LIBRO DE DATOS

1

8: PLAN PARA EL MANEJO DE CUENCAS HIDROGRAFICAS

Libro de Datos 8

Lista de Cuadros: Plan para el Manejo de Cuencas Hidrograficas

Cuadro 8.1	Ejemplo de la Integracion de Costos Directos Estimados para
	el Establecimiento y Manejo de Una Plantacion de Casuarina
	Cunninghamiana Pura (2,500 Arboles/Ha)8.T.1
Cuadro 8.2	Resumen Regional del Rendimiento y Costo Directo, en US\$,
	en Trabajos para la Produccion de AUM
	(Arboles de Uso Multiple), 1988-19898.T.2
Cuadro 8.3	Preparacion de Suelos8.T.3
Cuadro 8.4	Especies Principales para la Reforestacion en la Cuenca del
	Rio Grande de San Miguel8.T.4
Cuadro 8.5	Principales Especies Exoticas que se Podrian Utilizar para
	la Reforestacion de la Cuenca del Rio Grande de San Miguel8.T.5

EJEMPLO DE LA INTEGRACION DE COSTOS DIRECTOS

Cuadro 8.1 ESTIMADOS PARA EL

ESTABLECIMIENTO Y MANEJO DE UNA PLANTACION DE

CASUARINA CUNNINGHAMIANA PURA (2,500 ARBOLES/HA)

Year	Task	Activity	Daily V	/age/ha		Cost(I	JS\$)ha
Year 1	PT	Cleaning		11		US\$ 2	29.45
	PL	Hollow		15		US\$	
	PL	Transport		5.9		US\$	
	PL	Distribution		5.9		US\$	
	PL	Plantation		5.9		US\$	
	PL	Fertilization		5,9		US\$	
	MT	Overgrowth cleaning		12.69		US\$3	
Year 2	MT	Replanting (10%)		12.69		US\$:	33,50
	MT	Fertilization		12.69		US\$	
	MT	Doble cutting		12.69		US\$ 3	33.50
Year 3	MT	Triming 12.69			US\$ 3	33.50	
Year 5	MT	Triming		12.69		US\$ 3	33.50
Year 6	RL	Triming (50%)					
	RL .	Preparation	(0.68		US\$	1.80
	RL	Marking	(0.68		US\$	1.80
	RL	Felling	(0.68		US\$	1.80
	RL	Branches cut off	(0.68		US\$	1.80
	RL	Lodgging	(0.68		US\$	1.80
:	RL	Transport	(0.68		US\$	1.80
TOTAL L	ABOR				Total	US\$ 3	33.02
INPUTS:							÷
Cat	lhegory	Amount	Units	Pri	ce	Cost (US\$)
See	edling	2,750.00	ea.				
Fer	tilizers	250.00	kg.				
Total Input	.						

Total Inputs:

PT: Soil Preparation MT: Maintainance

PL: Plantation RL: Triming

Labor and Inputs estimations are based on the management system recomended in the brocure "Casuarina in agroforestry systems" MADELEÑA/CATIE/DGF, San José Costa Rica, 1989.

RESUMEN REGIONAL DEL RENDIMIENTO Y COSTO DIRECTO,
Cuadro 8.2 EN US\$,
EN TRABAJOS PARA LA PRODUCCION DE AUM
(ARBOLES DE USO MULTIPLE), 1988-1989

		Countries - 1989			Central America			
					Total or I			
		GT	HN	sv	CR	1989	1988	TOTAL
NURSERIES	•							
Number of nurseries		5	5,5	77	15,5	32	23	55*
Aver daily wages/1000 se	_	10,5	23,2	11,8	5,4	10,4	14,5	121,1
Aveverage cost/1,000 se	edlings	31,7	73	56,2	72,1	62,4	66,9	64,3
SOIL PREPARATION								
Number of tasks			5	6	51	62	23	85*
Average daily wages/ha		3/	81,2	42,8	24	30,4	38,7	32,6
Average cost (\$) 2/			232,6	69,9	140,1	140,8	127,2	137,1
PLANTATION								
Number of tasks			4	5	51	60	23	83*
Average daily wages/ha		3/	19,7	23,5	34,2	29,1	27,8	28,7
Average cost (\$) 2/			307,9	177,3	300,6	290,8	252	2801
MAINTAINANCE								
Number of tasks			5	5	51	61	18	79*
Average daily wage/ha	Year 1		54,1(1)	•	4/	54,1(01)	28,9	30,2
	Year 2	IŦ	40,2(2)	-	25,4	26,0(53)	26,5	26,1
	Year 3	WASNT	16,8(1)	38,6(3)	10,6	12,2(55)	14,8	12,8
	Year 4	•	•	8,6	8,6(51)	13,4	9,9	
	Year 5		17,1(1)	45,9(2)	3,1	4,9(54)	-	4,9
Average cost/ha (\$) 2/	Year 1		162,2	-	2/	162,2	147,2	139,5
	Year 2	IT	120,7	•	159,8	157,5	100,7	143,1
	Year 3	WASN'T	50,5	71,9	56,2	57	48,1	54,8
	Year 4	•	-	46,7	46,7	39,2	44,7	
	Year 5	42,9	100,8	14,9	18,6	-	18,6	
TRIMING								
Number of tasks		7	8	7	IT	22	13	35*
Aver, daily wage/1000 tre		35,1	15,1		WASNT	28,3	32,7	29,9
Average cost/1000 trees	(\$) 2/	73	40	63,3		58	86	68,4
TOTAL EXPROITATION								
Number of tasks		5	4	5	IT	14	15	29*
Aver, daily wage/1000 tre		45,2	24,8	29	WASN'T	33,6	74,9	55
Average cosV1000 trees	(\$) 2/	76,2	132,7	50,25		83,1	120,1	102,2

^{1/} Information for 1,000 extracted trees

^{2/} Currency conversion values 14US = 4.27Q; = 2.00 L; = 6.92¢ELS; = 88.30 ¢COS.

This includes: labor and inputs. (SOURCE: ACAN-EFE, May, 1990). This costs only include direct costs of each task (Total value of labor and inputs).

^{3/} Tasks like soil preparation and alived borders were not included because the information correspond to pure plantations systems with seedlings in plastic bags.

^{4/} Labor and maintainance costs of the first year are included in the plantation costs

It refers to the total adding of each type of task.

Cuadro 8.3 PREPARACION DE SUELOS

1

		Lat	or and co	sts by hecta			_
	25	00 trees/h	a	1600 (ress/ha	1111 tre	ss/ha
		Daily Wage	(\$)	Daily Wage	(\$)	Daily Wage	(\$)
i	1	0.05	0.15	0.05	0.15	0.05	0.1
	21	12,60	33,27	12.60	33,27	12,60	33.2
	1	4.11	10.85	4.11	10.85	4.11	8.01
	l	0.18	0.46	0.18	0.46	0.18	0.4
·	1	5.93	15.67	5.93	15.67	5.93	15.6
	1	1.44	3.80	1.44	3.80	1.44	3,8
j	· 12	2.76	7.28	2.76	7.28	2.76	7.2
	105	11.15	29.45	7.14	18.85	4.96	13,0
	11	12.95	34.18	8.29	21.88	5.75	15.1

