200

#### 上海浦東国際空港詳細設計調査 航空給油施設

最終報告書 資料編

### タンク基礎計算書

平成 年 月

国際協力事業団

| 改訂 日付 頁 摘要 |
|------------|
|            |
|            |
|            |

#### SHANGHAI PUDONG INTERNATINAL AIRPORT

T-201~208 TANK.

#### 」心思

1. 本計画検討到送者 14 SHANHAI PUDONG MTEKHATIONAL AIRPORT a T-701~208 TANK基礎に高加する。

#### 2. 淖水八港华

基礎の設計は 屋外夕り 貯蔵所基础 の規制基準 BU 時上本学会、日本建等会、知此 图建了的程学等的 建筑和 对机 了3.

#### 3、基础 极零

- 1). 今回建設了3考理は,コンツトリングを用いた 砕石基礎とし、コンツートリングの部・下部 ·外部を所定の矸石転圧基礎を発達する
- 2)、基礎の意間はアスプルコンツート駅ままな とし、厚まちのいか以上となる。

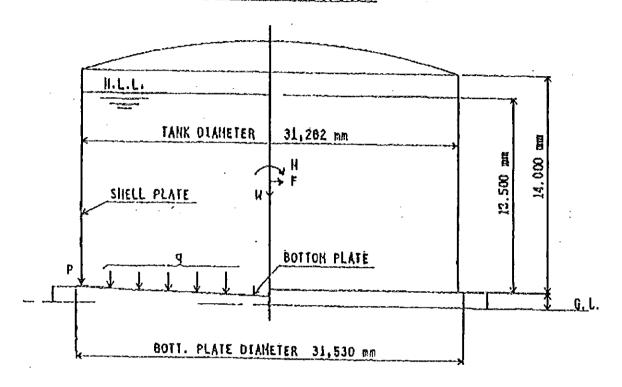
- 3)、支持地盤はセメト浴層混合撹拌工法 マはパイプロフローテーション工法にもろ 地盤改改を2行う。
- 4. 屋外夕>フ具于截所基礎a设制落件:fa核约.

(土)是)

研石リンプの天端の倒板からタン内をりまなの統列

ツツ南ま

3


1

リンプ直下BU、「府石リンプの平板古方式」修復

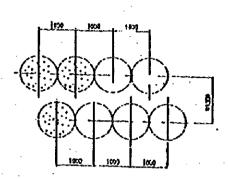
-53-

#### 5. LOADING DATA.

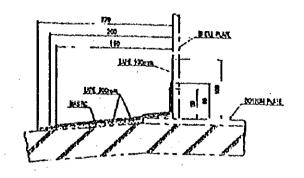
ATAQ DAIQADING DATA



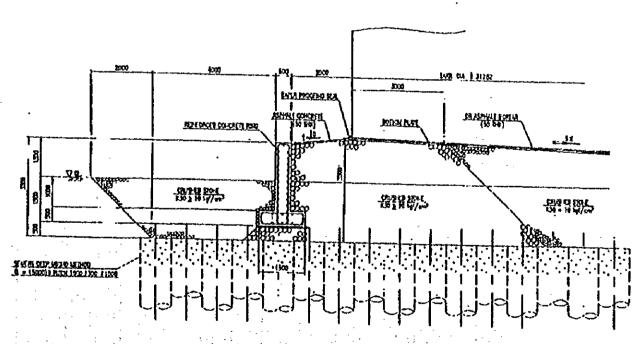
Hotes: 1). Specific gravity of content. 1.0


2). Seismic coefficient. kh = 0.3398 & kv = 0.1699

3). Uniform wind load.  $q = 0.255 t/m^2$ 

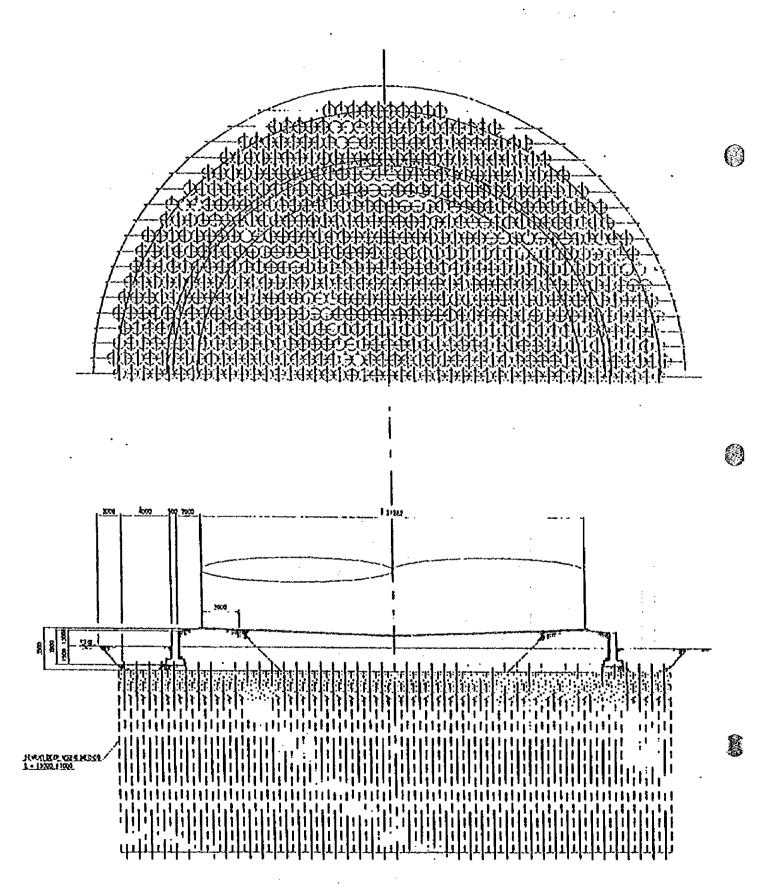

| CONDITION  | HEIGHT ( W ) | VERTICAL LOAD | ON FOUNDATION         | H: OVERTURATING HOHENT ON FOUNDATION |                             |
|------------|--------------|---------------|-----------------------|--------------------------------------|-----------------------------|
|            |              | PILINE LOAD   | q:UNLFORH LOAD        | DUE TO SEISHIC     ( F = 1,787 t )   | OUE TO WIND<br>(F = 86 t ·) |
| EHPTY      | 248 t        | 2.02 t/m      | 0:1 t/m³              | ~ ~ ~ ~ ~ ~ ~ ~                      | 663 t-m                     |
| OPERATING  | 10,635       | L 1 2.13 t/n  | L i 13.6 t/ni         |                                      | :                           |
|            |              | s :15.39 t/m  | S 1 15,8 t/m²         | 20,167 t-m                           | 663 t-m                     |
| HYD'C TEST | 11,008 t     | 2.02 t/s      | 14.1 t/n <sup>1</sup> |                                      | A T 4 A A A B B             |

## 6. 水路象图


## 6-1. SEMENT DEEP MIXING THE



SEMENT DEEP HIXING PLAN

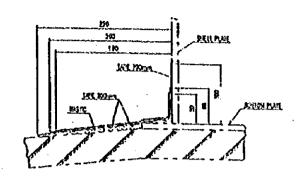



DETAIL OF WATER PROOFING STAL

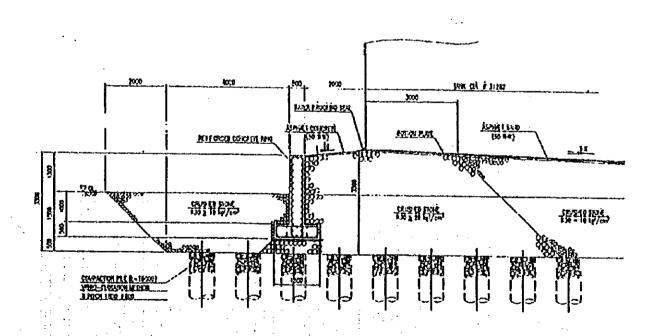


1-201-208 TANK FOUNDATION

| SIWICIW FUDOHO    | NICHAROW         | ARPO  | RI           |
|-------------------|------------------|-------|--------------|
| 1-201-208 IANK    | FOUNDATION       | ·     |              |
| SCALE L.L.        |                  | -     | DY/G. FD-21B |
| JUNUARY 1997 JAPA | A TOTAL MAINTENA | 31000 |              |

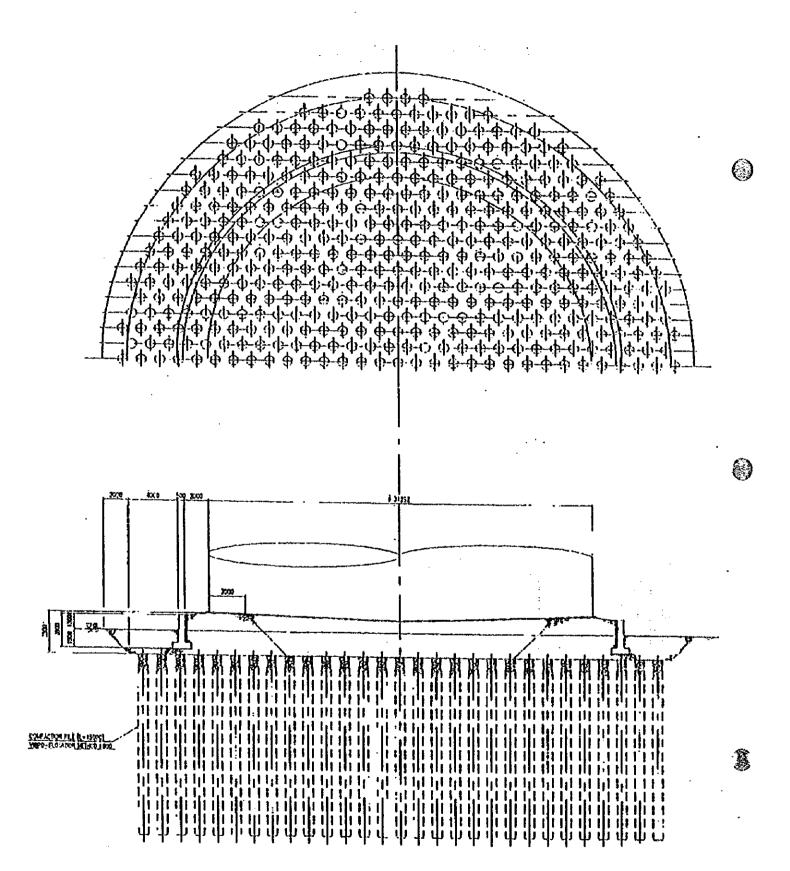



I-201~208 TANK FOUNDATION


## 6-2, COMPACTION PICE 2:E

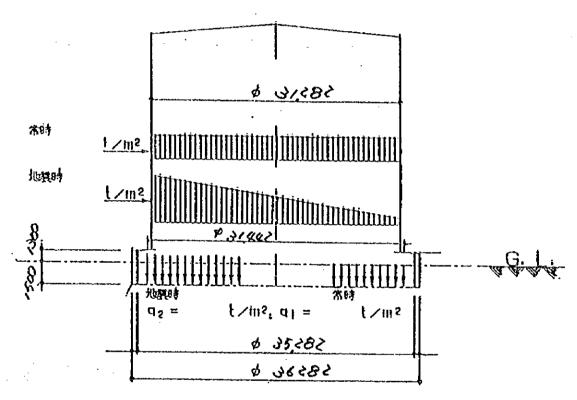
1500

COMPACTION PILE PLAN




DETAIL OF WAITER PROOFING STAL




1-201-208 TANK FOUNDATION

|   | SILWISIN PUDDIC MITERIMININE ARPORT          |
|---|----------------------------------------------|
|   | 1-201~208 IANK FOUNDATION                    |
|   | SCALE LL DNC. 1D-24A                         |
| - | WAYRE 1991 WENT THIERWOOKE COOMPANION AGENCY |



1-201~208 TANK FOUNDATION

#### 7. 地盤の支持力の計算



α山上、地盤の極限支持力(Vm)の山上、局部的地盤の複限支持力(Vm)(Vm))
Cは、枯枝力(Vm)
Ni: Ni 及び Ni は1支持力係数(右の図により土の内部庫原介からそれぞれ水める位)
け及び上方の土の有効単位株材度板(Vm))
おは、特定型外形熱タシクの依径(W)
おけ、特定型外形熱タシクの依径(W)
おけ、地表所からの肌大概を(m)

政長地盤の許養多時力

平均 N = 25 .... 对五氧压筛图的, 假能.

内部摩擦角:中

今= N.15 +15° … 設計用

Ф= /25×13 + 15° = 34,3 → 34°

鸌

支持が休安シラフェッ

Nr = 16

Ng = 22

士の粉着カ C=O,

B: 31.38と タンク直径

ト、= 1.0 % 水中での土の単位作積重量

re=1,9 tm, Dj=3,3 根x许I

8a. = 1.3d. Ne + 0.3. V, . B. Nr + 12. Dp. Ng

= 0 + 0,0 × 10 × 01,082 × 16 + 19 × 3,3 × 22

= 150 + NB = 288 t/2

ひを無視は暗台 (松入浴工を無視)

8d, = 150 m 地能 o 校晚支持力

#### **研石基础重量**

1

コニクリートリング、基礎事長

$$g_{2} = \frac{65.9}{36.28^{2} \times \frac{\pi}{4}} = 6.31 \frac{\pi}{m^{2}}$$

$$g_{3} = \frac{2.13}{3.5 \times 10} = 0.61 \frac{\pi}{m^{2}}$$

地態改定後。地態の多時力

常好安全年 子

$$g_{L} = \frac{8d}{3} = \frac{150}{3} = 50 \frac{t}{m^{2}} \rightarrow 30 \frac{t}{m}$$

地震码 安全本 己

#### 地震時

0

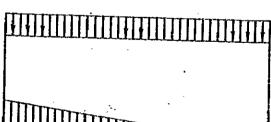
8

#### 地電の支持カの検討

8. コンクリートリングの計算 タンク荷里 (鉛度力)

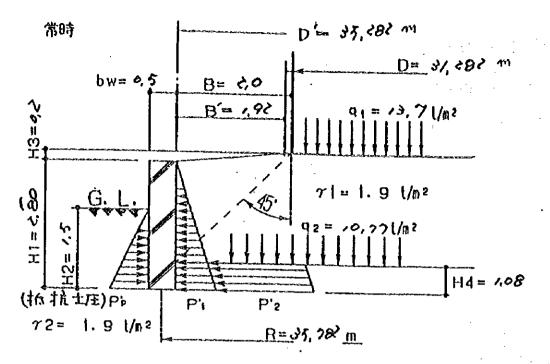
タンク計算によるローデング

地裂時


泽

$$p_1 = \frac{M}{x \cdot R^3 / 4} = \frac{20/67}{x \times 15.72/3/4} = 6.6/ t/m^2$$

$$p_2 = \frac{W}{x \cdot R^2} = \frac{10635}{x \times 15,721^2} = 13.7 \text{ t/m}_2$$


常時

13,7 t/m 2



地要時

203/t/m2



P'1 =H1\*71\*K0= 
$$\frac{1}{1}$$
8 ×  $\frac{1}{1}$ 9 ×  $\frac{1}{1}$ 9 = H2\*72 \*K0=  $\frac{1}{1}$ 5 ×  $\frac{1}{1}$ 9 ×  $\frac{1}{1}$ 9 =  $\frac{1}{1}$ 1 ×  $\frac{1}{1}$ 1 ×  $\frac{1}{1}$ 1 ×  $\frac{1}{1}$ 1 ×  $\frac{1}{1}$ 2 =  $\frac{1}{1}$ 1 ×  $\frac{1}{1}$ 2 =  $\frac{1}{1}$ 1 ×  $\frac{1}{1}$ 3 ×  $\frac{1}{1}$ 4 ×  $\frac{1$ 

 $H4=H1+H3-B/tan45' = 28+0.2-1.92/1 = 1.08^{m}$  $P'z = 10.77 \times 0.5 = 5.38$ 

Po=1/2\*P'o \*H2= 0,5x1x3 x 15=107 t/m

P1=1/2\*P'1 \*H1= 0,5x2,66x28 = 3,73 1/m

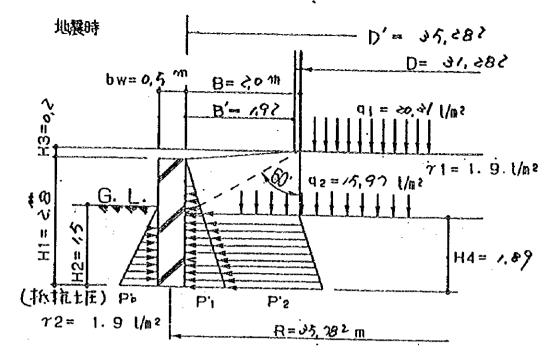
P2 =P'2 \*H4= 5.38 x 1.08 = 5.81 t/m

リングに作用する全荷屋 P.

P=P1+P2-Pi= 3.23+5.81-1.07 = 8,87 /nn.

鉄筋は、SD295A を使用する。

σsa=1800 kg/cm² - 1440 kg/cm² × 0,8


1

必要缺筋量, At

$$At = \frac{P*R}{\sigma sa} = \frac{\partial_1 4 \sqrt{x} \cdot 35.7P^2}{1.44} = 2.0 \text{ cm}^2 - 260.0 \text{ cm}^2$$
(6x-055)

鉄筋の存在化力。 σt

$$\sigma t = \frac{P*R}{At} = \frac{\delta.k \gamma \times 35, 2P \lambda 1000}{2k \beta.3} = 122 / kg/cm^2$$



P' = H \* 
$$r_1$$
 \* Ko = 2.8 × 1.9 × 0.5 = 2.66 t/m<sup>2</sup>  
P' = H \*  $r_2$  \* Ko = 1.5 × 1.9 × 0.5 = 1.60 t/m<sup>2</sup>  
 $q_2 = \frac{q_1 * D^2}{(D + 2B)^2} = \frac{20.31 \times 31.282}{35.282} = 15.97 t/m2$   
H4 = H1 + H3 - B/t an 6q' = 3.0 - 1.92/1.332 = 1.89  
P' = 15.97 × 0.5 = 2.99 t/m<sup>2</sup>

 $P_0 = 1/2*P'_0 *H2 = o, f_x/e J_x /. f_0 = /.o f_0 t/m$   $P_1 = 1/2*P'_1 *H1 = o, f_x < 66 x < 66 x < 68 = 3.73 t/m$   $P_2 = P'_2 *H4 = 7.99 x /. f_0 = /.f_1 t/m$ リングに作用する全有面 P.

鉄級は、SD295A を使用する。

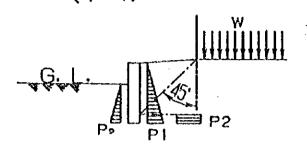
øsa=1800 kg/cm²

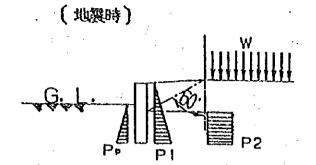
必要鉄防壁、At

经额

Ĭ

$$Al = \frac{P*R}{\sigma s a} = \frac{17.76 \times 05.782}{2.7} = 235.07 \text{ cm}^2 \qquad 248.0 \text{ cm}^2$$


$$(64-022)$$


鉄筋の存在応力。  $\sigma$  t

#### 鉄筋コンクリートリングの計算

#### 円周方向引限り力計算のまとめ

## (常晴)





|                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                       |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 常時                            | 地震時                                   |
| タンク荷重分布角度                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 <b>'</b>                   | 60,                                   |
| タンク荷重                                            | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13,7 t/m2                     | 60,31 t/m2                            |
| 主働土圧係数                                           | K <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 50                         | 0. 50                                 |
| リングに作用する側圧                                       | Pı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,79 t/m                      | 3.73 t∕m                              |
| リングに作用する側圧                                       | Pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,07 t/m                      | 1.07 t/m                              |
| タンク荷重による側圧                                       | P <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8/ t/m                      | 15,1 t/m                              |
| 合計側王                                             | Р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,47 t/m                      | 12,26 t/m                             |
| 円周方向引張り力                                         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ७०७ t                         | 635 t                                 |
| 鉄筋量 (SD295A)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$88'3 cm 5                   | SKY CM S                              |
| 鉄筋の応力度 σt                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /22/ kg/cm²                   | <560 kg/cm²                           |
| 鉄筋の許容応力度 σsa                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800x0.8<br>= 1 4 4 0 kg/cm 2 | 1800x1.5<br>= 2700 kg/cm <sup>2</sup> |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                       |
|                                                  | The state of the s |                               |                                       |
|                                                  | TOP THE MONTH WITH THE MENT OF THE THE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                       |
| langua (an an a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | _1                                    |

8、税件的核注 CEMENT DEEP MIXING

8

双引改高机够 汉花华: 20

Ap: 林中本或部市福

$$|x|=10$$

$$|x|=10$$

$$|x|=10$$

正才彻器掩

改变以能0年的七人断难度.

$$= ap \cdot Cp = ap \cdot \left( \frac{8uck}{2} \right)$$

Cp: 杭作のせ人浙座度

guck:抗体的設計基準程度

Buck: 1,0 n 4,0 株/ch² n 範囲が望まり、 こともり 設许用と12 3.0 はわれ

すがり破壊の検討

改度地能の許容以新力 而被14一般的に大政治路 联体的核的 .

BUCK: 抗体の設計卷件3色度

BUCK = 3.0 Kgm 2

Fs: 是全等。

 $Fs: \frac{1}{2} \underbrace{4}_{m}^{2},$   $W_{1} = \frac{1.9 \times 1.3}{31.28^{2}} = 10.7 \frac{1}{m^{2}}$   $W_{2} = 13.6 \frac{1}{m^{2}} \times \frac{31.28^{2}}{31.28^{2}} = 10.7 \frac{1}{m^{2}}$   $1.32 \frac{18}{m^{2}}$ 

VE, HE = 1.32 K8/cm 2

dp = 0,6

Fs = \frac{8uck}{(\frac{1}{6}, \text{He/ap})} = \frac{\frac{3.0}{(1.32/6,6)}}{(1.32/6,6)}

= 1.36 > 1.0

. . Ę 8 .

• • • •

Shanghai Pudong International Airport
Fuel Storage Depot
Design Calculation Sheet of
10000M<sup>3</sup> Cone Bottom Tank

1

- I. The Specification and Standard for Calculation
  - 1. Design specification for petrochemical vertical cyclinder steel welding storage tank (SH3046-92)
  - 2. Specification for load of constructure (GBI9-8T)
  - 3. It will be fortified that the earthquake is of 7 magnitude in shanghai area.
- II. Calculation Parameter of Oil Storage Tank Spherical Roof R=37.272m see Figure - 1.
- III. Design of Shell Thickness

The design thickness on each course of the tank shell filled with water shall be determined as follows:

$$t = 4.9 \frac{(H - 0.3)D}{[\sigma]\varphi} + C_1$$

where:

H - Vertial height form the bottom of shell to the top of, (m)

D = 31.12 (M) (inside diameter of oil storage tank)

 $[\sigma] = 157$  (MPa) (allowable stress of steel plate)

 $\varphi = 0.9$  (weld line factor)

Calculated resuits are listed as follows:

| Height of shell on    | Calculation thickness of shell | $c_1$ | Design specified thicknes on each course (mm) |
|-----------------------|--------------------------------|-------|-----------------------------------------------|
| each course (m)       | on each course (mm)            | (mm)  | on each course ( nan )                        |
| H <sub>1</sub> =14.04 | t <sub>1</sub> =15.63          | 0.8   | 18                                            |
| H <sub>2</sub> =12.45 | t <sub>2</sub> =13.91          | 0.8   | 16                                            |
| H <sub>3</sub> =10.90 | t <sub>3</sub> =12.24          | 0.8   | 14                                            |
| H <sub>4</sub> =9.35  | t <sub>4</sub> =10.56          | 0.8   | 12                                            |
| H <sub>5</sub> =7.80  | t <sub>5</sub> =8.89           | 0.8   | 10                                            |
| H <sub>6</sub> =6.24  | ts=6.91                        | 0.8   | 8                                             |
| H <sub>7</sub> =4.68  | t <sub>7</sub> =5.23           | 0.5   | 7                                             |
| H <sub>3</sub> =3.12  | t <sub>8</sub> =3.54           | 0.5   | 7                                             |
| H <sub>9</sub> =1.56  | t <sub>2</sub> =1.86           | 0.5   | 1                                             |

#### IV. Design of the tank bottom

The thickness of the tank bottom shall be in conformity with the structure requirement.

1. The specification thickness of medium-sige steel plate shall be in accordance with table 4.1.1 .

It should not be less than 6 mm, the account for the corrosion allowance lmm.

It shall not be less than 7 mm. This design is used for cone

medium-sige plate with the thickness of 10mm.

2. The thickness of the bottom plate shall be in accordance with the figure 4.1.2 .

It should not be less than 6 mm, the account for the corrosion allowance 1mm, it should not be less than 9 mm.

This design is used for cone tank with the bottom plate of 12mm in thickness.

V , Design of Tank Roof

1 . Calculation parameter of tank roof

sketch for the tank roof calculation see Figure - 2.

The  $\delta$  of specification thickness of roof plate is 6mm, it account for the corrosion allowance lmm, the  $\delta$  of calculation thickness is 5mm.

where: R =37.272m

the max. distance of radial girder and longitudial girder is L1 and L2 equal to 1374mm.

the max distance of radial girder and longitudial girder is b1 and b2 equal to 10mm.

2. External pressure calculation of tank roof:

qE=q1+q2=637+1200=1837(Pa)

 $q_1 = \frac{4846.2}{\pi R^2} (kgf/M^2) = 637Pa$  (cause by the sole weight of the tank roof

with 48462kg)

02=1200Pa=120Kgf/m2

3. Allowable external pressure calculation

[P] = 0.1E 
$$\left(\frac{t_m}{R}\right)^2 \sqrt{\frac{t_e}{t_m}}$$

 $E=210 \times 10^3$  (MPa) (modulus of elasticity for steel)

R=37.272 (m)

(roof thickness from calculation) t = 5 (mm)

$$t_{m} = \sqrt[3]{\frac{t_{1m}^{3} + 2t_{e}^{3} + t_{2m}^{3}}{4}}$$

h<sub>1</sub>=h<sub>2</sub>=60(mm)

1

see Figure - 3.

ee Figure - 3.  

$$Z_z = \frac{60 \times 10 \times 30 + 1374 \times 5 \times 62.5}{60 \times 10 + 1375 \times 5} = 59.9 \text{ mm}$$

e1=e2=2.6 mm (distance between combination section of the girder and the roof plate and intermedia section of the roof plate)

$$n_1 = 1 + \frac{b_1 h_1}{t_2 l_1} = 1 + \frac{10 \times 60}{5 \times 1374} = 1.087$$

$$n_1 = n_1 = 1.087$$

$$t_{18}^{3} = 12\left[\frac{h_{1}b_{1}}{l_{1}}\left(\frac{h_{1}^{2}}{3} + \frac{h_{1}t_{2}}{2} + \frac{t_{e}^{2}}{4}\right) + \frac{t_{e}^{3}}{12} - n_{1}t_{e}e_{1}^{2}\right]$$

$$= 12\left[\frac{60 \times 10}{1374}\left(\frac{60^{2}}{3} + \frac{60 \times 5}{2} + \frac{5^{2}}{4}\right) + \frac{5^{3}}{12} - 1.087 \times 5 \times 2.6^{2}\right]$$

=6791.1 mm<sup>3</sup>

 $t_{1n}^3 = t_{1n}^3 = 6791.1 \text{ mm}^3$ 

then: 
$$t_{re} = \sqrt[3]{\frac{t_{1m}^3 + 2t_e^3 + t_{2m}^3}{4}} = \sqrt[3]{\frac{6791.1 + 2 \times 5^3 + 6791.1}{4}} = 15.122 \text{ mm}$$

$$[p] = 0.1 \times E(\frac{t_m}{R})^2 (\frac{t_e}{t_e})^{\frac{1}{2}} = 0.1 \times 210 \times 10^3 \times (\frac{15.122}{37.272})^2 (\frac{5}{15.122})^{\frac{1}{2}}$$

=1988 Pa

the external pressure of tank roof:  $q_E=1837 \text{ Pa}$  $q_E \leq p$  (1837 Pa < 1988 Pa )

Conclusion: Regarding above calculation, the tank roof has been proved that it is safe and stability. (The calculation is based on  $\mathcal S$  of roof equal to 5mm, and the sole weight calculation is base on  $\mathcal S$  equal to 6mm.)

19

#### VI. Seismic Calculation:

1. Check the calculation of the overturning moment due to seismic force applies to the bottom of oil storage in accordance with the specification for the seismic design of petrochemical steel equipment (SH3048-93)

The FH of the lateral earthquake force of the oil storage shall be determined as follows:

FH=Kra mg

 $H_{\star}=14.04$  (height form the bottom of the tank shell to the liquid level, in m)

R=15.56 m (inside radius of the tank)

 $m=780 \times 10^4$  kg (weight of the content of the tank)

$$\frac{H_{\star}}{R} = \frac{14.04}{15.56} = 0.9 < 1.5$$

The of the moving content coefficient shall be determined as follows:

$$\phi = \frac{tgh(\sqrt{3}\frac{R}{H_{w}})}{\frac{\sqrt{3}R}{H_{w}}} = \frac{tgh(\sqrt{3}\frac{15.56}{14.04})}{\frac{\sqrt{3}\times15.56}{14.04}} = 0.50$$

 $m_e = m\phi = 780 \times 10^4 \times 0.50 = 390 \times 10^4 \text{ kg}$ 

 $g = 9.8 \text{ m/s}^2$ 

from Figure 4.3.2,  $k_z = 0.40$ 

According to the earthquake of 7 magnitude, soil condition at site of level and Tg equal to 0.30, from Figure 4.3.1:

 $\alpha = \alpha_{\text{max}} = 0.23$ 

 $F_H = K_{z} \propto m_c g = 0.40 \times 0.23 \times 390 \times 10^4 \times 9.8 = 3516240 \text{ (N)}$ 

The M<sub>1</sub> of the overturning moment due to the laternal earthquake force applies to the bottom of the tank shell shall be determined as follows:

 $M_1 = 0.45 F_H H_w = 0.45 \times 3516240 \times 14.04 = 22215604 (N.m)$ 

The Mo of the resisting overturning moment generated from the tank and the content shall be determined as follows:

 $F = 780 \times 10^4$  (weight of the content) + 22.7 × 10<sup>4</sup> = 802.7 × 10<sup>4</sup> (kg)

 $F = 8027 \times 10^4 (N)$ 

 $M_0 = FR = 8027 \times 10^4 \times 15.56 = 1249001200 (N.m)$ 

 $M_1 < M_0(22215604 < 1249001200)$ 

Conclusion: Due to M, far less than Mo, the tank is safe.

2. Seismic Calculation of the shell:

(1) The Ft of the uplift force applies by per unit length of the tank bottom shall be determined as follows:

$$F_{t} = \frac{4M_{1}}{D_{1}^{2}\pi} = \frac{4 \times 22215604}{14.04^{2}\pi} = 143494 \text{ (N/m)}$$

(2) The FL of the resisting uplight force applied by per unit length of the tank bottom shall be determined as follows:

$$F_{L} = 99 \delta_{b} \sqrt{\sigma_{Y} H_{a} \gamma_{s}} + \frac{N_{1}}{\pi D_{1}}$$

where:  $\delta_{b} = 0.012 \text{ m}$ 

 $\sigma_{\rm Y} = 235 \,{\rm MPa} = 235 \times 10^6 \,{\rm (Pa)}$  —(the yield point of the bottom plate)  $\gamma_s = 0.78$  (specific gravity of the content of the tank)

$$N_1 = 0.8 \times 217 \times 10^4 = 1736 \times 10^3$$
 (N)

$$F_{L}=99\,\delta_{b}\,\sqrt{\sigma_{Y}H_{\omega}\gamma_{s}}+\frac{N_{1}}{\pi D_{1}}$$

=99 × 0.012 
$$\sqrt{235 \times 10^6 \times 14.04 \times 0.78} + \frac{1736 \times 10^3}{\pi \times 31.12}$$
 =78024(N/m)

$$F_L < F_t < 2 F_L$$

(3) The  $\sigma_c$  of the longitudial stress applied by the bottom of the tank shell shall be determined as follows:

$$\sigma_c = \frac{N_1}{A_1} + i \frac{M_1}{Z_1}$$

where:

$$i = 0.4\left(\frac{F_t}{F_t}\right)^2 - 0.7\frac{F_t}{F_t} + 13$$
$$= 0.4\left(\frac{143494}{78024}\right)^2 - 0.7 \times \frac{143494}{78024} + 13$$

=1.366 (uplift coefficient of the tank bottom)
$$\sigma_c = \frac{N_1}{A_1} + i \frac{M_1}{Z_1} = \frac{1736 \times 10^3}{1.76} + 1.366 \times \frac{22215604}{13.684} = 3204028 \text{ (Pa)}$$

$$A_1 = \pi D_1 \delta_1 = \pi \times 31.12 \times 0.018 = 13.684 \text{ (m}^3\text{) (section area of the bottom ring of the tank shell)}$$

$$Z_1 = 0.785 D_1^2 \delta 1 = 0.785 \times 31.12^2 \times 0.018 = 13.684 \text{ (m}^3\text{) (the resisting moment of the section area of the bottom ring of the tank shell)}$$

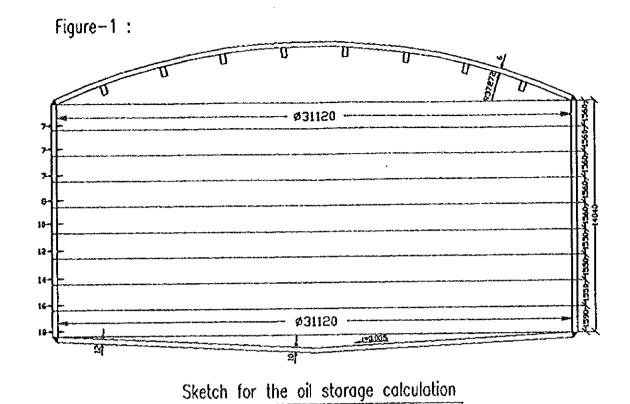
(4) The  $\sigma_{\rm er}$  of the longitudial critical stress of the bottom ring of the tank shell shall be determined as follows :

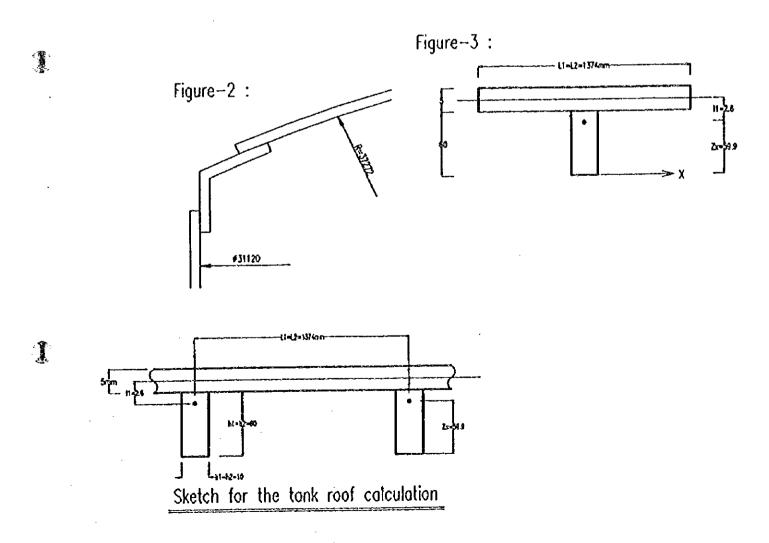
$$\sigma_{\alpha} = K_c E \frac{\delta_1}{D_1}$$

where:

$$\begin{split} K_{C} &= 0.0915(1+0.0429\sqrt{\frac{H}{\delta_{1}}})(1-0.1706\times\frac{D_{1}}{H})\\ &= 0.0915(1+0.0429\sqrt{\frac{14.04}{0.018}})(1-0.1706\times\frac{31.12}{14.04}) = 0.125\\ E &= 210\times10^{9} \text{ (Pa)}\\ \sigma_{C} &= K_{C}E\frac{\delta_{1}}{D_{1}} = 0.125\times210\times10^{9}\times\frac{0.018}{31.12} = 15183162 \text{ (Pa)} \end{split}$$

(5) The  $[\sigma_{\alpha}]$  of the allowable critical stress of the bottom ring of the tank shell shall be determined as follows:


$$[\sigma_{\alpha}] = \frac{\sigma_{\alpha}}{1.5\eta}$$


from table 4.1.2,  $\eta = 1.10$  (safety factor)

$$[\sigma_{\alpha}] = \frac{\sigma_{\alpha}}{1.5\eta} = \frac{15183162}{1.5 \times 11} = 9201916 \text{ (Pa)}$$

Due to  $\sigma_{\epsilon}$ < [ $\sigma_{\alpha}$ ] [3204028<9201916(Pa)]

Conclusion: The seismic calculation of the tank shell has proved that the shell of the oil storage is safe.





. . . . .

# 上海浦东国际机场使用油库 100M³锥底油罐设计计算书

中国民航机场建设总公司 中国民航机场规划设计研究总院 1997.4.30

#### 一、设计依据

- 1、《石油化工钢制设备抗震设计规范》(SH3048-93).
- 2、《建筑结构荷载规范》 (GBJ9-8T).
- 3、上海地区地震裂度按7度设防。

#### 二、罐体计算参数

罐体计算简图见附图一

- 1 = 5.8m
- 2 Hw=4.91m Hw'=7.962m
- 3、 m=131258Kg (装水重) m'=102981 (装航煤储液质量)

4、Fax=88270(N)-空罐自重

#### 三、校核地震作用对储罐底面的倾倒力矩:

按《石油化工钢制设备抗震设计规范》(SH3048-93)进验算,储罐的水平地震作用力 Fa.

