 6	5.40 ) 7
TOPSECTION1234567M= $66.60$ 18.77.00.00.008.0850.93As(1)=552.148.0.0.0.63.415.As(2)=552.0.0.0.0.0.415.VI=58.46NO 1Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0Asv/s=.00.00.00.01Vr=51.95NO 3As(3)=225.Umaxb=.003Umaxt=.0	Asv/s= BOT SECTION M=	.00 I TOM I .00	BEAM 2 .00	4 3 -21.92	( B= .200, 4 -35.95	, H= . 5 -27.23	450, L= 6 .00	5.40) 7 .00
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Asv/s= BOT SECTION M= As(1)=	.00 I TOM 1 .00 225.	BEAM 2 .00 0.	4 3 -21.92 174.	( B= .200, 4 -35.95 289.	H= . 5 -27.23 217.	450, L= 6 .00 0.	5.40) 7 .00 225.
As(1)=552.148.0.0.0.63.415.As(2)=552.0.0.0.0.0.415.V1=58.46NO 1Vr=51.95NO 3As(3)=225.Umaxb= .003Umaxt= .0Asv/s=.00	Asv/s= BOT SECTION M= As(1)= As(2)=	.00 TOM 1 .00 225. 225.	BEAM 2 .00 0. 0.	4 3 -21.92 174. 0.	( B= .200, 4 -35.95 289.	H= . 5 -27.23 217.	450, L= 6 .00 0.	5.40) 7 .00 225.
As(1)=552.148.0.0.0.63.415.As(2)=552.0.0.0.0.0.415.V1=58.46NO 1Vr=51.95NO 3As(3)=225.Umaxb= .003Umaxt= .0Asv/s=.00	Asv/s= BOT SECTION M= As(1)= As(2)= TOP	.00 TOM 1 .00 225. 225.	3EAM 2 .00 0. 0.	4 3 -21.92 174. 0.	( B= .200, 4 -35.95 289. 0.	H= . 5 -27.23 217. 0.	450, L= 6 .00 0. 0. 0.	5.40) 7 .00 225. 225.
As $(2)$ = 552. 0. 0. 0. 0. 0. 0. 415. VI= 58.46 NO I Vr= 51.95 NO 3 As $(3)$ = 225. Umaxb= .003 Umaxt= .0 Asv/s= .00	Asv/s= BOT SECTION M= As(1)= As(2)= TOP SECTION	.00 TOM 1 .00 225. 225. 1	BEAM 2 .00 0. 0. 2	4 3 -21.92 174. 0. 3	( B= .200, 4 -35.95 289. 0. 4	, H= . 5 -27.23 217. 0. 5	450, L= 6 .00 0. 0. 0.	5.40) 7 .00 225. 225. 7
VI= 58.46 NO I Vr= 51.95 NO 3 As(3)= 225. Umaxb=.003 Umaxt=.0 Asv/s= .00	Asv/s= BOT SECTION M= As(1)= As(2)= TOP SECTION M=	.00 TOM 1 .00 225. 225. 1 66.60	3EAM 2 .00 0. 0. 2 18.77	4 3 -21.92 174. 0. 3 .00	( B= .200, 4 -35.95 289. 0. 4 .00	H= . 5 -27.23 217. 0. 5 .00	450, L= 6 .00 0. 0. 6 8.08	5.40) 7 .00 225. 225. 7 50.93
Asv/s= .00	Asv/s= BOT SECTION M= As(1)= As(2)= TOP SECTION M= As(1)=	.00 TOM 1 .00 225. 225. 1 66.60 552.	3EAM 2 .00 0. 0. 2 18.77 148.	4 -21.92 174. 0. 3 .00 0.	( B= .200, 4 -35.95 289. 0. 4 .00 0.	H= . 5 -27.23 217. 0. 5 .00 0.	450, L= 6 .00 0. 0. 6 8.08 63.	5.40) 7 .00 225. 225. 225. 7 50.93 415.
BEAM 5 (B= .200, H= .450, L= 5.40)	Asv/s= BOT SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)=	.00 TOM 1 .00 225. 225. 225. 1 66.60 552. 552.	3EAM 2 .00 0. 2 18.77 148. 0.	4 3 -21.92 174. 0. 3 .00 0. 0. 0.	( B= .200, 4 -35.95 289. 0. 4 .00 0. 0. 0.	H= . 5 -27.23 217. 0. 5 .00 0. 0. 0.	450, L= 6 .00 0. 0. 6 8.08 63. 0.	5.40) 7 .00 225. 225. 7 50.93 415. 415.
	Asv/s= BOT SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)= VI= 58.44	.00 TOM 1 .00 225. 225. 225. 1 66.60 552. 552. 552.	3EAM 2 .00 0. 0. 2 18.77 148. 0. Vr= 51	4 3 -21.92 174. 0. 3 .00 0. 0. 0. 95 NO	( B= .200, 4 -35.95 289. 0. 4 .00 0. 0. 0. 3 As(3)=	H= . 5 -27.23 217. 0. 5 .00 0. 0. 0.	450, L= 6 .00 0. 0. 6 8.08 63. 0.	5.40) 7 .00 225. 225. 7 50.93 415. 415.

小田田

Ĩ

 SECTION
 1
 2
 3
 4
 3
 0
 1

 M=
 .00
 .00
 .31.77
 .42.72
 .30.93
 .00
 .00

 As(1)=
 225.
 0.
 254.
 346.
 247.
 0.
 225.

-219-

		* = 12+ 0++ ++ ++ -+	UII Depot	,Dining Ro	om, Bain	KOOM	ĴŎĬŦġĿĸġĸĸġĸĊŎŎġĊ <u>ĬŎ</u> ĸĬĿĬŎŎŎŎŎŎŎŎŎ	18
As(2)= TOP	225.	0.	0.	0.	0.	0.	225.	
SECTION	1	2	3	4	5	6	. <b>7</b> .	
M=	50.94	5.85	.00	.00	.00	7.32	53.21	:
As(1)=	415.	46.	0.	0.	0.	57.	435.	-
As(2)=	415.	0.	0.	0.	0.	0.	- 435.	
VI= 54.75	NO 1	Vr= 5	5.72 NO	3 As(3)=	225.	Umaxb= .	004 Umaxt	= .005
Asv/s= .(	00		· .					
DOT	row	BEAM	6 (	B= .200,	H= .4	450, L=	5.40)	
BOT	юм 1	2	3	- 4	5	6	. 7	
SECTION M=	۲ 00,	2 ,00			-25.53		.00	:
	.00 225.	,00 0.	-28.01	307.	203.	.00	225.	
As(1)= As(2)=	225. 225.	0. 0.	223. 0.	0.	205. 0.	0. 0.	225.	- -
TOP	See See 3 1	0.	v.	ν.	<b>v.</b>	v.	ہ کہ مد سد	
SECTION	1	2	3	4	5	6	7	
M=	53.20	8.87	.00	.00	.00	13.03	59.34	
 As(1)=	435.	70.	0.	0.	0.	102.	488.	
As(2)=	435.	0.	0.	0.	0.	0.	488.	
Asv/s= .	00							
BOT	том	BEAM	7	(B= .200,	H≠ .4	450, L≖	5.40)	••• . *
SECTION		2	3	4	5	6	7	
M=		~ .00		-45.85				
As(1)=				372.				
As(2)=						0.		· .
ТОР								•. •
SECTION	1	2	3	4	5	6	7	
M=	59.35	12.10	.00	.00	.00	.00	.09	
As(1)=	488.	95.	0.	0.	0.	0.	225.	·· ·
As(2)=	488.	0.	0.	0.	0.	0.		
							• • •	
VI 50.0/		Vr= 3	6.56 NO	3 As(3)=	225.	Umaxb= .	004 Umaxt	= .005
Asv/s= .								
		Mar Arm - 8 -						-
Asv/s= .		BEAM	8	(B= .200,	H= ,4	450, L=	5.40)	· ·
Asv/s= .	ТОМ				3		-	. · ·

· · ·

.

.

•

•

9

lculation book	n B Laffalar, definition and the second second		Oil Depo	t,Dining R	oom, Bath	Room	
As(1)=	225.	284.	475.	485.	300.	· 0.	225.
As(2)=		0.	· 0.	· 0.	0.	0.	225.
TOP				i .			
SECTION	1	2	3	4	5	6	7
M=	.11	.00	.00	.00	.00	11.07	66.63
-	. 225.	0.	0.	0.	0.	87.	552.
As(2)=		0.	0.	0.	0.	0.	552.
VI= 41.3	5 NO I	Vr= 6	7.73 NO	) 3 As(3)=	= 225.	Umaxb= .	006 Um
Asv/s=	.00					•	
		BEAM	9	(B= .200	), H= .•	450, L=	5.40)
	гтом		-		_		_
SECTION	1	2	3	4	5	6	1
M=	.00			-35.80	-26.99	.00.	`.00
As(1)=		0.	173.		215.	0.	225.
As(2)=		0.	0.	0	0.	0.	225.
TOP						-	
	1	2	3	4	5	6	7
M≕	66.61	18.77	.00	.00	.00	8.55	
As(1)=	552.	148.	0.	0.	0.	67.	
As(2)=	552.	0.	0.	0.	0.	0.	421.
VI= 58.4		V <i>r=</i> 2	2.22 NO	3 AS(3)=	= 225.	Umaxo  ≃.	003 Um
Asv/s=	.00	-					
		BEAM	10	(B= .200	), H= .4	450, L=	5.40)
BOI				(B= .200	), H= .4	450, L=	5.40)
	том	· · .	;				
SECTION	том I	2	3		5	6	7
SECTION M=	ттом 1 .00	2 .00	3 -32.16	4 -43.58	5 -32.25	6 01	.00
SECTION M= As(1)=	1 00 225.	2 .00 0.	3 -32.16 258.	4 -43.58 353.	5 -32.25 258.	6 01 0.	7 .00 225.
SECTION M= As(1)= As(2)=	1 .00 225. 225.	2 .00 0. 0.	3 -32.16 258.	4 -43.58	5 -32.25 258.	6 01 0.	7 .00 225.
SECTION M= As(1)= As(2)= TOP	1 .00 225. 225.	2 .00 0. 0.	3 -32.16 258. 0.	4 -43.58 353. 0,	5 -32.25 258. 0.	6 01 0. 0.	7 .00 225. 225.
SECTION M= As(1)= As(2)= TOP SECTION	1 .00 225. 225. 1	2 .00 0. 0. 2	3 -32.16 258. 0. 3	4 -43.58 353. 0. 4	5 -32.25 258. 0.	6 01 0. 0. 6	7 .00 225. 225. 7
SECTION M= As(1)= As(2)= TOP SECTION M=	1 .00 225. 225. 1 51.62	2 .00 0. 0. 2 5.96	3 -32.16 258. 0. 3 .00	4 -43.58 353. 0. 4 .00	5 -32.25 258. 0. 5 .00	6 01 0. 0. 6 5.84	7 .00 225. 225. 7 51.43
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)=	1 .00 225. 225. 1 51.62 421.	2 .00 0. 0. 2 5.96 47.	3 -32.16 258. 0. 3 .00 0.	4 -43.58 353. 0. 4 .00 0.	5 -32.25 258. 0. 5 .00 0.	6 01 0. 0. 6 5.84 46.	7 .00 225. 225. 7 51.43 420.
SECTION M= As(1)= As(2)= TOP SECTION M=	1 .00 225. 225. 1 51.62 421.	2 .00 0. 0. 2 5.96 47. 0.	3 -32.16 258. 0. 3 .00 0. 0. 0.	4 -43.58 353. 0. 4 .00 0. 0.	5 -32.25 258. 0. 5 .00 0. 0. 0.	6 01 0. 0. 6 5.84 46.	7 .00 225. 225. 7 51.43 420.
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)= VI= 55.4	1 .00 225. 225. 1 51.62 421. 421. 5 NO 1	2 .00 0. 0. 2 5.96 47. 0. Vr= 5	3 -32.16 258. 0. 3 .00 0. 0. 0. 5.36 NO	4 -43.58 353. 0. 4 .00 0. 0. 0. 0.	5 -32.25 258. 0. 5 .00 0. 0. 0. 225.	6 01 0. 0. 6 5.84 46. 0. Umaxb= .0	7 .00 225. 225. 7 51.43 420. 420.
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)=	1 .00 225. 225. 1 51.62 421. 421. 5 NO 1	2 .00 0. 0. 2 5.96 47. 0. Vr= 5	3 -32.16 258. 0. 3 .00 0. 0. 0. 5.36 NO	4 -43.58 353. 0. 4 .00 0. 0.	5 -32.25 258. 0. 5 .00 0. 0. 0. 225.	6 01 0. 0. 6 5.84 46. 0. Umaxb= .0	7 .00 225. 225. 7 51.43 420. 420.
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)= VI= 55.4 Asv/s=	TTOM 1 .00 225. 225. 1 51.62 421. 421. 5 NO 1 .00	2 .00 0. 0. 2 5.96 47. 0. Vr= 5 BEAM	3 -32.16 258. 0. 3 .00 0. 0. 5.36 NO	4 -43.58 353. 0. 4 .00 0. 0. 0. 93 As(3)= ( B= .200	5 -32.25 258. 0. 5 .00 0. 0. 0. 225.	6 01 0. 0. 6 5.84 46. 0. Umaxb= .0	7 .00 225. 225. 7 51.43 420. 420. 420.
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)= VI= 55.4 Asv/s=	TTOM 1 .00 225. 225. 1 51.62 421. 421. 5 NO 1 .00	2 .00 0. 0. 2 5.96 47. 0. Vr≕ 5 BEAM	3 -32.16 258. 0. 3 .00 0. 0. 5.36 NO	4 -43.58 353. 0. 4 .00 0. 0. 0. 3 As(3)= ( B= .200	5 -32.25 258. 0. 5 .00 0. 0. 0. 225.	6 01 0. 0. 6 5.84 46. 0. Umaxb= .0	7 .00 225. 225. 7 51.43 420. 420. 420. 004 Uma 5.40 )

.

•

.

ŷ

•

3.