ESPECIES PRINCIPALES PARA LA REFORESTACION EN LA Cuadro 8.4 CUENCA DEL RIO GRANDE DE SAN MIGUEL

COMMON NAME	SCIENTIFIC NAME	ALTITUDE (mosl)
Laurel	Cordia alliodora	0 - 1,000
Chaquiro	Colubrina ferruginosa	0 - 1,200
Leucaena	Leucaena leucocephala	0 - 700
Madrecacao	Gliricidia sepium	0 - 900
Memble	Poeppigia procera	0 - 900
Maquilishuat	Tabebuia rosea	0 - 800
Cedro	Cedrela mexicana	0 - 1,000
Caulote	Guazuma ulmifolia	0 - 1,000
Carbón	Mimosa tenuiflora	0 - 800
Paraíso	Melia azederach	0 - 800
Cortez Blanco	Roseodendron	0 - 800
Conacaste	Enterolobium cyclocarpum	0 - 900
Almendro de Río	Andira inirmis	500 - 1,000
Caoba	Switenia humilis	100 - 1,000
CONIFERAS		
Pino Caribe	Pinus carbaea	500 - 1,500
Pino Ocote	Pinus oocarpa	800 - 1,600
Ciprés	Cupressus lusitanica	1,300 - 3,300

Prepared by
EMPERA TRIZ DE MAYORGA
FOREST SERVICE
D.G.R.N.R., M.A.G.

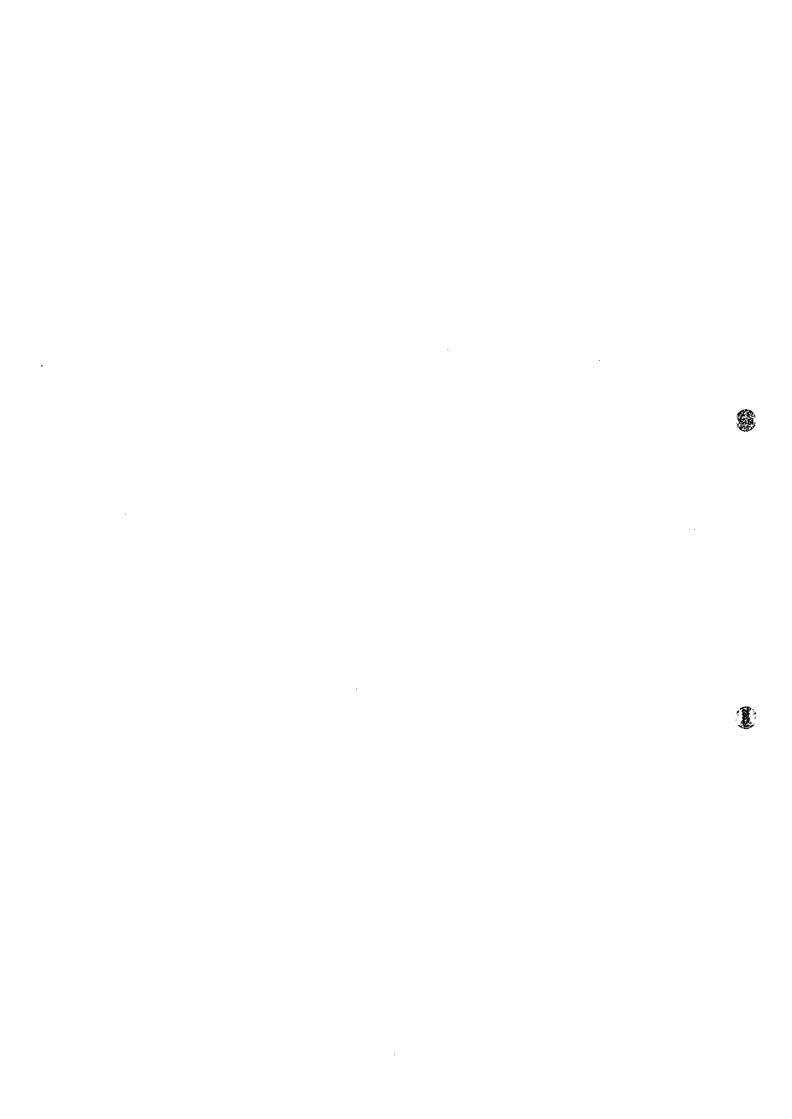
PRINCIPALES ESPECIES EXOTICAS QUE SE PODRIAN UTILIZAR
Cuadro 8.5 PARA LA
REFORESTACION DE LA CUENCA DEL RIO GRANDE DE SAN
MIGUEL

COMMON NAME	SCIENTIFIC NAME	ALTITUDE (mosl)
Teca	Tectona grandis	0 - 800
Cemaldulensis	Eucalyptus camaldulensis	500 - 1,400
Neem	Azadirachta indica	500 - 1,000
Eucalipto Citriodora	Eucalyptus citriodura	500 - 1,000
Flor Amarilla	Cassia siamea	500 - 1,000
Melina	Gmelina arborea	0 - 800
Mangium	Acacia mangium	500 - 1,000
Eucalipto	Eucalyptus grandis	500 - 1,000
Eucalipto	Eucalyptus tereticomis	500 - 1,000
Eucalipto	Eucalyptus saligna	500 - 1,000

Prepared by
EMPERA TRIZ DE MAYORGA
FOREST SERVICE
D.G.R.N.R., M.A.G.

LIBRO DE DATOS

9: RESULTADO DE LOS RECONOCIMIENTOS


1

4

Libro de Datos 9 Lista de Cuadros y Figuras: Resultado de los Reconocimientos

Cuadro 9.1	Lista de los Cortes Transversales del Rio	9.T.1
Figura 9.1	Ubicacion de los Cortes Transversales del Rio	9.F.1
Figura 9.2	Puente Vado Marin	9.F.9
Figura 9.3	Puente el Delirio	9.F.11
Figura 9.4	Alcantarillado para Drenaje en el Jocotal	9.F.13
Figura 9.5	Vertedero de Desagüe (Gavion) en el Jocotal	9.F.15

Cuadro 9.1 LISTA DE LOS CORTES TRANSVERSALES DEL RIO(1/2)

