Chapter 8

APPENDIX

APPENDIX 8-2-1 Equivalent distributed load to C-14 Loading

APPENDIX 8-2-2 Bridge Reconstruction to Power Plant No.3

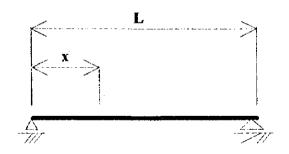
APPENDIX 8-2-3 Specification of Japanese bridge over a river

APPENDIX 8-2-4 Railway Location between

Honkhor and Bayan by a Contour Plan

APPENDIX 8-4-1 Train Operation Regulation of Tokaido Shinkansen

Appendix 8-2-1 Equivalent distributed load to C-14 Loading


Bending moment of a simple beam due to C-14 is specified to compute using following equivalent distributed load.

		C-14 I	oading		H-8 L	oading
L(m)	K=0	k=0.5	w(t/m)	Mmax(t*m)	w(t/m)	Mmax(t*m)
1.0	70	70	70	8.8	56	7.0
2.0	43.63	38.16	38.16	19.1	28	14.0
3.0	34.5	30.18	30.18	34.0	20.08	22.6
4.0	30.97	27.1	27.1	54.2	19.6	39.2
5.0	29.08	25.44	25.44	79.5	19.28	60.3
6.0	27.83	24.35	24.35	109.6	18.08	81.4
7.0	26.89	23.53	23,53	144.1	18.08	110.7
8.0	26.15	22.88	22.88	183.0	18.24	145.9
9.0	25.51	22.32	22.32	226.0	17.84	180.6
10.0	24.93	21.82	21.82	272.8	17.28	216.0
12.0	23.95	20.96	20.96	377.3	15.84	285.1
14.0	23.11	20.22	20.22	495.4	15.04	368.5
16.0	22.36	19.56	19.56	625.9	14,56	465.9
18.0	21.69	18.97	18.97	768.3	14.32	580.0
20.0	21.07	18.44	18.44	922.0	13.92	696.0

Note

- L: Clear span length of a simple beam.
- w: Equivalent uniform distributed load for computation of max, bending moment of a simple beam.
- Mx: Bending Moment at a distance of "x" from a support.
- k: Equivalent distributed load to compute bending moment of a simple beam.

$$Mx = k*x*(L-x)/2$$

APPENDIX 8-2-2

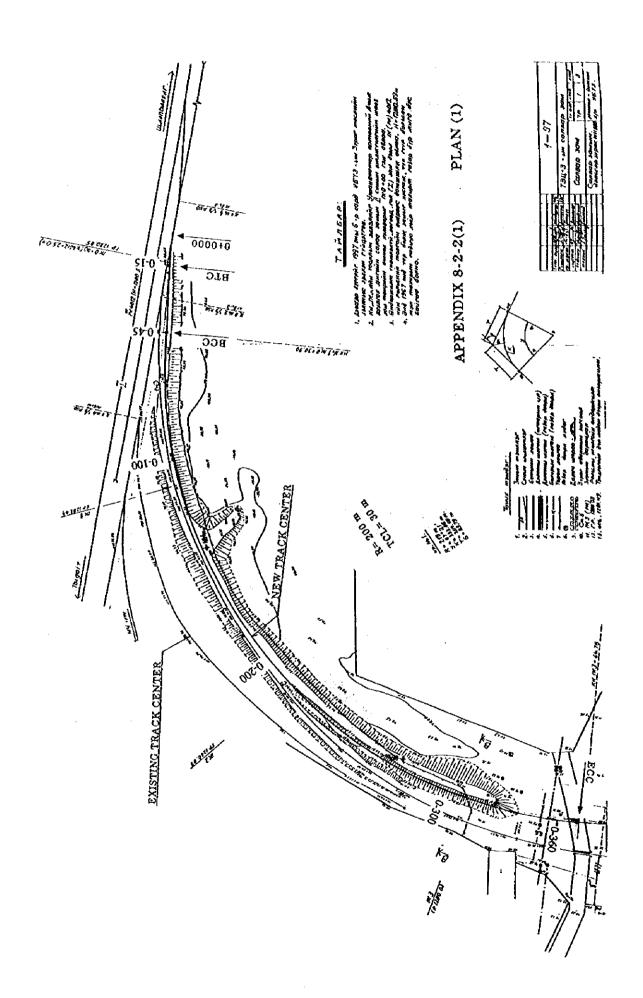
Bridge Reconstruction to Power Plant No. 3

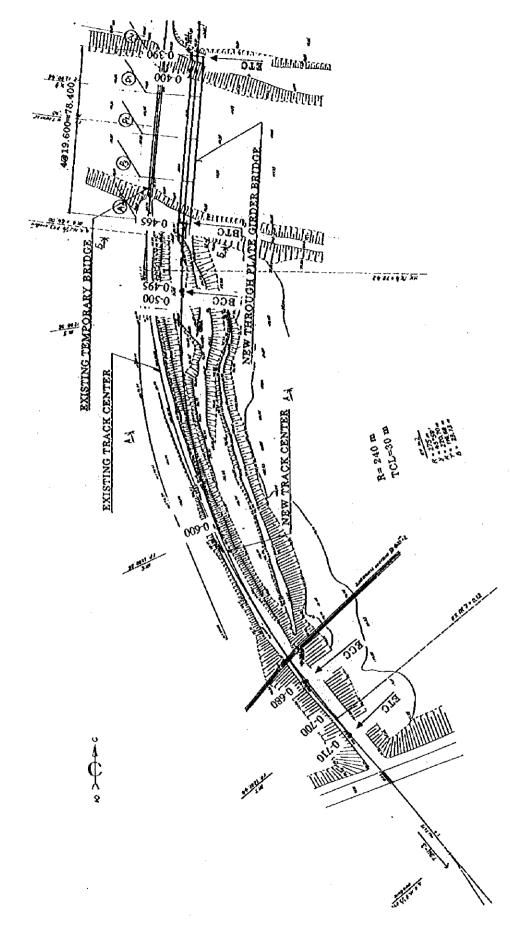
Present Condition

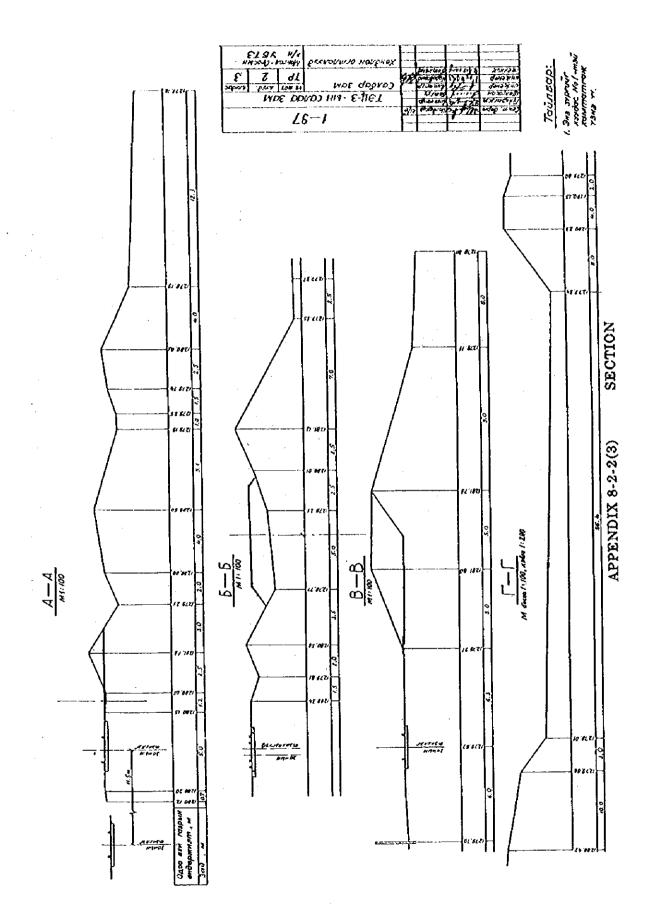
The bridge is a temporary structure constructed after the original bridge structures had been washed away, which is solely connecting the power plant with the main line track transporting coals for power generation as a life line of the people living in the Uraan-baatar.

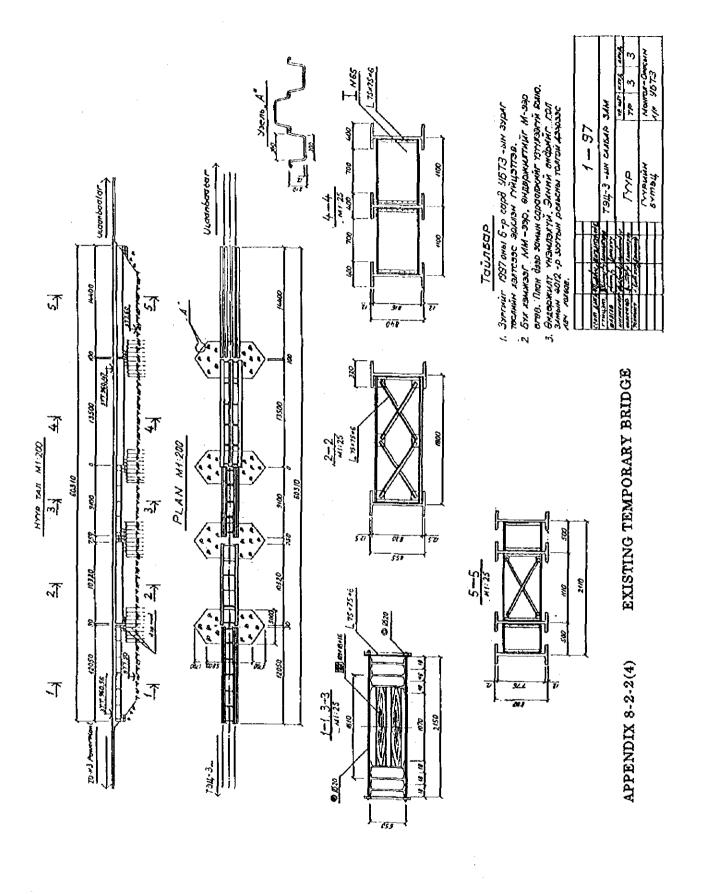
The present status of the temporary bridge is shown in Fig. 8-2-2-(4). Superstructure is composed of various assorted steel bridge type structures. Substructure consists of timber cribs with steel sheet piles enclosing that. All of these are only temporary structure built years ago and the condition is rather poor now.

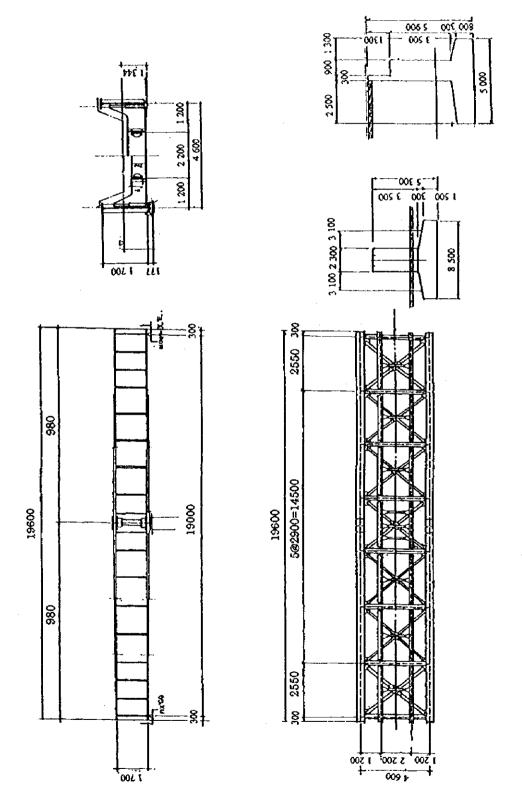
The substructure is sinking due to wheel loads during trains passing on the bridge. It might be going beyond suitable repair/rehabilitation life period of the structure within some years which may induce lack of fuel to generate electricity or short of electricity in Uraan-baatar.

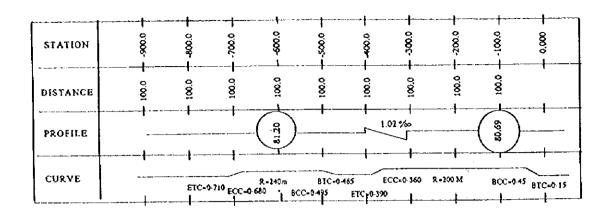

Reconstruction Plan


The alignment branching from the main line track to the power plant is planned to connect with the existing line before the existing overhead steam pipes.


The bridge is planned as four span bridge of Steel Through Plate Girder Type with a total bridge length of 78.4 meter. The substructure and foundation is planned as cast-in-place concrete structure with spread footing foundation type.


The reconstruction plan and its approximate construction cost is illustrated in attached figures/table.


Approximate construction cost including appurtenant work such as raising up of approach road and others is US\$ 1.3 million.



APPENDIX 8-2-2(5) NEW THROUGH PLATE GIRDER BRIDGE

APPENDIX 8-2-2(6) PROFILE

Approximate Quantity and Cost US\$ Unit Cost Amount Type, Class Unit Foreign Foreign Description Qty. Local Local 861,891 158.01 0.00 5454.55 Structure Steel Superstructure ton Concrete Substructure cu.m 529.55 1.61 192.76 854 102,078 1036.97 1.78 4.54 1.848 4.704 Structure Excavation cu.m 2106.25 0.00 18.57 39,119 Embankment cu.m 1200,00 0.00 5.55 Common Excavation 6,665 co.m Track Work រា 660.00 0.53 204.09 347 134,700 Grouted rip roa 0.33 19.15 cu.m Demolition LS 1.00 153 57,458 LS 305 Miscellaneous 10 percent 1.00 114,916 Total 3,508 1,321,531

TAB. APPROXIMATE CONSTRUCTION COST (DIRECT COST)

Appendix 8-2-3 Specification of Japanese bridge over a river

(1) Substructure interval

Q: Planning high water volume of the river (m3/sec)

L: Interval of substructures (m)

 $Q \le 500m3$ River width $\le 30m$

L > 12.5 m

River width > 30m

L > 15.0 m

500m3 < Q <2000m3

L > 20.0 m

2000m3 < Q

L > 20+0.005Q

Maximum interval

at main stream

70m

outside of main stream

30m

(2) Construction level of footing

The upper level of the footing must be constructed 1 m or more below than the river bed at flood channel and 2 m or more below than the river bed at common channel.

But if there is no fear to scour the river bed it may construct otherwise.

App. 8-2-4

Railway Location between Honkhor and Bayan by a Contour Plan (S=1/50,000)

(1) Introduction

This study is to examine roughly the technical possibility of rough selection of Railway Route between Honkhor and Bayan by using existing topographical and geographical maps at a scale of 1/50,000, at the request of the Mongolian Railway.

The natural ground of this section has a rise of 16 %, for which it was constructed to establish a railway rout extension with the curvature of R=300 m radius using a series of small curves which resulted in an overall true grade of about 9 %.

The related problems will be as follows:

- 1) Increase in the overall track length ... The straight-line distance between Honkhor and Bayan Stations is approximately 13 km, and the existing railway rout is about 19 km, which means that the track length is about 6 km longer.
- 2) A large difference in the running speed between the up- and down-freight train ... The running speed of the up freight trains hauling the full tractive capacity is determined by the up-grade 9 %, and the equilibrium running speed is approximately 20 km/h; while the down-freight train speed is restricted by the curvature of R= 300m and the running speed is approximately 80 km/h, and the difference in the running speeds are very large.
- 3) Large rail wear in the curves "There are excessive wear in the outside rail at curves of R = 300 m. The reason for this hard wear is due to the fact that the Mongolian Railway have a rule to establish the rail cant for the average train speeds, and the true cant is 130 mm, where the maximum cant is 150 mm. The cant deficiency against the maximum running speed is large (140 mm calculated), and this could be one reason which contributes greatly to the rail wear.

As a countermeasure the guiding surface of the outer rail on curves are lubricated, and the head-hardened rails are being introduced afresh. Other measures being taken is to reduce the deficiency of cant, and to limit the maximum speeds on the down-grades, or to increase the train speeds when negotiating the up-grades.

Drastic improvement of the track alignment in the above section is to change the radius of curvature to be larger than 600 m. So the desirable thing to do is to select the railway rout for these condition, and to construct the new railway to meet these standards.

In order to meet these condition, it is recommended to select the railway location for a start, and the standards of the design for the new line should be as follows:

· Maximum grade · · · · · · 9 ‰

curve compensation when R≥600 m, i= 0.5

- · Minimum radius of curvature · · · · · · · 600 m
- Transition curve length · · · · · · · ! = 90 m (0.6 times max. allowable cant)
- (2) Study to be made in Railway Location (Fig. 1 and 2)
- 1) Selection of Route between Honkhor ~ Bayan (Ref. Fig. 1 ①, ②)
- Scheme 1. · · · · From the existing line exiting Honkhor Station select along the existing line and connect back to the existing line for the shortest distance possible.
- Scheme 2. ••• From the track exiting Honkhor Station, find a route along the branch line to Nalaikh, and connect to the existing railway line.
- 2) Selecting a railway route between the entry and exit point of Honkhor Station (Refer to Fig. 1 3)

In order to remove the S-curves of 300 m radius at the route entrance of Honkhor Station, select a route from the vicinity of Km 425 +500 to the exit of Honkhor Station (near Km 430 + 500), and to redesign of the station layout.

(3) Railway Location between Honkhor to Bayan

Scheme 2 is preferable for this plan, it is not possible to lower the Rail Level of the existing line exiting the Honkhor Station. For this reason, it is necessary to make future studies of Scheme 1 (Table 1).

- (4) Selection of Railway Routs between the entrance and exit at Honkhor Station and study for Station Layout
 - 1) Requirement for the establishment of a station

Honkhor Station is required to be near the existing station to maintain station interval and the track capacity on the main line, etc. without the function as the junction. And this station will be the important one as the junction to the brunch line if the equipment is constructed at Nalaikh in future.

Table 1 Comparisons of Scheme 1 and 2

	Table 1 Comparisons of	
Item	Scheme 1	Scheme 2
1 Route Layout	Runs parallel to the existing line	Runs parallel to existing Nalaikh Branch
		Line
2 Connection	Connects to existing route near	The difference in the rail level near Km
with existing line	Km 444+500 (New Line Km	444+500 on the existing route is 12 m,
	439+500). Shortest route of new	and is barely able to connect with the
	route.	existing rail level at Bayan Station.
3 Crossing of	Crosses steppe twice, and will	Crosses steppe once, affect to
steppe	damage the environment.	environment less than Scheme 1,
4 Cuts (relation to	Many cuts near Km 432 + 500 on	Cut one-way slope of hills, little
the Permafrost).	existing route, some 20m deep.	possibility of cut into Permafrost.
	High possibility of cut in	
	Permafrost.	
5 Crossing the	Cut through swamp will be	None.
swamps	required near Km 433 on existing	
	line.	·
6 Other related		Relocation of existing route of
issues.		approx. i km near exit Honkhor
		Station required due to obstructions.
Conclusion	Not recommended due to high	Recommended, affects to environment
	construction costs, and affects to	i
	environment extremely.	·
Special Matters	 	· Rail level at exit of Honkhor Station
•	Bayan Station is easy to connect	can not be set at lower level than
		existing elevation of the Rail Level.
		· Rail level is lower than river level at
	and the second s	some river crossings, and needs raising
	needs to be checked for its merits	the track from present rail level.
	So Schema I need to be	<u> </u>
	investigated and study.	

2) Route Selection

① The Plan to connect the entry point near Km 425 + 500 and Km 430 + 500 (Km 429 +

500 on the new route) of Honkhor Station with a straight line will require lowering of the elevation at the exit point from its present elevation by about 10 m, which will be lower than the level of the rivers on both sides of the Station, and it will be almost impossible to relocate the Station from its present location. Hence, this plan will not be considered further in this study.

- ② In order to not lower the rail level, if a route with a minimum curve of 600 m radius is selected along the existing route, it will be impossible to connect with the exit point of Honkhor Station. It will not be possible to design a low slope which is necessary to the main line for the Station.
- 3 For this reason, it will not be possible to reduce the grade of the main line to be less than9 ‰, and so the Honkhor Station will become a Switch-back Station.

However, as a result of adopting the station layout and operate trains as described in Clause (4), the drawback of the switch-back layout in the said station can be improved by the following feature which will reduce the problems caused by the new track layout:

4 Train operations at the New Honkhor Station

The track layout at the New Honkhor Station will become as shown in Fig. 3, and the refuge trains on the Main Line bound for Bayan which are entered the Station will be only the freight trains and they will enter the refuge tracks for forward and backward operation. In order to avoid this forward and backward operation, the trains bound for Ulaan-baatar will be mainly entered the refuge tracks at the new station., The trains bound for Bayan will be operated as through trains, and overtaken at other stations, not at the New Honkhor Station. And this will reduce the effects of the switch-back operation.