 $F_{H}=K_{7}\alpha m_{e}g$ 

Hw/R=4.91/2.9=1.7>1.5

Kz一综合影响系数

α-水平地震影响系数

me一等效质量(Kg)

m一储液质量

Ø一动液系数

Ø-1-0.4357R/Hw=1-0.4357X2.9/4.91=0.74266

 $m_e = \emptyset m = 0.74266 \times 102381 = 76034 \text{Kg}$ 

**查表 4.3.2 得 Kz=0.45** 

α 按地震烈度 7 度, 场地类别 II, Tg=0.30 查图 4.2.1

得α=αmax=0.23

g=9.8m/s<sup>2</sup>

FH=Kzameg=0.45X0.23X76034X9.8=77121(N)

水平地震作用对储罐底面的倾倒力矩 Mi

 $M_1=0.45F_HHw=0.45X77121X7.962=276317(N.m)$ 

油罐和储液产生的稳定力矩(抗倾倒力矩) Mo

F=102381(油重) +8827(罐自重)=111208Kg=1112080N

Mo=FR=1112080X2.9=3225032(N.m)

Mo>M1

1

结论:Mo 远远大于 Ml, 地震作用下油罐不会倾倒, 安全.

四、罐壁抗震验算(同上按 SH3048 - 93 验算)

- 1、罐底周边单位长度上的提离力 Ft F<sub>t</sub>=4M<sub>1</sub>/πD<sup>2</sup>=4X276317/πX5.8<sup>2</sup>=10458(N/m)
- 2、罐底周边单位长

度上的提离反抗力FL

 $F_L=998b\sqrt{\sigma_r H_u \rho_r} + N_1/\pi D_1$ 

 $\delta_b = 0.012 m$ 

 $\sigma_{V}$ =235MPa=235X10<sup>6</sup> (Pa)

Hw=4.91m

ρs=0.78(航煤比重)

N<sub>1</sub>=0.8X88270=70616(N)

 $D_1=5.8m$ 

FL=99  $\delta b \sqrt{\sigma_{\nu} H_{\nu} \rho_{\nu}} + N i / \pi D_1$ 

=99X0.012 $\sqrt{235X6^6X4.91X0.78}$ +70616/ $\pi$ X5.8=39516(N/m)

Ft<FL (10458N/m<39516N/m)

则罐壁底部的竖向压应力50按下式计算。

 $\sigma_c = N_1/A_1 + M_1/Z_1$ 

 $A_1 = \pi D_1 \delta_1 = \pi X 5.8 X 0.008 = 0.146 (m^2)$ 

 $E_1=0.785D_1^2\delta_1=0.785X5.8^2X0.008=0.211(m^3)$ 

 $\sigma_i = N_i A_1 + M_1 / Z_1 = 70616 / 0.146 + 276317 / 0.211 = 1793230$  (Pa)

底圈罐壁的竖向临界应力 σα

 $\sigma_{cr}=K_{c}E\delta_{1}/D_{1}$ 

 $Kc=0.0915(1+0.0429\sqrt{H/\delta 1})(1-0.1706D/H)$ 

 $=0.0915(1+0.0429\sqrt{4.91/0.008})(1-0.1706X5.8/4.91)$ 

=0.151

E=210X109 (Pa)--(钢的弹性模量)

 $\sigma_{cr} = KcE\delta_1/D_1 = 0.151X210X10^9X0.008/5.8 = 43737931$  (Pa)

容许临界应力[σα]

 $[\sigma_{cr}] = \sigma_{cr}/1.5\eta$ 

η - 重要度系数 查表 4.1.2 得η=1.10

 $[\sigma_{cr}] = \sigma_{cr}/1.5\eta = 43737931/1.5X1.1 = 26507837$  (Pa)

σ<sub>c</sub><[σ<sub>c1</sub>] (1793230Pa<26507837 Pa)

结论: 罐壁抗震验算安全.

#### 五、验算风荷载引起的倾倒力矩

- 1、上海地区基本风压 Wo=0.60KN/m<sup>2</sup> (査 GBJ 9-8T)
- 2、体型系数

B

Wod<sup>2</sup>=0.60X5.8<sup>2</sup>=20.18

 $\mu_a = 0.8$ 

风力F

 $F=\mu_a WoDH$ 

H=7336mm=7.336mm (总体高度)

 $F=\mu_a$ WoDH=0.8X0.60X5.8X7.336=20.42 (KN)=20420N

风载引起的倾倒力矩 M'

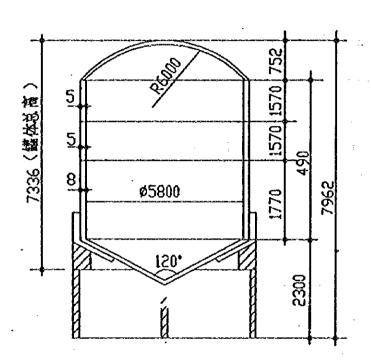
M'=1/2FH=1/2X20420X7.336=74901(N.m)

油罐自重产生的抗倾倒力矩 Mo'(空罐)

Mo'=F and R=88270X2.9=255983(N.m)

M'<Mo' 安全.

结论: 空罐时不会被风载倾倒, 是安全的.


总结论:通过以上计算,该设备上海地区地震按7度设防是安全的,并有相当大的安全储备(安全系数).验算风荷载抗倾倒力矩远大于风荷载引起的倾倒力矩,是安全的.

此种结构型式的罐在我国已有重庆、武汉、济南、沈阳、西宁 (青海)、厦门、宁波、桂林、贵阳、昆明、长沙等十多个机场投 产使用,其强度和稳定性实践证明是可靠的.

针对上海地区的风载, 地震等情况进行验算, 结论是安全的.

1

## 100M<sup>3</sup>维底油槽附图一



罐体计算简图

# Fuel depot fire fighting calculation sheet

- 1. Basic Data
- 1.1 Six 10000M3 fuel tank; tank diameter: D=31.2M.
- 1.2 Foam mixture supply strength: 61/min.m2; Foam expansion: 3; Time: 30min.
- 1.3 Cooling water supply strength to the tank on fire is 2.51/min.m<sup>2</sup>, that to the adjacent tank is 1.01/min.m<sup>2</sup>; Cooling time is: 6hours.
- 2. Caculating formula
- 2.1 Fuel tank liquid surface area

$$A = \pi D^2/4 = 3.14 \times 31.2^2/4 = 764M^2$$

- 2.2 Foam mixfure demand
- 2.2.1 Foam mixture demand of the foam generater

$$Q_1 = 764 \times 61/\text{min.m}^2 = 45841/\text{min} = 76.41/\text{s}$$

2.2.2 Foam mixture deman of foam branch

$$Q_2=Nq=4 \times 8=321/s$$

2.2.3 Foam mixture demand of foam monitor

$$Q_3=Nq'=1 \times 32=321/8$$

2.2.4 Total foam mixture demand

$$Q=Q_1+Q_2+Q_3=140.41/s$$

2.3 Foam demand (foaming expansion: 3)

$$Q' = Q \times 3 = 421.21/s$$

1

2.4 The namber of the high back-pressure foam generator

- 2.5 Foam concentrate demand
- 2.5.1 Concentrate demand of foam generator

$$W_1 = (2 \times 1800 + 2 \times 1350) \times 0.06 \times 30/1000 = 11.34T$$

2.5.2 Foam mixture demand of foam branch

 $W_1=4 \times 8 \times 0.06 \times 30 \times 60/1000=3.456T$ 

2.5.3 Number of foam branch

 $W_3 = 32 \times 0.06 \times 30 \times 60/1000 = 3.456T$ 

 $W=W_1+W_2+W_3=18.25T$ 

According to the above formula, 20-ton foam concentrate tank shall be selected.

2.6 Fire fighting water demand

$$Q_0 = 0.94 \times Q = 0.94 \times 140.4 = 1321/s$$

Standing foam mixing water demand

2.7 Diameter of foam nozzle outlet

D'= 
$$\sqrt{\frac{4 \times 3 \times 6 \times 764}{60000 \times 3.14 \times 3}}$$
 =0.32m=350mm

- 2.8 Oil tank cooling water demand
- 2.8.1 Burning tank cooling water demand

$$Q_{s1}=nAq=1 \times 764 \times 2.5=19101/min=114.6m^3/h$$

2.8.2 Adiacent tank cooling water demand

$$Q_{12}=nAq'=2 \times 764 \times 1.0=15281/min=91.7m^3/h$$

2.8.3 Standing water demand of the fixed cooling water system

$$Q_{1}=Q_{11}+Q_{12}=206.3$$
m<sup>3</sup>/hr

2.8.4 Firhydrant water demand (Four hydrants are in operation simultaneously)

$$Q_{s3}=15 \text{ Vs} \times 4=60 \text{ Vs} =216 \text{ m}^3/\text{hr}$$
.

2.8.5 Foam-water moninor water demand cone is in operation).

$$Q_{sd}=32ls/1 \times 1=32l/s=115.2m^3/hr$$

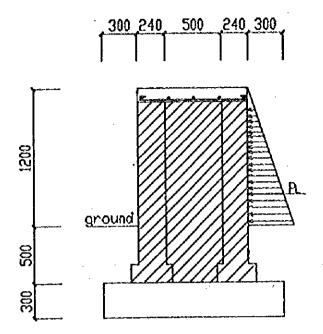
2.8.6 Total cooling water demand (cooling time: 6hr)

$$Q_s = (Q_s' + Q_{s3} + Q_{s4}) \times 6 = 3225 \text{m}^3$$

2.8.7 Standing fire-fighting water demand (10% resure water)

$$Q=(Q_p+Q_s)\times 1.1=3808.8m^3$$

2.8.8 Volume of fire-fighting water pool:


Two 2000m<sup>3</sup>pools are selected

2.8.9 Selection of pump:

Three 200D-43  $\times$  3 foam pumps (Two in operation, One stand by); O=53 - 961/s H=135.9 ~ 110m

Four 8sh-6 cooling water pump (Three in operation, One standby); Q=50 ~ 801/s H=100 ~ 82.5m

## Caculation of Fire Dike



Ri-liquid unit weight

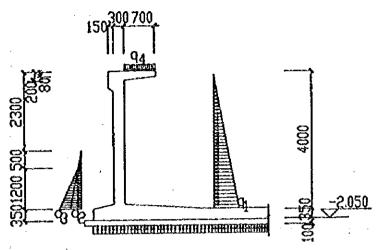
PL-resultant force standard data of static liquid pressure per metre length

of the dike up the caculated section HI-the distance from caculated section to liquid surface

H0-the distance from the resultantforce position of static liquid pressure per metre length of the dike up the caculated section to the caculated section

Mr moment standard data of the caculated section exerted by the resultant force of static liquid pressure per metre length of the dike up the caculated section

s-load effect combined design data


G-self weight r-unit weight B1-width of fire dike H1-height of fire dike

 $P_{L}=1/2P_{L}H^{2}_{-}1/2X10X1.2^{2}_{-}7.2(KN/M)$   $H_{0}=1/3H1=1/3X1.2=0.4(M)$   $M_{1}=1/2X0.4=2.88(KN.M)$   $G=r_{1}B1H1=19X0.98X1.2=22.344(KN)$   $S=1.0X22.344+1.1X7.2=30.264(KN) \leqslant \frac{R}{K}$ 

n-structure important coefficient R-design data of force resistance of fire dike(according to code)

thus satisfy the section strength request

# Caculation of Fire Pond



#### Ibasic data:

1

| the depth of groundwater:          | h1=1.2m               |
|------------------------------------|-----------------------|
| water unit weight:                 | 10KN/H3               |
| cement mortar unit weighti         | 50KN\W <sub>3</sub>   |
| reinforced concrete unit weight    | 22KN/N <sub>3</sub>   |
| soil unit weight:                  | 18KN/M3               |
| angle of internal friction:        | <b>σ</b> =30 <b>°</b> |
| ground permitted bearing pressure: | Φ=30°<br>R=8KN/M²     |

### II.caculation of fire pond wall:

1.load caculation:

q1=40KN/M2

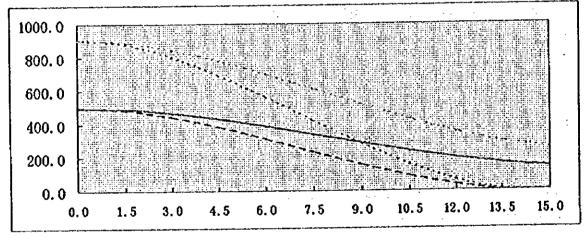
soil pressure:q2=1.7x18xtg(45°-30°/2)=10.2(kN/M)
groundwater pressure: q3=1.2x[1-0.65xtg(45°-30°/2)]=9.36(KN/M)
weigth of passage slab: 25x0.09=22(KN/M)
live load of passage slab: 1KN/M²
q4=3.2KN/M²

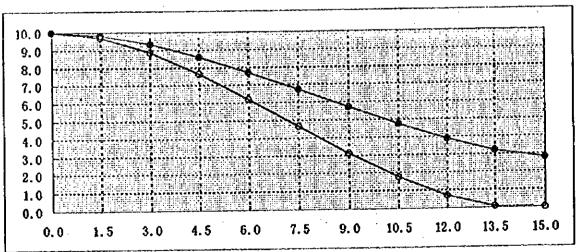
2. analysis of internal force (the moment is positive if the internal side of the wall is tensed)

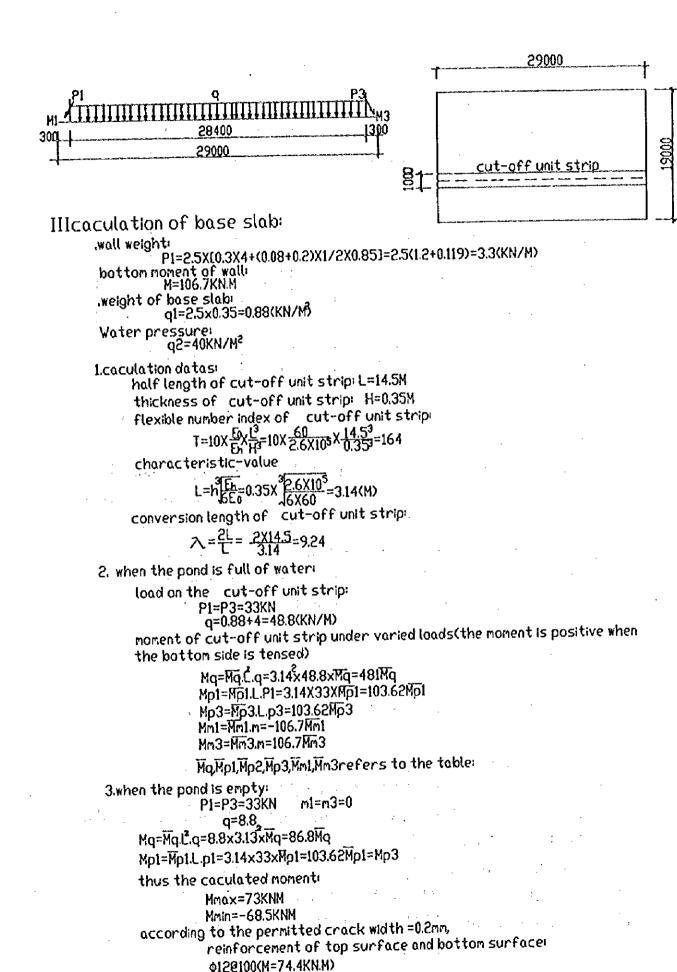
fixed-end moment of passage slab:M=1/2X3.2X0.7 = 0.784(KN/M) wall moment under water pressure (the wall is regarded as catilever beam)

bottom:M1=1/6X40X4\frac{2}{2}106.7(KN.M) concrete:C30,from the table: M=107.69,As=1350

thus, wall reinforcement (internal side) 0 148110 As=1399 according to the same reason, the wall moment under soil pressure


M=1/6x10.2x1.7+1/6x9.36x1.22 =7.16(KN.M) H=7.16+M=7.16+0.784=7.944(KN.M)


wall reinforcement(external side):0120200,As=565 horizontal reinforcing bar of the pond wall:0120200


# THE CALCULATION FOR THE REINFORCEMENT OF RAFT FOUNDATION OF OIL TANK

|   |    | 是一个人,我们也是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就 |                   |     |       |         |      |  |  |  |  |  |
|---|----|----------------------------------------------------------------------------------|-------------------|-----|-------|---------|------|--|--|--|--|--|
| 1 | R  | ٧                                                                                | $\mathbf{p}_{z0}$ | h   | D     | (W) r=0 | ζ    |  |  |  |  |  |
|   | 15 | 0.3                                                                              | 66                | 0.6 | 504.4 | 97.9    | 0.55 |  |  |  |  |  |

| r    | w <sub>r</sub> | o <sub>c)</sub> | m <sub>\$</sub> | Dø)   | n <sub>r</sub> | n <sub>o</sub> | A <sub>sr</sub> | A <sub>s &amp;</sub> |
|------|----------------|-----------------|-----------------|-------|----------------|----------------|-----------------|----------------------|
| 0.0  | 498.3          | 906.0           | 498.3           | 906.0 | 10.0           | 10.0           | 3133            | 3133                 |
| 1.5  | 483.1          | 878.4           | 489. 5          | 890.0 | 9.7            | 9.8            | 3038            | 3078                 |
| 3.0  | 442.0          | 803.7           | 465.3           | 846.0 | 8.8            | 9.3            | 2780            | 2926                 |
| 4.5  | 381.9          | 694.4           | 429.3           | 780.6 | 7.6            | 8.6            | 2402            | 2700                 |
| 6.0  | 309.6          | 562.9           | 385.0           | 700.0 | 6.2            | 7.7            | 1947            | 2421                 |
| 7.5  | 231.8          | 421.5           | 335.8           | 610.5 | 4.6            | 6.7            | 1458            | 2111                 |
| 9.0  | 155.4          | 282.6           | 285.2           | 518.5 | 3, 1           | 5.7            | 977             | 1793                 |
| 10.5 | 87.3           | 158.7           | 236.7           | 430.3 | 1.7            | 4.7            | 549             | 1488                 |
| 12.0 | 34. 1          | 62.0            | 193.7           | 352.3 | 0.7            | 3.9            | 214             | 1218                 |
| 13.5 | 2.7            | 5.0             | 159.9           | 290.7 | 0.1            | 3.2            | 17              | 1005                 |
| 15.0 | 0.0            | 0.0             | 138.6           | 252.0 | 0.0            | 2.8            | 0               | 872                  |







₹.

# THE CALCULATION SHEET FOR THE CEMENT SOIL PILE APPLIED IN GROUND TREATMENT OF 10000m<sup>3</sup> OIL TANK AREA IN PU DONG AIRPORT

| ~ 1              |                | 44.4       |
|------------------|----------------|------------|
| (ien             | <b>O</b> OICAL | condition: |
| $\sim \sim \sim$ | ~~·            | AA11411411 |

| stratum    | thickness | compressive modules | side resistance | end resistance | strength |
|------------|-----------|---------------------|-----------------|----------------|----------|
|            | m         | MPa                 | kPa             | kPa            | kPa      |
| 2-1        | 1.9       | 6.3                 | 12              |                | 110      |
| <b>②-2</b> | 7.2       | 10.4                | 14              |                | 120      |
| 3          | 0.9       | 3.4                 | 8               |                | 70       |
| 4          | 9         | 2.2                 | 8               | 160            | 55       |
| <b>©-1</b> | 5.5       | 3.7                 | 12              | 400            | 80       |
| <b>G-2</b> | 3         | 4.4                 | 12              |                |          |
| <b>?-1</b> | 6.2       | 11.3                |                 |                |          |

The cement soil pile is to be 15.0m long and the pile diameter is 700mm. Then the single pile load-bearing capacity is

$$P=0.7 \times \pi \times (1.9 \times 12+7.2 \times 14+0.9 \times 8+5 \times 8)=375.6(kN)$$

Assuming the strenth of the pile itself is 1000kPa, the load-bearing capacity of its own is  $P=1000 \times 0.7^2 \times \pi/4=384.5(kN)>375.6(kN)$ 

The pile distribution density(the area assigned to a single pile):

$$(375.6-\pi \times 0.35^2 \times 110 \times 0.5)/(180-110 \times 0.5)=2.84$$

If the triangle shape is adopted, the distance between piles is

let s=1.80m

The checking calculation for the soft stratum(Stratum 4):

the force applied on the pile at the top level of Stratum 4 is

$$3.142 \times 0.7 \times 5 \times 8 + \pi \times 0.35^2 \times 160 = 149.5$$
kN

The additional stress at the top of Stratum @ is'

$$p'=180 \times 32^2/(32+9)^2-149.5/(1.8^2 \times 0.866)=56$$
kPa(satisfied)

Note: no adjustment of capacity arisen from the depth and width of the foundation is considered.

The calculation of ring wall:

Circular tension: 170 × (1-sin32 °)× 30.9/2=1234.7(kN/m)

circular reinforcement:  $1234.7 \times 10^3/310=3982.8 \text{(mm}^2\text{)}$ 

adopt φ 20 a 150 A<sub>S</sub>=4189.3(mm<sup>2</sup>/m)

# Fuel Dil Storage Transformer Caplculation Sheet

-. Power Supply Scheme:

The Fuel Dil Storage is I class load, There are 2 incoming feeders connect to 2 HV busbar, with bustie connect them the LV system is same Normally, bustie open, 2 transformer work in 50% load, if I commercial power failed, the incoming switch open , bustie close, automatically, the transformer work in 100% load. The fire fighting pump and process pumps don t'work simultaneously.

\_ Load character:

8

1.process character:

aviation diesel oil pump: 110KW\*10, 45KW\*2

waste oil pump: 18.5KV\*2

2.Fire Fighting Pump

cooling water pump: 110KV\*4

foam pump: 155KV\*3

3.electrice load for bulidings

power: 400KW

lighting: 40kw

= load calcuation (refer to 'industrial and civil electric design mannel')

 $P_{js} = K_{\Sigma P} \Sigma (K_x P_e)$ 

= 0.8(110\*10+45\*2+18.5\*2)+0.8\*0.75\*400+0.9\*0.8\*40

= 1152 Kw

 $Q_{s} = K_{xq} \Sigma (K_x P_e tg_\theta)$ 

 $= 0.95 \times \{0.8(110 \times 10 + 45 \times 2 + 18.5 \times 2)\} \times 0.75 + 0.93 \times (0.75 \times 400) \times 0.75$ 

+0.97\*(0.8\*49)\*0.48

= 925 Kvar

S1 = 1 15 + 15 F

=1556 KVA

The transformer capacity can be decided as 1600KVA.

# Calculation Book 301

I. Name of Project: Shanghai Pudong Airport Oil Depot Oil Pump Shed

II. Seismic intensity: 7

III. Frame seismic grade: 3

IV. Structure importance parameter: Ro=1.0

V. Site soil type: IV

VI, Soil endurance: R=110KPa

VII. Foundation load-bearing layer elevation:

VIII. Materials: column -- C30

beam board -- C30

#### Load:

1. Living load:

roof

0.7KN/m2

2. Static load:

 roof
 ceiling
 0.50KN/m2

 structure layer (110mm)
 2.75KN/m2

 roof (roof 1)
 5.35KN/m2

 total
 8.60KN/m

- 3. Wind load: 0.55 KN/m2
- X. Selection of main members
  - 1. Side column 450x450mm
  - 2. Main beam (L=7500mm)

bxh=350x750mm

bxh=300x650mm

bxh=350x850mm

3. Board thickness

h=110mm

#### XI. Design basis

- 1. Current national architecture & structure standards and codes;
- 2. Shanghai City's << Base Foundation Design Codes >> DBJ08--11--89;
- 3. Shanghai City's << Base Treatment Technical Codes >> DBJ08-40--94;
- 4. Shanghai City's << Building Anti-seismic Design Standards >> DBJ08--09--92;

#### XII. Computer programs

China Building Science Research Institue CAD Engineering Department

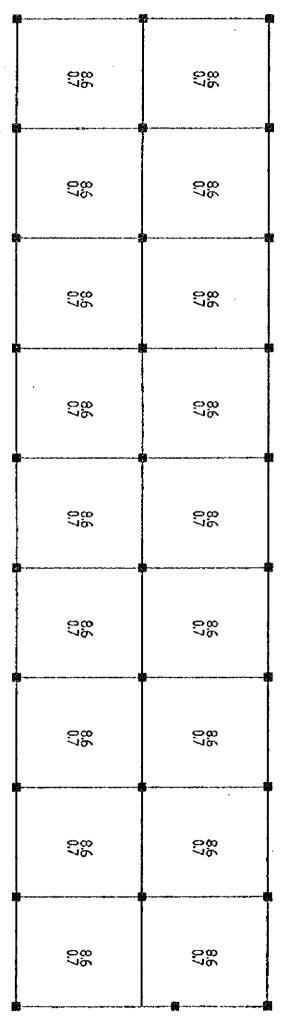
**PMCAD** 

August, 1996

PΚ

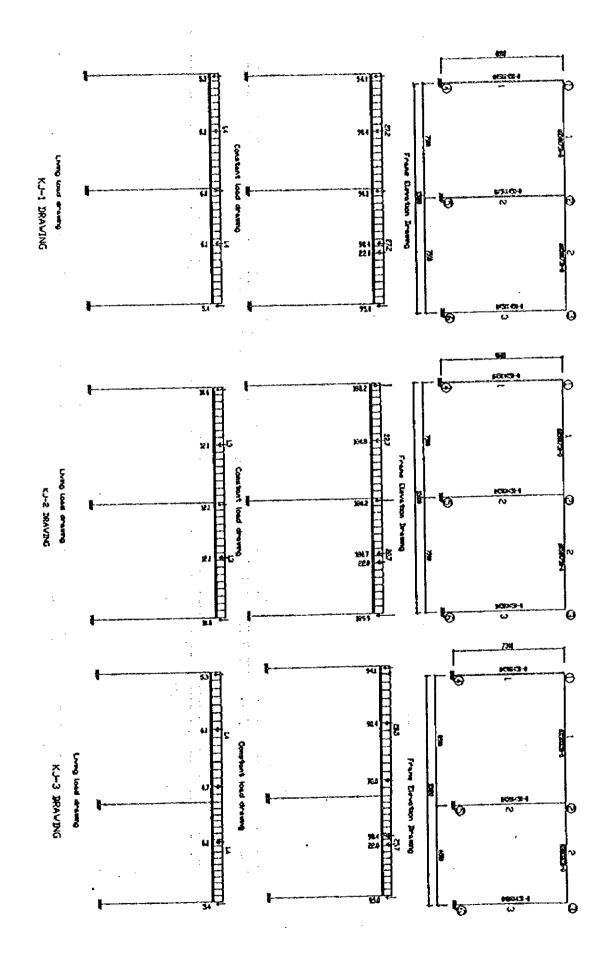
August, 1996

**JCCAD** 


August, 1996

#### XIII. Conclusion:

It is concluded from calculation above, the integral strength and deformation of structure meet

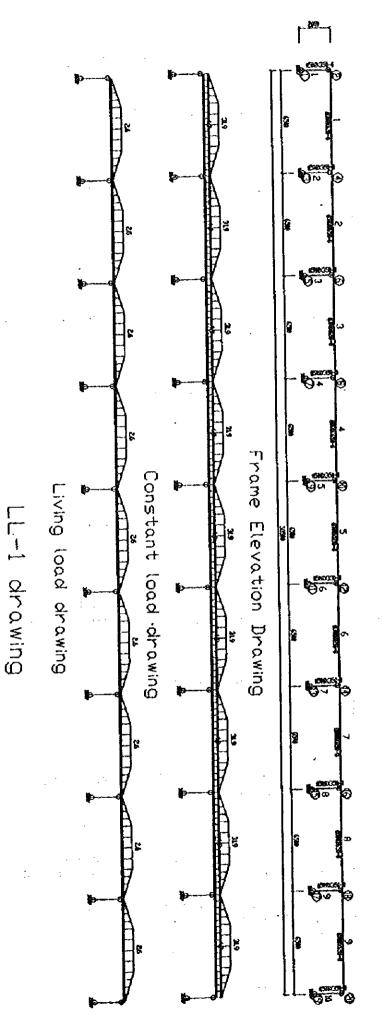

the design requirements, the geometric dimensions also meet the requirements of strength and deformation regulated by Codes. The primary data of structural model, major calculation results, combining results of main internal forces of each member, structural layout, internal force drawing, reinforcing results of major members refer the next page, based on which construction drawings are made.

2



0

0




3

多

KU-4 DRAWING

-98-



3

(Specify)

\*\*\*\*\*\* KJ-1 Calculation result \*\*\*\*\*\*

```
OUTPUT DATA
                ---- Zhong xin xi -----
                0 3 2 1 0 2
             2
                                               0
                                                    0 2 1
   1.00 1.00
   0
OUTPUT DATA
                ----- Jiao Dian Zuo Biao ------
 (1) 0.00 8.00 (2) 7.50 8.00 (3) 15.00 8.00 (4) 0.00 0.00
 (5) 7.50 0.00 (6) 15.00 0.00
OUTPUT DATA
                 ---- Zhu Guan Lian Hao -----
 (1) 4 1 (2) 5 2 (3) 6 3
                 ----- Liang Guan Lian Hao ------
 (1) 1 2 (2) 2 3
OUTPUT DATA
                Zhi Zuo Yue Shu Xin Xi-----
       4111 (2) 5111 (3) 6111
OUTPUT DATA
             ----- Shang Xia Zhu Jian Dian Pian Xin ------
(1)0.00 (2)0.00 (3)0.00 (4)0.00 (5)0.00 (6)0.00
OUTPUT DATA
             Biao Zhun Jie Mian Xin Xi
          450,
                450, 6
       1, 350, 750, 6
OUTPUT DATA
            ---- Zhu Ji Suan Chang Du(After consider steel) -----
(1) 1.00 (2) 1.00 (3) 1.00
OUTPUT DATA
         ---- Zhu Bu Zhi(Hao)Jie Mian Hao, Jiao Jie, Jiao Du -----
     1 0 0 (2) 1 0 0 (3) 1 0 0
        ---- Liang Bu Zhi(Hao)Jie Mian Hao, Jiao Jie, Jiao Du -----
       2 0 0 (2) 2 0 0
(1)
       HQQ= 27
       STIF COMPUTE
       DEAD COMPUTE
                      XM
                                 XN
JOINT LOAD: JR
```

| Calculation book |               | Oil Depot  | Oil pump  | shed             |       |                |      |
|------------------|---------------|------------|-----------|------------------|-------|----------------|------|
|                  | 1             | 0.00       | 94.10     |                  |       |                |      |
|                  | 2             | 0.00       | 90.10     |                  |       |                |      |
|                  | 3             | 0.00       | 95.00     |                  |       |                |      |
|                  | 0             |            |           |                  |       |                |      |
| COLUMN LOAD:     | 0<br>1C       | KL         | P         |                  | x     | KX             |      |
| BEAM LOAD:       | NE            | LI         | KL        | P                | x     | Pl             | ХI   |
| KL P             | X             | P1         | X1<br>2   |                  | ì     | 27.20          | 0.00 |
| 4 90.40          | 3.75          | _          | _         |                  |       | 22.00          | 4.18 |
| - 45.50          | 0.00          | 1          | 3         |                  | 4     | 22.00          | 4.10 |
| 1 27.20          | 0.00          | 4          | 90.40     |                  | 3.60  |                |      |
|                  |               | **DE       | AD LOAD   | r <del>(</del> t |       |                |      |
| •                |               |            | • .       |                  | -     | ٠              |      |
|                  | OMPUTE        |            |           |                  |       |                |      |
|                  | COMPUTE<br>JR | XM         | XN        | ī                |       |                |      |
| JOINT LOAD:      | 1             | 0.00       | 5.30      | •                |       |                |      |
|                  | 2             | 0.00       | 6.00      |                  |       |                |      |
|                  | 3             | 0.00       | 5.40      |                  |       |                |      |
|                  | 0             |            |           |                  |       |                |      |
| COLUMN LOAD:     | JC<br>0       | KL         | P         |                  | x     | · KX           |      |
|                  |               | **L[\      | /E LOAD*  | *                |       |                |      |
| BEAM LOAD:       | NE            | LI         | KL        |                  | X     | P1             | XI   |
| KL P             | X             | P1         | Xl        |                  | _     |                | 0.00 |
|                  |               | 1          | 2         |                  | 1     | 1.40           | 0.00 |
| 4 6.10           | 3.75          | 1          | 2         |                  | 1     | 1.40           | 0.00 |
| 4 6.10           | 3.60          | 8          |           |                  | •     |                |      |
| FART             | COMPUTE       | <u> </u>   |           | •                |       |                |      |
| 1                |               | 00         | 0 1       | ł                | 1.00  | 0              |      |
| 1<br>975.700     |               |            |           |                  |       |                |      |
| 1 .              | T= 0.7818     | <b>}</b>   |           |                  |       | •              |      |
| 1.000<br>78.056  |               | · .        |           |                  |       |                |      |
| -                |               | **!>!      | SPLACEMEN | T**              |       | •              |      |
| ( 1) 0.012       | ( 2) 0.012    | (3)0       | .012 ( 4) | 0.000            | ( 5)0 | 0.000 ( 6) 0.0 | 000  |
| 3                |               |            |           |                  | -     |                |      |
| 975.700          |               | <u>;</u> : | • .       |                  |       |                |      |
|                  | T = 0.7818    | 3          |           |                  | _     |                |      |
| 1.000            |               |            |           |                  | 2.    | :              |      |
| 78.056           |               | ż          |           |                  |       |                |      |

# ( 1)-0.012 ( 2)-0.012 ( 3)-0.012 ( 4) 0.000 ( 5) 0.000 ( 6) 0.000 COMBI COMPUTE

#### \*\*COMBINATION AND REINFORCEMENT\*\*

Concrete COLUMN 1( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00)

Section property: B= 450, H= 450

| NUM    | BER             | M                                | N                | v                   |         | М      | N    | v       |
|--------|-----------------|----------------------------------|------------------|---------------------|---------|--------|------|---------|
| NUMBER | M               | M<br>N                           | V                | M                   | N       | V      |      |         |
| 1      | -26.21          | 1 295.67                         | -9.71            | -51.47              | -247.07 | 9.71   | 2    | -21.84  |
| 246.39 | -8.09           | 42.89 -205.8                     | 39 8.0           | 09                  |         |        |      |         |
| 3      | -26.2           | 1 295.67                         | -9.71            | -51.47              | -247.07 | 9.71   | 4    | -21.84  |
| 246.39 | -8.09 -         | 42.89 -205.8                     | 39 8.0           | 09                  |         |        | _    |         |
| 5      | -26.2           | 1 295.67                         | -9.71            | -50.87              | -245.69 | 9.64   | 6    | -21.84  |
| 246.39 | -8.09 -         | 42.29 -204.5                     | 51 8.0           | 03                  |         |        | _    |         |
|        |                 | 7 312.08                         |                  |                     | -264.85 | 10.48  | 8    | -23.70  |
|        |                 | 47.23 -223.6<br>0 313.45         | 57 8.3           | 86                  |         | 40.40  |      | 22.60   |
|        | -28.00          |                                  |                  |                     | -264.85 | 10.48  | 10   | -23.63  |
| 264.17 | -8.86 -         | 47.23 -223.0                     | 57 8.7           | 66                  | 0.40.60 |        | •    | 21.21   |
| 11     | -25.28          | 3 294.29                         | -9.04            | -30.87              | -245.69 | 9.04   | 12   | -21.91  |
| 245.01 | -8.03 -         | 42.29 -204.5                     | )] 8.1           | 03                  | 046.00  | 0.65   |      | 21.04   |
|        |                 | 1 295.67                         |                  |                     | -243.90 | 9.65   | 14   | -21.84  |
| 246.39 |                 | 42.38 -204.7                     |                  |                     | 202.10  | 10.26  | 16   | 22.42   |
|        |                 | 309.62                           |                  |                     | -202.18 | 10.30  | 10   | -23.42  |
|        |                 | 46.58 <b>-221.</b> 0<br>3 310.78 |                  |                     | 262.10  | 10.26  | 18   | -23.36  |
|        | -27.73          |                                  |                  |                     | -202.18 | 10.30  | 10   | -23.30  |
| 201.31 | -6.74 ~         | 46.58 -221.6<br>7 294.50         | /I 0.            | /4<br>• • • • • • • | 245.00  | 0.65   | 20   | -21.90  |
| 145 22 | -20.2.<br>• 0.4 | 7 294.30<br>42.38 -204.1         | -9.03<br>12 01   | -30.90<br>M         | -243.90 | 9.03   |      | -21.90  |
| 243.22 | -0.04           | 42.36 -204.1<br>1 295.67         | 12 0.1<br>0.71   | ህ4<br>ሩስ ብሩ         | 245.00  | 0.65   | 22   | -21.84  |
|        |                 | 42.38 -204.1                     |                  |                     | -443.90 | 9.03   | 44   | -21.04  |
| 240.39 | -0.U7 -         | 9 309.62                         | /∠ 6.\<br>_10.30 | .55 16              | -262 18 | 10.36  | 24   | -23.42  |
|        |                 | 46.58 <b>-221.</b> 0             |                  |                     | -202.10 | 10.50  | 24   | -63.76  |
|        | -27.7           |                                  |                  |                     | -262 18 | 10.36  | 26   | -23.36  |
|        |                 | 46.58 <b>-221.</b> 0             |                  |                     | -202.10 |        | 20   | 25.50   |
|        |                 | 7 294.50                         |                  |                     | -245 90 | 9.65   | - 28 | -21.90  |
|        |                 | 42.38 -204.1                     |                  |                     | 2.0.,   |        |      |         |
|        |                 | 9 269.67                         |                  |                     | -220.49 | -22.57 | 30   | 143.26  |
|        |                 | 78.91 -179.                      |                  |                     |         |        |      |         |
| 31     | -204.33         | 2 328.69                         | -42.26           | -174.92             | -280.68 | 42.29  | 32   | -198.69 |
|        |                 | 66.03 -238.2                     |                  |                     |         |        |      |         |
| 33     |                 | 8 329.28                         |                  |                     | -280.68 | 42.29  | 34   | -198.66 |
| 278.73 |                 | 66.03 -238.2                     |                  |                     |         |        |      |         |
| 35     | 137.70          | 6 269.09                         | 22.57            | 70.38               | -220.49 | -22.57 | 36   | 143.22  |
| 219.91 | 24.19           | 78.91 -179.                      | 41 -24.          | 19                  |         |        |      |         |
|        |                 |                                  |                  |                     |         |        |      |         |
| NO     | 31 As           | = 1132.                          | M=               | -204.32             | N=      | 328.69 | :    | NO 31   |
| As=10  | 84.             | M≃ -174.92                       | N=               | -280.68             |         |        |      |         |
| -      | GG              | <del>=</del> 709.                |                  |                     |         |        |      |         |