OWN WHOOFF HITEU	SAN	MIGUEL	RIVER
------------------	-----	--------	-------

	NUUEL KIV			TIKTET PROFEST			**************************************			***	
المدا	INTERVAL		١		ACCUMULATED			ACCUMULATED			ACCUMULATED
NO	(km)	DISTANCE(km)		(km)	DISTANCE(km)		(km)		NO	(km)	DiSTANCE(km)
0	1052	1052	51	0.40	36 32	101	0.30	66 82	151		95 32
	0.70	1122	52	0.40	3672	102	0 30	67.12	152	050	95.82
2	0.40	11.62	53	0.40	37.12	103	0.50	67.62	153	0.60	96.42
3	0.40	1202	54	0.40	37.52	104	0.50	68.12	154	0.50	95.92
4	0.40	12.42	55	0.50	38.02	105	060	63 72	155	0.50	97.42
5	0.80	13.22	55	0.60	38.62	106	0.50	69.22	156	0.50	97.92
6	0.50	13.72	57	0.50	39.12	107	0.60	69.82	157	0.50	98.42
1 š	0 20	13.92	58	0.50	39.62	103	0.50	70.32	158	0.10	99.52
8	<u> </u>	14.52	58A	0.20	39.82	103	0.50	70.82	159	0.10	
	0.40	14.92	39	0.30	40.12		0.50	10.82		V 30	99.02
		19.82				110	0.70	71.52	160		99.52
10	0.40	15.32	60	0.50	40 62	Ш	080	72.32	161	0.40	99 92
11	0.40	15.72	61	0.50	41.12	112	060	72.92	162	0.50	100.42
12	090	16.62	62	0.80	4192	113	0.50	73.42	163		101.02
13	060	17.22	63	0.80	1212	114	0.50	73.92	164	0.50	101.52
14	050	17.72	64	050	43 22	115	0.40	74.32	165	0.60	102.12
15	0.40	18.12	65	1.00	44 22	118	050	74.82	166	020	102 32
16	070	18.82	66	0.50	44.72	117	070	75.52	167	030	102 62
17	0.50	19.32	67	0.50	45 22	118	060	76.12	168	030	103.12
18	0.40	19.72	69	0.45	45.67	113	0.90	77.02	163	050	103.62
19	0.40	20.12	68A	0.20	45.87	120	0.50	77.52	170	0.50	104.12
20	0.50	20.62	69	0.45	46.32	121	0.70				
								78 22	171	0.50	104.62
21	030	21.12	70	0.60	46.92	155	0.70	18 92	172	1.00	105.62
22	060	21.72	η	080	47.12	123	0.70	79.62	173	0.60	106.22
23	0.50	22 22	72	0.30	48.02	124	0.80	80.42	174	0.60	106.82
24	070	55.85	73	0.40	48.42	125	0.60	81.02	175	080	107.62
25	0.50	23.42	74	1.50	49.92	126	0.60	81.62	176	0.60	103.22
26	0.40	23.82	75	0.40	50.32	127	0.60	82.22	177	0.50	108.72
27	0.50	24.32	7ô	1.00	51.32	128	0.30	82.52	178	050	109.22
28	0.50	24.82	77	1.00	52 32	129	0.70	83.22	179	0.50	109.72
29	0.40	25 22	78	0.60	52 92	130	080	84.02	180	0.50	110 22
30	0.50	25.72	79	0.50	53.42	131	0.60	84.62	181	0.40	110 62
31	080	26.52	80	1.00	54.42	133	0.50	85.12	182	060	111.22
32	0.70	27.22	81	0.50	54 92	133	0.50	85 62	183	0.50	111.72
33	0.50	27.72	82	0.40	55.32	134	0.60	86 22	181	0.30	112.02
34	030	28.02	83	0.65	55.97	135	0.50	86.72			IIE.VE
35	0.30	28 32	83A	0.15	56.12	136	0.60	87.32	┝╌┤		
36	0.50	28 82	84	0.40	58.52	137	0.50	87.82		 	
37	0.50	29.32	85	0.40	57.42	138	0.50			-	<u> </u>
38	0.30	29.72	85 85	0 90				88 32			
			87	050	58.32	139	0 60	88.92			ļ
39]	0.50	30 22		0.00	58 82	140	050	89.42			
40	0.50	30.72	88	0.50	59.32	141	0.50	89.92			
41	0.50	31.22	89	0.60	59 92	142	0.60	90.52			
42	0.40	31.62	90	0.60	60.52	143	0.60	91.12			
43	0.60	32 22	91	0.60	61.12	173	0.50	91.62			
44	0.40	32 62	92	0.60		145	0.50	92 12			
45	0.40	33.02	93	0.50	62 22	146	0.60	92.72			
46	0.80	33.62	94	0.50	62.72	147	0.50	93 22			
47	050	34.12	95	0.60	63.32	148	0.50	93 72			
48	080	34.92	96	0.80	64.12	149	0.50	94.22			
49	0.50	35.42	97	0.60	64.72	150	0.50	94.72		I	
50	0.50	35.92	98	0.60	65 32	 		A 411 F	 		
		V	93	0 50	65.92	├ ┨			<u> </u>		
} }			100	0.60	68.52				├ ─ !		
ئـــــــــــــــــــــــــــــــــــــ			~~	V.VV	VV. JZ	┸╌┸	l				

JOGOTAL DRAINAGE

64			confluence of San Miguel River
		ACCUMULATE	
	INTERVAL	D DISTANCE	
1	1.00	4422	from the river mouth of San Miguel River

OLOMEGA DRAINAGE

104			confluence of San Miguel River
		ACCUMULATE	
	INTERVAL	D DISTANCE	• • •
1	0.20	68 32	from the river mouth of San Miguel River
2	1.60	69.32	
3	1.20	70.52	
4	1.60	72.12	
5	1.00	73.12	
6	0.50	73 62	
7	0.10	73.72	

Cuadro 9.1 LISTA DE LOS CORTES TRANSVERSALES DEL RIO(2/2)

PELOTA RIVER

5	T		confluence of Olomega Drainage
[ACCUMULATE	
1	INTERVAL	D DISTANCE	i de la companya de
	1.00	74.12	from the river mouth of San Miguel River
2	1.50	75.62	
3	1.30	76 92	
4	1.20	78 12	
5	0.10	78 22	

TAISIHUAT RIVER

ſ	165			confluence of San Miguel River
1			ACCUMULATE	
ı		INTERVAL	D DISTANCE	
I	1	020	102 32	from the river mouth of San Miguel River
T	- 2	0.60	102 92	
Ì	3	0.50	103.42	

VILLERIAS RIVER

Г	184		T	confluence of San Miguel River
			ACCUMULATE	
ı		INTERVAL	D DISTANCE	
1	_1	020	112.22	from the river mouth of San Miguel River
	2	0.50	112.72	
	3	0.60	113.32	

GUAYABAL RIVER

184	T		confluence of San Miguel River
	I	ACCUMULATE	
!	INTERVAL	D DISTANCE	
	020	112.22	from the river mouth of San Miguel River
	050	112.82	
3	0.60	113.42	

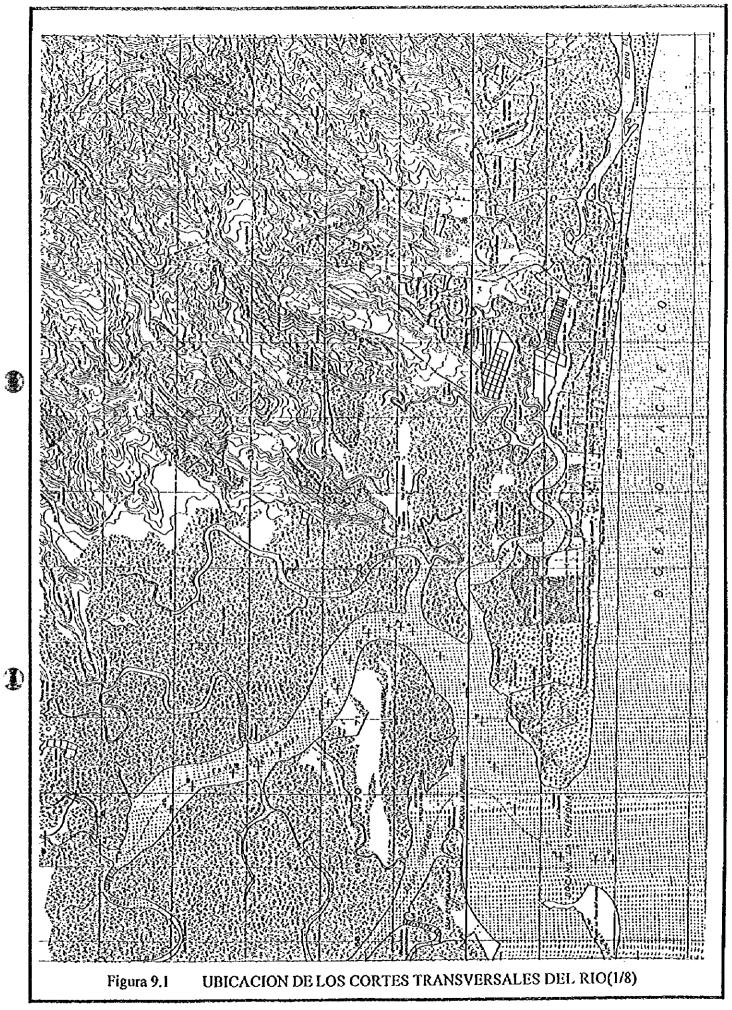
SAN MIGUEL RIVER (SUPPLEMENTARY SURVEY)

