8.3 Design Seismic Coefficient

8.3.1 Design Selsmic Coefficient for Existing Dams

To determine the design seismic coefficient for the Project, the correlation between seismic risk and adopted design seismic coefficient for the existing and planned dams in Turkey was studied. The design seismic coefficients (horizontal ground level seismic coefficients) for the 45 dam sites were in hand out of 184 dam sites (Dams and Hydroelectric Power Plant in Turkey, 1990).

Available seismic risk map for Turkey was prepared in 1972 by the Government of Turkey (IMAR ve ISKAN BAKANLIGI). Then, the correlation between seismic risk and the design seismic coefficient was studied by comparing the seismic risk map with the dam location. The seismic risk map for Turkey which shows the 5 zones relating to the degree of risk covering the whole of Turkey is given in Figure 8-6. The result of the survey is also given in Figure 8-7.

Consequently, the results can be summarized by item as follows;

The maximum value of adopted design seismic coefficient was 0.18,

The minimum value of adopted design seismic coefficient was 0.05,

The value of 0.18 as design seismic coefficient was adopted for 1 site out of 45 sites, similarly 0.15 for 18 sites, 0.12 for 4 sites, 0.10 for 16 sites and 0.05 for 6 sites,

The coefficient 0.15 is noticeable in 1st degree zone given in Figure 8-6,

The coefficient 0.12 or 0.10 is noticeable in 2nd degree zone,

The coefficient 0.15 or 0.10 is noticeable in 3rd degree zone, and

The coefficient 0.05 is noticeable in 4th degree zone.

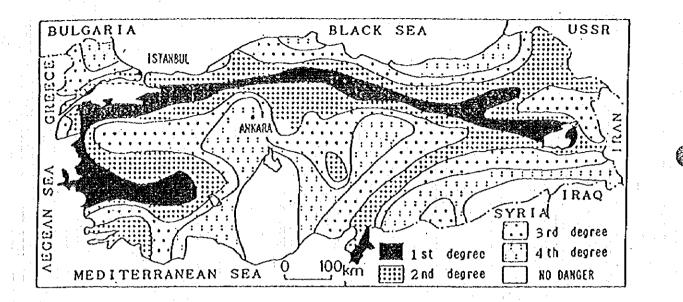


Figure 8-6 Seismic Risk Map for Turkey (1972)

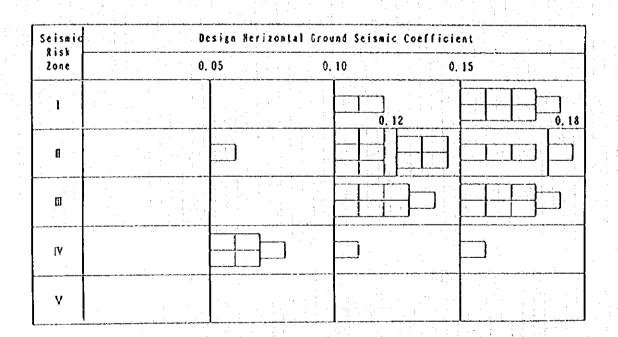


Figure 8-7 Design Seismic Coefficient used for Dams in Turkey

In this study, the reasonable results are obtained, that the high coefficient was adopted for the hazardous zone, and on the contrary the low coefficient for the safer zone.

Considering above-mentioned tendency, it can be standardized as follows from the viewpoint of earthquake-resistant design for dams in Turkey.

The design seismic coefficient 0.15 can be applied for the 1st degree zone

The coefficient 0.15 - 0.12 for the 2nd degree zone

The coefficient 0.12 - 0.10 for the 3rd degree zone

The coefficient 0.10 - 0.05 for the 4th degree zone

8.3.2 Estimation of Maximum Acceleration at the Sites

(1) Analysis Method

10

The estimation of the maximum ground acceleration at the Bayram and the Bağlık dam site by statistical probability analysis was performed to determine the design seismic coefficient. The seismicity data used in this study are those compiled by NOAA (National Oceanic and Atmospheric Administration Environmental Data Service). The number of earthquakes which occurred within the radius of 800 km from the site during the period from 1880 to 1997 is 11,118 for the Bayram dam site, and 11,126 for the Bağlık dam site. Of previously proposed attenuation models which express maximum ground acceleration A (gal), in terms of earthquake magnitude M and epicentral distance R (km), four models shown below are used in this study.

Log A = 3.090 + 0.347 M - 2 Log (R+25)(1)	proposed by C. Oliveira 1)
	propagad by D.K. Machine (2)
Log A = 2.674 + 0.278 M - 1.301 Log (R+25)(2)	proposed by K.K. Micourie 2)
Log A = 2.041 + 0.347 M - 1.6 Log R(3)	proposed by L. Esteva and E Rosenblueth 3)

Log A = 2.308 + 0.411 M - 1.637 Log (R+30)(4) proposed by T. Katayama 4)

The maximum ground accleration for several return periods were estimated with the third-type asymptotic distribution based on the "Theory of Extreme Values".

Estimation were made with the data in the period 1880-1987 by taking an equal time interval of one year.

(2) Results of Seismic Risk Analysis at the Bayram Dam Site

The distributions of magnitudes and epicentral distances regarding seismological data used in the seismic risk analysis at the Bayram dam site (42°09' east longitude, 41°15' north latitude) are given in Table 8-1 and Figure 8-8. The number of earthquakes yearly from 1880 to 1997 are given in Table 8-2, while the estimated values of maximum accelerations in the earthquakes with the greatest effects on the site in each of the years are given in Table 8-3.

The seismic risk analysis results based on the statistical probability theory technique concerning the Bayram dam site are shown in Figures 8-9 to 8-12.

(3) Results of Seismic Risk Analysis at the Bağlık Dam Site

The distributions of magnitudes and epicentral distances regarding seismological data used in the seismic risk analysis at the Bağlık dam site (42°03' east longitude, 41°13' north latitude) are given in Table 8-4 and Figure 8-13. The number of earthquakes yearly from 1880 to 1997 are given in Table 8-5, while the estimated values of maximum accelerations in the earthquakes with the greatest effects on the site in each of the years are given in Table 8-6.

The seismic risk analysis results based on the statistical probability theory technique concerning the Bağlık dam site are shown in Figures 8-14 to 8-17.

(4) Maximum Accelerations Assumed for the Bayram and the Bağlık Dam Sites

The maximum accelerations at the ground surface assumed for the Bayram and the Bağlık dam sites can be put together in Tables 8-7 and 8-8 from the previously-mentioned seismic risk analysis.

As can be comprehended from the tables, the results of estimation of maximum acceleration vary greatly depending on the attenuation equation applied. Since such uncertainties exist in the seismic risk analysis, and as evaluations are on the conservative side, a value enveloping Table 8-7 or Table 8-8 is to be considered as the assumed maximum acceleration for each site.

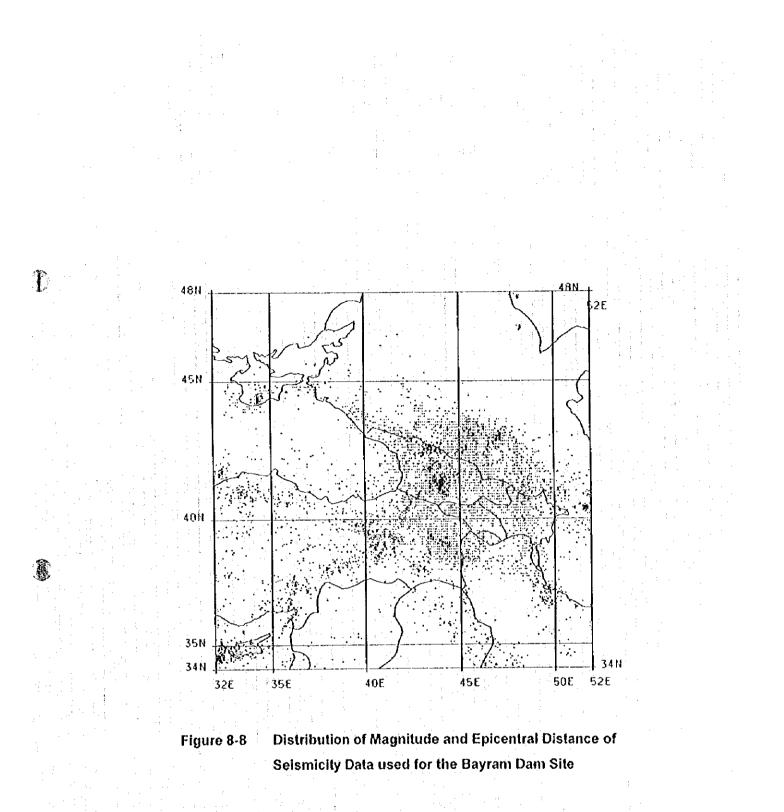
In effect, 150 gal is to be taken as the maximum acceleration at the ground surface during earthquake for the Bayram dam site, and 190 gal for the Bağlık dam site.

Þ

1

Further, the 150 gal for the Bayram dam site and the 190 gal for the Bağlık dam site approximately correspond to a return period of 1000 years.

Table 8-1 Distribution of Magnitude and Epicentral Distance of


Seismicity Data used for the Bayram Dam Site

	0<=D<50	<100	<200	<300	<400	<500	009	<700	<800 4800	Total
0 <m<3.0< td=""><td></td><td>30</td><td>633</td><td>ω</td><td>0</td><td>0</td><td>0</td><td>0 0 1 1 1</td><td>12</td><td>743</td></m<3.0<>		30	633	ω	0	0	0	0 0 1 1 1	12	743
<3.5	18	70	1254	248	10 2	24	15	10	8	1827
<40	6	130	622	628	776	515	220	62	53	3015
<4.5	8	82	307	367	500	295	166	86	111	1934
<5.0	۲	40	222	286	313	236	182	127	127	1540
<5.5	4	56	142	220	238	134	135	6	26	1087
<6.0	*	12	101	135	118	85	76	28	95	58 2
<6.5	2	чî	- 56	46	32	<u>6</u>	18	19	46	213
<7.0		0	9		9	10	ຕ	0	13	64
<7.5	0		o	4	2	10	0	r	m	53
<8.0	0	0	0			0	0	0	0	2
8.0<=	2	0 0 		0	0	0	* **	~-	0	*
Unknown	0	0	0	0	0	ан 1 0 - 2 1	0	0	0	0
Total	53	405	3364	1954	2090	1328	815	468	641	11118
									Epicentral Distance (km)	Distance

Magnitude

ž

Ĩ

8 - 15

Ţ

Year	<u> </u>	Sum of N	Year	N	Sum of N
1880	2	2	1930	61	780
1881	11	13	1931	54	834
1882	6	19	1932	34	868
1883	2	21	1933	22	890
1884	3	24	1934	29	919
1885	4	28	1935	45	964
1886	3	31	1936	45	1009
1887	1	32	1937	31	1040
1888	5	37	1938	49	1089
1889	6	43	1939	34	1123
1890	7	50	1940	65	1188
1891	7	57	1941	29	1217
1892	4	61	1942	18	1235
1893	5	66	1943	18	1253
1894	4	70	1944	20	1273
1895	3	73	1945	22	1295
1896	6	79	1946	36	1331
1897	8	87	1940	30	1363
1898		88	1948	32	1395
1899	4	92	1948	53	1395
1900	6	98	1949	39	1440
1900	6	104	1950	28	and a second
1901	31	104	1951	39	1515
1902	27	135			1554
The second se		102	1953	67	1621
1904	15		1954	46	1007
1905	26	203	1955	27	1694
1906	22	225	1956	19	1713
1907	24	249	1957	33	1746
1908	26	275	1958	43	1789
1909	40	315	1959	31	1820
1910	19	334	1960	40	1860
1911	8	342	1961	32	1892
1912	25	367	1962	899	2791
1913	24	391	1963	761	3552
1914	15	406	1964	690	4242
1915	17	423	1965	625	4867
1916	22	445	1966	815	5682
1917	12	457	1967	254	5936
1918	8	465	1968	371	6307
1919	11	476	1969	271	6578
1920	7	483	1970	656	7234
1921	. 7	490	1971	310	7544
1922	5	495	1972	238	7782
1923	16	511	1973	196	7978
1924	32	543	1974	290	8268
1925	14	557	1975	451	8719
1926	27	584	1976	625	9344
1927	64	648	1977	443	9787
1928	32	680	1978	412	10199
1929	39	719	1979	31	10230

Table 8-2Number of Earthquakes in a Year during the Period from 1880 to 1997for the Bayram Dam Site (1/2)

Year	N	Sum of N
1980	31	10261
1981	40	10301
1982	40	10341
1983	49	10390
1984	52	10442
1985	34	10476
1986	59	10535
1987	24	10559
1988	58	10617
1989	34	10651
1990	64	10715
1991	121	10836
1992	60	10896
1993	41	10937
1994	51	10988
1995	54	11042
1996	73	11115
1997	3	11118

Number of Earthquakes in a Year during the Period from 1880 to 1997 for the Bayram Dam Site (2/2) Table 8-2

D

Table 8-3 Maximum Accelerations of the Year at the Bayram Dam Site during the Period from 1880 to 1997 (1/3)