M = 51.42 .8.46 .00 .00 .00 19.34 67.34  As(1) = 420. 66. 0. 0. 0. 153. 559.  As(2) = 420. 0. 0. 0. 0. 559.  VI = 52.07 NO 1 Vr = 58.66 NO 3 As(3) = 225. Umaxb=.003 Umaxt=.006  Asv/s= .00  BEAM 12 (B=.200, H=.450, L=.5.40)  BOTTOM  SECTION 1 2 3 4 5 6 7  M= .00 .00 -38.16 -60.13 -58.96 -36.01 .00  As(1) = 225. 0. 0. 0. 0. 0. 225.  TOP  SECTION 1 2 3 4 5 6 7  M= 67.37 10.95 .00 .00 .00 .00 .11  As(1) = 559. 86. 0. 0. 0. 0. 225.  As(2) = 255. 0. 0. 0. 0. 0. 225.  As(2) = 559. 0. 0. 0. 0. 0. 225.  As(2) = 559. 0. 0. 0. 0. 0. 225.  As(2) = 559. 0. 0. 0. 0. 0. 0. 225.  As(2) = 559. 0. 0. 0. 0. 0. 0. 225.  As(2) = 559. 0. 0. 0. 0. 0. 0. 225.  As(2) = 225. 0. 0. 0. 0. 0. 0. 225.  As(2) = 225. 0. 0. 0. 0. 0. 0. 225.  As(2) = 225. 0. 0. 0. 0. 0. 0. 225.  M = 68.80 NO 1 Vr = 42.12 NO 3 As(3) = 225. Umaxb=.006 Umaxt=.006  Asv/s = .00  BEAM 13 (B = .200, H = .450, L = 5.40)  BOTTOM  SECTION 1 2 3 4 5 6 7  M = .00 -35.69 -58.60 -60.15 -38.96 .00 .00  As(1) = 225. 287. 482. 495. 314. 0. 225.  As(2) = 225. 0. 0. 0. 0. 0. 0. 225.  TOP  SECTION 1 2 3 4 5 6 7  M = .00 .35.69 -58.60 -60.15 -38.96 .00 .00  As(1) = 225. 287. 482. 495. 314. 0. 225.  As(2) = 225. 0. 0. 0. 0. 0. 0. 225.  TOP  SECTION 1 2 3 4 5 6 7  M = .11 .00 .00 .00 .00 .00 9.02 64.03  As(1) = 225. 0. 0. 0. 0. 0. 225.  TOP  SECTION 1 2 3 4 5 6 7  M = .11 .00 .00 .00 .00 9.02 64.03  As(1) = 225. 0. 0. 0. 0. 0. 529.  VI = 41.79 NO 1 Vr = 67.07 NO 3 As(3) = 225. Umaxb=.006 Umaxt=.006	M=	.00	.00	-26.93	-35.63	-21.58	· .00 ·	.00		
TOP         SECTION       1       2       3       4       5       6       7         M= $51.42$ $8.46$ .00       .00       .00       19.34 $67.34$ As(1)=       420.       66.       0.       0.       0.       153.       559.         As(2)=       420.       0.       0.       0.       0.       59.       .         VI=       52.07       NO I       Vr= $58.66$ NO 3       As(3)=       225.       Umaxb=.003       Umaxt=.006         Asv/s=       .00       .00       -38.16       -60.13       -58.96       -36.01       .00         BOTTOM       2       3       4       5       6       7         M=       .00       .00       -38.16       -60.13       -58.96       -36.01       .00         As(1)=       225.       0.       0.       0.       0.       225.       .7         M=       67.37       10.95       .00       .00       .00       .11       .11       As(2)=       56       7         M=       67.37       10.95       .00       .00       .00       .025.       .11	As(1)≓	225.	0.	215.	286.	171.	0.	225.		
SECTION       1       2       3       4       5       6       7         M= $51.42$ $8.46$ .00       .00       .00       .00       .00       .03       .034       .67.34         As(1)=       420.       .0.       0.       0.       0.       0.       0.       .559.         As(2)=       420.       0.       0.       0.       0.       0.       .559.         VI= $52.07$ NO I       Vr= $58.66$ NO 3       As(3)=       225.       Umaxb=.003       Umaxt=.006         Asv/s=       .00       .00       -38.16       -60.13       -58.96       -36.01       .00         As(1)=       225.       0.       0.       0.       0.       0.       225.         As(2)=       225.       0.       0.       0.       0.       225.         TOP       56       7       .00       .00       .00       .00       .00       .225.         As(2)=       559.       0.       0.       0.       0.       .225.        .006         M=       67.37       10.95       .00       .00       0.       .225. </td <td>As(2)=</td> <td>225.</td> <td>0.</td> <td>0.</td> <td>0.</td> <td>0.</td> <td>0.</td> <td>225.</td> <td>:</td> <td></td>	As(2)=	225.	0.	0.	0.	0.	0.	225.	:	
$M = 51.42 . 8.46 .00 .00 .00 19.34 67.34$ $A_{S}(1) = 420. 66. 0. 0. 0. 153. 559.$ $A_{S}(2) = 420. 0. 0. 0. 0. 0. 559.$ $VI = 52.07 \text{ NO 1 } Vr = 58.66 \text{ NO 3 } A_{S}(3) = 225. \text{ Umaxb} = .003 \text{ Umaxt} = .006$ $Asv/s = .00$ $BEAM 12 (B = .200, H = .450, L = 5.40)$ $BOTTOM$ $SECTION 1 2 3 4 5 6 7$ $M = .00 .00 -38.16 -60.13 -58.96 -36.01 .00$ $A_{S}(1) = 225. 0. 307. 495. 485. 289. 225.$ $A_{S}(2) = 225. 0. 0. 0. 0. 0. 0. 225.$ $TOP$ $SECTION 1 2 3 4 5 6 7$ $M = 67.37 10.95 .00 .00 .00 .00 .11$ $A_{S}(1) = 559. 86. 0. 0. 0. 0. 0. 225.$ $A_{S}(2) = 559. 0. 0. 0. 0. 0. 0. 225.$ $VI = 68.80 \text{ NO 1 } Vr = 42.12 \text{ NO 3 } A_{S}(3) = 225. \text{ Umaxb} = .006 \text{ Umaxt} = .006$ $Asv/s = .00$ $BEAM 13 (B = .200, H = .450, L = 5.40)$ $BOTTOM$ $SECTION 1 2 3 4 5 6 7$ $M = .00 -35.69 -58.60 -60.15 -38.96 .00 0.00$ $A_{S}(1) = 225. 0. 0. 0. 0. 0. 0. 225.$ $TOP$ $SECTION 1 2 3 4 5 6 7$ $M = .00 -35.69 -58.60 -60.15 -38.96 .006 \text{ Umaxt} = .006$ $A_{SV}/s = .00$ $BEAM 13 (B = .200, H = .450, L = 5.40)$ $BOTTOM$ $SECTION 1 2 3 4 5 6 7$ $M = .00 -35.69 -58.60 -60.15 -38.96 .00 0.00$ $A_{S}(1) = 225. 287. 482. 495. 314. 0. 225.$ $A_{S}(2) = 225. 0. 0. 0. 0. 0. 0. 225.$ $TOP$ $SECTION 1 2 3 4 5 6 7$ $M = .11 .00 .00 .00 .00 9.02 64.03$ $A_{S}(1) = 225. 0. 0. 0. 0. 0. 0. 225.$ $TOP$ $SECTION 1 V r = 67.07 \text{ NO 3 } A_{S}(3) = 225. \text{ Umaxb} = .006 \text{ Umaxt} = .006$ $A_{S}(2) = 225. 0. 0. 0. 0. 0. 0. 225.$ $A_{S}(2) = 225. 0. 0. 0. 0. 0. 0. 0. 225.$ $M = .11.90 .00 .00 .00 .00 9.02 64.03$ $A_{S}(1) = 225. 0. 0. 0. 0. 0. 0. 529.$ $VI = 41.79 \text{ NO 1 } Vr = 67.07 \text{ NO 3 } A_{S}(3) = 225. \text{ Umaxb} = .006 \text{ Umaxt} = .006$	TOP							•		-
As(1)= 420, 66, 0, 0, 0, 153, 559, As(2)= 420, 0, 0, 0, 0, 0, 0, 559. VI= 52.07 NO 1 Vr= 58.66 NO 3 As(3)= 225. Umaxb=.003 Umaxt=.006 Asv/s= .00 BEAM 12 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -38.16 -60.13 -58.96 -36.01 .00 As(1)= 225. 0, 307. 495. 485. 289. 225. As(2)= 225. 0, 0, 0, 0, 0, 225. TOP SECTION 1 2 3 4 5 6 7 M= 67.37 10.95 .00 .00 .00 .00 .11 As(1)= 559. 86. 0, 0, 0, 0, 225. As(2)= 559. 0, 0, 0, 0, 0, 225. VI= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= 00 -35.69 -58.60 -60.15 -38.96 .00 .00 .00 As(1)= 225. 287. 482. 495. 314. 0, 225. As(2)= 225. 0, 0, 0, 0, 0, 0, 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0, 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0, 0, 0, 0, 0, 71. 529. As(2)= 225. 0, 0, 0, 0, 0, 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	BECTION	1	2	3	4	5	6	7	1	
As(2)= 420. 0, 0, 0, 0, 0, 0, 559. VI= 52.07 NO 1 Vr= 58.66 NO 3 As(3)= 225. Umaxb=.003 Umaxt=.006 Asv/s= .00 BEAM 12 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -38.16 -60.13 -58.96 -36.01 .00 As(1)= 225. 0. 307. 495. 485. 289. 225. As(2)= 225. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 67.37 10.95 .00 .00 .00 .01 .11 As(1)= 559. 86. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 225. VI= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 .00 .00 .00 .00 As(1)= 225. 0. 0. 0. 0. 0. 225. TOP SECTION 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	M=	51.42	. 8.46	.00	.00	.00	19.34	67.34		•
VI= 52.07 NO 1 Vr= 58.66 NO 3 As(3)= 225. Umaxb=.003 Umaxt=.006 Asv/s= .00 BEAM 12 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -38.16 -60.13 -58.96 -36.01 .00 As(1)= 225. 0. 307. 495. 485. 289. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 67.37 10.95 .00 .00 .00 .00 .11 As(1)= 559. 86. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 225. VI= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 0. 529. As(2)= 225. 0. 0. 0. 0. 0. 529.	As(1)=	420.	66.	0.	0.	0.	153.	559.		
Asv/s= .00 BEAM 12 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -38.16 -60.13 -58.96 -36.01 .00 As(1)= 225. 0. 307. 495. 485. 289. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 67.37 10.95 .00 .00 .00 .00 .11 As(1)= 559. 86. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 225. VI= 68.80 NO1 Vr= 42.12 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 0. 529. VI= 41.79 NO1 Vr= 67.07 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006	As(2)=	420.	0.	0.	0.	0.	0.	559.		
Asv/s= .00 BEAM 12 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 .00 -38.16 -60.13 -58.96 -36.01 .00 As(1)= 225. 0. 307. 495. 485. 289. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 67.37 10.95 .00 .00 .00 .00 .11 As(1)= 559. 86. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 225. VI= 68.80 NO1 Vr= 42.12 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 0. 529. VI= 41.79 NO1 Vr= 67.07 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006									· · ·	
BEAM       12 $(B= .200, H= .450, L= 5.40)$ BOTTOM         SECTION       1       2       3       4       5       6       7         M=       .00       .00       -38.16       -60.13       -58.96       -36.01       .00         As(1)=       225.       0.       307.       495.       485.       289.       225.         As(2)=       225.       0.       0.       0.       0.       0.       225.         TOP       SECTION       1       2       3       4       5       6       7         M=       67.37       10.95       .00       .00       .00       .01       225.         SECTION       1       2       3       4       5       6       7         M=       67.37       10.95       .00       .00       .00       .225.       .225.         SECTION       1       2       3       A       5       6       7         M=       .01       Vr=       42.12       NO 3       As(3)=       225.       Umaxb= .006       Umaxt= .006         SECTION       1       2       3       4       5       6 </td <td></td> <td></td> <td>Vr≓∷</td> <td>58.66 NO</td> <td>3 As(3)</td> <td>= 225.</td> <td>Umaxb=.</td> <td>003 Um</td> <td>axt= .006</td> <td>-</td>			Vr≓∷	58.66 NO	3 As(3)	= 225.	Umaxb=.	003 Um	axt= .006	-
BOTTOM SECTION 1 2 3 4 5 6 7 $M^{=}$ .00 .00 -38.16 -60.13 -58.96 -36.01 .00 $As(1)^{=}$ 225. 0. 307. 495. 485. 289. 225. $As(2)^{=}$ 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 $M^{=}$ 67.37 10.95 .00 .00 .00 .00 .11 $As(1)^{=}$ 559. 86. 0. 0. 0. 0. 225. $As(2)^{=}$ 559. 0. 0. 0. 0. 0. 225. $As(2)^{=}$ 559. 0. 0. 0. 0. 0. 225. VI= 68.80 NO1 Vr= 42.12 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 $M^{=}$ .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. $As(2)^{=}$ 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 $M^{=}$ .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. $As(2)^{=}$ 225. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 $M^{=}$ .11 .00 .00 .00 .00 9.02 64.03 $As(1)^{=}$ 225. 0. 0. 0. 0. 71. 529. $As(2)^{=}$ 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO1 Vr= 67.07 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006	∖sv/s= .	.00								
BOTTOM SECTION 1 2 3 4 5 6 7 $M^{=}$ .00 .00 .38.16 -60.13 .58.96 .36.01 .00 $As(1)^{=}$ 225. 0. 307. 495. 485. 289. 225. $As(2)^{=}$ 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 $M^{=}$ 67.37 10.95 .00 .00 .00 .00 .11 $As(1)^{=}$ 559. 86. 0. 0. 0. 0. 225. $As(2)^{=}$ 559. 0. 0. 0. 0. 0. 225. $As(2)^{=}$ 559. 0. 0. 0. 0. 0. 225. VI= 68.80 NO1 Vr= 42.12 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 $M^{=}$ .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. $As(2)^{=}$ 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 $M^{=}$ .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. TOP SECTION 1 2 3 4 5 6 7 $M^{=}$ .11 .00 .00 .00 .00 9.02 64.03 $As(1)^{=}$ 225. 0. 0. 0. 0. 71. 529. $As(2)^{=}$ 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO1 Vr= 67.07 NO3 As(3)= 225. Umaxb=.006 Umaxt=.006			DEAM	10	(B		460 1-		<i>:</i> .	
SECTION       1       2       3       4       5       6       7 $M^{=}$ .00       .00       -38.16       -60.13       -58.96       -36.01       .00         As(1)=       225.       0.       .00       .0       0.       0.       225.         As(2)=       225.       0.       0.       0.       0.       225.         TOP       7       10.95       .00       .00       .00       .01       .11         As(1)=       559.       86.       0.       0.       0.       225.          As(2)=       559.       0.       0.       0.       0.       225.          VI=       68.80       NO 1       Vr=       42.12       NO 3       As(3)=       225.       Umaxb=.006       Umaxt=.006         Asv/s=       .00       .35.69       .58.60       -60.15       -38.96       .00       .00         BOTTOM       1       2       3       4       5       6       7         M=       .00       -35.69       -58.60       -60.15       -38.96       .00       .00       .00         SECTION       1       2 <td>BOT</td> <td>том</td> <td>BEAM</td> <td>12</td> <td>(B= .20</td> <td>υ, n=</td> <td>.450, L≕</td> <td>5.40 }</td> <td></td> <td></td>	BOT	том	BEAM	12	(B= .20	υ, n=	.450, L≕	5.40 }		
M=       .00       .00       -38.16       -60.13       -58.96       -36.01       .00         As(1)=       225.       0.       307.       495.       485.       289.       225.         As(2)=       225.       0.       0.       0.       0.       0.       225.         TOP       7       1       2       3       4       5       6       7         M=       67.37       10.95       .00       .00       .00       .00       .11         As(1)=       559.       86.       0.       0.       0.       0.       225.         As(2)=       559.       0.       0.       0.       0.       225.         Vi=       68.80       NO 1       Vr=       42.12       NO 3       As(3)=       225.       Umaxb= .006       Umaxt= .006         Asv/s=       .00       .0       .0       .1       2       3       4       5       6       7         M=       .00       -35.69       -58.60       -60.15       -38.96       .00       .00       .00       .225.         As(2)=       225.       287.       482.       495.       314.       0.			2	3	4	5	6	7	I	
As(1)= 225. 0. 307. 495. 485. 289. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 67.37 10.95 .00 .00 .00 .00 .11 As(1)= 559. 86. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 0. 225. VI= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 71, 529. As(2)= 225. 0. 0. 0. 0. 0. 71, 529. As(2)= 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006		-						•	• ·	
As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= 67.37 10.95 .00 .00 .00 .00 .11 As(1)= 559. 86. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 225. VI= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006										
TOP         SECTION       1       2       3       4       5       6       7         M= $67.37$ $10.95$ $.00$ $.00$ $.00$ $.00$ $.11$ As(1)=       559.       86.       0.       0.       0.       0. $225$ .         As(2)=       559.       0.       0.       0.       0.       0. $225$ .         VI= $68.80$ NO 1       Vr= $42.12$ NO 3 $As(3)=$ $225$ . $Umaxb=.006$ $Umaxt=.006$ Asv/s=       .00       .0       13       (B=       .200, H=       .450, L= $5.40$ )         BEAM       13       (B=       .200, H=       .450, L= $5.40$ )         BOTTOM       2       3       4       5       6       7         M=       .00       -35.69       -58.60       -60.15       -38.96       .00       .00         As(1)=       225.       287.       482.       495.       314.       0.       225.         As(2)=       225.       0.       0.       0.       0.       225.       10.         M=       .11	• •									
M = 67.37  10.95  .00  .00  .00  .00  .11 $As(1) = 559.  86.  0.  0.  0.  0.  225.$ $As(2) = 559.  0.  0.  0.  0.  0.  225.$ $VI = 68.80  NO 1  Vr = 42.12  NO 3  As(3) = 225.  Umaxb = .006  Umaxt = .006$ $Asv/s = .00$ $BEAM  13  (B = .200, H = .450, L = 5.40)$ $BOTTOM$ $SECTION  1  2  3  4  5  6  7$ $M = .00  .35.69  .58.60  .60.15  .38.96  .00  .00$ $As(1) = 225.  287.  482.  495.  314.  0.  225.$ $TOP$ $SECTION  1  2  3  4  5  6  7$ $M = .11  .00  .00  .00  .00  9.02  64.03$ $As(1) = 225.  0.  0.  0.  0.  71.  529.$ $As(2) = 225.  0.  0.  0.  0.  0.  529.$ $VI = 41.79  NO 1  Vr = 67.07  NO 3  As(3) = 225.  Umaxb = .006  Umaxt = .006$	TOP									-
As(1)= 559. 86. 0. 0. 0. 0. 225. As(2)= 559. 0. 0. 0. 0. 0. 0. 225. VI= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	SECTION	1	2	3	4	5	6	. 7	T	
As(2)= 559. 0. 0. 0. 0. 0. 0. 225. Vi= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	M=	67.37	10.95	.00	.00	.00	.00	.11		
VI= 68.80 NO 1 Vr= 42.12 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006 Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	As(1)=	559.	86.	0.	0.	0.	0.	225.		-
Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	As(2)=	559.	0.	0.	0.	0.	0.	225.		
Asv/s= .00 BEAM 13 (B= .200, H= .450, L= 5.40) BOTTOM SECTION 1 2 3 4 5 6 7 M= .00 -35.69 -58.60 -60.15 -38.96 .00 .00 As(1)= 225. 287. 482. 495. 314. 0. 225. As(2)= 225. 0. 0. 0. 0. 0. 0. 225. TOP SECTION 1 2 3 4 5 6 7 M= .11 .00 .00 .00 9.02 64.03 As(1)= 225. 0. 0. 0. 0. 71. 529. As(2)= 225. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006				-		· ·		•		
BEAM13 $(B=.200, H=.450, L=.5.40)$ BOTTOMSECTION1234567M=.00-35.69-58.60-60.15-38.96.00.00As(1)=225.287.482.495.314.0.225.As(2)=225.0.0.0.0.0.225.TOPTOPSECTION1234567M=.11.00.00.00.009.0264.03As(1)=225.0.0.0.0.71.529.As(2)=225.0.0.0.0.529.VI=41.79NO 1Vr=67.07NO 3As(3)=225.Umaxb=.006Umaxt=.006			Vr≃	42.12 NO	3 As(3)	= 225.	Umaxb=.	006 Um	axt= .006	
BOTTOM         SECTION       1       2       3       4       5       6       7         M=       .00       -35.69       -58.60       -60.15       -38.96       .00       .00         As(1)=       225.       287.       482.       495.       314.       0.       225.         As(2)=       225.       0.       0.       0.       0.       225.         TOP       TOP       5       6       7         SECTION       1       2       3       4       5       6       7         M=       .11       .00       .00       .00       9.02       64.03         As(1)=       225.       0.       0.       0.       0.       71.       529.         As(2)=       225.       0.       0.       0.       0.       529.         VI=       41.79       NO 1       Vr=       67.07       NO 3       As(3)=       225.       Umaxb= .006       Umaxt= .006	Asv∕s= .	.00								
BOTTOM         SECTION       1       2       3       4       5       6       7         M=       .00       -35.69       -58.60       -60.15       -38.96       .00       .00         As(1)=       225.       287.       482.       495.       314.       0.       225.         As(2)=       225.       0.       0.       0.       0.       225.         TOP       TOP       5       6       7         SECTION       1       2       3       4       5       6       7         M=       .11       .00       .00       .00       9.02       64.03         As(1)=       225.       0.       0.       0.       0.       71.       529.         As(2)=       225.       0.       0.       0.       0.       529.         VI=       41.79       NO 1       Vr=       67.07       NO 3       As(3)=       225.       Umaxb= .006       Umaxt= .006	_		DEAM	12	(B- 20	0 U-	460 T -	5.40.5	:'	
SECTION       1       2       3       4       5       6       7         M=       .00       -35.69       -58.60       -60.15       -38.96       .00       .00         As(1)=       225.       287.       482.       495.       314.       0.       225.         As(2)=       225.       0.       0.       0.       0.       0.       225.         TOP       TOP       7       7       7       7       7       7         SECTION       1       2       3       4       5       6       7         M=       .11       .00       .00       .00       9.02       64.03         As(1)=       225.       0.       0.       0.       71.       529.         As(2)=       225.       0.       0.       0.       25.       29.         VI=       41.79       NO 1       Vr=       67.07       NO 3       As(3)=       225.       Umaxb= .006       Umaxt= .006			DEAM	13	(B20	v, n=	.430, L=	5.40)		•
M=       .00 $-35.69$ $-58.60$ $-60.15$ $-38.96$ .00       .00         As(1)=       225.       287.       482.       495.       314.       0.       225.         As(2)=       225.       0.       0.       0.       0.       0.       225.         TOP       TOP       5       6       7       5       7       7         SECTION       1       2       3       4       5       6       7         M=       .11       .00       .00       .00       9.02       64.03         As(1)=       225.       0.       0.       0.       0.       71.       529.         As(2)=       225.       0.       0.       0.       0.       529.       9.         VI=       41.79       NO 1       Vr=       67.07       NO 3       As(3)=       225.       Umaxb= .006       Umaxt= .006			2	· 3	Å	5	6	7		
As(1)=225.287.482.495.314.0.225.As(2)=225.0.0.0.0.0.225.TOP $TOP$ $TOP$ $TOP$ $TOP$ $TOP$ $TOP$ SECTION1234567M=.11.00.00.00.009.0264.03As(1)=225.0.0.0.0.71.529.As(2)=225.0.0.0.0.529.VI=41.79NO 1Vr=67.07NO 3As(3)=225.Umaxb=.006Umaxt=.006										
As(2)=225.0.0.0.0.0.225.TOPSECTION1234567M=.11.00.00.00.009.0264.03As(1)=225.0.0.0.0.71.529.As(2)=225.0.0.0.0.529.VI=41.79NO 1Vr=67.07NO 3As(3)=225.Umaxb= .006Umaxt= .006										· .
TOPSECTION1234567M=.11.00.00.00.009.0264.03As(1)=225.0.0.0.0.71.529.As(2)=225.0.0.0.0.529.VI=41.79NO 1Vr=67.07NO 3As(3)=225.Umaxb=.006Umaxt=.006									÷ .	
M=.11.00.00.00.009.02 $64.03$ As(1)=225.0.0.0.0.71.529.As(2)=225.0.0.0.0.0.529.VI=41.79NO 1Vr= $67.07$ NO 3As(3)=225.Umaxb=.006Umaxt=.006										
As(1)=225.0.0.0.0.71.529. $As(2)=$ 225.0.0.0.0.0.529. $VI=$ 41.79NO 1 $Vr=$ 67.07NO 3 $As(3)=$ 225.Umaxb= .006Umaxt= .006		1	2	3.	4	5	6	7		
As(1)=225.0.0.0.0.71.529.As(2)=225.0.0.0.0.0.529.VI=41.79NO 1Vr=67.07NO 3As(3)=225.Umaxb= .006Umaxt= .006		.11	.00							-
As(2)= 225. 0. 0. 0. 0. 0. 0. 529. VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	ECTION									•
VI= 41.79 NO 1 Vr= 67.07 NO 3 As(3)= 225. Umaxb=.006 Umaxt=.006	ECTION M=	LLJ.	0.	0.				529.		
	ECTION M= As(1)=		•••				·* •.	• .	:::: · · ·	
Asv/s≕ .00	ECTION M= As(1)=			-						
	ECTION M= As(1)= As(2)=	225.		57.07 NO	3 As(3)	= 225.	Umaxb= .	006 Uma	axt= .006	-
BEAM 14 (B= .200, H= .450, L= 5.40)	ECTION M= As(1)= As(2)= /1= 41.79	225. NO 1		57.07 NO	3 As(3)=	= 225.	Umaxb= .	006 Um	axt= .006	-

0

•

Calculation book		~	Oil Depol	,Dining R	oom, Bath	Room	<u>, 1. 4, 4, 8,</u>	
SECTION	1	2	3	4	5	6	7	
M=	.00	.00	-20.71	-32.29	-20.71	.00	.00	•
As(1)=	225.	-	164.	259.	164.	0.	225.	
As(2)≓	225.		0.	0.	0.	0.	225.	
TOP	2201	•••						
SECTION	1	2	3	. 4	5	6	7	
M=	63.99	18.02	.00	.00	.00	18.02	64.00	
As(1)=	529.	142.	0.	0.	0.	142.	529.	
As(2)=	529.	0.	0.	0.	0.	0.	529.	
VI= 56.20 Asv/s=		Vr= 5	6.20 NO	93 As(3)=	= 225.	Umaxb= .	003 Umax	t= .006
		BEAM	15	(B= .20	0. H= .	.450, L=	5.40)	
BOT	гом			•		-	ŗ	
SECTION	1	2	3	4	5	6	7	
M=	.00	.00	-38.95	-60.14	-58.59	-35.69	.00	
As(1)=	225.	0.	314.	495.	482.	287.	225.	
As(2)=	225.	0.	0.	0.	0.	0.	225.	
TOP		•						
SECTION	1	2	3	4	5	6	7	
M=	64.03	9.02	.00	.00	.00	.00	.11	
As(1)=	529.	71.	0.	0.	0.	0.	225.	
As(2)=	529.	0.	0.	0.	0.	0.	225.	
VI= 67.07		Vr≕ 4	1.79 NO	3 As(3):	= 225.	Umaxb= .	006 Umax	t= .006
Asv/s= .				•••				
		BEAM	16	(B= .20	0, H= .	450, L=	5.40)	
BOT								
SECTION								
M⇒								
As(1)=								
As(2)=		0.	0.	0.	0.	0.	225.	
TOP					1 g			
SECTION						6		
` M=								-
As(1)=	225.	0.		0.				-
As(2)=	225.	0.	0.	0,	0,	0.	592.	
VI= 40.18 Asv/s=		Vr= 68	8.65 NO	3 As(3)=	= 225.	Umaxb= .	005 Umaxi	= .007

BEAM 17 (B= .200, H= .450, L= 5.40)

ļ

alculation book			Oil Depo	t,Dining F	loom, Batl	n Room		
вот	том				·			· .
SECTION	1	2	3	4	5	6	7	• .
M=	.00	.00	-19.98	-39.91	-42.14	-27.38	.00	
As(1)=	225.	0.	158.	322.	341.	218.	225.	
As(2)=	225.	0.	0.	0.	0.	0.	225.	
SECTION	1	2	3	4	5	6	7	
M=	71.09	22.04	.00	.00	.00	.00	.07	
As(1)=	592.	175.	0.	0.	0.	0.	225.	
As(2)=	592.	0.	0.	0.	0.	0.	225.	-

.`

9 e :

÷ :

. .:

٠. .

晟

PK1 COMPUTE END

5 · Beam ( L6 ~ 10 ) date document( L6 ~ 10 数据文件)

C _____ zong xin xi

34,17, 12, 0,17, 4, 1, 0, 4, 30, 30, 2, 0, 0, .90, 1.00, 0,

C _____ jie dian zuo bia

.000, -2.000,	.000, .000,	3.450, -2.000,
3.450, .000,	8.795, -2.000,	8.795, .000,
.000, 3.000,	.000, 5.000,	3.395, 3.000,
3.395, 5.000,	.000, 8.000,	.000, 10.000,
6.900, 8.000,	6.900, 10.000,	13.800, 8.000,
13.800, 10.000,	17.250, 8.000,	17.250, 10.000,
20.645, 8.000,	20.645, 10.000,	.000, 13.000,
.000, 15.000,	6.900, 13.000,	6.900, 15.000,
13.800, 13.000,	13.800, 15.000,	20.700, 13.000,
20.700, 15.000,	.000, 18.000,	.000, 20.000,
6.900, 18.000,	6.900, 20.000,	13.800, 18.000,
13.800, 20.000,		

C _____ zhu guan lian hao 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

.

. .

Î

1

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, C _____ liang guan lian hao 2, 4, 4, 6, 8, 10, 12, 14, 14, 16, 16, 18, 18, 20, 22, 24, 24, 26, 26, 28, 30, 32, 32, 34, C yue su xin xi 7111, 9111, 11111, 1111, 3111, 5111, 13111, 15111, 17111, 19111, 21111, 23111, 25111, 27111, 29111, 31111, 33111, C _____ zhu ji suan chang du xi su 0, C _____ zhu jie dian pian xin 0. C _____ biao zhun jie mian 1, .25, .50, 1, -.50, .24, 1, -.35, .35, 1, -.24, .24, C _____ zhu jie mian hao 2, 3, 3, 4, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, C _____ liang jie mian hao 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, CCC _____ jie dian (jing) he zai 0, CCC _____ zhu jian (jing) he zai 0, CCC _____ liang jian (jing) he zai 3, 1, 1, . 14.2, 1, 2, 1, 11.1, 6, 9.1, 1.73, 11.1, 1, 2, 1, 6, 9.1, 1.73, 1, 2, 1, 12.3, 75.0, 3.45, 4, 12.3, 1, 2, 1, 79.3, 3.45, 4,

ļ

3.1, 1, 3, 1, 18.6, 1.72, 6. 4, 35.4, 3.45, 1, 2, 1, 6.3, 9.1, 1.73, 6, .12.3, . 1, 2, 1, 4, 79.3, 3.45, 1, 2, 1, 12.3, 79.3, 3.45, 4, 1, 2, 1, 12.3, 4, 75.0, 3.45, 1, 2, 1, 12.3, 4, 79.3, 3.45, 12.1, 1, 2, 1, 4, 52.4, 3.45, CCC _____ jie dian (huo) he zai 0, CCC zhu jian (huo) he zai 0, CCC _____ liang jian (huo) he zai 1, 1, 1, 1.5, 1, 2, 1, 1.0, 6, 1.2, 1.73, 1, 2, 1, 1.0, 1.2, 1.73, 6, 1, 2, 4, 8.3, 3.45, 1.2, 1, 8.9, 3.45, 1, 2, 4, 1, 1.2, 1, 2, 6, 2.5, 1.72, 3.9, 3.45, 4, 1.2, 1.73, 1, 2, 6, 1, .4, 1, 2, 4, 8.9, 3.45, 1.2, 1, 1, 2, 4, 8.9, 3.45, 1.2, 1, 8.3, 3.45, 1, 2, 4, 1, 1.2, 1, 2, 4, 8.9, 3.45, 1.2, 1, 1, 2, 4, 5.7, 3.45, 1.2 1,

C _____ di zhen can shu

. :

.

24

()

0

鬣

____25

C 2hou xian pian xin .000, .000, .055, .000, .055, .000, .000, .000, .000, .055, .000, .000, .000, .000, .000, .000, .000, .000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .0000, .000,	88888
.000, .000, .000, .000, .000, .000, .000, Czhi zhuo xin xi 20000,10000,10000,10000,20000,10000,20000,10000, 20000,10000,20000,20000,10000,20000, C ci liang xin xi 1 0, 0, 1, 3.450, 101.66, .200, .450, 1, 3.450, 107.64, .200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , END	C zhou xian pian xin
C zhi zhuo xin xi 20000, 10000, 10000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 20000, 10000, 2000, 1000, 2000, 1000, 2000, 100, 1	.000, .000, .055, .000, .055, .000, .000, .000, .000, .055
20000,10000,10000,10000,20000,10000,20000,10000, 20000,10000,10000,20000,20000,10000,20000, C	.000, .000, .000, .000, .000, .000, .000,
20000,10000,10000,20000,10000,20000, Cci liang xin xi 1 6, 0, 1, 3.450, 101.66, 200, .450, 1, 3.450, 107.64, 200, .450, 1, 3.450, 70.84, 200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	C zhi zhuo xin xi
C ci liang xin xi 1 0, 1, 3.450, 101.66, .200, .450, 1, 3.450, 107.64, .200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3,4,5,7,3,4,5, END	20000,10000,10000,10000,10000,20000,10000,10000,20000,10000,
1 6, 0, 1, 3.450, 101.66, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 101.66, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 70.84, .200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	20000,10000,10000,20000,20000,10000,20000,
0, 0, 1, 3.450, 101.66, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 70.84, .200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	C ci liang xin xi
0, 0, 1, 3.450, 101.66, 200, .450, 1, 3.450, 107.64, 200, .450, 1, 3.450, 107.64, 200, .450, 1, 3.450, 101.66, 200, .450, 1, 3.450, 107.64, 200, .450, 1, 3.450, 70.84, 200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
0, 1, 3.450, 101.66, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 101.66, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 70.84, .200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
1, $3.450, 101.66, .200, .450,$ 1, $3.450, 107.64, .200, .450,$ 1, $3.450, 107.64, .200, .450,$ 1, $3.450, 107.64, .200, .450,$ 1, $3.450, 101.66, .200, .450,$ 1, $3.450, 107.64, .200, .450,$ 1, $3.450, 70.84, .200, .450,$ EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	· · · · · · · · · · · · · · · · · · ·
1, 3.450, 107.64, .200, .450, 0, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 107.64, .200, .450, 1, 3.450, 70.84, .200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
0, 0, 1, 3.450, 107.64, 200, 450, 1, 3.450, 101.66, 200, 450, 1, 3.450, 107.64, 200, 450, 1, 3.450, 70.84, 200, 450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
0, 1, 3.450, 107.64, 200, 450, 1, 3.450, 101.66, 200, 450, 1, 3.450, 107.64, 200, 450, 1, 3.450, 70.84, 200, 450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
<ul> <li>1, 3.450, 107.64, 200, 450,</li> <li>1, 3.450, 107.64, 200, 450,</li> <li>1, 3.450, 101.66, 200, 450,</li> <li>1, 3.450, 70.84, 200, 450,</li> <li>EOF</li> <li>,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 ,</li> <li>3 ,4 ,5 ,7 ,3 ,4 ,5 ,</li> <li>L-9 ,L-10 ,L-6 ,L-7 ,L-8 ,</li> <li>END</li> </ul>	
1, 3.450, 107.64, 200, 450, 1, 3.450, 101.66, 200, 450, 1, 3.450, 107.64, 200, 450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	•
1, 3.450, 101.66, 200, .450, 1, 3.450, 107.64, 200, .450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
1, 3.450, 107.64, 200, 450, 1, 3.450, 70.84, 200, 450, EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
EOF ,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	1, 3.450, 70.84, .200, .450,
,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 , 3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	
3 ,4 ,5 ,7 ,3 ,4 ,5 , L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	EOF
L-9 ,L-10 ,L-6 ,L-7 ,L-8 , END	,E ,F ,6 ,7 ,3 ,4 ,5 ,6 ,7 ,
END	
	L-9 ,L-10 ,L-6 ,L-7 ,L-8 ,
	END

1,11

.

•

t re s

• • • •

.

÷.