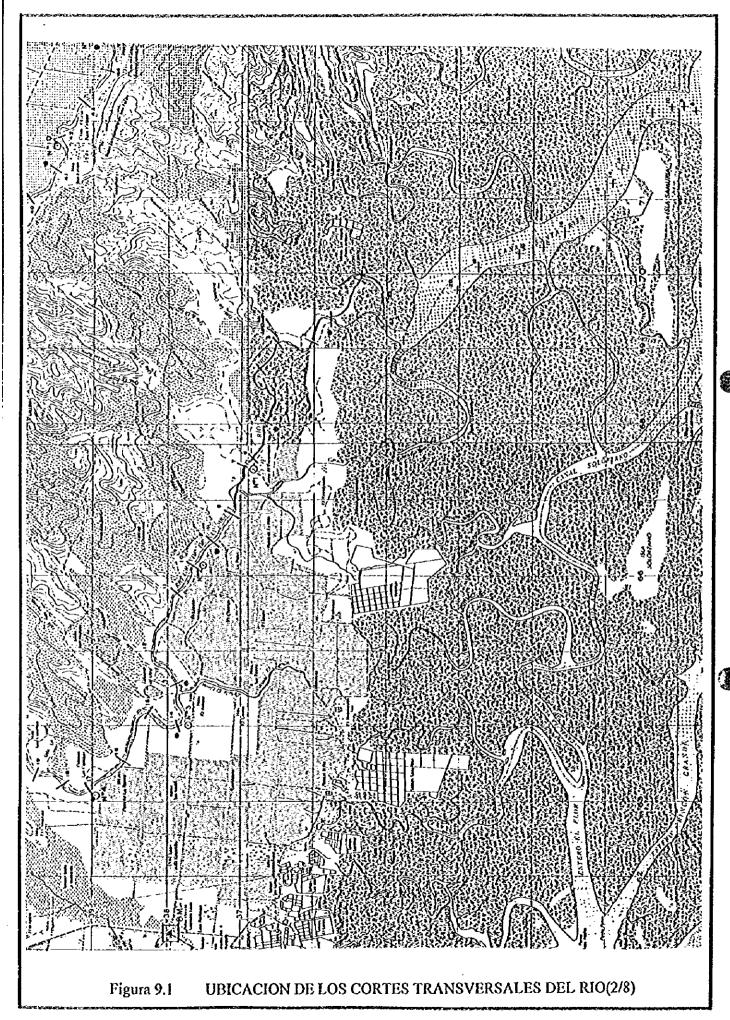
		TOTAL COOP
	No.102	67.12
		ACCUMULATE
NAME	DISTANC	O DISTANCE
300	030	67.42
362		67.48
371,	037	67.49
360	0 33	67.50
386	039	67.51
424	0.42	67.54
439	0.44	67.55
609	****	67.73
617	0.52	67.74
מווד	1.12	68 24
1135	1.14	68 26

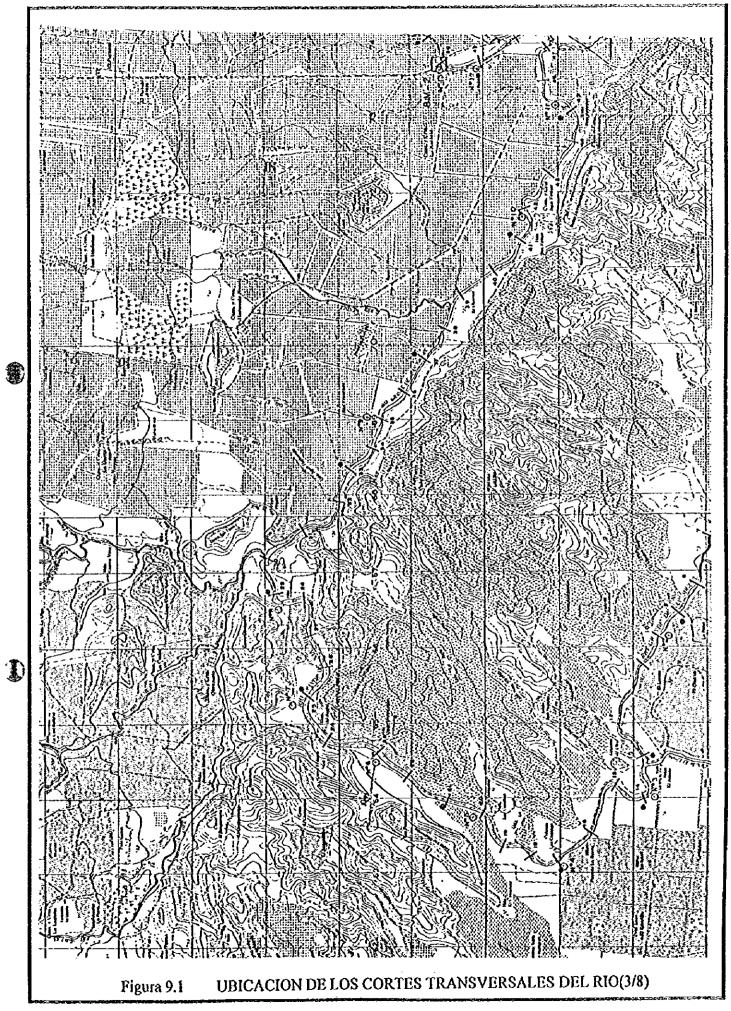
from the river mouth of San Miguel River

OLOMEGA DRAINAGE (SUPPLEMENTARY SURVEY)

	OU	68.32
		ACCUMULATE
NAME	DISTANC	D DISTANCE
300	0.30	68 65
490	0.49	6881
550	035	68 87
650	0.65	68 97
655	0.66	68 98
735	074	69.06
955	096	€9.28