······	1	Altonuclia	n Fountion	(gal
Year		Allenuatio	n Equation	-r
rear	Oliveira's Eq. ACC.	McGuire's Eq. ACC.	Esteva & Rosenblueth's Eq. ACC.	Katayama's Eq. ACC.
1880	0.30	3.66	0.33	0.84
1881	1.38	11.90	1.44	4.60
1882	0.26	3.71	0.32	1.02
1883	0.23	3.55	0.30	0.97
1884	0.74	7.59	0.81	2.49
1885	0.37	4.12	0.38	1.08
1886	3.43	20.64	3.14	8.57
1887	6.16	28.76	5.43	12.01
1888	11.67	44.32	10.54	20.70
1889	1.19	10.38	1.22	3.67
1890	1.56	11.75	1.49	4.02
1891	2.25	15.69	2.14	6.12
1892	38.29	85.94	99.10	36.75
1893	1.46	13.57	1.66	6.08
1894	1.31	10.24	1.25	3.29
1895	0.52	6.06	0.60	1.88
1896	1.32	10.81	1.31	3.75
1897	0.43	5.32	0.51	1.60
1898	2.57	14.81	2.26	4.70
1899	5.67	28.43	5.02	12.57
1900	1.02	9.39	1.07	3.24
1901	4.61	26.15	4.22	12.16
1902	2.42	16.08	2.25	6.12
1903	25.13	78.75	23.44	46.08
1904	8.18	35.48	7.22	16.05
1905	24.08	87.23	21.21	63.18
1906	13.94	54.52	12.30	30.39
1907	3.17	21.45	3,10	10.12
1908	5.32	28.06	4.76	12.87
1909	3.02	18.57	2.76	7.30
1910	2.00	14.21	1.90	5.26
1911	2.92	16.24	2.57	5.32
1912	5.27	27.56	4.70	12.39
1913	4.91	26.85	4.44	12.32
1914	2.18	14.03	1.97	4.72
1915	3.31	17.58	2.92	5.84
1916	2.60	18.44	2.43	9.59
1917	3.43	16.98	3.07	5.14
1918	1.03	8.69	1.00	2.65
1919	16.35	55.66	15.29	27.50
1920	4.81	27.72	4.46	13.62
1921	3.72	21.73	3.38	9.13
1922	1.57	12.60	1.57	4.75
1923	3.26	18.08	2.88	6.37
1924	48.18	113.24	65.17	63.63

(gal)

8 - 18

Table 8-3Maximum Accelerations of the Year at the Bayram Dam Siteduring the Period from 1880 to 1997 (2/3)

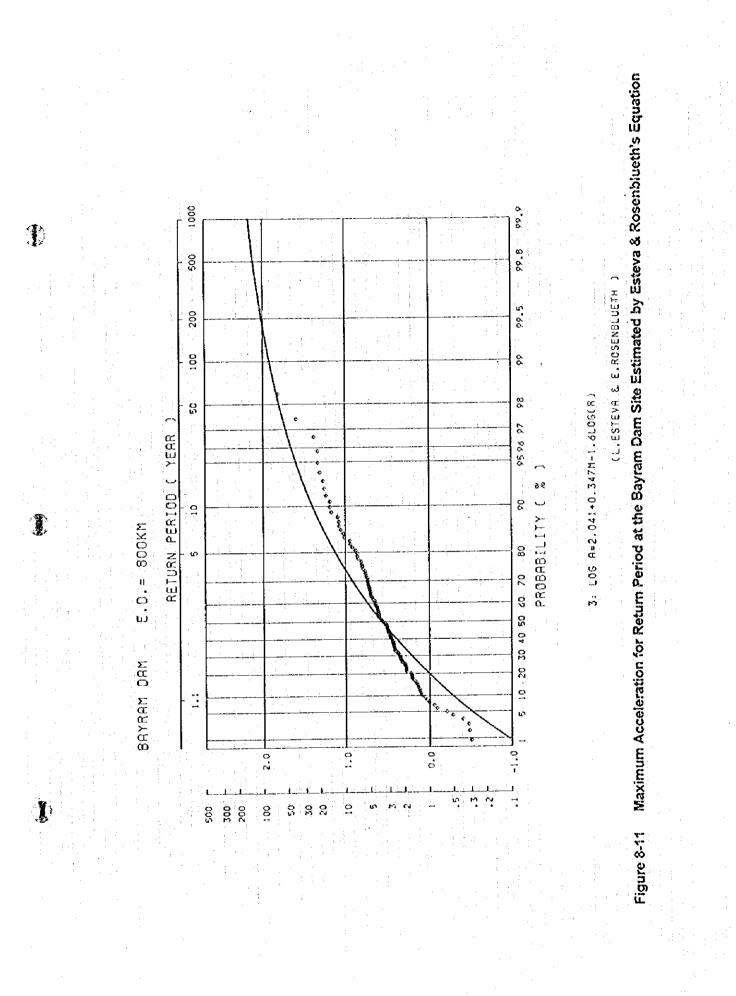
(gal)

		Attenuatio	n Equation	
Year	Oliveira's Eq. ACC.	McGuire's Eq. ACC.	Esteva & Rosenblueth's Eq. ACC.	Katayama's Eq. ACC
1925	22.61	72.22	21.14	40.43
1926		31.76	5.48	15 76
1927	2.24	13.44	1.98	4.12
1928	5.81	27.76	5.12	11.54
1929	6.13	27.87	5.41	11.11
1930	2.92	18.01	2.62	9.15
1931	2.97	19.35	2.80	8.24
1932	8.18	35.48	7.22	16.05
1933	1.27	9.48	1.13	3.28
1934	12.39	45.76	11.32	21.27
1935	8.00	35.79	8.23	18.63
1936	2.93	19.16	2.76	8.14
1937	2.48	16.20	2.28	6.18
1938	2.96	17.89	2.67	6.80
1939	5.73	35.59	5.75	22.13
1940	16.00	56.16	14.62	30.73
1941	5.82	29.10	5.16	13.04
1942	1.38	13.39	1.62	6.15
1943	2.84	17.81	2.60	6.93
1944	2.44	15.77	2.23	5.79
1945	1.92	14.78	1.92	6.02
1946	5.92	31.23	5.35	15.44
1947	4.41	24.86	4.00	11.10
1948	4.26	23.21	3.80	9.59
1949	5.65	29.20	4.99	15.72
1950		12.74	1.63	4.60
1951		25.35	4.12	11.37
1952	6.24	32.31	5.62	16.09
1953		21.88	4.03	8.80
1954		22.89	3.56	10.03
1955		16.60	2.40	6.17
1956		47.66	15.25	19.97
1957		24.69	4.13	10.45
1958		20.49	3.21	8.10
1959	11.66	46.05	10.35	22.95
1960		14.76	1.90	6.19
1961		27.72	5.24	11.27
1962		22.66	7.07	6.27
1963		67.96	39,07	31.52
1964		17.92	4.18	6.71
1965		17.19	3.23	6.44
1966		27.15	6.33	14.23
1967		20.69	4.17	8.98
1968		56.30	17.68	26.21
1969	15.13	47.32	16.90	18.95

T.

Maximum Accelerations of the Year at the Bayram Dam Site during the Period from 1880 to 1997 (3/3)

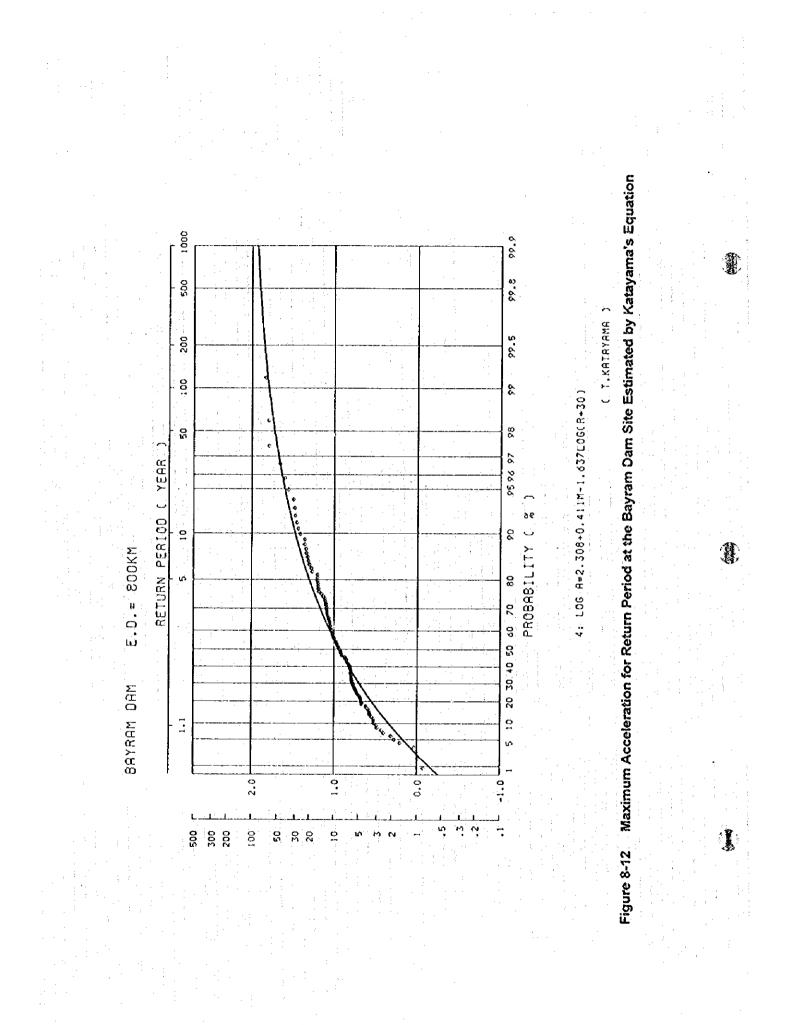
1	-		٩.
10	а	ł	ъ
- 14	54	ŧ	

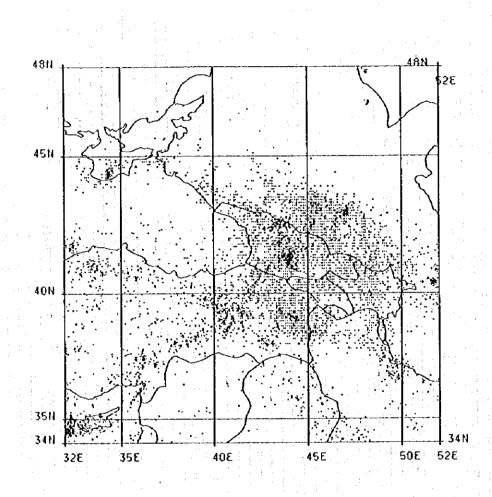

		Attenuation	n Equation	
Year	Oliveira's Eq. ACC.	McGuire's Eq. ACC.	Esteva & Rosenblueth's Eq. ACC.	Kalayama's Eq. ACC.
1970	6.92	30.19	6.15	12.23
1971	4.60	20.70	4.40	10.27
1972	6.99	29.69	6.28	11.58
1973	8.62	31.24	8.87	10.76
1974	6.26	24.18	6.45	7.37
1975	11.66	39.95	11.91	15.55
1976	13.00	48.00	11.79	23.10
1977	5.80	23.02	5.85	6.95
1978	19.99	84.78	18.28	69.34
1979	1.47	10.24	1.32	3.00
1980	3.49	17.44	3.10	5.44
1981	0.93	7.57	0.87	2.04
1982	1.51	10.92	1.38	3.68
1983	9.89	42.67	8.71	21.91
1984	19.65	60.59	20.14	28.73
1985	5.54	24.14	5.04	8.32
1986	4.48	24.31	4.01	10.33
1987	1.90	11.91	1.69	3.49
1988	8.19	32.28	7.59	12.43
1989	2.41	13.39	2.12	3.82
1990	3.01	17.65	2.69	6.44
1991	3.99	23.94	3.71	11.00
1992	2.18	14.78	1.93	6.07
1993	3.04	15.96	2.69	4.89
1994	1.55	10.54	1.39	3.06
1995	3.65	17.97	3.25	5.64
1996	3.31	17.27	2.92	5.57
1997	0.16	2.69	0.21	0.66

Ĩ.