6 · Structure analysys of Beam (L6~10) result document L6~10 结构分析结果文件

> ****** PK11.EXE ****** DATA: 6/17/1997

34	17		12		0	17		4	1		0		4	30		80	2		0	0
.90 0	1.0	0																	۰.	
OUTPU																				
(1)		-2.00		•	2)	00.	.00		(3)				-	•	3.45		.00			
(5)					-		.00						) (	-						
(9)				-	•	3.39			(11)				-		.0					
(13) (17) 1				-	-	6.90 I		-					(10	-			I			
(17)1 (11)				•	•	.25 10		•	-				(20)							
( 21) ( 25) I						.00 1: 20 1 5							-	-			-			
(23)1 (29)						80-15. .00-2		-	-											
(33)1				-	-	.00 20 80 20		(	51)	0.90	10.	00	(32	; 0	.90 2	0.00	1			
( ) ) [	5.00	10.00		1.24	, 13.	00 20													-	
UTPU	TE	)ATA	1										۰.	·	:_	•	÷		-	:
(1)	1	2	(	2}	3	4	(	3)	5	6	(	4)	7	8	(	5)	9	10		
(6)	11	12	(	7)	13	14	(	8)	15	16	(	9)	17	18	(	10)	19	20		
(11)	21	22	(1	2)	23	24	(13	) 2	25 2	26	(14	<b>\$)</b> 2	27 2	8	(15)	) 2	93	0		
( 16)	31	32	(1	7)	33	34														
(_1)	2	4	(	2)	4	6	(	3)	8	10	(	4)	12	14	(	5)	14	16		
(6)	16	18	(	7)	18	20	(	8)	22	24	(	9)	24	26	(	10)	26	28		
(11)	30	32	(1	2)	32	34														
UTPU																				
(1)		11		2)		3111	-	3)		111	-	4)		111	(			Ш		
(6)	111		•	7)		3111	-	-	15		•	-		111	•	10)		111		
	211	11	(1	2)		111	(13	)	2511	1	(14	ł)	2711	I	(15)	)	2911	1		
(11) (16)	311			7)		111														

(1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00

26

۲

1

( 8) 1.00 ( 9)	1.00 (10)1.0	00 (11)1.00	(12)1.00	(13) 1.00	(14) 1.00	
(15)1.00 (16)1			· ·			
OUTPUT DATA	4					
(1).00 (2)		.00 ( 4)	.00 ( 5) .	00 ( 6)	.00 ( 7) .	00
(8).00 (9)	.00 (10)	.00 (11) .	00 (12) .00	) (13) .0	0 (14) .00	
(15) .00 (16)	.00 (17)	00 (18) .0	0 (19) .00	(20) .00	(21) .00	
(22) .00 (23)	.00 (24)	.00 (25) .0	0 (26) .00	(27) .00	(28) .00	
(29) .00 (30)	.00 (31)	00 (32) .0	0 (33) .00	(34) .00		
OUTPUT DAT/	A					
(1) 1.00		.50	.00	.00	.00	
(2) 1.00		.24	.00	.00	.00	
(3) 1.00		.35	.00	.00	.00	
(4) 1.00		.24	.00	.00	.00	
OUTPUT DAT/	A					·
$(1)^2 (2)^3$		DA ( 5)2	(6)) (3)	N 3 ( 9) 3	k ( 0) 2	
(10)3 (11)2					, ())2	
					( 0) 1	
	(3)] (4	91 ( 3)1		()] ( )] ·	(9)1	
(10)1 (11)1			<u>-</u>			
IIQQ=						
	COMPUTE				-	
	COMPUTE	<b>V1</b>	101			
JOINT LOAD:	JR 0	ХМ	XN			
		:-	· ·			
COLUMN LOAD:	JC 0	KL	P	х	КX	
	v					
BEAM LOAD:		I KL		x	P1	X1
	1 1	1		.00		
	1 2	1		.00		
				.73		
	1 2	1		.00		
				.73		
	1 2	1		.00		
		4		.45		
	1 2	<b>1</b>		.00		
	1 4			.45		
		. 4				
	1 3	1	3.10	.00		
			3.10 18.60 1			

•229•

٠

Î

1

-

alculation book	,		survey at arts.	Oil Depot	,Dining Room	, Bath Rooi	m	28
				6	9.10	1.73	a siya ta	
		1	2	1	12.30	.00	· · · · · ·	
		•	-	- 4	79.30	3.45		
		1	2	•	12.30	.00		
		-		4	79.30	3.45	· · · . :	
		1	2	- 1 .	12.30	.00	. · ·	
				4	75.00	3.45		k
		1	2	Ì	12.30	.00		
				- 4	79.30	3.45		
		1	2	1	12.10	.00		
				4	52.40	3.45	:	
							•	
				++DEAI	D LOAD**			
ę	STIF CO	MPUT	Е					
I	LIVE CO	omput	E					
JOINT LO	AD:	JR		XM	XN			
		0					•	
COLUMN L	OAD:	JC		KL	Р	Х	KX	
		0				-		
								· 4
BEAM LO	OAD:	NE			KL P		X PI XI	Š
		1	1	1	1.50	.00		
		1	2	1	1.00	.00		
			•	6	1.20			
		1		-		1.73		
			2	1	1.00	.00		
				6	1.00 3.20	.00 1.73	· .	
		1	2	6	1.00 1.20 8.30	.00 1.73 3.45	• • • • •	
			2	6 4 1	1.00 1.20 8.30 1.20	.00 1.73 3.45 .00	• • • •	
		1 1		6 4 1 4	1.00 3.20 8.30 1.20 8.90	.00 1.73 3.45 .00 3.45		
		1	2 2	6 4 1 4 1	1.00 1.20 8.30 1.20 8.90 1.20	.00 1.73 3.45 .00 3.45 .00		
			2	6 4 1 4 1 6	1.00 1.20 8.30 1.20 8.90 1.20 2.50	.00 1.73 3.45 .00 3.45 .00 1.72	• • • • • • • • • • • • • • • • • • •	
		1	2 2 2	6 4 1 4 1 6 4	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90	.00 1.73 3.45 .00 3.45 .00 1.72 3.45		
		1	2 2	6 4 1 4 1 6	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73		
		1 1 1	2 2 2 2	6 4 1 4 1 6 4 6 1	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 .40	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00		••
		1	2 2 2	6 4 1 4 1 6 4 6 1 4	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 40 8.90	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45	•	
		1 1 1	2 2 2 2 2	6 4 1 4 1 6 4 6 1 4 1	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 .40 8.90 1.20	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45 .00		
		1 1 1	2 2 2 2	6 4 1 4 1 6 4 6 1 4 1 4	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 8.90	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45 .00 3.45		
		1 1 1 1	2 2 2 2 2 2 2	6 4 1 4 1 6 4 6 1 4 1 4 1	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 8.90 1.20 8.90 1.20	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45 .00 3.45 .00		•
		1 1 1	2 2 2 2 2	6 4 1 4 1 6 4 6 1 4 1 4	1.00 3.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 8.90 1.20 8.90 1.20 8.90	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45 .00 3.45 .00 3.45		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	6 4 1 4 1 6 4 6 1 4 1 4 1 4 1	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 8.90 1.20 8.90 1.20 8.30 1.20	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45 .00 3.45 .00 3.45 .00		
		1 1 1 1	2 2 2 2 2 2 2	6 4 1 4 1 6 4 6 1 4 1 4 1 4 1 4 1 4	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 8.90 1.20 8.90 1.20 8.30 1.20 8.30 1.20 8.30	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45 .00 3.45 .00 3.45 .00 3.45 .00 3.45		
· .		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2	6 4 1 4 1 6 4 6 1 4 1 4 1 4 1	1.00 1.20 8.30 1.20 8.90 1.20 2.50 3.90 1.20 8.90 1.20 8.90 1.20 8.30 1.20	.00 1.73 3.45 .00 3.45 .00 1.72 3.45 1.73 .00 3.45 .00 3.45 .00 3.45 .00		

-230-

Calculation book

Ì

Oil Depot, Dining Room, Bath Room

29

1 1.20 .00

EART COMPUTE

**COMBINATION AND REINFORCEMENT**

	E	BEAM	1	(B= .250,	H= .5	i00, L=	3.45)	
BOT	гом			•				
SECTION	1	2	3	4	5	6	7	
M=	.00	-6.88	-7.44	-1.82	.00	.00	.00	
As(1)=	313.	48.	52.	. 13.	0.	0.	313.	
As(2)≓	313.	0.	0.	0.	0.	0.	313.	
TOP								
SECTION	1	2	3	4	5	6	7	
M=	.01	.00	.00	3.60	16.06	34.16	58.98	
As(1)=	313.	0.	0.	25.	112.	242.	424.	
As(2)=	313.	0.	· <b>0.</b>	0.	<b>0</b> .	0.	424.	

Vi= 15.76 NO 1 Vr= 52.01 NO 3 As(3)= 313. Umaxb=.002 Umaxt=.003 Asv/s= .00

(B= .250, H= .500, L= 5.35) 2 BEAM BOTTOM 2 . 7 3 5 6 SECTION 4 1 .00 -41.79 -62.28 -61.09 -38.93 .00 M= -.43 439. 276. 297. 448. 313. As(1)= 313. 3. 313. As(2)= 313. 0. 0. **0.** 11 **0.** 0. TOP : • 2 3 5 6 7 SECTION 1 4 .00 .06 M= 59.02 1.44 .00 .00 .00 0. 0. 0. 313. 424. 10. 0. As(1)= 0. .... **0.** · 0. 313. 424. 0. As(2)= 0.

VI= 74.37 NO 1 Vr= 50.08 NO 3 As(3)= 313. Umaxb=.004 Umaxt=.003 Asv/s= .00

		BEAM	3	(B= .2	50, H=	.500, L=	3.39)	
BOI	TOM	÷		÷ .			,	
SECTION	1	2	3	4	5	6	7	•
M=	.00	-17.47	-28.94	-33.05	-28.94	-17.47	.00	
As(1)=	313.	122.	204.	234.	204.	122.	313.	
As(2)=	313.	0.	0.	. <b>0.</b>	0.	0.	313.	

·231·

TOF ECTION M=	•								
SECTION M=									
M=	1	2	3	4	5	6	7	1.	
	.03	.00	.00	.00	.00	.00	.03	2.5	
As(1)=	313.	0.	Û.	0.	0.	0.	313.		
As(2)=	313.	0.	0.	0.	0.	0.	313.		
VI= 35.4	8 NO 1	Vr=	35.48 NO	03 As(3)=	313.	Umaxb= .	002 Um	axt= .002	
Asv/s≃	.00								
		÷				•			
		BEAM	4	(B= .250	, H≈ .	.500, L≕	6.90)		
BO	гтом								. :
SECTION	1	2	3	4	5	6	: 7	ł .	
M=	.00	-82.75	-143.95	-183.40	-84.25	.00	.00		
As(1)=	313.	603.	1096.	1440.	615.	· 0.	313.		-
As(2)=	313.	0.	0.	1550.	0.	0.	313.		
TOP	•								· ·
SECTION	1.	2	3	- 4	5	6	7	· .	
00011011									
M=	.19	.00	.00	.00	.00	45.85	187.93		
			.00 0.	.00 0.	.00 0.	45.85 327.	187.93 1481.		
M= `As(1)= As(2)= VI= 78.6	313. 313.	.00 0. 0.	0. 0.		0. 0.	327. 0.	1481. 1595.	eaxt= .012	
M= As(1)= As(2)= VI= 78.6	313. 313. 58 NO 1	.00 0. 0.	0. 0.	0. 0. D 3 As(3)=	0. 0. 313.	327. 0. Umaxb= .	1481. 1595. 012 Um	eaxt= .012	-
M=  As(1)=  As(2)=  V1= 78.6  Asv/s=	313. 313. 58 NO 1	.00 0. 0. Vr= 1 BEAM	0. 0. 37.76 NG 5	0. 0. 0 3 As(3)= ( B= .250	0. 0. 313. , H=	327. 0. Umaxb= . .500, L=	1481. 1595. 012 Um 6.90)		
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION	313. 313. 68 NO 1 .11 TTOM 1	.00 0. 0. Vr= 1 BEAM	0. 0. 37.76 NG 5 3	0. 0. 0 3 As(3)=	0. 0. 313. , H=	327. 0. Umaxb= . .500, L=	1481. 1595. 012 Um 6.90)		-
M=  As(1)=  As(2)=  V = 78.6  Asv/s=  BO]	313. 313. 68 NO 1 .11 TTOM 1	.00 0. 0. Vr= 1 BEAM	0. 0. 37.76 NG 5 3	0. 0. 0 3 As(3)= ( B= .250	0. 0. 313. , H= 5	327. 0. Umaxb= . .500, L= 6	1481. 1595. 012 Um 6.90 ) 7	1 .	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION	313. 313. 68 NO 1 .11 TTOM 1 .00 313.	.00 0. 0. Vr= 1 BEAM 2 .00 0.	0. 0. 37.76 NG 5 3 -63.09 454.	0. 0. O 3 As(3)= ( B= .250 4 -149.83 1145.	0. 0. 313. , H== 5 -91.06 668.	327. 0. Umaxb= . .500, L= 6 -10.97 77.	1481. 1595. 012 Um 6.90 ) 7 .00 313.	1 .	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M=	313. 313. 68 NO 1 .11 TTOM 1 .00 313.	.00 0. 0. Vr= 1 BEAM 2 .00 0.	0. 0. 37.76 NG 5 3 -63.09 454.	0. 0. O 3 As(3)= ( B= .250 4 -149.83	0. 0. 313. , H== 5 -91.06 668.	327. 0. Umaxb= . .500, L= 6 -10.97 77.	1481. 1595. 012 Um 6.90 ) 7 .00 313.	1 .	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)=	313. 313. 58 NO 1 .11 TTOM 1 .00 313. 313.	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0.	0. 0. 37.76 NG 5 -63.09 454. 0.	0. 0. 0 3 As(3)= ( B= .250 4 -149.83 1145. 0.	0. 0. 313. , H== 5 -91.06 668. 0.	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0.	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313.	, .	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)= As(2)= TOF	313. 313. 58 NO 1 .11 TTOM 1 .00 313. 313.	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0.	0. 0. 37.76 NG 5 -63.09 454. 0.	0. 0. O 3 As(3)= ( B= .250 4 -149.83 1145.	0. 0. 313. , H== 5 -91.06 668. 0.	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0.	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313.	, .	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)= As(2)= TOF SECTION	313. 313. 58 NO 1 .11 TTOM 1 .00 313. 313. 7	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0. 0. 2	0. 0. 37.76 NG 5 -63.09 454. 0.	0. 0. 0 3 As(3)= ( B= .250 4 -149.83 1145. 0. 4	0. 0. 313. , H= 5 -91.06 668. 0. 5	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0.	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313. 7	, ,	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)= As(2)= TOF SECTION	313. 313. 68 NO 1 .11 TTOM 1 .00 313. 313. 313. 1 187.89	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0. 0. 2 58.36	0. 0. 37.76 NO 5 -63.09 454. 0. 3 .00	0. 0. 0 3 As(3)= ( B= .250 4 -149.83 1145. 0. 4	0. 0. 313. , H== 5 -91.06 668. 0. 5 .00	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0. 6 .00	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313. 7 92.74	, ,	
M= As(1)= As(2)= VI= 78.6	313. 313. 58 NO 1	.00 0. 0. Vr= 1	0. 0. 37.76 NG	0. 0. 0 3 As(3)=	0. 0. 313.	327. 0. Umaxb= .	1481. 1595. 012 Um	eaxt= .012	-
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)= As(2)=	313. 313. 58 NO 1 .11 TTOM 1 .00 313. 313.	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0.	0. 0. 37.76 NG 5 -63.09 454. 0.	0. 0. 0 3 As(3)= ( B= .250 4 -149.83 1145. 0.	0. 0. 313. , H== 5 -91.06 668. 0.	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0.	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313.	, .	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)= As(2)= TOP SECTION	313. 313. 58 NO 1 .11 TTOM 1 .00 313. 313. 7	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0. 0. 2	0. 0. 37.76 NO 5 -63.09 454. 0. 3	0. 0. 0 3 As(3)= ( B= .250 4 -149.83 1145. 0. 4	0. 0. 313. , H= 5 -91.06 668. 0. 5	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0. 6	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313. 7	, ,	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)= As(2)= TOF SECTION M=	313. 313. 68 NO 1 .11 TTOM 1 .00 313. 313. 313. 1 187.89	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0. 0. 2 58.36	0. 0. 37.76 NO 5 -63.09 454. 0. 3 .00	0. 0. 0 3 As(3)= ( B= .250 4 -149.83 1145. 0. 4 .00	0. 0. 313. , H== 5 -91.06 668. 0. 5 .00	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0. 6 .00	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313. 7 92.74	, ,	
M= As(1)= As(2)= VI= 78.6 Asv/s= BOT SECTION M= As(1)= As(2)= TOF SECTION M=	313. 313. 58 NO 1 .11 TTOM 1 .00 313. 313. 5 1 187.89 1481.	.00 0. 0. Vr= 1 BEAM 2 .00 0. 0. 0. 0. 2 58.36 419.	0. 0. 37.76 NO 5 -63.09 454. 0. 3 .00 0.	0. 0. 0 3 As(3)= ( B= .250 4 -149.83 1145. 0. 4 .00	0. 0. 313. , H== 5 -91.06 668. 0. 5 .00	327. 0. Umaxb= . .500, L= 6 -10.97 77. 0. 6 .00 0.	1481. 1595. 012 Um 6.90 ) 7 .00 313. 313. 7 92.74	, ,	

Î

-232-

9

A = (^)	313.	0.	0.	0.	0.	0.	313.	
As(2)= TOP	515.	v.		<b>.</b>	•••	•••	••••	
SECTION	1	.2	3	4	5	6	7	
			36.97	17.66	6.16	.82	4.58	
As(1)=					43.	6.	313.	
As(2)=			0.	0.	0.	0.	313.	
V(= 58.8)		Vr=	54.02 NC	) 3 As(3)=	= 313.	Umaxb=	.002 Umax	t= .
Asv/s≖ .	00 ·							
		BEAM	7	(B= .25	0, H= .	.500, L=	3.40)	
BOT	ТОМ							
SECTION	1	2	3	4		6	7	
M=		-12.89		-23.96			.00	
As(1)=	313.	90.	148.	169.		86.	313.	
As(2)=		0.	0.	0.	0.	0.	313.	
						_	_	
SECTION		2	3		5	6	7	
		00.	.00		.00	.00		
As(1)= As(2)=			0. 0.		0. 0.			
VI= 25.76	5 NO I	Vr=	24.22 NO	D3 As(3)=	= 313.	Umaxb=	.002 Umax	t≓.
Asv/s=	.00	• .						
		BEAM	8	(B= .25	0, H= .	.500, L=	6.90 )	
	том	. :		-				
SECTION	1	2 2	3	4	5	6	7	
SECTION M=	1 .00	2 -89.01	3 -156.50	4 -202.26	5 -102.50	6 .00	7 .00	
SECFION M= As(1)=	1 .00 313.	2 -89.01 652.	3 -156.50 1203.	4 -202.26 1613.	5 - 102.50 757.	6 .00 0.	7 .00 313.	
SECTION M= As(1)= As(2)=	1 .00 313. 313.	2 -89.01 652. 0.	3 -156.50 1203. 1289.	4 -202.26 1613.	5 - 102.50 757.	6 .00 0.	7 .00 313.	
SECTION M= As(1)= As(2)= TOP	1 .00 313. 313.	2 -89.01 652. 0.	3 -156.50 1203. 1289.	4 -202.26 1613. 1742.	5 -102.50 757. 0.	6 .00 0. 0.	7 .00 313. 313.	
SECTION M= As(1)= As(2)= TOP SECTION	1 .00 313. 313.	2 -89.01 652. 0. 2	3 -156.50 1203. 1289. 3	4 -202.26 1613. 1742. 4	5 - 102.50 757. 0. 5	6 .00 0. 0. 6	7 .00 313. 313. 7	
SECTION M= As(1)= As(2)= TOP SECTION M=	1 .00 313. 313. 1 .23	2 -89.01 652. 0. 2 .00	3 -156.50 1203. 1289. 3 .00	4 -202.26 1613. 1742. 4 .00	5 -102.50 757. 0. 5 .00	6 .00 0. 0. 6 31.57	7 .00 313. 313. 7 174.57	
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)=	1 .00 313. 313. 1 .23 313.	2 -89.01 652. 0. 2 .00 0.	3 -156.50 1203. 1289. 3 .00 0.	4 -202.26 1613. 1742. 4 .00 0.	5 - 102.50 757. 0. 5 .00 0.	6 .00 0. 0. 6 31.57 223.	7 .00 313. 313. 7 174.57 • 1361.	
SECTION M= As(1)= As(2)= TOP SECTION M=	1 .00 313. 313. 1 .23 313.	2 -89.01 652. 0. 2 .00 0.	3 -156.50 1203. 1289. 3 .00 0.	4 -202.26 1613. 1742. 4 .00	5 - 102.50 757. 0. 5 .00 0.	6 .00 0. 0. 6 31.57 223.	7 .00 313. 313. 7 174.57	
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)= VI= 84.44	1 .00 313. 313. 1 .23 313. 313. 313. 4 NO 1	2 -89.01 652. 0. 2 .00 0. 0. 0. Vr= 1	3 -156.50 1203. 1289. 3 .00 0. 0. 0. 38.60 NG	4 -202.26 1613. 1742. 4 .00 0. 0. 0. 0. 0.	5 -102.50 757. 0. 5 .00 0. 0. 0.	6 .00 0. 0. 6 31.57 223. 0.	7 .00 313. 313. 7 174.57 1361. 1462.	t=.
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)=	1 .00 313. 313. 1 .23 313. 313. 313. 4 NO 1	2 -89.01 652. 0. 2 .00 0. 0. 0. Vr= 1	3 -156.50 1203. 1289. 3 .00 0. 0. 0. 38.60 NG	4 -202.26 1613. 1742. 4 .00 0. 0. 0. 0. 0.	5 -102.50 757. 0. 5 .00 0. 0. 0.	6 .00 0. 0. 6 31.57 223. 0.	7 .00 313. 313. 7 174.57 1361. 1462.	( <del></del> .
SECTION M= As(1)= As(2)= TOP SECTION M= As(1)= As(2)= VI= 84.44 Asv/s=	1 .00 313. 313. 1 .23 313. 313. 313. 4 NO 1	2 -89.01 652. 0. 2 .00 0. 0. 0. Vr= 1 BEAM	3 -156.50 1203. 1289. 3 .00 0. 0. 38.60 NG	4 -202.26 1613. 1742. 4 .00 0. 0. 0. 0. 0.	5 - 102.50 757. 0. 5 .00 0. 0. = 313.	6 .00 0. 0. 6 31.57 223. 0. Umaxb=	7 .00 313. 313. 7 174.57 1361. 1462. 013 Umax	<b>t</b> =

-233-

_____ <u>31</u>

	k			ot ,Dining R	1963), 848-19, 748-8, 80, 87, 87			
As(1)=	313.	0.	358.	926.	367.	0.	313.	
As(2)=	-	0.	0.	0.	0.	0.	313.	
TO		-				_	:	-
SECTION	1	2	3	4	5		7	
M=	174.49	57.84	.00	.00	.00		169.97	
As(1)=	1360.	415.	0.	0.		. 392.	1320.	
As(2)=	1462.	0.	0.	0.	0.	0.	1418.	
VI= 113.	68 NO 1	Vr= 1	12.29 NC	) 3 As(3)=	= 313.	Umaxb= .	.007 Umax	= .011
Asv/s=	.00							
				•				
PO	ттом	BEAM	10	(B= .250	), H=	.500, L=	6.90)	
SECTION	110/	2	3	4	. 5	6	. 7	
M=	.00	.00	-98.71			-86.34	.00	
As(1)=		0.	-98.71 728.	1539.		-a0.34 631.	313.	
As(2)=		0. 0.	0.	1659.	0.	0.	313.	
TO		•••			0.	•••	515.	
SECTION	1	2	3	4	5	· 6	7	
M=	170.04	31.20	.00	.00	.00	.00	.23	
As(1)=	1321.	220.	0.	0.	0.	0.	313.	
	1418.	0.	0.	0.		0.	313.	
				13 Ac(3)=	213		010 17-00-0	= .011
/l= 134.8	88 NO 1	Vr= a	82.19 NO	13 AS(J)"	= 313.	Umaxb= .	VIZ Umaxi	
/l= 134.8 \sv/s=	88 NO 1 .09	Vr=	82.19 NO	/ J _ K3(J)-	- 313.	Umaxb= .	. Uniaxi	
						-	• ••	
\sv/s=	.09			(B= ,250		-	• ••	
Asv/s= BO	.09 ТТОМ	BEAM	11	(B= .250	), H=	.500, L=	6.90 )	:
Asv/s= BO SECTION	.09 ТТОМ 1	BEAM 2	11	(B= .250	), H= 5	.500, L= 6	6.90 ) 7	
Asv/s= BO SECTION M=	.09 TTOM 1 .00	BEAM 2 -85.72	11 3 -149.90	( B= .250 4 -192.33	), H= 5 -89.26	.500, L≕ 6 .00	6.90 ) 7 .00	
BO BCTION M= As(1)=	.09 TTOM 1 .00 313.	BEAM 2 -85.72 626.	11 3 -149.90 1146.	( B= .250 4 -192.33 1521.	), H= 5 -89.26 654.	.500, L= 6 .00 0.	6.90) 7 .00 313.	
BO SECTION M= As(1)= As(2)=	.09 TTOM 1 .00 313. 313.	BEAM 2 -85.72 626.	11 3 -149.90 1146.	( B= .250 4 -192.33	), H= 5 -89.26 654.	.500, L= 6 .00 0.	6.90) 7 .00 313. 313.	
BO SECTION M= As(1)= As(2)= TO	.09 TTOM 1 .00 313. 313. P	BEAM 2 -85.72 626. 0.	11 3 -149.90 1146. 0.	( B= .250 4 -192.33 1521. 1640.	), H= 5 -89.26 654. 0.	.500, L= 6 .00 0. 0. 0.	6.90 ) 7 .00 313. 313.	
BO SECTION M= As(1)= As(2)= TO SECTION	.09 TTOM 1 .00 313. 313. P 1	BEAM 2 -85.72 626. 0. 2	11 3 -149.90 1146. 0. 3	( B= .250 4 -192.33 1521. 1640. 4	), H= 5 -89.26 654. 0. 5	.500, L= 6 .00 0. 0. 0.	6.90) 7 .00 313. 313. 7	
BO SECTION M= As(1)= As(2)= TOI SECTION M=	.09 TTOM 1 .00 313. 313. P 1 .20	BEAM 2 -85.72 626. 0. 2 .00	11 3 -149.90 1146. 0. 3 .00	( B= .250 4 -192.33 1521. 1640. 4 .00	), H= 5 -89.26 654. 0. 5 .00	.500, L= 6 .00 0. 0. 0. 6 46.08	6.90) 7 .00 313. 313. 7 191.21	
BO SECTION M= As(1)= As(2)= TO SECTION M= As(1)=	.09 TTOM 1 .00 313. 313. P 1 .20 313.	BEAM 2 -85.72 626. 0. 2 .00 0.	11 3 -149.90 1146. 0. 3 .00 0.	( B= .250 4 -192.33 1521. 1640. 4 .00 0.	), H= 5 -89.26 654. 0. 5 .00 0.	.500, L= 6 .00 0. 0. 6 46.08 328.	6.90) 7 .00 313. 313. 7 191.21 1511.	
BO SECTION M= As(1)= As(2)= TO SECTION M= As(1)=	.09 TTOM 1 .00 313. 313. P 1 .20	BEAM 2 -85.72 626. 0. 2 .00 0.	11 3 -149.90 1146. 0. 3 .00 0.	( B= .250 4 -192.33 1521. 1640. 4 .00 0.	), H= 5 -89.26 654. 0. 5 .00 0.	.500, L= 6 .00 0. 0. 6 46.08 328. 0.	6.90) 7 .00 313. 313. 7 191.21 1511.	······································
BO SECTION M= As(1)= As(2)= TO SECTION M= As(1)= As(2)=	.09 TTOM 1 .00 313. 313. P 1 .20 313. 313.	BEAM 2 -85.72 626. 0. 2 .00 0. 0. 0.	11 3 -149.90 1146. 0. 3 .00 0. 0. 0.	( B= .250 4 -192.33 1521. 1640. 4 .00 0. 0. 0.	), H= -89.26 654. 0. 5 .00 0. 0.	.500, L= 6 .00 0. 0. 6 46.08 328. 0.	6.90 ) 7 .00 313. 313. 7 191.21 1511. 1628.	······································
BO SECTION M= As(1)= As(2)= TO SECTION M= As(1)= As(2)=	.09 TTOM 1 .00 313. 313. 9 1 .20 313. 313. 313.	BEAM 2 -85.72 626. 0. 2 .00 0. 0. 0.	11 3 -149.90 1146. 0. 3 .00 0. 0. 0.	( B= .250 4 -192.33 1521. 1640. 4 .00 0. 0. 0.	), H= -89.26 654. 0. 5 .00 0. 0.	.500, L= 6 .00 0. 0. 6 46.08 328. 0.	6.90 ) 7 .00 313. 313. 7 191.21 1511. 1628.	
BO SECTION M= As(1)= As(2)= TO SECTION M= As(1)= As(2)= /l= 81.2	.09 TTOM 1 .00 313. 313. 9 1 .20 313. 313. 313.	BEAM 2 -85.72 626. 0. 2 .00 0. 0. 0.	11 3 -149.90 1146. 0. 3 .00 0. 0. 0.	(B= .250 4 -192.33 1521. 1640. 4 .00 0. 0. 0. 0. 0. 0.	), H= 5 -89.26 654. 0. 5 .00 0. 0. 0. 313.	.500, L= 6 .00 0. 0. 6 46.08 328. 0.	6.90) 7 .00 313. 313. 7 191.21 1511. 1628. 012 Umaxt	
BO SECTION M= As(1)= As(2)= TO SECTION M= As(1)= As(2)= /l= 81.2	.09 TTOM 1 .00 313. 313. 9 1 .20 313. 313. 313. 24 NO 1 .13	BEAM 2 -85.72 626. 0. 2 .00 0. 0. 0. Vr= 14	11 3 -149.90 1146. 0. 3 .00 0. 0. 0. 11.29 NO	(B= .250 4 -192.33 1521. 1640. 4 .00 0. 0. 0. 0. 0.	), H= 5 -89.26 654. 0. 5 .00 0. 0. 0. 313.	.500, L= 6 .00 0. 0. 6 46.08 328. 0. Umaxb= .	6.90) 7 .00 313. 313. 7 191.21 1511. 1628. 012 Umaxt	= .012
BO SECTION M= As(1)= As(2)= TO SECTION M= As(1)= As(2)= /1= 81.2 (sv/s=	.09 TTOM 1 .00 313. 313. 9 1 .20 313. 313. 313. 24 NO 1 .13	BEAM 2 -85.72 626. 0. 2 .00 0. 0. 0. Vr= 14	11 3 -149.90 1146. 0. 3 .00 0. 0. 0. 11.29 NO	(B= .250 4 -192.33 1521. 1640. 4 .00 0. 0. 0. 0. 0.	), H= 5 -89.26 654. 0. 5 .00 0. 0. 0. 313.	.500, L= 6 .00 0. 0. 6 46.08 328. 0. Umaxb= .	6.90) 7 .00 313. 313. 7 191.21 1511. 1628. 012 Umaxt	= .012

0

0

R.