Concrete COLUMN 2( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00)

Section property: B= 450, H= 450

NUMBER M N V M N V NUMBER M N V M N V

| Calculation book                        | Oil Depot Oil                              | pump           | shed    |        |        | <del></del> |
|-----------------------------------------|--------------------------------------------|----------------|---------|--------|--------|-------------|
|                                         |                                            |                |         |        | •      | 4 9 7       |
| 1 -3.45 608.7<br>507.25 -0.97 -4.88 -4  | '0 -1.16 -<br>66.75 0.07                   | 5.86           | -560.10 | 1.10   | Z      | -2.87       |
| 3 -3.45 608.7                           | 0 -1.16 -                                  | 5.86           | -560.10 | 1.16   | 4      | -2.87       |
| 507.25 -0.97 -4.88 -4<br>5 -1.00 631.3  | 66.75                                      |                |         | -      | 6      | -0.42       |
| 529.88 -0.15 -0.74 -4                   | 80.99 0.15                                 |                |         |        | Q      | -5.32       |
| 7 -5.89 623.1<br>521.69 -1.79 -9.03 -4  | 14 -1.99 -1<br>89,58 1.79                  | 0.00           | -362.93 | 1.77   | 0      |             |
| 9 -3.44 645.1                           | 17 -1.16 -                                 | -5.86          | -597.17 | 1.16   | 10     | -2.87       |
| 544.32 -0.97 -4.88 -5<br>11 -3.45 608.1 | 70 -1.16 -                                 | -5.86          | -560.10 | 1.16   | 12     | -2.87       |
| 507.25 -0.97 -4.88 -4<br>13 -1.37 627.9 | 66.75 0.97<br>04 -0.46 -                   | -2.33          | -572.21 | 0.46   | 14     | -0.79       |
| 526.40 -0.27 -1.36 -4                   | 78.86 0.27                                 | -              | =       | •      | 16     | -4.95       |
| 15 -5.53 620.9<br>519.53 -1.67 -8.40 -4 | 186.16                                     |                |         |        |        |             |
| 17 -3.44 640.5                          | 21 -1.16 -                                 | -5.86          | -591.61 | 1.16   | 18     | -2.87       |
| 538.76 -0.97 -4.88 -4<br>19 -3.45 608.  | 70 -1.16 ·                                 | -5.86          | -560.10 | 1.16   | 20     | -2.87       |
| 507.25 -0.97 -4.88 -4<br>21 -1.37 627.  | 166.75 0.97                                | •              |         | 0.46   | 22     | -0.79       |
| 526.40 -0.27 -1.36 -4                   | 178.86 0.27                                |                |         |        | 24     | -4.95       |
| 23 -5.53 620.<br>519.53 -1.67 -8.40 -4  | <b>186.16</b> 1.67                         |                |         | -      |        |             |
| <b>25 -3.44 640</b> .                   | 21 -1.16                                   | -5.86          | -591.61 | 1.16   | 26     | -2.87       |
| 27 -3.45 608.                           | 70 -1.16 ·                                 | -5.86          | -560.10 | 1.16   | 28     | -2.87       |
| 507.25 -0.97 -4.88<br>29 183.24 618.    | 466.75 0.97<br>40 36.15 1                  | 42.62          | -566.21 | -36.15 | 30     | 183.74      |
| 515 22 26 20 1/3 30                     | .471.84 -36.29<br>89 -38.48 -1:            |                |         |        |        | -190.92     |
| 510 41 29 22 -153 06 -                  | 474 91 38.22                               |                |         |        |        | -189.83     |
| 500 AD 27 03 -151 58 -                  | 59 -38.12 -1:<br>479.99 37.93              |                |         |        |        |             |
| 35 181.93 608.                          | 70 35.80 1                                 | 140.84         | -560.10 | -35.80 | 36     | 182.65      |
| 507.25 35.99 141.82                     |                                            |                |         |        | -      | NO 12       |
| NO 32 As= 99 As= 860. M=-15             | 2. M= -1<br>3.06 N= -47                    | 190.92<br>4.91 | N=      | 512.41 |        | NO 32       |
| As- 800. III - 13                       |                                            |                |         |        |        |             |
| Concrete COLUM                          | y 3( SECT                                  | T NOI          | YPE= 1  | , ANG= | 0, Lx= | 8.00, Ly=   |
| 800)                                    | •                                          |                |         |        |        |             |
| Section property: B=                    | 430, H- 430                                |                |         |        |        | ••          |
| NUMBER M                                | N                                          | V              | N       | M      | N      | V           |
| NUMBER M N<br>NUMBER M N<br>1 28.61 309 | .43 10.87                                  | 58.37          | -260.83 | -10.87 | 2      | 23.84       |
| 257.86 9.06 48.64<br>3 28.61 309        | -217.36 -9.06<br>43 10.87                  | 58.37          | -260.83 | -10.87 | 4      | 23.84       |
| 257.86 9.06 48.64<br>5 30.48 325        | A147 A C C C C C C C C C C C C C C C C C C |                |         |        |        |             |
|                                         | 44 C 10 0 V2                               |                |         |        |        |             |
| 7 28.61 309                             | .43 10.87                                  | 57.80          | -259.47 |        |        |             |
| 257.86 9.06 48.07<br>9 30.39 327        | 11.63                                      | 62.67          | -278.57 | -11.63 | 10     | 25.62       |
| 275.60 9.82 52.94<br>11 28.71 308       |                                            |                |         |        |        |             |

Ī

| Calculation book                                        | Oil Depot Oil p                   | cump shed                |               |           |
|---------------------------------------------------------|-----------------------------------|--------------------------|---------------|-----------|
| 356.50 0.00 40.03                                       | 216.00 0.00                       | _                        |               | ·         |
| 256.50 9.00 48.07<br>13 30.20 323.<br>271.78 9.66 52.30 |                                   | 2.02 -275.91             | -11.52        | 4 25.43   |
| 15 28.61 309.                                           | .43 10.87 51                      | 7.88 -259.67             | -10.82        | 6 23,84   |
| 257.86 9.06 48.15<br>17 30.12 324.                      | -216.20 -9.01<br>.51 11.52 62     | 2.02 -275.91             | -11.52        | 8 25.36   |
| 272.94 9.71 52.30 -<br>19 28.69 308.                    | -232.44 -9.71<br>27 10.82 57      | 7.88 -259.67             | -10.82 20     | 23.92     |
| 256.70 9.01 48.15                                       | -216.20 -9.01                     | • .                      |               |           |
| 21 30.20 323.<br>271.78 9.66 52.30                      |                                   | 2.02 -275.91             | -11.52 22     | 2 25.43   |
| 23 28.61 309.<br>257.86 9.06 48.15                      |                                   | 7.88 -259.67             | -10.82 2      | 4 23.84   |
| 25 30.12 324.                                           | 51 11.52 62                       | 2.02 -275.91             | -11.52 26     | 5 25.36   |
| 272.94 9.71 52.30 -<br>27 28.69 308.                    |                                   | 7.88 -259.67             | -10.82 28     | 3 23.92   |
| 256.70 9.01 48.15 - 29 207.33 342.                      | -216.20 -9.01<br>44 43.43 181     | 1.80 -294.42             | -43.45 30     | 201.20    |
| 289.70 41.57 171.77                                     | -249.69 -41.59                    | -                        |               | . *       |
| 31 -134.79 283.<br>231.87 -23.19 -73.15 -               |                                   | .47 -234.26              | 21.41 3:      | 2 -140.75 |
| 33 207.28 343.<br>290.19 41.59 171.77                   | 02 43.45 181<br>-249.69 -41.59    | .80 -294.42              | -43.45 34     | 201.16    |
| 35 -134.74 282.                                         | 86 -21.41 -63.                    | .47 -234.26              | 21.41 30      | 6 -140.71 |
| 231.38 -23.22 -73.15 -                                  | 190.88 23.22                      |                          |               | -         |
| NO 29 As= 1143<br>As= 1125. M= 13<br>GG= 709            | 3. M= 201<br>81.80 N= -294        | 7.33 N= 3<br>42          | 142.44        | NO 29     |
| Concrete BEAM Section property: B=:                     |                                   | YPE= 1 ANG               | 6= 0, L= 7.50 | 0)        |
| BOTTOM                                                  | •                                 |                          |               |           |
| SECTION 1 2<br>9 10 11                                  |                                   | 4 5 .                    | 6             | 7 8       |
| M= -78.91 -132.1                                        | 10 -182.85 -220.5                 | 3 -245.13 -25            | 66.65 -255.10 | -172.16 - |
| As(1)= 788. 45                                          | 0.00 0.00<br>5. 634. 7<br>0. 788. | <b>68</b> . <b>922</b> . | 1066.         | 45. 801.  |
| As(2)= 788.                                             | 0. 0.                             | 0. 0.                    | 0.            | 0. 0.     |
| 0. 0. 0.<br>TOP                                         | 0. 788.                           |                          |               |           |
| SECTION 1 2                                             | 2 3<br>12 13                      | 4 5                      | 6             | 7 8       |
| M= 174.92 83                                            | .77 13.90 (                       | 0.00                     | 0.00          | .00 0.00  |
| 0.00 38.30 162.26 29<br>As(1)= 788. 28                  | 99.29 453.58<br>7. 47.            | 0. 0.                    | 0.            | 0. 0.     |
| 0. 130. 599. 117                                        | 72. 1913.<br>0. 0.                | 0. 0.                    |               | 0. 0.     |
|                                                         | 0. <b>1913.</b>                   | <b>U. U.</b>             | <b>V.</b>     | 0. 0.     |
| VI= 164.58 NO 13<br>788. Umaxb= 0.004                   |                                   |                          | Asv/s= 0.50   | As(3)=    |
| Concrete BEAM Section property: B= 1                    |                                   | YPE= 1 ANO               | i≕ 0. L= 7.50 | )) :      |
|                                                         |                                   |                          | ,             |           |
| BOTTOM<br>SECTION 1 2                                   | 350, H= 750                       | 4 5                      | 6             | 7 8       |

| 9   | 10          | 11     | 12     | 13           |        |         |              |            |         |
|-----|-------------|--------|--------|--------------|--------|---------|--------------|------------|---------|
| y   | M=          | 0.00   | 0.00   | 0.00         | -24.78 | -116.80 | -209.68      | -284.12 -2 | 89.15 - |
| 269 | 9.76 -237.2 |        |        | -73.15       |        |         |              |            |         |
|     |             | 788.   | 0.     |              |        | 538.    | <b>982</b> . | 1287.      | 1225.   |
| 104 | 41. 829     | . 665  | . 458. | 788          |        |         | _            | _          |         |
|     | As(2)=      |        |        |              | 0.     | 0.      | 0.           | 0.         | 0.      |
| 0.  | 0.          | 0.     | 0.     | <i>7</i> 88. |        | -       | -            |            |         |
|     | TOP         |        |        |              |        | _       |              | -          | •       |
| :   | SECTION     | _      | 2      | 3            | 4      | 5       | 6            | 7          | 8       |
| 9   | 10          |        | 12     | 13           |        |         |              |            | 0.00    |
|     |             |        | 296.56 |              | 19.37  | 0.00    | 0.00         | 0.00       | 0.00    |
| 0.0 | 0.00        | 6.45   | 82.92  | 181.80       |        | •       | ^            | •          | •       |
|     | As(1)=      | 1944.  | 1159.  | 545.         | 66.    | 0.      | 0.           | 0.         | 0.      |
| 0.  | 0.          |        |        |              | _      | •       | •            | ^          | Δ       |
|     | As(2)=      |        |        |              | 0.     | 0.      | 0.           | 0.         | 0.      |
| 0.  | 0.          | 0.     | 0.     | 788.         | -      |         | •            |            |         |
|     |             |        |        |              | . 10 } | ·<br>·  | A and a      | 0.50       | As(3)=  |
|     | VI= 265.    |        |        |              |        | IO 15   | ASV/5-       | 0.50       | na(3)   |
| 78  | 8. Ui       |        |        | Umaxt=       | 0.007  |         |              |            | •       |
|     |             | OMPUTE | END    |              |        | Δi D    | anat         | Oil pum    | shed    |
| Ca  | liculation  | book   |        |              |        | Oil D   | epot         | Oil pum    | y siled |
| 1   |             |        |        |              |        |         |              |            |         |

\*\*\*\*\* KJ-2 Calculation Result \*\*\*\*\*\*

|   | OUTPUT       | DA           | ГА           | 7h                         | ong xin x                        | gi                  |                    |               |       |    |      | ÷ |   |
|---|--------------|--------------|--------------|----------------------------|----------------------------------|---------------------|--------------------|---------------|-------|----|------|---|---|
| 0 | 6            | 3            | 2            | 0                          | 3                                | 2                   | 1                  | 0             | 2     | 0  | 0    | 2 | 1 |
| U | 1.00         | 1.00         |              |                            |                                  |                     |                    |               |       |    |      |   |   |
|   | OUTPUT       | DA.          | ΤA           |                            |                                  |                     | -                  |               |       |    | -    |   | - |
|   | ( 1) (       | ).00<br>7.50 | 8.00<br>0.00 | ( 2) 7<br>( 6) 15          | Jiao Dia<br>7.50 8.0<br>.00 0.00 | 0 (                 | 3) 15.00           | 8.00          | ( •   |    | 0.00 |   |   |
|   | OUTPUT       | DA'          | TA           |                            |                                  |                     |                    |               |       |    |      |   |   |
|   | ( 1)         | 4            | 1 (          | 2) 5                       | Zhu Gu<br>2 (                    |                     |                    | -a**•         | •     | ٠. |      |   |   |
|   | ( 1)         | 1 :          | 2 (          | 2) 2                       | Liang C                          | luan Lia            | n Hao              |               |       |    |      |   |   |
|   | OUTPUT       | ĐA           | TA           |                            |                                  |                     |                    |               |       |    |      |   |   |
|   | ( 1)         | 411          | 1 (          | 2) 5                       | ZhiZuo<br>111 (                  |                     |                    | <u> </u>      | •     |    |      |   |   |
|   | OUTPUT       | ' DA         | TA           |                            |                                  |                     |                    |               |       |    |      |   |   |
|   | ( 1) 0.0     | 0 (          | 2) 0.0       | Shar<br>0 ( 3)             | ng Xia Zh<br>0.00 (              | u Jian E<br>4) 0.00 | Dian Piar<br>(5)   | Xin<br>0.00 ( | 6) 0. | 00 |      |   |   |
|   | OUTPUT       | DA           | ATA          |                            |                                  |                     |                    |               |       |    |      |   |   |
|   | ( 1)<br>( 2) | 1,<br>1,     | 450,         | Biad<br>450,<br>750,       | 6                                | e Mian 3            | Kin Xi             | *****         |       |    |      |   |   |
|   | OUTPUT       | r DA         | TA           |                            |                                  |                     |                    |               |       |    |      |   |   |
|   | ( 1) 1.0     | 00 (         |              | Zhu Ji<br>00 ( 3)          |                                  | ang Du(             | After co           | nsider st     | eel)  |    |      |   |   |
|   | OUTPUT       | r da         | ATA          |                            |                                  |                     |                    |               |       |    |      |   |   |
|   | ( 1)         | 1            |              | Bu Zhi(H<br>0 ( 2)         |                                  |                     | Jiao Jie,<br>0 ( 3 |               | _     | 0  |      |   |   |
|   | ( 1)         | 2<br>IIQ     | 0            | ng Bu Zhi(<br>0 ( 2)<br>27 |                                  |                     | o,Jiao Jie<br>O    | e,Jiao D      | บ     | •  |      |   |   |
|   |              | STI          | F CON        | <b>APUTE</b>               |                                  |                     |                    |               |       |    |      |   |   |

DEAD COMPUTE

| JOINT LOAD:                             | JR            | XM             | XN             |               |            |      |
|-----------------------------------------|---------------|----------------|----------------|---------------|------------|------|
| • • • • • • • • • • • • • • • • • • • • | 1             | 0.00           | 188.20         |               |            |      |
|                                         | 2             | 0.00           | 180.20         |               |            |      |
|                                         | 3             | 0.00           | 189.90         | -             |            |      |
|                                         | 0             | -              |                |               |            |      |
| COLUMN LOAD.                            | IC<br>0       | KL             | P              | x             | KX         |      |
| BEAM LOAD:                              | NE            | LI             | KL             | P X           | P1         | XI   |
| KL P                                    | X             | P1             | XI             |               | -          |      |
|                                         |               | 1              | 2              | 1             | 22.70      | 0.00 |
| 4 180.80                                | 3.75          |                | _              |               | 20.00      | 4 10 |
|                                         |               | 1              | 3              | . 4           | 22.00      | 4.18 |
| 1 22.70                                 | 0.00          | 4              | :<br>180.70    | 3.60          |            |      |
| , ·                                     |               | 4              | 160.70         | 3.00          |            |      |
| •                                       | -             | **DEA          | D LOAD**       | -             |            |      |
| 2                                       |               | 7.7.           |                |               |            |      |
| STIF                                    | COMPUTE       | •              | -              |               |            |      |
|                                         | COMPUTE       |                |                | •             |            |      |
| JOINT LOAD:                             |               | XM             | XN             |               |            |      |
|                                         | 1             | 0.00           | 10.60<br>12.10 |               |            |      |
|                                         | 2<br>3        | 0.00           | 10.80          |               |            |      |
| `                                       | 0             | 0.00           | 10.00          | -             |            |      |
|                                         |               | ÷              |                |               |            |      |
| COLUMN LOAD:                            | JC            | KL             | P              | x             | KX         |      |
| •                                       | 0             |                |                |               |            |      |
|                                         |               | <b>##1 117</b> | E LOAD**       |               | •          |      |
| BEAM LOAD:                              | NE            | LI             |                | Р . Х         | P1         | Xì   |
| KL P                                    | X             | P1             | X1             | •             |            |      |
| KU 1                                    | ,,            | 1              | 2              | 4             | 12.10      | 3.75 |
| 1 1.30                                  | 0.00          | •              |                |               | -          | 4.40 |
|                                         |               | 1              | 2              | 4             | 12.10      | 3.60 |
| 1 1.30                                  | 0.00          |                | -              |               | •          |      |
| 5.457                                   |               | •              | ٠.             |               |            |      |
| EARI<br>1                               | COMPUTE 7 4.6 |                | 0 1            | 1.00          | 0          |      |
| 1                                       | , 400         | ,              |                |               |            |      |
| 1                                       |               |                |                | 2 °           | -          |      |
| 1381.650                                | -             |                |                | -             |            |      |
|                                         |               |                |                | :             |            |      |
|                                         | T= 0.9304     |                |                |               | ÷          |      |
| 1.000                                   |               |                |                |               | -          |      |
| 101.900                                 |               |                |                |               |            |      |
|                                         |               | **DIS          | PLACEMENT      | **            |            |      |
| ( 1) 0.016 (                            | ( 2) 0.016    | (3)0.0         | )16 (4)0.      | 000 ( 5) 0.00 | 0 (6)0.000 |      |
|                                         |               |                |                | •             | -          |      |
| 3                                       |               |                |                |               |            |      |
| 1381.650                                | •             |                |                |               |            |      |
| 1                                       | T= 0.9304     |                | • .            |               |            |      |
| 1.000                                   | 1 0.7304      |                |                | · ·           | -          |      |
| 101.900                                 |               |                |                | ·             |            | -    |
|                                         |               |                |                |               |            |      |

# \*\*DISPLACEMENT\*\* ( 1)-0.016 ( 2)-0.016 ( 3)-0.016 ( 4) 0.000 ( 5) 0.000 ( 6) 0.000 COMBI COMPUTE

#### \*\*COMBINATION AND REINFORCEMENT\*\*

Concrete COLUMN 1( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

|   |                                  | •          |           |        |         |            |        | 1.0  |         |
|---|----------------------------------|------------|-----------|--------|---------|------------|--------|------|---------|
|   | NUMBER                           | М          | N         | V      |         | M          | N      | V    | NUMBER  |
| ] | N M                              | · <b>V</b> | М         | 7      | 1       | <b>V</b> . |        |      |         |
|   | 1                                | -33.78     | 430.27    | -12.58 | -66.90  | -381.67    | 12.58  | 2    | -28.15  |
|   | 358,56 -10.4                     | 19 -55.75  | -318.06   | 10.49  |         |            |        |      |         |
|   |                                  |            |           |        |         | -381.67    | 12.58  | 4 .  | -28.15  |
| : | 358.56 -10.4                     |            |           |        |         |            |        |      |         |
|   |                                  | -33.78     |           |        |         | -379.71    | 12.49  | 6    | -28.15  |
| , | 358.56 -10.4                     | 19 -54.88  | -316.10   | 10.39  |         |            |        |      |         |
|   |                                  | -36.40     |           |        |         |            |        | 8    | -30.77  |
|   | 384.95 -11.4<br>9                | 8 -61.91   | -346.41   | 11.57  |         |            |        |      |         |
|   | 9                                | -36.32     | 458.63    | -13.67 | -73.06  | -410.03    | 13.67  | 10   | -30.69  |
| : | 386,91 -11.5                     |            |           |        |         |            |        |      |         |
|   |                                  | -33.87     |           |        |         | -379.71    | 12.49  | 12   | -28.24  |
|   | 356.60 -10.3                     | 39 -54.88  | -316.10   | 10.39  |         |            |        |      |         |
|   | 13                               | -33.78     | 430.27    | -12.58 | -66.16  | -380.00    | 12.50  | 14   | -28.15  |
| : | 358.56 -10.4                     | 9 -55.01   | -316.39   | 10.40  |         |            |        |      |         |
|   | 15                               | -36.01     | 452.71    | -13.43 | -72.14  | -405.77    | 13.51  | 16   | -30.38  |
|   | 380 99 -11.3                     | 33 -60.99  | -342.16   | 11.41  |         |            |        | •    | 1.      |
|   | 17                               | -35.94     | 454.37    | -13.51 | -72.14  | -405.77    | 13,51  | 18   | -30.31  |
|   | 382.66 -11.4                     |            |           |        |         |            |        |      |         |
|   | 19                               | -33.85     | 428.60    | -12.50 | -66.16  | -380.00    | 12.50  | 20   | -28.22  |
|   | 356.89 -10.4                     | 40 -55.01  | -316.39   | 10.40  |         |            | -      | £    |         |
|   | 21                               | -33.78     | 430.27    | -12.58 | -66.16  | -380.00    | 12.50  | 22   | -28.15  |
|   | 358.56 -10.4                     | 49 -55.01  | -316.39   | 10.40  |         |            |        |      |         |
|   | 23                               |            |           |        |         | -405.77    | 13.51  | 24   | 30.38   |
|   | 380.99 -11.3                     | 33 -60.99  | -342.16   | 11.41  |         |            |        |      |         |
|   | 25                               | -35.94     | 454.37    | -13.51 | -72.14  | -405.77    | 13.51  | 26   | -30.31  |
|   | 382.66 -11.4                     |            |           |        |         |            |        |      |         |
|   |                                  | -33.85     |           |        |         | -380.00    | 12.50  | 28   | -28.22  |
|   | 356.89 -10.4                     | 40 -55.01  | -316.39   | 10.40  |         |            |        |      | -       |
|   | 29                               | 180.43     | 396.34    | 29.52  | 92.21   | -346.90    | -29.56 | 30   | 187.47  |
|   | 324.63 31.                       | 62 103.3   | 0 -283.43 | -31.66 |         |            |        |      |         |
|   | 31                               | -266.29    | 475.51    | -55.12 | -228.27 | -427.76    | 55.16  | 32   | -259.02 |
|   | 401.92 -52.9                     | 95 -216.68 | -362.12   | 52.98  |         |            |        |      | -       |
|   | 33                               | -266 24    | 476 36    | -55.16 | -228.27 | -427.76    | 55.16  | 34   | -258.98 |
|   | 402.62 -52.9                     | 98 -216.68 | -362.12   | 52.98  |         |            |        | *. : |         |
|   | 402.62 -52.9<br>35<br>323.93 31. | 180.39     | 395.50    | 29.56  | 92.21   | -346.90    | -29.56 | 36   | 187.43  |
|   | 323.93 31.                       | 66 103.3   | 0 -283.43 | -31.66 | •       |            |        |      | -       |
|   |                                  |            |           |        | -       |            |        |      |         |
|   | NO 31                            | As=        | 1542.     | M≃     | -266.29 | ) N= .     | 475.51 |      | - NO 31 |
|   | As= 1376.                        | M≃         | -228.27   | N= -4  | 27.76   |            |        |      | - NO 31 |
|   |                                  | GG≃        | 709.      |        |         |            |        |      |         |
|   |                                  |            |           |        |         |            |        |      |         |

Concrete COLUMN 2( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

NUMBER M N V M N V NUMBER

| M      | N             | v                | м                                                                                                      | N      |                 | V       |        |      |         |
|--------|---------------|------------------|--------------------------------------------------------------------------------------------------------|--------|-----------------|---------|--------|------|---------|
| m<br>1 | 14 .          | -3.33            | M<br>811.56                                                                                            | -1.15  | -5.88           | -762.96 | 1.15   | 2    | -2.78   |
| 676.30 | -0.96         | -4.90            | -635.80                                                                                                | 0.96   |                 | -       |        |      |         |
| 3      | 0.50          | -3.33            | -635.80<br>811.56                                                                                      | -1.15  | -5.88           | -762.96 | 1.15   | 4    | -2.78   |
|        | ~ ~ ~         | 4 00             | Z2 E QA                                                                                                | 73 06  |                 |         |        | -    | 0.40    |
| 5      | ·             | 0.15             | 847.50                                                                                                 | 0.02   | 0.00            | -781.98 | -0.02  | 6    | 0.70    |
| 712.24 | 0.21          | 0.98             | 847.50<br>6 -654.82<br>830.97                                                                          | -0.21  |                 |         |        | •    | -6.24   |
| 7      |               | -6.80            | 830.97                                                                                                 | -2.32  | -11.77          | -799.29 | 2.32   | 8    | -0.24   |
| 695.71 | -2.13         | -10.79           | -672.13                                                                                                | 2.13   |                 |         |        |      | -2.76   |
| 9      |               | -3.32            | 866.91                                                                                                 | -1.15  | -5.89           | -818.31 | 1.15   | 10   | *4.10   |
|        |               | -4.91            | -691.16                                                                                                | 0.96   | * **            | 762.06  | 1.15   | : 12 | -2.78   |
| 11     |               | -3.33            | 811.56                                                                                                 | -1.15  | -5.88           | -762.90 | 1.13   | 1.2  | -2.10   |
|        |               |                  | -635.80                                                                                                | 0.96   | 0.00            | -779.12 | 0.16   | - 14 | 0.18    |
| 13     |               |                  | 842.10                                                                                                 |        |                 | -119.12 | 0.10   | - 17 | 0.10    |
| 706.85 | 0.03          | 0.09             | -651.96                                                                                                | -0.03  | 10.00           | -793.84 | 2.15   | 16   | -5.72   |
| 15     |               | -6.28            | 828.06                                                                                                 | -2.15  | -10.89          | -193.04 | 2.13   | 10   | •       |
| 692.80 | -1.95         | -9.91            | -666.68                                                                                                | 1.93   | 5 80            | -810.01 | 1.15   | 18   | -2.76   |
| 17     |               | -3.32            | 858.61                                                                                                 |        |                 | -010.01 | 1.15   |      |         |
| 723.35 | -0.96         | -4.91            | -682.85<br>811.56                                                                                      | -1.15  | .5 88           | -762.96 | 1.15   | 20   | -2.78   |
| 19     |               | -3.33            |                                                                                                        |        |                 | ,02.20  | ••••   |      |         |
| 676.30 | -0.90         | -4.90            | -635.80<br>842.10                                                                                      | _0.70  | -0.89           | -779.12 | 0.16   | 22   | 0.18    |
| 21     | 0.03          | -0.37            | 9 -651.96                                                                                              |        |                 |         |        |      |         |
|        | Ų. <b>U</b> 3 | -6.28            | 828.06                                                                                                 | -2.15  | -10.89          | -793.84 | 2.15   | 24   | -5.72   |
| 692.80 |               |                  | -666.68                                                                                                |        |                 |         |        |      |         |
| 25     |               |                  | 858.61                                                                                                 |        | -5.89           | -810.01 | 1.15   | 26   | -2.76   |
| 702.25 | ,<br>-0 0∀    | -4.91            | -682.85                                                                                                |        |                 |         |        |      |         |
|        |               | 2 22             | Q11 <k< td=""><td>_1 } {</td><td>-5.88</td><td>-762.96</td><td>1.15</td><td>28</td><td>-2.78</td></k<> | _1 } { | -5.88           | -762.96 | 1.15   | 28   | -2.78   |
| 676 30 | -0.96         | -4.90            | -635.80                                                                                                | 0.96   |                 |         |        |      |         |
| 29     | )             | 240.83           | -635.80<br>826.96                                                                                      | 47.60  | 188.14          | -771.11 | -47.60 | 30   | 241.22  |
| 689.13 | 47.71         | ነ <b>1</b> የአየ 7 | 1 -642.59                                                                                              | -47.71 |                 |         |        |      | 040.15  |
| 3      | ì -           | 249.15           | 819.88                                                                                                 | -49.90 | -199.92         | -778.53 | 49.90  | 32   | -248.15 |
| 683.23 | -49.63        | -108 52          | -648.77                                                                                                | 49.63  |                 |         | 40.40  | 2.4  | -246.60 |
| 33     | ζ.            | 247.29           | 835.28                                                                                                 | -49.40 | -197.40         | -786.68 | 49.40  | 34   | -240.00 |
| 696.07 | -49.21        | -196.42          | -655.57                                                                                                | 49.21  |                 |         | 45.10  | 36   | 239.66  |
| 3.5    | 5             | 238.97           | 811.56                                                                                                 | 47.10  | 185.62          | -762.96 | -47.10 | 30   | 237.00  |
| 676.30 | 47.29         | 9 186.6          | 0 -635.80                                                                                              | -47.29 |                 |         |        |      |         |
|        |               |                  | 1075                                                                                                   |        | . 040 14        | . Nt=   | 683 23 |      | NO 32   |
| No.    | O 32          | As=              | 1278.                                                                                                  | M°     | 248.13<br>19 27 | . IA~   | JUJ.63 |      |         |
| As=1   | 093.          | M=               | -198.52                                                                                                | M== -0 | 40.77           |         |        |      |         |
| •      | -             | GG=              | 709.                                                                                                   |        |                 |         |        |      |         |

Concrete COLUMN 3( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

| NUMBER         | M N                                              | <b>v</b> :        | N     | Ā            | N      | V  | NUMBER |
|----------------|--------------------------------------------------|-------------------|-------|--------------|--------|----|--------|
| M N            | <b>v</b> M                                       | N 13.74           | 73.56 | V<br>-394.13 | -13.74 | 2  | 30.28  |
| 368.94 11<br>3 | 36.33 442.73<br>.45 61.30 -328.4<br>36.33 442.73 |                   | 73.56 | -394.13      | -13.74 | 4  | 30.28  |
|                | .45 61.30 -328.4<br>38.98 469.06                 |                   | 79.65 | -422.40      | -14.81 | 6  | 32.92  |
| 395.27 12<br>7 | 2.44 67.39 -356.7<br>36.33 442.73                | 1 -12.52<br>13.74 | 72.74 | -392.20      | -13.65 | 8  | 30.28  |
| 368.94 11<br>9 | 38.85 471.00                                     | 14.81             | 79.65 | -422.40      | -14.81 | 10 | 32.79  |
| 397.21 12      | 2.52 67.39 -356.7                                | 1 -12.52          |       |              |        |    |        |

|                             |                              | ÷            |         |         |           |             |                 |
|-----------------------------|------------------------------|--------------|---------|---------|-----------|-------------|-----------------|
|                             | 440.80                       |              |         | -392.20 | -13.65    | 12          | 30.40           |
| 67.01 11.36 6               |                              |              |         | 410.16  | 14.65     | 14          | 32.53           |
|                             | 465.11                       |              |         | -418.16 | -14.65    | 14          | 32.33           |
|                             | 6.48 -352.47                 |              |         | -392.49 | -13.66    | 16          | 30.28           |
| 15 36.33                    |                              |              | 12.00   | -372.47 | -13.00    |             | 30.20           |
| •                           | 60,60 -326.80<br>7 466.76    |              | 78 74   | -418.16 | -14.65    | 18          | 32.42           |
|                             | 6.48 -352.47                 |              |         | -410.10 | -14.00    | ••          | 02.12           |
| )2.97 12.36 6<br>19 36.44   |                              |              |         | -392.49 | -13.66    | 20          | 30.38           |
|                             | 60.60 <b>-326.8</b> 0        |              | 12.00   | 574. 17 |           |             |                 |
| 21 38.58                    |                              | 14.58        | 78.74   | -418.16 | -14.65    | 22          | 32.53           |
|                             | 6.48 -352.47                 |              |         |         |           | -           | -               |
| 23 36.33                    |                              |              |         | -392.49 | -13.66    | 24          | 30.28           |
|                             | 50.60 -326.80                |              |         |         |           |             |                 |
| 25 38.47                    |                              |              |         | -418.16 | -14.65    | 26          | 32.42           |
|                             | 66.48 -352.47                |              |         |         |           |             | •               |
| 27 36.4                     |                              |              |         | -392.49 | -13.66    | 28          | 30.38           |
|                             | 50.60 -326.80                |              |         |         |           |             |                 |
| 29 269.49                   |                              |              |         | -440.18 | -56.31    | 30          | 261.68          |
|                             | 22.21 -372.47                |              |         |         |           |             |                 |
|                             | 5 408.80                     |              |         | -359.37 | 28.41     | 32          | -184.82         |
|                             | 7.72 -293.82                 |              |         |         |           |             |                 |
| 33 269 4                    | 2 488 78                     | 56.31        | 234.90  | -440.18 | -56.31    | 34          | 261.63          |
| 2.97 53.94 22               | 22.21 -372.47                | -53.94       |         |         | -         |             |                 |
| 35 -177.18                  | 3 407.97                     | -28.41       | -85.52  | -359.37 | 28.41     | 36          | -184.76         |
| 4.32 -30.69 -9              |                              |              |         |         |           |             |                 |
| GG=                         | M= 234.90<br>= 709.<br>AM 14 | ( SECTION    |         | 1 ANG   | = 0, L= ' | 7.50)       |                 |
| BOTTOM                      | у. Б- 330, 11 <sup>-</sup>   | - 750        |         |         | •         |             |                 |
| SECTION 1                   | 2                            | 3            | 4       | 5       | . 6       | . : 7       | - 8             |
| 10 1                        |                              | 13           | •       |         | _         | -           | :               |
| M= -103 3                   | 30 -163.53                   | -226.92      | -279.36 | -320.86 | -351.42 - | 371.02 -2   | 243.53 -        |
| 8.05 -5.09                  | 0.00 0.00                    | 0.00         |         |         |           |             |                 |
| As(1)= 788.                 | 565.                         | 791.         | 981.    | 1227.   | 1503.     | 1725.       | 1148.           |
| 14. 17.                     |                              |              |         |         |           |             | =               |
| As(2)= 788.                 | 0                            | 788.<br>· 0. | 0.      | 0.      | . 0.      | • 0.        | 0.              |
| $0, \qquad 0$               | 0.                           | 788.         |         |         | -         |             |                 |
| TOP                         |                              |              |         |         |           | ·           |                 |
| SECTION 1                   | 2                            | 3            | 4       | 5       | 6         | · . 7       | - 8             |
| 10 1                        |                              | 13           |         |         |           |             |                 |
| M= 228.2                    | 27 116.67                    | 28.04        | 0.00    | 0.00    | 0.00      | 0.00        | 0.00            |
| 00 56.23 220                | .55 395.80                   | 587.96       |         |         |           | -           |                 |
| As(1) = 796.                | 401.                         | 95.          | 0.      | 0       | 0.        | <i>•</i> 0. | · 0.            |
| , 192. 833                  | . 1583.                      | 2551.        | · ·     |         |           |             |                 |
| As(2) = 796.                | • 0.                         |              | • 0.    | 0.      | · 0.      | 0.          | : 0.            |
| 0, 0                        | o. 0.                        | 2667.        |         |         |           |             |                 |
| VI= 195.56 N<br>maxb= 0.007 | IO 13 Vr                     | = 307.52     | NO 1    | 5 Asv/  | s= 0.50   | As(3        | )= <b>7</b> 88. |