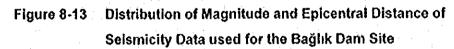
S

Figure 8-10 Maximum Acceleration for Return Period at the Bayram Dam Site Estimated By McGuire's Equation 1000 0.99 0 8.99 -500 C R.K.MCGUIRE) 90.5 200 100 2: LOG A=2.474+0.278M-1.301L06(R+25) 8 98 00 RETURN FERIOD (YEAR) 29 29 29 95 8 PROBABILITY C õ E.D. = 800KM **8**0 w 5 10 20 30 40 50 60 70 ватвам оам 1 1 Ó 0 0.0 5 Ņ 001 8 8 500 300. 200 50. 8 - 22




Table 8-4 Distribution of Magnitude and Epicentral Distance of

120


Seismicity Data used for the Bağlık Dam Site

	12 744	83 1830		113 1936	122 1538	95 1089	96 683	44 211	13 49	1 23	0 2	0	
		14	69	104	134	86	61	17		2	0	-0	
009	0	16	223	164	183	141	75	100	n	2 0	0	0	
v200	0	27	543	304	241	136	88	53	10	10	0	0	
<400	0	109	171	200	314	227	121	26	4	2	*	0	
×300	13	275	625	360	282	219	132	50	13	4		0	ALC: NOT ALC
~500 ~500	689	1224	594	307	214	143	96	25	9	0	0 0 1	r	
100 V	28	65	124	72	36	24	15	ω	0		0	0	
0<=D<50		17.	12	12	12	9	8	0	0	0	0	0	
	0 <m<3.0< td=""><td><3.5</td><td><4.0</td><td><4.5</td><td><5.0</td><td><5.5</td><td><6.0</td><td><6.5</td><td>0.7></td><td><7.5</td><td><8.0</td><td>8.0<</td><td></td></m<3.0<>	<3.5	<4.0	<4.5	<5.0	<5.5	<6.0	<6.5	0.7>	<7.5	<8.0	8.0<	

D: Epicentral Distance (km) M: Magnitude

1

Year	N	Sum of N	Year	N ==	Sum of N
1880	2	2	1930	61	782
1881	11	13	1931	54	836
1882	6	19	1932	35	871
1883	2	21	1933	22	893
1884	3	24	1934	29	922
1885	4	28	1935	45	967
1886	3	31	1936	45	1012
1887	1	32	1937	31	1043
1888	5	37	1938	49	1092
1889	6	43	1939	34	1126
1890	7	50	1940	65	1191
1891	7	57	1941	29	1220
1892	4	61	1942	18	1238
1893	5	66	1943	18	1256
1894	4	70	1944	20	1276
1895	3	73	1945	23	1299
1896	6	79	1946	36	1335
1897	8	87	1947	33	1368
1898	1	88	1948	32	1400
1899	4	92	1949	53	1453
1900	6	98	1950	39	1492
1901	6	104	1951	28	1520
1902	31	135	1952	39	1559
1903	27	162	1953	67	1626
1904	15	177	1954	46	1672
1905	26	203	1955	27	1699
1906	22	225	1956	19	1718
1907	24	249	1957	34	1752
1908	27	276	1958	43	1795
1909	40	316	1959	31	1826
1910	19	335	1960	40	1866
1911	8	343	1961	32	1898
1912	25	168	1962	899	2797
1913	24	392	1963	761	3558
1914	15	407	1964	691	4249
1915	17	424	1965	630	4879
1916	22	446	1966	815	5694
1917	12	458	1967	254	5948
1918	8	465	1968	372	6320
1919	11	477	1969	272	6592
1920	7	484	1970	656	7248
1921	8	492	1971	310	7558
1922	5	497	1972	238	7796
1923	16	513	1973	196	7992
1923	32	545	1974	290	8282
1925	14	559	1975	451	8733
1926	27	586	1976	624	9357
1920	64	650	1977	443	9800
1927	32	682	1978	412	10212
1928	39	721	1979	31	10212

Table 8-5Number of Earthquakes in a Year during the Period from 1880 to 1997for the Bağlık Dam Site (1/2)

Þ

Number of Earthquakes in a Year during the Period from 1880 to 1997 for the Bağlık Dam Site (2/2)

Year	N	Sum of N
1980	31	10274
1981	40	10314
1982	40	10354
1983	48	10402
1984	52	10454
1985	34	10488
1986	55	10543
1987	25	10568
1988	- 58	10626
1989	32	10658
1990	61	10719
1991	123	10842
1992	60	10902
1993	41	10943
1994	52	10995
1995	55	11050
1996	73	11123
1997	3	11126

T

Ð

錢

L

Maximum Accelerations of the Year at the Bağlık Dam Site during the Period from 1880 to 1997 (1/3)

		Attenuation	n Equation	
Year	Oliveira's Eq. ACC.	McGuire's Eq. ACC.	Esteva & Rosenblueth's Eq. ACC.	Katayama's Eq. ACC
1880	0.29	3.56	0.31	0.81
1881	1.38	11.92	1.44	4.61
1882	0.25	3.77	0.33	1.04
1883	0.23	3.60	0.31	0.98
1884	0.75	7.64	0.82	2.51
1885	0.36	4.07	0.38	1.11
1886	3.68	21.58	3.34	9.05
1887	5.90	27.98	5.20	11.62
1888	10.46	41.27	9.36	19.01
1889	1.25	10.68	1.27	3.80
1890	1.45	11.21	1.39	3.80
1891	2.43	16.48	2.29	6.50
1892	41.24	90.20	122.15	38.76
1893	1.52	13.90	1.71	6.26
1894	1.22	9.77	1.17	3.10
1895	0.54	6.20	0.62	1.94
1896	1.24	10.39	1.24	3.57
1897	0.44	5.44	0.52	1.64
1898	2.26	13.64	2.00	4.25
1899	5.03	26.29	4.47	11.42
1900	1.03	9.41	1.07	3.25
1901	4,94	27.35	4.49	12.85
1902	2.43	16.48	2.29	6.50
1903	21.58	71.32	19.72	40.96
1904	7.85	34.54	6.92	15.54
1905	23.32	85.44	20.55	61.62
1906	14.92	56.99	13.19	32.05
1907	3.22	21.67	3.14	10.25
1908	4.89	26.58	4.40	12.05
1909	2.76	17.49	2.53	6.78
1910	1.88	13.65	1.79	5.00
1911	2.57	14.94	2 27	4.81
1912	4.74	25.74	4.26	11.40
1913	4.49	25.32	4.08	11.46
1914	2.01	13.28	1.82	4.41
1915	3.05	16.66	2.69	5.60
1916	2.43	18.89	2.51	9.88
1917	2.92	15.27	2.58	4,52
1918	0.97	8.33	0.95	2.52
1919	16.74	56.53	15.72	28.01
1920	4.42	26.24	4.13	12.73
1921	3.39	20.46	3.10	8.48
1922	1.52	12.31	1.53	4.62
1923	2.89	16.71	2.56	5.84

(gal)

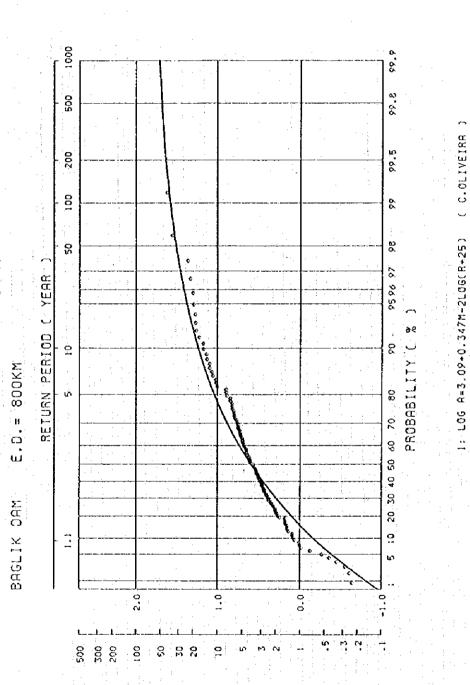
Maximum Accelerations of the Year at the Bağlık Dam Site during the Period from 1880 to 1997 (2/3)

(g	a	D
10	÷.,	· .

1

Ą

1

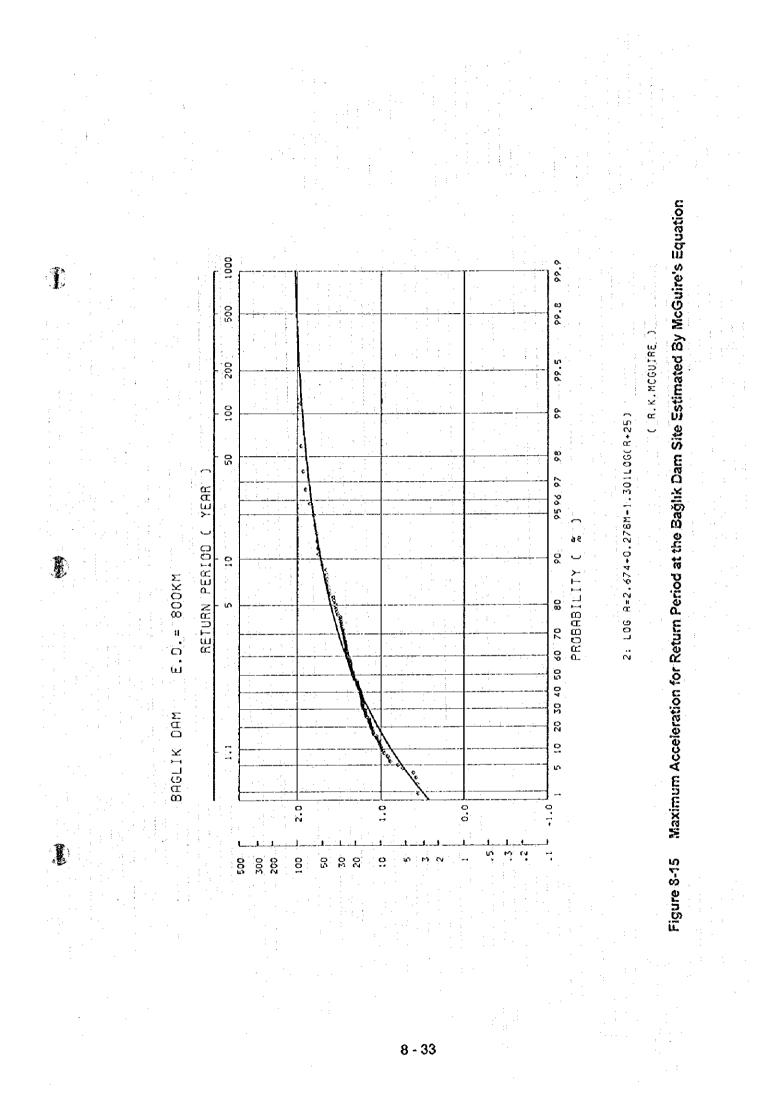

. ¹ .	Attenuation Equation					
Year	Oliveira's Eq. ACC.	McGuire's Eq. ACC.	Esteva & Rosenblueth's Eq. ACC.	Katayama's Eq. ACC		
1924	35.47	92.79	40.66	50.62		
1925	18.72	63.87	17.07	34.94		
1926	5.58	30.07	5.07	14.74		
1927	2.02	12.57	1.80	3.80		
1928	5.67	27.33	5.00	11.33		
1929	5.32	25.42	4.69	9.94		
1930	2.74	17.94	2.51	9.11		
1931	3.22	20.39	3.01	8.79		
1932	7.85	34.54	6.92	15.54		
1933	1.17	9.18	1.04	3.15		
1934	14.77	51.28	13.82	24.35		
1935	6.94	34.69	6.87	17.93		
1936	2.91	19.10	2.75	8.11		
1937	2.28	15.41	2.12	5.81		
1938	2.82	17.33	2.55	6.58		
1939	6.08	36.98	6,05	23.20		
1940	13.51	50.31	12.14	28.23		
1941	5.58	28.29	4.95	12.60		
1942	1.43	13.70	1.67	6.33		
1943	3.03	18.60	2.76	7.31		
1944	2.60	16.47	2.37	6.11		
1945	1.92	14.77	1.92	6.01		
1946	6.33	32.64	5.70	16.29		
1947	4.48	25.10	4.06	11.23		
1948	4.02	22.34	3.60	9.16		
1949	5.33	30.35	4.84	16.48		
1950	1.77	13.12	1.70	4.76		
1951	4.72	25.97	4.26	11.71		
1952 1953	6.62	33.60	5.94	16.88		
1953	<u>4.17</u> 3.56	22.70	3.72	9.23		
1954	2.52	21.63	3.29	9.36		
1955	12.45	16.13	2.30	5.96		
1956	4.36	42.80	12.35	17.61		
1957	3.26	23.73	3.89	9.95		
1000		19.28	2.94	7.52		
1959 1960	<u> </u>	45.31	10.08	22.51		
1961	5.57	26.58	1.99	6.46		
1962	6.22	20.58	4.90	10.71		
1963	19.67	59.18	7.23	6.35		
1964	4.52	19.05	<u>21.23</u> 4.91	26.86		
1965	4.02	19.05	3.82	7.23		
1966	4.85	27.82	<u> </u>	6.72		
1967	5.24			14.67		
1001	J.24	22.61	4.86	9.42		

Ļ

Maximum Accelerations of the Year at the Bağlık Dam Site during the Period from 1880 to 1997 (3/3)

	· · · · · · · · · · · · · · · · · · ·	Attenuation		
Year	Oliveira's Eq. ACC.	McGuire's Eq. ACC.	Esteva & Rosenblueth's Eq. ACC.	Katayama's Eq. ACC
1968	18.79	58.62	19.13	27.48
1969	13.38	43.67	14.27	17.26
1970	6.60	29.27	5.85	11.78
1971	3.99	21.27	3.72	10.62
1972	6.96	29.61	6.25	11.55
1973	7.69	29.00	7.67	10.67
1974	6.18	23.97	6.33	7.29
1975	12.47	41.72	12.99	16.36
1976	11.68	44.79	10.50	21.27
1977	6.53	24.84	6.80	7.60
1978	18.25	79.91	16.81	64.49
1979	1.44	9.93	1.29	2.80
1980	3.48	17.41	3.09	5.43
1981	1.00	7.95	0.93	2.16
1982	1.53	11.14	1.39	3 78
1983	10.30	43.82	9.07	22.62
1984	20.10	61.48	20.73	29.23
1985	5.21	23.20	4.71	7.97
1986	4.13	22.68	3.74	9.50
1987	2.15	12.90	1.90	3.85
1988	10.03	36.82	9.62	14.52
1989	2.13	12.37	1.88	3.47
1990	2.71	16.52	2.44	5.94
1991	3.70	22.79	3.46	10.35
1992	2.02	15.36	2.02	6.36
1993	3.41	17.20	3.03	5.35
1994	1.50	10.32	1.35	2.98
1995	3.38	17.09	3.00	5.31
1996	3.11	16.58	2.74	5.30
1997	0.16	2.73	0.22	0.67