.

.

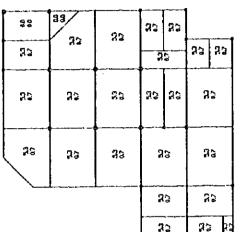
-234-

culation book							
M=	.00	.00	-47.50	-128.84	-107.27	-64.28	.00
As(1)=	313.	0.	339.	970.	795.	463.	313.
As(2)≓	313.	0.	0.	0.	0.	0.	313.
TOF	<b>&gt;</b>						
SECTION	1	2	3	4	5	6	7
M≕	191.16	67.55	.00	.00	.00	.00	.14
As(1)=	1511.	488.	0.	0.	0.	0.	313.
As(2)≈	1628.	0.	0.	0.	0.	0.	313.

_ 33

VI= 122.08 NO 1 Vr= 62.45 NO 3 As(3)= 313. Umaxb=.008 Umaxt=.012 Asv/s= .00

PK1 COMPUTE END


• • •

Ì

.

: `

. :



2

Cel F1

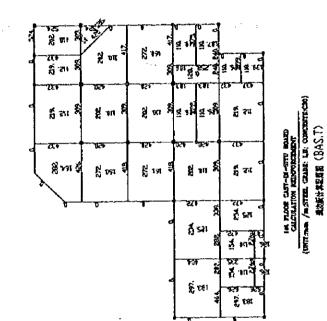
<u>ित्र</u> हो

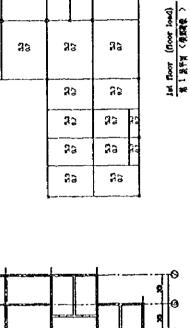
-1

期

摺

Ą


2


К.,

9

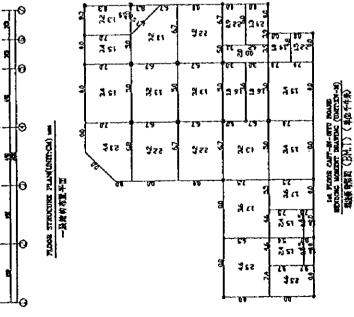
ģ

ç





2


**698** 

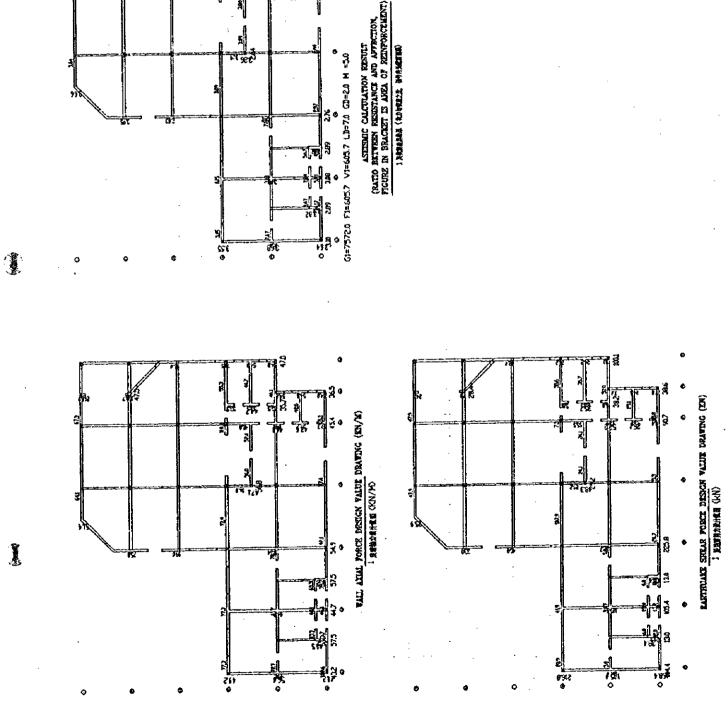
<u>हम्</u> ५२

Ó

Ľ

8 1

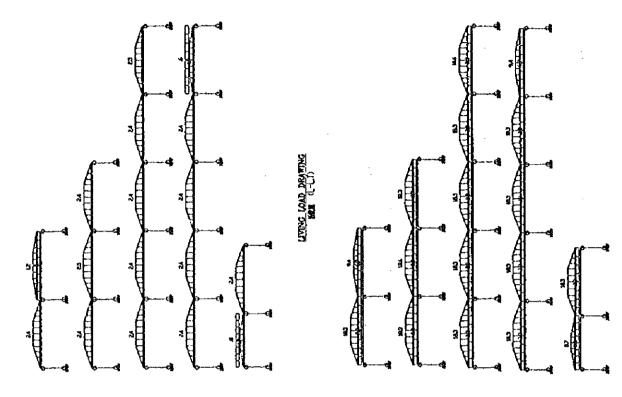


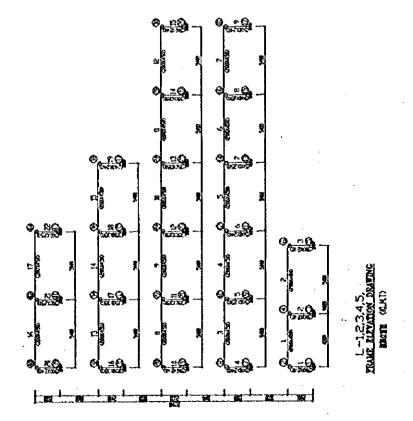



0

0

6

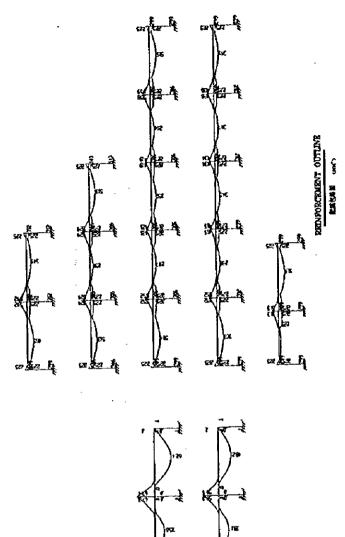

-236-



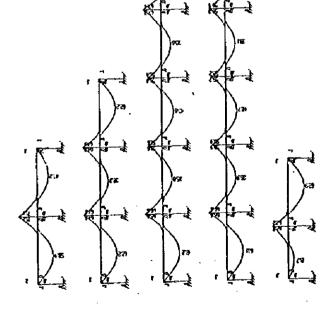

Ŗ 61 5 ង្រ 9 -L F 3 ទ្ធឲ 8 Â 5 Gj=7572,0 F1=605.7 V1=605.7 LD=7.0 GD=2.0 M =5.0 최 20 ō.

報認

-237-

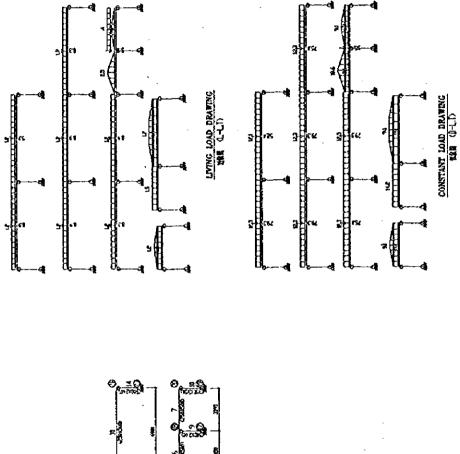






CONSTANT LOAD DRAWING

۲

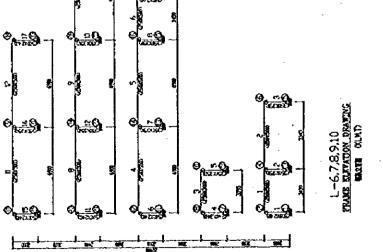
0




MONTRAT OUTRANE



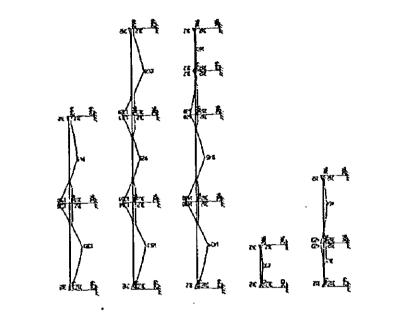
Ĩ


教育

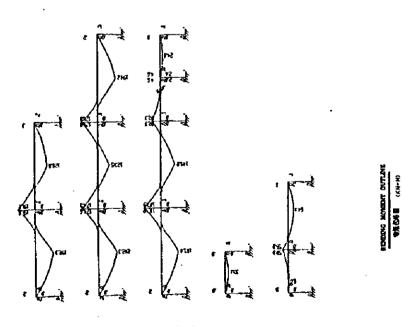


÷

- -


3




0

0

**R** 



RENFORCEMENT OUTUNE RENEAR (HI)



Ì

ł

.

.

0

0

·· · · · ·

÷.

··· ····

. ....

## CONTENTS

1 •	Design Introduction	Pg 2
2•	Output of Floors Mass and Center TAT - M.OUT	Pg 4
3•	Output of Period and Earthquake Forces and Displacements of Floor Ta	AT - 4.OUT
	•	Pg 7
4•	Output of Combined Force of Column, Wall and Brace on Each Floor	$NZ - 1 \sim 3.00T$
•	( This Chapter is in the Disk	
5•	The Combined Force of Column, Brace and Wall Bottom on Ground Fl	oor DCNL.OUT
C		Pg 210
6•	Output of Reinforcements PJ-1 ~ 3.OUT	
•	( This Chapter is in the Disk	) Pg 234
7•	Structure analysis result document of elastic base beam board EFDAT	TUO.1
•	( This Chapter is in the Disk )	
0		

**.**.

-243-

8 • Figures 附图

()

0

•

. .

## 1 • Design Introduction

•	anghai Pudong Airport Oil Depot Complex Office Building ( three floors )	
II. Seismic intensity: 7		
III. Frame seismic grad		
IV. Structure important	ce parameter: Ko=1.0	
V. Site soil type: IV	110// В	
VI. Soil endurance: R=		
VII.Foundation load-be	· · ·	
VIII. Materials; column		
Frame f	illed wall: light aggragate concrete porous hollow blockbrick	
	external wall 240mm 1.97KN/m2	
	internal wall 200mm 1.64KN/m2	
I. Load:		
1. Living load:	floor 1.50KN/m2	
	washing room 2.00KN/m2	
	nieeting room 2.00KN/m2	
	roof ( with persons ) 1.5KN/m2	
	roof 0.7KN/m2	
2. Static load:	a	
2. Static load:	floor	
	ceiling 0.45KN/m2	
	structure layer (100mm) 2.50KN/m2	
	floor ( Floor 1) 1.50KN/m2	Ē
	total 4.45KN/m2	
	5.20KN/m2 ( meeting room )	
	washing room ceiling 0.45KN/m2	
	structure layer (100mm) 2.50KN/m2	
	floor (Floor ) 2.35KN/m2	
	total 5.30KN/m2	
	roof ceiling 0.45KN/m2	
	structure layer (100mm) 2.50KN/m2	
	roof ( roof 1) 2.50KN/m2	
	total 5.45KN/m2	

4. Frame filled wall (Architecture & Structure Design Manual -- Shanghai Architecture Design Institute 1996.5) external wall (240mm) 問題

3

paste facing brick 0.61KN/m2 240mm 1.97KN/m2 interior wall with cement mortar 0.40KN/m2

internal wall (200mm)

internal wall (200m)

200mm 1.64KN/m2

interior wall with cement mortar 0.40x2 KN/m2

2.44x2.8m=7KN/m2

3. Wind load: 0.55 KN/m2

4. Foundation load:

TAT program load calculation

additional load: ( column foot elevation -1.10 )

-1.10~0.000 240 brick wall 5.2x1.10=5.76KN/m2

1st floor partition wall 240 hollow wall 3.58x3.3=11.814KN/m2

X. Selection of main members

1. Side column 500x500mm

- round column D600mm
- 2. Main beam (L=6000mm)
  - bxh=250x500mm
  - Longitudinal beam (L=7200mm Floor 1)

bxh=250x600mm

Secondary beam

bxh=200x500mm

3. Board thickness h=100mm

#### XI. Design basis

1. Current national architecture & structure standards and codes;

Shanghai City's << Base Foundation Design Codes >> DBJ08--11--89;

3. Shanghai City's << Base Treatment Technical Codes >> DBJ08--40--94;

4. Shanghai City's << Building Anti-seismic Design Standards >> DBJ08--09--92;

5. << Shanghai Pudong Airport Oil Depot Rock & Soil Investigation Immediate Report >>

made by China Aviation Industry Investigation & Design Institute;

XII. Computer programs

China Building Science Research Institue CAD Engineering Department

PMCAD CAD, structure plan CAD; August, 1996

TAT Three-dimensional analysis program of high-riser building structure; August, 1996

LTCAD Stair CAD; August, 1996

EF Foundation structure CAD of elastic base beam board; August, 1996

XIII. Conclusion:

It is concluded from calculation above, the integral strength and deformation of structure meet the design requirements, the geometric dimensions also meet the requirements of strength and deformation regulated by Codes. The primary data of structural model, major calculation results, combining results of main internal forces of each member, structural layout, internal force drawing, reinforcing results of major members refer the next page, based on which construction drawings are made.

.246-

()

X

4

Ţ

## 2 • Output of Floors Mass and Center

;

		Outp	ut of Floors	Mass and C	Center		*
*		-	T.	AT-M.OUT			•
* .		************					*
*		ymbols:					
		nber of floor					*
		Number of tow					*
	-	Total weight			Linding		*
*	•	elfweight of st					*
		otal mass of ea			<i>.</i> ,		*
		r Coordina Total load (					*
*		(excluding se			un/wall)		+
		Total rotation					*
		Wind forc					*
		Eccentricity b			nd mass cen	ter(m)	*
		•V Shear o				•	*
		-M Momei				1)	*
		sht of each flo		•	-		*
***	*******		********	*******	*********	*********	********
Tow	er Weig	ht F-Weigl	ht Mass	X-Center	Y-Center	Ver-Load	R-Mass
10	(kì	-		(m)	(m)	(kN)	(t*m2)
1		-	. 33.3	52.2	14.8	233.8	449
1	1045	3.1 10786	. 1045.3	36.2	17.8	7707.8	498126
	1278	9.2 23576	. 1278.9	21.0	16.9	9693.7	661556
1	I IPIO.		). 1270.9	33.8	10.7		
1					15.2	10704.9	855808
1		8.5 38434		30.4		10704.9	855808
l Tot	1485 tal Vertical	8.5 38434	. 1485.9	30.4 (kN)		10704.9	855808
i Tot Tot	1485 tal Vertical	8.5 38434 Loads =	. 1485.9 28340. 38434.	30.4 (kN)		10704.9	855808
i Tot Tot	1485 tal Vertical tal Structur	8.5 38434 Loads =	. 1485.9 28340. 38434.	30.4 (kN) (kN)			
i Tot Tot	1485 tal Vertical tal Structur	8.5 38434 Loads =	. 1485.9 28340. 38434.	30.4 (kN) (kN)	15.2 V X-W	ind-M hh	
l Tot Tot	1485 tal Vertical tal Structur tal Mass =	8.5 38434 Loads = e Weight =	. 1485.9 28340. 38434. 3843	30.4 (kN) (kN) 3.4 (t)	15.2 V X-W (kN-m	ind-M hh 1) (m)	
l Tot Tot	1485 tal Vertical tal Structur tal Mass =	8.5 38434 Loads = e Weight = X-Wind	, 1485.9 28340. 38434. 3843 X-D	30.4 (kN) (kN) 3.4 (t) X-Wind- (kN) 0.00	15.2 V X-W (kN-m 0.0	ind-M hh 1) (m) 3.00	
i Tot Tot Tot Flr	1485 tal Vertical tal Structur tal Mass = Tower	8.5 38434 Loads = e Weight = X-Wind (kN)	. 1485.9 28340. 38434. 384 X-D (m)	30.4 (kN) (kN) 3.4 (t) X-Wind- (kN) 0.00 36.83	15.2 V X-W (kN-m 0.0 121.5	ind-M hh n) (m) 3.00 3.30	
i Tot Tot Tot	al Vertical tal Vertical tal Structur tal Mass = Tower	8.5 38434 Loads = e Weight = X-Wind (kN) 0.00	1485.9 28340. 38434. 384 X-D (m) 0.05	30.4 (kN) (kN) 3.4 (t) X-Wind- (kN) 0.00	15.2 V X-W (kN-m 0.0	ind-M hh 1) (m) 3.00	

.

Calculation	book
-------------	------

Oil Depot Complex Office Building

• • • •

Flr	Tower	Y-Wind (kN)	Y-D (m)	Y-Wind-V (kN)	Y-Wind (kN-m)	•M hh (m)
4	1	0.00	0.04	0.00	0.0	3.00
3	1	129.15	7.89	129.15	426.2	3.30
2	.1	197.80	2.16	326.95	1505.2	3.30
1	1	176.04	5.60	502.99	3919.5	4.80

· 6

8

.

. .

2

:

:

. :

-248-

錢

7

-	*****************	********
*	Output of Period and Earthquake Forces and Displacements of Floor	*
*	TAT-4.OUT	
+		
*	Symbols:	
ŧ	T(Nm) Natural vibration period of structure(sec)	
*	Flr Number of floor	
*	Nt Number of tower	
*	Nm Number of modes	
*		
ŧ	Force(Nm) Earthquake force of modes(kN)	
*	Oox, y Ground base shear of seismic force in X, Y direction(kN)	
*	manufaction in Y V direction (kN-m)	
*	Ge Total weight of structure(kN)	
*	<pre>////////////////////////////////////</pre>	-
*	X,Y-DISP Horizontal displacement of mass center(mm)	
*	Angle Horizontal rotation angle(rad)	
*	dx,y Interfloor displacement in X,Y direction(mm)	
+	h Height of each floor(m)	
*	Tower Number of tower	
	· Iower Number of tower	
*		
	Hmax Maximum Height of floor(m)	******
* * *	<ul> <li>Hmax Maximum Height of floor(m)</li> <li>Dmax Maximum displacement on top part(mm)</li> </ul>	*****
* * TI X T1	Hmax Maximum Height of floor(m) Dmax Maximum displacement on top part(mm) He Vibration of X-Direction C-Direction Period (Second) = 0.6393 (s) T2 = 0.2759 (s) T3 = 0.1921 (s)	******
* * * TI X	<ul> <li>Hmax Maximum Height of floor(m)</li> <li>Dmax Maximum displacement on top part(mm)</li> <li>he Vibration of X-Direction</li> <li>C-Direction Period (Second)</li> <li>= 0.6393 (s) T2 = 0.2759 (s) T3 = 0.1921 (s)</li> <li>The Vibration Modes-X &amp; Earthquake Forces-X</li> </ul>	
* * * TI X TI	Hmax Maximum Height of floor(m) Dmax Maximum displacement on top part(mm) He Vibration of X-Direction C-Direction Period (Second) = 0.6393 (s) T2 = 0.2759 (s) T3 = 0.1921 (s)	Force 2
* * TI X TI T	Hmax Maximum Height of floor(m) Dmax Maximum displacement on top part(mm) He Vibration of X-Direction (-Direction Period (Second) = 0.6393 (s) T2 = 0.2759 (s) T3 = 0.1921 (s) The Vibration Modes-X & Earthquake Forces-X	
* * * TI X TI	Hmax Maximum Height of floor(m) Dmax Maximum displacement on top part(mm) He Vibration of X-Direction C-Direction Period (Second) = 0.6393 (s) T2 = 0.2759 (s) T3 = 0.1921 (s) The Vibration Modes-X & Earthquake Forces-X Nt Mode I Force I Mode 2 Force 2 Mode 3	Force 2 (kN
* * TI X TI T	Hmax Maximum Height of floor(m) Dmax Maximum displacement on top part(mm) He Vibration of X-Direction (-Direction Period (Second) = 0.6393 (s) T2 = 0.2759 (s) T3 = 0.1921 (s) The Vibration Modes-X & Earthquake Forces-X Nt Mode i Force 1 Mode 2 Force 2 Mode 3 (kN) (kN)	Force 2 (kN 8.32

-249-

1	1	0.3934	722.19	-0.0211	21.18	0.9583	355.45	
-	0X = 0X =	2841.167 24267.113	(kN) Qox (kN-m)	/Ge = 7.39	9%			
T	he Vib	ration of Y-Di	rection					
Y	-Direc	tion Period (	Second)		·			
Ţ1	=	0.6511 (s)	r2 = 0.2729	9 (s) T3 =	= 0.1987 (	s)		
Т	he Vit	ration Modes-	Y & Eartho	uake Forces-	Y ·			
١o	Nt	Mode I	Force 1 (kN)	Mode 2	Force 2 (kN)	Mode 3	Force 3 (kN)	
4	1	1.0000	45.02	1.0000	-34.71	-1.0000	16.77	
3	1	0.7447	1051.66	0.0070	-7.60	0.4933	-259.45	
2	1	0.5848	1010.40	-0.0278	37.06	-0.1486	95.59	
1	1	0.3441	690.80	-0.0351	54.32	-0.4686	350.28	
	}oy = ∕loy =	2805.683 24138.779	• •		0%			
		Di	isplacements of	Floor	,,			
<u> </u>	== TY	PE1 ==== The	e displacements	s of floor unde	er X-Earthqu	iake Force	:	
г	Nt	X-DISP	Y-DISP	Angle		dx (True)	h (m)	
		(mm)	(mm)	(fad)		(mm) 2.00		
4	1	12.86	0.39	0.00013	1/1034.	2.90 1.96	3.00	
3	1	10.30	0.11	0.00002				
2	1	8.35		0.00002	1/1000.		3.30 ±	
	1	5.04	0.00	0.00001	1/953.		· .	
1	wer≔	I (Dmax/Hma:	x=1/1120.), Da	nax= 12.9(	mm) Hma	ix≕ 14.4	40(m)	
1					er V.Farthou	uake Force	;	
1 Toʻ		PE2 ==== The	e displacements	s of floor und	er i "Exiting			
1 Toʻ		X-DISP	Y-DISP	Angle	e dy/h	dy		
1 To [,]	— TY		-		e dy/h	dy (mm)		