Concrete BEAM 2( SECTION TYPE= 1 ANG= 0, L= 7.50 ) Section property: B= 350, H= 750

|                                           |                                                                    |                                                           |                                                                                    |                                                                                 |                                | •                           |                             |                             |         |
|-------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|-----------------------------|-----------------------------|-----------------------------|---------|
|                                           | вотто                                                              |                                                           |                                                                                    |                                                                                 |                                | _                           |                             |                             | •       |
| SEC                                       | TION                                                               | 1                                                         | 2                                                                                  | 3                                                                               | 4                              | 5                           | 6                           | 7                           | 8       |
| 9                                         | 10                                                                 | 11                                                        | 12                                                                                 | 13                                                                              |                                |                             |                             | ****                        | 76.05   |
|                                           | M=                                                                 | 0.00                                                      | 0.00                                                                               | 0.00                                                                            | -25.01                         | -152.58                     | -288.20                     | -391.52 -3                  | - 68.01 |
| 339.89                                    | -291.97                                                            | -233.11                                                   | -163.31                                                                            | -97.72                                                                          |                                |                             |                             |                             | 1.600   |
|                                           | (1)=                                                               | <b>788</b> .                                              |                                                                                    | · <b>0</b> .                                                                    | 85.                            | <i>7</i> 07.                | 1371.                       | 1828.                       | 1629.   |
| 1320.                                     | 1028.                                                              | 814.                                                      | 565.                                                                               | 788.                                                                            |                                | _                           | _                           |                             | ^       |
| As(                                       | (2)=                                                               | 788.                                                      |                                                                                    | 0.                                                                              | 0.                             | 0.                          | 0.                          | 0.                          | 0.      |
| 0.                                        | 0.                                                                 | 0.                                                        | 0.                                                                                 | <b>788</b> .                                                                    |                                |                             |                             |                             |         |
|                                           | TOP                                                                |                                                           | •                                                                                  |                                                                                 | _                              |                             | -                           | ^                           | `8      |
| SEC                                       | TION                                                               | 1                                                         | 2                                                                                  |                                                                                 | 4                              | 5                           | 6                           | 7                           | δ       |
| 9                                         | 10                                                                 | 11                                                        |                                                                                    |                                                                                 |                                |                             |                             | 0.00                        | 0.00    |
|                                           | M= .                                                               | 593.85                                                    | 391.74                                                                             | 206.48                                                                          | 32.15                          | 0.00                        | 0.00                        | 0.00                        | 0.00    |
| 0.00                                      | 0.00                                                               | 22.75                                                     | 116.81                                                                             |                                                                                 |                                |                             | •                           | •                           |         |
| As                                        | (1)=                                                               | 2584.                                                     |                                                                                    |                                                                                 | 109.                           | 0.                          | U.                          | U.                          | 0.      |
| 0.                                        | 0.                                                                 | 77.                                                       | 401.                                                                               |                                                                                 | _                              |                             | •                           | 0                           | ^       |
| As                                        | (2)=                                                               | <b>2</b> 702.                                             | 0.                                                                                 |                                                                                 | 0.                             | 0.                          | Û.                          | U.                          | 0.      |
| 0.                                        | 0.                                                                 | 0.                                                        | 0.                                                                                 | 820.                                                                            |                                |                             |                             |                             |         |
|                                           |                                                                    |                                                           | _                                                                                  | = 205.82<br>010                                                                 | NO 1:                          | S Asv/s                     | <b>=</b> 0.50               | As(3)                       | = 788.  |
|                                           |                                                                    |                                                           |                                                                                    | <del></del>                                                                     |                                |                             |                             | •                           |         |
| 1320. As( 0. SEC' 9 0.00 As( 0. VI= Umaxb | 1028. (2)= 0. TOP TION 10 M= 0.00 (1)= 0. (2)= 0. = 323.5. = 0.007 | 814. 788. 0.  1 11 593.85 22.75 2584. 77. 2702. 0. 3 NO 1 | 565.<br>0.<br>0.<br>2<br>12<br>391.74<br>116.81<br>1561.<br>401.<br>0.<br>0.<br>0. | 788.<br>0.<br>788.<br>3<br>13<br>206.48<br>234.90<br>765.<br>820.<br>0.<br>820. | 0.<br>4<br>32.15<br>109.<br>0. | 0.<br>5<br>0.00<br>0.<br>0. | 0.<br>6<br>0.00<br>0.<br>0. | 0.<br>7<br>0.00<br>0.<br>0. | 0.      |

```
***** KJ-3 Calculation Result
OUTPUT DATA
                  ---- Zhong xin xi -----
                      3 3
                                               2
   1.00 1.00
OUTPUT DATA
                  ----- Jiao Dian Zuo Biao -----
               (2) 8.50 7.30 (3) 15.00 7.30 (4) 0.00 0.00
 (1) 0.00 7.30
 (5) 8.50 0.00 (6) 15.00 0.00
OUTPUT DATA
                   ----- Zhu Guan Lian Hao ------
      4 1 (2) 5 2 (3) 6 3
                   ----- Liang Guan Lian Hao ------
 (1)
           2 (2) 2 3
OUTPUT DATA
                   ----- Zhi Zuo Yue Shu Xin Xi ------
        4111 (2) 5111 (3) 6111
 (1)
OUTPUT DATA
              ----- Shang Xia Zhu Jian Dian Pian Xin -----
(1) 0.00 (2) 0.00 (3) 0.00 (4) 0.00 (5) 0.00 (6) 0.00
OUTPUT DATA
              Biao Zhun Jie Mian Xin Xi
 1)
            450,
                 450.
           350,
                 850,
                       6
 2)
        1,
           300,
                 650,
OUTPUT DATA
             ---- Zhu Ji Suan Chang Du(After consider steel) -----
(1) 1.00 (2) 1.00 (3) 1.00
OUTPUT DATA
          ---- Zhu Bu Zhi(Hao)Jie Mian Hao, Jiao Jie, Jiao Du -----
(1)
       1 0 0 (2) 1 0 0 (3) 1 0
          ---- Liang Bu Zhi(Hao)lie Mian Hao, liao lie, liao Du -----
       2 0 0 (2) 3 0 0
(1)
        IIQQ≃
        STIF COMPUTE
```

DEAD COMPUTE

I

| JOINT LOAD:          | JR<br>1<br>3     | 0.00                | XN<br>94.10<br>95.00 |                                       |            |                 |
|----------------------|------------------|---------------------|----------------------|---------------------------------------|------------|-----------------|
| COLUMN LOAD:         | 0<br>JC          | KL                  | P                    | x                                     | KX         |                 |
| BEAM LOAD:<br>KL P   | NE<br>X          |                     | XI                   | P<br>1                                | X<br>28.50 |                 |
| 4 90.40              | 3.75             | 4                   |                      | •                                     |            |                 |
| 4 22.00              | 3.18             | 1 4                 | _                    | 2.60                                  | 23.10      |                 |
|                      |                  | **DEA               | D LOĄD**             |                                       |            |                 |
| STIF (               | COMPUTE COMPUTE  |                     |                      |                                       |            |                 |
| JOINT LOAD:          | JR<br>1          | XM<br>0.00          | XN<br>5.30           |                                       |            |                 |
| ·                    | 3<br>0           | 0.00                | 5.40                 |                                       |            |                 |
| COLUMN LOAD:         | O JC             | KL                  | P                    | х                                     | KX         |                 |
| •                    | <u>:</u>         |                     | LOAD**               |                                       |            |                 |
| BEAM LOAD:<br>KL P   | NE<br>X          |                     | KL<br>X1             | P                                     | X          | P1 X1           |
| •                    | :                | 1                   | 3                    | 1 -                                   | 1.40       | 0.00            |
| 4 6.10               | 3.13             | - 4                 |                      | 7.50<br>1                             | 1.40       | 0.00            |
| 4 6.10               | 2.60             | 1                   | 2                    | 1                                     | 1,40       | V.00            |
| EART                 | COMPUTE<br>7 4.0 |                     | 0 1                  | 1.00                                  | 0          |                 |
| 1<br>950.934         | · .              |                     | . •                  | *:                                    |            |                 |
|                      | T= 0.6806        | ٠                   |                      |                                       |            |                 |
| 1.000<br>76.075      | ÷ *              |                     |                      | ;                                     | :          | . *.            |
| ( 1) 0.009           | ( 2) 0.009       | **Disi<br>( 3) 0.00 | PLACEMENT<br>09 (4)0 | .000 ( :                              | 5) 0.000 ( | <b>6) 0.000</b> |
| 950.934              | •                |                     |                      | · · · · · · · · · · · · · · · · · · · |            |                 |
| 1<br>1.000<br>76.075 | T= 0.6810        | ٠.                  |                      |                                       |            | 1 + 15          |

#### \*\*DISPLACEMENT\*\*

(1)-0.009 (2)-0.009 (3)-0.009 (4) 0.000 (5) 0.000 (6) 0.000 COMBI COMPUTE

#### \*\*COMBINATION AND REINFORCEMENT\*\*

1( SECTION TYPE= 1, ANG= 0, Lx= 7.30, Ly= 7.30 ) Concrete COLUMN Section property: B= 450, H= 450

| NUMBER                 | M               | N                                                 | V          |           | M               | N        | V    | NUMBER  |
|------------------------|-----------------|---------------------------------------------------|------------|-----------|-----------------|----------|------|---------|
| M N                    | V               | М                                                 | 1          | 4         | V               |          |      | -       |
| 1 -3                   | 9.30            | 335.91                                            | -15.92     | -76.91    | -291.56         | 15.92    | 2    | -32.75  |
| 279.93 -13.27          | -64.10          | -242.97                                           | 13.27      |           |                 |          |      |         |
|                        |                 |                                                   |            |           | -291.56         | 15.92 ±  | . 4  | -32.75  |
| 279.93 -13.27          | -64.10          | -242.97                                           | 13.27      | 06.45     | 202.24          | 16.00    | 6    | -32.72  |
| 3 -3                   | 59.27<br>-      | 343.30                                            | -13.91     | -10,43    | -291.14         | 15.88    | 0    | *32.12  |
| 287.31 -13.25          | -03.03<br>13.00 | -249.13<br>247.47                                 | 13.43      | -82.62    | -304 33         | 17.04    | 8    | -35.45  |
| 291.48 -14.36          |                 |                                                   |            |           | *304.33         | 17.04    |      | -33.43  |
| 291.46 -14.50          | -02.00<br>11 75 | 356.07                                            | -17 03     | -82 55    | -311.72         | 17.03    | 10   | -35.19  |
| 300.08 -14.37          | -69.73          | -263.13                                           | 14.37      | 02.50     |                 | . •      |      |         |
| 11 -3                  | 39.53           | 334.70                                            | -15.90     | -76.52    | -290.36         | 15.90    | 12   | -32.98  |
| 278.72 -13.24          | -63.70          | -241.76                                           | 13.24      | -         |                 |          |      |         |
| 13 -3                  | 39.27           | 342.19                                            | -15.91     | -76.52    | -296.82         | 15.89    | 14   | -32.72  |
| 286.21 -13.25          | -63.70          | -248.22                                           | 13.24      |           |                 |          |      |         |
| 15 -4                  |                 |                                                   |            |           | -302.42         | 16.87    | 16   | -35.05  |
| 289.75 -14.20          | -68.95          | -253.82                                           | 14.22      |           |                 |          |      |         |
|                        |                 |                                                   |            |           | -308.70         | 16.86    | 18   | -34.83  |
| 297.06 -14.21          | <b>-68.89</b>   | -260.10                                           | 14.21      |           |                 |          | ••   | 22.04   |
| 19 -3                  | 39.49           | 334.88                                            | -15.90     | -76.58    | -290.54         | 15.90    | 20   | -32.94  |
| 278.90 -13.25          | -63.76          | -241.94                                           | 13.25      | <i>a.</i> | 004.00          | 16.00    | 22   | 20.22   |
| 21 -3                  | 39.27           | 342.19                                            | -15.91     | -70.32    | -290.82         | 15.69    | 22   | -32.72  |
| 286.21 -13.25<br>23 -4 | -63.70          | -248.22                                           | 15.24      | 01 77     | 202.42          | 16.97    | 24   | -35.05  |
| 23 -2<br>289.75 -14.20 |                 |                                                   |            |           | -302.42         | 10.07    | 24   | -33.03  |
|                        | -00.93<br>11.38 | -433.04<br>252.04                                 | .16.86     | .21.71    | -308.70         | 16.86    | 26   | -34.83  |
| 297.06 -14.21          |                 |                                                   |            |           | -300.70         | 10.00    | 2.0  | 01.05   |
| 27 -3                  | -00.03<br>RO AQ | 334.88                                            | -15 90     | -76 58    | -290.54         | 15.90    | 28   | -32.94  |
| 278.90 -13.25          | -63.76          | -241.94                                           | 13.25      |           |                 |          |      | -       |
| 29 10                  | 08.49           | 316.78                                            | 17.05      | 37.86     | -271.91         | -17.06   | 30   | 116.67  |
| 260.26 19.70           | 50.6            | 5 -222.88                                         | -19.71     |           |                 |          | =    |         |
| 31 -20                 | 08.17           | 363.17                                            | -49.36     | -193.94   | -319.34         | 49.37    | 32   | -199.74 |
| 306.36 -46.63          | -180.71         | -269.83                                           | 46.63      | ı         |                 |          |      |         |
| 33 -20                 | 08.04           | 366.85                                            | -49.36     | -193.91   | <b>-32</b> 2.50 | 49.36    | . 34 | -199.63 |
| 309.43 -46.63<br>35 16 | -180.69         | -272.47                                           | 46.63      | :         |                 |          | :    |         |
| 35 10                  | 08.35           | 313.09                                            | 17.06      | 37.83     | -268.74         | -17.06   | 36   | 116.56  |
| 257.19 19.71           |                 |                                                   |            |           |                 |          |      |         |
| NO 31<br>As= 1168.     |                 | 1103                                              | 1.4-       | 200.15    | . <b>N</b> T    | 262 17 : |      | NO 21   |
| NO 31                  | As≖<br>`\-      | 1105.                                             | M≃<br>N⊸ 2 | -208.17   | W-              | 303.17   |      | 10 31   |
| AS= 1108.              | M=              | * *173.74<br>************************************ | 143        | 17.34     |                 |          |      | -       |
|                        | OO-             | 7UY.                                              |            |           |                 |          |      |         |

2( SECTION TYPE= 1, ANG= 0, Lx= 7.30, Ly= 7.30 ) Concrete COLUMN Section property: B= 450, H= 450

V NUMBER N M NUMBER Ν

| м :          | N             | v i                             | 4 N                      | J       | v       | -       |     |         |
|--------------|---------------|---------------------------------|--------------------------|---------|---------|---------|-----|---------|
| 1            | 14.54         | V 1<br>4 576.06<br>25.78 -443.6 | 6.23                     | 30.94   | -531.71 | -6.23   | 2   | 12.11   |
| 480.05       | 5.19          | 25.78 -443.                     | 9 <b>-</b> 5.19          | 40.04   | ¢21 41  | -6.23   | 4   | 12.11   |
| 3            | 14.5          | 4 576.06<br>25.78 -443.         |                          |         | -531.71 | +0.23   | 4   | 12.11   |
|              | 3.19<br>17.9: | 25.18 -445.9<br>3 596.71        | 7.52                     | 36.99   | -552.36 | -7.52   | 6   | 15.51   |
| 500.70       |               | 31.83 -463.                     | 74 -6.48                 |         |         |         |     |         |
|              | 12.2          | 1 590.21                        | 5.39                     | 27.12   | -545.87 | -5.39   | 8   | 9.78    |
| 494.20       | 4.35          | 21.96 -457.                     | 25 -4.35                 |         |         |         | ••  |         |
| 9            |               |                                 | 6.68                     |         | -566.52 | -6.68   | 10  | 13.18   |
| 514.86       |               | 28.01 -477.5                    |                          | 30.94   | -531.71 | -6.23   | 12  | 12.11   |
| 11           |               | 4 576.06<br>25.78 -443.         |                          |         | -331.74 | -0.23   | 12  |         |
| 480.03       | 3.19<br>17.41 |                                 | 7.33                     | 36.08   | -549.27 | -7.33   | 14  | 15.00   |
|              | 6.29          | 30.92 -460                      | 65 -6.29                 | -       |         |         |     |         |
| 15           | 12.5          |                                 | 5.51                     | 27.69   | -543.74 | -5.51   | 16  | 10.13   |
|              | 4.47          | 22.53 -455.                     | 12 -4.47                 |         |         |         | 10  | 12.00   |
| _            |               |                                 | 6.61                     |         | -561.30 | -6.61   | 18  | 13.02   |
| 509.64       |               | 27.67 -472.                     | 68 -5.57                 | 30.94   | -531.71 | -6.23   | 20  | 12.11   |
| 19           | 14.5          | 4 370.06<br>25.78 -443.         | 6.23                     | 30.94   | -331,71 | -0.23   | 20  | ,       |
| 480.05<br>21 | 3.19<br>17.4  | 23.76 -443.<br>2 503.61         | 7.33                     | 36.08   | -549.27 | -7.33   | 22  | 15.00   |
| 497.60       |               | 30.92 -460.                     | 65 -6.29                 | )       |         |         |     |         |
| 23           | 12.5          | 6 588.09                        | 5.51                     | 27.69   | -543.74 | -5.51   | 24  | 10.13   |
| 492.08       | 4.47          | 22.53 -455.                     | 12 -4.47                 |         |         |         | •   | 10.00   |
| 25           |               |                                 | 4.01                     |         | -561.30 |         | 26  | 13.02   |
| 509.64       | 5.57          | 27.67 -472.<br>4 576.06         | 68 -5.57                 | 30.04   | 521 71  | -6.23   | 28  | 12.11   |
|              | 14.3<br>5.19  |                                 | 0. <i>43</i><br>00 -5 10 | 30.94   | -551.71 | -0.23   | 2.0 | 12.11   |
|              | 3.19<br>188.5 | 23.70 =943.<br>8 583.50         | 43.37                    | 165.70  | -539.15 | -43.37  | 30  | 185.25  |
| 486 O1       | 42.23 1       | 160.11 -449.                    | 05 -42.23                | ,       |         |         |     |         |
| 31           | -151.6        | 7 : 583.54                      | -30.71                   | -102.87 | -539.19 | 30.71   | 32  | -154.49 |
| 486.52       | -31.69 -10    | 07.75 -449.5                    | 56 31.69                 |         |         |         |     | 165.00  |
|              | -149.8        |                                 | -30.16                   |         | -548.04 | 30.16   | 34  | -152.98 |
|              |               | 05.59 -456.9                    | 94 31.23<br>42.81        | 162 11  | 520.20  | . 42.81 | 36  | 183.73  |
| 35           | 186.7         | 16 374.04<br>157.96 -441.       | 44.81<br>69 -41.77       | 105.11  | -550.50 | -42.01  | 50  | 100.10  |
| 478.03       | 41.//         | 137.70 -441.                    | VO *41.//                |         |         |         |     |         |
| NO           | 30 As         | s= 923. <i>i</i>                | . M=                     | 185.25  | Ŋ≖      | 486.01  |     | NO 29   |
| As= 8        | 362.          | M= 165.70                       | ) N= -                   | 539.15  | -       |         |     |         |
| 1.           | GG            | = 709.                          |                          |         |         |         |     | -       |

3( SECTION TYPE= 1, ANG= 0, Lx= 7.30, Ly= 7.30 ) Concrete COLUMN Section property: B= 450, H= 450

| :   | NUMBER          | М             | N ·              | v              | ì     | <b>1</b>     | N      | V   | NUMBER |
|-----|-----------------|---------------|------------------|----------------|-------|--------------|--------|-----|--------|
| M   | N               | V<br>22.92 26 | M<br>6.51        | 9.69           | 47.83 | V<br>-222.16 | -9.69  | 2   | 19.10  |
| 222 | .09 8.0         | 39.86         | -185.14          | -8.08          | 47.83 | -222.16      | -9.69  | 4   | 19.10  |
| 222 | 3<br>9,09 8.09  | 39.86         | 66.51<br>-185.14 | 9.69<br>-8.08  |       | - :          |        |     |        |
| 230 | 5<br>.43 . 8.90 |               | 74.85<br>-193.47 | 10.51<br>-8.90 | 52.10 | -230.50      | -10.51 | . 6 | 20.81  |
|     | 7               | 22.71 27      | 72.46<br>-191.09 | 9.50<br>-7.89  | 46.67 | -228.12      | -9.50  | . 8 | 18.89  |
| 228 | 9 :             | 24.59 28      | 82.36            | 10.49          | 52.02 | -238.02      | -10.49 | 10  | 20.77  |
| 237 | 1.95 8.8        | 8 44.04       | -200.99          | -8.88          |       | -            | •      |     |        |

| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      |                                                                 |                                                                             |                                                                                                     |                                              |                                                |                                                |                                                    |                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------|-------------------------------------|
| 33/1 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.01                                                                                                                 | 22.75                                                           | 264.9\$                                                                     | 9.52                                                                                                | 46.75                                        | -220.60                                        | -9.52                                          | 12                                                 | 18.93                               |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.91                                                                                                                 | 36.<br>24.37                                                    | 78 -183.57<br>273.60                                                        | 10.39                                                                                               | 51.46                                        | -229.25                                        | -10.39                                         | 14                                                 | 20.55                               |
| 229.18<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.77                                                                                                                 | 43.<br>22.74                                                    | 49 -192.22<br>271.57                                                        | -8.77<br>9.53                                                                                       | 46.84                                        | -227.22                                        | -9.53                                          | 16                                                 | 18.92                               |
| 227.15<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.92                                                                                                                 | 38.<br>24.34                                                    | 87 -190.20<br>279.99                                                        | -7.92<br>10.37                                                                                      | 51.39                                        | -235.64                                        | -10.37                                         | 18                                                 | 20.52                               |
| 235.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 76                                                                                                                 | 43.                                                             | 42 -198.61<br>265.18                                                        | -8.76                                                                                               |                                              |                                                | •                                              | 20                                                 | 18.96                               |
| 220.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.93                                                                                                                 | 38.                                                             | 94 -183.81                                                                  | -7.93                                                                                               |                                              |                                                |                                                | • .                                                |                                     |
| 21<br>229.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.77                                                                                                                 | 43.                                                             | 273.60<br>49 -192.22                                                        | -8.77                                                                                               | • •                                          | -229.25                                        |                                                | 22                                                 | 20.55                               |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | 22,74<br>38:                                                    | 271.57<br>87 -190.20                                                        | 9.53<br>-7.92                                                                                       | 46.84                                        | -227.22                                        | -9.53                                          | 24                                                 | 18.92                               |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | 24.34                                                           | 279.99                                                                      | 10.37                                                                                               | 51.39                                        | -235.64                                        | -10.37                                         | 26                                                 | 20.52                               |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                      | 22.78                                                           | 42 -198.61<br>265.18                                                        | 9.55                                                                                                | 46.91                                        | -220.83                                        | -9.55                                          | 28                                                 | 18.96                               |
| 220.76<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.93<br>1                                                                                                            | 38.<br>76.18                                                    | 94 -183.81<br>293.80                                                        | -7.93<br>39.39                                                                                      | 146.62                                       | ·<br>-249.45                                   | -39.39                                         | 30                                                 | 171.25                              |
| 248.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.72                                                                                                                | 138.                                                            | 34 -211.83<br>245.35                                                        | -37.72                                                                                              |                                              |                                                |                                                | 32                                                 | -122.84                             |
| 200.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -21.34                                                                                                               | -57.5                                                           | 2 -163.55                                                                   | 21.34                                                                                               |                                              |                                                |                                                |                                                    |                                     |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                    | 76.16                                                           | 297.02<br>32 -214.51                                                        | 39.39                                                                                               | 146.59                                       | -252.67                                        | -39.39                                         | 34                                                 | 171.24                              |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1                                                                                                                   | 18.06                                                           | 242.12<br>9 -160.86                                                         | -19.73                                                                                              | -49.60                                       | -197.78                                        | 19.73                                          | 36                                                 | -122.82                             |
| As= - 8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77.                                                                                                                  | M                                                               | 943.<br>= 146.62<br>709.                                                    | N= -2                                                                                               | 49.45                                        | 44                                             | 275.00                                         |                                                    | NO 29                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                      | e BEAN                                                          | A 1(<br>B= 350, H=                                                          |                                                                                                     | 1 TYPE=                                      | 1 ANG                                          | G= 0, L=                                       | 8.50)                                              | •                                   |
| Sec<br>Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ction pro<br>OTTOM                                                                                                   | e BEAN<br>operty:<br>M                                          | B= 350, H=                                                                  | = 850                                                                                               |                                              | -                                              |                                                | . :                                                | 8                                   |
| Sec<br>B<br>SECTIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ction pro<br>OTTON<br>ON                                                                                             | e BEAN<br>operty:<br>M                                          | B= 350, H=                                                                  | = 850                                                                                               |                                              | -                                              | G= 0, L=                                       | 8.50)                                              | 8                                   |
| Sec<br>Be<br>SECTIO<br>9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ction pro<br>OTTON<br>ON<br>10<br>M=                                                                                 | e BEAN<br>operty:<br>M<br>1<br>11<br>-50.65                     | B= 350, H=  2  12  -141.05                                                  | = 850<br>3<br>13<br>229.29 -                                                                        | 4<br>299.96                                  | . 5                                            | . 6                                            | . :                                                |                                     |
| Sec B6<br>SECTIC<br>9 1<br>197.18 -<br>As(1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ction pro<br>OTTON<br>N<br>10<br>M=<br>106.63                                                                        | e BEAN<br>operty:<br>M<br>1<br>11<br>-50.65<br>-14.5            | B= 350, H=  2 12 -141.05 -10.00 425.                                        | = 850<br>3<br>13<br>229.29 -<br>0.00<br>697.                                                        | 4<br>299.96                                  | -353.05                                        | -388.55                                        | 7                                                  | 30.56 -                             |
| Sec Bi<br>SECTIC<br>9 1<br>N<br>197.18 -<br>As(1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ction pro<br>OTTON<br>N<br>10<br>M=<br>106.63<br>=<br>383.                                                           | e BEAN<br>operty:<br>M<br>1<br>11<br>-50.65<br>-14.5<br>893.    | B= 350, H=  2 12 -141.05 - 51 0.00 425. 0.                                  | = 850<br>3<br>13<br>229.29 -<br>0.00<br>697.<br>893.                                                | 4<br>299.96                                  | -353.05                                        | -388.55                                        | 7<br>-350.40 -28                                   | 30.56 -                             |
| Sec Book SECTION 197.18 - As(1)= 802. As(2)= 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etion pro<br>OTTON<br>NN<br>10<br>M=<br>106.63<br>=<br>383.<br>=                                                     | e BEAN operty:  1 11 -50.65 -14.5 893. 43.                      | B= 350, H=  2 12 -141.05 -10.00 425. 0.00                                   | = 850<br>3<br>13<br>229.29 -<br>0.00<br>697.<br>893.<br>0.                                          | 4<br>299.96<br>992.                          | 5<br>-353.05<br>1301.                          | 6<br>-388.55<br>1536.                          | 7<br>-350.40 -28<br>1437.                          | 30.56 -<br>1154.                    |
| Sec Be SECTIO 9 1 N 197.18 - As(1)= 802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ction pro<br>OTTON<br>NN<br>10<br>M=<br>106.63<br>=<br>383.<br>=<br>0.<br>OP                                         | e BEAN operty:  1 11-50.65 -14.5 893. 43.                       | B= 350, H=  2 12 -141.05 -51 0.00 425. 0. 0.                                | = 850<br>3<br>13<br>229.29 -<br>0.00<br>697.<br>893.<br>0.                                          | 4<br>299.96<br>992.                          | 5<br>-353.05<br>1301.                          | 6<br>-388.55<br>1536.                          | 7<br>-350.40 -28<br>1437.<br>0.                    | 30.56 -<br>1154.                    |
| Sec BB SECTION 9 1 197.18 - As(1)= 802. As(2)= 0. To SECTION 9 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction pro<br>OTTON<br>NN<br>10<br>M=<br>106.63<br>=<br>383.<br>=<br>0.<br>OP                                         | e BEAN operty: M 1                                              | B= 350, H=  2 12 -141.05 -51 0.00 425. 0. 0. 2 12                           | 3<br>13<br>229.29 -<br>0.00<br>697.<br>893.<br>0.<br>893.                                           | 4<br>299.96<br>992.<br>0.                    | 5<br>-353.05<br>1301.<br>0.                    | 6<br>-388.55<br>1536.<br>0.                    | 7<br>-350.40 -28<br>1437.<br>0.                    | 30.56 -<br>1154.<br>0.              |
| Sec BB SECTION 9 1 197.18 - As(1)= 802. As(2)= 0. To SECTION 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ction pro<br>OTTON<br>NN<br>10<br>M=<br>106.63<br>=<br>383.<br>=<br>0.<br>OP<br>NN<br>10                             | e BEAN operty: M 1 11 -50.65 -14.5 893. 43. 893. 0. 1 11 193.94 | B= 350, H=  2 12 -141.05 -51 0.00 425. 0. 0. 2 12 64.73                     | 3<br>13<br>229.29 -<br>0.00<br>697,<br>893,<br>0,<br>893,                                           | 4<br>299.96<br>992.<br>0.<br>4<br>0.00       | 5<br>-353.05<br>1301.<br>0.                    | 6<br>-388.55<br>1536.<br>0.                    | 7<br>-350.40 -28<br>1437.<br>0.                    | 0. •                                |
| Sec Be SECTIO 9 1 N N 197.18 - As(1)= 802. As(2)= 0. TO SECTIO 9 N N 0.00 As(1)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction pro<br>OTTON<br>NN<br>10<br>M=<br>106.63<br>=<br>383.<br>=<br>0.<br>OP<br>NN<br>10<br>M= 1<br>0.00             | e BEAN operty:  1                                               | B= 350, H=  2 12 -141.05 -51 0.00 425. 0. 0. 2 12 64.73 246.17 193.         | 850<br>3<br>13<br>229.29 -<br>0.00<br>697.<br>893.<br>0.<br>893.<br>3<br>13<br>0.00<br>478.99<br>0. | 4<br>299.96<br>992.<br>0.                    | 5<br>-353.05<br>1301.<br>0.                    | 6<br>-388.55<br>1536.<br>0.                    | 7<br>-350.40 -28<br>1437.<br>0.<br>7<br>0.00       | 80.56 -<br>1154.<br>0.<br>8<br>0.00 |
| Sec Be SECTIO 9 1 N N 197.18 - As(1)= 802 N N 195.10 N | ction pro<br>OTTON<br>NN<br>10<br>M=<br>106.63<br>=<br>383.<br>=<br>0.<br>OP<br>ON<br>10<br>M= 1<br>0.000<br>=       | e BEAN operty:  1                                               | B= 350, H=  2 12 -141.05 -51 0.00 425. 0. 0. 2 12 64.73 246.17 193. 794.    | 3<br>13<br>229.29 -<br>0.00<br>697.<br>893.<br>0.<br>893.<br>3<br>13<br>0.00<br>478.99<br>0.        | 4<br>299.96<br>992.<br>0.<br>4<br>0.00<br>0. | 5<br>-353.05<br>1301.<br>0.<br>5<br>0.00<br>0. | 6<br>-388.55<br>1536.<br>0.<br>6<br>0.00<br>0. | 7<br>-350.40 -28<br>1437.<br>0.<br>7<br>0.00<br>0. | 8 0.00<br>0.                        |
| Sec Be SECTIO 9 1 N 197.18 - As(1)= 802. As(2)= 0. To SECTIO 9 N 0.00 As(1)= 0. As(2)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ction pro<br>OTTON<br>NN<br>10<br>M=<br>106.63<br>=<br>383.<br>=<br>0.<br>OP<br>ON<br>10<br>M= 1<br>0.000<br>=<br>0. | e BEAN operty:  1                                               | B= 350, H=  2 12 -141.05 -51 0.00 425. 0. 0. 2 12 64.73 246.17 193. 794. 0. | 3<br>13<br>229.29 -<br>0.00<br>697.<br>893.<br>0.<br>893.<br>3<br>13<br>0.00<br>478.99<br>0.        | 4<br>299.96<br>992.<br>0.<br>4<br>0.00       | 5<br>-353.05<br>1301.<br>0.<br>5<br>0.00       | 6<br>-388.55<br>1536.<br>0.<br>6<br>0.00       | 7<br>-350.40 -28<br>1437.<br>0.<br>7<br>0.00       | 80.56 -<br>1154.<br>0.<br>8<br>0.00 |

Concrete BEAM 2( SECTION TYPE= 1 ANG= 0, L= 6.50 ) Section property: B= 300, H= 650

(James)

|    | BOTTO                          | OM           |              |                 |        | _      | _       |              | 8     |
|----|--------------------------------|--------------|--------------|-----------------|--------|--------|---------|--------------|-------|
| SE | CTION                          | 1            | 2            | 3               | 4      | 5      | 6       | 7            | •     |
|    | 10<br>M=                       | 0.00         | 12<br>0.00   | 13<br>0.00      | 0.00   | -67.31 | -141.39 | -166.06 -169 | .51 - |
|    | 66 -148.5<br>ls(1)=            |              | 0.           | 0.              | 0.     | 360.   | 772.    | 840.         | 782.  |
|    | 603.<br>s(2)=                  | 585.         | 362.<br>0.   | 585.<br>0.      | 0.     | 0.     | 0.      | 0.           | 0.    |
|    | 0.<br>TOP                      | 0.           | 0.           |                 |        | _      | _       | a            | 8     |
| SE | CTION                          | 1            | 2            | 3               | 4      | 5      | 6       | ′            | o     |
| 9  |                                | 11<br>429.30 | 12<br>291.06 | 13<br>166.10    | 50.43  | 0.00   | 0.00    | 0.00         | 0.00  |
|    |                                | 2287.        | 1426.        |                 | 215.   | 0.     | 0.      | 0.           | 0.    |
|    |                                | 2416.        |              | 0.              | 0.     | 0.     | 0.      | 0.           | 0.    |
| •• | 0.                             | 0.           | 0.           | 595.            | 310 16 | A auda | - 0 40  | As(3)=       | 585.  |
|    | /l= 257.1<br>xb= 0.00<br>PK1 C |              | lmaxt= 0.    | = 135.45<br>012 | NO IS  | ASV/S  | - U.49  | A3(3)=       | J0J.  |