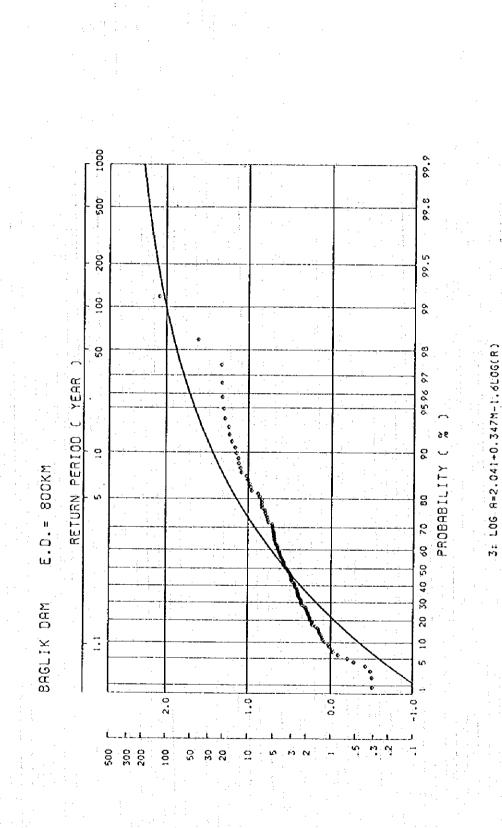
(dal)

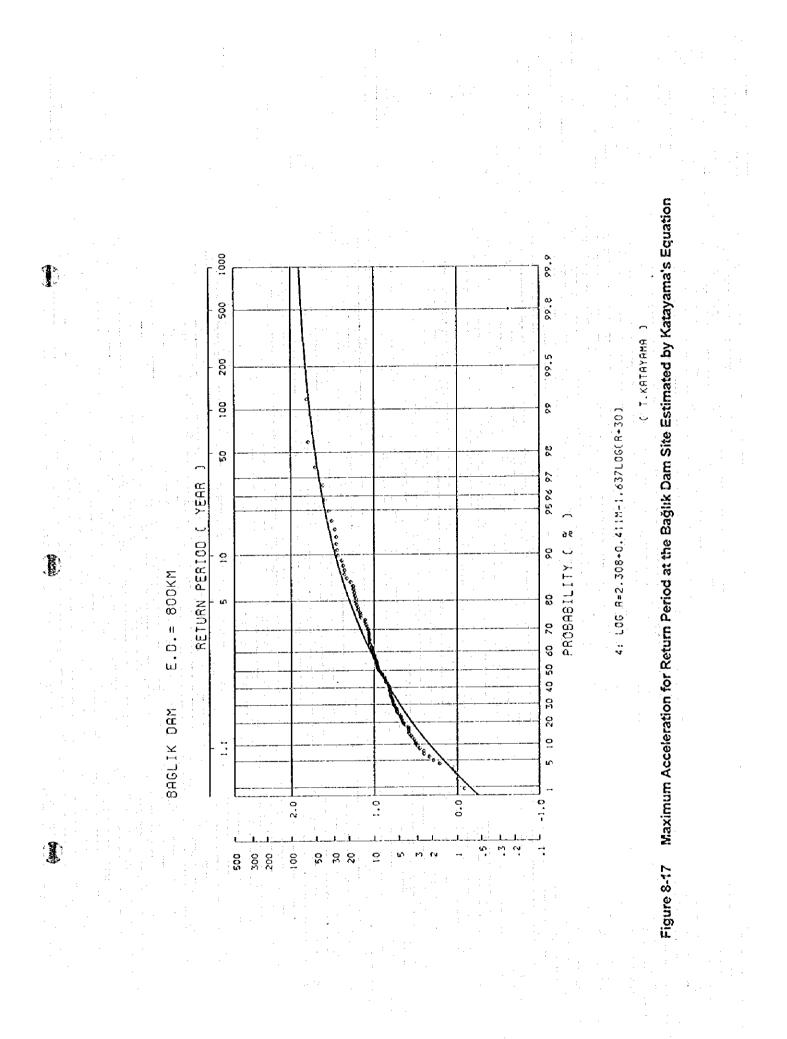


J

8 - 32

. .




Figure 8-16 Maximum Acceleration for Return Period at the Bağlık Dam Site Estimated by Esteva & Rosenblueth's Equation

CL.ESTEVA & E.ROSENBLUETH)

0

I

I

Table 8-7Maximum Accelerations Expected at the Bayram Dam Sitefor Five Return Periods

Attenuation Equation	Return Period (Year)				
	50	100	200	500	1000
Oliveira Equation	37	44	50	57	61
McGuire Equation	93	106	116	128	134
Esteva & Rosenblueth Equation	64	84	104	130	148
Katayama Equation	54	63	72	81	87
Probability	0.98	0.99	0.995	0.998	0.999

Table 8-8Maximum Accelerations Expected at the Bağlık Dam Sitefor Five Return Periods

Attenuation Equation	Return Period (Year)					
	50	100	200	500	1000	
Oliveira Equation	32	38	43	48	51	
McGuire Equation	79	88	95	102	107	
Esteva & Rosenblueth Equation	75	101	129	165	191	
Katayama Equation	51	59	67	75	79	
Probability	0.98	0.99	0.995	0.998	0.999	

Table 8-9Supposed Maximum Acceleration forthe Bayram Dam Site and the Bağlık Dam Site

Dam Site	Maximum Acceleration at
	Ground Surface (gal)
Bayram	150 gal
Bağlık	190 gal
·	

8.3.3 Design Horizontal Seismic Coefficient Used in Aseismic Design

(1) Design Horizontal Seismic Coefficient of Ground at Project Sites

Regarding the relationship between the maximum horizontal acceleration of earthquake motion and the design horizontal seismic coefficient, the following equation will generally be valid:

 Kh = R · Amax
 980
 (5)

 where, Kh:
 Design horizontal seismic coefficient
 (5)

 R:
 Conversion factor
 (5)

 Amax:
 Maximum horizontal acceleration of earthquake motion (gal)

The design horizontal seismic coefficient of the above equation is what is called effective seismic coefficient or equivalent seismic coefficient, and the following proposals have been made in research in Japan.

1)	Kh =(0.35 ~ 0.42) Amax/980 (effective value of steady sine wave)	(6)
2)	Kh =0.33 (Amax/980)1/3 (Noda 5), 1975)	(7)
3)	Kh =0.072 + 0.332 (Amax/980) (Matsuo 6), 1984)	(8)
	Kh =(0.13 ~ 0.34) Amax/980 (Hakuno 7), 1984)	(9)
5)	Kh = (0.50 ~ 0.60) Amax/980 (Watanabe 8), 1984)	(10)

In the Technical Guide of Aseismic Design of Nuclear Power Plants 9) published in 1987, the following equation is proposed as a result of overall evaluation and taking into account these cases of study.

 $Kh = (0.40 \sim 0.60) Amax/980$ (11)

The concept of effective seismic coefficient (equivalent seismic coefficient) was derived so that the largeness of stresses produced in ground and structures by earthquake motions will be equivalent for cases of handling dynamically (dynamic analysis by input of earthquake motion) and for cases of handling statically (static analysis using design seismic coefficient). The conversion factor which will be required for calculating effective seismic coefficient (equivalent seismic coefficient) is thought to be largely dependent on the frequency characteristics of design input earthquake motions. That is, for an earthquake motion with long-period components predominant, a large value (for example; 0.6) should be taken for the conversion factor. And for an earthquake motion with short-period components predominant, a small value (for example; 0.4) can be taken for the conversion factor.

As described before, the maximum acceleration assumed at the Bayram dam site and the Bağlık dam site is to be 150 gal and 190 gal, respectively. Consequently, applying Eq. (11), the design horizontal seismic coefficient of ground at the Bayram dam site and the Bağlık dam site will be $0.06 \sim 0.10$ and $0.07 \sim 0.12$, respectively.

Since the frequency characteristics of earthquake motions during earthquakes at the sites cannot necessarily be estimated distinctly at the present time, it is judged to be reasonable to take the design horizontal seismic coefficient of ground at the dam site as 0.15 for an evaluation on the conservative side.

(2) Design Horizontal Seismic Coefficient for Dam

Regarding the design horizontal seismic coefficients for dam, as shown in Table 8-10, the same value as the design horizontal seismic coefficient of ground is to be adopted for rockfill dam and concrete gravity dam. For concrete arch dam, a value twice the design horizontal seismic coefficient of ground is to be adopted.

Dam Type	Design Horizontal Seismic Coefficient
Rockfill Dam	0.15
Concrete Gravity Dam	0.15
Concrete Arch Dam	0.30

Table 8-10 Design Horizontal Seismic Coefficient for Dam

(3) Afterward

The determination of optimum configuration and cross section of a dam, and the basic stability evaluation of the dam during earthquake are normally made according to the seismic

coefficient method. The design seismic coefficient to be used in the seismic coefficient method, is evaluated considering a conversion factor for the maximum acceleration of earthquake motion assumed for the site. The value of the conversion factor can be thought to depend on the frequency characteristics of the earthquake motions assumed. It is desirable to ascertain the seismic stability of the dam by dynamic analysis at the stage of detailed design. Namely, the appropriateness of the design seismic coefficient would be verified by comparison of dynamic and static analysis.

T

[References]

ſ

- (1) Oliveira, C.; Seismic Risk Analysis, EERC 74-1, Earthquake Engineering Research Center, University of California, Berkeley (1974), 1-102.
- (2) McGuire, R.K.; Seismic Structural Response Risk Analysis incorporating Peak Response Regressions on Earthquake Magnitude and Distance, Mass. Inst. Tech. Dep. Civ. Eng., R74-51 (1974).
 - (3) Esteva, L. and Rosenblueth, E.; Espectos de Temblores a Distancias Moderadas y Grandes, Proc. Chilean Conference on Seismology and Earthquake Engineering, vol. 1, University of Chile (1963).
 - (4) Katayama, T.; Fundamentals of Probabilistic Evaluation of Seismic Activity and Seismic Risk (in Japanese), SEISAN-KENKYU (Monthly Journal of Institute of Industrial Science, University of Tokyo), 27-5 (1975), 1-11.
 - (5) Noda, S., Kambe, T., and Chiba, T.; "Seismic Coefficient of Gravity-type Quaywall and Ground Acceleration," Report of Port and Harbour Technical Research Institute, Ministry of Transport, Vol. 14, No. 4, PP.67-111, 1975
 - (6) Matsuo, M., and Itabashi, K.; "Study on Evaluation of Aseismicity of Slopes and Soil Structures," Transactions of the Japan Society of Civil Engineers, No. 352, III-2, Dec. 1984.
 - (7) Hakuno, M., and Morikawa, O.' "A Simulation concerning Earthquake Acceleration and Failure of Structures," Transactions of the Japan Society of Civil Engineers, No. 344, I-1, PP.299-302, Apr. 1984.
 - (8) Watanabe, H., Sato, S., and Murakami, S.; "Evaluation of Earthquake-Induced Sliding in Rockfill Dams," Soil and Foundation, Vol. 24, No. 3, PP1-14, Sept. 1984.

(9) Japan Electric Association, "Technical Guide to Aseismic Design of Nuclear Power Stations," 1987.