[Use of tracks at the New Honkhor Station]

- (a) Major Points of the Track Layout ... The track layout at the New Honkhor Station on the Ulaan-baatar side will be as shown in Fig. 3 'A', and have the connecting route of a 14 % grade.
 - (b) The Tracks for the Train Operation
- a) Passenger Train ... Use the Main Track in principle, but the refuge trains will use the newly connecting rout 'A'.
 - b) Freight Train on the Main Line
 - i) Through Trains ... Use Main Track
 - ii) Refuge Trains bound for Ulaan-baatar ... Enter the Refuge Track No. 1 or No. 2

directly, and depart through the connecting route 'A'.

iii) Refuge trains bound for Bayan ... Enter Branch Line 'B' once, re-enter Refuge

Track No. 1 or No. 2, and depart directly for Bayan.

c) Freight Trains in Branch Line

Depending on the connecting route, trains will enter and depart from Track No. 1 or No. 2 directly. The reason for this is that the coal train to Nalaikh will be loaded when heading for Ulaan-baatar and return empty when headed back to Nalaikh, and the connecting route on the lines will present no problems.

(5) Grades on the Branch Line.

There are two schools of thought concerning this issue; one that the quality of coal from Nalaikh is of high grade and that there will be more development in the shipment of coal, and the other opinion that coal is running out at its source, and that the abandoned coal mines will be used for some other facility. It will take some time before any conclusion can be made. But there are some grades on the route bound for Nalaikh having a rise of 14‰, and in any case if no improvements are performed, trains can still be operated on the connecting route without any problem.

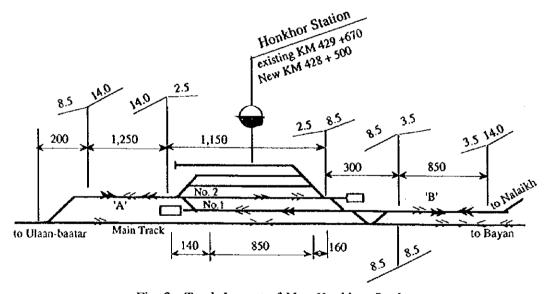


Fig. 3 Track Layout of New Honkhor Station

- (5) Study of the Ruling Grade.
- 1) The Problems of Changes of the Ruling Grade.

The Mongolian Railway line has the sharpest grade of 18 % at the starting point side at Ulaan-baatar between Tolgoit (Km 395)~ Emeelt (Km 378). When considering this grade,

there are the opinions that the around area at the end side of the line from Ulaan-baatar should be adopted a steeper grade of more than the Ruling Grade 9%.

As a general rule, when the railway location is being made to adapt to the natural terrain features, in the sectors where passenger trains are mainly running, it is the practice to use steeper grades that will not affect speed restrictions, and to use a larger radius on curves for the reduction of speed restriction. For the lines that are used mainly by freight trains, the practice is to improve fewer increasing speed than for the passenger trains. Thus, a smaller radius on curves which will not influence to the nominal tractive capacities will be adopted to conform with the terrain and a gentler grade will be used on the gradients which will influence them.

The present route adopts curves of 300m radius for using the steepest ruling grade of 9 %. If a ruling grade of 18 % is used, a comparison of the relative merits will be as follows (Table 2):

Table 2 The Relative Merits of the Ruling Grade of 9 % and 18 %

	Item	9 ‰ Ruling Grade	18% Ruling Grade	Remarks
Route Policy	·	Use min, radius of 600m longer track length, and grades less than 9 ‰.	-	ground slope of
Passe nger	Speed	Speed restriction for curves.	No limit for curve.	
Train	Frequency	Same as present.	Same as present.	
	Nominal Tractive Capacity	2,600 ton	1,300 ton (1/2, 9 ‰ grade)	
Freig ht	Equilibrium Speed	Approx. 20 km/h	Approx. 20 km/h	
	No. of Train	Same as present.	Increase train frequency or couple helper.	
Train	No. of Locomotive and Staff	Same as present.	Increase freight trains, staft and locomotive	JNR policy full tract principle until 1980s.
<u> </u>	Fuel	Same as present.	Increase	

NOTES: Sections that need improvement of curvature are Bayan \sim Hoolt, Hoolt \sim Tsgaan-hyar, Tsgaan-hyar \sim Hanga, and the change of the Ruling Grade have a linkage with

the management policy of the Mongolian Railway and should be a matter for the Railway Management to study.

2) Gradient for Curve Compensation

The policy of the Mongolian Railway is that there is no necessity to compensate track curvature where the radius is larger than 500m. With the Japanese Railways the compensation of the curves is made regardless of the radius of the curves. Since the study is a preliminary study, this matter will not be pursued.

In Scheme 2 of this study, the rail level at the river crossings are tower than the river levels, if it is possible to make the grades at 9 %, it will permit easier selection of the new railway route. It is requested that a decision of this matter be clarified by the time that the survey work is completed.

- (6) Investigation and Estimated Construction Costs
- 1) Necessity for the Investigation.

At the request of the Mongolian Railway the possibility of performing a route selection from the old contour plans was made roughly. However, this study was made for a rough check of the technical possibility, and from the data available it will not be possible to make an exact study which requires exact data of the topography, hydrology, and plant life of the area.

In order to make further studies in the future for the best route selection, and to perform the improvement work for the alternate route selection will require several years of study of the route, and the mandatory data required for this work are the topographical surveys, soils borings along the proposed route, and environmental studies to prevent degradation of land, water and air.

However, there are many matters that will help to accelerate and make the decision process easier, if they are resolved early. They are listed in the following:

- ① Decide the optimum maximum grade, the optimum minimum curvature (possible use of 18 %)
- ② The continued use of the Nalaikh Coal Mine or its close down, and any continued use as another facility.
 - 3 The need for the Honkhor Station, the location, and its function on the railway line.

- 4 Change in the speed of trains with the change in the nominal tractive capacities if any.
- 6 Determine the super-elevation of track curve of R = 300m, with a maximum cant of 150 mm, actual cant of 130 mm (calculated cant deficiency 140 mm).
 - 2) Estimated Cost of Investigation and Surveying.

The main items of investigation are as follows:

①	Soil Boring,	7 sites, each 10m deeps	Approx. \$20 thous.
---	--------------	-------------------------	---------------------

② Field Survey, 1/2,500 topographic survey, approx. 45 km ²	100
--	-----

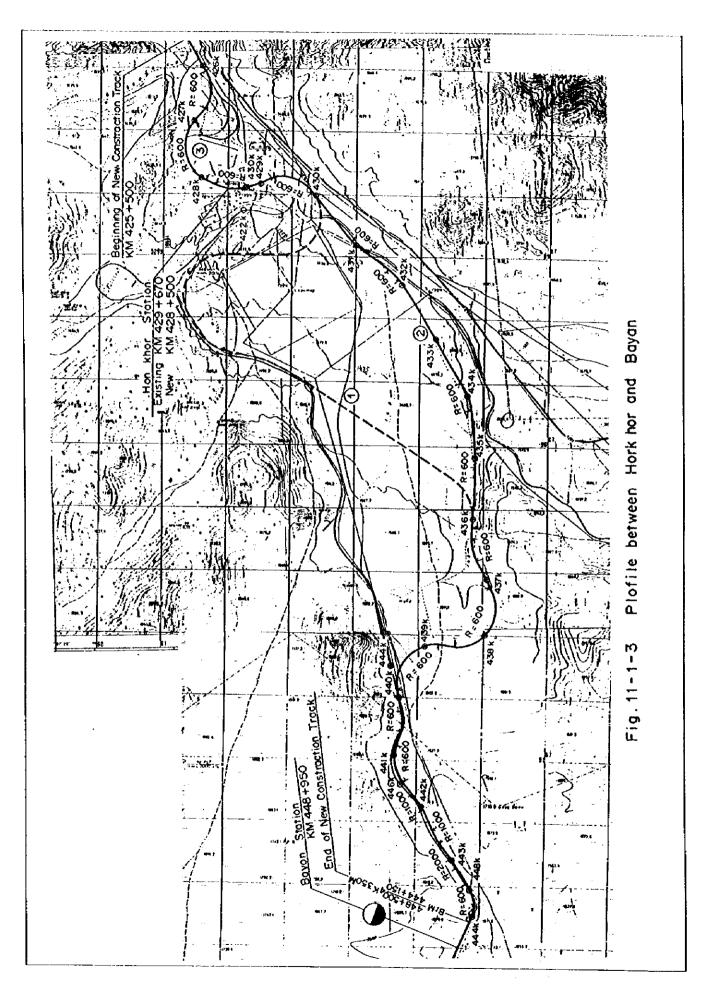
(a) Environmental Study, Lump Sum 20	3	Environmental Study,	Lump Sum	20
--------------------------------------	---	----------------------	----------	----

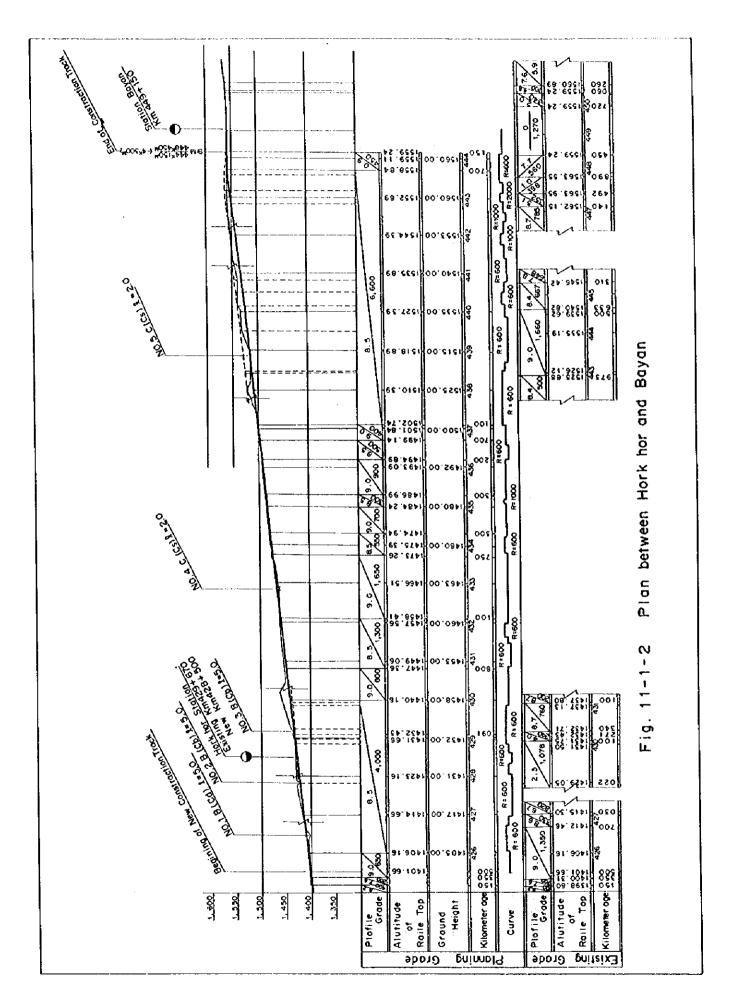
4	Technical Transfer,		Lump Sum	30
---	---------------------	--	----------	----

Total 170

During the course of the investigation, technical transfer of route selection shall be made to the Mongolian Railway technical staff so that they could perform the selection of railway routes by themselves.

3) Construction Implementation.


The construction work will consist of new construction of the alternate railway route for the Honkhor \sim Bayan Line, after which the work for the entry point to the Honkhor Station will be performed in staged construction.


Construction Period, approx. 3 years.

Total Construction Cost, approx. \$40 mil.

Breakdown, Scheme 2, approx. \$ 30 mil.

Breakdown, Scheme 3, approx. \$ 10 mil.

Appendix 8-4-1 Train operation regulation of Tokaido Shinkansen

- (1) Restriction by rainfall amount
 - 1) Stop the operation

One hour rainfall amount exceeds 50 mm /hour.

Continuos rainfall amount exceeds 150 mm and one hour rainfall amount exceeds 40 mm/hour.

2) Restrict train speed to 70 km/h

One hour rainfall amount exceeds 45 mm/hour

Continuous rainfall amount exceeds 150 mm and one hour rainfall amount exceeds 35 mm/hour.

- (2) Restriction by wind
 - 1) Stop the train operation

Wind velocity exceeds 30 m/sec

2) Restrict train speed to 120 km/h

Wind velocity exceeds 25 km/h

(3) Restriction by earthquake Stop the train operation Vibration exceeds 40 gal

Chapter 9

APPENDIX

Appendix 9-1 Table of Limitation for Small-radius Curve

Appendix 9-2 Layout of Station in Mongolian Railway

Table of Speed Limitation for Small-radius Curve (1)

Appendix 9-1

C=150, P=0.2m/sec (Russian Rule)	V=[(0.08*C+13P)*R]	99	\$	99	99	76	<i>\$</i> 9	999	65	65	\$\$	\$	99	67	99	99	99	999	69	67	99	8	70	99	99	99	\$3	65	ઝ	99	99	65	.99	99	67	99	98
Difference	6): >	12	=	11	11	3	12	=	12	12	11	13	11	10	1.1	13	11	11	6	11	1.1	16	13	91	91	91	16	.7	17	16	91	27	27	76	52	91	16
Difference	V -(B)	5	5	5	5	4	9	5	9	9	5	7	5	7	\$	\$	\$	5	3	4	5	10	7	10	01	70	10	11	10	10	0.	21	20	20	20	01	10
Velocity for Actual Cent-	(R*120/12.5) 1/2	53	54	54	84	62	53	54	53	53	54	52	\$	55	54	53	54	54	58	54	54	54	25	54	>5	\$\$	54	53	53	\$	X	53	53	ኧ	\$	54	*
Permissive Velocity of Cant(B)	(R*150/12.5) ^{1/2}	99	09	99	09	69	65	09	65	65	09	28	09	61	8	8	જ	8	. 29	19	09	09	63	જ	09	09	.09	65	09	99	8	59	8	8	8	જ	09
Cant	120-(A)	- 57	-21	95-	-57	-12	65	57	19	-62	-56	-70	95-	S	-57	85	પ્રં	\$5.	43	-51	×	35	-63	Ş	¥	ξģ	찷	8	9	**	×	152	-148	.147	-142	\$	20
Difference of Permissive Cant	150-(A)	-27	-27	-26	-27	81	-29	27	-31	-32	-26	07	-26	20	-27	-28	-26	-25	.I3	.21	-26	\$	-33	-54	-55	-53	-54	Ş	38	\$5	ŝ	-124	-118	-117	-112	\$5.	X
Cant (A)	C-12.5*V ² /R	177	177	176	177	132	179	177	181	182	176	81	176	170	177	178	176	175	163	171	176	204	183	204	205	203	204	210	506	204	205	274	268	197	262	204	202
Ç	Velopity	SS	65	65	65	99	65	83	33	\$3	65	65	29	59	3	S	SS	65	65	59	8	5	٤	2	22	- 02	5	2	8	8	22	8	8	æ	\$ \$	٤	70
Kind of Curve	Length	80	812	348	761	761	217	323	375	220	455	331	398	225	410	283	381	431	218	233	230	194	3	712	813	207	417	274	14	394	448	449	495	195	ç	287	312
	Radius			300	299	399	295			290	300		L	L	4.		:	L	325	1		8		Ŀ	Ŀ		300	L	297	L	288		298	L	1	ğ	11
Curve	Ş	9k800m	10k700m	12k400m	ł	1 -	1	15k100m	15k500m	15k700m	16k300m	16k700m	#100 X	1	Ł	19k700m	1	1 -	Ł	ł	1	ŧ	1		•	4			1	60k400m	61k100m	1	1	1 .	- 1	1	87k700m
Position of Curve	florn	9.200	006.6	12,100	12.400	12,400	13 200	14.700	15.000	15.500	15.800	16 300	17.700	8 8 8	1×400	19,400	19.700	20,200	20.700	21,200	21,800	50,700	50.900	52.500	53,300	\$ 800	\$6.400	86.900	89.500	65	65,66	64.400	, 4900	2 2	2,100	202	87,400
	2	-	7	~	4	4	ļ,	9	-	œ	0	õ	-	2	=	1	<u>~</u>	16	17	5	2	20	,	22	23	7,	25	72	12	12	2	្ត្រ	₹ ;	, ;	3 2	2 2	; ;;;;

Table of Speed Limitation for Small-radius Curve (2)

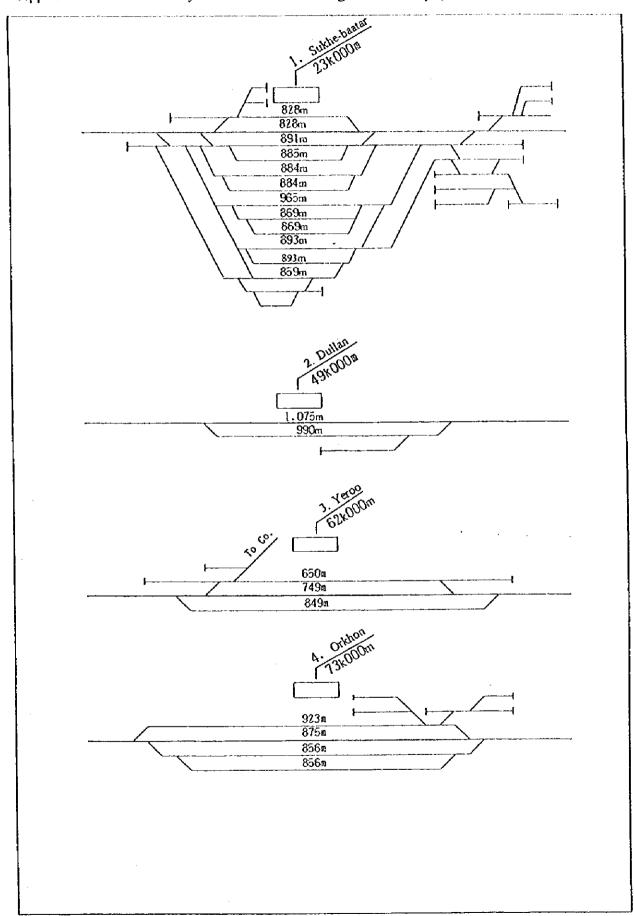

C=150, P=0.2m/sec (Russian Rule)	V=[(0.08*C+13P)*R]	3	65	99.	99	\$	99	\$	99	999	999	7.1	99	999	\$	99	99	99	99	99	99	\$	99	88	88	99	65	99	99	99	99	99	99	999	98	99	65
Difference Difference	6.5		17	16	17	81	26	16	17	16	9:	12	1.7	16	17	91	17	17	16	17	17	16	17	16	16	17	17	11	11	11	1.1	16	17	16	17	1.1	12
Difference	V - (B)	10	11	10	10	12	20	10	11	10	10	. 5	01	01	10	10	10	10	01	10	10	10	OI.	10	10	10	11	5	5	5	5	10	10	10	10	5	9
Velocity for Actual Cent (C)	(R*120/12.5) ^{1/2}	\$4	53	54	53	25	54	54	53	አ	75	85	53	54	53	54	53	53	54	53	53	\$	53	\$	54	53	53	*	54	54	75	54	53	\$5	53	54	53
Permissive Velocity of Cant(B)	(R*150/12.5)	99	59	09	99	58	09	60	59	09	09	65	09	09	09	09	99	09	09	09	09	09	9	99	09	09	59	93	8	8	09	99	89	09	09	09	59
Cant Deficiency	120-(A)	3	-89	\$	-86	-97	-147	-84	88-	-84	ş	-56	98~	-85	98	₹8~	98	-86	-84	%	-86	2 8-	8	-85	\$	98~	-91	-36	.57	35-	56	\$	98	-84 -84	98-	-56	-61
Difference of Permissive Cant	150-(A)	-54	-59	-54	-56	-67	-117	-54	85*	\$	Ŷ	-26	· 56	55-	-56	-54	8,	-56	\$\$	-56	-56	1 \$-	-56	-55	-54	-56	-61	-76	-27	-36	-26	\$5	8,	-54	95•	-26	-31
Cant (A)	C=12.5 V/R	707	602	204	206	217	267	204	308	204	204	176	206	. 205	206	204	206	206	204	206	206	204	206	205	204	506	211	176	441.	176	176	204	206	204	206	176	181
ç	Volocity	0,4	0/	92	22	70	80	70	52	8	ģ	92	8	5	92	22	8	2	20	92	02	5	22	20	2	70	20	. 65	65	. 65	S	2	8	2	70	65	65
Kind of Curve	thength.	446	737	232	472	336	434	582	258	272	330	1051	951	. 999	. 532	320	652	% %	476	616	698	402	261	505	Ş	361	1220	515	1357	557	250	434	377	681	513.	801	272
,×.	Radius	88	293	300	298	282	300	300	295	38	86	348	298	299	298	300	298	298	300	298	. 862	300	297	299	300	- 298	530	380	299	38	300	ĕ	298	300	298	380	292
Curve	to	145k800m	147k200m	147k500m		148,100 148k400m	187k100m	1873500m	276,800 277k100m	279,100 279K200m	279,300 279k600m	287,700 288k700m	289k900m	292 700 293k400m	299,800 300k300m	372,800 373k200m	373,400 374k100m	374,400 375k300m	378,300 378k800m	382,100 382k600mi	382,800 383k600m	416,900 417k300m	417,900 418k200m	426,900 427k500m	427,500 427K900m		430,300 431k500m	434k100m	435k500m	436,100 436k500m	437,400 437k600m	438,900 439k300m	448k300m	450k400m	450k900m	451,300 452k100m	452,200 452k400m
Position of Curve	flom	145,300	146,900	147,300		148,100	186.700		276.800	279.100	279 300	287,700	289,100	292 700	299,800	372.800	373,400	374,400	378,300	382,100	382,800	416,900	417,900	426.900	427,500	427,900	430,300	433,500		436,100	437,400	438,900	448,100		450,400	451,300	452,200
	ź	ž	33	38	39	용	4	52	3	4	45	94	47	84	65	S	2	22	53	\$	55	×	15	82	82	8	61	. 79	63	3	જ	98	63	89	69	20	F