#### \*\*\*\*\* KJ-4 Calculation result \*\*\*\*\*

```
OUTPUT DATA
                 ---- Zhong xin xi -----
                   0 10 2 1
                                        0
  20
        10
  1.00 1.00
   0
OUTPUT DATA
                  Jiao Dian Zuo Biao -----
                (2) 6.50 8.00 (3) 13.00 8.00 (4) 19.50 8.00
  1) 0.00 8.00
                               (7) 39.00 8.00 (8) 45.50 8.00
  5) 26.00 8.00
                (6) 32.50 8.00
                                               (12) 6.50 0.00
                (10) 58.50 8.00
                               (11) 0.00 0.00
(9) 52.00 8.00
                (14) 19.50 0.00
                              (15) 26.00 0.00
                                               (16) 32.50 0.00
(13) 13.00 0.00
                              (19) 52.00 0.00
                                             (20) 58.50 0.00
                (18) 45.50 0.00
(17) 39.00 0.00
OUTPUT DATA
                  Zhu Guan Lian Hao -----
                        2 (3) 13 3 (4) 14
                                                       (5) 15
           1
              (2) 12
  1) 11
                                    8 (9) 19
                        7 (8) 18
                                                      (10) 20 10
              (7) 17
                        Liang Guan Lian Hao -----
                                  3 4 (4)
                                                       (5)
              (2) 2
                                                  - 5
                        3 (3)
  1)
                           (8)
              (7) 7
                                 8
                                      9 (9)
                        8
  6)
OUTPUT DATA
                  ----- Zhi Zuo Yue Shu Xin Xi ------
                           (3) 13111 (4) 14111
                                                       (5)
                                                             15111
              (2) 12111
                                  18111 ( 9)
                                                19111
                                                       (10)
              (7)
                     17111
                           (8)
   6)
OUTPUT DATA
              Shang Xia Zhu Jian Dian Pian Xin -----
(1)0.00 (2)0.00 (3)0.00 (4)0.00 (5)0.00 (6)0.00 (7)0.00
(8) 0.00 (9) 0.00 (10) 0.00 (11) 0.00 (12) 0.00 (13) 0.00 (14) 0.00
(15) 0.00 (16) 0.00 (17) 0.00 (18) 0.00 (19) 0.00 (20) 0.00
OUTPUT DATA
                    Biao Zhun Jie Mian Xin Xi ------
            450.
                 450,
                      6
 1)
        1,
                 650,
 2)
            300,
        1,
OUTPUT DATA
             ..... Zhu Ji Suan Chang Du(After consider steel) -----
(1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00
(8) 1.00 (9) 1.00 (10) 1.00
OUTPUT DATA
```

| Calculation                                    | book                                               |                                                        |                            | Oil D                         | epot (                                  | Oil pu                   | ımp                                                | shed                  |                                          |                                      |             |    |    | · · · · · · · · · · · · · · · · · · · |
|------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------|-------------------------------|-----------------------------------------|--------------------------|----------------------------------------------------|-----------------------|------------------------------------------|--------------------------------------|-------------|----|----|---------------------------------------|
| ( 1)<br>( 4)<br>( 7)<br>( 10)                  | 1 0<br>1 0<br>1 0<br>1 0                           | 0 (<br>0 (<br>0 (                                      | 2)<br>5)<br>8)             | 1 1                           | 0<br>0<br>0                             | 0                        | ( 6                                                | )<br>))<br>))         | 1<br>1<br>1                              | 0<br>0<br>0                          | 0<br>0<br>0 |    |    |                                       |
|                                                | [                                                  | iang Bu 7                                              | hi(H:                      | ao)Jie                        | Mian F                                  | lao, J                   | iao Ji                                             | e, Jia                | o Du                                     |                                      |             |    |    |                                       |
| (1)                                            | 2 0                                                | 0 (                                                    | 2)                         | 2                             | 0                                       | Ó                        |                                                    | <b>(</b> )            | 2                                        | 0                                    | 0           |    |    |                                       |
| (4)                                            | 2 0<br>2 0<br>IIQQ=                                | 0 (<br>0 (<br>11                                       | 5)<br>8)<br>11             | 2                             | 0                                       | 0                        |                                                    | 5)<br>))              | 2                                        | 0                                    | 0           |    |    |                                       |
|                                                |                                                    | OMPUTE<br>COMPUT                                       |                            |                               |                                         |                          |                                                    |                       |                                          |                                      |             | ٠. |    |                                       |
| JOINT                                          | LOAD:                                              | JR                                                     |                            | XM                            |                                         | >                        | (N                                                 |                       |                                          |                                      |             |    |    |                                       |
| 701111                                         |                                                    | 1                                                      |                            | .00                           |                                         | 6.10                     |                                                    |                       |                                          |                                      |             |    | -  |                                       |
|                                                |                                                    | 2                                                      |                            | .00                           |                                         | 3.90                     |                                                    |                       |                                          |                                      |             |    |    |                                       |
|                                                |                                                    | 3                                                      |                            | .00<br>.00                    |                                         | 3.90<br>3.90             |                                                    |                       |                                          | :                                    |             |    |    |                                       |
|                                                |                                                    | 4<br>5                                                 |                            | .00                           |                                         | 3.90                     |                                                    |                       |                                          |                                      |             |    |    |                                       |
|                                                |                                                    | 6                                                      |                            | .00                           |                                         | 3.90                     |                                                    |                       |                                          |                                      |             |    |    |                                       |
|                                                |                                                    | 7                                                      | 0                          | .00                           |                                         | 3.90                     |                                                    |                       |                                          |                                      |             |    |    |                                       |
|                                                |                                                    | ~                                                      | ^                          | $\Delta \Delta$               | 17                                      | 2 00                     |                                                    |                       |                                          |                                      |             |    |    |                                       |
|                                                |                                                    | 8                                                      |                            | .00                           |                                         | 3.90                     |                                                    |                       |                                          |                                      |             |    |    |                                       |
|                                                |                                                    | 9                                                      | 0                          | .00                           | 17                                      | 3.90                     |                                                    |                       |                                          |                                      |             |    |    |                                       |
|                                                |                                                    |                                                        | 0                          |                               | 17                                      |                          |                                                    |                       |                                          |                                      |             |    |    |                                       |
| COLUM                                          | N LOAD:                                            | 9<br>10                                                | 0                          | .00                           | 17                                      | 3.90<br>0.90             | P                                                  |                       | ×                                        | <b>3</b>                             | кх          |    |    |                                       |
| BEAM                                           | LOAD:                                              | 9<br>10<br>0<br>JC<br>0                                | 0                          | .00<br>.00<br>.KL             | 17                                      | 3.90<br>0.90<br>KL       | Р                                                  |                       | X<br>P                                   | ζ.                                   | кх<br>х     |    | P1 | <b>X</b> 1                            |
| BEAM<br>KL                                     | LOAD:<br>P                                         | 9<br>10<br>0<br>JC<br>0                                | 0                          | .00<br>.00<br>.KL             | 17                                      | 3.90<br>0.90             | P<br>17.4                                          | D.                    | P                                        | 0.00                                 |             |    | P1 | X1<br>6                               |
| BEAM<br>KL<br>15.90                            | LOAD:<br>P                                         | 9<br>10<br>0<br>JC<br>0<br>NE<br>X                     | 0                          | .00<br>.00<br>.KL<br>LI<br>P1 | 17<br>20                                | 3.90<br>0.90<br>KL<br>X1 |                                                    |                       | P                                        |                                      |             |    | P1 |                                       |
| BEAM<br>KL                                     | LOAD:<br>P                                         | 9<br>10<br>0<br>JC<br>0<br>NE<br>X                     | 2                          | .00<br>.00<br>.KL<br>LI<br>P1 | 17 20                                   | 3.90<br>0.90<br>KL<br>X1 | 17.40                                              | 0                     | P 0                                      | 0.00                                 |             |    | P1 | 6                                     |
| BEAM<br>KL<br>15.90                            | LOAD:<br>P                                         | 9<br>10<br>0<br>JC<br>0<br>NE<br>X<br>1                | 2<br>2<br>2                | .00<br>.00<br>.KL<br>LI<br>P1 | 17, 20 <sup>-</sup> 1 1                 | 3.90<br>0.90<br>KL<br>X1 | 17.40<br>17.40<br>17.40                            | 0<br><b>0</b>         | P 0                                      | ).00<br>).00<br>).00                 |             |    | P1 | 6<br>6                                |
| BEAM<br>KL<br>15.90<br>15.90                   | LOAD:<br>P<br>1.88                                 | 9<br>10<br>0<br>JC<br>0<br>NE<br>X<br>1                | 2<br>2<br>2<br>2           | .00<br>.00<br>.KL<br>LI<br>P1 | 17<br>20<br>1<br>1                      | 3.90<br>0.90<br>KL<br>X1 | 17.40<br>17.40<br>17.40                            | 0<br><b>0</b><br>0    | P 0                                      | 9.00<br>9.00<br>9.00                 |             |    | P1 | 6                                     |
| BEAM<br>KL<br>15.90<br>15.90                   | LOAD:<br>P<br>1.88<br>1.88                         | 9<br>10<br>0<br>JC<br>0<br>NE<br>X<br>1<br>1           | 2<br>2<br>2<br>2           | .00<br>.00<br>.KL<br>LI<br>P1 | 1 1 1 1 1 1                             | 3.90<br>0.90<br>KL<br>X1 | 17.40<br>17.40<br>17.40<br>17.40<br>17.40          | 0<br><b>0</b><br>0    | P 00 00 00 00 00 00 00 00 00 00 00 00 00 | 0.00<br>0.00<br>0.00<br>0.00         |             |    | P1 | 6<br>6<br>6                           |
| BEAM<br>KL<br>15.90<br>15.90<br>15.90<br>15.90 | LOAD:<br>P<br>1.88<br>1.88<br>1.88                 | 9<br>10<br>0<br>JC<br>0<br>NE<br>X<br>1                | 2<br>2<br>2<br>2<br>2      | .00<br>.00<br>.KL<br>LI<br>P1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3.90<br>0.90<br>KL<br>X1 | 17.40<br>17.40<br>17.40<br>17.40<br>17.40<br>17.40 | 0<br>0<br>0<br>0      | P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 |             |    | Pl | 6<br>6<br>6<br>6                      |
| BEAM<br>KL<br>15.90<br>15.90<br>15.90<br>15.90 | LOAD:<br>P<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88 | 9<br>10<br>0<br>JC<br>0<br>NE<br>X<br>1<br>1           | 2<br>2<br>2<br>2           | .00<br>.00<br>.KL<br>LI<br>P1 | 1 1 1 1 1 1                             | 3.90<br>0.90<br>KL<br>X1 | 17.40<br>17.40<br>17.40<br>17.40<br>17.40          | 0<br>0<br>0<br>0      | P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 0.00<br>0.00<br>0.00<br>0.00         |             |    | P1 | 6<br>6<br>6                           |
| BEAM<br>KL<br>15.90<br>15.90<br>15.90<br>15.90 | LOAD:<br>P<br>1.88<br>1.88<br>1.88<br>1.88         | 9<br>10<br>0<br>JC<br>0<br>NE<br>X<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2 | .00<br>.00<br>.KL<br>LI<br>P1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3.90<br>0.90<br>KL<br>X1 | 17.40<br>17.40<br>17.40<br>17.40<br>17.40<br>17.40 | 0<br>0<br>0<br>0      | P 0                                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 |             |    | P1 | 6<br>6<br>6<br>6                      |
| BEAM<br>KL<br>15.90<br>15.90<br>15.90<br>15.90 | LOAD:<br>P<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88 | 9<br>10<br>0<br>JC<br>0<br>NE<br>X<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2      | .00<br>.00<br>.KL<br>LI<br>P1 | 1 1 1 1 1 1 1                           | 3.90<br>0.90<br>KL<br>X1 | 17.40<br>17.40<br>17.40<br>17.40<br>17.40<br>17.40 | 0<br>0<br>0<br>0<br>0 | P 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 |             |    | P1 | 6<br>6<br>6<br>6<br>6                 |

|       |       | COMPUT |      |       |  |
|-------|-------|--------|------|-------|--|
| JOINT | LOAD: | JR     | XM   | XN    |  |
|       |       | 1      | 0.00 | 8.10  |  |
|       |       | 2      | 0.00 | 11.00 |  |
|       |       | 3      | 0.00 | 11.00 |  |
|       |       | 4      | 0.00 | 11.00 |  |

| Calculation       | book               |                   | Oil                  | Depot ( | Oil pump sh          | ed      |            |         |        |
|-------------------|--------------------|-------------------|----------------------|---------|----------------------|---------|------------|---------|--------|
|                   |                    | 5<br>6<br>7       | 0.00<br>0.00<br>0.00 | 1       | 1.00<br>1.00<br>1.00 |         |            | ·       |        |
|                   |                    | 8<br>9<br>10<br>0 | 0.00<br>0.00<br>0.00 | 1       | 1.00<br>1.00<br>0.90 |         |            |         |        |
| COLUM             | N LOAD:            | JC<br>0           | KL                   |         | P .                  | х       | KX         |         | -      |
| BEAM              | LOAD:              | NE                | **L                  | VE L    | OAD**<br>KL          | p       | x          | P1      | Хl     |
| KL                | P                  | X<br>1            | P1<br>2              | 1       | X1<br>0.70           | 0.00    |            |         | 6      |
| 1.30              | 1.88               | 1                 | 2                    | 1       | 0.70                 | 0.00    |            |         | 6      |
| 1.30              | 1.88               | 1                 | 2                    | 1       | 0.70                 | 0.00    |            |         | 6      |
| 1.30              | 1.88               | 1                 | 2                    | 1       | 0.70                 | 0.00    | -          |         | 6      |
| 1.30<br>1.30      | 1.88<br>1.88       | 1                 | 2                    | 1       | 0.70                 | 0.00    |            |         | 6      |
| 1.30              | 1.88               | 1                 | 2                    | 1       | 0.70                 | 0.00    |            |         | 6      |
| 1.30              | 1.88               | 1                 | 2                    | 1       | 0.70                 | 0.00    |            |         | 6      |
| 1.30              | 1.88               | 1                 | 2                    | 1       | 0.70                 | 0.00    | ÷ .        | . :     | 6      |
| 1.30              | 1.88               | 1                 | 2                    | 1       | 0.70                 | 0.00    |            |         |        |
|                   | EART               |                   | TE<br>4.00           | 0       | 1                    | 1.00    | 0          | :       | • .    |
| 3                 | 1<br>720.724       |                   |                      |         | •                    | -       |            | :       | : = -1 |
|                   | 1 1.000<br>293.673 | <b>r=</b> 0.862   | 28                   |         |                      |         | :          |         |        |
| ( 1)<br>( 8) 0.03 | 0.014 (            |                   | **E                  | 0.014   | CEMENT** ( 4) 0.0    | 14 ( 5) | 0.014 ( 6) | 0.014 ( |        |

-120-

(10) 0.004 (11) 0.000 (12) 0.000 (13) 0.000 (14) 0.000 (15) 0.000 (10) 0.000 (17) 0.000 (19) 0.000 (20) 0.000

3720,724

1 T= 0.8628 1.000 293.673

\*\*DISPLACEMENT\*\*
( 1)-0.014 ( 2)-0.014 ( 3)-0.014 ( 4)-0.014 ( 5)-0.014 ( 6)-0.014 ( 7)-0.014

Calculation book

Oil Depot Oil pump shed

( 8)-0.014 ( 9)-0.014 (10)-0.014 (11) 0.000 (12) 0.000 (13) 0.000 (14) 0.000 (15) 0.000 (16) 0.000 (17) 0.000 (18) 0.000 (19) 0.000 (20) 0.000 COMBI COMPUTE

## \*\*COMBINATION AND REINFORCEMENT\*\*

Concrete COLUMN 1( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

| N    | IUMBER            | М                            | N                    | V         | M        | N     | v   | אטא    | ABER   | M |
|------|-------------------|------------------------------|----------------------|-----------|----------|-------|-----|--------|--------|---|
| N ·  | v                 | М                            | N                    | V         |          |       |     |        |        |   |
|      | 1 -2              | 20.19 317                    | .54 -7. <del>6</del> | -40.69    | -268.94  | 7.61  | 2   | -16.83 | 264.61 | - |
| 6.34 |                   | -224.11                      |                      |           |          |       |     |        | 264.61 |   |
|      |                   | 20.19 317                    |                      | -40.69    | -268.94  | 7.61  | 4   | -16.83 | 264.61 | - |
| 6.34 | -33.91            | -224.11                      | 6.34                 |           | 0.00 1.0 | 71.10 | 6   | -16.48 | 263.85 |   |
|      |                   | 19.85 316                    |                      | 8 -40.00  | -208.17  | 7.48  | O   | -10.40 | 203.03 | _ |
| 6.21 |                   | -223.35<br>21.98 335         |                      | 00 44 20  | 227.24   | 8.28  | 8   | -18 61 | 282.91 |   |
| 2.03 |                   | -242.41                      |                      | 0 -44.69  | *201.24  | 0.20  | · · | -10.01 | 200.71 |   |
| 7.02 | -37.31            | -242.41<br>21.98 335         | 7.02<br>S84 -8.2     | 8 -44 29  | -287.24  | 8.28  | 10  | -18.61 | 282.91 | - |
| 2.02 |                   | -242.41                      |                      |           | 207.2    |       |     |        |        |   |
| 1.02 | 1) -1             | 19.85 316                    | 5.77 -7.4            | 18 -40.00 | -268.17  | 7.48  | 12  | -16.48 | 263.85 | • |
| 6.21 |                   | -223.35                      |                      | -         |          | -     | •   |        |        |   |
|      | 13 -              | 9.90 316                     | 5.88 -7.5            | 60 -40.11 | -268.28  | 7.50  | 14  | -16.53 | 263.96 | - |
| 6.23 |                   | -223.46                      |                      | -         |          |       |     |        |        |   |
|      |                   | 21.71 333                    |                      | 8 -43.75  | -284.49  | 8.18  | 16  | -18.35 | 280.17 | • |
| 6.91 | -36.97            | -239.67                      | 6.91                 | ,         |          |       | ••  | 10.00  | 000 17 |   |
| _    |                   | 21.71 333                    |                      | 8 -43.75  | -284.49  | 8.18  | 18  | -18.35 | 280.17 | • |
| 6.91 |                   | -239.67                      |                      |           | 0.00.00  | 2.60  |     | -16.53 | 263.96 |   |
|      |                   | 19.90 316                    |                      | -40.11    | -268.28  | 7.50  | 20  | -10.33 | 203.90 | - |
| 6.23 | -33.32            | -223.46                      | 0.23                 | . 40.11   | 268.28   | 7.50  | 22  | -16.53 | 263.96 | _ |
| z 03 |                   | 19.90 316<br><i>-</i> 223.46 |                      | -40.11    | *200.20  | 1.50  |     | -10.55 | 205.70 |   |
| 0.43 | -33.32<br>-22 - 1 | -223.40<br>21.71 333         | .0.25<br>.00 .81     | 8 -43.75  | -284 49  | 8.18  | 24  | -18.35 | 280.17 | • |
| 6.01 |                   | -239.67                      |                      | 10 -45.15 | 201.13   |       |     |        |        |   |
| 0.71 | 25 -2             | 21.71 333                    | 3.09 -8.1            | 8 -43.75  | -284.49  | 8.18  | 26  | -18.35 | 280.17 | - |
| 6.91 |                   | -239.67                      |                      |           | •        | \$    | . * |        | -      |   |
|      | 27 -1             | 19.90 316                    | 5.88 -7.5            | -40.11    | -268.28  | 7.50  | 28  | -16.53 | 263.96 | • |
| 6.23 |                   | -223.46                      |                      |           | •        |       |     |        |        |   |
|      |                   |                              |                      |           | •        |       |     |        |        |   |

29 160.96 283.74 26.88 86.27 -235.14 -26.88 30 165.14 230.88
28.14 93.01 -190.38 -28.14
31 -212.22 358.84 -42.34 -168.91 -310.24 42.34 32 -207.85 304.61 41.02 -161.87 -264.11 41.02
33 -212.22 358.84 -42.34 -168.91 -310.24 42.34 34 -207.85 304.61 41.02 -161.87 -264.11 41.02
35 160.96 283.74 26.88 86.27 -235.14 -26.88 36 165.14 230.88
28.14 93.01 -190.38 -28.14

NO 32 As= 1170. M= -207.85 N= 304.61 NO 31 As=
1022. M= -168.91 N= -310.24
GG= 709.

Concrete COLUMN 2( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property. B= 450, H= 450

NUMBER M N V M N V NUMBER M N V M N V

| Calcu | lation boo      | k               |                 | Oil Depot | Oil pump                               | shed     |         |      | · ·         |          |
|-------|-----------------|-----------------|-----------------|-----------|----------------------------------------|----------|---------|------|-------------|----------|
|       |                 |                 |                 |           |                                        |          |         |      |             |          |
|       | 1               | 4.68            | 503.42          | 1.72      | 9.12                                   | -454.82  | -1.72   | 2    | 3.90        | 419.52   |
| 1.44  |                 | -379.02         |                 |           |                                        |          |         |      |             |          |
| 1 44  | 3               | 4.68            | 503.42          | 1.72      | 9.12                                   | -454.82  | -1.72   | 4    | 3.90        | 419.52   |
| 1.44  | 7.60<br>5       | -379.02         | -1.44           | 2.20      | 10.00                                  | 140.04   |         | _    |             |          |
| 2.00  |                 | 6.22<br>-386.95 | 511.37<br>-2.00 | 2.28      | 12.06                                  | -462.76  | -2.28   | 6    | 5.44        | 427.46   |
| 2.00  | 10.54           | 3.42            | -2.00<br>527.08 | 1.27      | 6.76                                   | 470.40   | 1.00    |      |             |          |
| 0.99  | •               | -402.69         |                 | 1.21      | 0.70                                   | -478.49  | -1.27   | 8    | 2.65        | 443.18   |
| 0.77  | 9               | 4.87            | 536.06          | 1.78      | 9.37                                   | 107.42   | 1 70    | 10   | 4.00        | 450.14   |
| 1.49  | 7.85            | -411.66         |                 | 1.70      | 9.31                                   | -487.46  | -1.78   | 10   | 4.09        | 452.16   |
| 1.43  | 11              | 4.78            | 502.39          | 1.78      | 9.44                                   | 452.70   | 1.70    |      | 4.00        | . 410.40 |
| 1.49  | 7.92            |                 | -1.49           | 1.70      | <b>9.44</b>                            | -453.79  | -1.78   | 12   | 4.00        | 418.48   |
| 1.43  | 13              | 5.99            | 510.17          | 2.20      | 11.62                                  | 461 67   | 0.00    | 1.4  | 6.01        | 106.00   |
| 1.91  |                 | -385.76         | -1.91           | 2.20      | 11.02                                  | -461.57  | -2.20   | 14   | 5.21        | 426.27   |
| 1.71  | 15              | 3.61            | 523.54          | 1.34      | 7.11                                   | -474.94  | -1.34   | 16   |             | . 120.72 |
| 1.05  |                 | -399.14         | -1.05           | 1.34      | 7.11                                   | -474.94  | -1.54   | 16   | 2.83        | 439.63   |
| 1.03  | 17              | 4.84            | 531.17          | 1.77      | 9.33                                   | -482.57  | -1.77   | 18   | 4.06        |          |
| 1.48  | 7.81            | -406.76         | -1.48           | 1.77      | 7.33                                   | -402.37  | -1.77   | 10   | 4.06        | 447.26   |
| 1.40  | 19              | 4.76            | 502.54          | 1.77      | 9.40                                   | -453.94  | -1.77   | 20   | 3.98        |          |
| 1.48  | 7.88            | -378.14         | -1.48           | 4.77      | 9.40                                   | -433.94  | -1.//   | . 20 | 3.56        | 418.64   |
| 1.40  | 21              | 5.99            | 510.17          | 2.20      | 11.62                                  | -461.57  | -2.20   | 22   | 5.21        | 426.27   |
| 1.91  | 10.10           | -385.76         | -1.91           | 2.20      | 11.02                                  | -401.57  | -2.20   | - 24 | 3.21        | 420.27   |
|       | 23              | 3.61            | 523.54          | 1.34      | 7.11                                   | -474.94  | -1.34   | 24   | 2.83        | 439.63   |
| 1.05  |                 | -399.14         | -1.05           | 1.54      | 7.11                                   | -414,54  | -1.39   | 24   | 2.03        | 439.03   |
|       | 25              | 4.84            | 531.17          | 1.77      | 9.33                                   | -482.57  | -1.77   | 26   | 4.06        | 447.26   |
| 1.48  |                 | -406.76         |                 | 4.77      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -402.31  | -1.77   | 20   | 4.00        | 447.20   |
| ••••  | 27              | 4.76            | 502.54          | 1.77      | 9.40                                   | -453.94  | -1.77   | 28   | 3.98        | 418.64   |
| 1.48  |                 | -378.14         | -1.48           | •         |                                        | -100.04  | -1.77   | 20   | 3.70        | 410.04   |
|       |                 | 210.75          | 519.22          | 41.82     | 165.99                                 | -470.62  | -41.82  | 30   | 209.64      | 434.75   |
| 41.50 |                 | -394.25         |                 | 41.02     | 103.77                                 | -470.02  | -41.02  | 30   | 203.04      | 434.13   |
| 11.50 |                 |                 |                 | 38.33 -14 | 47 SO -A                               | 52 57    | 38.33   | 32   | -199.77 41  | <b></b>  |
| 38.58 | -148.85         |                 |                 |           |                                        | ~ a. V t | 20.23   | JE   | -17577 . 41 | J.JO =   |
| 35.50 |                 | 210.03          | 529.81          | 41.61     | 164.84                                 | -481 21  | -41.61  | 3/   | 209.04      | 443.57   |
| 41.32 |                 | -403.07         |                 | 74.01     | 17 1.04                                | 701.41   | - 71.V4 | 24   | 203.04      | 443.37   |
|       |                 |                 |                 | 38.11 -14 | 46.35 -A                               | 41.98    | 38.11   | 36   | -199.17 40  | 6.75 -   |
|       | · · · · · · · · |                 | +~ +~           |           |                                        |          | 20.41   | 50   | 177.17 40   | v. / J   |

Calculation book

NO 29 As= 1126. M= 210.75 N= 519.22 NO 29 As= 962. M= 165.99 N= -470.62 GG= 709.

Concrete COLUMN 3( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

| N            | UMBER | М                   | N               | 1     | <b>V</b> | M           | N                 | V  | NU    | MBER     | M     |
|--------------|-------|---------------------|-----------------|-------|----------|-------------|-------------------|----|-------|----------|-------|
| N            | V     | М                   | N               |       | V        |             |                   |    |       |          |       |
|              | 1     | -0.82 47            | 16.31 -         | 0.33  | -1.80    | -427.71     | 0.33              | 2  | -0.68 | 396.93   | •     |
| 0.27         |       |                     | 0.27            |       |          |             |                   |    | A 49  | 206.02   |       |
|              |       |                     |                 | 0.33  | -1.80    | -427.71     | 0.33              | 4  | -0.68 | 396.93   | -     |
| 0.27         | -1.50 |                     | 0.27            |       |          | a1 460.33   | 0.14              | 6  |       | 0.58 4   | 19.55 |
|              | 5     |                     |                 | 0.14  | U.       | 71 -450.33  | <del>-</del> 0.14 | U  | •     | 0.50 4   | 17.55 |
| 0.20         |       | -379.05             |                 | 0.00  | 4.41     | 424.00      | 0.82              | 8  | -1.98 | 404.21   | _     |
| ^ <b>7</b> ( |       |                     | 53.39 -<br>0.76 | -0.82 | -4.41    | -434.99     | 0.02              | ·  | 170   | 10 (1.21 |       |
| 0.76         |       | -363.71<br>-0.98 50 |                 | .∩ 37 | -1 00    | -459.83     | 0.37              | 10 | -0.84 | 429.05   | -     |
| 0.32         |       |                     | 0.32            | V.57  | 1.77     | 155.05      | . •               |    |       |          | -     |
| 0.32         | 11    |                     | 74.09           | -0.30 | -1.71    | -425.49     | 0.30              | 12 | -0.56 | 394.70   | -     |
| 0.25         | -1.41 |                     | 0.25            |       |          | -           |                   |    |       | •        |       |
| J.85         | 13    |                     | 495.54          | 0.07  | 0        | .34 -446.94 | -0.07             | 14 |       | 0.39     | 16.15 |

Oil Depot Oil pump shed

0.13 0.64 -375.65 -0.13 -1.78 403.11 0.74 16 15 -1.92 482.50 -0.74 -4.02 -433.90 -3.72 -362.61 0.69 424.23 0.36 18 -0.82 -1.96 -455.01 17 -0.95 503.61 -0.36 -1.66 -383.73 0.31 -0.58 395.04 0.30 20 -1.72 -425.82 19 -0.71 474.42 -0.30 -1.42 -354.54 0.25 0.39 416.15 -0.07 22 0.34 -446.94 21 0.25 495.54 0.07 0.64 -375.65 -0.13 403.11 -1.78 24 -4.02 -433.90 0.74 23 -1.92 482.50 -0.74 0.69 -3.72 -362.61 0.69 0.36 26 -0.82 424.23 -1.96 -455.01 25 -0.95 503.61 -0.36 0.31 -1.66 -383.73 0.31 28 -0.58395.04 0.30 27 -0.71 474.42 -0.30 -1.72 -425.82 0.25 -1.42 -354.54 0.25 200.02 402.48 38.60 148.87 -434.88 30 -38.60 29 199.96 483.48 38.63 148.99 -361.98 -38.63 32 -201.74 402.05 31 -202.02 481.95 -39.27 -152.51 -433.35 39.27 39.18 -152.02 -361.55 39.18 -201.23 410.92 33 -201.42 492.60 -39.08 -151.47 -444.00 39.08 34 39.02 -151.16 -370.42 39.02 38.41 147.83 -424.24 36 199.51 393,61 -38.41 199.35 472.84 38.47 148.13 -353.11 -38.47 NO 32 NO 31 As= 1090. M= -202.02 N≖ 481.95 M=-152.02 N= -361.55 GG= 709.

Concrete COLUMN 4( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 )
Section property: R= 450 H= 450

|      | P##4011 | propersy. | 1009   |       |          |         |       | •  |             | •      |
|------|---------|-----------|--------|-------|----------|---------|-------|----|-------------|--------|
| N    | UMBER   | М         | N      |       | V        | M .     | N     | v  | NUMBER      | М      |
| N    | V       | M         | 1      | V     | V        |         | -     |    |             |        |
|      | 1       | 0.31      | 482.20 | 0.10  | 0.51     | -433.60 | -0.10 | 2  | 0.26        | 401.84 |
| 0.09 | 0.43    | -361.34   | -0.09  |       |          |         |       |    |             |        |
|      |         | 0.31      |        | 0.10  | 0.51     | -433.60 | -0.10 | 4  | 0.26        | 401.84 |
| 0.09 | 0.43    | -361.34   | -0.09  |       |          | -       |       | -  |             |        |
|      | 5       | 1.74      | 505.02 | 0.62  | 3.23     | -456.42 | -0.62 | 6  | 1.69        | 424.66 |
| 0.60 | 3.14    | -384.16   | -0.60  |       |          |         |       |    |             |        |
|      | 7       | -1.10 4   | 89.62  | -0.41 | -2.17 -4 | 41.02   | 0.41  | 8  | -1.16 409.3 | 25 -   |
| 0.43 | 2.25    | -368.75   | 0.43   |       |          |         |       |    | •           |        |
|      | 9       | 0.46      | 514.52 | 0.14  | 0.66     | -465.92 | -0.14 | 10 | 0.41        | 434.15 |
| 0.12 |         | -393.65   |        |       |          |         |       |    | -           | -      |
|      | 11      | 0.18      | 480.12 | 0.07  | 0.40     | -431.52 | -0.07 | 12 | 0.12        | 399.76 |
| 0.05 | 0.31    | -359.26   | -0.05  |       |          |         | :     |    |             |        |
|      | 13      | 1.52      | 501.60 | 0.54  | 2.82     | -453.00 | -0.54 | 14 | 1.47        | 421.23 |
| 0.53 | 2.73    | -380.73   | -0.53  |       |          |         |       |    |             |        |
|      | 15      | -0.89 4   | 188.51 | -0.33 | -1.76 -4 | 39.91   | 0.33  | 16 | -0.94 408.  | 14 -   |
| 0.35 | -1.85   | -367.64   | 0.35   |       |          |         |       |    |             |        |
|      |         | 0.44      | 509.67 | 0.13  | 0.64     | -461.07 | -0.13 | 18 | 0.38        | 429.31 |
| 0.12 | 0.55    | -388.81   |        |       |          |         |       |    | •           |        |
|      |         | 0.20      |        | 0.08  | 0.42     | -431.83 | -0.08 | 20 | 0.14        | 400.07 |
| 0.06 | 0.33    | -359.57   |        |       |          |         |       |    | ÷           | -      |
|      | 21      | 1.52      | 501.60 | 0.54  | 2.82     | -453.00 | -0.54 | 22 | 1.47        | 421.23 |
| 0.53 |         | -380.73   |        |       |          |         |       |    | -           |        |
|      |         |           |        | -0.33 | -1.76 -4 | 39.91   | 0.33  | 24 | -0.94 408.  | 14 -   |
| 0.35 |         | -367.64   |        |       |          |         |       |    |             |        |
|      | 25      | 0.44      |        | 0.13  | 0.64     | -461.07 | -0.13 | 26 | 0.38        | 429.31 |
| 0.12 | 0.55    | -388.81   | -0.12  |       |          |         |       |    |             |        |

| Calculation book                                                              | Oil Depot  | Oil pump      | shed    |          |         | · .      |        |              |
|-------------------------------------------------------------------------------|------------|---------------|---------|----------|---------|----------|--------|--------------|
|                                                                               |            |               |         |          |         |          |        |              |
| 27 0.20 480.43                                                                |            | 0.42          | -431.83 | -0.08    | 28      | 0.1      | 4 40   | 0.07         |
| 0.06 0.33 -359.57 -0.06<br>29 202.19 492.50                                   | 39.28      | 152.46        | -443.90 | -39.28   | 30      | 202.0    | 0 41   | 0,50         |
| 9,22 152,18 -370,00 -39,2<br>31 -201,41 484,87                                |            | 51.42 -43     | 6.27    | 39.07    | 32      | -201.35  | 403.97 | <del>.</del> |
| 9,05 -151.31 -363.47 39.0<br>33 201.50 496.57                                 | 39.07      | 151.36        | -447.97 | -39.07   | 34      | 201.4    | 3 41:  | 3.89         |
| 39.05 151.26 -373.39 -39.6<br>35 -200.73 480.80<br>38.88 -150.40 -360.08 38.8 | -38.86 -13 | 50.32 -43     | 2.20    | 38.86    | 36      | -200.78  | 400.58 | •            |
| NO 29 As= 1084.<br>365. M= 152.18 N=                                          |            |               | N=      | 492.50   |         | NO       | 30     | =zA          |
| GG= 709.                                                                      |            |               |         |          |         |          | •      | ٠. ٠         |
| Concrete COLUMN Section property: B= 450,                                     |            | ON TYPE=      | 1, AN   | G= 0, Lx | = 8.00, | Ly= 8.00 | )      |              |
| NUMBER M N                                                                    | ı v        |               | А       | N        | v       | NUME     | ER .   | M            |
| V M<br>1 -0.03 480.98                                                         | -0.01 -    | V<br>0.08 -43 | 2.38    | 0.01     | 2       | -0.02    | 100.82 | -            |
| 0.01 -0.07 -360.32 0.01<br>3 -0.03 480.98<br>0.01 -0.07 -360.32 0.01          | -0.01 -    | 0.08 -43      | 2.38    | 0.01     | 4       | -0.02    | 100.82 | -            |

|       | 5       | 1.37            | 503.72            | 0.49      | 2.:     | 58  | -455.12 | -0.49  | ć  |         | 1.37 | 423  | .55  |
|-------|---------|-----------------|-------------------|-----------|---------|-----|---------|--------|----|---------|------|------|------|
| 0.50  | ን ናዓ    | -383.05         | -0.50             |           |         |     |         |        |    |         |      |      |      |
| 4,55  | 7       | -1.42           | 488.41            | -0.52     | -2.75   | -43 | 9.81    | 0.52   | 8  | -1.41   | 408  | .25  | -    |
| 0.52  | -2.73   | -367.75         | 0.52              |           |         |     | -       |        |    |         |      |      |      |
| 0.02  | 9       | -0.16           | 513.27            | -0.05     | -0.21   | -46 | 4.67    | 0.05   | 10 | -0.16   | 433  | .11  | -    |
| 0.04  | 0.20    | 202.61          | Δ Δ4              |           |         |     |         |        |    |         |      |      |      |
| ••••  | 11      | 0.12            | 478.86            | 0.02      | 0.0     | 05  | -430.26 | -0.02  | 12 | !       | 0.12 | 398  | .70  |
| 0.02  | - ስ ለና  | -259.20         | ረሰቤ. /            |           | •       |     |         |        |    |         |      |      |      |
|       | 13      | 1.16            | 500.31            | 0.42      | 2.      | 18  | -451.71 | -0.42  | 14 | ŀ       | 1.16 | 420  | .14  |
| 0.42  | 2.19    | -379.64         | -0.42             |           |         |     |         |        |    |         |      |      |      |
|       | 15      | -1.21           | 487.30            | -0.44     | -2.35   | -43 | 8.70    | 0.44   | 16 | -1.20   | 407  | .13  | -    |
|       | -2.33   | -366.63         | 0.44              |           |         |     |         |        |    |         |      |      |      |
|       | 17      | -0.14           | 508.43            | -0.04     | -0.19   | -45 | 9.83    | 0.04   | 18 | -0.14   | 428  | .26  | -    |
| 0.04  |         |                 |                   |           |         |     |         |        |    |         |      |      |      |
|       | 19      | 0.09            | 0.04<br>479.18    | 0.02      | 0.0     | 03  | -430.58 | -0.02  | 20 | )       | 0.10 | 399  | .01  |
| 0.02  |         |                 |                   |           |         |     |         |        |    |         |      |      |      |
|       | 21      | 1.16            | 500.31            | 0.42      | 2.      | 18  | -451.71 | -0.42  | 22 | 2       | 1.16 | 420  | ).14 |
| 0.42  | / 17    | -1/4/14         | a +1742           |           |         |     |         |        |    |         |      |      |      |
|       | 23      | -1.21           | 487.30            | -0.44     | -2.35   | -43 | 8.70    | 0.44   | 24 | -1.20   | 407  | .13  | -    |
| 0.44  | -2.33   | -366.63         | 0.44              |           |         |     |         |        |    |         |      |      |      |
|       | 25      | -0.14           | 508.43            | -0.04     | -0.19   | -45 | 59.83   | 0.04   | 26 | -0.14   | 428  | .26  | -    |
| 0.04  | -0.18   | -387 76         | 0.04              |           |         |     |         | •      |    |         |      |      |      |
|       | 27      | 0.09            | 479.18            | 0.02      | 0.0     | 03  | -430.58 | -0.02  | 28 | }       | 0.10 | 399  | .01  |
| 0.02  | `` O O4 | _35 <u>8</u> 51 | -0.02             |           |         | -   |         |        |    |         |      |      |      |
|       | 29      | 201.60          | 490.60            | 39.11     | 151.6   | 60  | -442.00 | -39.11 | 30 | ) 20    | 1.48 | 408  | .81  |
| 39.08 | 151.4   | 3 -368.3        | 31 -39.08         | 3         |         |     |         |        |    |         |      |      |      |
|       | 31 -    | 201.66          | 484.29            | -39.14    | -151.77 | -4  | 35.69   | 39.14  | 32 | -201.53 | 40   | 3.59 | •    |
| 39.10 | -151.5  | 6 -363.0        | 9 39.10           | )         |         |     |         |        |    |         |      |      |      |
|       | 33 -    | 200.99          | 494.94            | -38.93    | -150.68 | -4  | 46.34   | 38.93  | 34 | -200.97 | 41   | 2.47 | •    |
| 38.93 | -150.6  | 6 -371.9        | 7 38.93           | 3         |         |     |         |        | _  |         |      |      |      |
|       | 35      | 200.93          | 479.95            | 38.91     | 150.    | 52  | -431.35 | -38.91 | 30 | 5 20    | 3.92 | 399  | 7.94 |
| 38.91 | 150.5   | 2 -359.4        | <b>14 -38.9</b> 1 | 1         |         |     |         |        |    |         |      |      |      |
|       |         |                 | 1006              |           | 4- 201  |     | N!      | 194 20 |    | N       | O 32 | ,    | Ag=  |
|       | NO 31   | As=             | 1086.             | A C 2 C 2 | 1≃ -201 | .00 | W       | 404.23 |    |         |      | •    | -    |
| 865.  | ]       | M=-151.:        | 56 N=             | -303.09   |         |     |         |        |    |         |      |      |      |

Calculation book

Oil Depot Oil pump shed

GG= 709.

Concrete COLUMN 6( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

| · N  | IUMBER     | М                | . N             | ,     | V     |      | M       | N     | , <b>v</b> | •  | NUMBER     | M      |
|------|------------|------------------|-----------------|-------|-------|------|---------|-------|------------|----|------------|--------|
| N    | 1 V        | 0.03             | 480.98          | 0.01  | ν (   | 90.0 | -432.38 | -0.01 | •          | 2  | 0.02       | 400.82 |
| 0.01 | 0.07<br>3  | -360.32<br>0.03  | -0.01<br>480.98 | 0.01  |       | 80.0 | -432.38 | -0.01 |            | 4  | 0.02       | 400.82 |
| 0.01 | 0.07<br>5  | -360.32<br>1.42  | -0.01<br>503.81 | 0.52  | - 1   | 2.75 | -455.21 | -0.52 | ,          | б  | 1.42       | 423.65 |
| 0.52 | 2.74<br>7  | -383.15<br>-1.36 | -0.52<br>488.32 | -0.49 | -2.58 | -4   | 39.72   | 0.49  | 8          |    | -1.37 408. | 15 -   |
| 0.49 | -2.59<br>9 | -367.65<br>0.17  | 0.49<br>513.27  | 0.05  |       | 0.22 | -464.67 | -0.05 |            | 10 | 0.17       | 433.10 |
| 0.05 | 0.21       | -392.60<br>-0.12 | -0.05<br>478.86 | -0.02 | -0.05 | -4   | 30.26   | 0.02  | 12         | -  | -0.12 398. | 70 -   |

\*V.VV \*3J0.2V V.U2 0.45 2.35 -451.79 -0.45 14 1.21 420.22 13 1.21 500.39 2.34 -379.72 -0.44 15 -1.16 487.22 -0.42 16 -1.16 407.05 --2.18 -438.62 0.42 0.42 - -2.19 -366.55 0.42 18 0.15 428.26 17 0.15 508.42 0.04 0.20 -459.82 -0.040.04 0.19 -387.76 -0.04 19 -0.09 479.18 -0.02 -0.03 -430.58 0.02 20 -0.10 399.01 0.02 -0.04 -358.51 0.02 22 2.35 -451.79 1.21 420.22 21 1.21 500.39 0.45 -0.450.44 2.34 -379.72 -0.44 -2.18 -438.62 0.42 -1.16 407.05 23 -1.16 487.22 -0.42 24 0.42 -2.19 -366.55 0.42 0.04 0.19 -387.76 -0.04 0.04 0.20 -459.82 -0.0426 0.15 428.26 27 -0.09 479.18 -0.02 -0.03 -430.58 0.02 28 -0.10 0.02 -0.04 -358.51 0.02 -39.14 29 201.66 490.89 39.14 151.77 -442.29 30 201.53 409.09 39.10 151.57 -368.59 -39.10 39.11 31 -201.60 484.00 -39.11 -151.60 -435.40 32 -201.48 .403.31 39.08 -151.42 -362.81 39.08 33 201.00 494.94 38.94 150.69 -446.34 -38.94 34 -200.98 412.47 38.93 150.66 -371.97 -38.93 -200.92 35 -200.93 479.95 -38.91 -150.52 -431.35 38.91 - 36 38.91 -150.52 -359.44 38.91 NO 31 As= 1085. M= -201.60 N= 484.00 NO 32 As= 864. M= -151.42 N= -362.81 GG= 709.