1

CHAPTER 9 **DEVELOPMENT PLAN**

Ţ,

1

Contents

CHAPTER 9 DEVELOPMENT PLAN

9.1	Review	of Existing Development Plan.			9-1
	9.1.1	Outline of Berta River Develo	opment Plan		9-1
	9.1.2 Reexamination of Existing Develop		evelopment Plans		9-6
					14.
9.2	Compa	rison Study of Alternative Deve	lopment Plan		9-21
	9.2.1	Method of Comparison Study	y	- d	9-21
	9.2.2	Alternative Plan	·····		9-25
	9.2.3	Comparison Study on Alterna	ation Development Pla	n	9-39

Page

List of Figures

Figure 9-1	Hydroelectric Power Development Project in Berta River in Master Plan
Figure 9-2	Alternative Hydroelectric Power Development Project in Berta River in
	Master Plan
Figure 9-3	Outline of Alternative Layout for Headrace and Tailrace Type
Figure 9-4	Outline of Layout for 1 Stage Development
Figure 9-5	Area-Capacily Curve of Bayram Reservoir
Figure 9-6	Area-Capacity Curve of Bağlık Reservoir
Figure 9-7	Area-Capacity Curve of Kaledüzü Reservoir
Figure 9-8	Outline of Alternative Development Plan
Figure 9-9	Mass Curve of Bayram Reservoir
Figure 9-10	Firm Discharge of Bayram and Baglik Reservoir
Figure 9-11	Flow Chart of Power and Energy Calculation
Figure 9-12	Operation Rule of Bayram Reservoir by Dynamic Program Method for
	Energy Maximum
Figure 9-13	Operation Rules of Bayram Reservoir by Mass Curve for spilled Water
	Minimum
Figure 9-14	Comparison Study on Reservoir Capacity
Figure 9-15	Comparison Study on Reservoir Water Level of Bayram Project
Figure 9-16	Comparison Study on Reservoir Water Level of Bağlık Project
Figure 9-17	Final Reservoir Operation Rule
Figure 9-18	Reservoir Operation of Bayram Project
Figure 9-19	Energy Generation of Bayram Project
Figure 9-20	Reservoir Operation of Bağlık Project
Figure 9-21	Energy Generation of Bağlık Project

ľ

R

List of Tables

Table 9-1	Hydroelectric Power Development Project in Berta River in the Master Plan
Table 9-2	Alternative Hydroelectric Power Development Project in Berta River in the
	Master Plan
Table 9-3	Outline of Alternative Layout
Table 9-4	Cost Estimate of Alternative Layout
Table 9-5	Comparison Study on Alternative Layout
Table 9-6	Alternative Thermal Power Plant for Comparison Study
Table 9-7	Outline of Alternative Plan for Reservoir Capacity
Table 9-8	Outline of Alternative Plan for Bayram Reservoir Water Level
Table 9-9	Cost Estimate of Alternative Plan for Reservoir Capacity
Table 9-10	Comparison Study on Reservoir Capacity
Table 9-11	Cost Estimate of Alternative Plan for Bayram Reservoir Water Level
Table 9-12	Comparison Study on Bayram Reservoir Water Level
Table 9-13	Outline of Alternative Plan for Bağlık Reservoir Water Level
Table 9-14	Cost Estimate of Alternative Plan for Bağlık Reservoir Water Level
Table 9-15	Comparison Study on alternative Plan for Bağlık Reservoir Water Level
Table 9-16	Demand and Supply Balance
Table 9-17	Comparison Study on Optimum Installed Capacity
Table 9-18	Outline of Optimum Development Plan of Çoruh-Berta Project
Table 9-19	Cost Estimate of Optimum Development Plan of Çoruh-Berta Project
Table 9-20	Reservoir Operation of Bayram Project
Table 9-21	Total Energy Production of Bayram Project
Table 9-22	Firm Energy Production of Bayram Project
Table 9-23	Peak Power of Bayram Project
Table 9-24	Peak Power Duration of Bayram Project
Table 9-25	Reservoir Operation of Bağlık Project
Table 9-26	Total Energy Production of Bağlık Project
Table 9-27	Firm Energy Production of Bağlık Project
Table 9-28	Peak Power Bağlık of Project
Table 9-29	Peak Power Duration of Bağlık Project

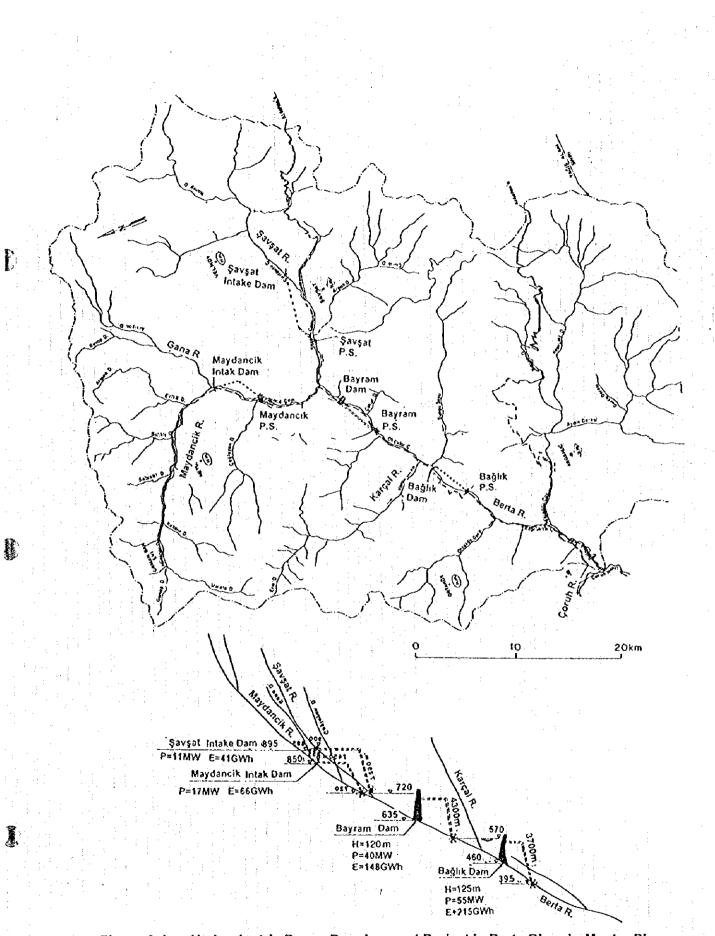
CHAPTER 9 DEVELOPMENT PLAN

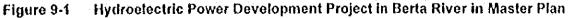
9.1 Review of Existing Development Plan

9.1.1 Outline of Berta River Development Plan

The Berta river which is the second largest tributary of the Çoruh river next to the Oltu river, is located at the northeast part of the Çoruh river basin. It is surrounded by the Karçal mountain range in the northwest, the Savsetskij mountain range in the northeast, and the Yalnizcam mountain range in the southeast and connects to the Çoruh river mainstream in the southwest for a catchment of rectangular shape in the northeast-southwest direction with a catchment area of 2,315 km². The Berta river runs from northeast to southwest through the middle of this catchment.

The upstream of Berta river consists of the Meydancık river of catchment area 577 km² which rises from the Karçal Mountain range at the northwest part of the basin and flows south, and the Şavşat river of catchment area 580 km² which rises from the Yalnizcam mountain range at the southeast part of the basin, which merge at EL. 665m to become the Berta river to flow southwest. After being joined by middle and small-size tributaries, the Sungu river from the teft-bank side at EL 470, and the Karçal river and the Ortakoy river at EL. 515 m and EL. 340 m, respectively, the Berta is joined from the right-bank side at EL. 276 m by the Ardanuç river which springs from the Yalniz mountain range at the southern part of the basin, flows down in the northwest direction with a catchment area of 572 km², and at EL. 212 m the Berta river merges with the Çoruh river from the right-bank side.


Up to the present, there has been no development of hydroelectric power in the Berta river basin, but in the Çoruh-Berta river basin the master plan report prepared by EIE in 1992, as shown in Table 9.1 and Fig. 9.1, there are 2 sites on the Berta river mainstream and one each on the tributary Meydancik river and the Şavşat river, a total of 4 sites to comprise the Berta river basin hydroelectric power development scheme.


Name of Project	Unit	Bayra	Bağlık	Sub Total	Meydancık	Şavşat
		m	· ·			
Reservoir		· · · · · · · · · · · · · · · · · · ·				
Catchment Area	km ²	1,173	1,521	- - -	200.3	331
Annual Inflow	m³/s	17.80	21,20		8.50	3.80
High Water Level	^{s d} m (s	720.00	570.00		855	900
Low Water Level	m	680.00	567.22		-	
Gross Storage Capacity	10 ⁶ m ³	71.50	40.34	- 	-	
Effective Storage Capacity	10 ⁶ m ³	57.60	30.34			
Dam						
Туре		Rockfill	Arch		Gravity	Gravity
Height	m	120	125		5.00	5.00
Gross Head	m	150	175		135	180
Installed Capacity	мw	40.0	55.0	95.0	17.0	11.0
Annual Average Energy	GWh	148.22	215.30	363.52	65.87	41.14
Annual Firm Energy	GWh	65.70	78.84	144.54	5.25	5.08
Total Investment Cost	10 ⁹ TL	181.35	177.30	385.65	56.42	40.41
Annual Cost	10 ⁹ TL	19.10	18.70	37.80	5.64	4.04
Annual Benefit	10 ⁹ TL	18.07	27.50	45.57	5.14	3.21
Annual Surplus Benefit	10 ⁹ TL	- 1.03	8.80	7.77	- 0.50	- 0.83
Benefit Cost Ratio		0.95	1.47	1.21	0.91	0.79

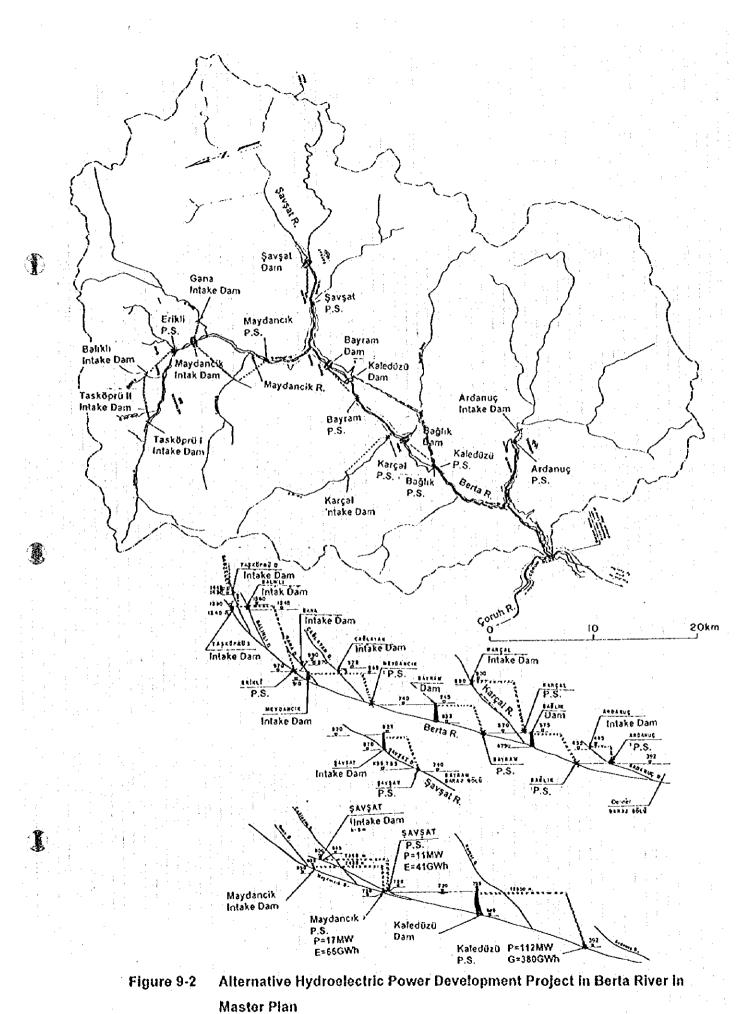
貧

Table 9-1 Hydroelectric Power Development Project in Berta River in the Master Plan

* 1 US\$ = 2600 TL

The hydroelectric power development on the Berta river mainstream would consist of a twostep development scheme at the 2 sites of Bayram and Bağlık making use of the head from the confluence of the two large upstream tributaries of Şavşat river and Meydancık river to the downstream Deriner project reservoir.

The Meydancik project and the Şavşat project located on the Meydancik river and the Şavşat river, respectively, are run-of-river type development schemes which discharge into Bayram reservoir, and according to the master plan, these two projects are both of minus annual surplus benefits while unit costs of electric power are higher than the fuel costs of alternative thermal plants, and thus the two are deemed unfeasible.


In the master plan report the upstream Bayram project will have a minus annual surplus benefit, but is feasible when considered overall with the downstream Bağlık project.

According to the master plan report, as shown in Table 9-2 and Figure 9-2, the Erikli project at the upstream part of the tributary Meydancik river, the Karçal project at the downstream part of the tributary Karçal river, and the Ardanuç project at the downstream part of the tributary Ardanuç river have been contemplated as run-of-river type schemes, but all have been abandoned as not being visible as hydroelectric power development schemes.

Project Name	Unit	Balikli	Karçal	Ardanuç	Kaledüzü
Normal Water Level	ń	1,360	900	465	720
Tail Water Level	m	970	570	395	395
Installed Capacity	MW S	35.3	23.6	8.3	112.0
Annual Energy Production	GWH	125.00	62.10	21.70	380.27
Annual Benefit	10 ⁹ TL	7.25	4.84	1.69	53.94
Total Investment Cost	10 ⁹ TL	181.35	60.00	30.00	471.34
Annual Cost	10 ⁹ TL	19.10	6.00	3.00	49.37
Annual Surplus Benefit	10 ⁹ TL	-1.03	-1.16	-1.31	4.57
Benefit Cost Ratio		0.58	0.81	0.56	1.09
		1			1

Table 9-2 Alternative Hydroelectric Power Development Project in Berta River in the Master Plan

US\$ = 2,600 TL

9.1.2 Reexamination of Existing Development Plans

(1) Confirmation of Project Sites

In the master plan report, only the Bayram and Bağlık projects on the Berta river mainstream are said to be feasible, and because of this the object project sites in this present survey have been made the two sites of the Bayram project and the Bağlık project. The results of reexamination of the existing development schemes in the master plan report based on the results of studies by 1/25,000 topographical maps and field reconnaissances carried out on the object project sites are as described below.

(a) Meydancık Project, Şavşat Project

With both projects, if the intake dam sites were to be moved upstream, intake streams would be divided into numerous small tributaries so that the number of intake dams would be increased, the lengths of waterways would be sharply increased and the economics of the projects will not be improved. Further upstream, streams would be divided into even more small tributaries with stream discharges being small so that they will not be suitable for development projects.