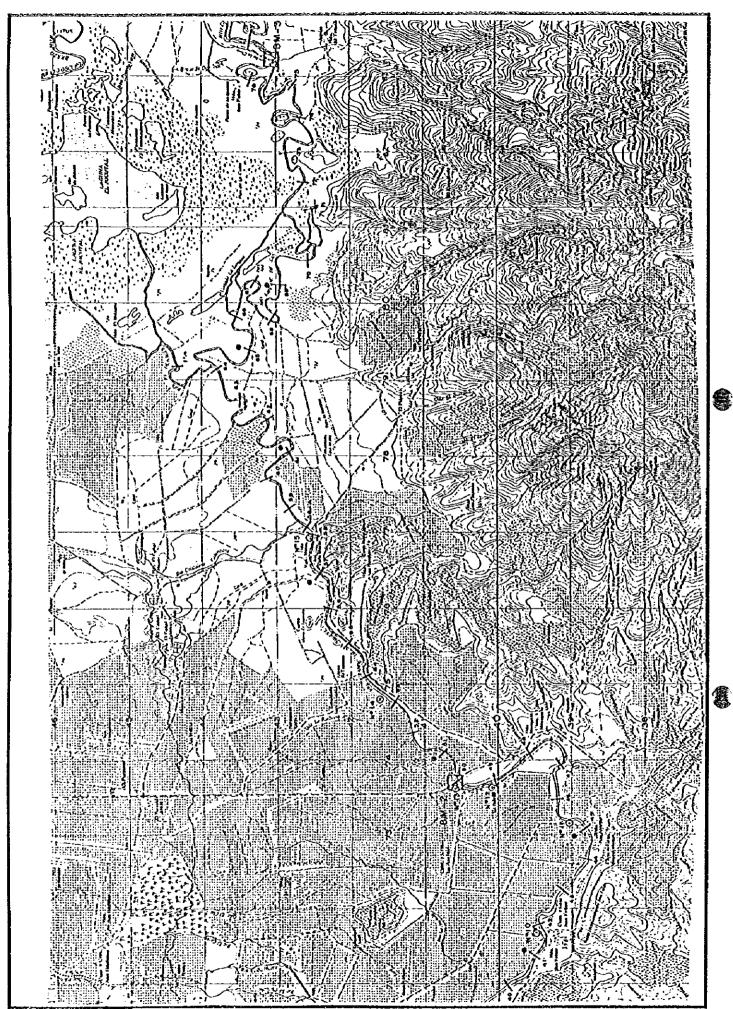
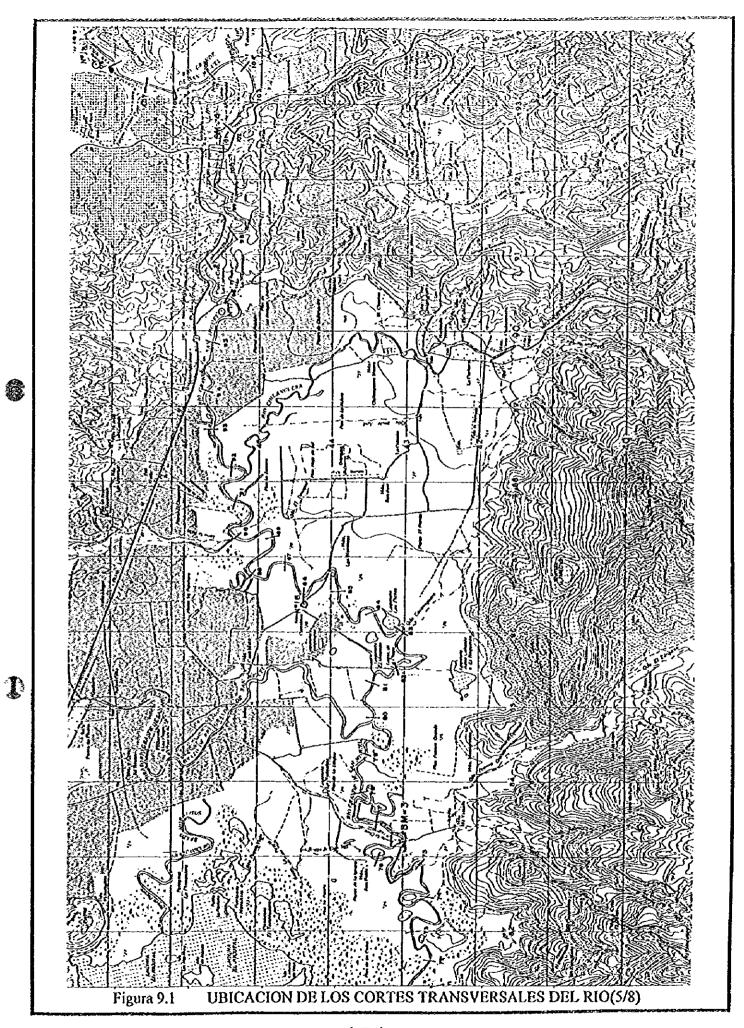
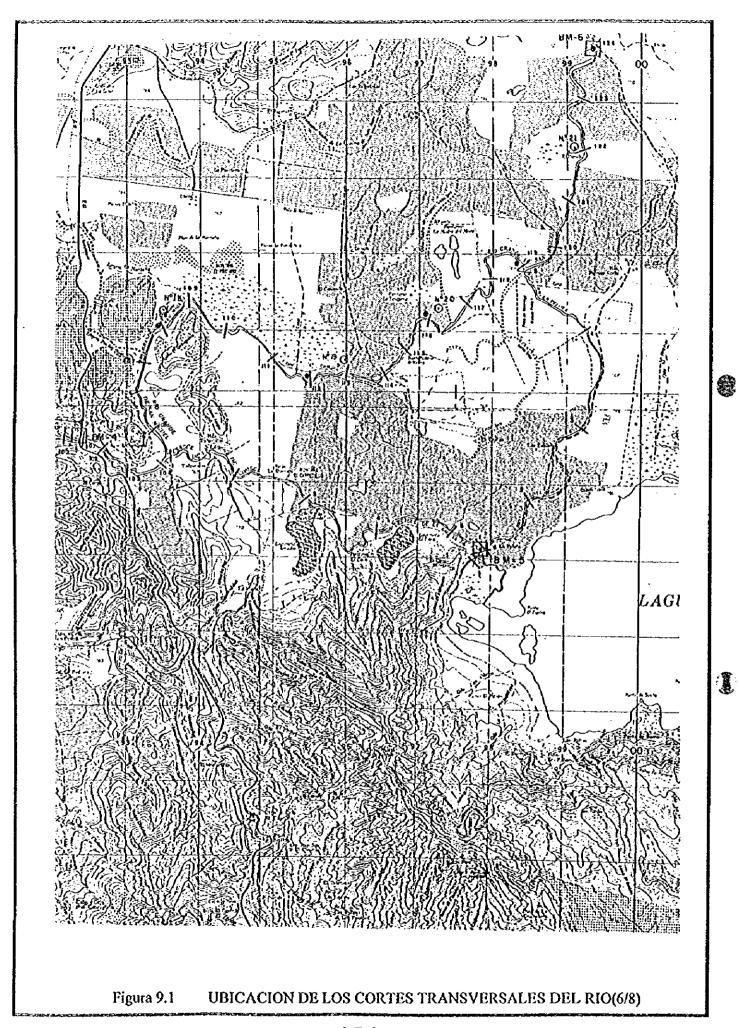
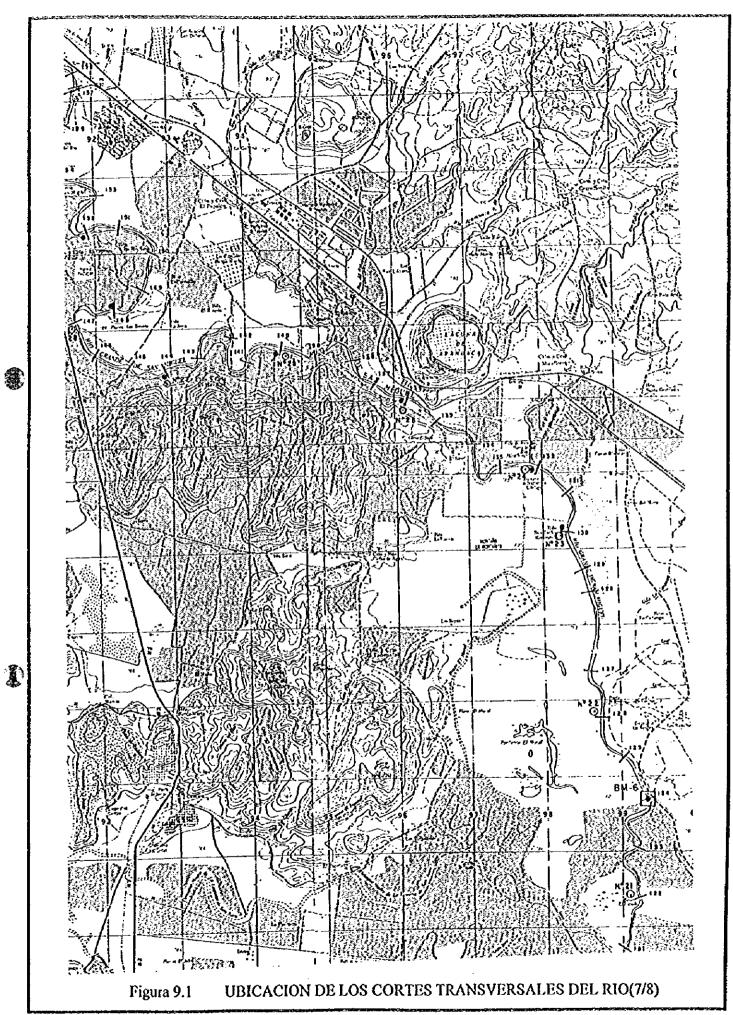
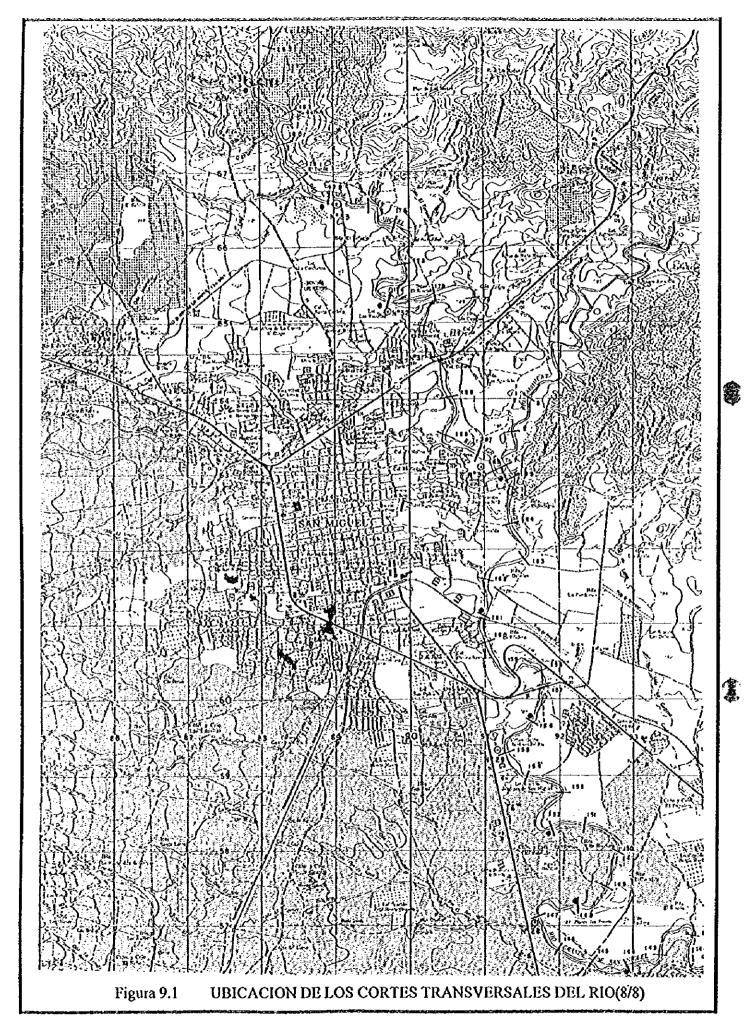