Concrete COLUMN 7( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

NUMBER M N V M V M N V 1 -0.31 482.20 -0.10 -0.51 -433.60 V NUMBER M N 0.10 2 -0.25 401.84 -0.43 -361.34 0.09 3 -0.31 482.20 -0.10 -0.51 -433.60 -0.25 401.84 0.10 -0.43 -361.34 0.09 5 1.11 505.02 0.41 2.17 -456.42 -0.41 1.16 424.65 6 2.26 -384.15 -0.43 0.43

Oil Depot Oil pump shed Calculation book 7 -1.73 489.63 -0.62 -1.68 -3.22 -441.03 0.62 409.26 -3.14 -368.76 0.60 9 -0.45 514.52 -0.14 434.15 --0.65 -465.92 0.14 10 -0.40 0.12 -0.57 -393.65 0.12 11 -0.18 480.12 -0.07 -0.40 -431.52 0.07 12 -0.12 399.76 0.05 -0.31 -359.26 0.05 0.35 1.85 -380.73 -0.35 -0.33 14 0.95 421.23 0.33 1.77 -453.00 : . 15 -1.52 488.51 -0.54 -2.82 -439.91 0.54 16 -1.47 408.15 0.53 -2.73 -367.65 0.53 17 -0.43 509.67 -0.63 -461.07 0.13 18 -0.38429.31 -0.130.12 -0.55 -388.81 0.12 19 -0.20 480.43 -0.08 -0.42 -431.83 0.08 20 -0.14 400.07

1

0.35 1.85 -380.73 -0.35 -1.47 408.15 0.54 24 23 -1.52 488.51 -0.54 -2.82 -439.91 0.53 -2.73 -367.65 0.53 -0.38 429.31 25 -0.43 509.67 -0.13 -0.63 -461.07 0.13 26 0.12 -0.55 -388.81 0.12 27 -0.20 480.43 -0.08 -0.42 -431.83 0.08 28 -0.14 400.07 0.06 -0.33 -359.57 0.06 201.35 39.07 151.42 -442.87 -39.07 30 29 201.42 491.47 39.05 151.31 -368.97 -39.05 32 -202.00 -31 -202.19 485.90 -39.28 -152.46 -437.30 405.00 39.28 39.22 -152.18 -364.50 39.22 33 -201.50 496.57 -39.07 -151.36 -447.97 39.07 34 -201.42 413.89 39.05 -151.26 -373.39 39.05 38.86 150.32 -432.20 -38.86 36 200.78 400.58 35 200.73 480.80 38.88 150.40 -360.08 -38.88 NO 32 As= NO 31 As= 1088. 485.90 M = -202.19N= M = -152.18 N = -364.50868. GG= 709.

Concrete COLUMN 8( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 ) Section property: B= 450, H= 450

| N    | UMBER | M       | N      | •     | V        | M       | N     | V   | NUMBER      | M      |
|------|-------|---------|--------|-------|----------|---------|-------|-----|-------------|--------|
| N    | V     | M       | - 1    | 1     | <b>V</b> |         |       |     |             |        |
|      | 1     | 0.82    | 476.31 | 0.33  | 1.80     | -427.71 | -0.33 | 2   | 0.68        | 396.93 |
| 0.27 | 1.50  | -356.43 | -0.27  |       | -        |         |       |     |             |        |
|      | 3     | 0.82    | 476.31 | 0.33  | 1.80     | -427.71 | -0.33 | 4   | 0.68        | 396.93 |
| 0.27 | 1.50  | -356.43 | -0.27  |       | -        |         |       | _   |             | 410.61 |
|      | 5     | 2.12    | 498.99 | 0.82  | 4.41     | -450.39 | -0.82 | . 6 | 1.98        | 419.61 |
| 0.76 |       |         | -0.76  |       |          | ÷       |       | -   |             |        |
|      | 7     | -0.43   | 183.52 | -0.14 | -0.70    | 434.92  | 0.14  | 8   | -0.57 404.  | 14 -   |
| 0.20 | -1.00 | -363.64 | 0.20   |       |          |         |       |     |             |        |
| •    | 9     | 0.99    | 508.42 | 0.37  | 2.00     | -459.82 | -0.37 | 10  | 0.85        | 429.04 |
| 0.32 | 1.70  | -388.54 |        |       |          |         |       |     |             | 201.72 |
|      | 11    | 0.70    | 474.09 | 0.30  | 1.71     | -425.49 | -0.30 | 12  | 0.56        | 394.70 |
| 0.25 | 1.41  | -354.20 | -0.25  | •     |          |         |       |     |             | 41.600 |
|      | 13    | 1.92    | 495.59 | 0.74  | 4.02     | -446.99 | -0.74 | 14  | 1.79        | 416.20 |
| 0.69 | 3.72  | -375.70 | -0.69  |       |          |         |       |     | 0.00 100    | 0.6    |
|      | 15    | -0.25   | 182.44 | -0.07 | -0.33 -  | 433.84  | 0.07  | 16  | -0.38 403.0 | 05 -   |
| 0.13 | -0.63 | -362.55 | 0.13   |       |          |         |       |     | 0.00        | 204.00 |
|      | 17    | 0.96    | 503.61 | 0.37  | 1.97     | -455.01 | -0.37 | 18  | 0.83        | 424.22 |
| 0.31 | 1.67  |         |        |       |          |         |       |     | 0.60        | 205.04 |
|      | 19    | 0.71    | 474.42 | 0.30  | 1.72     | -425.82 | -0.30 | 20  | 0.58        | 395.04 |

Calculation book 0.25 1.42 -354.54 -0.25 1.79 416.20 -0.74 22 0.74 4.02 -446.99 1.92 495.59 21 3.72 -375.70 -0.69 0.07 24 -0.38 403.05 --0.33 -433.84 23 -0.25 482.44 -0.07 0.13 -0.63 -362.55 0.13 0.83 424.22 -0.37 26 1.97 -455.01 25 0.96 0.37 503.61 1.67 -383.72 -0.31

Oil Depot Oil pump shed

.

27 0.71 474.42 0.30 1.72 -425.82 -0.30 28 0.58 395.04
0.25 1.42 -354.54 -0.25
29 202.03 488.55 39.27 152.51 -439.95 -39.27 30 201.74 407.55
39.18 152.03 -367.05 -39.18
31 -199.96 476.88 -38.60 -148.87 -428.28 38.60 32 -200.01 396.98 38.62 -148.99 -356.48 38.62
33 201.42 492.59 39.08 151.48 -443.99 -39.08 34 201.24 410.92
39.02 151.16 -370.42 -39.02
35 -199.35 472.84 -38.41 -147.83 -424.24 38.41 36 -199.51 393.61 38.47 -148.13 -353.11 38.47

NO 29 As= 1085. M= 202.03 N= 488.55 NO 30 As=

865. ,M= 152.03 N= -367.05 GG= 709.

Concrete COLUMN 9( SECTION TYPE= 1, ANG= 0, Lx= 8.00, Ly= 8.00 )
Section property: B= 450, H= 450

|       |                                         | M                   |       |       | V       | M          | N            | . <b>V</b> | NUM     | IBER     | M    |
|-------|-----------------------------------------|---------------------|-------|-------|---------|------------|--------------|------------|---------|----------|------|
|       |                                         | M                   |       |       |         |            |              |            |         |          |      |
|       |                                         |                     |       |       | -9.12   | -454.82    | 1.72         | 2          | -3.90   | 419.52   | •    |
|       |                                         | -379.02             |       |       |         |            |              |            |         |          |      |
|       |                                         |                     |       |       | -9.12   | -454.82    | 1.72         | 4          | -3.90   | 419.52   | •    |
|       |                                         | -379.02             |       |       |         | 150.44     |              | _          |         | . 445.00 |      |
|       |                                         |                     |       |       | -6.77   | -478.52    | 1.27         | 6          | -2.65   | 443.20   | -    |
|       |                                         | -402.71             |       |       | 10.00   | 160.76     | <b>A A B</b> | ο .        |         | 107.16   |      |
|       |                                         | -6.22 5             |       |       | -12.00  | -402.70    | 2.28         | 8          | -3,44   | 427.46   | •    |
|       |                                         | -386.95<br>-4.87 5  |       |       | 0.30    | 407 40     | 1.78         | 10         | -4.09   | 452 10   |      |
|       |                                         | -4.6 <i>1</i> 3     |       |       | +9.30   | -407.49    | 1.70         | 10         | -4.03   | 432.10   | •    |
|       |                                         |                     |       |       | -0 44   | -453.79    | 1.78         | 12         | -4.00   | 418.48   | _    |
|       |                                         | -377.98             |       |       | -2.44   | -433,13    | 1.70         |            | 4.00    | 410.40   |      |
| 1.72  | -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | -3 61 S             | 23 55 | -1 34 | -7 12   | -474.96    | 1.34         | 14         | -2.83   | ·439.65  | -    |
|       |                                         | -399.16             |       |       |         |            |              |            |         |          |      |
| 15    | 5                                       | -5.99 5             | 10.17 | -2.20 | -11.62  | -461.57    | 2.20         | 16         | -5.21   | 426.27   | -    |
|       |                                         | -385.76             |       |       |         |            |              |            |         |          |      |
| 17    | 7                                       | -4.84 5             | 31.19 | -1.77 | -9.34   | -482.59    | 1.77         | 18         | -4.06   | 447.28   | -    |
| 1.49  | -7.82                                   | -406.78             | 1.49  |       |         |            |              |            |         |          |      |
| 19    | )                                       | -4.76 5             | 02.54 | -1.77 | -9.40   | -453.94    | 1.77         | 20         | -3.98   | 418.64   | •    |
|       |                                         | -378.14             |       |       |         | •          |              |            | -       |          |      |
|       |                                         |                     |       |       | -7.12   | -474.96    | 1.34         | 22         | -2.83   | 439.65   | . •  |
|       |                                         | -399.16             |       |       |         |            |              | -          |         |          |      |
|       |                                         |                     |       |       | -11.62  | -461.57    | 2.20         | 24         | -5.21   | 426.27   | •    |
| 1.91  | -10.10                                  | -385.76             | 1.91  |       |         |            |              |            |         |          |      |
|       |                                         |                     |       |       | -9.34   | -482.59    | 1.77         | 26         |         | 447.28   | •    |
|       |                                         | -406.78             |       |       | 0.10    | 152.04     | 1.22         |            | 2.00    | 418.64   |      |
|       |                                         |                     |       |       | -9.40   | -453.94    | 1.77         | 28         | -3.98   | 410.04   | •    |
|       |                                         | -378.14             |       |       | 147     | 50 -452.58 | 20 22        | 20         | 100     | 27 41    | 5 58 |
|       |                                         | 196.91<br>5 -375.09 |       |       | 147.    | JU -4J2.J0 | -30.33       | 30         | 177     | 41       | J.JO |
|       |                                         |                     |       |       | -165 00 | -470.62    | 41.82        | 32         | -209 64 | 434 75   |      |
|       |                                         | 5 -394.25           |       |       | 103.33  | -710,02    | 71.04        |            | 205.04  | 75 1.15  |      |
| 71.50 |                                         | , w/1.47            | 71.50 |       |         |            |              |            |         |          |      |

Calculation book

Oil Depot Oil pump shed

NUMBER M N N V M N 1 20.19 383.30 V V NUMBER M N V M 16.83 319.41 7.61 40.69 -334.70 -7.61 2 33.91 -278.91 -6.34 20.19 383.30 7.61 40.69 -334.70 -7.61 4 16.83 319.41 3 33.91 -278.91 -6.34 6.34 44.26 -356.90 -8.28 6 18.60 341.62 21.97 405.50 8.28 37.48 -301.12 -7.01 7.01 16.48 318.65 -7.48 8 382.53 40.00 -333.93 7.48 19.85 33.22 -278.15 -6.21 6.21 21.97 405.50 18.60 341.62 44.26 -356.90 -8.28 10 8.28 9 37.48 -301.12 -7.01 16.48 318.65 382.53 7.48 40.00 -333.93 -7.48 12 11 19.85 33.22 -278.15 -6.21 18.34 338.29 43.73 -353.57 -8.18 14 13 402.17 8.18 21.70 36.94 -297.79 -6.91 6.91 16.53 318.76 40.11 -334.04 -7.50 16 7.50 15 19.90 382.64 33.32 -278.26 -6.23 18.34 338.29 -8.18 18 21.70 402.17 43.73 -353.57 17 8.18 6.91 36.94 -297.79 -6.91 16.53 318.76 -7.50 20 19 19.90 382.64 7.50 40.11 -334.04 33.32 -278.26 -6.23 6.23 18.34 338.29 8.18 43.73 -353.57 -8.18 22 21 21.70 402.17 36.94 -297.79 -6.91 -7.50 24 16.53 318.76 40.11 -334.04 7.50 23 19.90 382.64 6.23 33.32 -278.26 -6.23 18.34 338.29 26 -8.18 25 21.70 402.17 8.18 43.73 -353.57 6.91 36.94 -297.79 -6.91 318.76 27 19.90 382.64 6.23 33.32 -278.26 -6.23 16.53 -7.50 28 7.50 40.11 -334.04 30 207.85 360.81 -42.33 42.33 168.90 -377.68 29 212.21 426.28 41.02 161.86 -320.31 -41.02 -165.14 285.68 -31 -160.96 349.50 -26.88 -86.28 -300.90 26.88 32 28.14 -93.01 -245.18 28.14 168.90 -377.68 34 207.85 360.81 -42.3333 212.21 426.28 42.33 41.02 161.86 -320.31 -41.02 -165.14 285.68 -35 -160.96 349.50 -26.88 -86.28 -300.90 26.88 36 28.14 -93.01 -245.18 28.14

NO 30 As= 1135. M= 207.85 N= 360.81 NO 29 As= 980. M= 168.90 N= -377.68 GG= 709.

Concrete BEAM 1( SECTION TYPE= 1 ANG= 0, L= 6.50 )

Section property: B= 300, H= 650

BOTTOM

SECTION 1 2 3 4 5 6 7 8

| 10 11 12 1                                           | 13              |                 | -        |           |           |            |      |
|------------------------------------------------------|-----------------|-----------------|----------|-----------|-----------|------------|------|
| M= -93.01 -115.27<br>52.24 -25.82 0.00 0.            | -138.13<br>.00  | -151.38 -       | 153.39 - | 143.35 -1 | 21.23 -9  | 1.87 -73.  | 49 - |
| 52.24 -25.82 	 0.00 	 0. $As(1) = 	 585. 	 464.$     | 559.            | 615.            | 623.     | 607.      | 586.      | 494.       | 336. |
| 208. 102. 0. 58                                      | 5.<br>0.•       | 0.              | 0.       | 0.        | 0.        | • 0.       | 0.   |
| As(2)= 585. 0. 0. 0. 585.                            | <b>v.</b> •     | U.              | 0.       | 0.        | 0.        | ٧.         | ٠.   |
| TOP                                                  |                 |                 |          |           |           | 8          | 9    |
| SECTION 1 2 10 11 12 1                               | ·3<br>13        | 4               | 5        | 6         | 7         | O          |      |
| M= 168.91 102.91                                     | 51.90           | 8.68            | 0.00     | 0.00      | 0.00      | 0.00       | 0.00 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | ,59<br>206.     | 34.             | 0.       | 0.        | 0.        | 0.         | 0.   |
| 82. 349. 678. 1063                                   |                 |                 |          |           |           |            |      |
| As(2) = 689. 0.                                      | 0.              | 0.              | 0.       | 0.        | . 0.      | 0.         | 0.   |
| 0. 0. 0. 1063.                                       |                 |                 |          |           |           |            |      |
| VI= 130.06 NO 13<br>Umaxb= 0.003 Umaxt=              | Vr= 10          | 67.48 N         | 10 15    | Asv/s=    | 0.43      | As(3)=     | 585. |
|                                                      |                 |                 |          |           |           |            |      |
| Concrete BEAM Section property: B= 300               |                 | ON TYPE=        | 1 ANO    | G= 0, L=  | 6.50)     |            |      |
| BOTTOM                                               | , 11 050        |                 |          |           |           |            |      |
| SECTION 1 2                                          | 3<br>13         | 4               | 5        | 6         | 7         | . 8        | 9    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |                 | -31.89          | -51.92   | -61.22    | -69.72 -7 | 16.57 -72. | 05 - |
| 55.48 -31.28 -1.99 0.                                | 00              | 106             | 212      | 207       | 272       | 351.       | 288. |
| As(1)= 585. 0.<br>221. 124. 8. 58                    |                 | 126.            | 213.     | 327.      | 373.      | 331.       | 200. |
| As(2) = 585. 0.                                      | 0.              | 0.              | 0.       | 0.        | 0.        | 0.         | 0.   |
| 0. 0. 0. 585.<br>TOP                                 |                 |                 |          |           |           |            |      |
| SECTION 1 2                                          | 3               | 4               | 5        | 6         | 7         | 8 .        | 9    |
|                                                      | 13<br>7 81.07   | 26.81           | 0.00     | 0.00      | 0.00      | 0.00       | 0.00 |
| M= 220.30 145.6°<br>26.01 73.09 131.90 201           | , 81.07<br>1,78 | 20.61           | 0.00     | 0.00      | 0.00      | . 0.00     | 0.00 |
| As(1) = 909. 591.                                    | 324.            | 106.            | 0.       | 0.        | 0.        | 0.         | 0.   |
| 103. 292. 533. 82<br>As(2)= 909. 0.                  | 39.<br>0.       | 0.              | 0.       | 0.        | 0.        | 0.         | 0.   |
| 0, 0, 0. 829.                                        |                 | •               |          |           |           |            | ,    |
| VI= 140.61 NO 13                                     | Vr= 1           | 32.61 N         | VO 15    | Asv/s=    | 0.43      | As(3)=     | 585. |
| Umaxb= 0.003 Umaxt=                                  |                 | <i>52.</i> 01 1 |          | -         |           |            | •    |
| Concrete BEAM                                        | 2/ SE/TI        | ΛΝ TVDC=        | = 1 ANI  | C= 01=    | 650)      |            | :    |
| Section property: B= 300                             |                 | ON TIPE-        | - 1 MW   | u- 0, L-  | 0.30 )    |            |      |
| BOTTOM                                               |                 |                 |          |           |           | . · · · 8  | 9    |
| SECTION 1 2<br>10 11 12                              | 3<br>13         | 4               | 5        | 6         | 7         | . 0        | y    |
| M= 0.00 -5.71                                        | -35.05          | -59.83          | -76.73   | -81.58    | -78.18 -7 | 74,53 -69. | 24 - |
|                                                      | ),00<br>139.    | 238.            | 307      | 387.      | 419.      | 382.       | 277. |
|                                                      | 35.             | 250.            |          | -         |           |            |      |
| As(2)= 585. 0.                                       |                 | 0.              | 0.       | 0.        | 0.        | 0.         | 0.   |
| 0. 0. 0. 585.<br>TOP                                 |                 |                 |          |           |           |            |      |
| SECTION 1 2                                          |                 | 4               | 5        | 6         | 7         | 8          | 9    |
| 10 11 12<br>M= 208.87 135.8                          |                 | 24.43           | 0.00     | 0.00      | 0.00      | 0.00       | 0.00 |
| 141 - 700.01 500.0                                   | ,               |                 | ,        | 2.4.      |           |            |      |

| 22.71 74.40<br>As(1)=                                                                                                                                                                         | 138.68<br>859.                                                                                                             | 213.20<br>550.                                                                                                                                  | 296.                                                | 97.                                        | 0.                                                     | 0.                                           | 0.                                       | 0.                                                    | 0.                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|--------------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------------|-----------------------------------------------|
| 90. 297.                                                                                                                                                                                      |                                                                                                                            | 878.                                                                                                                                            |                                                     |                                            |                                                        | _                                            | •                                        | •                                                     | ^                                             |
| As(2)=                                                                                                                                                                                        | 859.                                                                                                                       |                                                                                                                                                 | 0.                                                  | 0.                                         | 0.                                                     | 0.                                           | 0.                                       | 0.                                                    | 0.                                            |
| 0.                                                                                                                                                                                            | 0.                                                                                                                         | 878.                                                                                                                                            |                                                     |                                            |                                                        |                                              |                                          |                                                       |                                               |
| VI= 138.2<br>Umaxb= 0.003                                                                                                                                                                     | <b>U</b> n                                                                                                                 | naxt= 0.                                                                                                                                        | Vr= 14<br>005                                       | 10.05 N                                    | 0 15                                                   | Asy/s=                                       | 0.43                                     | As(3)=                                                | 585.                                          |
| Section p                                                                                                                                                                                     | ete BEAM<br>property: E                                                                                                    | 4                                                                                                                                               | ( SECTIO<br>= 650                                   | N TYPE=                                    | 1 ANG                                                  | }= 0, L=                                     | 6.50)                                    |                                                       |                                               |
| . BOTTO<br>SECTION                                                                                                                                                                            | OM<br>I                                                                                                                    | 2                                                                                                                                               | 3                                                   | . 4                                        | 5                                                      | 6                                            | 7                                        | 8                                                     | 9                                             |
| 10 11<br>M=                                                                                                                                                                                   | 12<br>0.00                                                                                                                 | 0.00                                                                                                                                            | -27.95                                              | -51.37                                     | -68.25                                                 | -73.43                                       | -76.34                                   | -78.50 -7                                             | 2.98 -                                        |
| 55.41 -30.52                                                                                                                                                                                  | -0.59                                                                                                                      | 0.00                                                                                                                                            | -                                                   |                                            |                                                        |                                              | 400                                      | 375.                                                  | 291.                                          |
| As(1)=                                                                                                                                                                                        | 585.                                                                                                                       |                                                                                                                                                 | 111.                                                | 204.                                       | 272.                                                   | 374.                                         | 409.                                     | 313.                                                  | 271.                                          |
| 220. 121.<br>As(2)=                                                                                                                                                                           | 2.<br>595                                                                                                                  | 585.<br>0.                                                                                                                                      | 0.                                                  | 0.                                         | 0.                                                     | 0.                                           | 0.                                       | 0.                                                    | 0.                                            |
| 0. 0.                                                                                                                                                                                         | 0.                                                                                                                         |                                                                                                                                                 | σ,                                                  | ••                                         | ,                                                      |                                              |                                          |                                                       |                                               |
|                                                                                                                                                                                               |                                                                                                                            | 2                                                                                                                                               | 3                                                   | 4                                          | 5                                                      | 6                                            | 7                                        | 8                                                     | 9                                             |
| 10 11<br>M=                                                                                                                                                                                   | 12<br>211.58                                                                                                               | 13<br>137.77                                                                                                                                    | 74.16                                               | 23.02                                      | 0.00                                                   | 0.00                                         | 0.00                                     | 0.00                                                  | 0.00                                          |
| 25.50 75.69                                                                                                                                                                                   | 137.65                                                                                                                     | 210.74                                                                                                                                          |                                                     | 91.                                        | 0.                                                     | 0.                                           | 0.                                       | 0.                                                    | 0.                                            |
| As(1)=<br>101. 302.                                                                                                                                                                           | 871.<br>557.                                                                                                               | 558.<br>867.                                                                                                                                    | 290.                                                | 71.                                        | ٧.                                                     | J.                                           |                                          | _                                                     | _                                             |
| As(2)=<br>0. 0.                                                                                                                                                                               | 871.                                                                                                                       | 0.<br>867.                                                                                                                                      | 0.                                                  | 0.                                         | 0.                                                     | 0.                                           | 0.                                       | 0.                                                    | 0.                                            |
|                                                                                                                                                                                               |                                                                                                                            |                                                                                                                                                 |                                                     |                                            |                                                        |                                              |                                          |                                                       |                                               |
| VI= 138.<br>Umaxb= 0.00                                                                                                                                                                       | 80 NO<br>3 U                                                                                                               | 13<br>maxt≕ 0                                                                                                                                   | .004                                                |                                            |                                                        |                                              | 0.43                                     | As(3)=                                                | <b>585</b> .                                  |
| VI= 138<br>Umaxb= 0.00<br>Conce<br>Section                                                                                                                                                    | 80 NO 3 Ui rete BEAM property:                                                                                             | 13<br>maxt= 0                                                                                                                                   | .004<br>S( SECTION                                  |                                            |                                                        |                                              |                                          | As(3)=                                                | <b>585</b> .                                  |
| VI= 138<br>Umaxb= 0.00<br>Conce<br>Section<br>BOTTe                                                                                                                                           | 80 NO 3 Ui rete BEAM property: OM                                                                                          | 13<br>maxt= 0<br>B= 300, F                                                                                                                      | .004<br>S( SECTION 1= 650                           | ON TYPE                                    | = 1 AN                                                 |                                              |                                          | As(3)=                                                | <b>585</b> .                                  |
| VI= 138. Umaxb= 0.00 Conce Section BOTTE SECTION                                                                                                                                              | 80 NO<br>3 Ui<br>rete BEAM<br>property:<br>OM                                                                              | 13<br>maxt= 0<br>B= 300, F                                                                                                                      | .004<br>S( SECTION                                  | ON TYPE=                                   | = 1 AN                                                 | G= 0, L=                                     | 6.50)                                    | 8                                                     | 9                                             |
| VI= 138 Umaxb= 0.00  Conce Section BOTT SECTION 10 11 M=                                                                                                                                      | 80 NO 3 Ui rete BEAM property: OM 1 12 0.00                                                                                | 13<br>maxt= 0<br>B= 300, F                                                                                                                      | 3<br>-30.73                                         | ON TYPE=<br>4<br>-55.66                    | = 1 AN<br>5<br>-73.26                                  | G= 0, L=<br>6<br>-78.80                      | 6.50)                                    | -74.21 -6                                             | 9                                             |
| VI= 138. Umaxb= 0.00  Conce Section BOTT SECTION 10 11 M= 52.47 -29.07 As(1)=                                                                                                                 | 80 NO<br>3 Ui<br>rete BEAM<br>property:<br>OM<br>1<br>12<br>0.00<br>7 -0.33<br>585.                                        | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.                                                                                    | .004<br>S( SECTION 3<br>-30.73                      | ON TYPE=<br>4<br>-55.66                    | = 1 AN<br>5<br>-73.26                                  | G= 0, L=<br>6<br>-78.80                      | 6.50)<br>7<br>-76.83<br>412.             | 8                                                     | 9                                             |
| VI= 138. Umaxb= 0.00  Concessection BOTTO SECTION 10 11 M= 52.47 -29.07 As(1)= 209. 115.                                                                                                      | 80 NO<br>3 Ui<br>rete BEAM<br>property:<br>OM<br>1<br>12<br>0.00<br>7 -0.33<br>585.                                        | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.                                                                            | .004<br>S( SECTION 3<br>-30.73                      | ON TYPE=<br>4<br>-55.66                    | = 1 AN-<br>5<br>-73.26<br>293.                         | G= 0, L=<br>6<br>-78.80                      | 6.50)<br>7<br>-76.83<br>412.             | -74.21 -6<br>377.                                     | 9<br>59.19 <b>-</b><br>276.                   |
| VI= 138. Umaxb= 0.00  Conce Section BOTTO SECTION 10 11 M= 52.47 -29.07 As(1)= 209. 115. As(2)= 0. 0.                                                                                         | 80 NO<br>3 Ui<br>rete BEAM<br>property:<br>OM<br>1<br>12<br>0.00<br>7 -0.33<br>585.                                        | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.                                                                      | 3 -30.73                                            | ON TYPE=  4  -55.66  221.                  | = 1 AN-<br>5<br>-73.26<br>293.                         | G= 0, L=  6  -78.80  377.                    | 6.50) 7 -76.83 412. 0.                   | -74.21 -6<br>377.<br>0.                               | 9<br>59.19 -<br>276.<br>0.                    |
| VI= 138. Umaxb= 0.00  Concisection BOTTC SECTION 10 11 M= 52.47 -29.07 As(1)= 209. 115. As(2)= 0. 0. TOP SECTION                                                                              | 80 NO<br>3 Ui<br>rete BEAM<br>property:<br>OM<br>1<br>12<br>0.00<br>7 -0.33<br>585.<br>1.<br>585.<br>0.                    | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.                                                                      | 3 (SECTION 3 -30.73 122. 0. 3                       | ON TYPE=  4  -55.66  221.  0.              | = 1 AN-<br>5<br>-73.26<br>293.                         | G= 0, L=  6  -78.80  377.                    | 6.50) 7 -76.83 412. 0.                   | -74.21 -6<br>377.<br>0.                               | 9<br>59.19 -<br>276.<br>0.                    |
| VI= 138<br>Umaxb= 0.00<br>Concisection<br>BOTTO<br>SECTION<br>10 11<br>M=<br>52.47 -29.07<br>As(1)=<br>209. 115.<br>As(2)=<br>0. 0.<br>TOP<br>SECTION<br>10 11<br>M=                          | 80 NO<br>3 Ui<br>rete BEAM<br>property:<br>OM<br>1<br>12<br>0.00<br>7 -0.33<br>585.<br>0.<br>1<br>12<br>211.11             | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.<br>585.<br>2<br>13<br>137.83                                         | 3 -30.73<br>122.<br>0.                              | ON TYPE=  4 -55.66 221. 0. 4               | = 1 AN<br>5<br>-73.26<br>293.<br>0.                    | G= 0, L= 6 -78.80 377. 0.                    | 6.50) 7 -76.83 412. 0.                   | 8<br>-74.21 -6<br>377.<br>0.                          | 9<br>59.19 -<br>276.<br>0.                    |
| VI= 138. Umaxb= 0.00  Concessection BOTTC SECTION 10 11 M= 52.47 -29.07 As(1)= 209. 115. As(2)= 0. 0. TOP SECTION 10 11 M= 22.73 73.7                                                         | 80 NO<br>3 Ui<br>rete BEAM<br>property:<br>OM<br>1<br>12<br>0.00<br>7 -0.33<br>585.<br>0.<br>1<br>12<br>211.11<br>1 137.29 | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.<br>585.<br>2<br>13<br>137.83                                         | 3 -30.73 122. 0. 3 75.70                            | ON TYPE=  4 -55.66 221. 0. 4 25.39         | = 1 AN<br>5<br>-73.26<br>293.<br>0.<br>5<br>0.00       | G= 0, L=  6  -78.80  377.  0.  6  0.00       | 6.50) 7 -76.83 412. 0.                   | 8<br>-74.21 -6<br>377.<br>0.<br>8                     | 9<br>59.19 -<br>276.<br>0.<br>9<br>0.00       |
| VI= 138. Umaxb= 0.00  Concern Section BOTTC SECTION 10 11  M= 52.47 -29.07  As(1)= 209. 115. As(2)= 0. 0. TOP SECTION 10 11  M= 22.73 73.7  As(1)= 204                                        | 80 NO 3 Ui rete BEAM property: OM 1 12 0.00 7 -0.33 585. 1 585. 0. 1 12 211.11 1 137.29 869.                               | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.<br>585.<br>2<br>137.83<br>211.12<br>558.                             | 3 -30.73<br>122.<br>0.<br>3 75.70<br>2 302.         | ON TYPE=  4 -55.66 221. 0. 4 25.39 100.    | = 1 AN<br>5<br>-73.26<br>293.<br>0.<br>5<br>0.00       | G= 0, L=  6  -78.80  377.  0.  6  0.00  0.   | 6.50) 7 -76.83 412. 0. 7 0.00            | 8<br>-74.21 -6<br>377.<br>0.<br>8<br>0.000            | 9<br>59.19 -<br>276.<br>0.<br>9<br>0.00<br>0. |
| VI= 138. Umaxb= 0.00  Concern Section BOTTO SECTION 10 11 M= 52.47 -29.07 As(1)= 209. 115. As(2)= 0. 0. TOP SECTION 10 11 M= 22.73 73.7 As(1)= 90. 294. As(2)=                                | 80 NO 3 Ui rete BEAM property: OM 1 12 0.00 7 -0.33 585. 1. 585. 0. 1 12 211.11 1 137.29 869. 556.                         | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.<br>585.<br>2<br>13<br>137.83<br>211.12<br>558.<br>869.<br>0.         | 3 -30.73<br>122.<br>0.<br>3 75.70<br>2 302.         | ON TYPE=  4 -55.66 221. 0. 4 25.39 100.    | = 1 AN<br>5<br>-73.26<br>293.<br>0.<br>5<br>0.00       | G= 0, L=  6  -78.80  377.  0.  6  0.00       | 6.50) 7 -76.83 412. 0. 7 0.00            | 8<br>-74.21 -6<br>377.<br>0.<br>8<br>0.000            | 9<br>59.19 -<br>276.<br>0.<br>9<br>0.00<br>0. |
| VI= 138. Umaxb= 0.00  Concern Section BOTTO SECTION 10 11  M= 52.47 -29.07  As(1)= 209. 115. As(2)= 0. 0. TOP SECTION 10 11  M= 22.73 73.7  As(1)= 90. 294. As(2)= 0. 0.  VI= 138 Umaxb= 0.00 | 80 NO 3 Ui rete BEAM property: OM 1 12 0.00 7 -0.33 585. 0. 1 12 211.11 1 137.29 869. 556. 869. 0. 8.76 NO                 | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.<br>585.<br>2<br>13<br>137.83<br>211.12<br>558.<br>869.<br>0.<br>869. | 3 (SECTION 3 -30.73 122. 0. 3 75.70 2 302. 0. Vr= 1 | ON TYPE=  4 -55.66 221. 0. 4 25.39 100. 0. | = 1 AN<br>5<br>-73.26<br>293.<br>0.<br>5<br>0.00<br>0. | G= 0, L=  6  -78.80  377.  0.  6  0.00  0.   | 6.50) 7 -76.83 412. 0. 7 6.00 0.         | 8<br>-74.21 -6<br>377.<br>0.<br>8<br>0.000            | 9<br>59.19<br>276.<br>0.<br>9<br>0.00<br>0.   |
| VI= 138. Umaxb= 0.00  Concern Section BOTTO SECTION 10 11 M= 52.47 -29.07 As(1)= 209. 115. As(2)= 0. 0. TOP SECTION 10 11 M= 22.73 73.7 As(1)= 90. 294. As(2)= 0. 0. VI= 138. Umaxb= 0.00     | 80 NO 3 Ui rete BEAM property: OM 1 12 0.00 7 -0.33 585. 0. 1 12 211.11 1 137.29 869. 556. 869. 0. 8.76 NO                 | 13<br>maxt= 0<br>B= 300, F<br>2<br>13<br>-0.78<br>0.00<br>3.<br>585.<br>0.<br>585.<br>2<br>13<br>137.83<br>211.12<br>558.<br>869.<br>0.<br>869. | 3 -30.73 122. 0. 3 75.70 2 302. 0. Vr= 10.004       | ON TYPE=  4 -55.66 221. 0. 4 25.39 100. 0. | = 1 AN 5 -73.26 293. 0. 5 0.00 0. NO 15 = 1 AN         | G= 0, L=  6 -78.80 377. 0.  6 0.00 0. Asv/s= | 6.50) 7 -76.83 412. 0. 7 0.00 0. 0. 0.43 | 8<br>-74.21 -6<br>377.<br>0.<br>8<br>0.00<br>0.<br>0. | 9<br>59.19<br>276.<br>0.<br>9<br>0.00<br>0.   |