In both projects the river gradients between the intake dam sites and powerhouse sites are uniform, while there are no inflows of major tributaries, so that even if intake dam sites and powerhouse sites were to be moved, the economic natures of the projects will not be improved.

Furthermore, the powerhouse sites of the two projects are locate near the reservoir backwater end of the Bayram project which is a downstream project, and if the powerhouse locations were to be move downstream, it would mean the reservoir high water level of the Bayram project would be lowered. In this case, the added benefit of the two power stations would be much smaller than the reduced benefit of Bayram Power Station, and the economics of the projects will not be improved.

Consequently, the Meydancik project and the Şavşat project have no room for improvement of the economics from the standpoints of layout and the conclusion of the master plan report which said these were unfeasible was reasonable.

(b) Ardanuç Project

2

The Ardanuç river is a tributary next in size to the Meydancik river and the Şavşat river. This river's downstream part constitutes the reservoir of the Deriner project located on the Çoruh river mainstream and as far as 9 km upstream from the confluence with the Berta river comes within this reservoir.

The Ardanuç river is further divided into three tributaries near EL. 450 m, which is 55 m higher than the flood water level of Deriner reservoir of EL. 395 m, and the stream discharges of these tributaries are small. Accordingly, areas further upstream than around EL. 450 m are not suitable for development projects.

The Ardanuç project was examined in the master plan between the vicinity of EL. 450 m at the confluence of the Ardanuç river and a tributary and the end of the backwater of Deriner reservoir, and it was abandoned as being unfeasible.

The Deriner project is a scheme the implementation of which has already been decided, and because of this there is no room for improvement of the Ardanuç project. Therefore, the conclusion in the Master plan report is reasonable.

(c) Karçal Project

The Karçal river with a catchment area of 126 km² is the fourth largest tributary of the Berta river basin which joins the Berta at the right bank 12 km downstream of the confluence of the Meydancik river and the Şavşat river and makes up 36% of the catchment area between the Bayram project and the Bağlık project.

In the master plan report, the Karçal project was contemplated between river-bed elevation 890 m in the vicinity of Coge village and the confluence with the Berta river, but the economics could not be assured, and the project was abandoned as unfeasible.

In the master plan report, the runoff in the catchment between the Bayram project site and the Bağlık project site average 3.4 m³/s, while the discharge water level of the Karçal project is put at the reservoir high water level of 570 m of the Bağlık project. According to the results of the

present study, this runoff has increased to 5.7 m³/s, and it may be considered that about 78% of this runoff is discharge from the Karçal river. The high water level of the Bağlık project will be 530 m, and the ratio of the head to the headrace length will be 1:14.

Because of this, there is room for the economics of the Karçal project to be greatly improved compared with the result given in the master plan report and there is a possibility that the project will be feasible.

At the confluence with the Çermik river 4.5 km upstream from the intake site of the Karçal project, there is little reduction of catchment area while the river gradient is about 1:10, and it is possible that a run-of-river scheme in this stretch will also be viable.

Upstream of the confluence with the Çermik river, the Karçal river is divided into numerous tributaries, runoffs are sharply reduced, and it is not suitable for a power development project.

Concerning the power development scheme for the Karçal river, if it were to be feasible, the project area would not overlap with the Bayram and Bağlık projects which are schemes on the Berta river mainstream, and will not directly affect the schemes for the mainstream, and it will be reasonable to consider it as a future object of study.

(d) Other Tributaries

Besides the tributaries described in (a) to (c) above, there are a number of other tributaries such as the Sungu river and the Cağlayan river, but these tributaries all have small runoffs, while there are no sites where high heads can be obtained with short waterways, and so they are not suitable for power development projects.

(e) Bayram Project, Bağlık Project

The Berta river mainstream begins from the confluence of the Meydancık river and the Şavşat river at river-bed elevation EL 665 m and joins the Çoruh river mainstream 35 km downstream at river-bed elevation EL 212 m, but the downstream part of the Berta river is a part of the reservoir of the Deriner project situated on the Çoruh river mainstream which is already at the stage of implementation.

The high water level of Deriner reservoir will be EL. 392 m and the end of the backwater on the Berta river will be 17 km upstream from the confluence with the Coruh river mainstream.

The Berta river between the confluence of the Meydancik river and the Şavşat river and the end of the Deriner river backwater, although weaving a little locally, runs down more or less in a straight line from a broad point of view, while the river gradient is roughly uniform at about 1:66 throughout the entire stretch.

P

ł.

1

According to the master plan report, a dam site for a reservoir would be selected at a point of river-bed elevation 635 m, 2.5 km downstream of the confluence between the Meydancik river and the Şavşat river, and it is proposed for a two-step development consisting of a Bayram project and a Bağlık project for development of the entire head between this point and the end of the Deriner reservoir backwater at Et. 392 m.

That the dam site of the Bayram project has been selected downstream of the confluence of the Meydancık river and the Şavşat river, the two largest tributaries of the Berta river, is reasonable from the viewpoints of securing storage capacity and effective regulation of inflow. Also, that the reservoir high water level of the Deriner project was made the tail water level of the Bağlık project is reasonable from the point of view of eliminating idle head.

That development of the Berta river mainstream was made a 2-step development scheme consisting of the Bayram project and the Bağlık project is reasonable from the fact that the Berta river between the dam site of the Bayram project and the powerhouse site of the Bağlık project is more or less a straight-line flow with a number of tributaries coming in from the right and left sides so that a route for a headrace would be discontinuous on both right- and left-bank sides and, therefore, is reasonable. However, that the downstream Bağlık project is planned to have a reservoir made with a dam 125 m in height would result in a reservoir of small storage capacity compared with the scale of the dam, while differing from the reservoir in the Bayram project, which would be effective for only the Bağlık project, so that there is room for reconsideration of the scale of Bağlık dam from the standpoints of storage efficiency and investment efficiency.

(f) Kaledüzü Project

On the Berta river mainstream, as an alternative to the 2-step development scheme with the Bayram project and the Bağlık project, there is the Kaledüzü project contemplated for development in a single step of the head obtained by a dam of 150 m height at a site of riverbed elevation 585 m, 3 km downstream from the Bayram dam site, down to the end of the Deriner reservoir backwater. However, since the economics is poorer than the 2-step development with the Bayram and Bağlık projects, while due to Kaledüzü reservoir, there is a slope failure area in the vicinity of Savail village located at the left bank of the Berta river 2 km upstream from Kaledüzü dam and 1 km downstream from the Bayram dam site, it is not proposed as an object of this survey. According to the plan, there is only one suitable place from a topographical point of view where a work adit or vertical shaft can be provided for the headrace tunnel which will exceed 14 km in length, and this will be a problem in construction of the tunnel.

Consequently, the conclusion in the master plan report may be considered to be reasonable.

1

(g) Object Projects of Study

In view of (a) to (e) above, it was decided that the projects to be considered in this study should be the Bayram project and the Bağlık project. The conclusion in the master plan report is reasonable.

(2) Reexamination of Development layout

(a) Formulation of Alternative Layout

The Bayram project and the Bağlık project proposed in the master plan report consist of socalled headrace-type layouts in which water is drawn by an intake provided immediately upstream of the dam with the water conducted to a surge tank by a pressure tunnel-type headrace, and further to a surface-type powerhouse by a surface-type penstock for power generation to be carried out.

The dam of the Bağlık project is planned to be 125 m in height, roughly the same scale as the dam in the Bayram project, so that the location of the powerhouse of the Bayram project is at

riverbed elevation of 570 m near the end of the Bağlık reservoir backwater, and if the height of Bağlık dam were to be lowered, the location of the Bayram project powerhouse would be moved downstream with lowering of the high water level of Bağlık reservoir. The headrace tunnet in this case would become long as it will need to detour around gullies running into the Berta river.

Furthermore, at the powerhouse site proposed in the master plan report, it is considered unavoidable for both the penstock and the powerhouse to be made underground types from the standpoint of the topography.

Because of such a situation, in contrast to the headrace-type layout proposed in the master plan report, a so-called tailrace-type layout in which an underground powerhouse is provided immediately downstream of the dam with a tailrace of non-pressure type arranged in a straight line between this powerhouse site and the outlet site was set up as an alternative layout.

In this case, the high water level of Bayram reservoir would be made EL. 740 m, and that of Bağlık reservoir EL. 530 m.

In comparison with the 2-step development scheme proposed in the master plan report, a single-step development scheme consisting of the Kaledüzü project and a single-step development scheme with Bayram dam absorbing the Bağlık project into the Bayram project were also set up as alternative layout. The outline of the alternatives are shown in the Figure 9-3, 9-4 and Table 9-3.

(b) Results of comparison Studies of Alternative Layouts

1

The comparison studies of the alternative layouts were made with the peak operating times of the power-stations to be 6 hours and using the benefit-cost method. The unit price of benefit and the unit construction prices of the alternative layouts are as described in 9.2.1.

The results of comparison studies of the various alternative layouts are as given in Table 9-4 and 9-5.

For the 2-step development scheme of the Bayram project and the Bağlık project of tailracetype layout, power station output, annual energy production, annual surplus benefit, benefit ratio, cost ratio, all will be maximum with unit energy cost minimum.

Accordingly, it was decided that the study of the development plan should be of a 2-step development scheme consisting of the Bayram project, the Bağlık project, and a tailrace-type layout.

Table 9-3 Outline of Alternative Layout

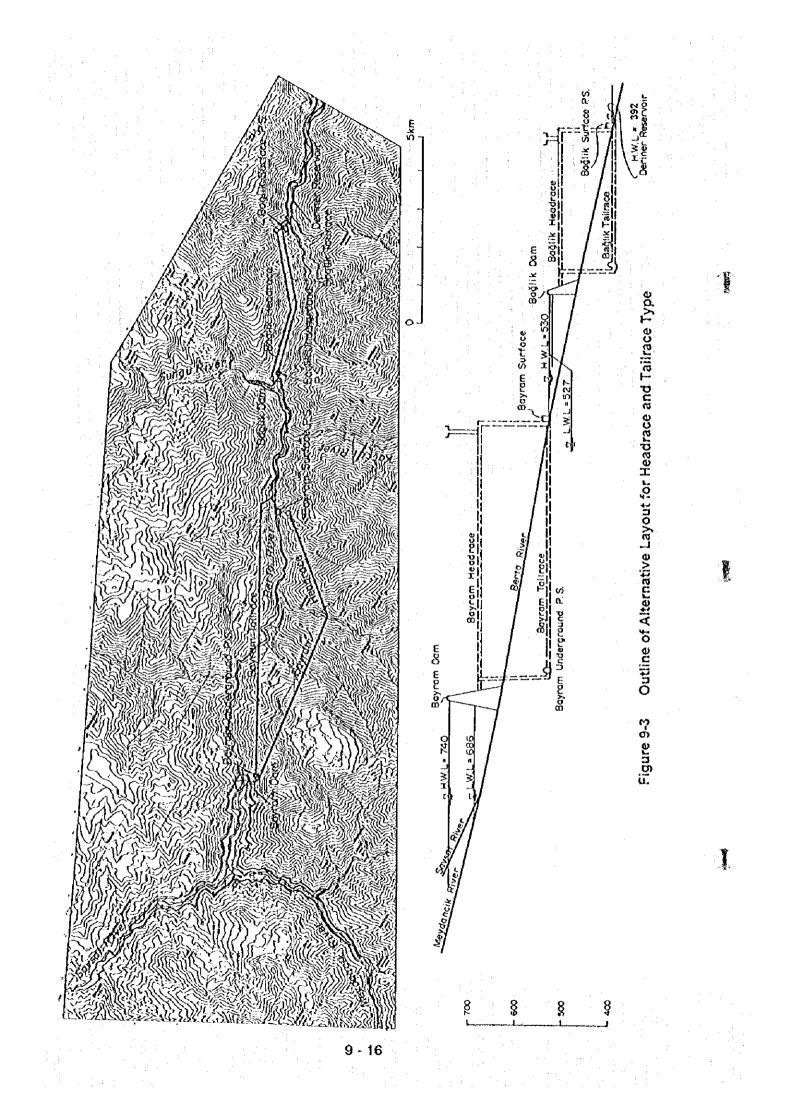
1

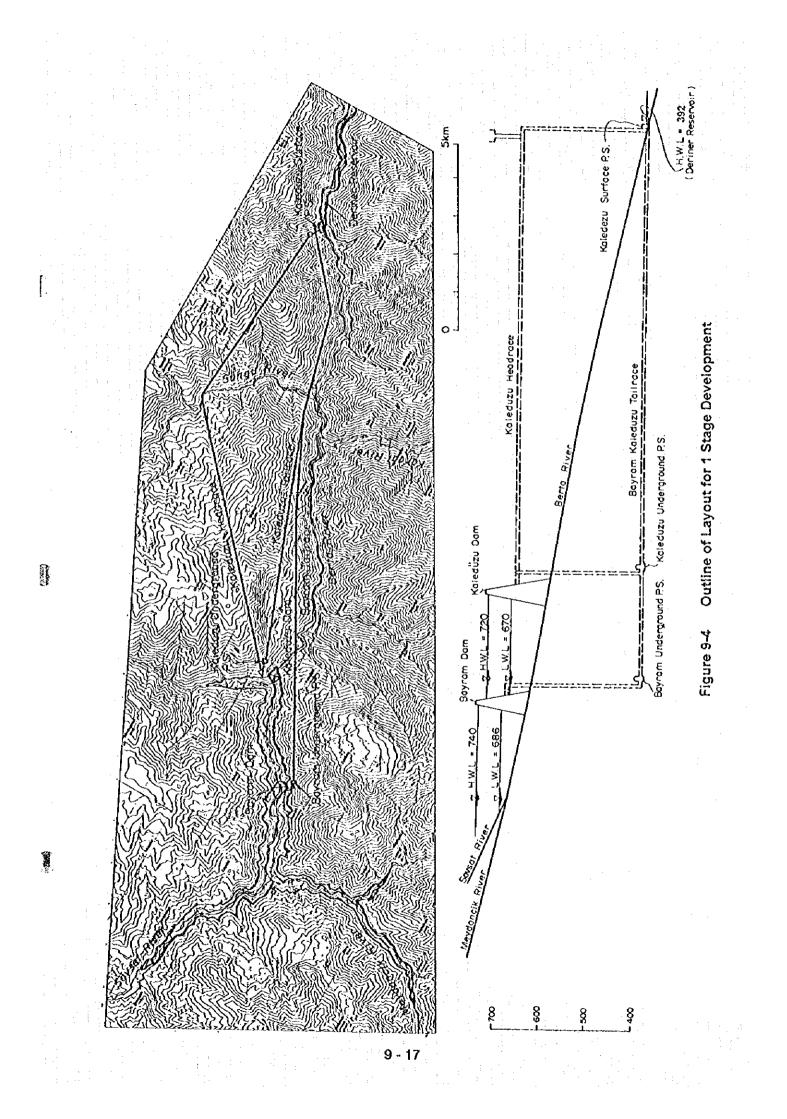
Revrem Headrace, Tailrace and One Stage, Kaleduru Headrace and Tailrace Type Layout