from the river mouth of San Miguel River

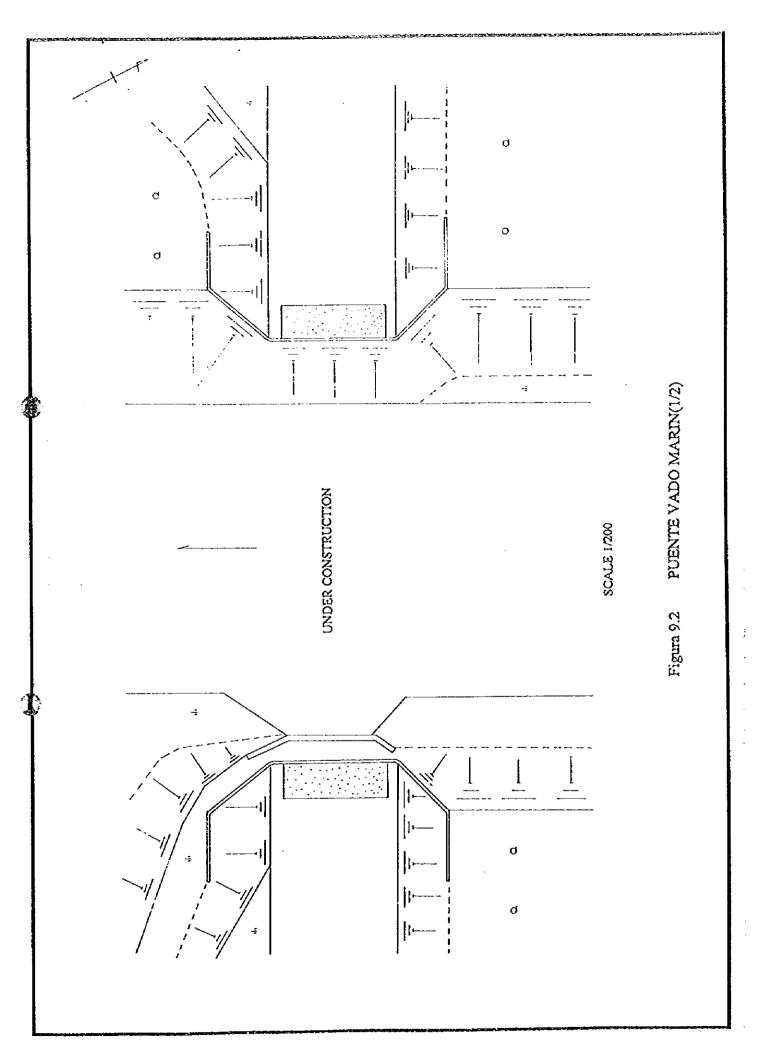

JOCOTAL DRAINAGE (SUPPLEMENTARY SURVEY)