0

I

alcul	ation bo	ox	UnDeporto	mplex Office Bu			
3	1	0.12	10.81	0.00005	1/1479.	2.23	3.30
2	1	0.07	8.48	0.00005	1/ 973.	3.39	3.30
1	1	0.01	5.00	0.00003	1/960.	5.00	4.80
To		(Dmax/Hmax=	1/983.), Dma	x≕ 14.6(mi	n) Hmax	= 14.4	0(m)
		<b>C</b>	,,				
<del>12 32</del>	TYP	E3 ==== The d	isplacements	of floor under	X-Wind F	orce	
·lr	Nt	X-DISP	Y-DISP	Angle	dx/h	dx	h
		(mm)	(mm)	(rad)		(mm)	
4	1	0.51	0.02	0.00000	1/9999.	0.01	3.00
3	1	0.50	0.00	0.00000	1/9999.	0.07	3.30
2	1	0.42	0.00	0.00000	1/9999.	0.15	3.30
1	1	0.27	0.00	0.00000	1/9999.	0.27	4.80
Тс	wer = 1	(Dmax/Hmax=	1/9999.), Dm	ax= 0.5(n	nm) Hma	x= 14.	40(m)
	~ 1	•E4 ==== The c	l'a la comonte	of floor under	• <b>Y</b> . Wind F	orce	
•	1 Y P	E4 ==== 1 ne (	nspiacements	of floor ander	, mai		
Flr	Nt	X-DISP	Y-DISP	Angle	dy/h	đy	h
		(mm)	(mm)	(rad)		<b>(</b> mm)	
4	1	0.02	2.21	0.00002	1/9999.	0.07	3.00
3	1	-0.04	1.80	0.00002	1/9999.	0.30	3.30
2	1	-0.02	1.45	0.00002	1/6090.	0.54	3.30
1	1	0.00	0.87	0.00001	1/5510.	0.87	4.80
Te	ower = 1	(Dmax/Hmax=	=1/6507.), Dm	ax= 2.2(r	nm) Hma	ax= 14	.40(m)
	TYI	PES === ine	displacements	of floor unde			
213							
	Nt	X-DISP	Y-DISP	Angle			
			Y-DISP (mm)	Angle (rad)			
	Nt	X-DISP		-			
Fir	Nt 1	X-DISP (mm)	(mm)	(rad)			
Flr 4	Nt 1 1	X-DISP (mm) 0.06	(mm) 0.18	(rad) 0.00000			
Fir 4 3	Nt 1 1 1	X-DISP (mm) 0.06 0.00	(mm) 0.18 0.02	(rad) 0.00000 0.00000			
Fir 4 3 2 1	Nt 1 1 1	X-DISP (mm) 0.06 0.00 -0.02	(mm) 0.18 0.02 0.05 0.02	(rad) 0.00000 0.00000 0.00000 0.00000		tical Forc	e
Fir 4 3 2 1	Nt 1 1 1 1 1	X-DISP (mm) 0.06 0.00 -0.02 -0.01 PE6= The	(mm) 0.18 0.02 0.05 0.02 displacements	(rad) 0.00000 0.00000 0.00000 0.00000 s of floor unde	er Live Ver	tical Forc	e
Fir 4 3 2 1	Nt 1 1 1	X-DISP (mm) 0.06 0.00 -0.02 -0.01 PE6= The X-DISP	(mm) 0.18 0.02 0.05 0.02 displacements Y-DISP	(rad) 0.00000 0.00000 0.00000 0.00000 s of floor unde Angle	er Live Ver	tical Forc	e
Fir 4 3 2 1 = Fir	Nt 1 1 1 1 	X-DISP (mm) 0.06 0.00 -0.02 -0.01 PE6= The X-DISP (mm)	(mm) 0.18 0.02 0.05 0.02 displacements Y-DISP (mm)	(rad) 0.00000 0.00000 0.00000 0.00000 s of floor unde Angle (rad)	er Live Ver	tical Forc	e
Fir 4 3 2 1 = Fir 4	Nt 1 1 1 TY Nt 1	X-DISP (mm) 0.06 0.00 -0.02 -0.01 PE6 === The X-DISP (mm) 0.00	(mm) 0.18 0.02 0.05 0.02 displacements Y-DISP (mm) 0.15	(rad) 0.00000 0.00000 0.00000 0.00000 s of floor unde Angle (rad) 0.00001	er Live Ver	tical Forc	e
Fir 4 3 2 1 = Fir 4 3	Nt 1 1 1 TY Nt 1 1	X-DISP (mm) 0.06 0.00 -0.02 -0.01 PE6= The X-DISP (mm) 0.00 0.00	(mm) 0.18 0.02 0.05 0.02 displacements Y-DISP (mm) 0.15 0.01	(rad) 0.00000 0.00000 0.00000 0.00000 s of floor unde (rad) 0.00001 0.00000	er Live Ver	tical Forc	e
Fir 4 3 2 1 = Fir 4	Nt 1 1 1 TY Nt 1 1	X-DISP (mm) 0.06 0.00 -0.02 -0.01 PE6= The X-DISP (mm) 0.00	(mm) 0.18 0.02 0.05 0.02 displacements Y-DISP (mm) 0.15	(rad) 0.00000 0.00000 0.00000 0.00000 s of floor unde Angle (rad) 0.00001	er Live Ver	tical Forc	e

SALAN SALAN

B

)

4 • Output of Combined Force of Column, Wall and Brace on Each Floor

**************************** Output of Combined Force of Column, Wall and Brace on Each Floor NZ-1.OUT -------Symbols: C,W,G --- Element number of column, shear wall and brace ND(TOP,BOT) --- Number of up and down node of column, wall, brace V-X,Y --- Shear in X,Y direction(kN) N --- Axial force(kN) M-X,Y --- Moment in X,Y direction(kN-m) N(11-12) --- Number of branch of shear wall 11-12 --- Number of nodes in front and back of wall branch M,N,V-T --- Moment, axial force and shear of branch B-I, J --- Number of node on left and right of beam V,T,M-I,J --- Shear, torsion and moment on left and right of beam * ******

-252-

• -=

Ø

Ţ

# $5\,\cdot$ The Combined Force of Column, Brace and Wall Bottom on Ground Floor DCNL.OUT

### #1879 788 880- 2- 788 7- 998 8- 999 8- 599 4-66 6- 9- 8- 8- 8- 8- 6- 6- 7- 8- 3- 6- 7- 8- 3- 6- 8- 8- 8- 8- 8-

| The Combined Force of Column, Brace and Wall Bottom on Ground Floor |

· · · Total-Colum		nns = 62	Total-Sl	hear Walls =	• 0			
N-C(Nc)	И	v-x	V-Y	ז≃ –	1=	м-х	M	Y NE
1(20)	1	69.31	7.63	-415.11	-17.69	195.04	1	Vxmax
1(21)	1	9.47	-39.13	-295.41	134.00	6.81	1	Vymax
1(25)	1	7.02	-39.75	-236.62	134.89	2.92	1	Nmin
1(14)	1	17.35	9.32	-372.64	-22.59	30.35	.0	Nmax
1(21)	1	9.47	-39.13	-295.41	134.00	6.81	1	Mxmay
1(20)	ł	69.31	7.63	-415.11	-17.69	195.04	1	Mymax
1(1)	1	15.84	4.09	-369.62	-5.78	25.18	0	٧-٧
1(0)	1 .	12.47	4.14	-362.62	-6.12	15.37	0	Wx+V
1(0)	1	18.60	3.82	-367.79	-5.18	34.03	0	-Wx+V
1(0)	1	13.73	-1.35	-357.76	11.30	19.05	0	Wy+V
1(0)	1	17.35	9.32	-372.64	-22.59	30.35	0	-Wy+V
1(0)	1	-39.91	-0.25	-290.45	7.11	-148.35	1	Ex+V
1(0)	1	69.31	7.63	-415.11	-17.69	195.04	1	-Ex+V
1(0)	1	9.47	-39.13	-295.43	134.00	6.81	1	Ey+V
1(0)	1	19.92	46.51	-410.15	-144.58	39.87	1	-Ey+V
2(19)	2	-32.23	-2.43	-40.72	11.68	-154.70	1	Vxmax
2(21)	2	-3.45	-27.69	-40.72	132.92	-16.56	1	Vymax
2(26)	2	3.60	27.34	-33.93	-131.22	17.30	1	Nmin
2(1)	2	0.10	-0.24	-40.72		0.49	0	Nmax
2(21)	2	-3.45	-27.69	-40.72	132.92	-16.56	1	Mxmax
2(19)	2	-32.23	-2.43	-40.72	11.68	-154.70	1	Mymax
2(1)	2	0.10	-0.24	-40.72	- 1.17	0.49	0	V-V
2(0)	2	-1.61	-0.15	-40.72	0.72	-7.75	0	Wx+V
2(0)	2	1.81	-0.31	-40.72	1.49	8.69	0	-Wx+\
2(0)	2	-1.09	-3.56	-40.72	17.07	-5.24	0	₩y+V
2(0)	2	1.29	3.10	-40.72	-14.86	6.18	0	-Wy+\
2(0)	2	-32.23	-2.43	-40,72	11.68	-154.70	1	Ex+V
	2	32.40	2.05	-40.72	-9.83	155.50	1	-Ex+V
2(0)	2	-3.45	-27.69	-40.72	132.92	-16.56	1	Ey+V
2(0)	2	3.62	27.31	-40.72	-131.07	17.36	1	-Ey+V
3(19)	3	-81.08	-12.22	-441.89	24.39	-213.17	1	Vxmax
3(21)	3	-30.32	-55.28	-334.88	163.22	-55.81	1	Vymax

Calculation	book		Oil Depot Co	omplex Office	Building			
3(25)	3	-27.07	-54.70	-256.82	162.23	-50.72	1	Nmin
3(14)	3	-17.98	3.71	-502.67	-15.14	-25.26	0	Nmax
3(21)	3	-30.32	-55.28	-334.88	163.22	-55.81	1	Mxmax
3(19)	3	-81.08	-12.22	-441.89	24.39	-213.17	1	Mymax
3(1)	3	-21.04	-3.39	-492.69	5.94	-32.86	0	V-V
3(0)	3	-24.03	-3.55	-485.60	5.98	-42.09	0	₩x+V
3(0)	3	-17.25	-3.27	-487.02	5.88	-22.40	0	•Wx+V
3(0)	3	-23.30	-10.53	-469.94	26.99	-39.23	0	Wy+V
3(0)	3	-17.98	3.71	-502.67	-15.14	-25.26	0	•Wy+V
3( 0)	3	-81.08	-12.22	-441.89	24.39	-213.17	1	Ex+V
3( 0)	3	42.03	5.30	-494.87	-12.57	152.12	1	-Ex+V
3(0)	3	-30.32	-55.28	-334.88	163.22	-55.81	1	Ey+V
3( 0)	3	-8.73	48.36	-601.88	-151.40	-5.24	ł	-Ey+V
4(19)	4	-106.74	67.99	-392.34	-102.70	-272.27	1	Vxmax
4(22)	4	3.07	147.42	-442.73	-329.10	15.26	1	Vymax
4(25)	4	-8.04	-20,88	-269.43	131.H	-22.59	1	Nmin
4(1)	4	-2.91	77.08	-418.57	-120.53	-4.27	0	Nmax
4(22)	4	3.07	147.42	-442.73	-329.10	15.26	1	Mxmax
4(19)	4	-106.74	67.99	-392.34	-102.70	-272.27	1	Mymax
4(1)	4	-2.91	77.08	-418.57	-120.53	-4.27	0	<b>V-V</b>
4(0)	4	-8.34	75.17	-410.99	-117.70	-18.32	0	Wx+V
4(0)	4	2.62	74.76	-410.34	-116.78	9.93	0	-Wx+V
4(0)	4	-5.68	63.94	-403.31	-86.05	-12.08	0	Wy+V
4(0)	4	-0.04	86.00	-418.02	-148.43	3.68	0	-Wy+V
4(0)	4	-106.74	67.99	-392.34	-102.70	-272.27	1	Ex+V
4(0)	4	101.32	70.06	-384.56	-113.28	264.27	1	-Ex+V
4(0)	4	-8.49	-9.37	-334.17	113.11	-23.26	1	Ey+V
4( 0)	4	3.07	147.42	-442.73	-329.10	15.26	1	-Ey+V
5(20)	5	127.69	8.58	-347.52	-17.16	306.29	1	Vxmax
5(22)	5	35.88	84.76	-356.50	-226.78	65.13	1	Vymax
5(26)	5	30.47	82.52	-287.93	-223.36	56.58	1	Nmin
5(1)	5	36.08	15.15	-441.59	-23.11	57.01	0	Nmax
5(21)	5	29.06	-57.94	-466.31	185.73	37.43	1	Mxmax
5(20)	5	127.69	8.58	-347.52	-17.16	306.29	1	. Mymax
5(1)	5	36.08	15.15	-441.59	-23.11	57.01	0	V-V
5(0)	5	30.08	15.28	-436.16	-23.55	42.07	0	. ₩x+V
5(0)	5	40.19	14.10	-431.17	-21.31	68.94	0	-Wx+V
5(0)	5	33.12	-5.15	-441.53	5.12	49.42	Ð	₩y+V
5(0)	5	37.16	24.23	-425.80	-49.98	61.58	0	-Wy+V
5(0)	5	-62.75	18.24	-475.29	-23.90	-203.73	1	Ex+V
5(0)	5	127.69	8.58	-347.52	-17.16	306.29	1	•Ex+V
5(0)	5	29.06	-57.94	-466.31	185.73	37.43	1	Ey+V

. .

12

0

0

Į

culation	book	• <u>•</u> ••••••••••••••••••••••••••••••••••	Uil Depot Co	mplex Office E	ononig Sononig			
5( 0)	.5	35.88	84.76	-356.50	-226.78	65.13	1	•Ey+V
6(19)	6	-135.87	18.91	-438.32	-27.06	-318.67	1	Vxmax
6(22)	6	-17.13	134.64	-448.39	-312.84	-18.12	1	Vymax
6(25)	6	-56.73	-66.49	-283.11	206.55	-97.55	Ì	Nmin
.6(1)	6.	-45.24	41.50	-430.87	-64.65	-70.82	0	Nmax
6(22)	6	-17.13	134.64	-448.39	-312.84	-18.12	ł	Mxmax
6(19)	6	-135.87	18.91	-438.32	-27.06	-318.67	1	Mymax
6(1)	6	-45.24	41.50	-430.87	-64.65	-70.82	0	V-V
6(0)	6	-48.89	39.61	-424.67	-61.80	-82.06	0	Wx+V
6(0)	6	-38.99	41.12	-420.34	-64.00	-55.52	0	-Wx+V
6( 0)	6	-48.89	25.64	-415.79	-24.63	-79.48	0	Wy+V
6(0)	6	-38.99	55.09	-429.22	-101.18	-58.10	0	-Wy+V
6(0)	6	-135.87	18.91	-438.32	-27.06	-318.67	l	Ex+V
6(0)	6	55.29	55.44	-359.67	-88.89	192.48	1	-Ex+V
6(0)	6	-63.45	-60.29	-349.61	196.88	-108.07	1	Ey+V
6( 0)	6	-17.13	134.64	-448.39	-312.84	-18.12	1	-Ey+V
7(20)	7	69.20	3.34	•595.39	-10.94	195.92	1	Vxma
7(21)	7	10.17	-52.02	-536.67	154.31	10.80	1	Vyma
7(26)	7	15.19	49.12	-445.63	-148.79	29.43	1	Nmin
7(1)	7	15.62	-1.81	-569.78	3.51	24.79	0	Nmax
7(21)	7	10.17	-52.02	-536.67	154.31	10.80	1	Mxma
7(20)		69.20	3.34	-595.39	-10.94	195.92	1	Myma
7(1)	7	15.62	-1.81	-569.78	3.51	24.79	0	V-V
7(0)	, 7	12.11	-1.59	-558.14	2.90	14.79	0	Wx+
- 7(0)	7	18.18	-1.91	-563.59	3.85	33.29	0	-Wx+V
7(0)	7	13.94	-7.99	-560.11	21.74	20.33	0	Wy+
7(0)	7	16.35	4.48	-561.61	-14.98	27.75	0	-Wy+'
- 7(0)	7	-41.54	-6.51	-476.21	16.96	-152.04	1	Ex+V
7(0)	1	69.20	3.34	-595.39		195.92	1	-Ex+V
· 7(0)	, 7	10.17	-52.02	-536.67	154.31	10.80	1	Ey+V
7(0)		17.49		-534.93	-148.29	33.09	1	-Ey+\
8(19)	8	-69.05	-6.19	-659.59	14.93	-195.36	1	Vxma
8(21)		-10.43	-61.27	-640.07	172.66	-21.59	1	Vyma
8(26)		-4.48	55.63	-537.40	-162.92	-1.56	1	Nmin
8(1)	,	-9.23	-3.57	-689.21	6.21	-14.31	0	Nmax
8(21)		-10.43	-61.27	-640.07	172.66	-21.59	1	Mxma
- 8(19)		-69.06	-6.19	-659.59	14.93	-195.36	1	Myma
- 8(1) - 8(1)		-9.23	-3.57	-689.21	6.21	-14.31	0	· V-V
8(0)		-12.24	-3.26	-677.71	5.52	-23.55	0	Wx+
8(0) 8(0)		-5.63	-3.62	-676.06	6.44	-4.20	Ð	-Wx+
- 8(0) - 8(0)		-10.03	-11.26	-676.82	28.13	-17.40	. 0	Wy+`

•

and the second s

1

-255-

Calculation	book		Oil Depot Co	mplex Office B	Building	<u></u>	حسو مرمد و	14
8( 0)	8	-7.85	4.38	-676.95	-16.18	-10.34	0	-Wy+V
8(0)	8	-69.06	-6.19	-659.59	14.93	-195.36	1.	Ex+V
8(0)	8	52.79	0.03	-624.93	-4.30	170.11	1	-Ex+V
8(0)	8	-10.43	-61.27	-640.07	172.66	-21.59	1	Ey+V
8(0)	8	-5.84	55.12	-644.44	-162.03	-3.66	1	•Ey+V
9(20)	9	105.83	4.83	-238.25	-11.85	254.14	1	Vxmax
9(21)	9	36.81	-77.04	-219.43	197.50	54.17	1	Vymax
9(26)	9	36.60	76.51	-180.00	-195.81	61.66	1	Nmin
9(1)	9	44.46	-0.32	-234.98	1.10	70.16	0	Nmax
9(21)	9	36.81	-77.04	-219.43	197.50	54.17	1	Mxmax
9(20)	9	105.83	4.83	-238.25	-11.85	254.14	1	Mymax
9(1)	9	44.46	-0.32	-234.98	1.10	70.16	0	V-V
9( 0)	9	39.93	-0.16	-229.43	0.65	58.57	0	Wx+V
9( 0)	9	46.67	-0.46	-231.55	1.46	78.09	0	-Wx+V
9( 0)	9	42.28	-10.23	-230.46	26.51	65.39	0	Wy+V
9( 0)	9	44.32	9.60	-230.51	-24.40	71.26	0	-Wy+V
9( 0)	9	-25.75	-5.40	-197.49	13.69	-127.78	1	Ex+V
9( 0)	9	105.83	4.83	-238.25	-11.85	254.14	1	•Ex+V
9( 0)	9	36.81	-77.04	-219.43	197.50	54.17		Ey+V
9( 0)	9	43.28	76.46	-216.31	-195.66	72.19	1	-Ey+V
10(19)	10	-121.06	-3.19	-326.23	7.07	-296.86	1	Vxmax
10(21)	10	-33.35	-92.34	-250.29	248.81	-58.03	1	Vymax
10(24)	10	59.20	6.21	-156.95	-11.03	. 199.98	1	Nmin
10(1)	10	-37.88	1.93	-280.76	-2.48	-59.32	0	Nmax
10(21)	10	-33.35	-92.34	-250.29	248.81	-58.03	ł	Mxmax
10(19)	10	-121.06	-3.19	-326.23	7.07	-296.86	1	Mymax
10(1)	10	-37.88	1.93	-280.76	-2.48	-59.32	0	V-V
10( 0)	10	-41.25	1.74	-279.44	-2.29	-70.06	0	Wx+V
10( 0)	10	-32.34	1.97	-273.05	-2.50	-45.17	0	-Wx+V
10( 0)	10	-37.65	-12.44	-275.05	35.74	-60.58	0	Wy+V
10( 0)	10	•35.94	16.15	-277.44	-40.54	-54.65	0	-Wy+V
10( 0)	10	-121.06	-3.19	-326.23	7.07	-296.86	1	Ex+V
10( 0)	10	53.58	6.49	-200.87	-11.39	191.17	1	-Ex+V
10( 0)	10	-33.35	-92.34	-250.29	248.81	-58.03	1	Ey+V
10(0)	10	-34.13	95.64	`-276.81	-253.12	-47.67	1	-Ey+V
11(20)	11	75.45	10.56	-860.75	-22.30	206.81		•
	11	17.68	-44.64	-783.25	142.72	- 25.51		· •
11(26)	11	17.84	54.54	-665.76	-157.34	30.65	1	
11(1)	11	21.19	5.44	-849.40	-7.91	33.52	0	
11(21)	11	17.68	•44.64	-783.25	142.72	25.51	1	
11(20)	11	75.45	10.56	-860.75	-22.30	206.81	1	Мутах

• • • •

14

.

9

0

	book		On Deported	mplex Office B	onding			
11/ 1	11	21.19	5.44	-849.40	-7.91	33.52	0	V-V
11(1)	11	17.72	5.57	-830.92	-8.37	23.61	0	Wx+V
11(0)	11	23.71	5.29	-836.89	-7.48	41.91	0	-Wx+V
11(0)	11	23.71	-0.68	-833.27	10.23	31.05	0	Wy+V
11(0)	11		-0.03 11.54	-834.54	-26.08	34.47	0	-Wy+V
11(0)	11	21.27	0.24	-720.00	6.34	-145.54	1	Ex+V
11(0)	11	-36.70	10.56	-860.75	-22.30	206.81	1	•Ex+V
11(0)	11	75.45	-44.64	-783.25	142.72	25.51	1	Ey+V
11(0)	11	17.68	55.44	-797.49	-158.67	35.75	1	•Ey+V
11(0)	11	21.07	JJ.44	-131.43	-150.07		•	
12(19)	12	-74.81	9.05	-1224.73	· <b>-9.0</b> 6	-205.54	1	Vxmax
12(22)	12	-6.25	70.19	-1180.29	-185.76	-7.24	1	Vymax
12(26)	12	-4.83	68.05	-978.55	-182.47	-5.04	1	Nmin
12(1)	12	-8.81	13.92	-1326.09	-21.32	-13.71	0	Nmax
12(22)	12	-6.25	70.19	-1180.29	-185.76	-7.24	1	Mxmax
12(19)	12	-74.81	9.05	-1224.73	-9.06	-205.54	1	Мутах
12(1)	12	-8.81	13.92	-1326.09	-21.32	-13.71	0	V-V
12(0)	12	-12.20	13.78	-1296.20	-21.30	-23.49	0	Wx+V
12(0)	12	-5.24	13.50	-1295.26	-20.52	-3.66	0	-Wx+V
12(0)	12	-9.40	5.99	-1300.43	0.99	-15.48	0	Wy+V
12(0)	12	-8.05	21.29	-1291.02	-42.81	-11.67	0	-Wy+V
12(0)	12	-74.81	9.05	-1224.73	-9.06	-205.54	١	Ex+V
12(0)	12	57.86	16.64	-1196.14	-30.44	179.13	1	-Ex+V
12(0)	12	-10.70	•44.50	-1240.58	146.26	-19.17	1	Ey+V
12(0)	12	-6.25	70.19	-1180.29	-185.76	-7.24	1	-Ey+V
13(19)	13	-65.77	-41.73	-1283.53	69.34	-191.32	1	Vxmax
13(21)		2.31	103.14	-1238.45	242.35	1.31	1	Vyma
13(26)		4.57	32.29	-1093.35	-130.06	. 9.75	1	Nmin
13(1)		4.28	-43.06	-1398.63	68.31	6.90	0	Nmax
13(21)		2.31	-103.14	-1238.45	242.35	1.31	1	Mxina
13(19)		-65.77	-41.73	-1283.53	69.34	-191.32	1	Mymax
13(1)		4.28	-43.06	-1398.63	68.31		0	V-V
13(0)		0.50	-41.82	-1366.00	66.20	-3.50	0	₩x+\
13(0)		1.79	-41.99	-1364.73	66.71	16.85	0	-Wx+V
-13(0)			-51.14	-1362.26	92.15	4.88	0	Wy+
13(0)			-32.67	-1368.46	40.76	8.47	0	-Wy+\
13(0)		-65.77	-41.73	-1283.53	69.34	-191.32	1	Ex+V
13(0)		73.27	-35.56	-1260.26		203.39	1	-Ex+V
- 13( 0) - 13( 0)				-1238.45		1.31	1	Ey+V
13(0)		5.19	25.84	-1305.33	-119.85	10.76	1	-Ey+V
		-74.90			11.74	-205.69	1	Vxmax
	. 14	a ( 4, 7) i	-0.10	J			-	

.

.

Calculation	book		Oil Depot C	omplex Office I	Building	۹. ۱۹۹۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰			16
14(2())		-6.19		-875.52	-180.67	-6.76	1	Nmin	
14(26)	14 14	-8.09	-11.70	-1124.71	18.88	-12.57	0	Nmax	
14(1)	14 14	-6.48	-80.95	-1015.40	211.22	-12.94	1	Mxmax	
14(21)		-74.90	-6.18	-982.02	11.74	-205.69	1	Mymax	
14(19)	14	-74.90	-11.70	-1124.71	18.88	-12.57	0	V-V	
14(1)	14 14	-11.34	-10.99	-1097.72	17.67	-22.13	0	Wx+V	
14(0)		-4.22	-11.70	-1102.71	18.93	-2.05	0	-Wx+V	
14(0)	14 14	-4.22	-22.03	-1099.51	47.58	-13.45	0	Wy+V	
14(0)	14	-7.45	-0.66	-1100.92	-10.98	-10.73	0	-Wy+V	
14(0)	14	-74.90	-6.18	-982.02	11.74	-205.69	1	Ex+V	
14(0)	14	61.07	-14.52	-1080.81	21.58	184.19	1	•Ex+V	
14(0)	14	-6.48	-80.95	-1015.40	211.22	-12.94	1 :	Ey+V	
14(0)		-0.48 -7.35	60.25	-1047.42	-177.89	-8.56	1 -	-Ey+V	
14( 0)	14	*1.35	00.23	-1047.42	-171.07		•		
15(10)	15	-70.20	6.67	-745.48	-9.93	-198.27	1	Vxmax	
15(19) 15(22)	15	-12.48	59,93	-793.95	-181.26	-17.06	1	Vymax	
15(22)	15	-15.21	-48.55	-503.67	163.94	-26.28	1	Nmin	
15(23)	15	-16.24	6.62	-762.30	-10.01	-25.40	0	Nmax	
15(1)	15	-17.73	-47.51	-621.63	162.36	-30.22	1	Mxmax	
• •	15	-70.20	6.67	-745.48	-9,93	-198.27	1	Mymax	
15(19)	15	-16.20	6.62	-762.30	-10.01	-25.40	0	V-V	
15(1) 15(0)	15	-18.90	6.55	-749.81	-9.95	-34.03	0	Wx+V	
15(0)	15	-12.99	6.47	-746.18	-9.77	-15.85	0	-Wx+V	
15(0)	15	-16.64	-2.28	-736.69	17.75	-26.87	0	Wy+V	
15(0)	15	-15.25	15.31	-759.29	-37.48	-23.01	0	-Wy+V	
15(0)	15	-70.20	6.67	-745.48	-9.93	-198.27	1	Ex+V	
15(0)	15	40.00	5.75	-670.10	-8.97	151.00	1	-Ex+V	
15(0)				-621.63			1	Ey+V	
15(0)				-793.95				•	
15(0)									
16(19)	16	-36.54	-1.55	-536.21	1.51	-145.21	1	Vxmax	
16(21)		-0.86		-482.21		-3.67	1	Vymax	
16(25)		-0.89		-392.89			1	Nmin	
16(1)		0.26	-2.58		4.40		0	Nmax	
16(21)		-0.86		-482.21	157.50	-3.67	1	Mxmax	۲.
16(19)		-36.54		-536.21				Mymax	ί.
16(1)			-2.58			0.57		V-V	
16(0)			-2.50			-7.18	0	Wx+V	,
16(0)				-568.17		8.27	0	-Wx+V	7
.16(0)		-0.11			30.40	-0.86	.0	₩y+V	r
16(0)		0.60			-21.91		0	•₩y+\	1
16(0)		-36.54			1.51		ì	Ex+V	
16(0)		36.96		-535.61					
16(0)		-0.86			157.50	-	1		
••(•)								-	

Ì.

.