Table of Speed Limitation for Small-radius Curve (3)

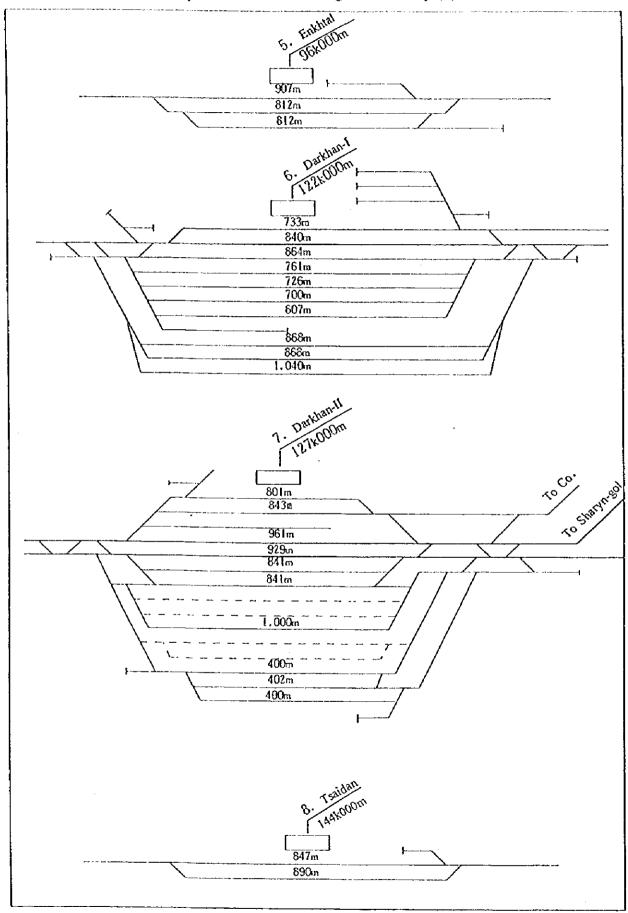
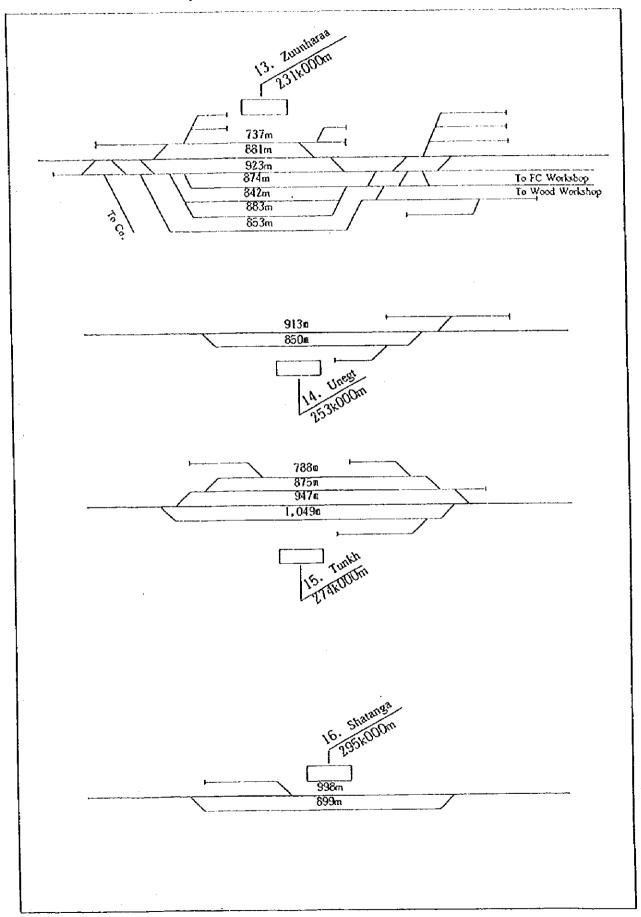
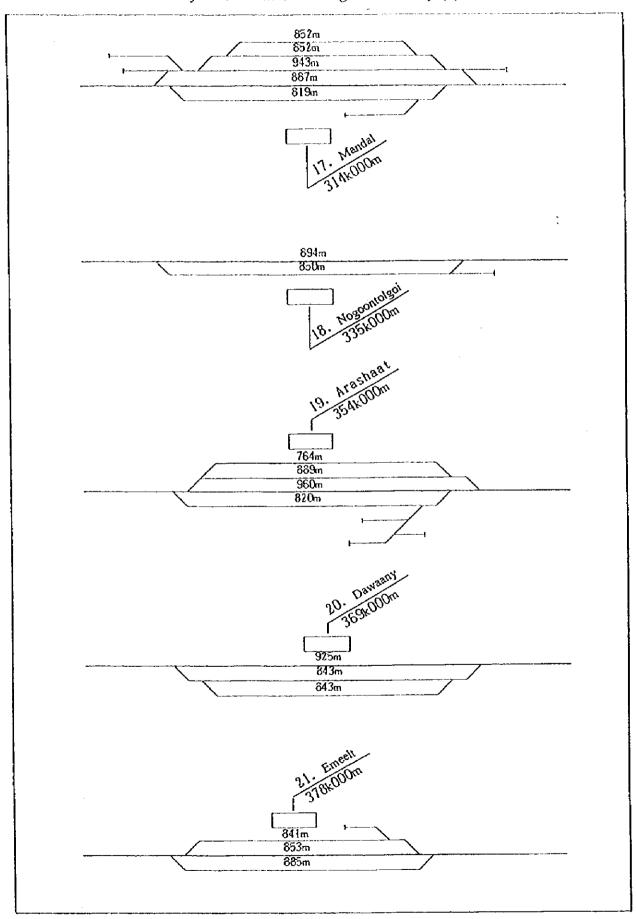
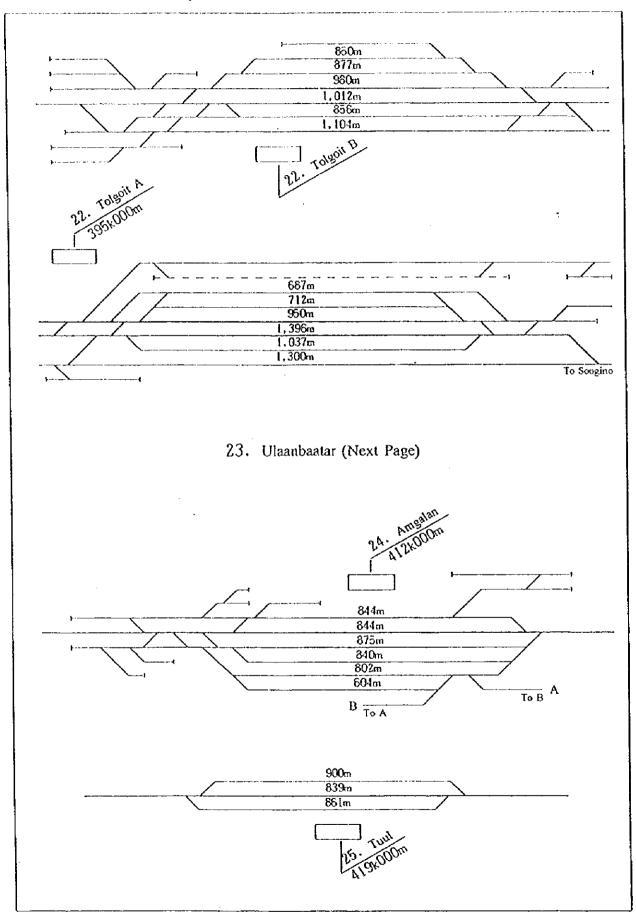

				-							_			-				_				-	٠,		•	_,	_										
C=150, P=0.2m/soc (Russian Rule)	V=[(0.08*C+13P)*R]	/0	8	8	95	98	99	67	93	\$\$	96	98	29	65	99	99	99	98	99		99	98	99	38	99	%	89	- 67	29	. 67	99	666	99	99	99	99	99
Difference Difference	(<u>)</u>		12	11	::	12	11	11	11	=	11	11	11	12	11	11	::	11	11	10	12	-11	12	11	12	11	6	01	10	11	11	11	11	11	11	11	12
Difference	۸ - (§	ş	^	5	5	\$	5	7	\$	5	5	5	4	9	5	\$		\$	5	4	5	. 5	\$	\$	5	5	2	4	7	4	5	5	\$	\$	Ş	5	5
Velocity for Actual Cant (C)	R*120		53	54	54	53	54	54	54	\$4	54	54	54	53	\$	\$5	\$\$	X	54	55	53	54	53	54	53	54	3 %	55	55	54	54	Ŗ	\$	\$4	¥	54	53
Permissive Velocity of Cant(B)	(R*150/12.5) ¹⁷²	99	8	09	09	09	98	61	8	09	09	09	61	65	99	જ	0%	8	99	19	99	8	જ	99	09	09	63	19	19	- 19	09	જ	8	09	જ	8	98
Cant	120-(A)	. 1	-58	-57	-57	-58	95-	-5!	85	ઝ	ŝ	-55	-51	Ş	-57	55-	×	-57	-57	-50	- 57	-56	8%	-57	-57	-55	-40	95-	8-	-51	95,	55-	15.	×	-56	95-	-57
Difference of Permissive Cant	150-(A)	-24	-28	-27	-27	-28	-26	-21	-26	-26	-25	-25	-21	-30	-27	-25	-26	-27	-27	-20	-27	-26	-28	27	-27	-25	01-	-20	-20	-21	-26	-27	-27	-26	90	-26	-27
Cant (A)	C=12.5*V2/R	174	178	177	177	178	176	12.1	176	176	175	175	171	381	177	175	176	177	177	170	177	176	178	177	177	175	81	170	170	171	176	121	177	176	176	176	177
9	Velocity	65	59	65	59	\$9	\$9	65	\$9	65	\$9	\$9	59	\$9	65	\$9	59	\$9	65	65	65	99	Ş	28	65	59	59	59	65	\$9	8	\$3	Ş	3	¥	55	65
Kind of Curve	quiun	238	238	1226	694	47.1	197	411	S	8	202	248	226	673	<u>4</u>	125	104	834	834	148	ļ		ı	576	456	460	142	189	181	226	249	8,50	1027	223	21.5	\$22	457
×	Radius	303	297	299	299	206	Ş	SOE SOE	300	300	301	302		L	200			L	299			ç	L									L	L	1	L		
Curve	ij	452,600 452k800m	453k100m	454k300m		455 100 455F500m	455 600 455k800m	455 900 456k300m	456 300 456k800m	456 900 457k400m	457.400 457k600m	457 600 457k900m	457 900 458k100m	459 400 460k100m	450k500m	460 500 460k800m	460 800 461k200m	461 200 462V200m	462 200 463k100m	463 200 463k300m	463 400 4631-300m	451 800 464k 100m	464 100 4641-500m	465k 100m	465 000 466k400m	465 100 465kG00m	465 700 465k900m	466 400 466k600m	467 800 467k900m	468 100 468k200m	468 300 468)r600m	472 700 4731×600m	472 700 474V700m	475 400 475k900m	777 100 A771200m	477 300 4771-800m	477,800 478k300m
Position of Curve	florn	452,600	452,800	453 100	454 300	455 100	009	155 900	456 300	456 900	457 400	457,600	457 900	450 400	460 100	460 500	460,800	461 200	462 200	463,200	461 400	443 800	464 100	464 500	465 000	465 100	465 700	466.400	467.800	468 100	468 300	472 700	172 700	775,600	100	477 300	477,800
	ź	2	12	1	, ,	ř	-	. ?	2 2	` &	á	\$	×	ā	i i	3 8	3 2	8	3 8	S	5	\$:\[\s	3	5	ક	ક	ă	8	٤	2 2	2 2	3 5	3 5	ž	3 2	3 5

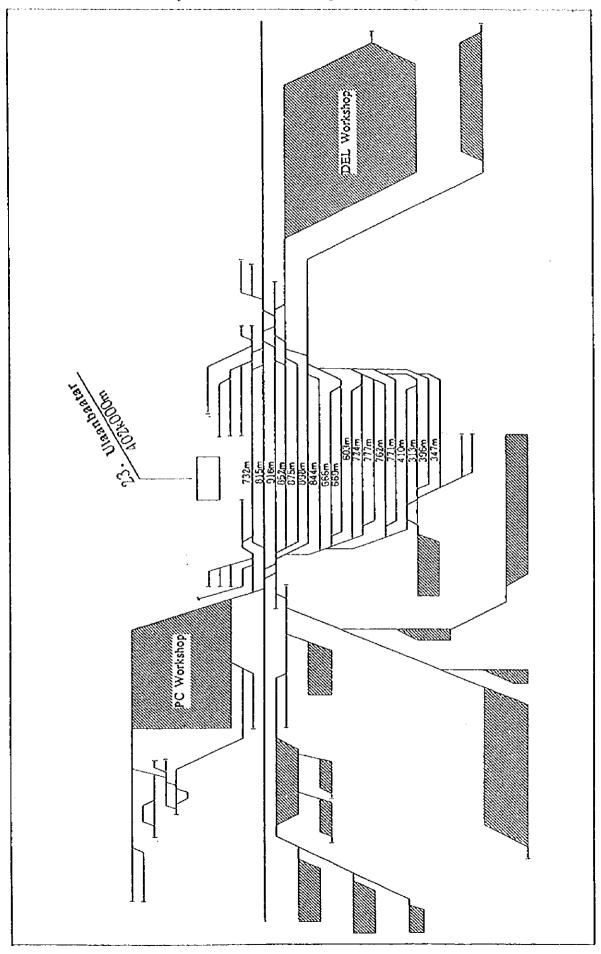
Table of Speed Limitation for Small-radius Curve (4)


											9	•••	_	•	
Position of Curve Kind of Curve Cant (A) Permissive Deficiency Volocity of Cart (B) Actual Lant (Cart (B)) <								Difference of	Cant	Permissive	Velocity for	90.0	T. O. Constant	C=150, P=0.2m/sec	
florm to Radius Length Velcoity C=12.5*V ² /R 150-(A) (R*150/12.5) ^{1/2} (R*120/12.5) ^{1/2} (R*120/12.5) ^{1/2} 4.78,300 4.79,400 480k200m 338 65 177 -26 -56 60 54 4.82,400 480k200m 300 838 65 175 -25 60 54 4.82,400 480k200m 301 65 175 -25 60 54 4.82,400 482k200m 302 374 65 176 -26 60 54 4.83,400 483k50m 300 485 65 176 -26 60 54 4.84,300 484k50m 300 485 65 176 -26 60 54 4.84,300 484k50m 300 657 65 176 -26 -56 60 54 1.022,100 505,200 905,200 905,200 304 50 184 6 -24 61		Position of	Curve	×	and of Curv	ų	Cant (A)	Permissive Cant		Velocity of Cant(B)		Villerence	Ollerence	(Russian Rule)	
Hom No Addition Longer		,		2.4	1	3.00	C=12 <+12/2	150-(8)		(R*150/12.5) ^{1/2}		۲ - (B)	(C) - A	V=[(0.08*C+13P)*R]**	
478,300 479k200m 299 853 65 177 -27 -57 60 54 479,400 480k200m 300 838 65 176 -26 -56 60 54 482,400 481k700m 302 274 65 175 -25 -55 60 54 482,400 483k100m 302 374 65 176 -26 -56 60 54 483,300 483k2800m 300 485 65 176 -26 -56 60 54 484,300 483k2800m 300 485 65 176 -26 -56 60 54 484,300 484k2800m 300 485 65 176 -26 -56 60 54 485,600 484k2800m 300 657 65 176 -26 60 54 1,022,100 484k2800m 304 65 178 2 28 60 <td>ó</td> <td>Lom</td> <td>2</td> <td>racing</td> <td>7,511</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td>11</td> <td>99</td> <td></td>	ó	Lom	2	racing	7,511	3						,	11	99	
479,400 480k200m 300 838 65 176 -26 -56 60 54 482,400 482k700m 302 274 65 175 -25 -55 60 54 482,700 483k100m 302 374 65 175 -25 -56 60 54 483,700 483k100m 302 374 65 176 -26 -56 60 54 483,500 483k200m 300 485 65 176 -26 -56 60 54 485,600 486k200m 300 485 65 176 -26 -86 60 54 485,600 486k200m 300 657 65 176 -26 -86 60 54 1,022,100 905k2k200m 316 60 144 6 -24 61 55 1,022,100 1022k500 130 60 150 -30 60 54 <td>108</td> <td>478,300</td> <td>479k200m</td> <td>299</td> <td>853</td> <td>\$\$</td> <td>177</td> <td>727</td> <td></td> <td>8</td> <td></td> <td>,</td> <td></td> <td>***</td> <td></td>	108	478,300	479k200m	299	853	\$\$	177	727		8		,		***	
482,400 482k700m 362 274 65 175 -25 65 60 54 482,700 483k100m 302 301 65 175 -25 60 54 483,400 483k100m 302 374 65 176 -26 56 60 53 483,300 483k2800m 300 485 65 176 -26 56 60 54 485,500 488k2800m 300 657 65 176 -26 -86 60 54 485,500 488k2800m 300 657 65 176 -26 -86 60 54 1,022,100 802k800m 304 58 60 148 2 -28 60 54 1,022,500 1022k800m 30 58 60 150 54 61 55 1,022,500 1022k800m 30 50 150 60 54 60 54	100	479 400	480k200m	i.	838	65	176	97	56	3	*			3	
482,700 483k100m 302 301 65 175 -25 -55 60 54 483,400 483k200m 296 374 65 176 -26 -56 60 54 484,300 488k200m 300 485 65 176 -26 -56 60 54 485,500 488k200m 300 657 65 176 -26 -86 60 54 905,200 903k200m 304 558 60 148 2 -28 60 54 1,022,100 802k200m 304 558 60 148 2 -28 60 54 1,022,100 802k200m 312 316 60 150 0 -30 60 54 1,022,100 1022k200m 312 316 60 150 -30 60 54 60 54 1,022,100 1030k400m 390 340 60 151 <td>2</td> <td>492 400</td> <td>482k700m</td> <td>1.</td> <td>274</td> <td>59</td> <td>175</td> <td>-25</td> <td>-55</td> <td>8</td> <td>\$</td> <td>,</td> <td>=</td> <td>8</td> <td></td>	2	492 400	482k700m	1.	274	59	175	-25	-55	8	\$,	=	8	
431,400 483,400 483 65 178 -28 -58 60 53 481,400 481,400 481 65 176 -26 -56 60 54 481,400 481,400 483 65 176 -26 -56 60 54 483,500 482,500 485 65 176 -26 -86 60 54 483,500 482,500 486,200m 304 578 70 206 -56 -86 60 54 905,200 902,200 102,200 102,200 144 6 -24 61 55 1,022,100 102,200 302,400 60 150 0 -30 60 54 1,022,100 102,200 302 40 50 150 50 54 1,020,100 103,040 30 60 151 -31 60 54 1,030,000 103,140 50 160	?	100 100	4821-100m	302	301	Ş	175	-25	-55	98	54	\$	11	93	
483,500 632,500 485 65 176 -26 -56 60 54 484,300 484,300 485 65 176 -26 -56 60 54 485,600 486,200m 300 657 65 176 -26 -86 60 54 485,600 486,200m 300 657 65 176 -26 -86 60 54 905,200 902,200 304 558 60 144 6 -24 61 55 1,022,100 102,260 102,260 150 0 150 0 -30 60 54 1,022,100 102,88,900m 300 810 60 152 -23 60 53 1,022,100 102,08,100 300 60 152 -26 61 54 1,030,100 103,04,00m 396 60 151 -1 -31 60 54	: 1	207,700	4031-000-	200	274	Ş	7.	-28	\$5.	8	53	5	12	\$	
484,300 (484)x200m 300 (485)x200m 300]	43.4400		١	1	3	361	36	35,	99	አ	5	11	999	
485,600 486k200m 300 657 65 176 -26 -36 60 53 905,200 905,200 905,800 208 788 70 206 -56 -86 60 54 1,022,100 1022,100 1022,100 1022,100 1022,100 -20 -24 61 55 1,022,100 1023,100 1023,100 1023,100 1023,100 60 150 0 -30 60 54 1,022,100 1023,100 1023,100 1023,100 60 152 -2 -32 60 54 1,020,100 1030,100 1030,100 1030,100 60 152 -2 -32 60 54 1,030,100 1030,100 1030,100 1030,100 4 -26 61 54 1,030,600 1031,k100m 299 396 60 151 -1 -31 60 54	Ξ	484,300			485	S	9/1	07	3 3	3 5	3	v		**	
905.200 905.200 <t< td=""><td>7</td><td>485,600</td><td>486k200m</td><td></td><td>657</td><td>65</td><td>176</td><td>-26</td><td>X</td><td>3</td><td>,</td><td>٤</td><td></td><td>33</td><td></td></t<>	7	485,600	486k200m		657	65	176	-26	X	3	,	٤		33	
1,022,100 (022k600m) 304 558 60 148 2 -24 61 55 1,022,600 (022k900m) 316 60 144 6 -24 61 55 1,022,600 (022k900m) 310 810 60 150 0 -30 60 54 1,028,100 (028k900m) 300 810 60 152 -2 -32 60 54 1,029,100 (030k400m) 309 340 60 151 -1 -31 60 54 1,030,000 (031k100m) 299 396 60 151 -1 -31 60 54	Ľ	905 200	905k900m		788	70	206	×,	- 8e	98	53	2	/:	8	
1,022,6001022k900m 312 316 60 144 6 -24 61 55 1,028,1001028k900m 300 810 60 150 0 -30 60 54 1,029,1001028k900m 297 910 60 152 -2 -32 60 53 1,029,1001030k400m 399 340 60 146 4 -26 61 54 1,030,6001031k100m 299 396 60 151 -1 -31 60 54	1	1 002 100	1022V500m	ğ	85.8	ક	148	2	-28	03	54	0	9	67	
1,028,1001028k900m 300 810 60 150 0 -30 60 54 1,028,1001028k900m 300 810 60 152 -2 -3 60 53 1,029,1001030k400m 397 340 60 146 4 -26 61 54 1,030,0001031k100m 299 396 60 151 -1 -31 60 54	1 5	1,044,100	10001000		316	Ş	4	9	22	61	55	-7	S		
1,025,100 0330x400m 297 910 60 152 -2 -32 60 53	1	1,022,000	10001000	1	01%	9	150	0	8.	09	54	0	9	\$	
1,030,100 [030x400m] - 309	1	070,070	102 at 20011	207	010	Ş	25.	-2	-32	ક	53	0	7	\$	
1,030,100 [0308400m] - 309	1	1,029,100	USUKION		200	3 5	27.		36	. 19	*	1-	9	19	
1,030,600[1031k100m] 299 396 60 151 -1 -31 00	20	1,030,100	1030k400m		340	3	2	,			7.7	<	,	33	
	2	1,030,600	1031k100m		396	3	151		7 F	3	*	>	,	3	