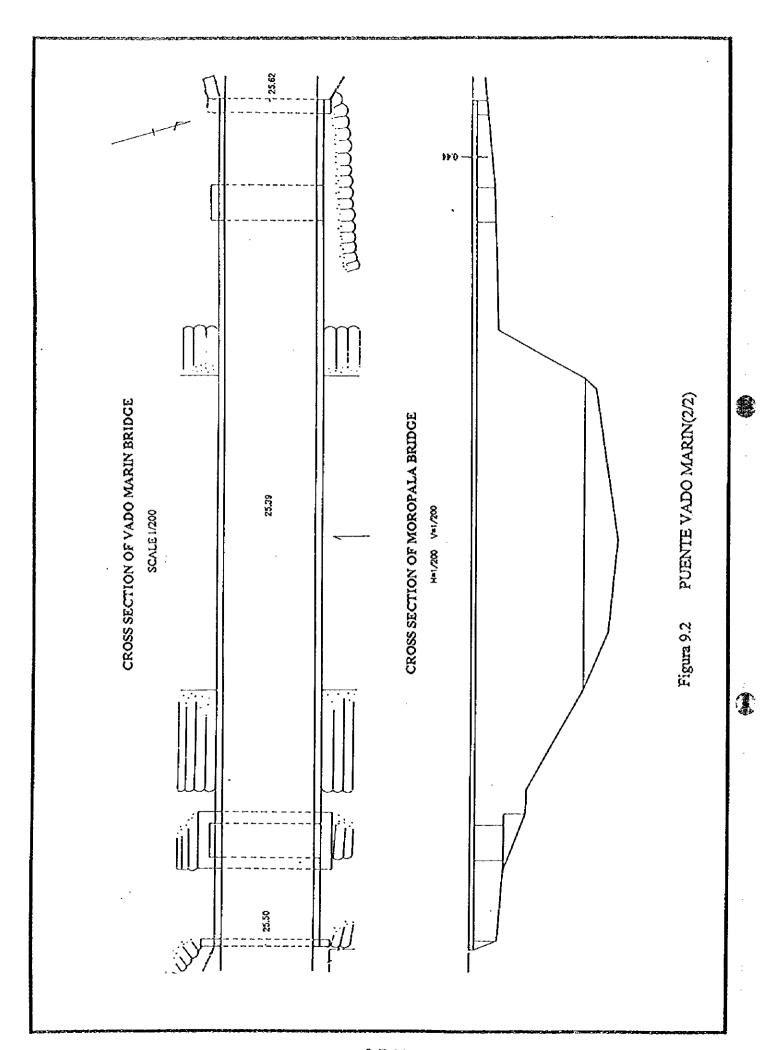

GOOGINE DIGWINGE (GO		
	NO.64	43 22
		ACCUMULATE
NAME	DISTANC	D DISTANCE
50	0.05	4327
450	0.45	43.67
810	081	44.03
2390		45.61
2395	2.40	45.62

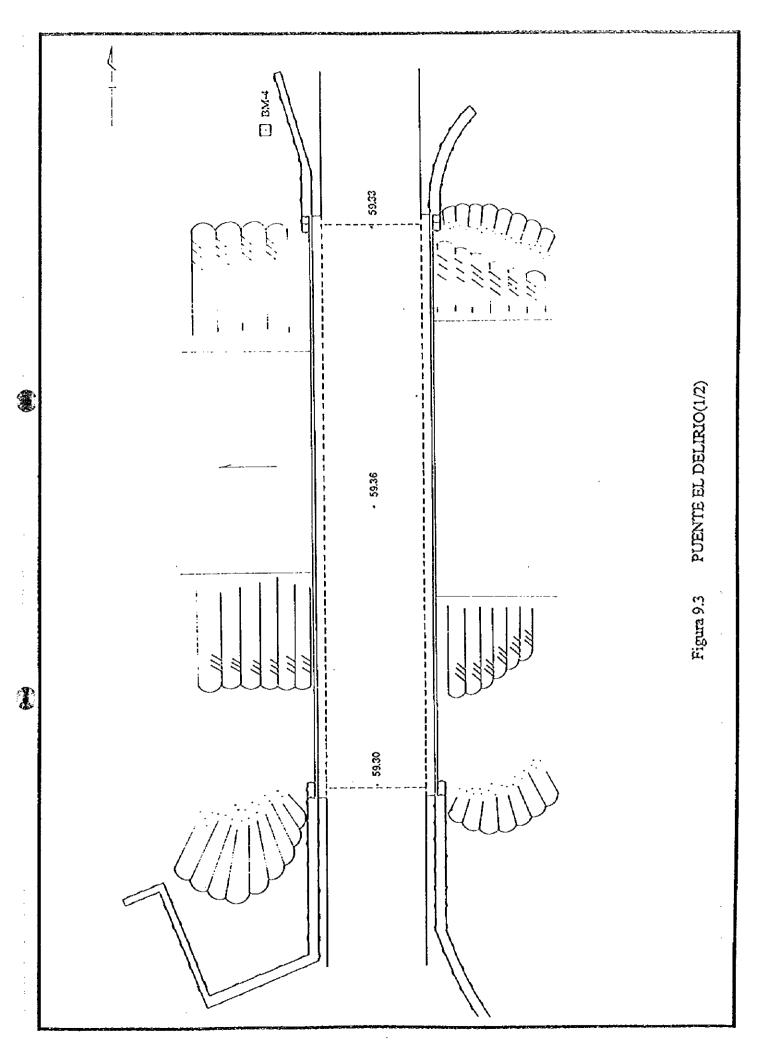
from the river mouth of San Miguel River