-258-

0

0

•

Calculation	book		Oil Depot Cor	nplex Office B	luilding			<u></u>
16(0)	16	1.28	37.55	-589.61	-149.89	4.61	1	-Ey+V
17(20)		70.31	3.98	-756.85	-3.37	198.72	1	Vxmax
17(21)	17	14.46	-59.26	-588.90	188.46	20.44	1	Vymax
17(25)	17	11.87	-60.18	-468.41	189.86	16.34	1	Nmin
17(14)	17	. 17.13	17.37	-786.49	-43.46	27.96	0	Nmax
17(21)	17	14.46	-59.26	-588.90	188.46	20.44	1	Mxmax
17(20)	17	70.31	3.98	-756.85	-3.37	198.72	1	Mymax
17(1)	17	17.08	5.98	-781.26	-9.12	27.04	0	V-V
17(0)	17	13.75	5.77	-764.18	-8.74	17.35	0	Wx+V
17(0)	17	19.62	5.93	-767.69	-9.15	35.47	0	-Wx+V
17(0)	17	16.23	-5.67	-745.38	25.57	24.86	0	₩y+V
17(0)	17	17.13	17.37	-786.49	-43.46	27.96	0	-Wy+V
17(0)	17	-39.18	7.02	-688.94	-13.50	-149.44	1	Ex+V
17(0)	17	70.31	3.98	-756.85	-3.37	198.72	1	-Ex+V
17(0)	17	14.46	-59.26	-588.90	188.46	20.44	1	Ey+V
17(0)	17	16.68	70.26	-856.89	-205.32	28.84	1	-Ey+V
18(19)	18	-75.78	18.50	-871.66	-33.10	-207.08	1	Vxmax
18(22)		-5.45	76.00	-985.78	-218.26	-5.99	1	Vymax
18(25)		-8.89	-47.08	-653.52	173.05	-16.33	1	Nmin
18(14)		-7.82	27.77	-942.50	-61.19	-11.31	0	Nmax
18(22)		-5.45	76.00	-985.78	-218.26	-5.99	1	Mxma
18(19)		-75.78	18.50	-871.66	-33.10	-207.08	1	Mymax
18(1)	18	-8.81	16.86	-941.32	-26.32	-13.70	0	v-v
18(1)	18	-12.12	16.49	-928.26	-25.62	-23.36	0	Wx+V
		-4.98		-929.63	-26.15	-3.25	0	-Wx+V
18(0)		-9.28	5.38	-915.39	9.43	-15.29	0	Wy+۱
18(0)		-7.82	27.77	-942.50	-61.19	-11.31	0	-Wy+V
18(0)		-75.78	18.50	-871.66	-33,10	-207.08	1	Ex+V
18(0)		60.14	13.05	-916.67	-16.21	182.72	1	-Ex+V
18(0)		-10.19	-44.45	-802.55	168.94	-18.36	1	Ey+V
18(0)		-5.45	76.00	-985.78	-218.26	-5.99	1	-Ey+V
19(19	) 19	-6.44	4.18	-376.30	-6.92	-14.93	1	Vxma
19(22		0.21	9.15	-385.33	-19.92	0.46	1	Vyma
19(26		0.20	8.49	-323.60	-18.88	0.45	1	Nmin
19(1)		0.06	4.15	-385.34	-6.60	0.10	0	Nmax
19(22		0.21	9.15	-385.33	-19.92	0.46	1	Mxma
19(19	-	-6.44	4,18	-376.30	•6.92	-14.93	1	Myma
19(1)	-	0.06	4.15	-385.34	-6.60	0.10	0	V-V
19(1)		-0.27	4.08	-381.37	-6.48	-0.66	0	Wx+V
19(0)		0.37	4,09	-381.45	-6.53	0.84	0	-Wx+V
- 19( 0)		-0.01	3.12	-379.76	-4.00	-0.05	0	Wy+V

意見え

Į

• •

Calculation	book		Oil Depot Co	mplex Office E	Building	موقع بالجامع من المراجع		18
19( 0)	19	0.11	5.05	-383.07	-9.02	0.23	0	-Wy+V
. ,	19	-6.44	4.18	-376.30	-6.92	-14.93	1	Ex+V
• •	19	6.51	3.64	-364.49	-5.54	15.06	1	-Ex+V
	19	-0.14	-1.32	-355.46	7.46	-0.34	1	Ey+V
	19	0.21	9.15	-385.33	-19.92	0.46	ł	-Ey+V
20(20)	20	75.24	10.93	•781.59	-11.44	206.49	1	Vxmax
20(22)	20	9.50	77.81	-896.30	-225.02	17.54	1	Vymax
20(25)	20	5.03	-50.40	-583.83	182.11	5.57	1	Nmin
20(1)	20	· 8.69	16.45	-873.25	-25.74	13.84	0	Nmax
20(22)	20	9.50	77.81	<b>-8</b> 96.30	-225.02	- 17.54	1	Mxmax
20(19)	20	-59.39	18.97	-833.09	-35.37	-181.27	1	Mymax
20(1)	20	8.69	16.45	-873.25	-25.74	13.84	0	V-V
20( 0)	20	4.96	15.95	-856.57	-24.78	3.53	0	Wx+V
20( 0)	20	12.01	16.17	-855.33	-25.47	23.50	0	-Wx+V
20(0)	20	7.89	4.01	• <b>841.6</b> 3	12.83	11.74	0	Wy+V
20( 0)	20	9.08	28.11	-870.27	-63.08	15.29	0	-Wy+V
	20	-59.39	18.97	-833.09	-35.37	-181.27	1	Ex+V
20( 0)	20	75.24	10.93	-781.59	-11.44	206.49	1	-Ex+V
	20	6.35	-47.91	-718.38	178.21	7.68	1	Ey+V
• •	20	9.50	77.81	-896.30	-225.02	17.54	1	-Ey+V
21(19)	21	-66.68	21.97	-908.68	-41.62	-192.75	1	Vxmax
21(22)	21	2.64	82.64	-999.51	-236.54	6.74	1	Vymax
21(25)	21	-1.37	-51.34	-673.54	187.40	-4.50	1	Nmin
21(1)	21	0.76	18.75	-999.87	-29.42	1.36	0	Nmax
21(22)	21	2.64	82.64	-999.51	-236.54	6.74	1	Mxmax
21(19)	21	-66.68	21.97	-908.68	-41.62	-192.75	1 -	Mymax
21(1)	21	0.76	18.75	<b>•999.87</b>	-29.42	1.36	0	V-V
21(0)	21	-2.79	18.16	-976.47	-28.27	-8.68	0	Wx+V
21(0)	21	4.28	18.46	-977.43	-29.19	11.33	0	-Wx+V
21(0)	21	0.09	5.38	-961.98	11.92	-0.55	0	₩y+V
21( 0)	21	1.40	31.24	-991.92	-69.38	<u>` 3.20</u>	0	-Wy+V
21(0)	21	-66.68	21.97	-908.68	-41.62	-192.75	1	Ex+V
21(0)	21	68.06	12.18	-916.47	-11.99	195.20	1	-Ex+V
21(0)	21	-1.26	-48.49	-825.64	182.93	-4.30	1	Ey+V
21( 0)	21	2.64	82.64	-999.51	-236.54	6.74	1	•Ey+V
22(19)	22	-70.71	17.22	-635.39		-199.09	1	Vxmax
. 22(22)	22	-13.20	77.99	···-643.65	-233.14	-18.19	1	Vymax
22(25)	22	-13.86	-58.02	-384.98	201.74	-24.15	1	Nmin
22(14)	22	-15.02	25.14	-606.69	-61.15	-22.65	0	Nmax
22(21)	22	-16.32	-56.20	-478.50	198.88	-28.00	1	Mxmax
22(19)	22	-70.71	17.22	-635.39	-35.68	-199.09	1	Mymax

18

0

0

lculation	book		Oil Depot Co	mplex Office B	on form &			
22( 1)	22	-15.85	11.79	-603.61	-18.52	-24.78	0	٧٠٧
• •	22	-18.55	11.40	-595.21	-17.64	-33.47	0	Wx+V
• •	22	-12.57	11.71	-589.68	-18.67	-15.20	0	-Wx+V
	22	-16.10	-2.04	-578.20	24.84	-26.02	0	Wy+V
-	22	-15.02	25.14	-606.69	-61.15	-22.65	0	-Wy+V
22(0)		-70.71	17.22	-635.39	-35.68	-199.09	1	Ex+V
22(0) 22(0)	22	41.20	4.57	-486.76	1.42	152.89	1	-Ex+V
22(0)	22	-16.32	-56.20	-478.50	198.88	-28.00	l	Ey+V
22(0)	22	-13.20	77.99	-643.65	-233.14	-18.19	1	-Ey+V
23(20)	23	71.62	-5.70	-713.75	3.29	201.95	1	Vxma
23(21)	23	16.78	-66.33	-432.58	176.86	27.30	1	Vymax
23(25)	23	14.29	-64.51	-327.16	173.91	23.36	1	Nmin
23(14)	23	15.53	-4.76	-692.77	-0.44	24.30	0	Nmax
23(21)	23	16.78	-66.33	-432.58	176.86	27.30	1	Mxma
23(20)	23	71.62	-5.70	-713.75	3.29	201.95	1	Myma
23( I)	23	16.20	-11.72	-687.72	19.11	25.61	0	V-V
23( 0)	23	12.91	-11.33	-670.87	18.24	16.03	0	Wx+V
23(0)	23	18.83	-11.69	-675.61	19.24	34.14	0	-Wx+\
23(0)	23	16.21	-18.27	-653.71	37.92	25.87	0	Wy+Y
23(0)	23	15.53	-4.76	-692.77	-0.44	24.30	0	-Wy+V
23( 0)	23	-41.75	-16.13	-551.36	32.10	-154.74	1	Ex+V
23( 0)	23	71.62	-5.70	-713.75	3.29	201.95	1	-Ex+V
23(0)	23	16.78	-66.33	-432.58	176.86	27.30	1	Ey+V
23( 0)	23	13.10	44.51	-832.52	-141.47	19.91	1	-Ey+V
24(19)	24	-73.38	-15.97	-953.15	30.33	-204.55	1	Vxmax
24(21)		-4.17	-71.08	-756.17	188.10	-5.68		Vymax
24(25)	24	-3.40		-596.89		-4.47	1	Nmin
24(1)	24	-4.82				-7.48	0	Nmax
24(21)	24	-4.17	-71.08	-756.17			1	Mxma
24(19)	24	-73.38	-15.97	-953.15	30.33		1	Myma V V
24( 1)	24	-4.82	-13.18	-1071.24			0	¥•¥
24( 0)	24		-12.73	-1041.55				₩x+\ ₩v±\$
24( 0)		-1.26	-13.00	-1040.28				•₩x+\ ₩₩
24( 0)	24	-4.59		-1019.19		-6.87		₩у+\ Мин И
24( 0)	24			-1062.64		-7.97		-Wy+V
24( 0)	24		-15.97				1	Ex+V
24(0)		64.06		-958.24	8.33	190.05		-Ex+\
24( 0)	24	-4.17		-756.17		-5.68		Ey+V
	24		47.11	-1155.22		-8.82	I	-Ey+V
		-61.51	-10.64	-1025.31	20.40	-185.85		Vxma
25(21)	) 25	4.13	-69.68	-797.09	189.68	7.40	1	Vyma

.

•

.

-

Calculation	book	an a	Oil Depot C	complex Office	Building		********	20
25(25)	25	3.60	-68.36	-629.46	187.54	6.55	1	Nmin
25(1)	25	3.66	-8.93	-1117.63	14.58	5.86	0	Nmax
25(21)	25	4.13	-69.68	-797.09	189.68	7.40	1	Mxmax
25(19)	25	-61.51	-10.64	-1025.31	20.40	-185.85	1	Mymax
25(1)	25	3.66	-8.93	-1117.63	14.58	5.86	0	V-V
25(0)	25	0.20	-8.56	-1039.61	13.86	-3.98	0	Wx+V
25(0)	25	6.86	-8.76	-1086.93	14.41	15.29	0	-Wx+V
25(0)	25	3.78	-17.56	-1063.41	39.29	6.30	0	Wy+V
25(0)	25	3.28	0.24	-1113.13	-11.03	5.01	0	-Wy+V
25(0)	25	-61.51	-10.64	-1025.31	20.40	-185.85	1	Ex+V
25( 0)	25	67.85	-5.18	-986.22	5.33	196.01	1	-Ex+V
25( 0)	25	4.13	-69.68	-797.09	189.68	7.40	1	Ey+V
25( 0)	25	2.21	53.86	-1214.45	-163.95	2.77	1	-Ey+V
26(20)	26	65.98	-0.69	-889.18	-0.31	192.89	1	Vxmax
26(21)	26	13.33	-64.75	-777.69	185.70	21.39	1	Vymax
26(25)	26	11.21	-64.45	-630.96	185.18	18.03	1	Nmin
26(1)	26	13.97	-2.02	-970.12	3.65	22.10	0	Nmax
26(21)	26	13.33	-64.75	-777.69	185.70	21.39	1	Mxmax
26(20)	26	65.98	-0.69	-889.18	-0.31	192.89	1	Mymax
26(1)	26	13.97	-2.02	-970.12	3.65	22.10	0	V-V
26( 0)	26	10.84	-1.89	-946.37	3.34	12.77	0	Wx+V
26( 0)	26	16.44	-2.03	-946.77	3.70	30.39	0	-Wx+V
26( 0)	26	13.77	-11.62	<b>-933.37</b>	31.20	21.87	0	Wy+V
26( 0)	26	13.51	7.71	-959.77	-24.16	21.29	0	-Wy+V
26( 0)	26	-40.53	-2.86	-871.62	6.63	-152.63	1	Ex+V
26( 0)	26	65.98	-0.69	-889.18	-0.31	192.89	1	-Ex+V
26( 0)	26	13.33	-64.75	-777.69	185.70	- 21.39	1	Ey+V
26( 0)	26	12.13	61.20	-983.11	-179.38	18.87	1	-Ey+V
27(19)	27	-72.65	-1.93		3.63	-203.20	1	Vxmax
27(21)	27	-9.79	-67.87	-816.25	194.41	-14.99	1	Vymax
27(25)	27	-8.12	-67.88	-663.22	194.38	-12.38	1	Nmin
27(1)	27	-11.14	0.09	-1008.34	0.27	: -17.41	0	Nmax
27(21)	27	-9.79	-67.87	-816.25	194.41	.: -14.99	1	Mxmax
27(19)	27	-72.65	-1.93	-889.03	3.63	-203.20	1	Mymax
27(1)	27	-11.14	0.09	-1008.34	0.27	-17.41	0	V-V
27( 0)	27	-14.08	0.02	-983.50	0.33	-26.46	0	Wx+V
27( 0)	27	-7.60	0.16	-985.83	. 0.16	-7.44	0	•Wx+V
. 27(.0)	27	10.76	-10.90	-970.65	31.31	-16.73	0	∶Wy+V
27( 0)	27	-10.92	11.08	-998.67	-30.82	-17.16	0	-Wy+V
27( 0)	27	-72.65	-1.93	-889.03	3.63	-203.20	1	Ex+V
27( 0)	27	52.63	2.13	-947.28	-3.30	171.89	1	•Ex+V
27( 0)	27	-9.79	-67.87	-816.25	194.41	-14.99	1	Ey+V

-

20

.

0

۲

Î

-262-

		-10.23	68.06	-1020.07	-194.07	-16.31	1	•Еу+V
28(19)	28	-67.07	8.64	-771.58	-14.53	-194.43	1	Vxmax
28(22)	28	1.12	68.85	-930.43	-199.21	1.55	1	Vymæ
28(25)	28	1.24	-54.60	-485.38	177.27	2.35	1	Nmin
28(14)	28	1.34	18.74	-854.32	-44.25	2.13	0	Nmax
28(21)	28	1.46	-53.30	-614.09	175.27	2.70	1	Mxma
28(19)	28	-67.07	8.64	-771.58	-14.53	-194.43	1	Mymax
28(1)	28	1.45	8.46	-851.36	-12.97	2.40	0	٧٠٧
28(0)	28	-2.10	8.26	-830.48	-12.64	-7.60	0	Wx+V
28(0)	28	4.92	8.30	-830.71	-12.77	12.26	0	-Wx+V
28(0)	28	1.48	-2.19	-806.87	. 18.84	2.53	0	Wy+'
28(0)	28	1.34	18.74	-854.32	-44.25	2.13	0	-Wy+\
28(0)	28	-67.07	8.64	-771.58	-14.53	-194.43	1	Ex+V
28(0)	28	69.65	1 e • <b>6.91</b>	-772.94	-9.41	198.68	1	-Ex+V
28(0)	28	1.46	-53.30	-614.09	175.27	2.70	1	Ey+V
28(0)	28	1.12	68.85	-930.43	-199.21	1.55	1	-Ey+V
29(19)	29	-59.96	6.82	-893.98	-13.19	-183.22	1	Vxmæ
29(21)	29	-0.15	-78.98	-723.91	219.51	0.17	1	Vyma
29(25)	29	-0.02	-79.48	-583.06	220.26	0.36	1	Nmin
29(1)	29	-0.64	3.30	-927.47	-4.91	-0.89	0	Nmax
29(21)	29	-0.15	-78.98	-723.91	219.51	0.17	1	Mxma
29(19)	29	-59.96	6.82	-893.98	-13.19	-183.22	1	Myma
29(1)	29	-0.64	3.30	-927.47	-4.91	-0.89	0	. V-V
29(0)	29	-3.76	3.21	-907.72	-4.71	-10.21	0	Wx+\
29(0)	29	2.39	3.22	-903.96	-4.88	8.28	0	•Wx+
29(0)	29	-0.53	-11.19	-887.43	34.27	-0.63	0	Wy+Y
29(0)	29	-0.84	17.63	-924.26	-43.86	-1.29	0	-₩y+\
29(0)		-59.96	6.82	-893.98	-13.19	-183.22	1	Ex+V
29(0)	29	58.34	· <b>-0.85</b>	-796.20	4.24	180.88	1	-Ex+V
29(0)	29	-0.15	-78.98	-723.91	219.51	0.17	1	Ey+\
29(0)	29	-1.46	84.95	-966.27	-228.47	-2.51	1	-Ey+V
30(19)	30	-72.83	7.53	-1062.74	7.86	-203.67	1	Vxma
30(21)			-89.10	-890.93		-12.72	1	Vyma
30(25)		-	-87.25	-703.95	236.30	-10.28	1	Nmin
30(14)		-10.70	2.68		-21.69	-16.98	0	Nmax
30(21)		-8.65	-89.10	-890.93	239.24	-12.72	1	Mxma
-30(19)		-72.83	7.53	-1062.74	7.86	-203.67	1	Myma
30(1)		-10.88	-11.81	-1199.77	18.82	-17.01	0	V-V
30(0)		-13.76	-11.73	-1176.69	18.80	-25.94	0	Wx+
30(0)		-7.21	-11.53	-1181.97	18.22	-6.84	0	-Wx+V

. .

ġ.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Calculation book		Oil Depot C	omplex Office B	Building	a		22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30(0) 30	-10.70	2.68	-1214.86	-21.69	-16.98	0	-Wy+V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					7.86	-203.67	1	Ex+V
30(4)       30       -8.65       -89.10       -89.93       239.24       -12.72       1       Ey+V         30(6)       30       -10.10       66.89       -1352.88       -203.94       -16.60       1       -Ey+V         31(19)       31       -6.68       -3.41       -463.65       5.18       -15.38       1       Vxmax         31(21)       31       -0.01       -9.20       -448.05       20.03       0.04       1       Wxmax         31(21)       31       -0.01       -9.20       -448.05       20.03       0.04       1       Mxmax         31(19)       31       -0.04       -3.92       -476.71       6.25       -0.06       0       Nmax         31(19)       31       -0.04       -3.92       -476.71       6.25       -0.06       0       V-V         31(0)       31       -0.37       -3.86       -470.70       6.18       -0.82       0       Wx+V         31(0)       31       -0.03       -4.87       -470.13       8.75       -0.03       0       Wy+V         31(0)       31       -6.68       -3.41       -463.65       5.18       -15.38       1       Ex+V	• •			-1181.08	27.44	174.34	1	-Ex+V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-890.93	239.24	-12.72	1	Ey+V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			66.89	-1352.88	-203.94	-16.60	1	•Ey+V
$31(21)$ $31$ $-0.01$ $-9.20$ $-448.05$ $20.03$ $0.04$ $1$ $Vymax$ $31(26)$ $31$ $-0.11$ $2.44$ $-382.19$ $-9.23$ $-0.21$ $1$ Nmin $31(1)$ $31$ $-0.04$ $-3.92$ $-476.71$ $6.25$ $-0.06$ $0$ Nmax $31(21)$ $31$ $-0.01$ $-9.20$ $-448.05$ $20.03$ $0.04$ $1$ Mxmax $31(19)$ $31$ $-6.68$ $-3.41$ $-463.65$ $5.18$ $-15.38$ $1$ Mymax $31(1)$ $31$ $-0.04$ $-3.92$ $-476.71$ $6.25$ $-0.06$ $0$ $V \cdot V$ $31(0)$ $31$ $-0.03$ $-3.85$ $-470.70$ $6.18$ $-0.82$ $0$ $Wx + V$ $31(0)$ $31$ $-0.03$ $-4.87$ $-470.13$ $8.75$ $-0.03$ $0$ $Wy+V$ $31(0)$ $31$ $-0.07$ $-2.84$ $-470.76$ $3.57$ $-0.11$ $0$ $-Wy+V$ $31(0)$ $31$ $-0.07$ $-2.84$ $-470.76$ $3.57$ $-0.11$ $0$ $-Wy+V$ $31(0)$ $31$ $-0.01$ $-9.20$ $-448.05$ $20.03$ $0.04$ $1$ $Ey+V$ $31(0)$ $31$ $-0.11$ $-9.20$ $-448.05$ $20.03$ $0.04$ $1$ $Ey+V$ $31(0)$ $31$ $-0.12$ $1.83$ $-457.66$ $-8.25$ $-0.23$ $1$ $-Vymax$ $32(20)$ $32$ $76.69$ $-15.48$ $-864.50$ $30.13$ $209.93$ $1$ <t< td=""><td>31(19) 31</td><td>-6.68</td><td>-3.41</td><td>-463.65</td><td>5.18</td><td>-15.38</td><td>1</td><td>Vxmax</td></t<>	31(19) 31	-6.68	-3.41	-463.65	5.18	-15.38	1	Vxmax
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-0.01	-9.20	-448.05	20.03	0.04	1	Vymax
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31(26) 31	-0.11	· 2.44	-382.19	-9.23	-0.21	l	Nmin
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31(1) 31	-0.04	-3.92	-476.71	6.25	-0.06	0	Nmax
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31(21) 31	-0.01	-9.20	-448.05	20.03	0.04	1	Mxmax
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31(19) 31	-6.68	-3.41	-463.65	5.18	-15.38	1	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31(1) 31	-0.04	-3.92	-476.71	6.25	-0.06	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31(0) 31	-0.37	-3.86	-470.70	6.18	-0.82	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31(0) 31	0.28	-3.85	-470.19	6.13		0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31(0) 31	-0.03	-4.87	-470.13	8.75		0	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31(0) 31	-0.07	-2.84	-470.76	3.57		0	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31(0) 31	-6.68	-3.41	-463.65	5.18		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31(0) 31	6.55	-3.97	-442.06	6.60	15.18	1	
32(20)       32       76.69       -15.48       -864.50       30.13       209.93       1       Vxmax         32(21)       32       8.96       -92.17       -652.43       247.88       14.99       1       Vymax         32(25)       32       7.55       -90.40       -503.35       245.08       12.76       1       Nmin         32(14)       32       8.94       3.99       -1001.88       -25.12       13.92       0       Nmax         32(21)       32       8.96       -92.17       -652.43       247.88       14.99       1       Mxmax         32(19)       32       -59.77       -5.76       -924.53       3.55       -183.12       1       Mymax         32(0)       32       5.63       -11.74       -985.66       18.63       14.84       0       V-V         32(0)       32       9.36       -11.74       -985.66       18.63       14.84       0       V-V         32(0)       32       12.62       -11.30       -961.38       17.76       24.36       0       -Wx+V         32(0)       32       8.94       3.99       -1001.88       -25.12       13.92       0       -Wy+V </td <td>31(0) 31</td> <td>-0.01</td> <td>-9.20</td> <td>-448.05</td> <td>20.03</td> <td>0.04</td> <td>1</td> <td>•</td>	31(0) 31	-0.01	-9.20	-448.05	20.03	0.04	1	•
32(21)       32       8.96       -92.17       -652.43       247.88       14.99       1       Vymax         32(25)       32       7.55       -90.40       -503.35       245.08       12.76       1       Nmin         32(14)       32       8.94       3.99       -1001.88       -25.12       13.92       0       Nmax         32(21)       32       8.96       -92.17       -652.43       247.88       14.99       1       Mxmax         32(19)       32       -59.77       -5.76       -924.53       3.55       -183.12       1       Mymax         32(1)       32       9.36       -11.74       -985.66       18.63       14.84       0       V-V         32(0)       32       5.63       -11.59       -962.08       18.56       4.58       0       Wx+V         32(0)       32       9.31       -26.88       -921.58       61.45       15.01       0       Wy+V         32(0)       32       8.94       3.99       -1001.88       -25.12       13.92       0       -Wx+V         32(0)       32       76.69       -15.48       -864.50       30.13       209.93       1       -Ex+V	31(0) 31	-0.12	1.83	-457.66	-8.25	-0.23	1	-Ey+V
32(25) $32$ $7.55$ $-90.40$ $-503.35$ $245.08$ $12.76$ $1$ Nmin $32(14)$ $32$ $8.94$ $3.99$ $-1001.88$ $-25.12$ $13.92$ $0$ Nmax $32(21)$ $32$ $8.96$ $-92.17$ $-652.43$ $247.88$ $14.99$ $1$ Mxmax $32(19)$ $32$ $-59.77$ $-5.76$ $-924.53$ $3.55$ $-183.12$ $1$ Mymax $32(1)$ $32$ $9.36$ $-11.74$ $-985.66$ $18.63$ $14.84$ $0$ $V-V$ $32(0)$ $32$ $5.63$ $-11.59$ $-962.08$ $18.56$ $4.58$ $0$ $Wx+V$ $32(0)$ $32$ $12.62$ $-11.30$ $-961.38$ $17.76$ $24.36$ $0$ $-Wx+V$ $32(0)$ $32$ $9.31$ $-26.88$ $-921.58$ $61.45$ $15.01$ $0$ $Wy+V$ $32(0)$ $32$ $8.94$ $3.99$ $-1001.88$ $-25.12$ $13.92$ $0$ $-Wy+V$ $32(0)$ $32$ $-59.77$ $-5.76$ $-924.53$ $3.55$ $-183.12$ $1$ $Ex+V$ $32(0)$ $32$ $-59.77$ $-5.76$ $-924.53$ $3.55$ $-183.12$ $1$ $Ex+V$ $32(0)$ $32$ $76.69$ $-15.48$ $-864.50$ $30.13$ $209.93$ $1$ $-Ex+V$ $32(0)$ $32$ $7.96$ $70.93$ $-1136.59$ $-214.20$ $11.82$ $1$ $Ey+V$ $32(1)$ $33$ $1.56$ $-96.30$ $-717.60$ $258.20$ $3.35$ <td>32(20) 32</td> <td>76.69</td> <td>-15.48</td> <td>-864.50</td> <td>30.13</td> <td>209.93</td> <td>· 1</td> <td>Vxmax</td>	32(20) 32	76.69	-15.48	-864.50	30.13	209.93	· 1	Vxmax
32(13) $32$ $8.94$ $3.99$ $-1001.88$ $-25.12$ $13.92$ $0$ Nmax $32(21)$ $32$ $8.96$ $-92.17$ $-652.43$ $247.88$ $14.99$ $1$ Mxmax $32(19)$ $32$ $-59.77$ $-5.76$ $-924.53$ $3.55$ $-183.12$ $1$ Mymax $32(1)$ $32$ $9.36$ $-11.74$ $-985.66$ $18.63$ $14.84$ $0$ $V-V$ $32(0)$ $32$ $5.63$ $-11.59$ $-962.08$ $18.56$ $4.58$ $0$ $Wx+V$ $32(0)$ $32$ $12.62$ $-11.30$ $-961.38$ $17.76$ $24.36$ $0$ $-Wx+V$ $32(0)$ $32$ $9.31$ $-26.88$ $-921.58$ $61.45$ $15.01$ $0$ $Wy+V$ $32(0)$ $32$ $8.94$ $3.99$ $-1001.88$ $-25.12$ $13.92$ $0$ $-Wy+V$ $32(0)$ $32$ $-59.77$ $-5.76$ $-924.53$ $3.55$ $-183.12$ $1$ $Ex+V$ $32(0)$ $32$ $-59.77$ $-5.76$ $-924.53$ $3.55$ $-183.12$ $1$ $Ex+V$ $32(0)$ $32$ $76.69$ $-15.48$ $-864.50$ $30.13$ $209.93$ $1$ $-Ex+V$ $32(0)$ $32$ $7.96$ $70.93$ $-1136.59$ $-214.20$ $11.82$ $1$ $Ey+V$ $32(1)$ $33$ $1.56$ $-96.30$ $-717.60$ $258.20$ $3.35$ $1$ $Vxmax$ $33(25)$ $33$ $1.44$ $-94.40$ $-555.81$ $255.19$ $3.14$ </td <td>32(21) 32</td> <td>8.96</td> <td>-92.17</td> <td>-652.43</td> <td>247.88</td> <td>14.99</td> <td>1</td> <td>. Vymax</td>	32(21) 32	8.96	-92.17	-652.43	247.88	14.99	1	. Vymax
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32(25) 32	7.55	-90.40	-503.35	245.08	12.76	1	Nmin
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32(14) 32	8.94	3.99	-1001.88	-25.12	13.92	0	Nmax
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32(21) 32	- 8.96	-92.17	-652.43	247.88	14.99	· 1	Mxmax
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32(19) 32	-59.77	-5.76	-924.53	3.55	-183.12	1	Mymax
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32(1) 32	9.36	-11.74	-985.66	·· 18.63	14.84	0	÷ V-V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32(0) 32	5.63	-11.59	-962.08	18.56	4.58	0	∃ ₩x+V
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32(0) 32	12.62	-11.30	-961.38	17.76	24.36	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32(0) 32	9.31	-26.88	-921.58	61.45	15.01	0	Wy+V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32(0) 32	8.94	3.99	-1001.88	-25.12	13.92	0	-Wy+V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32(0) 32	-59.77	-5.76	-924.53	3.55	-183.12	- 1	Ex+V
32(0)       32       7.96       70.93       -1136.59       -214.20       11.82       1       -Ey+V         33(19)       33       -67.69       -5.26       -974.05       1.23       -195.58       1       Vxmax         33(21)       33       1.56       -96.30       -717.60       258.20       3.35       1       Vymax         33(25)       33       1.44       -94.40       -555.81       255.19       3.14       1       Nmin         33(14)       33       0.51       4.27       -1101.45       -26.93       0.66       0       Nmax	32(0) 32	76.69	-15.48	-864.50	30.13	209.93	÷ 1	-Ex+V
33(19)       33       -67.69       -5.26       -974.05       1.23       -195.58       1       Vxmax         33(21)       33       1.56       -96.30       -717.60       258.20       3.35       1       Vymax         33(25)       33       1.44       -94.40       -555.81       255.19       3.14       1       Nmin         33(14)       33       0.51       4.27       -1101.45       -26.93       0.66       0       Nmax		8.96	-92.17	-652.43	247.88	14.99	: 1	
33(19)       33       -67.69       -5.26       -974.05       1.23       -195.58       1       Vxmax         33(21)       33       1.56       -96.30       -717.60       258.20       3.35       1       Vymax         33(25)       33       1.44       -94.40       -555.81       255.19       3.14       1       Nmin         33(14)       33       0.51       4.27       -1101.45       -26.93       0.66       0       Nmax	32(0) 32	7.96	70.93	-1136.59	-214.20	11.82	1 2	-
33(25)       33       1.44       -94.40       -555.81       255.19       3.14       1       Nmin         33(14)       33       0.51       4.27       -1101.45       -26.93       0.66       0       Nmax	33(19) 33	-67.69	-5.26	-974.05	1.23	-195.58	1	
33(25)       33       1.44       -94.40       -555.81       255.19       3.14       1       Nmin         33(14)       33       0.51       4.27       -1101.45       -26.93       0.66       0       Nmax	. 33(21) 33	1.56	-96.30	-717.60	258.20	3.35	: 1	Vymax
33(14) 33 0.51 4.27 -1101.45 -26.93 0.66 0 Nmax		1.44	-94.40	-555.81	255.19	3.14	- 1	Nmin
		0.51	4.27	-1101.45	-26.93	0.66	0	Nmax
23(41) 23 1.30 -70.30 -711.00 230.20 3.33 i internet	33(21) 33	1.56	-96.30	-717.60	258.20	3.35	1	Mxmax
33(19) 33 -67.69 -5.26 -974.05 1.23 -195.58 1 Mymax	• •	-67.69	-5.26	-974.05	1.23	-195.58	1	Mymax