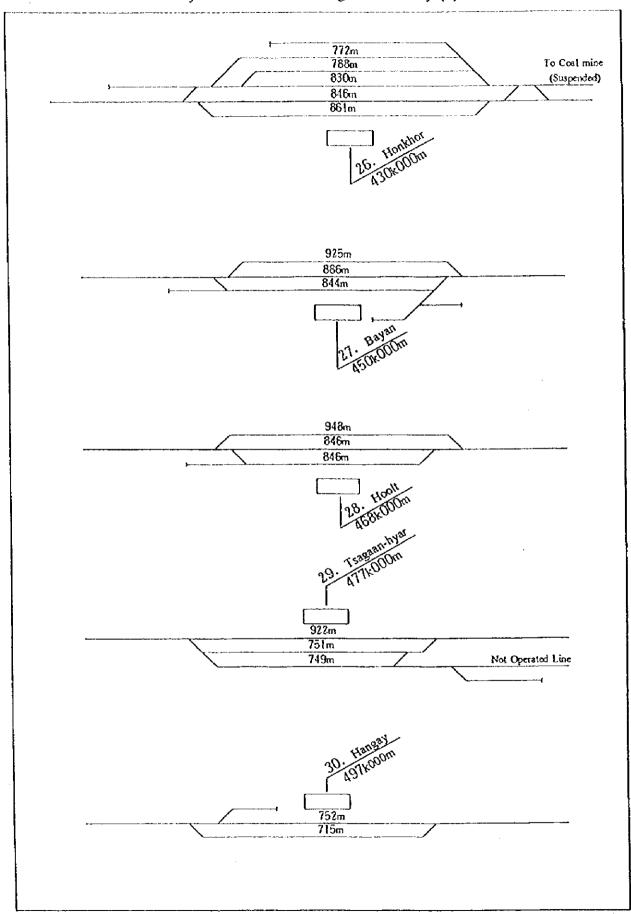
Layout of Station in Mongolian Railway (2)


Layout of Station in Mongolian Railway (3)

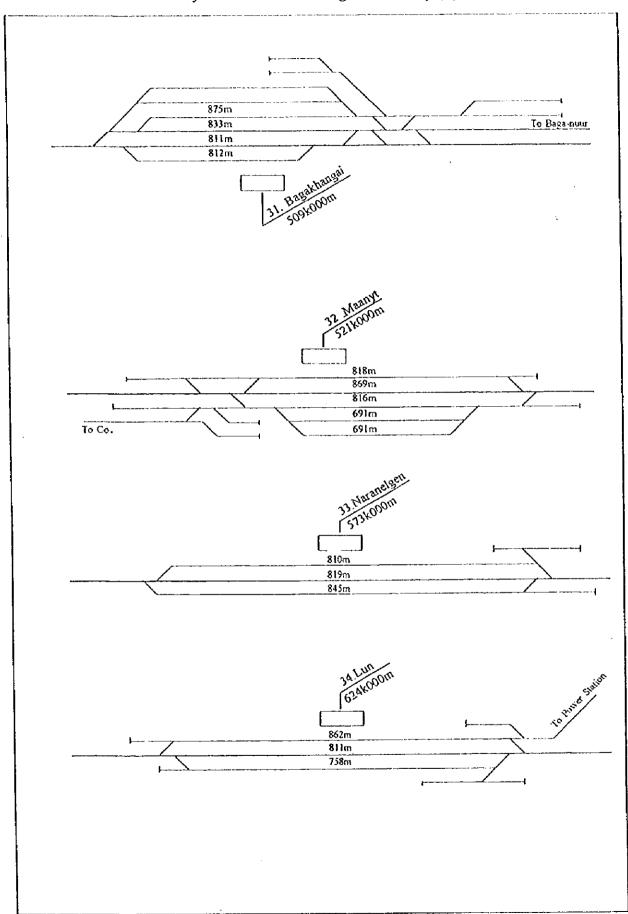

Layout of Station in Mongolian Railway (4)

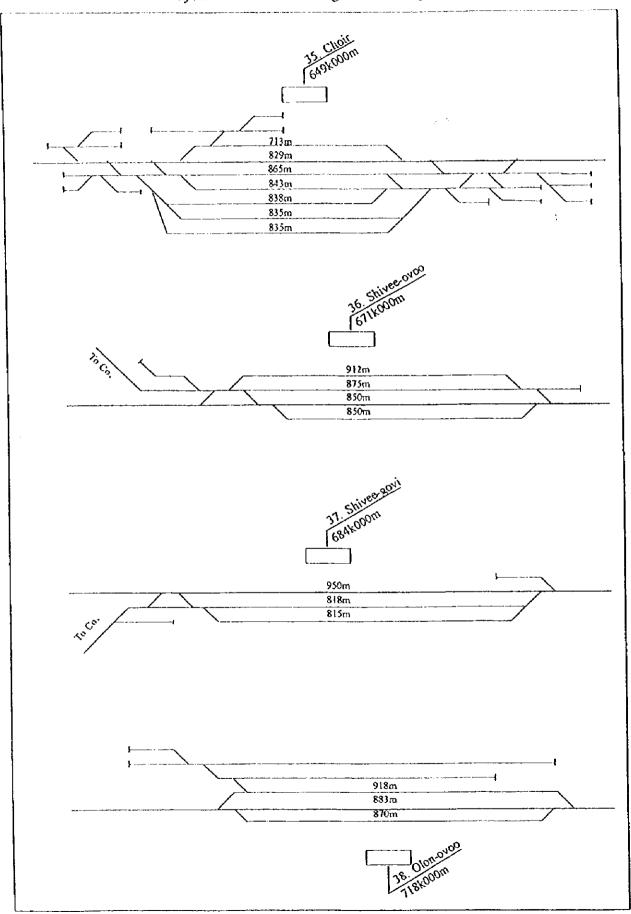


Layout of Station in Mongolian Railway (5)

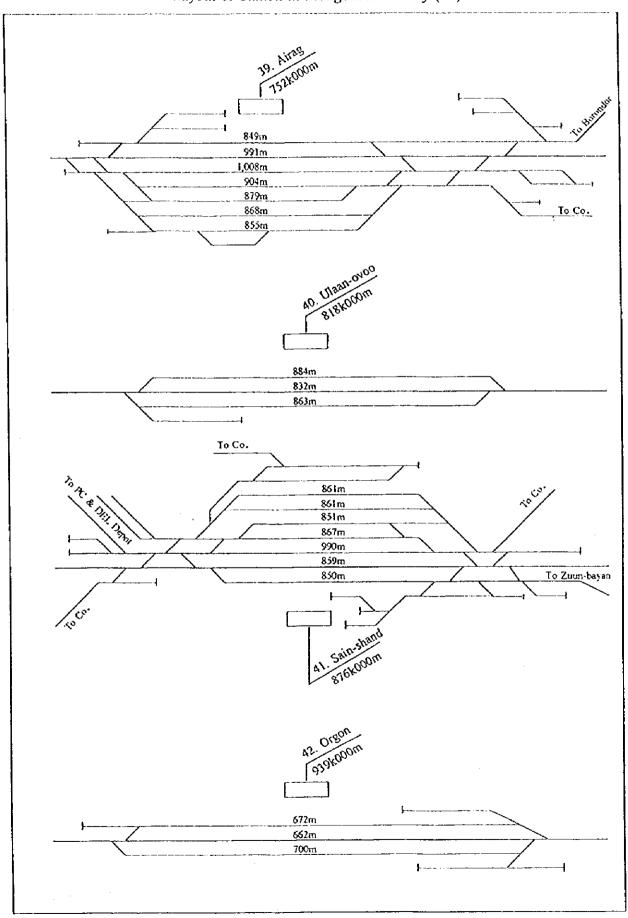


Layout of Station in Mongolian Railway (6)

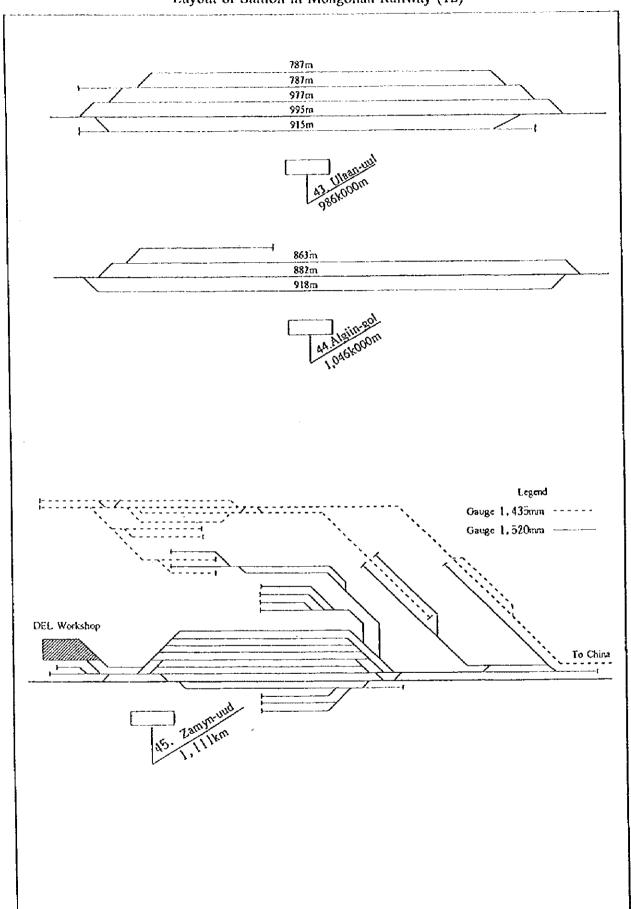


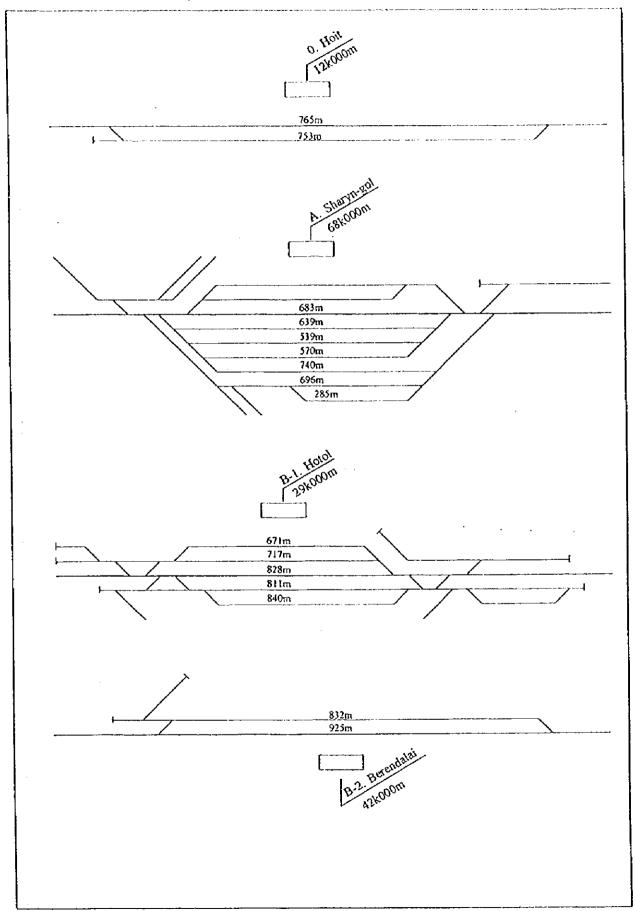


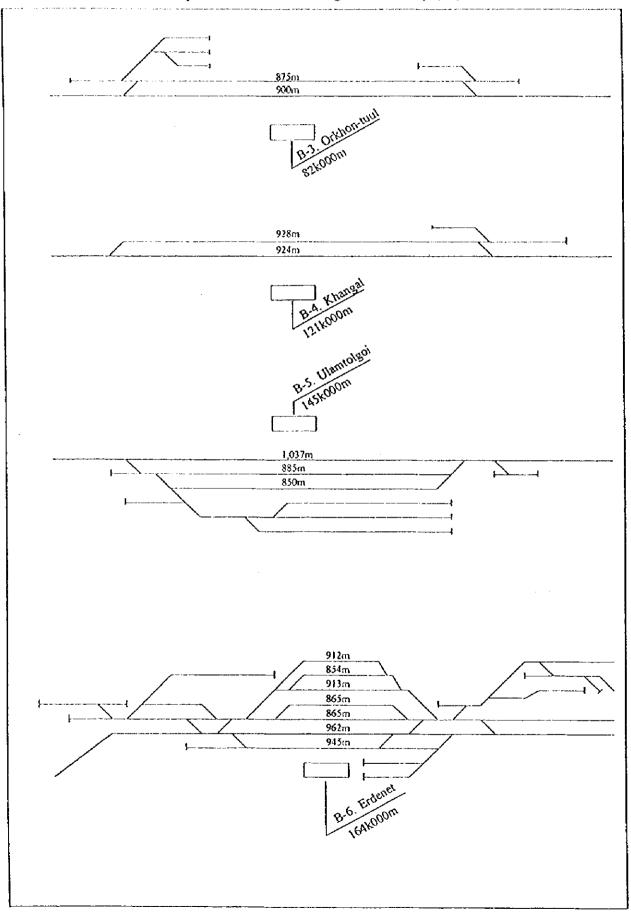
Layout of Station in Mongolian Railway (8)

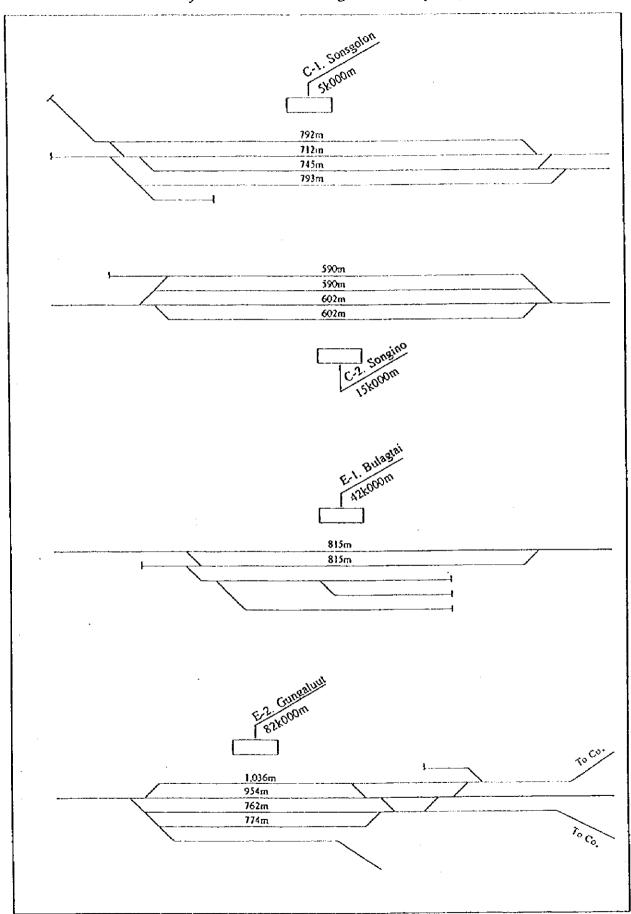


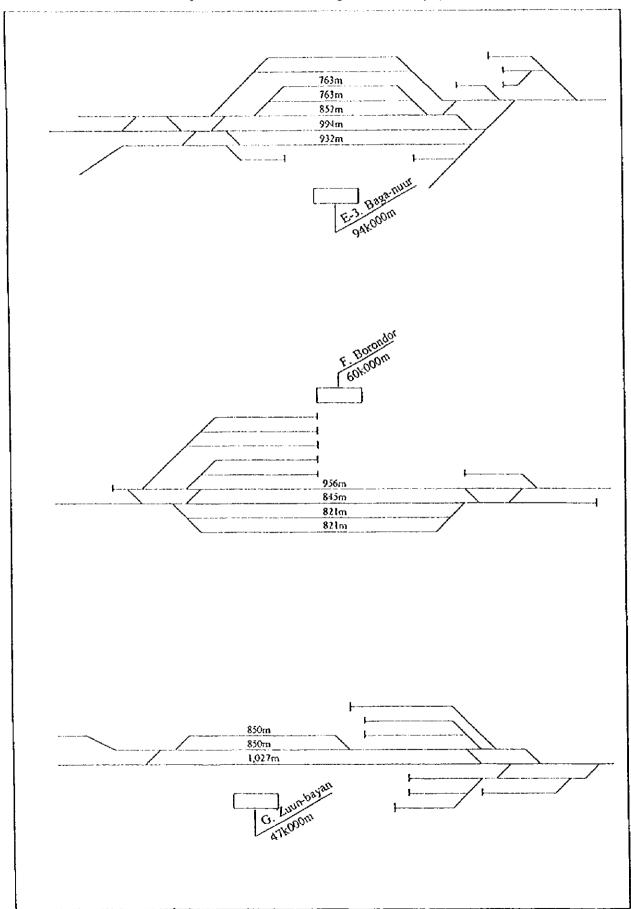
Layout of Station in Mongolian Railway (9)




Layout of Station in Mongolian Railway (11)


Layout of Station in Mongolian Railway (12)


Layout of Station in Mongolian Railway (13)


Layout of Station in Mongolian Railway (14)

Layout of Station in Mongolian Railway (15)

Layout of Station in Mongolian Railway (16)

Chapter 10

APPENDIX

- APPENDIX 10-1 Project for a Electric Facility
- APPENDIX 10-2 Signal Equipment and Signal Indication Systems
- APPENDIX 10-3 Signal and Communication Organization Chart (September 1996)
- APPENDIX 10-4 Power and Supply Department Organization Chart (September 1996)

and the real property of the second s

and the second of the control of the second of the secon

Appendix 10-1 Project for a Electric Facility

Projects for providing optical fiber cables, replacing existing analog exchange units with digital units, and improting a computer system for the Mongolian Railway.