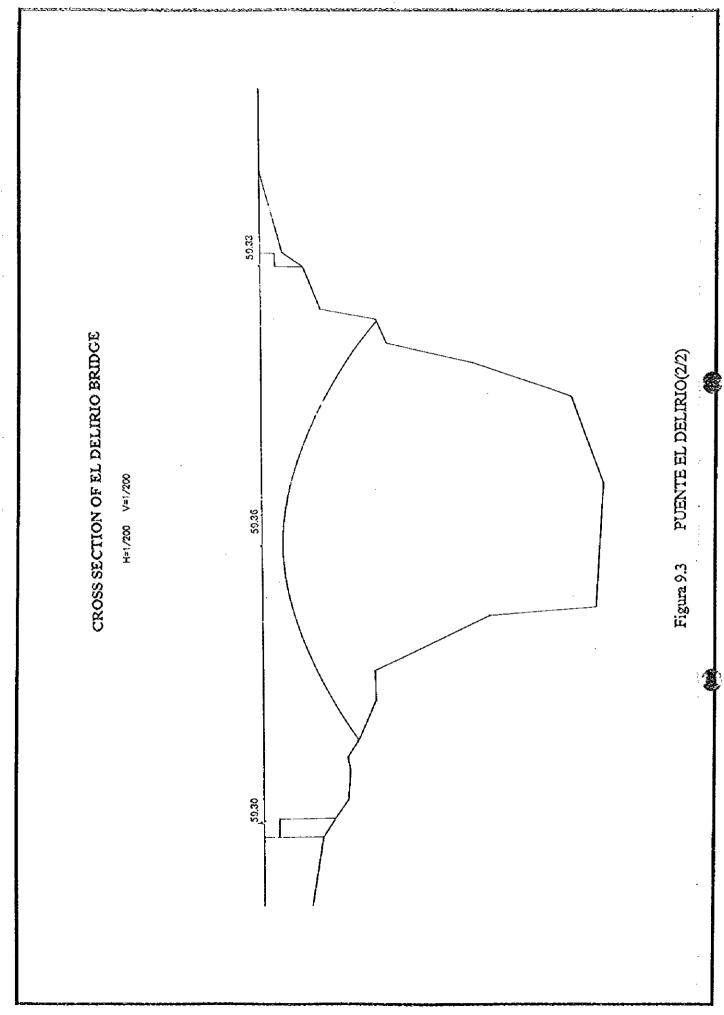
where the weir is located

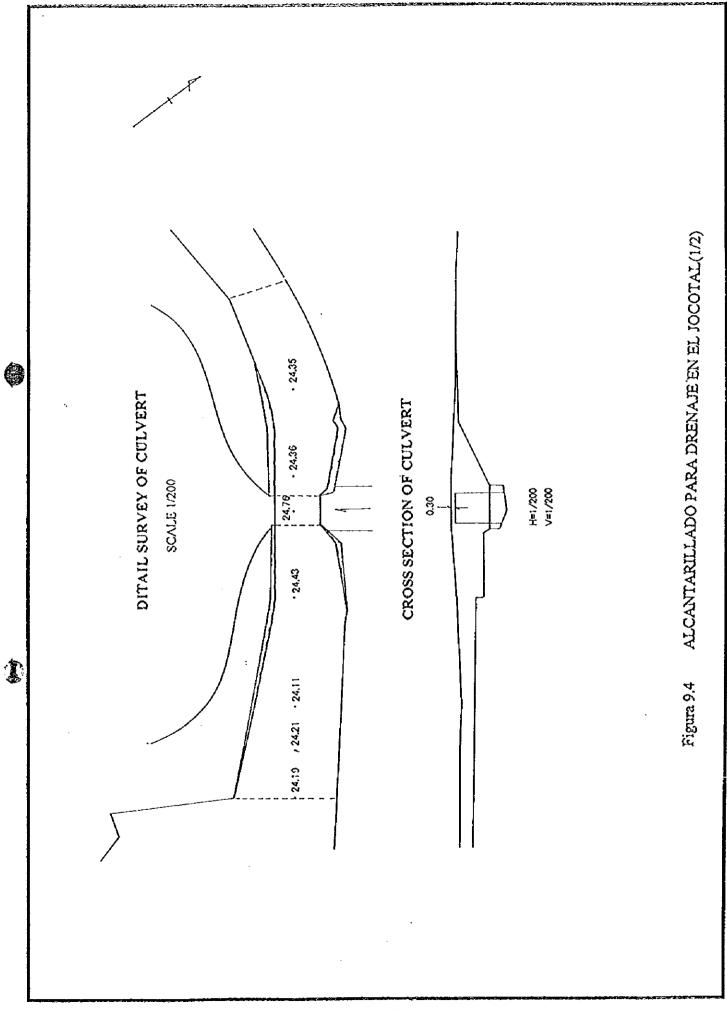






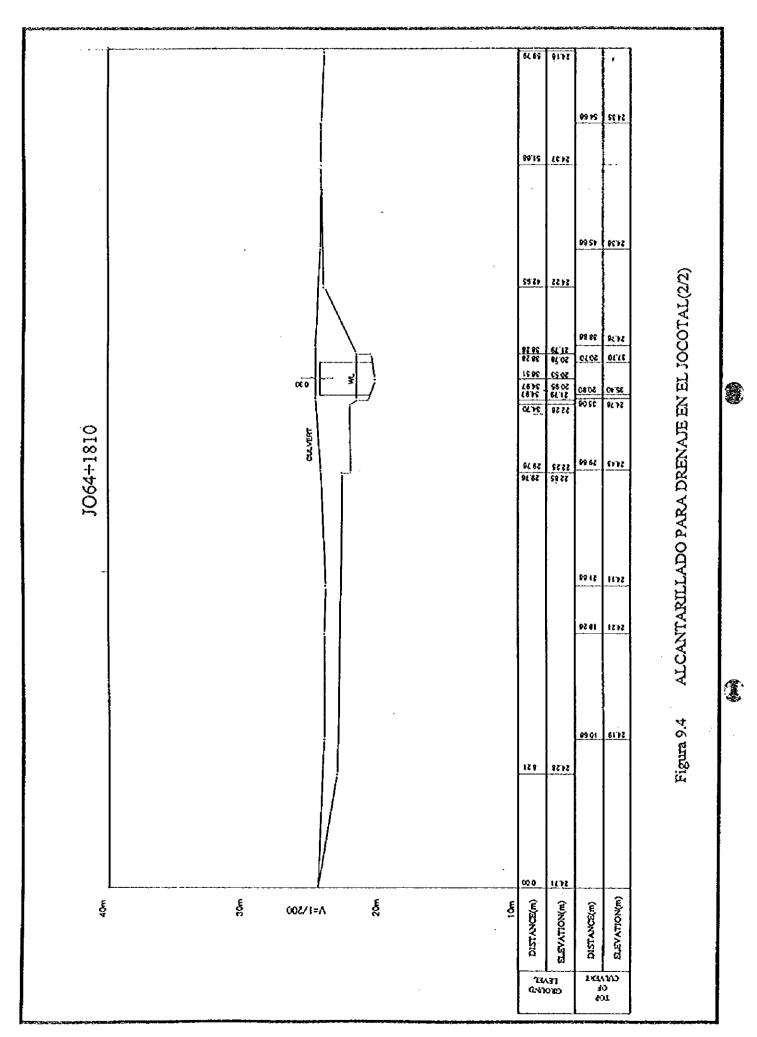

Figura 9.1 UBICACION DE LOS CORTES TRANSVERSALES DEL RIO(4/8) 9.F.4

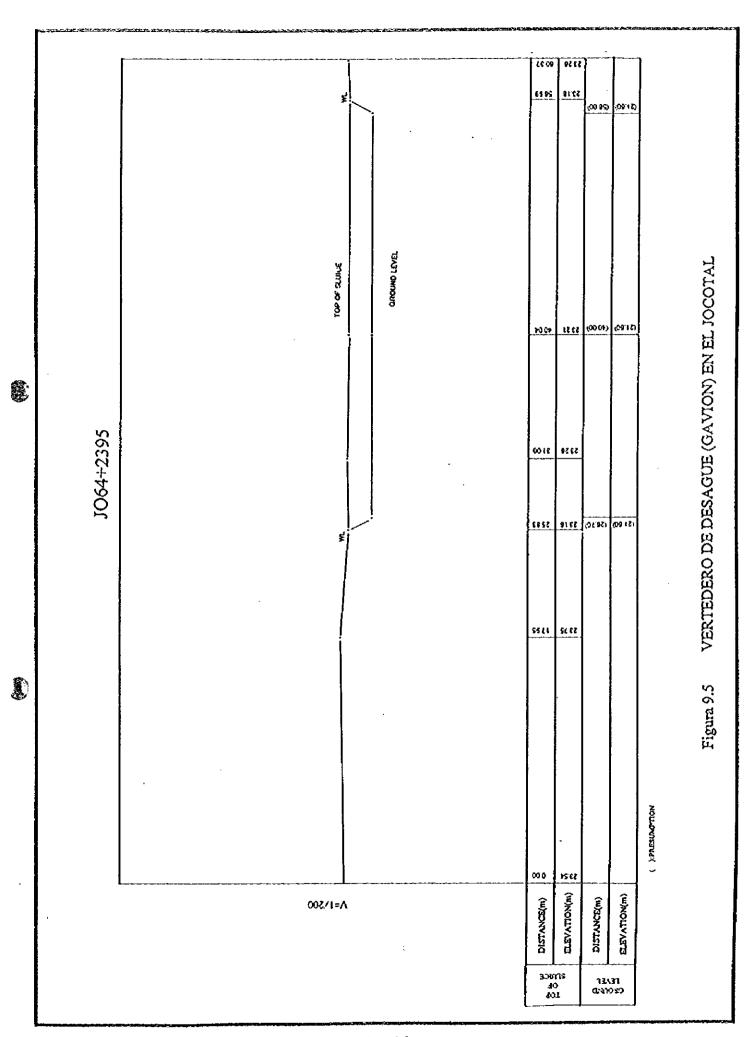












9.F.11