| Calculation book                                                                                                        | 0                                                              | il Depot                             | Oil pump                  | shed                  |                          |           | ·                  |             |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------|---------------------------|-----------------------|--------------------------|-----------|--------------------|-------------|
| ВОТТОМ                                                                                                                  |                                                                |                                      |                           |                       |                          |           |                    |             |
|                                                                                                                         | 2                                                              | 3                                    | 4                         | 5                     | 6                        | 7         | 8                  | 9           |
| 10 11 12                                                                                                                |                                                                | 2                                    | •                         | ,                     | . •                      | •         |                    | . 1         |
| M= 0.00                                                                                                                 |                                                                | -30.52                               | -55.41                    | -72.98                | -78.50                   | -76.34    | <b>-73.43 -68.</b> | 25 -        |
| 51.37 -27.95 0.00                                                                                                       | 0.00                                                           |                                      |                           |                       |                          |           |                    |             |
| As(1)= 585.                                                                                                             | 2.                                                             | 121.                                 | 220.                      | 291.                  | 375.                     | 409.      | 374.               | 272.        |
| 204. 111. 0.                                                                                                            | 585.                                                           |                                      |                           |                       |                          |           |                    |             |
| As(2)= 585.                                                                                                             | 0.                                                             | 0.                                   | 0.                        | 0.                    | 0.                       | 0.        | 0.                 | 0.          |
| 0. 0. 0.                                                                                                                | 585.                                                           |                                      |                           |                       |                          |           |                    |             |
| TOP                                                                                                                     |                                                                |                                      | Ē                         | •                     |                          |           |                    |             |
| SECTION 1                                                                                                               | 2                                                              | 3                                    | 4                         | 5                     | · 6                      | 7         | . 8                | 9           |
|                                                                                                                         | 13                                                             |                                      |                           |                       |                          |           | 1                  |             |
|                                                                                                                         | 137.65                                                         | 75.69                                | 25.50                     | 0.00                  | 0.00                     | 0.00      | 0.00               | 0.00        |
| 23.02 74.16 137.77                                                                                                      | 211.58                                                         |                                      |                           | _                     |                          |           | •                  | •           |
| As(1)= 867.                                                                                                             | 557.                                                           | 302.                                 | 101.                      | 0.                    | 0.                       | 0.        | 0.                 | 0.          |
|                                                                                                                         | 871.                                                           | ۸                                    | ^                         | ^                     | ۸                        | Λ         |                    | Δ           |
| As(2)= 867.                                                                                                             |                                                                | 0.                                   | 0.                        | 0.                    | 0.                       | 0.        | 0.                 | 0.          |
| 0. 0. 0.                                                                                                                | 871.                                                           |                                      |                           | _                     |                          |           |                    |             |
| VI= 138.46 NO                                                                                                           |                                                                |                                      | 38.80 N                   | IO 15                 | Asv/s=                   | 0.43      | As(3)=             | 585.        |
| Umaxb= 0.003 Un                                                                                                         | naxt= 0.0                                                      | 004                                  |                           |                       |                          |           |                    |             |
| Section property: I BOTTOM SECTION 1                                                                                    | 3≖ 300, H:<br>2                                                | = 650<br>3                           | 4                         | 5                     | . 6                      | 7         | - 8                | 9           |
| 10 11 12                                                                                                                | 13                                                             | 3                                    | 4                         | ,                     |                          | . ,       |                    | •           |
| M= 0.00                                                                                                                 |                                                                | -28.67                               | -52.25                    | -69.24                | -74.54                   | -78.18    | -81.58 -76.        | 73 -        |
| 59.83 -35.05 -5.71                                                                                                      | 0.00                                                           | 20.01                                |                           | 03.20                 |                          | 2.4       |                    |             |
| As(1)= 585.                                                                                                             | 0.                                                             | 113.                                 | 208.                      | 277.                  | 382.                     | 419.      | 387.               | 307.        |
| 238. 139. 23.                                                                                                           | 585.                                                           |                                      |                           |                       |                          |           | · :                |             |
| As(2)= 585.                                                                                                             | 0.                                                             | 0.                                   | 0.                        | 0.                    | 0.                       | 0.        | 0.                 | : <b>0.</b> |
| 0. 0. 0.                                                                                                                | 585.                                                           |                                      |                           |                       |                          | ÷         | •                  | •           |
| TOP                                                                                                                     |                                                                |                                      |                           |                       | _                        |           |                    | _           |
| SECTION 1                                                                                                               | 2                                                              | 3                                    | 4                         | 5                     | . 6                      | 7         | 8                  | 9           |
|                                                                                                                         |                                                                | 51.40                                | 00.21                     | ^ ^^                  | 0.00                     | 0.00      | 0.00               | 0.00        |
| M≈ 213.20                                                                                                               |                                                                |                                      | 22.71                     | 0.00                  | 0.00                     | 0.00      | 0.00               | 0.00        |
|                                                                                                                         | 2010 07                                                        |                                      |                           |                       |                          |           | ·                  |             |
| 24.43 74.01 135.86                                                                                                      |                                                                |                                      | 90                        | ٥                     | ۵                        | ٥         | Λ                  |             |
| As(1)= 878.                                                                                                             | 562.                                                           |                                      | 90.                       | 0.                    | 0.                       | 0.        | 0.                 | 0.          |
| As(1)= 878.<br>97. 296. 550.                                                                                            | 562.<br>859.                                                   | 297.                                 |                           |                       |                          |           |                    |             |
| As(1)= 878.<br>97. 296. 550.<br>As(2)= 878.                                                                             | 562.<br>859.<br>0.                                             |                                      | 90.<br>0.                 | 0.<br>0.              | 0.                       | 0.<br>0.  |                    | <b>0</b> .  |
| As(1)= 878.<br>97. 296. 550.                                                                                            | 562.<br>859.                                                   | 297.                                 |                           |                       |                          |           |                    |             |
| As(1)= 878.<br>97. 296. 550.<br>As(2)= 878.                                                                             | 562.<br>859.<br>0.<br>859.                                     | 297.<br>0.<br>Vr≕ 1:                 | 0.                        | <b>0</b> .            | 0.                       | <b>0.</b> | 0.                 | 0.          |
| As(1)= 878. 97. 296. 550. As(2)= 878. 0. 0. 0.  VI= 140.05 NO Umaxb= 0.003 Ur  Concrete BEAM Section property: I        | 562.<br>859.<br>0.<br>859.<br>13<br>naxt= 0.                   | 297.  0.  Vr= 1: 005 ( SECTIO        | 0.<br>38.26 N             | 0.<br>NO 15           | 0.<br>Asv/s=             | 0.43      | 0.<br>As(3)=       | 0.          |
| As(1)= 878. 97. 296. 550. As(2)= 878. 0. 0. 0.  VI= 140.05 NO Umaxb= 0.003 Ur  Concrete BEAM Section property: I BOTTOM | 562.<br>859.<br>0.<br>859.<br>13<br>naxt= 0.<br>8<br>3= 300, H | 297.  0.  Vr= 1: 005  ( SECTIO = 650 | 0.<br>38.26 N<br>ON TYPE= | 0.<br>IO 15<br>- 1 AN | 0.<br>Asv/s=<br>G= 0, L= | 0.43      | 0.<br>As(3)=       | 0.<br>585.  |
| As(1)= 878. 97. 296. 550. As(2)= 878. 0. 0. 0.  VI= 140.05 NO Umaxb= 0.003 Ur  Concrete BEAM Section property: I        | 562.<br>859.<br>0.<br>859.<br>13<br>naxt= 0.<br>8<br>3= 300, H | 297.  0.  Vr= 1: 005  ( SECTIO = 650 | 0.<br>38.26 N             | 0.<br>NO 15           | 0.<br>Asv/s=             | 0.43      | 0.<br>As(3)=       | 0.          |

| 31.89 -7.77<br>As(1)=       |      | 0.00<br><b>8</b> . | 124. | 221. | 288. | 351. | 373. | 326. | 213. |
|-----------------------------|------|--------------------|------|------|------|------|------|------|------|
| 126. 31.<br>As(2)=<br>0. 0. | 585. | 585.<br>0.<br>585. | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   | 0.   |
| TOP<br>SECTION              |      |                    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |

| Calculation book C                                       | oil Depot | Oil pump | shed   |          |         | <u> </u>     |        |
|----------------------------------------------------------|-----------|----------|--------|----------|---------|--------------|--------|
| 10 11 12 13<br>M= 201.77 131.90                          |           | 26.01    | 0.00   | 0,00     | 0.00    | 0.00         | 0.00   |
| 26.82 81.08 145.69 220.30<br>As(1)= 829. 533.            | 292.      | 103.     | 0.     | 0.       | 0.      | 0.           | 0.     |
| 106. 324. 591. 909.<br>As(2)= 829. 0.                    | 0.        | 0.       | 0.     | 0.       | 0.      | 0.           | 0.     |
| 0. 0. 909.                                               | -         |          |        |          |         |              |        |
| VI= 132.60 NO 13<br>Umaxb= 0.003 Umaxt= 0                | Vr= 14    | 0.61 N   | 0 15   | Asv/s=   | 0.43    | As(3)=       | 585.   |
| Concrete BEAM Section property: B= 300, H                | X SECTIO  | N TYPE=  | 1 ANO  | }= 0, L= | 6.50)   |              |        |
| BOTTOM<br>SECTION 1 2                                    | 3         | 4        | 5      | 6        | 7       | 8            | 9      |
| 10 11 12 13<br>M= 0.00 0.00                              | -25.82    | -52.24   | -73.49 | -91.85   | -121.22 | -143.34 -153 | 3.39 - |
| 151.38 -138.14 -115.28 -93.01<br>As(1)= 585. 0.          | 102.      | 208.     | 335.   | 494.     | 585.    | 607.         | 623.   |
| 615. 559. 464. 585.<br>As(2)= 585. 0.                    | 0.        | 0.       | 0.     | 0.       | 0.      | 0.           | 0.     |
| 0. 0. 0. 585.<br>TOP                                     |           |          |        | 6        | 7       | 8            | 9      |
| SECTION 1 2<br>10 11 12 13                               | 3         | 4        | 5      | 0        | ,       |              |        |
| M= 255.59 166.30                                         | 87.13     | 20.72    | 0.00   | 0.00     | 0.00    | 0.00         | 0.00   |
| 8.68 51.90 102.91 168.90<br>As(1)= 1063. 678.            | 349.      | 82.      | 0.     | 0.       | 0.      | 0.           | 0.     |
| 34. 206. 414. 689.<br>As(2)= 1063. 0.<br>0. 0. 0. 689.   | 0.        | 0.       | 0.     | - 0.     | 0.      | 0.           | 0.     |
| VI= 167.48 NO 13<br>Umaxb= 0.003 Umaxt= 0<br>COMPUTE END |           | 30.06 N  | 10 15  | Asv/3=   | 0.43    | As(3)=       | 585.   |

```
LL-1 Calculation Result ******
 OUTPUT DATA
                     ---- Zhong xin xi -----
    20
           10
                                2 1
                       0 10
                                                          30
                                                                30
                                                                      2
                                                                            0
0
    0.90
         1.00
     0
 OUTPUT DATA
                     ----- Jiao Dian Zuo Biao -----
  (1) 0.00 -2.00
                  (2) 0.00 0.00 (3) 6.50 -2.00 (4) 6.50 0.00
    5) 13.00 -2.00
                  (6) 13.00 0.00 (7) 19.50 -2.00 (8) 19.50 0.00
    9) 26.00 -2.00
                  (10) 26.00 0.00 (11) 32.50 -2.00 (12) 32.50 0.00
  (13) 39.00 -2.00
                  (14) 39.00 0.00 (15) 45.50 -2.00 (16) 45.50 0.00
  (17) 52.00 -2.00
                  (18) 52.00 0.00 (19) 58.50 -2.00 (20) 58.50 0.00
 OUTPUT DATA
                     ----- Zhu Guan Lian Hao ------
                ( 2) 3 4 ( 3) 5 6 ( 4) 7 8
( 7) 13 14 ( 8) 15 16 ( 9) 17 18
                                                            (5) 9 10
  (6) 11 12 (7) 13 14
                                                            (10) 19 20
                    ----- Liang Guan Lian Hao -----
                (2) 4 6
                              (3) 6 8 (4)
                                                    8 10
                                                            (5) 10 12
                (7) 14 16 (8) 16 18 (9) 18 20
 OUTPUT DATA
                    ----- Zhi Zuo Yue Shu Xin Xi ------
  (1)
                (2)
                                     5111 (4)
                        3111
                               (3)
                                                     7111
                                                                    9111
  (6)
                (7)
                       13111
                               (8)
                                      15111
                                             (9)
                                                    17111
                                                            (10)
                                                                   19111
 OUTPUT DATA
                ----- Shang Xia Zhu Jian Dian Pian Xin ------
  1) 0.00 ( 2) 0.00 ( 3) 0.00 ( 4) 0.00 ( 5) 0.00 ( 6) 0.00 ( 7) 0.00
  8) 0.00 ( 9) 0.00 ( 10) 0.00 ( 11) 0.00 ( 12) 0.00 ( 13) 0.00 ( 14) 0.00
 (15) 0.00 (16) 0.00 (17) 0.00 (18) 0.00 (19) 0.00 (20) 0.00
OUTPUT DATA
                ----- Biao Zhun Jie Mian Xin Xi ------
             300,
                   650.
                        6
(2)
        ł,
             500,
                   350,
                         6
OUTPUT DATA
               ---- Zhu Ji Suan Chang Du(After consider steel) -----
(1) 1.00 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00
(8) 1.00 (9) 1.00 (10) 1.00
OUTPUT DATA
```

1

|       | 7        | Zhu Bu Zhi(I  | łao)Jie Mi   | an Hao,Jia | o Jie,Jiac   | Du           | - |      |      |
|-------|----------|---------------|--------------|------------|--------------|--------------|---|------|------|
| (1)   |          |               | 2)           | 3 0        | (3)          | 2            | 3 | 0    |      |
| (4)   | 2 3      |               | ) 2          | 3 0        | ( 6)         | 2            | 3 | 0    |      |
| (1)   |          |               | 3) 2         | 3 0        | ( 9)         | 2            | 3 | 0    |      |
| (10)  | 2 3      | 0             | -            |            |              |              |   |      |      |
|       |          | Liang Bu Zhi  |              |            |              |              |   | •    |      |
| (1)   |          |               | 2) 1         |            | (3)          | 1<br>1       | 0 | 0    |      |
| (4)   |          |               | 5) 1<br>3) 1 | 0 0        | ( 6)<br>( 9) | 1            | 0 | Ŏ    |      |
| ( 7)  | IIQQ=    |               | ., .         | v          | ( -/         | •            |   |      |      |
| -     |          | OMPUTE        |              |            |              |              |   |      |      |
| IODIT |          | COMPUTE<br>JR | XM           | 3          | ΩN           |              |   |      |      |
| IOINT | LOAD:    | 0             | . Aivi       |            | :            |              |   |      |      |
| COLU  | MN LOAD: | JC            | KL           |            | P            | X            |   | KX   |      |
|       |          | 0             |              |            |              |              |   |      |      |
| BEAM  | LOAD:    | NE            | Lī           | KL         | P            |              | x | Pl   | Xi   |
| KL    | P        | X             | P1<br>1      | X1<br>2    |              | ì            |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          | 1            | 2          |              | •            |   |      |      |
|       |          |               | ì            | 2          |              | 1            |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          | 1            | 2          |              | 1            |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          | 1            | 2          |              | 1            |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          | 1            |            |              | •            |   |      |      |
| 6     | 31.90    | 1.88          | 1            | 2          |              | 1            |   | 4.90 | 0.00 |
| b     |          |               | 1            | 2          |              | 1            |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          | 1            | . 2        |              | 1            |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          | -            |            |              |              |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          | 1            | 2          |              | 1            |   |      |      |
|       |          |               | 1            | 2          |              | 1            |   | 4.90 | 0.00 |
| 6     | 31.90    | 1.88          |              | -          |              |              |   |      |      |
|       |          |               | **DE         | AD LOA     | .D**         | •            |   |      |      |
|       | STIF     | COMPUTE       | -            |            |              |              |   |      | -    |
|       | LIVE     |               |              | ٠          | en t         |              |   |      |      |
| JOINT | LOAD:    | JR<br>0       | XM           |            | XN           | •            |   |      |      |
| _ 1   |          | V             |              |            |              |              |   |      |      |
| COLU  | MN LOAD: | 0<br>JC       | KL           |            | P            | Х            |   | KX - |      |
| BEAN  | í LOAD:  | NE            | LI           | KL         | . <b>P</b>   |              | X | Pl   | XI   |
| KL    | P        | X             | Pl           | Xì         |              |              |   | •    |      |
|       |          | 1 1           |              |            | .60<br>.60   | 1.88<br>1.88 |   |      |      |
|       |          | 1 .1<br>1 i   |              |            | .60          | 1.88         |   |      |      |
|       |          | i i           |              |            | .60          | 1.88         |   |      |      |

| 1       | 1     | . 6 | 2.60 | 1.88 |
|---------|-------|-----|------|------|
| 1       | 1     | 6   | 2.60 | 1.88 |
| 1       | 1     | 6   | 2.60 | 1.88 |
| 1       | . 1   | 6   | 2.60 | 1.88 |
| 1       | 1     | 6   | 2.60 | 1.88 |
| COMBLCC | MPUTE |     |      |      |

## \*\*COMBINATION AND REINFORCEMENT\*\*

Concrete COLUMN 1( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00) Section property: B= 500, H= 350

M= -0.02 NO 6 N≖ 66.42 NO 6 0. M = -0.04 N = -66.42Q. As≖ GG = 350.

Concrete COLUMN 2( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00 ) Section property: B= 500, H= 350

205.59 NO 12 M = 0.01N= NO 12 As= 0. M = 0.01 N = -205.59As= GG≃ 350.

Concrete COLUMN 3( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00 ) Section property: B= 500, H= 350

As= 0. M= 0.00 M= -167.76NO 12 NO 12 M≈ 0.00 N= 167.76 As= GG= 350.

Concrete COLUMN 4( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00 ) Section property: B= 500, H= 350

M= 0.00 N= 177.65 NO 12 NO 12 0. M = 0.00 N = -177.65As= 0. GG=350.

Concrete COLUMN 5( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00 ) Section property: B= 500, H= 350

NO 12 NO 12 0. M = 0.00N= 175.17 M=0.00 N=-175.170. As= GG= 350.

Concrete COLUMN 6( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00 ) Section property: B= 500, H= 350

NO 12 NO 12 As= 0. M≔ 0.00 N= 175.17  $M = 0.00 \quad N = -175.17$ As= 0. GG= 350.

Concrete COLUMN 7( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00) Section property: B= 500, H= 350

M= 0.00 N= 177.65 NO 12 0 NO 12 M≈ 0.00 N= -177.65 As≕ 0. GG= 350.

8( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00 ) Concrete COLUMN Section property: B= 500, H= 350 167.76 NO 12 N= 0.00M= NO 12 0. M= O. 0.00 N = -167.76As≃ GG= 350. 9( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00 ) Concrete COLUMN Section property: B= 500, H= 350 NO 12 M= 205.59 -0.01 N= NO 12 As= 0. N = -205.59-0.01 As= 0. M≕ GG= 350. Concrete COLUMN 10( SECTION TYPE= 1, ANG= 0, Lx= 2.00, Ly= 2.00) Section property: B= 500, H= 350 NO 8 0.02 N=66.42 M= NO 8 - 0. M= 0.04 N=-66.42 As= 0. GG= 350. 1( SECTION TYPE= 1 ANG= 0, L= 6.50 ) Concrete BEAM Section property: B= 300, H= 650 **BOTTOM** 7 8 5 6 3 4 SECTION 2 12 13 10 11 -90.45 -124.25 -145.78 -153.35 -146.89 -126.41 M≕ 0.00 -47.83 0.00 0.00 0.00 91.91 -43.44 687. 803. 486. 675. 797. 840. 254. 293. As(1)=0. 293. 231. 0. 495. 0. 0. 0. 0. 0. 0. 0. As(2)= 293. 293. 0. 0. 0. 0. TOP 8 7 5 6 . 3 4 SECTION 2 1 13 12 10 11 0.00 0.00 0.00 0.000.000.00 0.05 0.00 M≃ 91.32 169.52 0.00 25.97 0.00 0. Ō. 0. 0. 0. 0. 0. 293. As(1)= 934. 491. 0. 137. 0. 0. 0. 0. 0. 293. 0. 0. As(2)= Q. 934. 0. 0. 0. 293. Vr= 144.91 NO 3 Asv/s= 0.00As(3)=1 88.32 NO Umaxt= 0.005 Umaxb= 0.004 2( SECTION TYPE= 1 ANG= 0, L= 6.50 ) Concrete BEAM Section property: B= 300, H= 650 BOTTOM 7 6 5 2 3 SECTION 1 12 13 10 11 0.00 -13.88 -52.49 -77.13 -87.74 -84.33 0.00 0.00 M= 0.00-35.50 0.00 0.00 66.90 472. 453. 413. 73. 279. 0. 0. 293. As(1)=293. 357. 188. 0. 0. 0. 0. 0. 0. 0. 0. 293. As(2)=

293.

0.

0.

0.

0.

| TOP                                 |                 |                  |                    |         |            |              |            |      |
|-------------------------------------|-----------------|------------------|--------------------|---------|------------|--------------|------------|------|
| SECTION                             | 1               | 2                | 3                  | 4       | 5          | 6            | 7          | 8    |
| 9 10<br>M=                          | 11<br>169.51    | 12<br>101.19     | 13<br>45.70        | 0.00    | 0.00       | 0.00         | 0.00       | 0.00 |
| 0.00 0.00<br>As(1)=                 | 933.            | 546.             | 126.80<br>243.     | Q.      | 0.         | 0.           | 0.         | 0.   |
| 0. 0.<br>As(2)=                     | 89.<br>933.     | 348.<br>0.       | 689.<br>0.         | 0.      | 0.         | 0.           | 0.         | 0.   |
| 0. 0.                               | 0.              | O.               | 689.               | -       | <b>.</b>   |              |            | V.   |
| VI= 125.0<br>Umaxb= 0.000           |                 |                  |                    | NO 3    | Asv/s=     | 0.00         | As(3)=     | 293. |
| Section ;                           | property:       |                  |                    | N TYPE= | 1 ANG=     | 0, L=        | 6.50)      |      |
| BOTTO<br>SECTION                    | ЭМ<br>1         | 2                | 3                  | 4       | 5          | 6            | 7          | 8    |
| 9 10                                | 11              | 12               | 13                 | •       |            | J            | •          | Ť    |
| M=<br>73.63 -37.67                  | 0.00            | 0.00<br>0.00     | 0.00               | -43.43  | -77.47 -9  | 7.55 -10     | 3.60 -95.6 | 52 - |
| 73.63 -37.67<br>As(1)=<br>394. 200. | 293.            | 0.00<br>0.<br>0. | 0.00<br>0.<br>293. | 230.    | 415.       | 526.         | 559.       | 515. |
| 394. 200.<br>As(2)=                 | 293.            | 0.               | 293.<br>0.         | 0.      | 0.         | · <b>0</b> . | 0.         | 0.   |
| 0. 0.                               | 0.              | 0.               | 293.               |         | •          |              |            |      |
| TOP<br>SECTION                      | 1               | 2                | 3                  | 4       | 5          | 6            | . 7        | 8    |
| 9 10                                | 11              | 12               | 13                 | •       | •          | •            |            |      |
| M=                                  | 126.80          | 62.51            | 11.58              | 0.00    | 0.00       | 0.00         | 0.00       | 0.00 |
| 0.00 0.00<br>As(1)=                 | 19.26<br>689.   | 72.10<br>334.    | 138.36<br>61.      | 0.      | 0.         | 0.           | 0.         | . 0. |
| 0. 0.                               | 102.            | 386.             | 755.               | v.      | ٠.         | ۷.           |            |      |
| As(2)=                              | 689.            | 0.               | 0.                 | 0.      | 0.         | 0.           | 0.         | 0.   |
| 0. 0.                               | 0.              | 0.               | <i>755</i> .       |         |            |              | •          |      |
| VI≃ 115.79<br>Umaxb= 0.000          |                 | Vr=<br>naxt= 0.0 |                    | NO 3    | Asv/s=     | 0.00         | As(3)=     | 293. |
| Concr                               | ete BEAM        | 40               | SECTIO             | N TYPE= | 1 ANG=     | 0. L= (      | 5.50 )     |      |
| Section                             | property:       |                  |                    | ;       | •          |              |            |      |
| BOTTO<br>SECTION                    | OM<br>1         | 2                | 3                  | 4       | 5          | 6            | 7 :        | 8    |
| 9 10                                | 11              | 12               | 13                 | 4       | ,          | U            |            | ,    |
| M=                                  | 0.00            | 0.00             | 0.00               |         | -70.75 -92 | 2.02 -9      | 9.28 -92.5 | - 0  |
| 71.71 -36.95                        |                 | 0.00             | 0.00               |         | 378.       | 495.         | 535.       | 498. |
| As(1)=<br>384. 196.                 | 293.<br>0.      | 0.<br>0.         | 0.<br>293.         | 188.    | 370.       | 493.         | 333.       | 490. |
| As(2)=                              | 293.            | 0.               | 0.                 | 0.      | 0.         | 0.           | 0.         | 0.   |
| 0. 0.<br>TOP                        | 0.              | 0.               | 293.               |         | -          |              |            |      |
| SECTION                             | 1               | 2                | 3                  | 4       | 5          | 6            | - 7        | 8    |
| 9 10                                | 11              | 12               | 13                 |         |            | -            | -          |      |
| M=<br>0.00 0.00                     | 138.36<br>18.78 | 72.82<br>70.43   | 20.70<br>135.48    | 0.00    | 0.00       | 0.00         | 0.00       | 0.00 |
| As(1)=                              | 755.            | 390.             | 109.               | 0.      | 0.         | 0.           | 0.         | 0.   |
| 0. 0.                               | 99.             | 377.             | 738.               |         | _          | 21 T         | _          | ٠.   |
| As(2)=<br>0. 0.                     | 755.<br>0.      | 0.<br>0.         | 0.<br>738.         | 0.      | <b>0.</b>  | 0.           | 0.         | 0.   |
| v. v.                               | v.              | v.               | , Ju.              | •       |            |              |            |      |

| VI= 118.2                                                                                                                                                          |                                                                                                                                   |                                                                                                                         |                                                                                                                | NO 3                                                  | Asv/s=                                                      | 0.00                                       | As(3)=                                                       | 293.                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|
| Umaxb= 0.003                                                                                                                                                       | 3 Uı                                                                                                                              | naxt≖ 0.0                                                                                                               | 04                                                                                                             |                                                       |                                                             |                                            |                                                              |                                                     |
| Cons                                                                                                                                                               | ota DEAM                                                                                                                          | 5/                                                                                                                      | SECTION                                                                                                        | ህ <b>ፕ</b> Vፆፑ=                                       | 1 ANG=                                                      | 0 L=                                       | 6.50)                                                        |                                                     |
| Conci                                                                                                                                                              | ete BEAM<br>property: I                                                                                                           | יכ<br>=H 001 ==                                                                                                         | 650 io                                                                                                         | A I II D                                              | 1 1410                                                      | 0, 2                                       | ,                                                            |                                                     |
| BOTTO                                                                                                                                                              |                                                                                                                                   | 3 300, 11                                                                                                               | 4,5                                                                                                            |                                                       |                                                             |                                            |                                                              |                                                     |
| SECTION                                                                                                                                                            | 1                                                                                                                                 | 2                                                                                                                       | 3                                                                                                              | 4                                                     | 5                                                           | 6                                          | 7                                                            | 8                                                   |
| 9 10                                                                                                                                                               | 11                                                                                                                                | 12                                                                                                                      | 13                                                                                                             |                                                       |                                                             |                                            |                                                              | _                                                   |
| . M=                                                                                                                                                               | 0.00                                                                                                                              | 0.00                                                                                                                    | 0.00                                                                                                           | -37.66 -                                              | 72.66 -93                                                   | 3.70 -19                                   | 00.71 -93.7                                                  | 0 -                                                 |
| 72.66 -37.66                                                                                                                                                       | 0.00                                                                                                                              | 0.00                                                                                                                    | 0.00                                                                                                           |                                                       |                                                             | 504                                        | 643                                                          | 604                                                 |
| As(1)=                                                                                                                                                             | 293.                                                                                                                              | 0.                                                                                                                      | 0.                                                                                                             | 200.                                                  | 389.                                                        | 504.                                       | 543.                                                         | 504.                                                |
| 389. 200.                                                                                                                                                          | 0.                                                                                                                                | 0.                                                                                                                      | 293.                                                                                                           | ^                                                     |                                                             | 0.                                         | 0.                                                           | 0.                                                  |
| As(2)=                                                                                                                                                             | 293.                                                                                                                              | 0.                                                                                                                      | 0.                                                                                                             | 0.                                                    | 0.                                                          | U.                                         | V.                                                           | <b>V</b> .                                          |
| 0. 0.                                                                                                                                                              | 0.                                                                                                                                | 0.                                                                                                                      | 293.                                                                                                           |                                                       |                                                             |                                            |                                                              |                                                     |
| TOP                                                                                                                                                                | 1                                                                                                                                 | 2                                                                                                                       | 3                                                                                                              | 4 .                                                   | 5                                                           | 6                                          | 7                                                            | 8                                                   |
| SECTION<br>9 10                                                                                                                                                    | 1 11                                                                                                                              | 12                                                                                                                      | 13                                                                                                             | -4                                                    | •                                                           | Ü                                          | •                                                            |                                                     |
| 9 10<br>M=                                                                                                                                                         | 135.48                                                                                                                            | 70.19                                                                                                                   | 18.30                                                                                                          | 0.00                                                  | 0.00                                                        | 0.00                                       | 0.00                                                         | 0.00                                                |
| 0.00 0.00                                                                                                                                                          |                                                                                                                                   | 70.19                                                                                                                   | 135.48                                                                                                         | 0.00                                                  | <del>-</del>                                                |                                            |                                                              |                                                     |
| As(1)=                                                                                                                                                             | 738.                                                                                                                              | 375.                                                                                                                    | 96.                                                                                                            | 0.                                                    | 0.                                                          | 0.                                         | 0.                                                           | 0.                                                  |
| 0. 0.                                                                                                                                                              | 96.                                                                                                                               | 375.                                                                                                                    | 738.                                                                                                           |                                                       |                                                             |                                            |                                                              |                                                     |
| As(2)=                                                                                                                                                             | 738.                                                                                                                              | 0.                                                                                                                      | 0.                                                                                                             | 0.                                                    | 0.                                                          | 0.                                         | 0.                                                           | 0.                                                  |
| 0. 0.                                                                                                                                                              | 0.                                                                                                                                | 0.                                                                                                                      | 738.                                                                                                           |                                                       |                                                             |                                            |                                                              |                                                     |
|                                                                                                                                                                    | -                                                                                                                                 |                                                                                                                         | •                                                                                                              |                                                       |                                                             |                                            |                                                              |                                                     |
| VI= 117.7                                                                                                                                                          | 7 NO                                                                                                                              | i Vr=                                                                                                                   | 117.77                                                                                                         | NO 3                                                  | Asv/s=                                                      | 0.00                                       | As(3)=                                                       | 293.                                                |
| Umaxb= 0.00                                                                                                                                                        |                                                                                                                                   | maxt≂ 0.0                                                                                                               |                                                                                                                |                                                       |                                                             |                                            |                                                              |                                                     |
|                                                                                                                                                                    |                                                                                                                                   |                                                                                                                         |                                                                                                                |                                                       |                                                             |                                            |                                                              |                                                     |
| Conc                                                                                                                                                               | rete BEAM                                                                                                                         | 6                                                                                                                       | ( SECTIO                                                                                                       | N TYPE=                                               | 1 ANG=                                                      | 0, L=                                      | 6.30 )                                                       |                                                     |
|                                                                                                                                                                    | property:                                                                                                                         | B= 300, H=                                                                                                              | = 650                                                                                                          |                                                       |                                                             |                                            |                                                              |                                                     |
| DAM                                                                                                                                                                |                                                                                                                                   |                                                                                                                         |                                                                                                                |                                                       |                                                             |                                            |                                                              |                                                     |
| BOTT                                                                                                                                                               | OM                                                                                                                                |                                                                                                                         |                                                                                                                |                                                       | •                                                           | _                                          | 7                                                            | Q                                                   |
| SECTION                                                                                                                                                            | 1                                                                                                                                 | 2                                                                                                                       | 3                                                                                                              | 4                                                     | 5                                                           | 6                                          | 7                                                            | 8                                                   |
| SECTION<br>9 10                                                                                                                                                    | 1<br>11                                                                                                                           | 2<br>12                                                                                                                 | 3<br>13                                                                                                        |                                                       |                                                             |                                            | -                                                            | _                                                   |
| SECTION<br>9 10<br>M=                                                                                                                                              | 1<br>11<br>0.00                                                                                                                   | 2<br>12<br>0.00                                                                                                         | 3<br>13<br>0.00                                                                                                |                                                       | 5<br>-71.71 -9                                              |                                            | -                                                            | _                                                   |
| SECTION 9 10 M= 70.75 -35.51                                                                                                                                       | 1<br>11<br>0.00<br>0.00                                                                                                           | 2<br>12<br>0.00<br>0.00                                                                                                 | 3<br>13<br>0.00<br>0.00                                                                                        | -36.95                                                | -71.71 -97                                                  | 2.50 -                                     | 99.28 -92.0                                                  | )2 -                                                |
| SECTION 9 10 M= 70.75 -35.51 As(1)=                                                                                                                                | 1<br>0.00<br>0.00<br>0.00<br>293.                                                                                                 | 2<br>12<br>0.00<br>0.00<br>0.                                                                                           | 3<br>0.00<br>0.00<br>0.00                                                                                      |                                                       |                                                             | 2.50 -                                     | -                                                            | _                                                   |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188.                                                                                                                      | 1<br>11<br>0.00<br>0.00<br>293.<br>0.                                                                                             | 2<br>0.00<br>0.00<br>0.<br>0.                                                                                           | 3<br>0.00<br>0.00<br>0.<br>0.<br>293.                                                                          | -36.95<br>196.                                        | -71.71 -93<br>384.                                          | 2.50 -<br>498.                             | 99.28 -92.0                                                  | )2 -                                                |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)=                                                                                                               | 1<br>0.00<br>0.00<br>0.00<br>293.<br>0.<br>293.                                                                                   | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.                                                                                     | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.                                                                          | -36.95                                                | -71.71 -97                                                  | 2.50 -                                     | 99.28 -92.0<br>535.                                          | 92 -<br>495.                                        |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0.                                                                                                         | 1<br>11<br>0.00<br>0.00<br>293.<br>0.                                                                                             | 2<br>0.00<br>0.00<br>0.<br>0.                                                                                           | 3<br>0.00<br>0.00<br>0.<br>0.<br>293.                                                                          | -36.95<br>196.                                        | -71.71 -93<br>384.                                          | 2.50 -<br>498.                             | 99.28 -92.0<br>535.                                          | 92 -<br>495.                                        |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP                                                                                                     | 1<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.                                                                                   | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.                                                                               | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.                                                                  | -36.95<br>196.<br>0.                                  | -71.71 -9<br>384.<br>0.                                     | 2.50 -<br>498.                             | 99.28 -92.0<br>535.                                          | 92 -<br>495.                                        |
| SECTION 9 10 M= 70.75 -35.5 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION                                                                                              | 1<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.                                                                                   | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.                                                                               | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.                                                                  | -36.95<br>196.                                        | -71.71 -93<br>384.                                          | 2.50 -<br>498.<br>0.                       | 99.28 -92.0<br>535.<br>0.                                    | 92 -<br>495.<br>0.                                  |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10                                                                                        | 1<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.                                                                                   | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43                                                           | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78                                              | -36.95<br>196.<br>0.                                  | -71.71 -97<br>384.<br>0.                                    | 2.50 -<br>498.<br>0.                       | 99.28 -92.0<br>535.<br>0.                                    | 92 -<br>495.<br>0.                                  |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M=                                                                                     | 1<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48                                                              | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43                                                           | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78                                              | -36.95<br>196.<br>0.                                  | -71.71 -97<br>384.<br>0.                                    | 2.50 -<br>498.<br>0.<br>6                  | 99.28 -92.0<br>535.<br>0.                                    | 495.<br>0.<br>8                                     |
| SECTION 9 10 M= 70.75 -35.51 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00                                                                           | 1<br>11<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70                                               | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82                                                  | 3<br>13<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36                              | -36.95<br>196.<br>0.                                  | -71.71 -95<br>384.<br>0.<br>5<br>0.00                       | 2.50 -<br>498.<br>0.<br>6                  | 99.28 -92.0<br>535.<br>0.                                    | 92 -<br>495.<br>0.                                  |
| SECTION 9 10 M= 70.75 -35.51 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)=                                                                    | 1<br>11<br>0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.                                                 | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43                                                           | 3<br>13<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36                              | -36.95<br>196.<br>0.<br>4<br>0.00                     | -71.71 -93<br>384.<br>0.<br>5<br>0.00<br>0.                 | 2.50 -<br>498.<br>0.<br>6<br>0.00<br>0.    | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.                 | 495.<br>0.<br>8<br>0.00                             |
| SECTION 9 10 M= 70.75 -35.51 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0.                                                              | 1<br>11<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70                                               | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.                                          | 3<br>13<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.                       | -36.95<br>196.<br>0.<br>4<br>0.00                     | -71.71 -95<br>384.<br>0.<br>5<br>0.00                       | 2.50 -<br>498.<br>0.<br>6<br>0.00          | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00                       | 495.<br>0.<br>8                                     |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)=                                                       | 1<br>0.00<br>0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.<br>109.                                       | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.                                  | 3<br>13<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.               | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.               | -71.71 -93<br>384.<br>0.<br>5<br>0.00<br>0.                 | 2.50 -<br>498.<br>0.<br>6<br>0.00<br>0.    | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.                 | 495.<br>0.<br>8<br>0.00                             |
| SECTION 9 10 M= 70.75 -35.51 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)= 0. 0.                                                 | 1<br>0.00<br>0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.<br>109.<br>738.<br>0.                         | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.                      | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.               | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.         | -71.71 -95<br>384.<br>0.<br>5<br>0.00<br>0.<br>0.           | 2.50 -<br>498.<br>0.<br>6<br>0.00<br>0.    | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.                 | 92 -<br>495.<br>0.<br>8<br>0.00<br>0.<br>0.         |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)= 0. 0. VI= 117.2                                       | 1<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.<br>109.<br>738.<br>0.                       | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.                      | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.<br>755.       | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.         | -71.71 -95<br>384.<br>0.<br>5<br>0.00<br>0.<br>0.           | 2.50 -<br>498.<br>0.<br>6<br>0.00<br>0.    | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.                 | 495.<br>0.<br>8<br>0.00                             |
| SECTION 9 10 M= 70.75 -35.51 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)= 0. 0.                                                 | 1<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.<br>109.<br>738.<br>0.                       | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.                      | 3<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.<br>755.       | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.         | -71.71 -95<br>384.<br>0.<br>5<br>0.00<br>0.<br>0.           | 2.50 -<br>498.<br>0.<br>6<br>0.00<br>0.    | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.                 | 92 -<br>495.<br>0.<br>8<br>0.00<br>0.<br>0.         |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)= 0. 0. VI= 117.5 Umaxb= 0.00                           | 1<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.<br>109.<br>738.<br>0.                       | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.                      | 3<br>0.00<br>0.00<br>0.293.<br>0.293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.<br>755.               | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.<br>NO 3 | -71.71 -97<br>384.<br>0.<br>5<br>0.00<br>0.<br>0.<br>Asv/s= | 2.50 - 498.<br>0.<br>6<br>0.00<br>0.<br>0. | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.<br>0.<br>As(3)= | 92 -<br>495.<br>0.<br>8<br>0.00<br>0.<br>0.         |
| SECTION 9 10 M= 70.75 -35.51 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)= 0. 0. VI= 117.2 Umaxb= 0.00                           | 1<br>11<br>0.00<br>1 0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.<br>109.<br>738.<br>0.                 | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.                | 3<br>13<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.<br>755. | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.<br>NO 3 | -71.71 -95<br>384.<br>0.<br>5<br>0.00<br>0.<br>0.           | 2.50 - 498.<br>0.<br>6<br>0.00<br>0.<br>0. | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.<br>0.<br>As(3)= | 92 -<br>495.<br>0.<br>8<br>0.00<br>0.<br>0.         |
| SECTION 9 10 M= 70.75 -35.51 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)= 0. 0. VI= 117.2 Umaxb= 0.00 Concessection             | 1<br>11<br>0.00<br>293.<br>0.<br>293.<br>0.<br>1<br>11<br>135.48<br>20.70<br>738.<br>109.<br>738.<br>0.<br>28 NO<br>28 NO<br>33 U | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.                | 3<br>13<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.<br>755. | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.<br>NO 3 | -71.71 -97<br>384.<br>0.<br>5<br>0.00<br>0.<br>0.<br>Asv/s= | 2.50 - 498.<br>0.<br>6<br>0.00<br>0.<br>0. | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.<br>0.<br>As(3)= | 92 -<br>495.<br>0.<br>8<br>0.00<br>0.<br>0.         |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.60 As(1)= 0. 0. As(2)= 0. 0. VI= 117.5 Umaxb= 0.00 Conc. Section BOTT        | 1 11 0.00 1 0.00 293. 0. 293. 0. 1 11 135.48 20.70 738. 109. 738. 0. 28 NO 03 Unrete BEAM property: OM                            | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.<br>1 Vr=<br>maxt= 0. | 3<br>0.00<br>0.00<br>0.293.<br>0.293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.<br>755.               | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.<br>NO 3 | -71.71 -97<br>384,<br>0.<br>5<br>0.00<br>0.<br>0.<br>Asw/s= | 2.50 - 498. 0. 6 0.00 0. 0. 0. 0.L==       | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.<br>0.<br>As(3)= | 92 -<br>495.<br>0.<br>8<br>0.00<br>0.<br>0.         |
| SECTION 9 10 M= 70.75 -35.55 As(1)= 378. 188. As(2)= 0. 0. TOP SECTION 9 10 M= 0.00 0.00 As(1)= 0. 0. As(2)= 0. 0. VI= 117.3 Umaxb= 0.00 Conc Section BOTT SECTION | 1 11 0.00 293. 0. 293. 0. 1 11 135.48 20.70 738. 109. 738. 0. 28 NO 03 Unrete BEAM property: OM 1                                 | 2<br>0.00<br>0.00<br>0.<br>0.<br>0.<br>0.<br>2<br>12<br>70.43<br>72.82<br>377.<br>390.<br>0.<br>0.<br>1 Vr=<br>maxt= 0. | 3<br>13<br>0.00<br>0.00<br>0.<br>293.<br>0.<br>293.<br>3<br>13<br>18.78<br>138.36<br>99.<br>755.<br>0.<br>755. | -36.95<br>196.<br>0.<br>4<br>0.00<br>0.<br>0.<br>NO 3 | -71.71 -97<br>384.<br>0.<br>5<br>0.00<br>0.<br>0.<br>Asv/s= | 2.50 - 498.<br>0.<br>6<br>0.00<br>0.<br>0. | 99.28 -92.0<br>535.<br>0.<br>7<br>0.00<br>0.<br>0.<br>As(3)= | 92 -<br>495.<br>0.<br>8<br>0.00<br>0.<br>0.<br>293. |