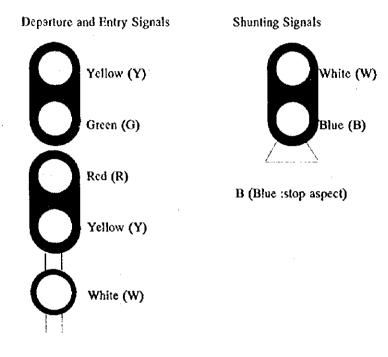
(1) Installation of optical Fiber Cables

The Mongolian Railway has set up a plan for providing carrier transmission systems using optical fiber cables. This project provides for optical carrier transmission systems, 150 Mbps (equivalent to 2, 010ch of analog system), for the main line between Sukhe-baatar and Ulaan-baatar and that between Ulaan-baatar and Zamyn-uud.

(2) Replacement of Analog Exchange Unit by Digital System

The first phase this project has already been completed (refer to the exchange unit in the main text), and the second phase project is to be carried out.

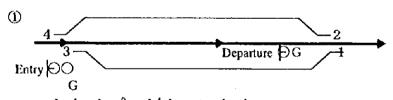
(3) Import of Computer System

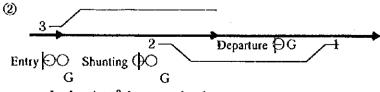

The Mongolian Railway has imported computers to construct a local area network (LAN)and is ready to start computerization of all cargo and freight infomation. Test operation of the new system is scheduled to begin in September 1996. Computers have beeninported for the stations listed in the following table.

10:107	ving table	•	App. Tal	ble 1 0 – 1			
	Route			m Allocation	in Station		
No.	map	Station	Freight	Technical	Station	Transit	Total
] [Name	office	offic	Dispatcher	officer	
1	1	Sukhe-baatar		1	1	1	3
2	6	Darkhan-l	1	1	1		3
3	7	Darkhan-2	1		1		2
4	Α	Sharyn-gol	11		1		2
5	9	Salkhit		11		1	11
6	B-1	Hotol		1		11	1
7	B-6	Erdenet	1		11		2
8	13	Zuunharaa	1	1	1		3
9	23	Ulaan-baatar	1	1	1		3
10	22	Tolgoit	1	1	1		3
11	31	Bagakhangai			1		1
12	E-3	Baga-nuur	1		1	<u> </u>	2
13	32	Maanyt		Ca	ncelled		,
14	35	Choir	1		1	<u> </u>	2
15	39	Airag	1		1	<u> </u>	2
16	F	Borondor		Ca	ncelled		
17	41	Sain-shand	i		1	<u> </u>	2
18	45	Zamyn-uud	1	1		<u>l</u>	3
19	36	Shivee-ovoo	1			<u> </u>	1
20		Train					
1	-	dispatcher		Ca	ncelled		
	1	(HeadQuater)					
21		Network center			2		2
22		Server		1		1	
	1	Statistical			16		16
		Center					
	1	Total	13	6	34	2	55

- · Personal Computers (Made in Siemens, Germany)
- · Printer (Page or Dot-matrix printer)
- Modem (modulator/demodulator)
- · UPS (uninterruptible power supply unit)

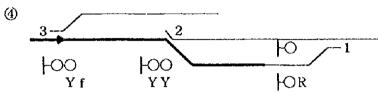
Appendix 10-2 Signal equipment and Signal indication systems


1. Signal Equipment

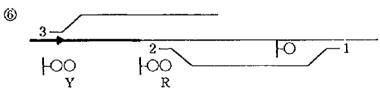

G (Green: proceed aspect)
Y (Yellow: caution aspect)
R (Red: stop aspect)

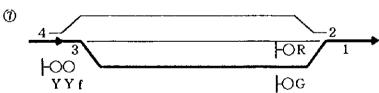
2. Signal Indication and Locking of Points

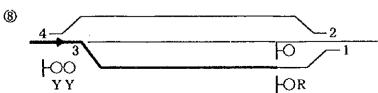
(1) Various Signal Indication Patterns


Lock points 3 and 4 by entry signal. Lock points 1 and 2 by departure signal.

Lock points 3 by entry signal. Lock points 2 by shunting signal. Lock points 1 by departure signal.

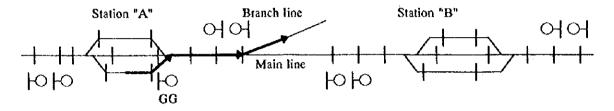

Lock points 3 and 4 by entry signal. Lock points 1 and 2 by departure signal.


Lock points 3 by entry signal. Lock points 2 by shunting signal. Do not Lock by departure signal.

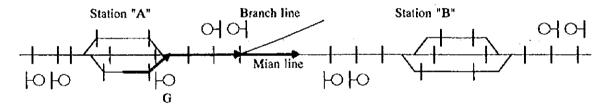

Lock points 3 and 4 by entry signal but do not Lock points 1 and 2.

Lock points 3 by entry signal but do not Lock points 1 and 2.

Lock points 3 and 4 by entry signal. Lock points 1 and 2 by departure signal.

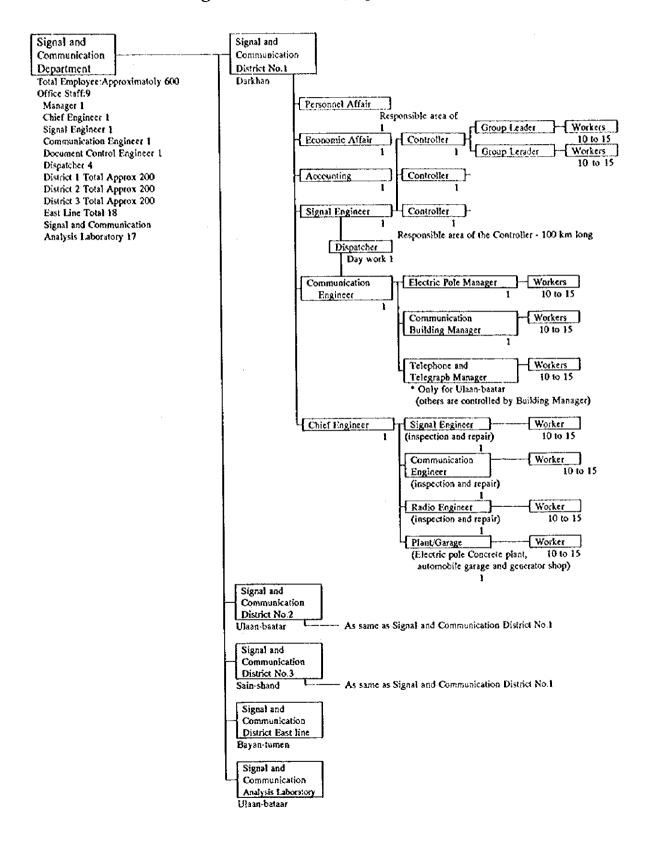


Lock points 3 and 4 by entry signal but do not Lock points 1 and 2.

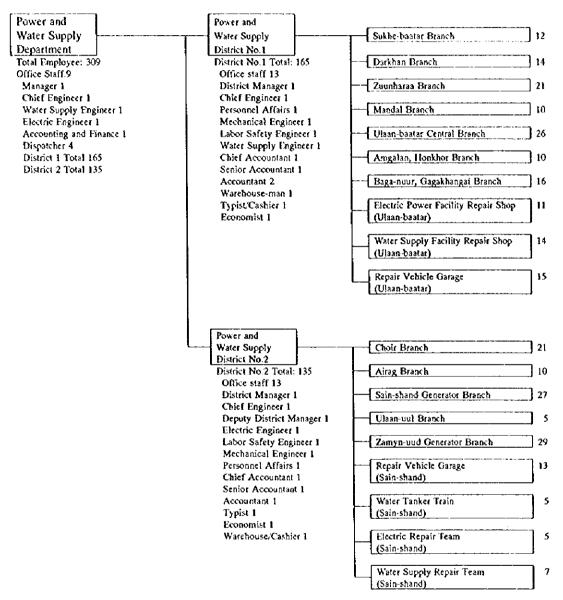


Y f: Y - FI ASH (yellow signal flash)

(2) At times GG is indicated on departure signal. At times train is entering into branch line.



(3) At times G is indicated on departure signal. At times train is entering into main line.


Appendix 10-3

Signal and Communication Department Organization Chart (September 1996)

Appendix 10-4

Power and Water Supply Department Organization Chart (September 1996)

notes:

Mechanical Engineer: Responsible for investigate power and water consumption.

^{*} Mechanical Engineer for District No.1 is assigned at Ulaan-baatra Central Branch

Chapter 11

APPENDIX

APPENDIX 11-1-1 Labor Cast and Equipment Cost

APPENDIX 11-2-1 Evaluation of Existing Embankment

APPENDIX 11-2-2 Evaluation of Nature of Bridge Problem

APPENDIX 11-2-3 Evaluation of Capacity Facility

Appendix 11.1.1 Labor Cost and Equipment Cost

1) Labor at Site

No.	Manpower Description	Unit Rate.	/Month	Remarks
1	Foreman	10.02	US\$/day	
2	Electrician	15.00	US\$/day	
3	Driver	10.75	US\$/day	
4	Mason	8.55	US\$/day	
5	Carpenter	7.34	US\$/day	
6	Operator	18.00	US\$/day	
7	Skilled Labor	8.55	US\$/day	
8	Welder	8.55	US\$/day	
9	Unskilled Labor	7.34	US\$/day	Unskilled Labor
10	Bridge specialist	73,400.00	Yen/day	Expatriate
11	Conc. repair specialist	73,400.00	Yen/day	Expatriate

Note; Based on inspection results.

2) Construction Equipment

No.	Equipment Description	purly/Monthly I	Rate	Capacity
1	Bulldozer	572.83	US\$/day	21 ton
2	Macadam Roller	365.25	US\$/day	10 ~ 12 ton
3	Grader	365.25	US\$/day_	3.1m
4	Truck Mixer	280.64	US\$/day	4.0 cu.m
5	Dump Track	224.33	US\$/day	11 ton
6	Compressor	162.84	US\$/day	10.6cu.m/min.
7	Crane	488.41	US\$/day	15ton
8	Jack Hammer	203.56	US\$/day	1300kg Giant Breaker
9	Generator Set	221.46	US\$/day	150 KVA
10	Back hoe	290.04	US\$/day	0.6 cu.m
11	Batching Plant	616.87	US\$/day	0.5 cu.m
12	Aggregate Crusher	1,500.00	US\$/day	30 ton/hr
13	Loader	368.74	US\$/day	2.1 cu.m
14	Welding Machine	20.00	US\$/day	250 A

Note: Based on market price, when available.

Appendix 11-2-1

Evaluation of Existing Embankment

				Situation			Evaluatio	n Results	
		Section	River	Revetment	Erosion	Evaluation	Evaluation	Total	Construction
No.	Location		Condition	by MR	m/year	of	of	Score	Stage
		Length(m)				Safety	Durability	 	
			8.	b.	C.	d.	С.	ſ.	<u>g</u> .
1	11 pk 1 · 4	250	4	4	11	100	100	200	11
	44 1 1 1	200			·			150	
2	16 pk 1 - 4	380	4	1	1	70	80	150	2
3	31 pk 2 - 4	120	4	4	1	100	80	180	1
<u> </u>	3. p. 2	120							
4	51 - 52 km	200	3	2	3	80	100	180	1
5	54 pk 4 - 5	100	3	11	22	70	100	170	11
-	66 -2. 0	80	3	1		70	70	340	3
6	55 pk 9	80			 	10		140	3
7	57 pk 9	160	3	1	2	80	80	160	1
<u> </u>									
8	65 pk 7	120	4	1	2	70	80	150	2
9	67 pk 4 - 6	280	4	2	4	100	80	180	1
 		L	<u> </u>	ļ <u>.</u>	<u> </u>				
10	88 pk 4 - 10	90	3	11	3	70	70	140	3
11	208 pk 1 - 2		3	4	3	100	80	180	1

Note	

8.	River condition	Symbol
	: Highly unstable stream	4
	: Unstable stream	3
b.	Rip rap construction	
	: Equal or more than 1,000 cu.m rip rap was placed.	4
	: Equal or more than 500 cu.m but less than 1,000 cu.m rip rap was placed.	3
	: Less than 500 cu.m rip rap was placed.	2
	: No rip rap was placed.	. 1
C.	Erosion	
	: Erosion 3 · 5 m / year	4
	: Erosion 2 - 4 m / year	3
	: Erosion 1 - 3 m/year	2
	: Erosion in the past but no erosion is observed so far.	1
đ.	Synthetic evaluation of safety by score / Based on determination of Item a. b. c. evaluated by visual site inspection results	

Description		Score
Very poor	:	100
Poor	:	80
Not so poor	:	70

e. Evaluation of durability / Made by visual site inspection results

Description		Score
Very poor	:	100
Poor	:	80
Not so poor	:	70

f.g. Total Score and Construction Stage

Score	Stage
160 <= Score	l
150 <= Score < 160	2
Score < 150	3

Appendix 11-2-2 Evaluation of Nature of Bridge Problems

					[,			,	-	,		2	F	[2
		ě.V.	_1	-	,	2	•	n			٠	1	3		3
		tton	Weight	235pk3	245pk5	255pk3	255pld8	285pk1	289pk1	326pk?			747DK7	+	1
		a masimont		2(a/9.3m	2@9 3m	2/a/7.3m	-1(@7.3m	1(a9.3m	1@11.5m 3@11.5m 2@11.5m	3@11.5ш	2@11.5m	1(a)7.3m	1(a)7.3m	.(a)7.3m	2(m/7.3m)
Evaluation	Superstructure	Mam Gardon	2	-	FI.	- ;	1	2	٦ ;	n 8	4 5	→ €	£	<u>-</u> -	4 \$
			1	9	٤,	۽ ۾	<u>2</u> .	8	,	3	,	3	2		-
of Safety		Corre. Slab, etc.	٠,	m ‡	ω ¥	٠ ¥	- •	۰ <u>۲</u>	2 K	9 ¥	. .	, <u>Y</u>	. 6	26	15
		Carrie Assessment Anthony	2	3 -	-	-	7	-		-	-	_	7		
Condition	Substructure	Cracks, defendation, ociecus	≥ .	- 2	, 9	. 2	8	. 9	•	9	10	10	20	10	2
1	Evenentian dunman		~	~	7	-	~	7	-	4	7	*	7	**	₹
DATEORETY	Cyberien manger		:	8	8	\$	*1	8	95	2	30	ક	R	3	3
	Part Land			39	2	ž	3:	Ž,	× .	7.5	8	125	92	2	125
	Fuel action of Structure	Structure	_			200			Poor		Poor	Poor		Poor	
1000	Lyaduation of	An desirance and money		-	-	-	_	Ŀ	-	-	3	3	3	,	-
Serviceability	Camehoeia Tendrament	Service Duty Vention Contained for Containing and Inches		RPR	RPR	EPC.	RPR.	RPR	RPC	RPR	RPC	RPC	RPR	RPC	RPC
8	TIMENS SUNGINE		1								-	-	-	1	1
	Priority		1	- 		-	•								
					æ	Evaluati	on of safe	Evaluation of safety condition	jon			Score			
Note:					1		•		•	4.6.	ŧ	*			
RPR		Repair by resign injection.				Kankung A	<.	Streen	Structurally medecquate major actions	major cere	213	•			
Jest	•	Replace with new concrete bridge	1ge			Ranking B	A	Not structs	Not structural, but extensive defects.	тыт офор	ŝ	m			
>	•)			Ranking C	ر در	Moderate defects	ictoots			2			
Franction of Structure	f Structure					Ranking D	A	Light/minor defects	r defects			-			
		0.6 mg/d	41.4	-		•									
200	Kose X	AD MORNIN COLONIARIO INICIO MUCINIMINI CANHERON.) Accordance of	amegon.			•								
Score >	٧	95 Deteriorated but not serious so far.	far.		۵	Evaluat	Evaluation of durability	rability							
						Expected	Expected danger is:								
Priority and	Priority and Construction Stage	tage				Very near future	future					→			
•	Score >=	95 Priority 1 : Construction Stage 1	n Stage	_		Near future	Ł					7			
5	95 >Score>=	65 Priority 2: Construction Stage 1	n Stage			Not near future	future					-			
. &	65 >Score	Priority 4: Construction Stage 3	n Stage	₩.											
					U	Serviceability	bility								
						Poor	: Verneal	slearance is	: Vertical clearance is loss than 2.0 meter.	meter.		n			
						Fair	: Verbeal	clearence is	: Vertical clearance is equal or more than 2,0 meter.	re than 2.0	meter.	1			

Evaluation of Capacity of Drainage Facility

Appendix, 11-2-3

	Phonty		۳	~	2	64	(*)	2	4	3	7	*	4	če.	ব	۲.	4		4	4	2		4	-	-	-	4	čr.	*	13	4			-	3	4	4	r.	2
	Total		\$	3	ક	\$\$	75	88	35	\$9	S	\$9	\$5	\$	×	\$	2	જ	35	\$2	8	9	ន	४	28	130	ķ.	& :	S	8	2	દ્	Ş.	Š	۶	\$	R	झ	8
	Note			7		1	1							1			Ţ	1			=										Ţ				\int	\prod		T	
	Inspec'n	15	2	17	73	2	F3	ř.			1			F4		-7					4	4		2	Ų	к.			7			4	4	4					स्ट
n Score	유	5	4	4	₹		1		4	77	4	4	4	₹	₹	₹	₹	4	4	(3		7	₹	7		4	4	7	₹	7	1	1		1	1	1	4	4	4
Evaluation Score	CVIH	2		_		4	۳.	CA			1			1	_	1	1	1			1	1	_	7	4		1	1	1	1	4	4	۴.	4	4	7	1	+	1
ĬŢ.	Capa. C	2	-	-	\$	_	=	77	-	2	-	77	-	=	-	74	-	~	-		C 2	77	1	뒴	4	۴.	-	7	=	~	-	4	4	4	=	=	+	=	7
	Culver C	Wreq.(m)	2.0*1	1.07	2.5*1	2.041	2.0*1	2.0*1	2.0*1	2.0•1	2.0•1	2.0*1	2.0*1	2.0*1	2.0*1	20-1	20-1	2,0=1	2.0*1	2.0-1	2.0*1	2.5*1		2.0*1	2.0.2	2.5	2.0*1	20-1	20-1	202	2.0*1	2.5*2	2.5*2	1	2.0*1	2.0*1	-	2.0*1	1.07
Design		Wroq.(m) W	L																									1	1	1	1			10.0*1	7		1		1
Oreg.		-1.2	2.30	8.40	16.57	800	2 68	13.92	7.73	98 01	5.88	10.32	2.16	28.8	5.16	12.30	2.52	13 92	3.24	2.22	4.82	14.04		8.40	27.82	20:64	3.42	11.40	8.8	13.68	4 68	28.44	34 %	48 65 10	745	2 93	-5.40	4.02	11.40
	400.33%	(Off Mysec)	80.9	7.00	13.81	8 30	6.40	3	3	9.05	4.90	8.60	1 80	7.35	4.30	10.25	2 10	11.60	2.70	1.85	4.02	11.70	5.30	2.00	23.18	17.20	2.85	9.50	5.75	11.40	3.90	23 70	29 10	40.54	6.21	2.44	4 50	3.35	9.50
Shortage	वेट्टा% क्) (con/us/no)	ł۳	4 10	7,11	00.4	3.50	7.30	2	3.25	160	4.90	09'0	4.45	1.85	4.35	0.00	5.80	0.10	0.55	2.82	7.00	3.10	4.60	18.38	12.90	0.85	2:00	3.15	8.30	0.50	14.30	19.70	31.14	3.61	0.84	4 84	2.22	06.90
	Ľ		╁╤		33.30	21.60	14.60	21.50	24.60	28.80	16.60	S	9.00	14 60	12.10	29.60	10.30	28.90	12.80	01 9	6.00	23,40	11.10	12.00	23.90	21.40	10.10	22.60	13.00	15.60	16.90	46.80	46.80	46.80	13.10	8 10	2.10	09	10
įg	00.33%	(cu.m/moc)	L		L														_			ĺ													:	1		Z	13
Pstimated	% 	(cu.m/noc)	15.90	11 40	26.60	17.30	11.70	17.20	19.70	23.00	13.30	14.80	4.80	11.70	9.65	23.70	8.20	23 10	10.20	\$ 10	4 80	18.70	8	9.60	19 10	17.10	8.10	18.10	10.40	12.50	13 50	37.40	37.40	37.40	10.50	6.50	1.66	447	10.50
	Ę.		T			2 22	1	12							Ţ										080						. 1.58	1.44	131	1.18	1.20	0.82			П
	0	(cu.m/sec)	13.83	7.30	10.40	13.30	× ×	8	18.16	10.75	1, 70	80	4 20	7.25	780	10.35	8 20	17.30	01 01	ÿ	86	11.70	5.80	8.00	0.72	420	7.25	13.10	7,25	4.20	13.00	23.10	17,70	6.26	68.9	99%	09.9	2.25	091
ting	F.S.F.		2 20	1 44	3,0	3 8	14	144	74	5	1 03	2,75	×.	1.42	8	225	2.02	2 10	2,76	1 -	6	- 3	18	1 42	S	52	1.83	1.75	1.82	1.25	1 90	1.95	2.55	1.48	1.50	1.58	1 : 1	06.0	1.20
Them considered of Periodian			(E)	1	1	5	\$	٤	W. 7	T	Ì									T	T			<u> </u>	8					: ;	1 20	1 35	ř	1.25	1.25	23			
			(E) 1	2	2	3 8	٤	-	8	5 5	5 8	8	8	8	8	8	8	8	8	1	-	8,	8	8		200	87	8	2.00	200	3.00	ŝ	ç	200	2.20	200	8	2.00	2.00
	_		£ .	3 5	2 8	3 5	2 2	20 2	8 8	2	10/4	3	18	04.40	4 40	OS V	4 50	٤	101	5	8 9	10	00 4	3.80	200		0 4	380	3.80	60.4	000	080	80	8		100.01	4 10	•	1 1
-	<u></u>		L	c -	- -	1	٥	٩	3 ^	-	•	1 -	1	 <u>-</u>	-	0	. <u>c</u>	0		-	╬	+	╁	, c	+	+	۔	5	4	٧	-	~	 «	 ×		9	i	; ∞	9
	Location										Ad to		₹ 7				1	\$ 7		1 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6 6		3 6			\$ 72 \$ 22	107	4		116 11	123 m	12.5	10 561		128 nk		135 pk		178 pk
	TYPE		Ę	¥ %	<u></u>	ž į	3 8	5 12	<u> </u>	X.	ž,	a a	ALC OF	6 2	a a	ad	a a	QQ.	X G	ž į	X G	Q.C.	ur.	an an		T	T	1	T	╁	١.	Г	T	T	1	Ť	t	T	П