đ

.

0

0

-264-

•

culation	book		Oil Depot Co	omplex Office B	uilding			The second s
22/11	33	0.77	-12.57	-1088.82	19.88	1.33	0	v-v
	33 33	-2.75	-12.45	-1057.01	19.91	-8.61	0	Wx+V
	33	4.26	-12.08	-1058.64	18.88	11.20	0	-Wx+V
•••	33 33	1.01	-28.79	-1014.19	65.71	1.94	0	Wy+V
•••	33 33	0.51	4.27	-1101.45	-26.93	0.66	0	-Wy+V
• •	33	-67.69	-5.26	-974.05	.1.23	-195.58	1	Ex+V
	33	69.10	-17.55	•967.42	34.81	198.00	1	-Ex+V
	33	1.56	-96.30	-717.60	258.20	3.35	1	Ey+V
33( 0)	33	-0.14	73.49	-1223.87	-222.16	-0.93	1	-Ey+V
34(19)	34	-73.54	0.23	-704.12	-8.95	-204.78	1	Vxmax
34(21)	34	-18.41	-94.65	-350.86	259.41	-28.09	1	Vymax
34(25)	34	-15.59	-93.46	-247.59	257.54	-23.68	1	Nmin
34(22)	34	-15.34	80.40	-888.43	-236.95	-24.84	1	Nmax
34(21)	34	-18.41	-94.65	-350.86	259.41	-28.09	1	Mxmax
34(19)	34	-73.54	0.23	-704.12	-8.95	-204.78	1	Mymax
34(1)	34	-18.37	-7.70	-676.82	12.16	-28.80	0	v-v
34(0)	34	-20.94	-7.78	-664.12	12.55	-37.25	0	Wx+V
34(0)	34	-15.01	-7.33	-659.50	11.29	-19.13	0	-Wx+V
34(0)	34	-18.19	-25.05	-613.82	61.07	-28.28	0	Wy+V
34(0)	34	-17.76	9.95	-709,80	-37.23	-28.10	0	-Wy+V
34(0)	34	-73.54	0.23	-704.12	-8.95	-204.78	1	Ex+V
34(0)	34	39.79	-14.48	-535.17	31.41	151.85	1	-Ex+V
34(0)	34	-18.41	-94.65	-350.86	259.41	-28.09	l	Ey+V
34(0)	34	-15.34	80.40	-888.43	-236.95	-24.84	3	-Ey+V
35(20)	35	74.29	11.78	-679.59	-24:22	206.55	1	Vxma
35(22)	35	17.31	62.42	-421.57	-169.67	25.01	1	Vyma
35(26)	35	14.46	61.34	-318.66	-168.06	20.52	1	Nmin
35(13)	35	18.48	-0.04	-679.08	9.23	29.80		Nmax
35(21)	35	16.82	-49.47		150.32	28.87	1	Mxma
35(20)	35	74.29	11.78		-24.22	206.55		Myma
35(1)	35	18.60	6.89	-674.74	-10.19	29.37	0	V-V
35(0)	35	15.25	6.96	-656.18	-10.55	19.71	0	Wx+'
35( 0)	35	21.14	6.60	-663.22	-9.55	37.75	0	-Wx+\
35(0)	35	18,48	-0.04	-679.08	9.23	29.80	0	Wy+
35( 0)	35	17.92	13.60	-640.32	-29.33	27.66	0	-₩y+\
35( 0)	35	-40.16	· 1.17	-555.33	4.88	-152.67	1	Ex+V
35( 0)	35	74.29	: 11 <b>.78</b>	-679.59	-24.22	206.55	1	-Ex+V
35(0)	35	16.82	-49.47	-813.34		28.87	1	Ey+\
35(0)	35	17.31	62.42	-421.57	-169.67	25.01	<b>I</b>	-Ey+V
36(19)	36	-69.35	6.55	-984.46	-5.13		1	Vxma
36(22)		-2.33	70.09	-774.70	-185.60	-5.52	1	Vymax

•

Î

.

J

Calculation	book		Oil Depot C	omplex Office	Building			24
36(26)	36	-2.22	68.32	-612.94	-182.91	-5.37	1	Nmio
	16	-0.66	11.56	-1088.77	-17.61	-0.95	0	Nmax
· ·	36	1.07	-48.94	-1166.35	153.25	3.70	1	Mxmax
• • •	36	-69.35	6.55	-984.46	-5.13	-198.64	1	Mymax
	36	-0.66	11.56	-1088.77	-17.61	-0.95	0	V-V
	36	-4,14	11.44	-1057.59	-17.62	-10.82	0	Wx+V
• •	36	2.84	11.17	-1057,88	-16.84	8.94	0	-Wx+V
	36	-0.12	3.36	-1078.99	5.13	0.53	0	Wy+V
	36	-1.18	19.25	-1036.47	-39.59	-2.41	0	-Wy+V
.,	36	-69.35	6.55	-984.46	-5.13	-198.64	1.	Ex+V
• •	36	68.09	14.60	-956.59	-27.23	196.82	1	-Ex+V
	36	1.07	-48.94	-1166.35	153.25	3.70	ł	Ey∻V
	36	-2.33	70.09	-774.70	-185.60	-5.52	1.	-Ey+V
			************		*********			-
37(19)	37	-77.75	5.93	-907.31	-5.67	-211.86	1	Vxmax
•	37	-10.62	71.37	-709.73	-191.51	-18.57	1	Vymax
	37	-9.09	69.90	-557.93	-189.27	-16.17	1	Nmin
	37	-10.09	9.68	-1008.56	-14.70	-15.78	0	Nmax
	37	-7.78	-53.74	-1111.81	164.59	-10.23	1	Mxmax
37(19)	37	-77.75	5.93	-907.31	-5.67	-211.86	l	Mymax
	37	-10.09	9.68	-1008.56	-14.70	-15.78	0	V-V
	37	-13.33	9.54	-982.21	-14.64	-25.28	0	Wx+V
	37	-6.37	9.36	-983.56	-14.11	-5.56	0	-Wx+V
	37	-9.35	0.45	-1006.79	10.95	-14.00	0	Wy+V
	37	-10.35	18.45	-958.99	-39.70	-16.84	0	-Wy+V
37(0)	37	-77.75	5.93	-907.31	-5.67	-211.86	ł	Ex+V
	37	59.35	11.71	-914.22	-21.25	183.05	1	-Ex+V
37(0)	37	-7.78	-53.74	-1111.81	164.59	-10.23	1	Ey+V
37( 0)			71.37	-709.73	-191.51	-18.57	1	-Ey+V
38(19)		-6.53	3.38	-312.78	-5.24	-15.16	1	Vxmax
38(22)		-0.05		-313.99		-0.18	1	Vymax
38(26)		-0.06	7.36	-262.12		-0.20	1	Nmin
	38	0.06	3.73		-5.92	0.09	0	Nmax
38(22)		-0.05		-313.99	-16.98	-0.18	1	Mxmax
	38	-6.53	3.38	-312.78		-15.16	1	Mymax
	38	0.06	3.73	-328.72	-5.92	0.09	0	V-V
38(0)	38	•0.26	3.68	-324.21	-5,85	-0.65	0	Wx+V
38(0)	38	0.38	3.67	-324.07			0	-Wx+V
-38(0) 38(0)	38	0.10	3.03	-323.67			0	. ₩y+V
38(0)	38	0.02	4.33	-324.61				-Wy+V
38(0)	38	-6.53	3.38	-312.78				Ex+V
38(0)	38	6.66	3.67	-309.72				-Ex+V
38(0)		0.19			5.78	0.41	i	Ey+V
Jo( V)	50	V.17	-0.70		0110		-	

-266-

culation	book	ng at / <u></u> tt [−] t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t tttttttt	On Depot Co	omplex Office I	Sunaing			
38( 0)	38	-0.05	7.95	-313.99	-16.98	-0.18	1	-Ey+V
39(20)	39	78.24	8.02	-1014.85	-14.01	212.79	1	Vxmax
39(21)	39	10.54	-58.20	-1145.55	175.40	18.60	ŧ	Vymax
39(26)		5.72	69.83	-752.59	-193.03	7.13	1	Nmin
39(1)	39	9.77	6.28	-1119.30	-9.42	15.48	0	Nmax
39(21)		10.54	-58.20	-1145.55	175.40	18.60	1	Mxmay
39(19)	39	-60.51	4.68	-1055.86	-5.23	-184.72	1	Mymax
39(1)	39	9.77	6.28	-1119.30	-9.42	15.48	0	V-V
39(0)	39	6.02	6.35	-1097.98	-9.62	5.18	0	Wx+V
39(0)	39	13.06	6.25	-1096.55	-9.33	25.02	0	•₩x+V
39(0)	39	10.06	-3.59	-1111.29	18.56	16.56	0	. ₩y+V
39(0)	39	9.01	16.19	-1083.25	-37.50	13.64	0	∙Wy+V
39(0)	39	-60.51	4.68	-1055.86	-5.23	-184.72	1	Ex+V
39(0)	39	78.24	8.02	-1014.85	-14.01	212.79	1	-Ex+V
39(0)	39	10.54	-58.20	-1145.55	175.40	18.60	1	Ey+V
39(0)		7.20	70.89	-925.15	-194.63	9.47	1	-Ey+V
40(19)	40	-79.59	-2.31	-968.25	4.22	-214.75	1	Vxmax
40(21)		-10.02	-62.94	-1122.89	186.64	-13.75	1	Vymax
40(26)		-11.92	55.62	-657.69	-174.54	-20.64	1	Nmin
40(1)	40	-13.07	-4.34	-1068.76	7.23	-20.48	0	Nmax
40(21)		-10.02	-62.94	-1122.89	186.64	-13.75	1	Mxmax
40(19)			-2.31	-968.25	4.22	-214.75	1	Mymax
40(1)	40	-13.07	-4.34	-1068.76	7.23	-20.48	0	<b>V-V</b>
40(0)	40	-16.22	-4.14	-1042.96	6.89	-29.82	0	₩x+V
40(0)		-9.34	-4.35	-1043.35	7.25	-10.23	0	•Wx+V
40(0)	40		-13.87	-1064.35	35.99	-18.51	0	₩y+V
40(0)	40	-13.35	5.38	-1021.96	-21.86	-21.55	0	-Wy+V
40(0)	40	-79.59	-2.31	-968.25	4.22	-214.75	1	Ex+V
40(0)	40	55.65	-5.68	-974.20	8.99	177.24	1	-Ex+V
40(0)	40		-62.94		186.64		1	Ey+V
40(0)	40	-13.92	54.96	-819.56	-173.44	-23.76	ł	-Ey+V
41(19)	41	-67.26	-7.70	-817.48	11.19	-195.34	1	Vxmax
41(21)				-989.28		5.94	1	Vyma
41(26)				-511.76		-3.93	1	Nmin
41(13)				-908.16			0	Nmax
41(21)		2.49		-989.28		5.94	1	Mxma
41(19)	•			-817.48		-195.34	1	Myma
41(1)		0.72		-905.64		1.23	0	V-V
41(0)		-2.75		-882.87		-8.62	0	Wx+V
41(0)		4.16		-882.79			0	-Wx+V
41(0)		1.26		-908.16	46.50	2.69	0	Wy+Y

•

.

R.

.

.

alculation	book		Oil Depot C	omplex Office l	Building			
41(0)	41	0.15	1.19	-857.51	-16.63	-0.31	0	∙₩y+V
41(0)	41	-67.26	-7.70	-817.48	11.19	-195.34	1	Ex+V
41(0)	41	68.55	-9.60	-820.03	16.58	197.53	1	•Ex+V
41(0)	41	2.49	-69.81	-989.28	201.26	5.94	1	Ey+V
41(0)	41	-1.20	52.51	-648.22	-173.49	-3.75	1	-Ey+V
42(20)	42	76.73	-4.32	-953.68	9.69	210.40	1	Vxmax
42(21)	42	9.86	-87.84	-1045.43	233.46	17.54	l	Vymax
42(26)	42	5.75	82.35	-696.93	-224.41	7.17	1	Nmin
42(1)	42	9.62	-3.32	-1044.43	5.50	15.23	0	Nmax
42(21)	42	9.86	-87.84	-1045.43	233.46	17.54	1	Mxmax
42(19)	42	-59.70	-1.68	-947.07	0.19	-183.44	1	Mymax
42(1)	42	9.62	-3.32	-1044.43	5.50	15.23	0	V-V
42( 0)	42	5.86	-3.36	-1019.74	5.63	4.94	0	Wx+V
42( 0)	42	12.80	-3.11	-1019.74	5.08	24.61	0	-Wx+V
42( 0)	42	9.80	-18.09	-1033.76	45.13	16.14	0	Wy+V
42( 0)	42	8.86	11.63	-1005.71	-34.42	13.41	0	-Wy+V
42( 0)	42	-59.70	-1.68	-947.07	0.19	-183.44	1	Ex+V
42(0)	42	76.73	-4.32	-953.68	9.69	210.40	1	-Ex+V
42(0)	42	9.86	-87.84	-1045.43	233.46	17.54	1	Ey+V
42( 0)	42	7.17	81.85	-855.32	-223.58	9.42	1	-Ey+V
43(19)	43	-75.89	15.03	-923.94	-27.65	-208.94	1	Vxmax
43(22)	43	-8.32	92.85	-743.19	-244.80	-14.95	1	Vymax
43(26)	43	-7.19	91.09	-584.49	-242.06	-13.18	l	Nmin
43(13)	43	-6.86	-3.79	-1047.92	23.86	-10.08	0	Nmax
43(21)	43	-5.25	-71.75	-1161.18	211.94	-6.25	1	Mxmax
43(19)	43	-75.89	15.03	-923.94	-27.65	-208.94	ł	Mymax
43(1)	43	-7.58	11.53	-1039.89	-17.92	-11.84	0	V-V
43( 0)	43	-10.88	11.20	-1016.47	-17.29	-21.42	0	Wx+V
43(0)	43	-3.86	11.35	-1017.26	-17.78	-1.60	0	-Wx+V
43( 0)	43	-6.86	-3.79	-1047.92	23.86			₩y+V
43( 0)	43			-985.81		-12.94		•
43( 0)	43			-923.94				Ex+V
43( 0)	43	62.32	6.07	-980.43	-			
43( 0)	43	-5.25			211.94			Ey+V
43( 0)				-743.19		-14.95		-Ey+V
44(19)	44	-6.64	5.01	-381.15	-8.24	-15.33	1	
.44(22)	- 44	-0.19	·· 9.96	-363.05	-21.21	-0.40	.1	. Vymax
				-300.26		-0.39		Nmin
44(1)		-0.03		-411.42		-0.05	0	Nmax
44(22)		-0.19	9.96	-363.05	-21.21	-0.40	1	Mxma
44(19)				-381.15				Mymax

·

. 0

R

-268-

lculation	book	al an	OnDeporto	mplex Office B	011001-8			والجانين المتعيين
44( 1)	44	-0.03	5.17	-411.42	-8.23	-0.05	0	<b>V-V</b>
	44	-0.35	5.04	-402.30	-8.01	-0.79	0	Wx+V
	44	0.29	5.05	-402.32	-8.04	0.69	0	-Wx+V
	44	0.01	4.07	-403.44	-5.51	0.06	0	₩y+V
• •	44	-0.08	6.01	-401.18	-10.55	-0.16	0	-Wy+V
44(0)	44	-6.64	5.01	-381.15	-8.24	-15.33	1	Ex+V
44(0)	44	6.56	4.36	-372.25	-6.68	15.22	1	-Ex+V
44(0)	44	0.11	-0.58	-390.36	6.28	0.29	ì	Ey+V
44(0)	44	-0.19	9.96	-363.05	-21.21	-0.40	1	-Ey+V
45(20)	45	77.58	6.24	-879.88	-4.05	211.75	1	Vxma
45(22)	45	÷ 7.27	92.56	-648.64	-248.26	9.59	1	Vyma
45(26)	45	5.78	90.71	-499.68	-245.37	7.23	1	Nmin
45(13)	45	10.11	-3.45	-1003.28	24.58	16.62	0	Nmax
45(21)	45	10.64	-70.35	-1138.93	213.53	18.77	1	Мхта
45(19)	45	-59.66	15.98	-907.70	-30.67	-183.39	1	Mymax
45(1)	45	9.78	12.27	-987.48	-19.15	15.49	0	<b>V-V</b>
45(0)	45	6.08	11.82	-964.02	-18.28	5.28	0	Wx+'
45(0)	45	13.05	12.11	-961.75	-19.08	25.01	0	-Wx+\
45(0)	45	10.11	-3.45	-1003.28	24.58	16.62	. 0	₩y+'
45(0)	45	9.03	27.38	-922.49	-61.94	13.67	0	-Wy+\
45(0)	45	-59.66	15.98	-907.70	-30.67	-183.39	1	Ex+V
45(0)	45	77.58	6.24	-879.88	-4.05	211.75	1	Ex+V
45(0)	45	10.64	-70.35	-1138.93	213.53	18.77	1	Ey+V
45( 0)	45	7.27	92.56	-648.64	-248.26	9.59	1	-Ey+V
46(19)	46	-68.07	17.64	-958.49	-34.82	-196.62		Vxma
46(22)	46	-0.79	96.40	-723.09	-258.21	-3.11		Vyma
46(26)	46	••		-560.38	-255.20		1	Nmin
46(13)	46	1.18	-4.17	-1107.45	26.95	2.58		
46(21)	46	2.08	-73.39	-1229.41	222.14			
46(19)	46	-68.07	17.64	,	-34.82			Myma
46( 1)	46	0.71	12.67	-1094.95	-19.84	1.21	0	۷-۷ ۱۷-۰۰
46( 0)	46	-2.80	12.18	-1064.01		-8.70	0	Wx+V
46( 0)	46	4.19	12.55	-1063.57	-19.88	11.06		
46( 0)	46	1.18	-4.17	-1107.45	26.95	2.58		₩y+ _₩v+¥
46( 0)	46	0.20	28.89	-1020.13	-65.69			-Wy+' Ex+V
· 46( 0)	46	-68.07		-958.49	-34.82			
46( 0)				-994.01	-1.25	198.81		
46( 0)	46	2.08			222.14	5.30		-
46( 0)	46	-0.79	20110	-723.09		-3.11	l .	-Ey+V
47(19)	47	-74.16	14.88	-684.45	-32.00	-206.20	1	Vxma
47(21)	47	-13.41	-80.05	-893.10	236.44	-19.10	1	Vyma

•

I

Calcula	tion	book		Oil Depot Co	mplex Office H	Building		-	28
-				03.86	062.09	-257.97	-29.53	1	Nmin
47(2		47	-17.58	93.76	-253.98	36.69	-26.29	0	Nmax
47(1	•	47	-17.16	-9.56	-716.05	236.44	-19.10	1	Mxmax
47(2	-	47	-13.41	-80.05	-893.10		-206.20	1 ;	Mymax
47(	-	47	-74.16	14.88	-684.45	-32.00			Wymax V-V
47(		47	-18.40	8.10	-683.71	-12.72	-28.87	0	
47(	•	47	-20.95	7.72	-672.08	-11.84	-37.27	0	Wx+V
47(	0)	47	-15.06	8.16	-664.87	-13.09	-19.24	0	-Wx+V
- 47(	-	47	-17.16	-9.56	-716.05	36.69	-26.29	0	Wy+V
47(	0)	47	-18.86	25.44	-620.90	-61.62	-30.23	0	-Wy+V
47(	0)	47	-74.16	14.88	-684.45	-32.00	-206.20	1	Ex+V
47(	0)	47	40.36	0.07	-566.92	8.51	153,15	1	-Ex+V
47(	0)	47	-13.41	-80.05	-893.10	236.44	-19.10	1	Ey+V
47(	0)	47	-20.39	95.00	-358.27	-259.93	-33.95	1	-Ey+V
48(	20)	48	72.90	-8.10	-630.29	7,08	205.53	1	Vxmax
48(	-	48	18.56	-54.37	-625.88	158.01	34.44	1	Vymax
	26)	48	8.80	32.63	-403.32	-122.84	8.70	1	Nmin
48(		48	16.05	-12.91	-604.02	20.98	25.31	0	Nmax
	(21)	48	18.56	-54.37	-625.88	158.01	34.44	1	Mxmax
	(20)	48	72.90	-8.10	-630.29	7.08	205.53	1	Mymax
48(		48	16.05	-12.91	-604.02	20.98	25.31	0	γ-v
48(		48	12.84	-12.48	-589.75	20.04	15.90	0	Wx+V
	(0)	48	18.68	-12.79	-595.90	20.98	33.78	0	-Wx+V
	(0)	48	16.95	-17.87	-599.89	37.29	28.43	0	Wy+V
	(0)	48	14.57	-7.40	-585.77	3.73	21.25	0	-Wy+V
	(0)	48	-43.05	-15.61	-492.46	31.28	-158.48	1	Ex+V
		48	72.90	-8.10	-630.29	7.08	205.53	1	-Ex+V
	(0)					158.01			Ey+V
	` '	48			-496.88		12.62		
40	( 9	40	11.27					-	-,
49	(19)	49	-70.27			38.69	-201.33	1	Vxmax
	(21)		3.66			176.36			Vymax
	• •	49	-4.66			-123.51		1	
	(1)		-0.58	-19.86	-998.74	31.85	-0.87	0	Nmax
		49	3.66	-63.63		176.36			Mxmax
		49	-70.27			38.69			Mymax
		49	-0.58		-998.74		-0.87		V-V
		49	-4.03				-10.64		₩x+V
	(0) (0)		2.89		-975.75		8.92	0	-Wx+V
	• •	-49	0.82	-25.52		- 50.59		0	Wy+V
		49	-1.96						-
		49 49	-70.27				-201.33		•
	• •					18.96			-Ex+V
	• •	49 40	69.18			176.36			
49	ν( U)	49	3.66	-63.63	-710.70	110.30	. 10.33	1	- 10 <b>9</b> • 1