| M=                                             | 0.00                              | 0.00            | 0.00            | -37.67  | -73 63 -0 | 5.62 -10  | 3.60 -97.5       | 5 -   |
|------------------------------------------------|-----------------------------------|-----------------|-----------------|---------|-----------|-----------|------------------|-------|
| M=<br>77.47 -43.43                             |                                   |                 | 0.00            |         | -75.05 -9 | J.OZ -10. | 3.00             |       |
| As(1)≈                                         | 293.                              | 0.              | 0.              | 200.    | 394.      | 515.      | <b>5</b> 59.     | 526.  |
| 415. 230.                                      | Q.                                | 0.              | 293.            |         |           |           |                  |       |
| As(2)=                                         | 293.                              | 0.              | 0.              | 0.      | 0.        | 0.        | . <b>0.</b>      | 0.    |
| 0. 0.                                          | 0.                                | 0.              |                 |         |           |           |                  |       |
| TOP                                            |                                   |                 |                 |         |           |           |                  |       |
| SECTION                                        | 1                                 | 2               | 3               | 4       | 5         | 6         | 7 .              | 8     |
| 9 10                                           | 11                                | 12              | 13              |         |           |           |                  |       |
| M≕                                             | 138.36                            | 72.10           | 19.26           | 0.00    | 0.00      | 0.00      | 0.00             | 0.00  |
| 0.00 0.00                                      | 11.58                             | 62.51           | 126.80          |         |           | 1         |                  | .• •  |
| As(1)=                                         | 755.                              | 386.            | 102.            | 0.      | 0.        | 0.        | 0.               | 0.    |
| 0. 0.                                          | 61.                               | 334.            | 689.            |         | •         | _         |                  |       |
| As(2)=                                         | 755.                              | 0.              | 0.              | 0.      | 0.        | 0.        | 0.               | 0.    |
| 0. 0.                                          | 0.                                | 0.              | 689.            |         | -         |           |                  |       |
| Vi= 119.74<br>Umaxb= 0.003                     |                                   |                 |                 | NO 3    | Asv/s=    | 0.00      | As(3)=           | 293.  |
| Concre                                         | ete BEAM                          | 8(              | SECTIO          | N TYPE≃ | 1 ANG=    | 0, L= 6   | .50)             |       |
|                                                | property: E                       |                 |                 |         |           |           |                  |       |
| BOTTO                                          |                                   |                 |                 |         |           |           |                  |       |
| SECTION                                        | 1                                 | 2               | 3               | 4       | 5         | 6         | 7                | 8     |
| 9 10                                           | 11                                | 12              | 13              |         | -         |           | •                | -     |
| M=                                             | 0.00                              | 0.00            | 0.00            | -35.50  | -66.90 -8 | 4.33 -8   | 7.74 -77.1       | 3 -   |
| 52.49 -13.88                                   |                                   | 0.00            | 0.00            |         |           |           |                  |       |
| As(1)=                                         | 293.                              | 0.              | 0.              | 188.    | 357.      | 453.      | 472.             | 413.  |
| 279. 73.                                       |                                   | 0.              | 293.            |         | _         |           | •                | 0     |
| As(2)=                                         | 293.                              | 0.              | 0.              | 0.      | 0.        | 0         | 0.               | 0.    |
| 0. 0.                                          | 0.                                | 0.              | 293.            | •       |           | -         |                  |       |
| TOP                                            |                                   | •               | •               |         |           | _         | 7                | . 0   |
|                                                | 1                                 | 2               | 3               | 4       | 5         | 6         | ,                | . 8   |
| 9 10                                           | 11                                | 12              | 13              | 0.00    | 0.00      | 0.00      | 0.00             | 0.00  |
| . M≃                                           | 126.80<br>45.70                   | 65.14<br>101.19 | 16.86<br>169.51 | 0.00    | 0.00      | 0.00      | 0.00             | 0.00  |
| 0.00 0.00                                      | 43.70<br>689.                     | 348.            | 89.             | 0.      | 0.        | 0.        | 0.               | 0.    |
| As(1)=<br>0. 0.                                |                                   | 546.            | 933.            | ٠.      | <b>.</b>  | V.        |                  | 0.    |
| As(2)=                                         | 680                               | 0               | 0               | 0.      | 0.        | 0.        | <b>0.</b>        | 0.    |
| 0. 0.                                          | 0                                 | 0.              | 933             | ٠.      | ٥.        | ٠.        |                  |       |
| <b>V</b> . <b>V</b> .                          | v.                                | Ų.              | 755.            |         |           |           |                  |       |
| VI= 110.3                                      | 4 NO 1                            | Vr=             | 125.04          | NO 3    | Asy/s=    | 0.00      | As(3)=           | 293.  |
| Umaxb= 0.002                                   |                                   |                 |                 |         |           |           |                  | 5     |
|                                                | -                                 |                 |                 |         | ÷         |           |                  |       |
| Concr                                          | ete BEAM                          | 9(              | SECTIO          | N TYPE= | 1 ANG=    | 0, L= 6   | 5.50)            |       |
|                                                | property: 1                       |                 |                 | •       |           |           |                  |       |
| BOTTO                                          |                                   |                 |                 |         | i         |           |                  | `     |
| SECTION                                        | 1                                 | 2               | 3               | 4       | 5         | 6.        | 7                | 8     |
| 9 10                                           | 11                                | 12              | 13              |         |           | -         |                  |       |
| M=                                             | $\Lambda \Lambda \Lambda \Lambda$ | 0.00            | 0.00            | -43.44  | -91.91 -1 | 26.41 -1  | 7<br>46.89 -153. | .35 - |
| 145.78 -124.2<br>As(1)=<br>797. 675.<br>As(2)= | 5 -90.45                          | -47.83          | 0.00            | )       |           |           |                  |       |
| As(1)=                                         | 293.                              | 0.              | 0.              | 231.    | 495.      | 687.      | 803.             | 840.  |
| 797. 675.                                      | 486.                              | 254.            | 293.            |         | _         |           | ^                | ^     |
|                                                |                                   |                 |                 | 0.      | · 0.      | · 0.      | : 0.             | U.    |
| 0. 0.                                          | 0.                                | 0.              | 293.            |         | •         |           | •                |       |
| TOP                                            |                                   | 2               | 3               |         | e         | 6         | 7                | 8     |
| SECTION                                        |                                   |                 | 3<br>13         | 4       | 5         | U         | į                | o     |
| 9 10                                           | 11                                | 12              | 13              | •       | •         |           |                  |       |

| Calcula    | Calculation book |              | Oil          | đepot Oil    | pump sh | ed     | ~ <del></del> |        | ,    |
|------------|------------------|--------------|--------------|--------------|---------|--------|---------------|--------|------|
|            | M=               | 169.52       | 91.32        | 25.97        | 0.00    | 0.00   | 0.00          | 0.00   | 0.00 |
| 0.00<br>As | 0.00=            | 0.00<br>934. | 0.00<br>491. | 0.05<br>137. | 0.      | 0.     | 0.            | 0.     | 0.   |
| 0.         | 0.               | 0.           | 0.           | 293.         | •       | •      | ٥             |        | 0.   |
| As<br>0.   | s(2)=<br>0.      | 934.<br>0.   | 0.<br>0.     | 0.<br>293.   | €.      | 0.     | 0.            | 0.     | V.   |
| VI:        | = 144.9          | l NO         | ı Vr-        | ≠ 88.32      | NO 3    | Asv/s= | 0.00          | As(3)= | 293. |
| Umaxi      | b= 0.00          |              | maxt= 0.     |              |         |        |               |        |      |

.

## CONTENTS

| 1 • | Design Introduction                                      | p2         |
|-----|----------------------------------------------------------|------------|
| 2 • | Primary data document Hys.pm ( For PMCAD )               | p4         |
| 3 · | Beam (L1 ~ 4) date document                              | <b>p</b> 9 |
| 4 • | Structure analysys of Beam ( $L1\sim4$ ) result document | pil        |
| 5 • | Figures #181                                             |            |

## 1 • Design Introduction

I. Name of Project: Shanghai Pudong Airport Oil Depot & Lab\_

II. Structure type: one-floor brick & concrete structure

III. Foundation type: R.C. Strip foundation

IV. Aseismic intensity: 7

V. Site soil type: IV

VI. Soil endurance: R=110KPa/m2

VII. Structure importance parameter: Ro=1.0

VIII. Foundation load-bearing layer elevation:

IX. Materials: column -- C20 beam board -- C20

wall: clay brick 240mm (5.40KN/m2)

X. Load:

1. Living load:

roof

0.70KN/m2

2. Static load:

roof

ceiling

0.30KN/m2

structure layer (100mm)

2.50KN/m2

roof (roof 1)

2.50KN/m2

total

5.30KN/m2

## XI. Selection of main members

1. Main beam ( L=6600mm )

bxh=200x450

2. Board thickness: h=100mm

## XII. Design basis

- 1. Current national architecture & structure standards and codes;
- 2. Shanghai City's << Base Foundation Design Codes >> DBJ08--11--89;
- 3. Shanghai City's << Base Treatment Technical Codes >> DB108-40--94;
- 4. Shanghai City's << Building Aseismic Design Standards >> DBJ08--09--92;
- 5. << Shanghai Pudong Airport Oil Depot Rock & Soil Investigation Immediate Report >> made by China Aviation Industry Investigation & Design Institute;

## XIII. Computer programs

China Building Science Research Institue CAD Engineering Department

PMCAD CAD, structure plan CAD, August, 1996

PK Structural calculation & construction drawing making of R.C. Frame, framed bent and continuous beam; August, 1996

JCCAD Independent foundation & strip foundation design; August, 1996

#### XIV. Conclusion:

It is concluded from calculation above, the integral strength and deformation of structure meet the design requirements, the geometric dimensions also meet the requirements of strength and deformation regulated by

Codes. The primary data of structural model, major calculation results, combining results of main internal forces of each member, structural layout, internal force drawing, reinforcing results of major members refer the next page, based on which construction drawings are made.

18.600,

18.600,

33, 34, 1.200

2.400

## 2 • Primary data document Hys.pm (For PMCAD)

C---NST MST NAXIS NYS KCL KBE KDK MLOD ALIVE MXD MYD BLKD DWS BLP 1, 0.00, 1.00,100.0 2, 5, 1, 1.00, 1, -i, i, 18, -i, 2,  $C \leftarrow (HLA(i), i=1, NST)$ 3.500,  $C \leftarrow (MSH(i), i=1, MST)$ i, C--((XY(I,J),I=1,2),I=1,NJ)0.000, 0.000 1, 0.000, 3.300 2, 6.600 3, 0.000, 9.900 4, 0.000, 5, 0.000, 13.200 4.800, 0.000 6, 4.800, 3.300 7, 6.600 8, 4.800, 4.800, 9.900 9, 13.200 10, 4.800, 0.000 8.100, 11. 8.100, 3.300 12, 8.100, 6.600 13, ,001.8 9.900 14, 8.100, 13.200 15, 16, 11.400, 0.000 17, 11.400, 3.300 18, 11.400, 5.100 11.400, 6.600 19, 11.400, 7.500 20, 21, 11,400, 9.900 11.400, 13.200 22, 0.000 23, 15.000, 0.800 24, 15.000, 5.100 25, 15.000, 7.500 26, 15.000, 15.000, 9.900 27, 28, 15.000, 13.200 29, 17.800, 0.000 17.800, 0.800 30, 0.000 18.600, 31, 32, 18.600, 0.800

```
5.100
   35,
              18.600,
                              7.500
              18.600,
   36,
              18.600,
                              9.900
   37.
   38,
              18.600,
                             13.200
                              0.000
   39.
              22.200,
              22.200,
                              1.200
   40,
              22.200,
                              2.400
   41,
              22.200,
                              5.100
   42,
              22.200,
                              7.500
   43,
   44.
              22.200,
                              9.900
              22.200,
                             13.200
   45,
C --- ((AXIS(I), I=I, NAXIS))
                                       4,
                                              5,
     1,
            5,
                   1,
                         2,
                                3,
                         7,
                                8,
                                       9,
                                             10,
     2,
            5,
                  6,
                                             20,
                                                          22,
            7,
                        17,
                                      19,
                                                   21,
     3,
                 16,
                               18,
     4,
            6,
                 23,
                        24,
                               25,
                                      26,
                                            27,
                                                   28,
                                                          37,
                                      34,
                                             35,
                                                   36,
                                                                 38,
     5,
            8,
                 31,
                        32,
                               33,
     6,
            7,
                 39,
                        40,
                               41,
                                      42,
                                             43,
                                                   44,
                                                          45,
                                                   29,
                                                          31,
                                                                 39,
     7,
            8,
                         6,
                               11,
                                      16,
                                            23,
                   i,
     8,
            7,
                   5,
                        10,
                               15,
                                      22,
                                             28,
                                                   38,
                                                          45,
                         7,
                                      17,
     9,
            4,
                   2,
                               12,
            4,
                  3,
                         8,
                               13,
                                      19,
    10,
                         9,
                                      21,
                                             27,
                                                   37,
                                                          44,
                   4,
                               14,
            7,
    11,
            4,
                  18,
                        25,
                               35,
                                      42,
    12,
            4,
                 20,
                                      43,
    13,
                        26,
                               36,
    14,
            2,
                 34,
                        41;
                        30,
                               32,
    15,
            3,
                 24,
                        30,
    16.
            2,
                  29,
    17,
            5,
                  H,
                        12,
                               13,
                                      14,
                                             15.
    18,
            2,
                  33,
                        40,
0
C---(CL(i),i=1,KCL)
    1.000,
             6.000,
                        0.240,
                                 0.240,
    3.000,
              6.000,
                        0.350,
C - (BE(i), i=1, KBE)
              6.000,
                        0.200,
                                 0.450,
    1.000,
    1.000,
             6.000,
                        0.240,
                                 0.300,
C - ((QDK(i,j),j=1,2),i=1,KDK)
              1.800,
                        0.900,
                                2.700,
                                            1.050,
                                                     2.700, 0.450,
                                                                         2.700,
    1.500,
    3.000,
              2.700,
C---((HSLD(i,j),j=1,3),i=1,MLOD)
    1.000,
              5.450,
                        0.700,
C---QUE JEI DIAN
```

```
LAYER
                                              1
                                      ICC
                                                IG
C---BHOU
              RWB
                       BHC
                                     2
   0.100, 20.0, 0.015, 20.0, 20.0,
C---((AXIS(I),I=I,NAXIS)
    ١,
           5,
                  1,
                         2,
                               3,
                                      4,
                                             5,
                  6,
                         7,
                               8,
                                      9,
    2,
           5,
                                            10,
    3,
           7,
                 16,
                        17,
                              18,
                                     19,
                                            20,
                                                   21,
                                                         22,
                              25,
                                            27,
                                                   28,
    4,
           6,
                 23,
                        24,
                                     26,
    5,
           8,
                 31,
                        32,
                              33,
                                     34,
                                            35,
                                                   36,
                                                         37,
                                                                38,
                              41,
                                                         45,
    6,
           7,
                 39,
                        40,
                                     42,
                                            43,
                                                   44,
    7,
           8,
                  l,
                         6,
                              11,
                                     16,
                                            23,
                                                   29,
                                                         31,
                                                                39,
    8,
                  5,
                               15,
                                     22,
                                            28,
                                                   38,
                                                         45,
           7,
                        10,
    9,
           4,
                  2,
                         7,
                              12,
                                     17,
                  3,
   10,
           4,
                         8,
                               13,
                                     19,
                                     21,
                  4,
                              14,
   11,
           7,
                         9,
                                            27,
                                                   37,
   12,
           4,
                 18,
                       25,
                              35,
                                     42,
   13,
           4,
                 20,
                        26,
                              36,
                                     43,
   14,
           2,
                 34,
                        41,
   15,
           3,
                 24,
                        30,
                              32,
   16,
           2,
                 29,
                        30,
   17,
                        12,
           5,
                 H,
                              13,
                                     14,
                                            15,
   18,
           2,
                 33,
                        40,
0
C--- ZHU ---
                                           0.000
        70102,
                             0.000,
                    1,
          704,
                    ١,
                             0.000,
                                           0.000
                                           0.000
          706,
                             0.000,
                    ١,
           708,
                    2,
                             0.000,
                                           0.000
        80102,
                    ١,
                             0.000,
                                           0.000
          804,
                    ı,
                             0.000,
                                           0.000
          807,
                    ۱,
                             0.000,
                                           0.000
         1001,
                             0.000,
                                           0.000
                    ١,
       140102,
                    ı,
                             0.000,
                                           0.000
C--- LIANG ---
          505,
                    2,
                             0.000
        60102,
                    2,
                             0.000
        70607,
                    2,
                             0.000
        90203,
                    i,
                             0.000
       100203,
                             0.000
                    l,
       110203,
                             0.000
                    ١,
```

| o                       | ÷                    |                                      |                                  |
|-------------------------|----------------------|--------------------------------------|----------------------------------|
| C QIANG                 |                      |                                      |                                  |
| 10104,                  | 0.240,               | 0.000                                |                                  |
| 20104,                  | 0.240,               | 0.000                                |                                  |
| 30106,                  | 0.240,               | 0.000                                |                                  |
| 40102,                  | 0.240,               | 0.000                                |                                  |
| 40405,                  | 0.240,               | 0.000                                |                                  |
| 50204,                  | 0.240,               | 0.000                                |                                  |
| 50607,                  | 0.240,               | 0.000                                |                                  |
| 60206,                  | 0.240,               | 0.000                                |                                  |
| 70105,                  | 0.240,               | 0.000                                |                                  |
| 80106,                  | 0.240,               | 0.000                                |                                  |
| 901,                    | 0.240,               | 0.000                                |                                  |
| 1001,                   | 0.240,               | 0.000                                |                                  |
| 1101,                   | 0.240,               | 0.000                                |                                  |
| 110506,                 | 0.240,               | 0.000                                |                                  |
| 120102,                 | 0.240,               | 0.000                                |                                  |
| 130103,                 | 0.240,               | 0.000                                |                                  |
| 1401,                   | 0.240,               | 0.000                                |                                  |
| 10029032,               | -0.240,              | -0.234,                              | 0.000                            |
| 0 .                     |                      | •                                    |                                  |
| C DONG KOU              |                      |                                      |                                  |
| 10203,                  | 1,                   | 0.900,                               | 0.900                            |
| 202,                    | 2,                   | 2.100,                               | 0.000                            |
| 203,                    | 2,                   | 0.300,                               | 0.000                            |
| 303,                    | 3,                   | 0.450,                               | 0.000                            |
| 304,                    | 4,                   | 0.001,                               | 0.000                            |
| 701,                    | 1,                   | 2.400,                               | 0.900                            |
| 70203,                  | 1,                   | 0.900,                               | 0.900                            |
| 704,                    | 1,                   | 1.050,                               | 0.900                            |
| 705,                    | 1,                   | 0.650,                               | 0.900                            |
| 801,                    | 1,                   | 2.400,                               | 0.900                            |
| 80203,                  | 1,                   | 0.900,                               | 0.900                            |
| 80406,                  | 1,                   | 1.050,                               | 0.900                            |
| 901,                    | 2,                   | 3.600,                               | 0.000                            |
| 1101                    |                      | 3.600,                               | 0.000                            |
| 1101,                   | 2,                   |                                      |                                  |
| 1101,                   | 2,<br>2,             | 2.400,                               | 0.000                            |
| _                       |                      |                                      | 0.000<br>0.000                   |
| 1105,                   | 2,                   | 2.400,<br>0.300,<br>2.400,           | 0.000<br>0.000<br>0.000          |
| 1105,<br>1106,          | 2,<br>2,<br>2,<br>2, | 2.400,<br>0.300,<br>2.400,<br>0.300, | 0.000<br>0.000<br>0.000<br>0.000 |
| 1105,<br>1106,<br>1201, | 2,<br>2,<br>2,       | 2.400,<br>0.300,<br>2.400,           | 0.000<br>0.000<br>0.000          |

1401, 5, 0.300,

0

を

1

0.000

INF CC C---KZDJ NV ΙB IY 7, 0, 1.00 2.00, ł, EOF ,F ,C ,D ,6 ,G В, E END

3 · Beam (L1 ~ 4) date document

C \_\_\_\_ zong xin xi

16, 8, 4, 0, 8, 5, 1, 0, 5,

20, 20, 2, 0, 0, .90, 1.00, 0,

C jie dian zuo bia

.000, -2.000, .000, .000, 6.600, -2.000,

6.600, .000, .000, 3.000, .000, 5.000, 2.400, 3.000, 2.400, 5.000, .000, 8.000,

.000, 10.000, 4.400, 8.000, 4.400, 10.000,

.000, 13.000, .000, 15.000, 2.400, 13.000,

2.400, 15.000,

C \_\_\_\_ zhu guan lian hao

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16,

C\_\_\_\_\_ liang guan lian hao

2, 4, 6, 8, 10, 12, 14, 16,

C \_\_\_\_\_yue su xin xi

1111, 3111, 5111, 7111, 9111, 11111,

13111, 15111,

C \_\_\_\_\_ zhu ji suan chang du xi su

Ō.

C \_\_\_\_ zhu jie dian pian xin

O.

C\_\_\_\_\_ biao zhun jie mian

1, .24, .50,

1, .24, .30,

1, -.50, .24,

1, -.24, .24,

1, -.35, .35,

C \_\_\_\_ zhu jie mian hao

3, 3, 3, 4, 5, 5, 4,

C\_\_\_\_\_liang jie mian hao

1, 2, 2, 2,

CCC \_\_\_\_ jie dian (jing) he zai

```
0,
CCC ____ zhu jian (jing) he zai
  0,
CCC ____ liang jlan (jing) he zai
1, 2, 1,
         2.3,
   6, 18.0, 1.65,
1, 2, 1,
          8.1,
      6,
           6.5, 1.20,
1, 1, 3, 12.7,
1, 2, 2, 12.7, 1.20,
    3, 1.8, 1.20,
CCC ____ jie dian (huo) he zai
CCC ____ zhu jian (huo) he zai
  0.
CCC ____ liang jian (huo) he zai
1, 1, 6,
         2.3, 1.65,
1, 2, 6,
          .8, 1.20,
              .8,
  1,
1, 1, 1,
           .9,
1, 1, 2,
          .9, 1.20,
 88888
C _____ zhou xian pian xin
  ,000, .000, .000, .000, .000, .000, .000, .000,
C _____ zhi zhuo xin xi
  20000,20000,20000,20000,10000,10000,10000,10000,
C ____ ci liang xin xi
 1
 0,
 Û,
 0,
 0,
EOF
2 ,3 ,C ,E
                            ,6
      ,L-2
L-I
              ,L-3
                      ,L-4
END
```

4 • Structure analysys of Beam (  $L1 \sim 4$  ) result document

11

# PK11.EXE \*\*\*\*\*\* DATA: 6/18/1997

OUTPUT DATA

16 8 4 0 8 5 1 0 5 20 20 2 0

.90 1.00

0

#### OUTPUT DATA

- (1) .00-2.00 (2) .00 .00 (3) 6.60-2.00 (4) 6.60 .00
- (5) .00 3.00 (6) .00 5.00 (7) 2.40 3.00 (8) 2.40 5.00
- (9) .00 8.00 (10) .00 10.00 (11) 4.40 8.00 (12) 4.40 10.00
- (13) .00 13.00 (14) .00 15.00 (15) 2.40 13.00 (16) 2.40 15.00

## OUTPUT DATA

- (1) 1 2 (2) 3 4 (3) 5 6 (4) 7 8 (5) 9 10
- (6) 11 12 (7) 13 14 (8) 15 16
- (1) 2 4 (2) 6 8 (3) 10 12 (4) 14 16

#### OUTPUT DATA

- (1) 1111 (2) 3111 (3) 5111 (4) 7111 (5) 9111
- (6) 11111 (7) 13111 (8) 15111

## OUTPUT DATA

- (1) 1.60 (2) 1.00 (3) 1.00 (4) 1.00 (5) 1.00 (6) 1.00 (7) 1.00
- ( 8) 1.00

## OUTPUT DATA

- (1) .00 (2) .00 (3) .00 (4) .00 (5) .00 (6) .00 (7) .00
- (8) .00 (9) .00 (10) .00 (11) .00 (12) .00 (13) .00 (14) .00
- (15) .00 (16) .00

## OUTPUT DATA

1

- .00 .00 1.00 .24 .50 .00 (1) .00 .00 .00 (2) 1.00 .30 .24 .00 ( 3) 1.00 -.50 .24 : .00 .00 .24 .00 .00 1.00 -.24 .00 (4) -.35 .35 .00 .00 .00 (5) 1.00
- OUTPUT DATA

```
(1)3 (2)3 (3)3 (4)3 (5)4 (6)5 (7)5 (8)4
 (1)1 (2)2 (3)2 (4)2
        11QQ= 60
        STIF COMPUTE
        DEAD COMPUTE
                                 XN
                       XM
JOINT LOAD:
              JR
               0
                                                   ΚX
                                           X
COLUMN LOAD:
             JC
                      KL
                                  P
               0
                                                    Pl
                                                            ΧI
                            KL
                                 P
                                            X
BEAM LOAD:
             NE
                   LI
                                 2.30
                                         .00
                   2
                          l
                                18.00
                                        1.65
                          6
                          1
                                 8.10
                                         .00
                          6
                                6.50
                                        1.20
                                12.70
                                        .00
                   l
                          1
              ì
                   2
                          2
                                12.70
                                        1.20
                          3
                                 1.80
                                        1.20
                       **DEAD LOAD**
        STIF COMPUTE
        LIVE COMPUTE
JOINT LOAD:
              JR
                       XM
                                 XN
               0
              JC
COLUMN LOAD:
                        KL
                                  P
                                           X
                                                   KX
BEAM LOAD:
                                                    Ρl
                                                            ΧI
               NE
                     LI
                            KL
                                            X
                                        1.65
                   l
                                 2.30
                          6
                                 .80
                                        1.20
                                         .00
                                 .80
                                         .00
                                 .90
                          2
              i
                                 .90
                                        1.20
        COMBI COMPUTE
            **COMBINATION AND REINFORCEMENT**
```

BEAM (B= .240, H= .500, L= 6.60) BOTTOM SECTION 2 3 4 5 7 M= .00 -72.37 -122.01 -138.70 -122.01 -72.37 .00 As(1)= 180. **5**39. 964. 1121. 964. 539. 180.

| As(2)=  | 180. | 0.  | 0.  | 1213. | 0.  | 0.  | 180. |
|---------|------|-----|-----|-------|-----|-----|------|
| TOP     |      |     |     |       |     |     |      |
| SECTION | 1    | 2   | 3   | 4     | 5   | 6   | 7    |
| M=      | .21  | .00 | .00 | .00   | .00 | .00 | .21  |
| As(1)=  | 180. | 0.  | 0.  | 0.    | 0.  | 0.  | 180. |
| As(2)=  | 180. | 0.  | 0.  | 0.    | 0.  | 0.  | 180. |

 $V_{l} = 70.54$  NO 1  $V_{r} = 70.54$  NO 3 As(3)= 180. Umaxb=.009 Umaxt=.002 Asy/s= .00

2 (B= 240, H= 300, L= 240) BEAM BOTTOM 3 4 5 SECTION 1 2 -6.37 .00 -12.06 -10.55 M= .00 -6.37 -10.55 132. 79. 108. *1*9. 132. 152. As(1)== 108. 0. 0. 108. As(2)≃ 108. 0. 0. 0. TOP 5 6 7 2 3 4 SECTION .03 .00 .00 .00 .00 .03 .00 M= 108. 0. 0. 0. 0. 0. As(1)= 108. 0. 108. 0. As(2)=0. 0. 108.

 $V_{I}$ = 18.36 NO 1  $V_{f}$ = 18.36 NO 3 As(3)= 108. Umaxb=.002 Umaxt=.001 Asv/s= .00

3 (B= .240, H= .300, L= 4.40) BEAM BOTTOM 5 6 SECTION i 2 3 4 .00 -39.74 -35.30 -21.99 M= .00 -21.99 -35.30 286. 481. 551. 481. 286. 108. As(1)= 108. 108. 0. 0. 0. 0. As(2)= 108. 0. TOP 7 6 3 4 5 SECTION 1 . 19 .19 .00 .00 .00 .00 M= .00 0. 0. 108. 0. 0. 0. As(1)= 108.

Q.

108.

As(2)=

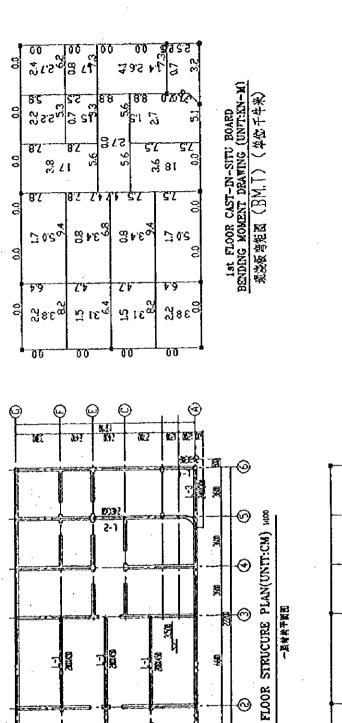
0.

 $V_{l}=$  36.30 NO 1  $V_{l}=$  36.30 NO 3 As(3)= 108. Umaxb=.008 Umaxt=.001 Asv/s= .00

0.

Q.

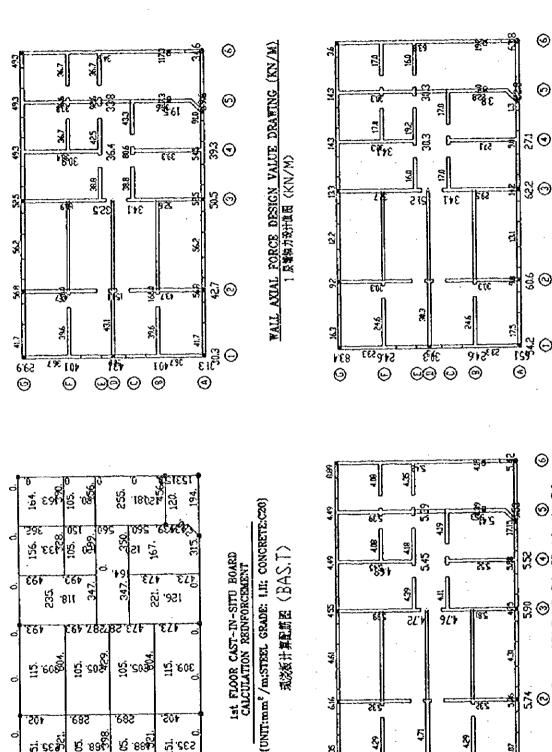
108.


BEAM (B= .240, H= .300, L= 2.40) BOTTOM 3 5 6 2 4 SECTION 1 .00 -7.10 -6.70 -4.81 -2.57 .00 -4.86 M=

| Oil | Depot | & | Lab |
|-----|-------|---|-----|
|-----|-------|---|-----|

| As(1)=   | 108. | 60. | 88. | 83. | 59. | 31. | 108. | ٠. |
|----------|------|-----|-----|-----|-----|-----|------|----|
| As(2)=   | 108. | 0.  | 0.  | 0.  | 0.  | 0.  | 108. |    |
| TOP      |      |     |     |     | -   |     |      | -  |
| SECTION  | 1 .  | 2   | 3   | 4   | 5   | 6   | 7    |    |
| M=       | .02  | .00 | .00 | .00 | .00 | .00 | .02  |    |
| . As(1)= | 108. | 0.  | 0.  | 0.  | 0.  | 0.  | 108. |    |
| As(2)=   | 108. | 0.  | 0.  | 0.  | 0.  | 0.  | 108. |    |
|          |      |     |     |     |     |     |      |    |

VI= 15.50 NO 1 Vr= 6.89 NO 3 As(3)= 108. Umaxb=.001 Umaxt=.001 Asv/s= .00


PK1 COMPUTE END



1

|                  | <sub>T</sub>         | <b>9</b>                                |              |
|------------------|----------------------|-----------------------------------------|--------------|
| N. Q.            | N.Q.                 | 5.0                                     |              |
| 00<br>7.         | 4 0 0 7<br>4 7 0 0 7 |                                         | מת/          |
| 10.              |                      | % \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | (floor load) |
| <del>- L</del> - |                      | £                                       | 2            |
| 25.<br>47.       | 5.4                  | 0.7<br>10.7<br>10.7                     | 70077        |
|                  |                      | -                                       | 101          |
| 47.0             | 9.0<br>4.0           | ης<br>4.V.                              |              |
|                  |                      |                                         |              |

第 1 展平面 ( 機面故數 )

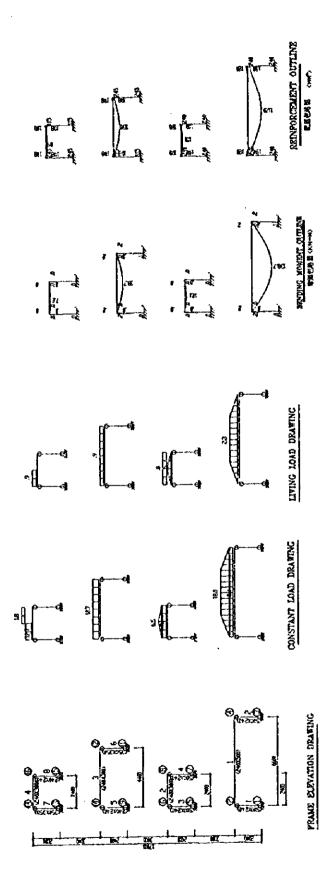


188. 188. 188.

ਲੋਂ .88<u>8</u>

ភ្នំ ទខេ

(9) 33381.6 F1=270.5 V1=270.5 LD=7.0 GD=1.0 M =5.0 (RATIO BETWEEN RESISTANCE AND AFFECTION. ASEISMIC CALCULATION RESULT सर €8}<sup>£23</sup> .6° **⊙** /8 P E25E81 Θ


FIGURE IN BRACKET IS AREA OF REINFORCEMENT) 1. 果花酿造煤结果(核力与贫宜之比, 括号内为配值国税)

EARTHUAKE SHEAR FORCE DESIGN VALUE DRAWING (KN)

1. 尿光度的力化中值的(天心)

9

Θ



·:·