6 Q0.33 Bridge Culwert		Shortage 1Q1% 4Q0.33%	Shorteg Q0.33% dQ1%	Shortag Q0.33% dQ1%	ated Shortage Q0.33% dQ1%	Pstimated Shortage Q1% Q0.33% dQ1%	3 Q H/h Q1% Q0.33% dQ1%	3 Q H/h Q1% Q0.33% dQ1%	(*Existing.**) Fatimated Shortage Ho. Q1% Q0.33% dQ1%	3 Q H/h Q1% Q0.33% dQ1%	Dimensions of Existing. Fetimated Shortage Shorta
*1.2				(ca.m/moc)			(carrulaec)	(common (common)	(addumn) (w)	(adjumn) (a)	(adjumn) (a)
3 6.04	ايزا		11.80		1.27	77 127	1 9.77 1.27	90 2.41 9.77 1.27	90 2.41 9.77 1.27	0 1.90 2.41 9.77 1.27	70 150 190 2.41 9.77 1.27
33.96	7	37 10	29.70			108	8.80	2.13 8.80	2.13 8.80	2.00 2.13 8.80	3.80 2,00 2.13 8.80
7.20		18 00	14.40	ļ	-	12.00	2	12	1 59 12.	4.00 1.59 12.	3 3.80 4.00 1.59 12.
	2.80	8 S		\perp	+		360	1.22 3.60	122 3.60	2.00 1.22 3.60	2.00 1.22 3.60
		3 5			129	- S	7.60	7.60	1.70 2.20 7.60	1.70 1.70 2.20 7.60	1.70 1.70 2.20 7.60
200	Ĺ	0, 5	08.6		+	5	\$ 5.5	1.48 5.55	1.48 5.55	2.00 1.48 5.55	2.00 1.48 5.55
		7.40	8			2	2.12	1 38 2 12	1 25 1 38 2 12	125 1.38 2.12	8.00 1.25 1.38 2.12
L		99 91	05.0		7 6))))	- C	3.46 21.30	3.46 21.50	2.00 2.20 3.46 21.30	2 18.80 2.00 2.20 3.46 21.30
3.30		20 01	8			7 25	20.2	20.2	202 202	200 201 11.6	200 201 301 300 301 301
		23.80	8 81		T		-	}	}	2 27	2 4.10 5.00
6.40 7.68	3.30 6.4	15.40	2 2			000 6	°	°	191	3.00	9 19 1 9 00 1 9 19
		5.50	4.40	<u> </u>	1.70	3	3.54	3.54	3.54	1.00 1.00 3.54	4.30 1.00 1.70 3.54
		17.50	14.00	_		11.20	Ξ	1.86	1.8%	1.86	11 980 1000
ŀ		6.30	5.04		1.34	42 1	4.42	4.42	1.40 1.87 4.42 1	1.40 1.87 4.42 1	3 5 50 1 00 1 40 1 87 4 42 1
ı		19.40	15.50			12.40	1.95 12.40	1.95	1.95	3.00 1.95 12	6 4.10 3.00 1.95 12
	1	22.40	17.90	_		15.90	2.46 15.90	\$1	2.46	3.00 2.46 15	7 3.80 3.00 15
.1	1.30	18.00	14.40			13.10	εī	εī	1.78 13	4.00 1.78 13	5 4.10 4.00 1.78 1.3
$ oldsymbol{L}$		25.20	18.00		1.13	3.75 1.13	75	3.75	1.50 1.70 3.75	1,00 1.50 1.70 3.75	9 6.00 1.00 1.50 1.70 3.75
2.03		4.50			1.87	£	1.87	1.87	1.00 1.87 1.87	1.00 1.87	8.20 1.00 1.87 1.87
1	1.60	10.40			2.58	र्छ :	\$99	3 10 6.65	3 10 6.65	1.20 3.10 6.65	1.00 1.20 3.10 6.65
7.65 9.18		04 Y			X .	ន្ត្រី៖	ន្ត្រី៖	2.55	2.55	1,00 2,54 2,55	8 10.00 2.55
		8 51	12,22			000			0 06.1	3,00	3.00
14.70 17.64		8, 88	46.80			23.80	1	1	1	£7 OE 6	4 10 6 00 2 30 43
		10,60			2.00	88	1.98	1.98	1.00 2.00 1.98	1.00 2.00 1.98	91 8.00 1.00 2.00 1.98
\perp		7.50	9.00			4	4	4	4	1,75	10 3.80 1.75 1.30 4
		11.80	9.50			×		×	×	2.15	8 3.80 2.00 2.15 8
		10.90				7.80	7.80	7.80	2.00 7.80	2.00 7.80	3.80 2.00 1.90 7.80
40.00	ı	80.60	$oldsymbol{\perp}$		12	21.40	21.40	21.40	2.50 2.65 2.96 21.40 1	2.65 2.96 21.40	9 15.00 2.50 2.65 2.96 21.40 1
		8.40	1.10			22	22	22	14.50 1.65 52	14.50 1.65 52	3 3.80 14.50 1.65 52
1	1	20.80	16.60	_		14.70		14	3.00 2.36 14	3.00 2.36 14	8 3.80 3.00 2.36 14
		7.30	5.85			4	1.35 4.50	4	4	2.00 1.35 4	4 3.80 2.00 1.35 4
_1		10.70	8.57			9	1.76 6.80	9	1.76	2.00	9 3.80 2.00 1.76 6
22.10 26.52	16.20 22.	29.30	23.40			4	4	4	7 145 7	3.00	7 3.80 3.00 1.45 7
8.10 9.72	5.50 8.	13.10	10.50	ľ	L	\	\	\	3 25 5	2 000 1.45 5	10 3.80 2.00 1.45 5
4.23 5.08	2.28 4.	08.6	7.85		L.		155 951		35	2 000	5 951 000 000 6
ŀŀ		10.90	8.75						6 4.1	9 22.1	9 3.00
18.90 22.68		0,00									

(m) (m) (m) (ounder 10.50 (oun	Hh 186 100 113 133 133 134	() .	1	<u> </u>	400.33% (8833	Bridge Cul	Culvert Capa.	CVTH	H BR	Inspech	Note	Total	Pion
(m) (m) (m) (cur (m) (m) (m) (cur (m) (m) (cur (m) (m) (cur (m) (m) (cur (m) (m) (cur (m) (cur	1187 148 1 100 1 100 1 138							-				_		
(m) (m) (m) (curved (m)	11.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	lalalalalalala		_		_				E.				
(m)	24 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lalalalalalala	ł	(cp.m/loc)	(carm/moc)	±1.2 ₩	Wreq.(m) Wre	Wraq.(m) 15	10	٧	35		1	
10.50 3.70 1.00		18.30 19.40 14.00	105.00	1-	40.40	3	10.01		4		۴.		501	
3.70 1.25 1.81 3.00 1.45 2.00 1.15 2.15 2.00 1.55 3.00 1.50 2.10 1.57 1.60 2.17 4.00 1.63		17 40	5	Ş	1 13	1,74	2001	i et		4			\$	4
300 145 400 1.15 2.15 200 1.15 2.15 200 1.50 1.67 1.50 2.40 1.52 1.60 2.17 400 1.50 2.40 4.00 1.60 2.17		19.40		3 5	9 6	١	,	1.00	_	4	2		65	3
300 145 400 115 215 200 146 200 150 167 150 210 900 150 240 400 150 240 400 150 240 400 150 240 400 150 240		17 40	X 77			1 5	<u>`</u>	2 4:1	~	_	\$5.		06	1
100 1.15 2.15 200 1.46 200 1.85 300 1.87 1.50 2.10 9,00 1.50 2.40 1.52 1.44 1.52 1.60 2.17 4,00 1.60 2.17		17.40 1.00	22	3 3		3 8			-	4			65	3
1.00 1.15 2.15 2.00 1.46 3.00 1.80 1.87 1.50 2.10 2.12 9.00 1.50 2.40 4.00 1.60 2.17 4.00 1.63		14.00	21.80	3						Ļ		-	5	3
2.00 1.46 2.00 1.55 3.00 1.87 1.50 2.10 2.12 9.00 1.50 2.40 1.52 1.44 1.52 1.60 2.17 4.00 1.63		1	17.50	5	12.81	2.5			<u></u> .				¥	"
200 1.55 300 1.87 1.50 2.10 2.12 9,00 1.50 2.40 1.52 1.60 2.17 4,00 1.63		7.97	10.00	2.97	2.00	8.00	7.7	1-0.7	_		<u> </u>		t	ľ
3.00 1.87 1.50 2.10 2.12 9.00 1.50 2.40 1.52 1.60 2.17 4.00 1.63		92.6	11.70	3.86	6.20	4.4	, ,	2.0•1	_	*				1
3.00 1.50 1.50 2.10 2.40 1.52 1.60 2.40 1.52 1.60 2.40 1.52 1.60 2.40 1.53 2.40 1.55		12.70	38	2.10	5.30	90.9	2.0	2.0*1	-	4			ङ	
1.50 2.10 2.12 9.00 1.50 2.40 1.52 1.60 2.17 4.00 1.63		0,00	89 17	6.03	8.33	10.00	2(2.0-1	-	e.	2	È	2	6
1.50		2.70	000	5.08	188.9			_	_	7			R	4
900 150 240 2 157 125 144 2 157 160 2.17 10 400 163 11		1	5	3	ŝ	7.12	2.0	2.0-1			3		ŝ	7
15°2 1.60 2.17 10 4.00 1.63 11		en S	11.00	3 6	100	-		_	L	4			40	4
4.00 1.60 2.17 10 4.00 1.63 11	7	jo. 7	01.5	27.0	0 30	180		2000	-	-		11	7.5	3
4.00	<u>-</u>	15.10	3. S.	05	(N. 8					\			¥.	"
	2	20.60	22 38	8	14.20	40	7	1-6.7	 			L	Š	
8.00 1.40 1.75 2.01 6.9	1.15	9.28	3	2 39	4.68	2,62	7	2047	+	 -				
3.00 0.50 0.65 2	61 1.30	19.10	23.90	16.49	21.29	25.55	5(2.0-2	4	4	4		ğ	
6 05 (56)		9.60	7.00	3.18	4.58	5.50	7	20-1	-	4			<u>x</u>	
2 00 0 00 0	ſ	6,5	Ş	3.20	4 48	5.38	2	2.0-1	-	¥			ខ្	
7 90.7 00.1	20.7	15.70	08 02	× 40	09.6	11.52	2.	2.0*1	2	3	7		8	7
1.50 1.80 2.78	1	3 5	8	2	262	3.14	7	2.0*1	1	4			\$5	4
1.25 1.551 - 2.	1.50	100	3 5	2.20	8	8,78	2.	2.0*1	-	4			65	3
2.00	L	76.77	1 20	12,	150	5	1	2.0*1	.2	-	3	1	85	2
1.50 5.10 1.97	χ. (2)	3 3	00.2	15		200	-	2.00	-	4	7		59	65
2.00 8		2 2	00°C1	2 8	30,00		1000	-	14			٠	105	1
20.00 1.40 57	8 :	06.7	2	3,50	2	9	┪	2 5-1	~	4	3		\$6	. 2
4.00	ľ	77.67	70.47	07.0	2 2	7 14	1	2 501	 	64			8	[1
3.00 1.80 2.04 13	200	00.27	0.00	2 5	17.02	,	,	2 501	*	4	64		95	2
2.00 2.00 8	25	07/07	2 3	207	2007	2 2	1	1000	. "	-		3	8	2
នុ	8	60.00	3	8 3	3 3	10 C	t.		. <	Ļ	4		1201	
2.00 58	g	8	8	X :				+		 -		4	120	
58	2	27.00	3.8	3	M.75	A 20 100 1	\dagger		-	-			इ	(
8.50 1.00 1.50 2.04 4.8	84 1 36	7,90	000	8	\$. \$	9.07	1	2.0-1					¥ Y	
4.00 2.05 16	0.1	21.60	27.00	5.30	10.70	12.84	7	2.0**1	7					
2.00 1.10 3	38	5.18	6.50	180	3.12	:		1	-	1			4	1
2001 145 4	×	9.83	12 30	4.93	7.40	8€ ≪	2	2.0*1	-	1	2	2	ê	
100 240 15	75 52	7.42	0.6	27.88	90.9			-	_	77			85	
1 00	1 07	2	2	0.24	19:0	0.73	2	2.0*1	-	4			8	
1 (0.1 (V).1 (2.2)		55.85	05.87	4	530	9,79	2	2.0*1	1	,	4		Ÿ,	
3.80 7.50 06.7 08.8	3		18	000	000	8	,	2 5.0	7		7	-	22	•

TYPE Location 1 b h H2/3 Q H/h Q1% Q0.33% dQ1% Q0.33% Q0.33 Bridge Culvert Capa CVTH BR. Inspecin Note Total March March	-				Control Ex	intima			Pehimate	£	Shortage		Oreo	Denign		-	"valuatio	Score *1				
100cantroca (m) (m) (m) (cuantroca) 351 pk 4 380 6.00 3.00 44.30 394 pk 4 25.00 4.00 1.25 7.60				4	a localization of	120/21		Š	85	00 33%	401%	dO0.33%	8	Bridge	Culvert	Cape	CVTH	BR. Ins	Specin N	Vote 1	otal	Priority
(m) (m) (curatives) 80 6.00 3.00 443.0 00 4.00 1.25 7.60		Location	•	>	:	ì	y		·	,	1		,)	-			spen				
80 6.00 3.00 44.30 00 4.00 1.25 7.60			Ę	É	E	Œ	(cnrm/sec)		(CHUNANC)	(ca.m/sec)	(cu.m/noc)	(carm/sec)	•1.2	Wraq.(m)	Wreq.(m)	15	10	٧,	15	-	1	
36.50 45.60 28.90	5	101	, 00	, V		8	44 30		\$ 15	64 40	7.20	20.10	24.12		2.0.2	۲.	_		۲7		105	1
SCORE SONS	¥ i	TA DK	26.35	2 5		36.	5		8	45.60		ı	45.60	10.0		44	-	4	4		140	•-
	¥	74 DK	3	3		[2]	2007		2	14		1							_			

ë	
ğ	
Z .	

Length of drainage facility

Clear span or clear spacing of drainage facility .. 2

Clear height of dramage facility .. ,c

Critical depth of a stream H2/3:

1/300 proberbility flood discharge volume 0033

Evaluation of clear beight of a culvert Evaluation of clear span of a bridge Required capacity

Evaluation of visual site inspection results.

Seere 22 23 31 2 2 2 <=Qshort< Oshort >= <=Oshort< <Qshort ₹ 6 6 CVT H: Clearance of Culvert Capa: Shortage of capacity

2 2 2 BR. SpaBridge span

Ϋ́ **≻**H=>

Dangers <u>ځ</u> Inspection Inspection

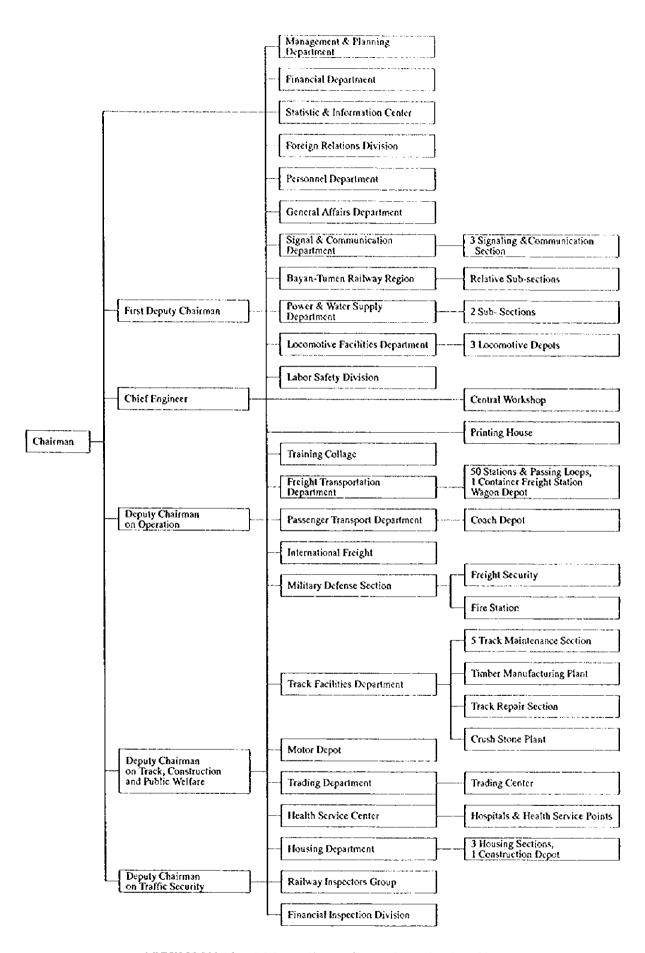
n n

Priority and Construction Stage Score>= 105

Damaged Little Demage No demage

Priority Stage 1 Priority Stage 2 Priority Stage 3 Priority Stage 3 ## >Score>: 85 >Score>: 65 >Score

Remarks


Design flood discharge volume is revised based on site inspection and past records.
 Design flood discharge volume is revised due to new drainage facility construction.

Design flood discharge volume is revised due to new drainage facility construction.