ļ

8

 $\bigcirc$ 

culation	book		Oil Depot Co	mpiex Office I	Solution			<u></u>
49( 0)     4	49	-4.75	27.60	-844.41	-118.71	-12.63	1	-Ey+V
50(19)	50	-78.07	-17.76	-798.48	31.61	-213.60	1	Vxmax
50(21)	50	-4.07	-63.60	-882.15	180.09	-1.17	1	Vymax
	50	-11.42	34.86	-602.43	-134.09	-23.13	1	Nmin
• •	50	-9.17	-17.35	-879.56	27.84	-14.39	0	Nmax
	50	-4.07	-63.60	-882.15	180.09	-1.17	1	Mxmax
	50	-78.07	-17.76	•798.48	31.61	-213.60	1	Mymax
	50	-9.17	-17.35	-879.56	27.84	-14.39	0	V-V
-	50	-12.43	-16.83	-860.58	26.87	-23.87	0	Wx+V
	50	-5.53	-16.99	-861.90	27.37	-4.32	0	-Wx+V
	50	-7.56	-23.88	-869.90	49.25	-10.15	0	₩y+V
	50	-10.39	-9.93	-852.58	4.98	-18.04	0	-Wy+V
• •	50	-78.07	-17.76	-798.48	31.61	-213.60	1	Ex+V
50(0)	50	61.17	-13.59	-821.07	18.57	187.09	1	-Ex+V
50(0)	50	-4.07	-63.60	-882.15	180.09	-1.17	1	Ey+V
50( 0)	50	-12.83	32.25	-737.40	-129.91	-25.34	1	-Ey+V
 51(19)	51	-6.78	•3.94	-258.41	6.43	-15.63	3	Vxmax
51(21)	51	0.29	-8.03	-265.11	17.14	0.74	1	Vyma
51(26)	51	-0.49	1.05	-207.31	-5.99	-1.04	ł	Nmin
51(1)	51	-0.13	-4.04	-267.87	6.46	-0.20	0	Nmax
51(21)		0.29	-8.03	-265.11	17.14	0.74	1	Mxma
-	51	-6.78	-3.94	-258.41	6.43	-15.63	1	Myma
•••	51	-0.13	-4.04	-267.87	6.46	-0.20	0	V-V
51(0)	51	-0.44	-3.97	-265.21	6.35	-0.93	Ð	₩x+\
51(0)		0.19	-3.98	-265.18	6.38	0.54	0	-Wx+
51(0)	51	0.00	-4.60	-266.18	7.98	0.10	0	Wy+
-	51		-3.36	-264.21	4,75	-0.49	0	•₩y+V
51(0)	51	-6.78		-258.41	6.43	-15.63	1	Ex+V
51(0)	51	6.58	-3.67		5.74		i	-Ex+V
51(0)	51	0.29	-8.03	-265.11	17.14		1	Ey+\
51(0)		-0.50	0.42			-1.07	1	•Ey+V
52(20)	52	84.76	•11.62	-847.89	16.90	224.21	1	Vxma
52(21)			-65.42		186.76	29.79	1	Vyma
52(26)			41.60	-663.73		10.92	1	Nmin
52(20)		15.77	-13.58			24.86	0	Nmax
52(1) 52(21)			-65.42	-898.89			1	Mxm
-		-56.59		-856.79			1	Myma
-52(19)				-910.14		24.86	0	•
52(1)			-13.38		21.44	14.33	0	
52(0)	52 62			-894.87		34.01	0	
52(0)	52	18.82	13.40		46.81	27.43		

8

.

.

Calculation book		Oil Depot Co	mplex Office B	uilding			30
52(0) 52	14.35	-5.31	-889.79	-3.67	20.91	0	•Wy+V
52(0) 52 52(0) 52	-56.59	-14.37	-856.79	24.74	-179.80	1	Ex+V
52(0) 52	84.76	-11.62	-847.89	16.90	224.21	1	-Ex+V
52(0) 52	15.66	-65.42	-898.89	186.76	29.79	1	Ey+V
52(0) 52 52(0) 52	12.51	39.44	-805.79	-145.11	14.62	1	Ey+V
52(0) 52		***********					•
53(19) 53	-81.10	-3.08	-828.06	5.45	-218.36	1	Vxmax
53(21) 53	-17.70	-45.18	-800.17	158.66	-22.65	1	Vymax
53(26) 53	-26.29	40.45	-637.12	-150.62	-46.53	1	Nmin
53(1) 53	-26.51	-2.85	-853.08	4.89	-41.69	0	Nmax
53(21) 53	-17.70	-45.18	-800.17	158.66	-22.65	1	Mxmax
53(19) 53	-81.10	-3.08	-828.06	5.45	-218.36	1	Mymax
53(1) 53	-26.51	-2.85	-853.08	4.89	-41.69	0	V-V
53(0) 53	-28.75	-2.79	-836.91	4.75	-49.55	<b>0</b> ·	Wx+V
53(0) 53	-22.96	-2.77	-832.97	4.77	-31.76	0	-Wx+V
53(0) 53	-24.25	-9.89	-835.51	29.71	-36.41	0 :	Wy+V
53(0) 53	-27.45	4.33	-834.37	-20.20	-44.89	0	-Wy+V
53(0) 53	-81.10	-3.08	-828.06	5.45	-218.36	1	Ex+V
53(0) 53	33.11	-2.08	-739.90	3.31	142.90	1	-Ex+V
53(0) 53	-17.70	-45.18	-800.17	158.66	-22.65	1	Ey+V
53(0) 53	-30.29	40.02	-767.78	-149.89	-52.82	I	-Ey+V
					:		· .
54(19) 54	-38.29	2.47	-585.98	-4.83	-150.91	1	Vxmax
54(21) 54	2.47	-38.24	-626.82	151.52	9.12	1	Vymax
54(26) 54	-2.49	41.50	-446.35	-156.15	-9.08	1	Nmin
54(1) 54	-0.01	2.05	-636.85	-2.88	0.03	0	Nmax
54(21) 54	2.47	-38.24	-626.82	151.52	9.12	ł	Mxmax
54(19) 54	-38.29	2.47	-585.98	-4.83	-150.91	1	Mymax
54(1) 54	-0.01	2.05	-636.85	-2.88	0.03	0	V-V
54(0) 54	-2.05	1.97	-623.38	-2.74	-7.53	0.	Wx+V
54(0) 54	2.04	1.99	-623.30	-2.84	7.59	0	-Wx+V
54(0) 54	0.83	-5.09	-628.71	23.41	3.06	0	Wy+V
54(0) 54	-0.84	9.05	-617.97	-28.99	-3.00	0	-Wy+V
54(0) 54	-38.29	2.47	-585.98	-4.83	-150.91	1	Ex+V
54(0) 54	38.27	1.08	-584.75	-0.23	150.96	1	•Ex+V
54(0) 54	2.47	-38.24	-626.82	151.52	9.12	ì	Ey+V
54(0) 54	-2.49	41.80	-543.91	-156.57	-9.07	1	-Ey+V
55(20) 55	67.53	-5.07	-435.16	10.89	196.71	ł	Vxmax
: 55(21) 55	15.24	•66.99		200.62			. Vymax
55(26) 55	11.11	61.23	-329.06	-191.14	13.35		Nmin
55(1) 55	15.51	-3.46	-435.93	5.73	24.47	0	Nmax
	15.24	-66.99	-410.65	200.62	28.22		
•••	67.53	-5.07	-435.16	10.89	196.71		
55(20) 55	07.33	+3.07	-433.10	10.07	170.71	•	

30

()

0

.

8

.

deulation b	ook	·=	Oil Depot Cor	mplex Office H	ullaing			
55(1) 55	; 1	5.51	-3.46	-435.93	5.73	24.47	0	V-V
55(0) 55		2.47	-3.44	-426.13	5.76	15.34	0	Wx+V
55(0) 55		7.95	-3.32	-428.69	5.41	32.66	0 .	-Wx+V
55(0) 55		15.80	-14.85	-429.21	40.02	26.31	0	Wy+V
55(0) 55		14.63	8.09	-425.62	-28.85	21.69	0	-Wy+V
.55(0) 55		8.78		-371.79	-0.55	-151.37	1	Ex+V
55(0) 55		67.53	-5.07	-435.16	10.89	196.71	1	-Ex+V
55(0) 55		15.24	-66.99	-410.65	200.62	28.22	1	Ey+V
55(0) 55		13.51	60.71	-396.31	-190.28	17.13	1	∙Ey+V
56(19) 5	6 -	37.95	0.15	-484.58	-2.69	-150.39	1	Vxmax
56(21) 5	6	3.66	-40.43	-646.10	158.74	10.99	1	Vymax
	6	-2.37	38.20	-249.26	-154.82	-8.89	1	Nmin
	6	1.70	-8.64	-538.62	30.26	4.44	0	Nmax
	6	3.66	-40.43	-646.10	158.74	10.99	1	Mxma
56(19) 5	6 -	37.95	0.15	-484.58	-2.69	-150.39	1	Mymax
56(1) 5	6	0.83	-1.37	-525.50	2.44	1.35	0	V-V
56(0) 5	6	-1.26	-1.37	-515.76	2.50	-6.29	0	Wx+V
56(0) 5	6	2.86	-1.29	-515.75	2.22	8.88	0	-Wx+V
56(0) 5	6	1.70	-8.64	-538.62	30.26	4,44	0	Wy+\
56(0) 5	6	-0.10	5.99	-492.88	-25.54	-1.84	0	-Wy+V
56(0) 5	6 -	37.95	0.15	-484.58	<b>-2</b> .69	-150.39	1	Ex+V
	6	39.37	-2.58	-492.17	6.97	152.68	1	-Ex+V
	6	3.66	-40.43	-646.10	158.74	10.99	1	Ey+V
	6	-2.25	38.00	-330.66	-154.47	-8.70	ì	-Ey+V
57(20)	<b>57</b> .	73.30	-18.84	-888.64	33.99	206.16	1	Vxma
57(21)	57 -	18.46	-82.68	-992.19	229.12	34.29		Vyma
57(26)	57	7.88	52.19	-607.10	-180.83	7.24	1	Nmin
57(13)	57	16.42	-29.85	-940.60	64.88	27.59		Nmax
57(21)	57	18.46	-82.68	-992.19	229.12	34.29	1	Mxma
57(20)	57	73.30	-18.84	-888.64	33.99	206.16		Myma
57(1) 5	57	15.41	-18.04	-939.08	28.61	24.30	0	V-V
57(0) 5	57	12.16	-17.80	-921.06	28.35	14.84	0	Wx+'
57(0)	57	18.11	-17.54	-922.07		32.89	0	-Wx+\
57(0) 5	57	16.42	-29.85	-940.60	64.88	27.59		₩y+`
57(0)		13.86	-5.48	-902.53		20.14	0	-₩y+\
57(0)	57	44.57		-856.04	18.70	-160.86	1	Ex+V
57(0)	57	73.30	-18.84	-888.64	33.99	206.16	1	-Ex+V
- 57(-0)	57	18.46	82.68	-992.19		34.29	1	Ey+\
57(0)	57	10.27	49.42	-752.49	-176.44	11.02	1	-Ey+V
58(19)	58	-70.97	-12.47	-948.93		-202.43	1	Vxma
-	58	2.70	-79.59	-1036.93	228.06	9.47	1	Vyma

**M** 

.

.

alculation	book		Oil Depot C	Complex Office	Building			
58(26)	58	-4.93	49.61	-700.99	-180.66	-12.92	1	Nmin
58(1)	58	-1.30	-18.04	-1028.03	28.55	-2.00	0	Nmax
	58	.2.70	-79.59	-1036.93	228.06	9.47	1	Mxmax
	58	-70.97	-12.47	-948.93	14.11	-202.43	1	Mymax
	58	-1.30	-18.04	-1028.03	28.55	-2.00	0	V-V
· ·	58	-4.74	-17,71	-1007.31	28.20	-11.75	0	Wx+V
	58	2.18	-17.48	-1006.72	27.49	7.81	0	-Wx+V
	58	0.06	-29.71	-1021.52	65.90	1.86	0	₩y+V
	58	-2.62	-5.48	-992.50	-10.21	-5.80	0	-Wy+V
	58	-70.97	-12.47	-948.93	14.11	-202.43	1	Ex+V
	58	68.53	-20.23	-946.98	37.61	198.67	۱	-Ex+V
	58	2.70	-79.59	-1036.93	228.06	9.47	1	Ey+V
• •	58	-5.13	46.89	-858.98	-176.35	-13.23	1	-Ey+V
59(19)	 59	-68.69	-11.92	-898.70	• 11.71	<b>-198.8</b> 4	1	Vxmax
59(21)	59	5.24	-82.48	-996.30	236.44	- 13.47	1	Vymax
59(26)	59	-3.39	51.47	-670.69	-187.49	-10.49	1	Nmin
	59	1.09	-18.57	-996.17	29.33	1.76	0	Nmax
59(21)	59	5.24	-82.48	-996.30	236.44	. 13.47	1	Mxmax
59(19)	59	-68.69	-11.92	-898.70	11.71	-198.84	1	Mymax
	59	1.09	-18.57	-996.17	29.33	1.76	0	V-V
	59	-2.39	-18.28	-973.25	29.09	-8.06	0	Wx+V
	59	4.53	-18.00	-973.47	28.19	11.50	0	-Wx+V
	59	2.46	-31.07	-988.36	69.29	5.63	0	Wy+V
	59	-0.32	-5.21	-958.36	-12.01	-2.19	0	-Wy+V
	59	-68.69	-11.92	-898.70	11.71	-198.84	1	Ex+V
59(0)		70.71		-919.84	41.68	202.10	1	-Ex+V
	59	5.24		-996.30		13.47	1	∶ Ey+V
59(0)		-3.22		-822.23		•10.22	1	-
60(19)	60	-73.05	-5.02	-630.81		-205.69	1	Vxmax
60(21)	60	-11.55			232.50		1	Vymax
60(26)	60	-16.08	58.35	-387.88	-202.23		1	Nmin
60(13)		-14.73		-608.32		-21.43	0	Nmax
60(21)	60	-11.55		-644.14	232.50	-12.94	1	Mxmax
60(19)		-73.05	-5.02	-630.81	-0.68		1	Mymax
	60	-16.21	-11.30	-605.73	17.82	-25.47	0	V-V
	60	-18.83	-11.28	-597.60		-33.94	0	Wx+V
• •	60	-12.98		-591.39	16.89	-16.06	0	-Wx+V
	60	-14.73	-24.67		60.46	-21.43		Wy+V
• •	60	-17.08	2.50	-580.67	-25.52	-28.56	0	-Wy+V
• •	60	-73.05	-5.02	-630.81	-0.68	-205.69	1	Ex+V
•••	60	42.91	-15.93	-495.04	33.70		- 1	-Ex+V
• •	60	-11.55	-77.56	-644.14	232.50	-12.94	1	Ey+V

· · · · · ·

0

0

lculation		a de la casa						
60( 0)	60	-18.59	56.61	-481.71	-199.48	-34.42	l	-Ey+V
61(20)	61	85,17	-11.26	-187.25	16.34	245.81	1	Vxmax
61(21)	61	16.02	-72.14	-165.53	216.63	34.32	1	Vymax
61(23)	61	-66.71	-15.72	-61.86	26.87	-216.78	1	Nmin
61(20)	61	85.17	-11.26	-187.25	16.34	245.81	١	Nmax
61(21)	61	16.02	-72.14	-165.53	216.63	34.32	1	Mxma
61(19)	61	-65.04	-18.17	-84.50	30.80	-214.14	1	Mymax
61(1)	61	11.10	-16.30	-145.42	26.18	17.45	0	V-V
61(0)	61	7.29	-15.95	-140.45	25.52	6.20	0	Wx+V
61(0)	61	14.36	-15.82	-145.38	25.47	27.84	0	-Wx+V
61(0)	61	12.83	-24.51	-148.16	54.58	23.21	0	Wy+\
61(0)	61	8.82	-7.25	-137.67	-3.59	10.84	0	-Wy+V
61(0)	61	-65.04	-18.17	-84.50	30.80	-214.14	1	Ex+V
61(0)	61	85.17	-11.26	-187.25	16.34	245.81	1	-Ex+V
61(0)	61	16.02	-72.14	-165.53	216.63	34.32	1	Ey+V
61(0)	61	4.11	42.71	-106.22	-169.49	-2.65	1	-Ey+V
62(19)	 62	-84.98	-11.30	-185.16	18.83	-245.49	l	Vxmax
62(21)		-3.85	-74.40	-157.81	223.08	3.08	l	Vymax
62(24)		66.44	-15.89	-63.00	24.65	216.36	1	Nmin
62(19)		-84.98	-11.30	-185.16	18.83	-245.49	1	Nmax
62(21)		-3.85	-74.40	-157.81	223.08	3.08	1	Mxma
62(19)		-84.98	-11.30	-185.16	18.83	-245.49	1	Myma
62(1)	62	-11.15	-16.40	-144.70	26.29	-17.52	0	. <b>V-V</b>
62(0)	62	-14.40	-15.79	-144.59	25.27	-27.90	0	Wx+V
62(0)		-7.36	-16.18	-139.91	25.96	-6.29	0	-Wx+V
62(0)		-8.83	-25.34	-145.00	56.83	-10.84	0	Wy+\
62(0)	62	-12.93	-6.64	-139.50	-5.60	-23.35	0	-Wy+V
62(0)	62	-84.98	-11.30	-185.16	18.83	-245.49	1	Ex+V
62(0)		64.75	-18.36	-85.56	28.61	213.71	1	-Ex+V
62(0)		-3.85	-74.40	-157.81	223.08	3.08	1	Ey+∖
62(0)		-16.38	44.73	-112.90	-175.65	-34.86	1	-Ey+V

The coordinate points of Mx=0 and My=0

.

.

Tower = 1	Xodf=	33.24	Yodf =	16.45	SGM-N =	-44059.3	Vxmax
Tower = 1	Xodf =		Yodf =		SGM-N =	-41873.9	Vymax
Tower ≈ 1	Xodf=	32.25	Yodf =	16.34	SGM-N =	-29886.4	Nmin
Tower $= 1$	Xodf =	33.54	Yodf =	16.50	SGM-N =	-47544.2	Nmax
Tower = 1	Xodf =	33.56	Yodf =	16.58	SGM-N =	-43930.0	Mxmax
Tower = 1	Xodf =	33.39	Yodf=	16.43	SGM•N =	-44139.2	Mymax
Tower = 1	Xodf≍	33.32	Yodf =	16.47	SGM-N =	-47083.1	۷-۷

-275-

Calculation box	)k	Oil	Depot Comp	lex Office	Building			34
Tower = 1	Xodf =	33.35	Yodf =	16.46	SGM-N =	-46072.7	Wx+V	
Tower = 1	Xodf =	33.29	Yodf =	16.46	SGM-N =	-46072.7	-Wx+V	
Tower = 1	Xodf =	33.32	Yodf =	16.48	SGM-N =	-46072.7	Wy+V	
Tower = 1	Xodf ==	33.32	Yodf =	16.44	SGM-N =	-46072.7	-Wy+V	
Tower = 1	Xodf≖	34.03	Yodf =	16.44	SGM-N =	-43235.7	Ex+V	
Tower = 1	Xodf =	32.57	Yodf =	16.44	SGM-N =	-43232.5	-Ex+V	
Tower = 1	Xodf =	33.30	Yodf=	16.66	SGM-N =	-43240.0	Ey+V	
Tower = 1	Xodf =	33.30	Yodf =	16.22	SGM-N =	-43228.3	-Ey+V	
					· .			

.

.

-

.

(3)

X

• •

.

.

1.1 ·

.

.

÷ . .

да ст.

· :

; . : : · · · ·

· ·

• .

-276-

the second second

.

. •

· .

• :

.

(Southers)

J

6 • Output of Reinforcements

	Output of Reinforcements		*
	PJ-1.OUT		*
		1	•
	Symbols:		*
	B,H Height and Width of section(m)		•
	Lc,Lw,Lg,Lb Length of column, shear wall, brace and beam(m)		- ,
-	COLUMN:		•
	(NUc)Uc Ratio of axial force to section axial strength(N/A*fc)		1
	NUc Combinatorial number which controls Uc		*
	Ascx,y(NAsc) Reinforcement area at one side of column(mm2) Asc(NAsc) Reinforcement area of column of circular section(mm2)		• •
	NAsc Combinatorial number which controls Asc		*
	0 Minimum reinforcement		
	Mc,Nc(x,y) Moment and axial force which controls Acs		
	Rsc Ratio of reinforcement of column(As/B*H)		
	Asvc(NAsvc) Reinforcement area of stirrups for column(mm2)		
	in cert	ain	spac
	NAsve Combinatorial number which con-	trols	A
	0 Minimum	reinfo	rcem
	Vc,Nc(x,y) Shear and axial force which co	ntrols	A
	Processory Volumetric ratio of stirrups of C	olumn	Ale P
	Rsvc Volumetric ratio of stirrups of c	otum	n( ¥ 5/
	Vs Volume of stimups in		colu
	Vs Volume of stirrups in		
	Vc Volumn of concrete Vc =	;	B+H
	Sc Distance of stimups in		colu
			WA
	Arfw Angle of section between walt axis and coordinate axis		
)		shear	۱
		wall	bra
*	11-12 Number of nodes in front and back of	wan	011

ICUIATION	book		Oi	1 Depot Co	mplex Of	ice Buildin	ig			
	m 1 . I.		. <b>.</b>	!		ioknose e	fthau	(II)		*
*	aa Thick As Reinf								n N	*
				ea muie	chilocouc	u corunn.	i at via	cho(ninz	) · ·	•
-		branc	n	Ratio	of	reinforce	oment	of	branch(As/2	• <b>*</b> **
•	Rs	-		Kallo	01	(Childre	cincin	U.	oranon(1137	,
- •	(NAs)	M,N	•**	Mome	ent and	l axial	for	ce whi	ch controls	As
*	NA	ls	•••	Com	binatorial	ทบก	nber	which	controls	As
*	Ash		Hori	zontal	reinforce	ment a	area	in cert	in spacing	<u>(</u> mm2)
*	Rs	h		Ratio	of	horizo	ontal	reinfor	cement(Ash/1	`*Swh]
				-		•				
*	(NAsh)V,N	lh :	Shear					-	. •	*
*	NA	.sh	*	Com	binatorial	num	nber	which	controls	Asł
								-	÷.,	
*	Swh Dis	stance	ofho	rizontal b	ar in wall			-		
*	BEAM:									•
*	+M(Nm)			-		of beam o	on 1,1,2	,3,1	•	
*			•	il spacing					· •	
*	-M(Nm)			-		of beam o	on 1,1,2	,3, <b>3</b>		
*			-	l spacing				,	•	
*	Nm Con									
*	As(NAs)					on 1, 1, 2,.	<b>5,1(</b> mn	2)		
			-	ial spacir	-					
-	NAs Co 0 Mir					inois As				
+						(D+U)	-		*	
	Rs Ratio V(NV) i								*	
•	NV Cor						-		•	
*	Asv(NAsv)						2)		+	
*	NAsv C									•
•				forceme			51		. :	•
+	Rsv Rat					SD		-	:	•
•	T & V(NT		-				shear	kN-m)	*	
*	NTV C	-								<b>*</b> .
*	Ast(NAst)							and shear		*
*	NAst C		-			-				•.
*				forceme						*
*	• Astv Re					v tarsion	and ch	ar(mm?)	-	*
*	Astl Si				-	-	-			*
-		•		ups in be		aps tor t	vision			

•

•

0

9

a kara a t

I

7 • Structure analysis result document of elastic base beam board EFDAT.OUT

-----END=

·279-



TOTAL NUMBER OF COLUMNS=62 CONCRETE STRENGTH GRADE: BEAM Cb=30 COLUMN Cc=30



9<u>1</u>

(income)

Ser th <u> 69 58</u> Ċ, <u>69</u> <u>05=02</u> <u>5-3</u> <u>00-62</u> 65×67 24 ý - 5 06107 CT <u>163-22</u> 91 <u>05-57</u> <u>e ( 5</u> 5 0C-17 05403 91 <u>10-51</u> 2 <u>05 53</u> <u>05162</u> 511 <u>50+20</u> 71 3rd FLOOR STRUCURE PLAN(UNIT:CM) <u> 12:00 8</u> <u>야 영</u> <u>85×52</u> 05 KC 2 <u> (23/22)</u> <u>00</u> 16 <u>ac 55</u> ्रत्यः ē, <u>95=23</u> 101 0Ca 32 96-92 7 ê <u>640</u> 05×07 202 ÷. 05-52 55 12.53 Ĵ, <u>05 93</u> <u>요. ~ 2</u> 77 Ŗ å k_{as} <u>1225</u> 1 ge ŝ. ができ 禄 下 <u>00458</u> <u>95-52</u> j, ÷. <u> X 7</u> 1 56,54 ्रुष R 125 ÷

-282-

Ë

THIS FLOOR: FLOOR HEIGHT=330(CMM) TOTAL NUMBER OF BEAMS=132 TOTAL NUMBER OF COLUMNS=47 CONCRETE STRENGTE GRADE: BEAM CD=30 COLUMN Cc=30

0