Bayram Headrace, T					0 8/30 1 8/0	ace type t	ajout	
[Damsite	Bayram	8aglik	Bayram	Baglik	Bayram	Kaleduzu	Kaleduzu
Reservoir	Layout	Headrace	Headrace	Tailrace		One Stage		Tailrace
Catchment Area	KM^2	1,159	1,509	1,159	1,509	1,159	1,214	1,214
Annual Inflow	M^3/S	19 20	24.90	19.20	24,90	19.20	20.10	20.10
High Water Level	M	740.00	530.00	740.00	530.00	740.00	720.00	720.00
Normal Water Level	M. :	722.00	528.50	722.00	528.50	722.00	703 33	703.33
Low Water Level	Mi -	686.00	527.00	686.00	527.00	686.00	670.00	670.00
Available Drawdown	M	54.00	3.00	54.00	3.00	54.00	50.00	50.00
Gross Capacity	10^6M^3	133.00	7.30	133.00	7.30	133.00	186.80	186.80
Effective Capacity	10^6M^3	113.00	1.00	113.00	1.00	113.00	140.00	140.00
Oam								
Type		Rockfill	Con-Gra.	Rockfill	Con-Gra.	Rockfill	Rockfill	Rockfill
Height from Found.	м	145	. 74	145	74	145	140	140
Crest Length	M.	415	190	415	190	415	450	450
Volume	1013M13	6,144	195	6,144	195	6,144	8,990	8,990
Headrace Tunnel								
Туре	· ·	Pressure	Pressure	-			Pressure	$f_{\rm eff}=f_{\rm eff}(r)$
Diameters	м	4.3	4.7			· ·	4.5	1.1
Length	1 M 👘	8,100	4,300			1	14,150	î.
Penstock				1.1	i.		. :	
Туре		Tunnet	Tunnel	Tünnel	Tunnel	Tunnel	Tunnel	Tunnel
Diameters	м	.3.3			3.6	3.3	3.5	3.5
Length	M	460	160		213	437	540	443
Powerhouse		1		· ·				
Type	1.1	Surface	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.
Type Tailrace Tuonel		Surface	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.
Tailrace Tunnel					Undergr. Hosesho.	Undergr. Hoseshol		Undergr. Hosesho,
Tailrace Tunnel Type	M		Undergr. Hosesho. 4,9	Hosesho.				Hosesho. 4.8
Tailrace Tunnel Type Diameters	M	Hosesho.	Hosesho.	Hosesho. 4.6	Hosesho.	Hosesho.	Hosesho.	Hosesho.
Tailrace Tunnel Type Diameters Length (Tunnel)		Hosesho. 4.6	Hosesho 4.9	Hosesho. 4.6	Hosesho. 4.9	Hosesho. 4.6	Hosesho. 4.8 150	Hosesho. 4.8 11,250
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel)	M	Hosesho. 4.6	Hosesho 4.9	Hosesha 4.6 7,930	Hosesho. 4.9	Hosesho. 4.6	Hosesho, 4.8	Hosesho. 4.8 11,250 12.00
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge	M	Hosesho. 4.6 500	Hosesho. 4.9 150 13.00	Hosesho. 4.6 7,930 10.70	Hosesho. 4.9 4,454 13.00	Hosesho. 4.6 15,530	Hosesho, 4.8 150 12.00	Hosesho. 4.8 11,250
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge	M M M^3/S	Hosesho. 4.6 500	Hosesho 4.9 150 13.00 52.00	Hosesho 4.6 7,930 10.70 43.00	Hosesho. 4.9 4,454 13.00	Hosesho. 4.6 15,530 10.70	Hosesho 4.8 150 12.00 48.00	Hosesho. 4.8 11,250 12.00
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level	M M M^3/S M^3/S	Hosesho. 4.6 500 10.70 43.00	Hosesho 4.9 150 13.00 52.00	Hosesho 4.6 7,930 10.70 43.00	Hosesho. 4.9 4,454 13.00 52.00	Hosesho. 4.6 15,530 10.70 43.00	Hosesho 4.8 150 12.00 48.00	Hosesho. 4.8 11,250 12.00 48.00
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head	M M M^3/S M^3/S	Hosesho. 4.6 500 10.70 43.00	Hosesho. 4.9 150 13.00 52.00 392.00	Hosesho. 4.6 7,930 10.70 43.00 530.00	Hosesho. 4.9 4,454 13.00 52.00 392.00	Hosesho. 4.6 15,530 10.70 43.00	Hosesho 4.8 150 12.00 48.00	Hosesho. 4.8 11,250 12,00 48,00 392,00 328,00
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level	M M M^3/S M^3/S M	Hosesho. 4.6 500 10.70 43.00 530.00	Hosesho. 4.9 150 13.00 52.00 392.00 138.00	Hosesho, 4.6 7,930 10.70 43.00 530.00 210.00	Hosesho. 4.9 4,454 13.00 52.00 392.00 138.00	Hosesho. 4.6 15,530 10,70 43,00 392,00	Hosesho, 4.8 150 12.00 48.00 392.00 328.00	Hosesho. 4.8 11,250 12.00 48.00 392.00
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head Maximum Head Normal Head	M M M^3/S M^3/S M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00	Hosesho 4.9 150 13.00 52.00 392.00 138.00 136.50	Hosesho, 4.6 7,930 10.70 43.00 530.00 210.00 192.00	Hosesho. 4.9 4,454 13.00 52.00 392.00 138.00 136.50	Hosesho. 4.6 15,530 10.70 43.00 392.00 348.00	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33	Hosesho. 4.8 11,250 12,00 48,00 392,00 311,33 278,00
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head Maximum Head Normal Head Minimum Head	M M M^3/S M^3/S M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00	Hosesho 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00	Hosesho, 4.6 7,930 10.70 43.00 530.00 210.00 192.00 156.00	Hosesho. 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00	Hosesho. 4.6 15,530 10.70 43.00 392.00 348.00 330.00	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00	Hosesho 4.8 11,250 12,00 48,00 392,00 328,00 311,33
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head Maximum Head Normal Head Minimum Head Loss of Head	M M M^3/S M^3/S M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 156.00	Hosesho 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00	Hosesho, 4.6 7,930 10.70 43.00 530.00 210.00 192.00 156.00	Hosesho. 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00	Hosesho. 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00	Hosesho. 4.8 11,250 12,00 48,00 392,00 328,00 311,33 278,00 11,90
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head Maximum Head Normal Head Minimum Head Loss of Head Effective Head	M M M^3/S M^3/S M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 156.00	Hosesho 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40	Hosesho, 4.6 7,930 10.70 43.00 530.00 210.00 192.00 156.00 9.10	Hosesho, 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60	Hosesho. 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00	Hosesho. 4.8 11,250 12,00 48,00 392,00 311,33 278,00
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head Maximum Head Normal Head Minimum Head Loss of Head	M M^3/S M^3/S M M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 156.00 17.10	Hosesho. 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60	Hosesho. 4.6 7,930 10,70 43,00 530,00 210,00 192,00 156,00 9,10 200,90	Hosesho. 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40	Hosesho, 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90 314,90	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00 26.00 302.00 285.33	Hosesho, 4.8 11,250 12.00 48.00 392.00 328.00 311.33 278.00 11.90 316.10 299.43
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Discharge Tail Water Level Gross Head Maximum Head Normal Head Loss of Head Effective Head Maximum	M M M^3/S M 3/S M M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 156.00 17,10 192.90	Hosesho, 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60 128.10	Hosesho, 4,6 7,930 10,70 43,00 530,00 210,00 192,00 192,00 156,00 9,10 200,90 182,90	Hosesho. 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40 130.90	Hosesho. 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00 26.00 302.00 285.33	Hosesho. 4.8 11,250 12,00 48,00 392,00 311,33 278,00 11,30 316,10 259,43 266,10
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head Maximum Head Normal Head Effective Head Effective Head Maximum Normal Minimum	M M M^3/S M M M M M M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 156.00 17.10 192.90 174.90	Hosesho, 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60 128.10 126.60	Hosesho, 4,6 7,930 10,70 43,00 530,00 210,00 192,00 192,00 156,00 9,10 200,90 182,90	Hosesho, 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40 130.90 129.40	Hosesho, 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90 314,90	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00 26.00 302.00 285.33 252.00 118	Hosesho. 4.8 11,250 12,00 48,00 392,00 312,800 311,33 278,00 11,90 316,10 299,43 266,10 124
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Dischaerge Tail Water Level Gross Head Maximum Head Normal Head Minimum Head Loss of Head Effective Head Maximum Normal	M M M^3/S M^3/S M M M M M M M M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 17.10 192.90 174.90 138.90	Hosesho, 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60 128.10 126.60 57	Hosesho, 4.6 7,930 10,70 43,00 530,00 210,00 192,00 192,00 156,00 9,10 200,90 146,90 68	Hosesho, 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40 130.90 130.90 129.40 59	Hosesho, 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90 314,90 278,90	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00 26.00 302.00 285.33 252.00	Hosesho. 4.8 11,250 12,00 48,00 392,00 312,800 311,33 278,00 11,90 316,10 259,43 266,10 124
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Discharge Tail Water Level Gross Head Maximum Head Normal Head Loss of Head Effective Head Maximum Normal Minimum Installed Capacity Firm Peak Power	M M M^3/S M^3/S M M M M M M M M M M M M M	Hosesho, 4.6 500 10.70 43.00 530.00 210.00 192.00 176.00 174.90 138.90 65	Hosesho, 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60 128.10 126.60 57	Hosesho, 4.6 7,930 10,70 43,00 530,00 210,00 192,00 192,00 156,00 9,10 200,90 146,90 68	Hosesho, 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40 130.90 130.90 129.40 59	Hosesho, 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90 314,90 278,90 117	Hosesho, 4.8 150 48.00 392.00 328.00 311.33 278.00 26.00 302.00 285.33 252.00 118 108.0	Hosesho. 4.8 11,250 12,00 48,00 392,00 311,33 278,00 11,90 316,10 259,43 266,10 124 112,4
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Discharge Tail Water Level Gross Head Maximum Head Loss of Head Minimum Head Loss of Head Effective Head Maximum Normal Minimum Installed Capacity Firm Peak Power Annual Energy	M M M^3/S M^3/S M M M M M M M M M M M M M	Hosesho, 4.6 500 10.70 43.00 530.00 210.00 192.00 176.00 174.90 138.90 65	Hosesho, 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60 128.10 126.60 57	Hosesho. 4.6 7,930 10,70 43,00 530,00 210,00 192,00 192,00 156,00 9,10 200,90 182,90 146,90 68 58,0	Hosesho. 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40 130.90 129.40 59 56.4	Hosesho, 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90 314,90 278,90 117	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00 26.00 302.00 285.33 252.00 118	Hosesho, 4.8 11,250 12,00 48,00 392,00 311,33 278,00 11,50 316,10 299,43 266,10 124 112,4 428,1
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Discharge Tail Water Level Gross Head Maximum Head Normal Head Minimum Head Loss of Head Effective Head Maximum Normal Minimum Installed Capacity Firm Peak Power Annual Energy Average	M M M^3/S M^3/S M M M M M M M M M M M M M M M M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 176.00 174.90 138.90 65 56.1	Hosesho, 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60 128.10 126.60 57 56.1	Hosesho. 4.6 7,930 10.70 43.00 530.00 210.00 192.00 192.00 156.00 9.10 200.90 182.90 182.90 182.90 58.0 247.9	Hosesho, 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40 130.90 129.40 59 56,4 221,4 124.2	Hosesho. 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90 314,90 278,90 117 104,4	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 26.00 26.00 265.33 252.00 118 108.0 412.8 251.9	Hosesho. 4.8 11,250 12,00 48,00 392,00 311,33 278,00 11,30 316,10 259,43 266,10 124 112,4 428,1 262,2
Tailrace Tunnel Type Diameters Length (Tunnel) (Channel) Firm Discharge Maximum Discharge Tail Water Level Gross Head Maximum Head Loss of Head Minimum Head Loss of Head Effective Head Maximum Normal Minimum Installed Capacity Firm Peak Power Annual Energy	M M M^3/S M^3/S M M M M M M M M M M M M M M M M M M M	Hosesho. 4.6 500 10.70 43.00 530.00 210.00 192.00 176.00 174.90 138.90 65 56.1 240.1	Hosesho, 4.9 150 13.00 52.00 392.00 138.00 136.50 135.00 8.40 129.60 128.10 126.60 57 56.1 220.4 123.6	Hosesho, 4.6 7,930 10.70 43.00 530.00 210.00 192.00 192.00 156.00 9.10 200.90 146.90 68 58.0 247.9 141.4	Hosesho, 4.9 4,454 13.00 52.00 392.00 138.00 136.50 135.00 5.60 132.40 130.90 129.40 59 56.4 221.4 124.2	Hosesho, 4.6 15,530 10,70 43,00 392,00 348,00 330,00 294,00 15,10 332,90 314,90 278,90 117 104,4 421,1	Hosesho, 4.8 150 12.00 48.00 392.00 328.00 311.33 278.00 26.00 302.00 285.33 252.00 118 108.0 412.8 251.9	Hosesho. 4.8 11,250 12,00 48,00 392,00 311,33 278,00 11,30 316,10 259,43 266,10 124 112,4 428,1 262,2