Chapter 12

APPENDIX

APPENDIX 12-1	Mongolian Railway Organization Chart
APPENDIX 12-2	Number of Employees, Mongolian Railway (1991-1996)
APPENDIX 12-3	Mongolian Railway Profit & Loss Statement
APPENDIX 12-4	Mongolian Railway Revenues and Expenses 1996
APPENDIX 12-5	Outline of Freight Transportation Service Railways, Japan
APPENDIX 12-6	Analitical Data of Operating Management Expenses (F.Year 1994)
APPENDIX 12-7	Mongolian Railway Operating and Maintenance Expense Breakdown (1995)
APPENDIX 12-8	Analytical Data of Operating Management Expense

APPENDIX 12 - 1 Mongolian Railway Organization Chart

Appendix 12-2 Number of Employees, Mongolian Railway (1991 – 1996)

96. SESS	36	ន់មន្តិត្រង់នៃនៃនៃងង	-1.981	-2.7		-325
	TOTAL	1677 1,727 1,234 1,373 3,003 3,003 3,003 1,899 1,899 1,899 1,899 883 883 883 883 883 883 883 883 883	12.949 87	7.5 74 2.540 84	3.0 744 125	3.284
966	OTHERS	142 142 143 1,139 1,130 1,30 1,439 1,439 1,439 1,439 1,439 1,38 1,38 1,38 1,38 1,38 1,38 1,38 1,38	6.240			
-	RAIL.	1585 1,585 1,585 1,524 1,524 1,524 1,524 1,524 1,534	6.709 96			
	TOTAL	173 1.921 1.108 1.108 1.315 2.994 429 358 358 358 359 145 145 145 145 363	12,997 87	7.3 72.284 76	2.8 112 681 114	2,965
995	OTHERS	255 252 225 1,132 1,135 1,135 1,135 1,154 1,541	6,36!	. "		
	RAIL.	1,570 883 1,193 1,858 1,858 11,858 11,858 11,858 11,858	6,636			
	TOTAL	173 1,324 1,078 1,305 2,958 2,958 474 474 1,551 1,551 1,551 1,551 1,551 1,551 1,551 1,551 394 378 378 378 378 378 378 378 378 378 378	13,009	7.1 70 2.150 77	2.9 116 789 132	2.939
9 9 4	OTHERS	222 222 222 151 1.005 59 131 131 131 131 131 145 148 78 485 485 485 485 485 485 485 485 485 48	6,428			
-	RAIL.	171 1.540 856 1.154 1.154 1.873 1.873 1.873 1.873 1.873	6,581			
_	TOTAL	175 1.577 1.379 2.336 610 4.33 2.35 3.05 2.35 1.568 634 634 639 634 639 634 639 634 637 637 637 637 637 637 637 637 637 637	13,210	7.8 76 2.527 84	2.2 88 583 38	3,110
1883	OTHERS	13 372 164 1.073 83 204 1208 1.568 630 630 630 630 630 630 630 630 630 630	6, 556			, ,
	RAIL.	1,205 1,205 1,215 1,136	6,654			
2	TOTAL	1.577 1.575 1.336 3.016 5.016 5.016 5.016 1.616	13,780	8.5 83.763 92.92	2.5 100 636 107	3,399
861	OTHERS	1.188 1.188 1.188 1.188 1.188 1.616	7, 126			
	RAJL.	1, 232 1, 232 1, 236 1, 176 1, 176 1, 816 555 300 179	6.654		:	
	TOTAL	1,648 1,648 1,546 3,192 668 322 322 331 1,883 342 772 494 752 494 153 639	14.930	3,013 100 100 100	2.5 100 596 100	3.603 100
8 6 1	OTHERS	13 164 164 1736 1736 1736 1737 1737 1737 1737 1737	7.907			.,
	RA I.L.	1.277 1.227 1.235 1.351 1.856 326 174	7,023			ļ
	SECTION	HEADQUARTERS FREIGHT TRANSPORTATION PASSENGT TRANSPORTATION LOCOMOTIVE FACILITIES TRACK FACILITIES SIGNAL AND COMMUNICATION BAYAM-TUMEN RAILWAY DIV. SECURITY POWER SUPLY HUUSING CONSTRUCTION TRADE SALES CLINIC CLINIC NURSERY COLLEGE REST HOUSE	TOTAL	TRANSPORTATIN YOLUNE FREIGHT NILLION TON INDEX WILLION TON-XM INDEX	PASSENCER MILLION PASSENCERS INDEX MILLION PASSKM INDEX	TOTAL MILLION PASS./TON-KN INDEX

(MONCOLIAN RAILWAY)

Appendix 12-3 Mongolian Railway Profit & Loss Statement

(Unit: Thousand Tugrik)

	1991	1992	1993	1994	1995	1996
RAILWAY DIVISION						
FREIGHT	375,564	647,114	7,171,333	8,875,533	10,741,397	14,993,674
PASSENGER	199,587	401,698	2,223,886	4,133,163	4,793,320	5,567,048
OTHERS	27,519	55, 262	451,931	512,741	840,536	828,669
OPERATING INCOME	602,670	1,104,074	9,847,150	13,521,437	16, 375, 253	21,389,391
SALARIES AND WAGES	123,524	200,544	801,630	1,591,236	2,698,713	3,462,680
FUEL	78,089	255,935	3,195,555	4,260,846	5,146,221	4,839,295
MATERIALS	37,478	86,360	657,598	507, 135	1,068,803	1,241,267
OTHER EXPENSES	201,755	430,158	4,086,876	5,669,214	5,762,454	10,612,183
(DEPRECIATION)	139,522	242, 102	2,146,906	3,895,540	3,973,584	4, 183, 107
OPERATING EXPENSE	440,846	972,997	8,741,659	12,028,231	14,676,191	20,155,425
OPERATING PROFIT	161,824	131,077	1,105,491	1,493,206	1,699,062	1,233,966
OTHER DIVISIONS						
REVENUE	531,818	978,266	4,827,629	7,837,349	10,004,813	17,090,065
EXPENSE	612,214	1,063,811	5,672,681	8,699,730	11,003,352	17,552,057
LOSS	-80,396	-87.545	-845,052	-862,381	-998,639	-461,992
NET PROFIT	81,428	43,532	260,439	630,825	700,523	771,974
DIVIDEND PAID TO		<u> </u>				
MONGOLIAN GOVERNMENT	8,000	15,592	30,000	100,000	150,000	175,000
RUSSIAN GOVERNMENT	19,052	15,592	30,060	100,000	150,000	175,000
TOTAL DIVIDEND	27,052	31,184	60,000	200,000	300,000	350,00
PROFIT AFTER DIVIDEND	54,376	12,348	200,439	430,825	400,523	421,97

Appendix 12-4 Mongolian Railway Revenues and Expenses 1996

(Unit: Million Tugrik)

C	CATEGORIES	REVENUES	EXPENSES	BALANCE
I	TRANSPORT DIVISION	21,389.4	20,155.4	1,234.0
II	INDUSTRIAL OUTPUT			
	IDUS. PDT. SALE	1,038.5	1,198.5	-160.0
	DISTR. OF INDUS. PDTS.	1,008.6	810.4	198.2
	TOTAL II	2,047.1	2,008.9	38.2
	TOTAL II	2,041.1	2,000.0	30.2
П	NON-OPERATIONAL ACTIV.			
	SERVICES OF NON-OPER DEP.	1,830.6	941.0	889.6
	DISTR. OF ABOVE SERVICES	2,250.8	1,741.4	509.4
	TOTAL III	4,081.4	2,682.4	1,399.0
īV	CAPITAL REPARIRS-SUBCONTR.	1,269.1	1,238.3	30.8
٧	CONSTR. WORK-SUBCONTR.	1,109.0	1,106.7	2.3
VI	HOUSING SERVICES	154.4	645.0	-490.6
•	SOCIAL SERVICES	983.7	1,280.7	-297.0
	TOTAL VI	1,138.1	1,925.7	-787.6
VII	MATERIAL SUPPLY DIV.	6,704.3	6,628.3	76.0
	TRADE SALES	359.9	352.4	7.5
	TOTAL VII	7,064.2	6,980.7	83.5
VII	CLINIC	287.7	1,225.0	-937.3
	RAILWAY COLLEGE	19.1	116.9	-97.8
	CULTURAL ORGAN.	48.3	211.8	-163.5
	TOTAL YE	355.1	1,553.7	-1,198.6
£Χ	FINES	5.2	0.3	4.8
	EXPIRED CLAIMS		7.1	-7.1
	WASTE LOSSES		0.2	-0.2
	TRANSPORT LOSSES		7.0	-7.0
	OTHERS	20.8	41.2	-20.4
	TOTAL IX	26.0	55.8	-29.8
	SUB-TOTAL-NON OPER.	17,090.0	17,552.2	-462.2
	GRAND TOTAL	38,479.4	37,707.6	771.

Outline of Freight Transportation Service Railways. Japan

1994

								<u> </u>											
Transpotation Volume /	Employee	10 ³ . P. T. km	2, 894.1 2, 406.1 1, 492.4 1, 496.2	1, 932, 0		60-139 60-139 60-139 60-139 60-139				- 1	10', P. T. km	#####################################	Aww. Hydric waac		900000 36-36-56-56 36-36-56-56-56	5 791		3	8. 90 138. 0 2, 552. 0
∄ .§	Æmpl.	10³km	టుటుటుటు యయయు య ఈనగా	35.9	10³km	20.02.20.7				18.9		ಟ−ಟಬ್ಬಾಹ್ಮೆಟ್ಟ ಒ-4ಌದಿಟ∞ಗ					: .		138.0
Train	Æmpl.	10 km	4, 67 4, 05 8, 05 46	5, 71	103km	9.00000 8.4000				5. 28	10 km								
Empl. /	E E	Persons	322.0 9.09.0 10.0	14.5	Persons	೦೨೨೦ ನ-ನನ				r- c-i	Persons	ကတး ကတလ တိုက်လိုက်လိုက်လ				. 1		•	0.9
Number of	Employees	Persons	1-18,1-14, 000,000,000,000,000,000,000,000,000,0	17, 618	Persons	4.25.00 6.10.00 6.10.00	109		75	1, 622	Persons	2000 00 00 00 00 00 00 00 00 00 00 00 00	<u>ი4-6</u> -იათდ	3,6	200 mg	80	3 4	105, 066	9, 398
mc	Total	mil. P. T. km	14 9.99 9.99 7.99 7.99 7.99 7.99 8.19 8.19 8.19 8.19 8.19 8.19 8.19 8	34, 037. 4	mil. P. T. km	46.25 46.25 46.25 40.25	,	968 1489 1489 1489	33.9	664.7	mit. P. T. km	r-0444986						152, 444, 1	24, 077, 4
Transportation Volume	F. T. km	mil T. km	1.440.0 82.400	46.1	mil. T. km			, ಭರಗ ಪ್ರಕಾರಣೆ		225. 3	mil. T. km	F-Q <i>UNIV</i> Q					.÷I.	416.1	24, 077, 4
Transpo	Passenger. km	mil. P. km	4.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	33, 991. 3	mil. P. km	\$-\?\\ 4043 				439. 4	mil. P. km		8.0.1	, , ,			-	152, 028. 0	
	Total	10³km	241, 488 151, 652 45, 786 194, 018	632, 944	10²km	22		2, 829 2, 505 827 827	1, 458	30, 650	10 ³ km	8.00 % 6.00 % 6.00 % 7.00 % 7.00 %	−ພ 945-ພ ສີປະສຸດ	1, 620		1, 164	8, 921	2, 790, 897	1, 297, 023
Car km	Freight	10³km	1, 935	2, 665	10³km		n 0.0.∞- 0.0.∞-	1, 621 352 250 250	144	12, 946	10³km	3. 0994 489 489 489 489 489	~~64 \$\times_001-55 \$\times_001-55	1, 620	1, 210		8, 289	23, 914	1, 297, 023
	Passenger	10 ³ km	239 1509 450, 553 245, 773 018	ြင	10³km	2,	555	7.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73	1.314	17, 704	10³km	1 1 4 1 4 4			1 > 4	577	632	2, 766, 983	•
	Total	10³km	35, 521 19, 7007 1, 776 2, 776 2, 7862	100, 666	10³km	1, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	72.55 - 25.55 - 25.55	—35.22 —35.23 5-35.25 5-35.45	1, 192	8, 565	10³km	4w-rug		170	65 ×	314	1, 138	504, 291	83, 678
Train km	F&Mix	10'km	28 88 888 888	367	10 ³ km	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	25.25°	25.52) 	1, 032	10³km	4cc-7c24	-522×	170		42	811	2, 150	83, 678
	Passenger	10³km	35, 305 4, 4, 919 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,	3 8	10 ⁷	1, 255	1, 7,18 22,28 66,6	-1017 2000 2000 2000 2000 2000 2000 2000	1, 177	7, 533	10³km	.,	. 55			272	327	502, 141	
d Distance	Freight	E.				5000 60000 7000	6. 2.5.5. 2.5.5.	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	, , , ,	382. 5	Ę	40333 04-530-000				16.5	191.5	827.9	10, 043, 7
Commercial Distance	Passenger	r.m	44 74 80 80 80 80 80		5	(00470)	6.89 6.89 6.89	0025 0025 0025 0025 0025	4.00 0.00	411.1	5		i a i a			10. 4	10.4	7, 081. 9	•
	Railway	Major	Railways Tobu Kw Seibu Rw Sagami Rw	Nagoya nw Sub T /Av	Tocal	Railways KashimaRin Kashima	Chichibu Gakunan Ohisawa	Kamioka Sanki Kurobe	Tarumi Heisei Tiku	Sub T. /Av.	Freight	Railways TaiheiyouC Kushiro D. Tomakomai Hatinohe Ri Iwate Dev.	Fukushima Kosuka Sei Akita Rin	Keiyou Ku	Senou Rw. Nagoya Rin	Mizusima R	Sub T. /Av.	Total Pri. R	JR Freight

Appendix 12 - 6 - 1

Analytical Data of Operating Management Expenses (F. Year 1994) 1/2 (Major Railways, Metropolitan Subway, and Chichibu Railway)

Team Company Name	Toba Railway	Seibu Railway	Keisei Railway	Keio Railway	Tokyu Railway	Odakyu R. W.	KeikyuuR. W.	Sagami R. W.	Eidan Subway
of Employees	7, 601	3, 949	2, 350	2, 720	3, 741	3, 638	2, 866	1, 180	10, 460
Administrative Division (nersons)	240	340	114	224	393	324	138	83	255
Ratio of Administration Division	3.2%	3. 6%	4.9%	8.2%	10.5%	8, 9%	4.8%	7.0%	4.2%
Train lem (1, 000 km)	35, 521	19, 007	11, 824	13, 419	14, 954	18, 447	13, 715	4, 775	27, 617
Car km (1.000 km)	241, 704	151, 740	76, 737	105,016	107, 562	132, 758	90, 617	45, 802	226, 906
	14, 397	9, 503	3,860	6.936	8, 759	10, 982	6, 275	2, 823	15, 881
Operating Managment Expense (*1, 000)	- C	9	300 300 31	26 881 876	502 968 68	35 410 998	22 400 396	10 395 475	94, 212, 312
Labor Cost	56, 135, 612	32, 313, 834		; ;	<u>;</u>	<u> </u>			i
Material Cost						4	9		4
Railway Maintenance Expense Cable Maintenance Expense	4, 616, 907 3, 575, 916 5, 578, 193	4, 008, 638 2, 304, 698 4, 253, 628	2, 785, 203 1, 182, 907 1, 693, 741	1, 363, 131 1, 629, 960 2, 416, 712	8, 734, 387 1, 812, 638 3, 301, 386	5, 903, 977 2, 524, 018 7, 623, 167	3, 135, 611 834, 071 1, 992, 574	6426 6426 6436 6436 6436 6436 6436 6436	7, 886, 471
Car Manienance Expense Operation Expense	7, 571, 356 8, 201, 356	5, 620, 000	830, 81 779, 48	245. 540.	9.55 6.48 8.55	330.		ത്ത്	24. 200. 200.
Halbyoladol Labellas Maintenance & Management Expense Transportation Management Expense Georgal Administrative Expense	2883	507, 809 441, 505 733, 857	339 640 396	888 955 96,49				ദ്ദ്ഗ്	
Total Material Cost	35, 071, 765	19, 691, 965	13, 649, 962	15, 095, 391	29, 738, 931	24, 457, 266	12, 722, 995	4, 995, 248	57, 432, 867
Base Unit of Operating Management									
Expense Labor C. /No. of Employees (4/Per.)	7, 385, 293	8, 336, 246	8, 078, 726	9, 331, 388	8, 907, 968	9, 733, 644	7, 815, 909	8, 809, 725	9, 006, 913
Base Unit Material Cost									
Rathway M. Exp. /Car km (# / km)	19, 1	نہ نو	36. 3	13.0	121.2	136.	გ. გ.ე.	. 85. . 85. . 80.	257,0
Car M. Exp. /Car km (* / km) Operating Exp. /Car km (* / km)	eges Significant S	22.00	-0°	wio's					255
Trans. Exp. //rans. V. (Y/1000. P. T. km)	568. 6	-:		ioi			:::	. (~)	
Trans. Exp. /Trans. V. (*/1000.P. Txm) General Admi. Exp/Emp. (*/ Per)	268. 5 165, 948. 2							368, 664, 4	
Total Material Exp. /Car km (# / km)	145.1	129.8	177.9	143. 7	276. 5	184. 2	140, 4	109. 1	253. 1

Appendix 12 - 6 - 2

Analytical Data of Operating Management Expenses (F. Year 1994) 2/2 (Major Railways, Metropolitan Subway, and Chichibu Railway)

Ren Company Name	Nagoya Railway	Kinnki-Nippon	Nankai R. W.	KeihanRailway	Hankyu R. W.	Hanshin R. W.	NishinihonRW	Ame. of 16 Co.	Chichibu RW
Number of Employees (persons)	4,888	11, 373	3,468	3,041	4,232	1,333	1,078		636
Administrative Division (persons)	487	727	267	242	389	129	78	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21
Ratio of Administration Division	10.0%	6.4%	7.7%	8.0%	9.2%	9.7%	8.1%	7.5%	3.3%
Train km (1, 000 km)	41, 362	69, 633	16, 960	15,217	21,675	7, 284	10,043		2,279
	194, 018	346, 702	92, 722	93,822	159, 462	37,718	44,849		16,243
Transportation Volume (million P. T. km)	7,314	15, 252	5,036	5,319	10,339	2, 188	2, 105		339
Operating Managment Expense (#1, 000)									
Labor Cost	31,030,974	82, 352, 951	26, 565, 890	26, 063, 051	44, 193, 096	9,840,752	8, 943, 316		4, 796, 651
Material Cost									
Railway Maintenance Expense Cable Maintenance Expense	3, 608, 229	587,	2, 748, 042	2,568,298	3, 911, 748 2, 137, 773	1, 666, 656 725, 056 898, 970	1, 250, 309 993, 290 997, 329		320, 422 196, 511 79, 132
Car Maintenance Expense Operation Expense Transfortation Expense	6, 508, 337 7, 679, 124	3886 3866 3866	1, 900, 759 4, 181, 403 3, 977, 131	3, 989, 907	5, 675, 786 5, 494, 878	1, 112, 327 3, 188, 767	1,816,619		285, 295 172, 779
Maintenance & Management Expense Transportation Management Expense General Administrative Expense	583, 048 538, 196 2, 174, 975	1, 524, 427 2, 505, 035 2, 752, 869	333, 236 382, 621 1, 041, 127	187,460	742, 477 807, 416 2, 958, 927	350, 004 606, 632 758, 700	123, 513 324, 280 364, 727		40,598 29,337 113,562
Total Material Cost	26, 394, 851	49, 619, 276	15, 337, 785	13, 194, 290	25, 098, 821	9, 307, 112	7, 350, 985		1, 237, 636
Base Unit of Operating Management							·		
Labor C. Mo. of Employees (#/Per.)	6,348,399	7, 241, 093	7, 660, 291	8,570,553	10, 442, 603	7, 382, 410	8, 296, 212	8, 334, 211	7, 541, 904
Base Unit Material Cost								• • • • • • • • • • • • • • • • • • • •	
Railway M. Exp. /Car km (* / km) Cable M. Exp. /Car km (* / km)	18.6	34.6	29.6 63.3	727. 4	24.5 98.6	44.2 99.5	98.9	32.4	86.2
Car M. Exp. /Car km (* / km) Operating Exp. /Car km (* / km)	83.0 83.0	200 200 200 200 200 200 200 200 200 200	45.1	42.5	192	20.0	40.5	386.	12.01
Trans. Exp. /Trans. V. (4/1000. P. T. km) Maintenance Exp. /Car km (# / km)	366.3	307.0 4.4	3.6	0.0		5,40	5.00	9.60	200
Trans. Exp. / Trans. V. (#1000, P. Tkm) General Admi. Exp/Emp. (# / Per)	73.6	164.2 242.053.0	76.0 300, 209.6	536, 958, 9	78. 1 699, 179. 3	277.3 569, 167.3	338, 336. 7	134.0 393, 684.5	178, 556. 6
Total Material Exp. /Car km (# / km)	136.0	143.1	165.4	140.6	157.4	246.8	163.9	169.6	76.2

Appendix 12 - 7

Mongolian Railway Operating and Maintenance Expense Breakdown (1995)

(Unit: 1,000 Tugrik)

Expense Item	Labor Cost	Material Cost	Total Business Cost
Headquarters Overhead	92, 503	89, 123	181,626 (1.7%)
	(50. 9%)	(49.1%)	(100. 0%)
Freight Handling Fee	613, 575	1, 067, 084	1, 680, 659 (15. 7%)
	(36.5%)	(63.5%)	(100.0%)
Car Operation & Repair	587, 357	4, 862, 483	5, 449, 840 (50. 9%)
Expense	(10.8%)	(89. 2%)	(100.0%)
Track Expense	713, 485	739, 929	1, 453, 414 (13. 6%)
	(49. 1%)	(50. 9%)	(100. 0%)
Signaling & Communication	231, 451	226, 224	457, 675 (4.3%)
Expense	(50. 6%)	(49. 4%)	(100. 0%)
Passenger Transportation	314, 532	419, 826	734, 358 (6. 9%)
Expense	(42. 8%)	(57. 2%)	(100.0%)
Military Security Expense	65, 424	51, 332	116, 756 (1. 1%)
	(56.0%)	(14.0%)	(100. 0%)
Bayan-tumen Management	80, 386	179, 114	259, 500 (2. 4%)
Expense	(31. 0%)	(69.0%)	(100. 0%)
Track-Related Expense	0	368, 779	368, 779 (3.4%)
(to be paid to Russia)	(0.0%)	(100.0%)	(100.0%)
Total	2, 698, 713	8, 003, 891	10, 702, 607 (100.0%)
	(25. 2%)	(74.8%)	(100.0%)

Appendix 12 - 8

Analytical Data of Operating Management Expense

		Mongolian Rail	way		Average of	
Expense Item (Unit)	Amount (Unit :1000 Tugrik)	Amount / Base Unit (Unit : Tugrik)	Inflation Factor (Ueit :Tugrik)	Amount in Yen T. 1=45	Major Private Railway Japan	Chichibu Railway
Labor Cost (Number of Employees)	2, 698, 713 6, 636 persons	406, 678 / person	560, 560	112. 1 (10³yen)	8, 334. 2 (10³yen)	7, 541. 9 (10 ³ yen)
Material Cost						
General Administration Expense (Number of Employees)	55, 156 6, 636 persons	8, 312 / person	£1, 457	2. 3 (10 ² yen)	393. 7 (10³yen)	178. 6 (10 ¹ yen)
Maintenance Management Expense (Car km)	19, 718 101. 3 million km	0. 19 / km	0. 27	0. 1 (yen)	5. 6 (yen)	2. { (yen)
Transpotation Management Cost (Person * ton * km)	14, 249 2, 965 million P. t. km	4. 81/10³P. t. km	6. 62	1. 3 (yen)	134. 0 (yen)	86. 6 (yen)
Railway Maintenance Expense (Car km)	1, 126, 698 101. 3 million km	11. 13 / km	15. 33	3. 1 (yen)	32. 4 (yen)	19. 7 (yen)
Communication Maintenance Cost (Car km)	231, 724 4, 838-10° km	47. 90 / km	66. 02	13. 2 (yen)	106, 4 (yen)	86. 2 (yen)
Car Maintenance Cost (Car km)	1, 081, 515 101. 3 million km	10. 6 / km	14. 72	2. 9 (yen)	23. 1 (yen)	
Transpotation Expense (Person • ton • km)	1, 575, 642 2, 965 million P. t. km	531. 41/10³P. t. km	732. 50	146. 5 (yen)	598. ((yen)	1
Operation Cost (Car km)	3, 899, 192 101, 3 million km	38. 50 / km	53. 07	10. £ (yen)	36. (yen)	
Total Material Cost (Car km)	8, 003, 894 101. 3 million km	79. 0 / km	108. 94	21, 8 (yen)	169. (yen)	i .

CHAPTER 13

APPENDIX

APPENDIX 13-1-1 Project Cost Summary

APPENDIX 13-1-2 Urgent Recovery Cost

APPENDIX 13-1-3 Net Benefit Streams and EIRR

Ap. Table 13-1-1 Project Cost Summary

A. Project Cost (\$us'000 in 1996 prices)

· · · · · · · · · · · · · · · · · · ·	Direct Cost	Indirect Cost	Physical Conti. Cost	Supervising. Cost	Detailed Desig Cost	Total Econ. Cost	Duty Tax (% on Eco	
Stage I	7,225	1,156	838	838	871	10,928	1,469	12,397
Stage 2	2,041	204	224	224	235	2,928	13.44 365 12.47	3,293
Stage 3	6,879	688	757	757	42	9,123	1,417 15.53	10,540
Total	16,145	2,048	1,819	1,819	1,148	22,979	3,251 14.15	26,230

B. Expenditure Plan (in \$us'000 in prices 1996)

	Phase 1				
Year	(%)	E tot	Tax & D	Fin. Tot	AccCompl %
2002	55.6	6,076	817	6,893	
2003	27.1	2,961	398	3,360	56
2004	17.3	1,891	254	2,145	83
Total	(100)	10,928	1,469	12,397	100

AccCompl 9	F tot	Tax & D	E tot	Phase 2	Year
	1,647	183	1,464	50.0	2008
50	1,646	182	1,464	50.0	2009
10	3,293	365	2,928	100.0	Total

	Phase 3				
Year	(%)	E tot	Tax & D	F tot	AccCompl %
2013	22.1	2,016	313	2,329	
2014	20.3	1,852	288	2,139	22
2015	19.8	1,806	281	2,087	48
2016	21.3	1,943	302	2,245	61
2017	5.5	502	79	581	71
2018	5.5	502	79	580	81
2019	5.5	502	78	580	90
Total	100	9,122	1,417	10,540	100

Notes: E means economic, F means financial and E.C. means economic cost : DD means detailed designing and D means duty.

Ap Table 13-1-2 Urgent Recovery Cost

A. Recovery Cost by type and Class

(\$ in 1996 prices)

	Class	Direct Cost	Indirect Cost.	Phys. Conti.	Total
Type of Recovery				Cost	Economic
		a	b=a*0.1	c=a*0.1	Cost
Embankment Rehabilit	L	307,764	30,776	30,776	369,317
	M	102,588	10,259	10,259	123,106
	S	68,396	6,840	6,840	82,075
Stone fall Protection	L	18,058	1,806	1,806	21,670
	M	9,030	903	903	10,836
	S	4,514	451	451	5,417
Revetment Rehabilitati	L	1,609,266	160,927	160,927	1,931,119
	M	362,084	36,208	36,208	434,501
	S	181,042	18,104	18,104	217,250
Draineage Rehabilitatio	L	76,544	7,654	7,654	91,853
-	M	51,030	5,103	5,103	61,236
	S	25,514	2,551	2,551	30,617
Bridge Rehabilitation.		51,216	5,122	5,122	61,459

Notes: sus 1.00 = Tug 550 = J 110 in August 1996 prices.

B. Averaged Repair Cost per Damage in \$us

Urgent 1) epair Work	Econ Cost in average	Econ Cost 1st stage	Econ Cost 2nd stage	Econ Cost 3rd stage
Class L 2)	1,256,800	1,738,272	434,501	1,082,858
Class M	123,100	123,100	123,100	123,100
Class S	82,080	82,080	82,080	82,080

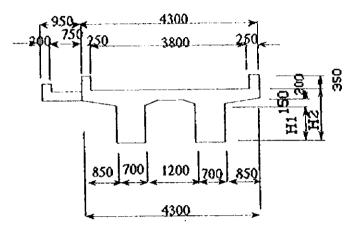
Notes: 1) Class L (large) damage is represented by revetment rehabilitation work where the cost is the weighted average of 5 L and 4.1M resulting in \$ 1256800 Class M is represented by embankment rehabilitation of \$123100 Class S is represented by embankment rehabilitation at \$82080.

2) It is found there is substantial cost difference of the bank protection among stage1 through stage3 in Table 11-3-2 in Chapter 11, while the urgent repair cost which is converted to the economic saving at scale L is averaged at \$1,256,800 for all stages. The cost is considered better to be revised to have differences among the stages, with which the benefit can have a magnitude matching with the staged project costing. The urgent repair cost of L in average at \$1256800 is used in the master plan analysis. But for the analysis by stage, the unit cost shown under will be used.

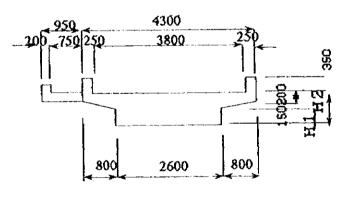
Stage	Unit urgent repair cost	Occ	urence	Repair cost
_	•			
J	1,738,272 *	3.8	===	6,605,434
2	434,501 *	1.4	=	608,301
3	1,082,858 *	3.9	=	4,223,146
total	1,256,800 *	9.1	==	11,436,881

Ap Table 13-1-3 Net Benefit Streams and EIRR

		, ,	p 14000 15 1		\$us'run of pri	ices in 1996) _			
[170.	. Yı	. B	ase case C	asel Ca	se 2 C	ase 3 C	ase 4 C	ase 5	ase 6
	Δ.	2001	0						1
ļ		2001 2002		-6,683,600	-7,291,200	-6,076,000	-6,076,000	6,683,600	-7,291,200
		2002		-2,641,091		-2,406,597	-2,468,253		-3,060,553
1		2003		-1,165,782		-1,068,110	-1,159,492		-1,537,603
		2005	1,100,998	1,100,998	1,100,998	990,898	880,798	990,898	880,798
1			1,113,902	1,113,902	1,113,902	1,002,512	891,122	1,002,512	891,122
l		2006	1,113,302	1,127,253	1,127,253	1,014,527	901,802	1,014,527	901,802
	6	2007	-322,758	·469,140	-615,523	-436,864	-550,971	-583,247	843,736
	7	2008 2009	-92,149	-238,531	-384,914	-229,317	-366,484	-375,699	-659,249
1	8 9	2010	1,602,780	1,602,780	1,602,780	1,442,502	1,282,224	1,442,502	1,282,224
1		2010	1,617,583	1,617,583	1,617,583	1,455,824	1,294,066	1,455,824	1,294,066
	10		1,632,778	1,632,778	1,632,778	1,469,501	1,306,223	1,469,501	1,306,223
1	11	2012	-367,689	-569,295	-770,902	-532,527	-697,364	-734,133	-1,100,578
	12	2013	106,219	-78,967	-264,153	-89,589	-285,397	-274,775	-655,770
1	13	2014	656,918	476,293	295,668	410,601	164,284	229,976	-196,967
Į	14	2015	710,518	516,210	321,901	445,158	179,797	250,849	-208,820
	15	2016 2017	2,302,717	2,252,543	2,202,370	2,022,271	1,741,826	1,972,098	1,641,479
1	16			2,403,863	2,353,689	2,158,459	1,862,882	2,108,286	1,762,535
ı	17	2018	2,454,037	2,403,803	2,492,149	2,283,073	1,973,650	2,232,899	1,873,303
1	18	2019	2,592,496	3,289,212	3,289,212	2,960,291	2,631,370	2,960,291	2,631,370
	19	2020	3,289,212	3,289,212	3,289,212	2,960,291	2,631,370	2,960,291	2,631,370
İ	20	2021	3,289,212	3,289,212	3,289,212	2,960,291	2,631,370	2,960,291	2,631,370
	21	2022	3,289,212		3,289,212	2,960,291	2,631,370	2,960,291	2,631,370
Ì	22	2023	3,289,212	3,289,212	3,289,212	2,960,291	2,631,370	2,960,291	2,631,370
Į	23	2024	3,289,212	3,289,212	3,430,770	3,087,693	2,744,616		2,744,616
	24	2025	3,430,770	3,430,770	3,430,770		2,744,616		2,744,616
	25	2026	3,430,770	3,430,770	3,430,770		2,744,616		2,744,616
	26	2027	3,430,770	3,430,770	3,430,770		2,744,616		2,744,616
-	27	2028	3,430,770	3,430,770	3,430,770		2,744,616		2,744,616
	28	2029	3,430,770	3,430,770	3,430,770		2,861,318		
1	29	2030	3,576,648	3,576,648			2,903,127		
- 1	30	2031	3,628,909	3,628,909	3,628,909		2,903,127		
Ì	31	2032	3,628,909	3,628,909	3,628,909 3,628,909		2,903,127		•
ļ	32	2033	3,628,909	3,628,909			10,552,701	-	
1	33	2034	11,278,483	12,043,440	12,808,398	- ,	1,650,536		•
ı	34	2035	2,063,170	2,063,170	2,063,170			-	
- 1	35	2036	2,063,170	2,063,170	2,063,170				
- {	36	2037	2,063,170	2,063,170	2,063,170			•	
	37	2038	2,063,170	2,063,170	2,063,170				
Ì	38	2039		4,317,459	4,522,394				
	39	2040		1,626,681	1,626,681 1,626,681				
1	40	2041	1,626,681	1,626,681					
	41	2042		1,626,681	1,626,681				
Ì	42	2043		1,626,681	1,626,681				
	43	2044			1,626,681				
Ì	44	2045			1,626,681				
	45	2046			1,626,683				
1	46		• •		1,626,68	1 1,464,013			
ļ	47				1,626,68				
1	48				9,289,56				
	49		101197452	100508104	9981875	v 2036533	, 1731720	2 3707700	
- 1	1%		13 000/	11.09%	10.24%	% 10.99%	9.869	6 10.07%	6 8.319
Ł		EIRR	12.09%	11.09%	10.447	10.777	7.307		


Chapter 16

APPENDIX


APPENDIX 16-1	Typical Section of the Bridge
APPENDIX 16-1-1	Dynamics of Revetment
APPENDIX 16-2-1	Slope Characteristic of Location 13pk3
APPENDIX 16-2-2	Slope Characteristic of Location 61pk10
APPENDIX 16-2-3	Slope Characteristic of Location 282pk9 - 283pk2
APPENDIX 16-2-4	Slope Characteristic of Location 18pk10 - 19pk1
APPENDIX 16-2-5	Slope Characteristic of Location 267pk2 - 3

Appendix 16-1

Typical section of the bridge at mid span and its dimensions are given as below;

T-Beam Bridge

Concrete Slab Bridge

Girder Length (m)	H 1	H2 (m)	Width of Girder(m)	Bar arrangement	Remark
11.5	1.15	1.25	0.7	D32, 2 layers D29, 1 layer	T-Beam
9.5	0.8	0.95	0.6	D32 ,2 layers D29, 1 layer	T-Beam
7.3	0.3	0.65	2.5	D32, 1 layer	Slab

Appendix 16-1-1 Dynamics of Revetment

The most of destruction of riprap are occurred by the sink of natural embankment. The dynamic of revetment are proposed for the stability of revetment in consideration of design depth and flow velocity as shown in below;

1. Representative Basin: V

$$V_0 = \partial x Vm$$

here:

∂: Compensate coefficient

Vm: Average velocity calculated by Manning's velocity formula

$$V_m = 1/n \times Hd^{2/3} \times I_e^{-1/2}$$

here;

n: Manning's roughness coefficient (m/sec)

Hd: Design Depth (m)

I_e: Energy gradient (m)

Determination of Hd

following above mentioned condition, Hd is estimated base on site survey result and information at site as mentioned bellow;

Location	M.W.L	H.W.L (m)
	(m)	
53 pk + 370	2.8	4.9
53 pk + 400	2.3	4.7
53 pk + 435	3.1	5.3
53 pk + 482	3.1	5.3

Note: M.W.L.: Mean water level H.W.L.: High water level

5.3 m is apply for this calculation for Hd.

Determination of Ie

River bed slope of 1/400 is apply to I_e , which is based on cross section of survey carried out by MR.

Determination of 1/n

This river clarify SEGMENT 2-2, and material of river bed is a silt and grain diameter of $0.4 \sim 1$ mm. The roughness coefficient of n = 0.022 is applied for such condition of soil material and river bed condition.

2. Diameter of Riprap: Dm

The diameter of Riprap is calculated following formula which was developed by the American military engineering;

$$D_{m} = \frac{1}{E_{1}^{2} x 2g \left[\frac{\rho_{1}}{\rho} - 1\right]} V_{0}^{2}$$

 $ho_{\!\scriptscriptstyle s}$: density of members

 E_i : experiment coefficient

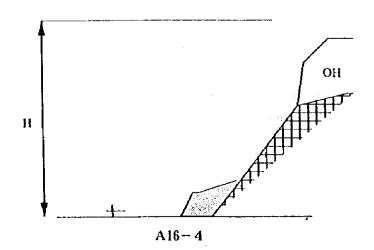
In case of Vo=7.0 (m/s)

Slope Gradient	Dm (m)
1:2	0.4
1:3	0.27

3. Determination of Thickness of Riprap

Tree time of Dm is preferable according to experience.

Slope gradient is deigned as 1:2, then 1.2 meter is proposed for this deign.


Appendix 16-2-1 Slope Characteristic of Location 13pk3

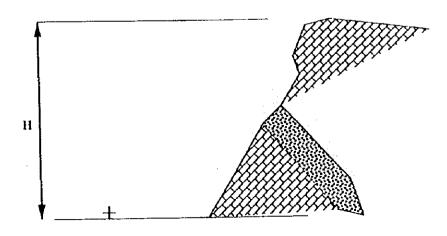
Slope length along the track; 200.0 Ŀ m 22.0 Maximum height of the slope; H≍ m Approx. slope 1: n; n= 1.0 Approx, area of the slope; Λ= 6,223 sq.m Distance between track center and toe of the slope;]= 5.9 m

Item	Description		
Weathering	22 m is the height of slope. Slope consists of 2 part, weathering rocks expose on upper part of surface and lower part covers by the talus cone. Some shrubs covers both side of slopes.		
Unstable rock	Weathering unstable rocks locates on some part of upper slope.		
Loose rock	Prominent loose rock in the right hand side on upper slope		
Overhang	Lots of over hanged rocks locates boundary of upper and lower part.		
Fallen rock	Talus cone locates at toe of slope, no destruction record of railway track.		
Recommended Countermeasure	Removal of taulus cone, provision of rock pool, removal of overhang portion, foot strengthen removal of weathering slope.		

Schematic Section (Type I)

Weathered rock
Rock slope with well developed joints
OH Over hanging rock

Appendix 16-2-2 Slope Characteristic of Location 61pk10


Slope length along the track;		200.0	m
Maximum height of the slope;		17.6	m
Approx. slope 1:n ;	n=	0.8	
Approx. area of the slope;	A=	4,723	sq.m
Distance between track center and			
toe of the slope;		4.6	m

ltem	Description
-	Weathering remarkably proceed onto slope and consists of two stratums. Upper part makes clift and lower part are piled by talus cones. About one meter boulders locates near side of railway line, such rocks fall down from upper part of exfoliation of hard rock and soft layer.
Unstable rock	Unstable rocks locates on upper slope should fall down because of weathering.
Loose rock	Lots of boulders locates on lower part of talus conc.
Over Hang	Over hang portion partially locates on upper part of cliff.
Fallen rock	Collapse rocks locates at toe of slope, no destruction record of railway track.
Recommended Countermeasure	Removal of talus cones, formative slope, provision of rock pool, foot strength, removal o weathering slope.

Weathered tock with developed joints Schematic Section (type II)

Deposits/Gravel

OH Over hang

Slope Characteristic of Location 282pk9-283pk2 Appendix 16-2-3

Slope length along the track; 400],= m Maximum height of the slope;]]= 24.3 m Approx. slope 1:n ; n≔ 0.8-1.0 Approx, area of the slope; 13398 AΞ sq.mDistance between track center and toe of the slope;]= 7.0 m

Item	Description		
Weathering	Weathering remarkably proceed onto steep slope and consists of two part. Upper part makes steep slope and lower part makes slope by talus cone. One meter size boulders locates which comes from upper part's exfoliation of soft layer.		
Unstable rock	Unstable rocks should fall down from upper part of slope because of weathering.		
Loose rock	Lots of boulders locates on upper part of eliff.		
Over Hang	Over hanged rocks partially locates on upper part.		
Fallen rock	Boulders locates at toe of slope, no destruction record of railway track.		
Recommended Countermeasure	Removal of talus cones, removal of over hang parts, foot strength, , removal of weathering slope and removal of loose boulders.		

Schematic Section (III)

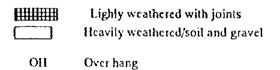
Heavily weathered/soil and gravel \Box Loose rock / Unstable H

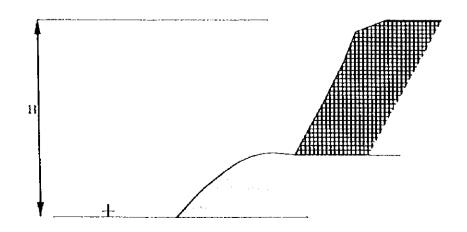
Appendix 16-2-4 Slope Characteristic of location 18pk 10 - 19pk 1

150.0 Slope length along the track; Į,= m 28.2 Maximum height of the slope; H= m 0.5 - 1.0Approx. slope 1:n ; n= Approx. area of the slope; A= 5,596 sq.m Distance between track center and = 5.0 m toe of the slope;

Item	Description		
Weathering	Hard rocks expose onto slope surface. Some shrubs covers some part of slope		
Unstable rock	Falling should occurrence, because hard rocks locates between soft layers		
Loose rock	Loose boulders locates on the upper part of slope.		
Over Hang	Over hang rocks partially locates upper part.		
Fallen rock	Talus cones locates at toe of slope, no destruction record of railway track.		
Recommended Countermeasure	Formative slope, provision of rock pool, concrete lining, removal of overhang portion foot strength, removal of weathering slope, and removal of loose boulders.		

Schematic Section (Type I)




Appendix 16-2-5 Slope Characteristic of location 267pk2-3

Slope length along the track;		150.0	m
Maximum height of the slope;	Н=	32.8	ni
Approx. slope 1:n ;	n≒	$0.5 \cdot 1.0$	
Approx. area of the slope;	Λ=	13,398	sq.m
Distance between track center and			
toe of the slope;	l=	6.1	m

Item	Description
Weathering	Weathering remarkably proceed onto slope and consists of two stratums. Upper part formed by rock cliff and lower part covers by talus cones.
Unstable rock	Weathering rocks locates on upper part of slope, and seems to fall down.
Loose rock	Lots of boulders locates on lower part of talus cone.
Over Hang	Over hang rocks partially locates on upper part of rock cliff.
Fallen rock	Lots of boulders locates near the railway line, no destruction record of track structure.
Recommended Countermeasure	Removal of talus cones, provision on rock pool, removal of overlang, foot strength, removal of weathering slope and removal of loose boulders.

Schematic Section (Type IV)