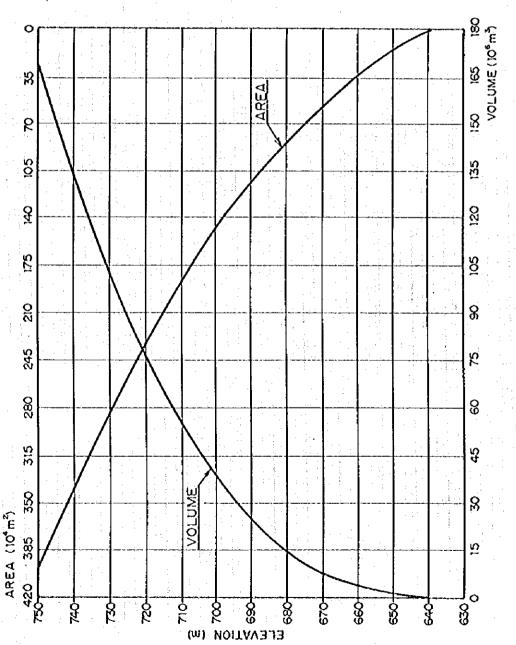
Table 9-4	Cost Estimate of Alternative Layout

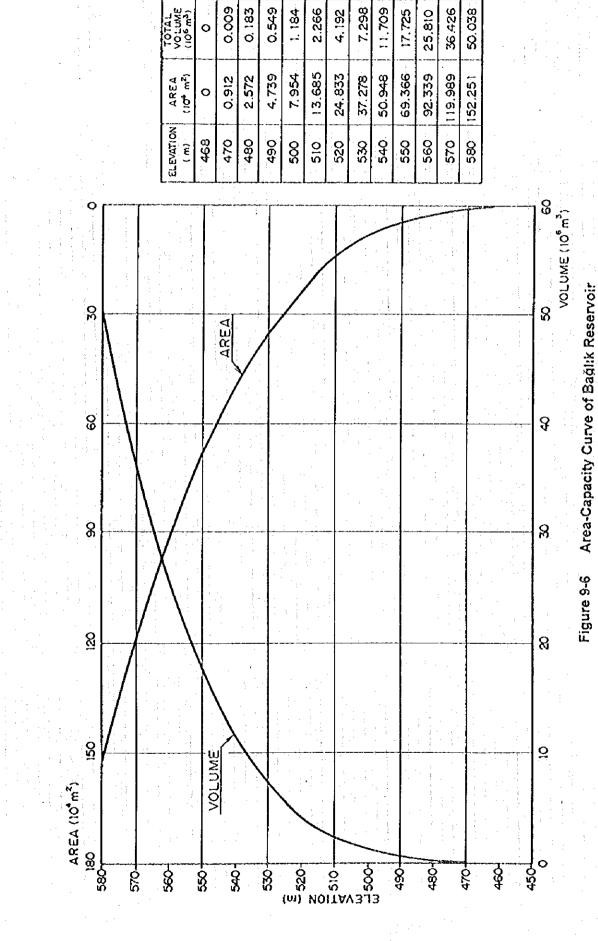
Description Dam Site	Bayram	Baglik	Bayram	Baglik	8ayram	Kateduzu	Kaleduzu
Layout Type	Headrace	Headrace	Tailrace	Tailrace	One Stage	Headrace	Tailrace
High Water Levet (m)	740	530	740	530	740	720	720
Reservoir Area (km*2)	3.38	0.37	3.38	0.37	3.38	4.18	4.18
Dam Volume (10^6m*3)	6,144	195	5,144	195	8,144	8,990	8,990
Dam Height (m)	145	74	145	· 74	145	140	140
Maximum Head (m)	210	138	210	138	348	328	328
Vaximum Discharge (m*3/s)	43	52	43	52	43	48	48
Relocation Road	11,655		11,655	6,759	11,655	14,414	14.414
Comp Facilities	800		800	603	1,600	800	1,600
Land Acquisition	2,242	595	2,242	598	2 242	2,773	2,773
Civil Work	87,967	28,635	83,113	25,984	106 445	130,583	121,037
Diversion	2 421	0	2,421	0	2 421	2,421	2,421
Care of River	1 082		1,082	Ő	1 082	1,082	1,082
Dam	47 281	9,983	47,281	9,983	47 281	70,220	70,220
Spillway	7,523	780	7,523	780	7,523	7,080	7,080
Outlet Works	1.018	Ő	1,018	0	1,018	1,018	1,018
Intake	1,087		1,087	40	1 087	912	842
Headrace Tunnel	22,275	13,330	0	0		41,460	
Surge Tank	22,213	0	ő	0	· 0	41,400	
Penstock	787	288	546	376	1,211	1,572	1,291
Acces Tunnels	0	200	3,980	2,478	10 105		9,608
Power House	3,049	3,413	3,980	3,413	5,249	0	
Tailraca Tunnel	944	300	14,965	8,914	29 307	4,012 306	4,350
Switchyard	500	500	14,905	0,914			22,963
Pre-Subtotal	102,664	36,791	97,810	34,141	161 121,942	500	161
Contingency (15%)	15,063			5,031		148,569	139,823
Eng. and Admi. (10%)	17,323	5,429	14,335	3,857	17,955	21,869	20,558
Sub Total	135,049	4,162	10,990	43,030	20,648	25,150	23,641
D.C (9.5%/Year)	26,981	46,383	123,136	10,745	160,545	195,588	184,022
Total	162,031	11,586 57,968	24,601 147,737	53,778	32 075 192 620	39,078	36,765
lydraulic Equipment		2,526				234,664	220,787
Spillway	6 368 856	870	5,203 856	2 884 870	8 416 856	10,215	8,856
Outlet Works						856	856
intake Gate	528 763	0	528 763	0 170	528	528	528
Penslock	3,459	170	2,400	1,400	763 5,321	789	789
Draft Gate		1,074		121		6,909	5,674
	122	121	122		122	136	135
Tailrace Gate Pre-Sublotal	61 5,789	61	61	61	61	63	68
Contingency (10%)		2,296	4,730	2,622	7,651	9,265	8,051
Electro-Mechanical Equipment	579	230	473	262	765	929	805
Electro-Mechanical Equipment	15,137 14,416	18,938 18,036	15,780	19,216 18,301	25,223	28,219	34,507
			15,029		24 022	26,875	32,863
Contingency (5%)	721	902	751	915	1,201	1,344	1,643
Eng. and Admi. (10%)	2,151	2,146	2,098	2,210	3,364	3,843	4,336
Sub Totel	23,656	23,610	23,082	24,310	37,003	42,277	47,699
D.C (9.5%/Year)	1,272	1,337	1,241	1,377	1,989	2,273	2,565
Total Grand Total	24,928	24,947 82,916	24,323	25,687	<u>38,993</u> 231,613	44,550 279,214	<u>50,264</u> 271,051


Table 9-5	Comparison S	Study on A	Alternative	Layout


Intrace Type Underground F	Baytan	8adik	Total	Bayan	B-g-k	101	ay an		Tola	by Mixed A Kalestuzu		Tota	Kaleduzu		Total
escription Dam Site	Readrace	530C	TOCAN	121300	Tal:ace		One State	1	100.00	Hisadiace			Tailace		
Koh Water Levol	740 00	530.00		740 00	530.00		740.00	·····		720			720		
sgn water Level Iomai Water Level	722 00	528.50		722 00	529 50		722.00			703 3333			703 3333		
omas water Level	286 00	527 00		666 00	527 00		686.00			670		1	670		
	54 00	3 00		54 00	3 00		54 00			50			50	+	
lva?sble Drawdown	133 00	1 30		133 00	73		130 00		: :	186 e			186.8		
Gross Storage Capacity		100		113 00	100		113 00			140			140		
fective Storage Capacity	113.00				Con Gra		Rockel			Rociol			RockM		
bann Typet	RockAl	Con-Gra					145	1		140			140		
Sam Hághl	145			145	.14	1	6.144			8,990			8,950		
an Voune	6 144	195		6,144	195					392.50			392.00		
alwaler i erei	530.00	392.00		530.00	392.00		392.00				1.1	· ·	299 43		
Effective Head	174 90	128 10		192.90	130.90		3:4 90			265 33	1 a C	1	48.00		
Vaximum Discharge	43:00	52 00		43.00	52 00		43.00			48 00		1			\$240
neta Ted Capacity	65 00		122 00	60.00		127.00			117.00			118.00		1	\$12.4
ion Peak Power	55.11	56 14	112.24	58.00	56 40	114.40	104,40		104.40	108 00	1	106.00	132.40		3124
Energy Production	1			12.2.2.2.1							2 I.				
Average Energy	240.10	220 38	450 49	247 90	221.40	469 30	421 10		421.10			412 79			428 1
Fam Energy	136 79	123 62	260 41	141.40	124 26	265 60		1.0	243 50		A	251 90			262 1
Secondary Energy	103 31	96 76	200.08	106 50	97 26	203 70	\$77.60		177 50			160 90		1.1	165 \$
Jul Seneti Value	0.00	0.00		0.00	0.00	1.1	0.00			0.00	10 A.	· ·	0.00		2
Firm Peak Power	180 45	180 45		180.45	180 45	1.1	180.45			180 45		- A - 5	 180 45 		
Fam Energy	0.027	0 027	· ·	C 027	0 027	:	0.027	1		0.027		1 A. A.	0 027		
Secondary Energy	0 022			0 022	0 022		0 022			0 022		1 .	0 022		
Benefit		0.011			1							1			
Fam Peak Power	8 65	9.66	19.32	9 90	971	19-59	17 97		17 97	18 59		16 59	1934		193
	363		6 91	3 75		7.05	6 45		6.46	6 69		I 6€9	6 96		6
Firm Energy	1 222		431	229		4 39			382			3,46	357		3:
Secondary Energy	1 15 51					31.12			28 25			29.74	29.87		291
Total	1 '22'	15 42	[1.505		1					1			
Investment Cost	162 03	57.97	220.00	14774	53 78	20151	192 62		192 62	234 65		234 68	220 79		2201
Cr.4 Facilities	24,93		49.87	24 32		50 01			38 99			44.55			50
Hydrau and Ele Mech Eq.				172 06		251.52			231.51			279.21			271
Total	186.96	62.92	203.67	1 1/200	13.40	231.32	1 42:01			1		1	1		
Annual Cost	1				5 43	2035	19.45	•	19 45	23 70	1.1	2370	22 30	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	22
CM Facilities	16 37	5 85	22 22	\$4.92		2030 570			4.45			5 04		· · · ·	3
Hydrau and Ele. Mech Eq.	2 84		5 5 5 5			26.05			23 90		1 - 1 - I	26 78			25
Total	19 21							1.1	435			-004		1.1	1
Annual Surplus Benefit[B-C)	-370				674	5 07	4 35	191			11.1	100		· · · ·	1
Banefit Cost Ratio(B/C)	0.81		1 09			1,19		5.	1,18		11	0154			0.1
Unit Annual Cost (Firm)	0 140					0 098			0.096			0010		1	5000
Urst Annual Cost (Average)	0.060	0 039	0 061	0 071	800 0	0.066	0.057		0.057	0.0/0		1 00/1	0.000		

Ð,




TOTAL VOLUME 132.602 14.853 38, 105 54.849 75.852 (10⁶m³) 0.707 3.025 7.565 24.995 101.574 169.414 o 231.740 32.230 115.640 14,130 58.570 87.190 282,690 337.860 398.380 146.560 188.310 AREA (10⁶ m²) 0 ELEVATION ŝ 640 650 680 690 8 200 800 670 120 740 250 10

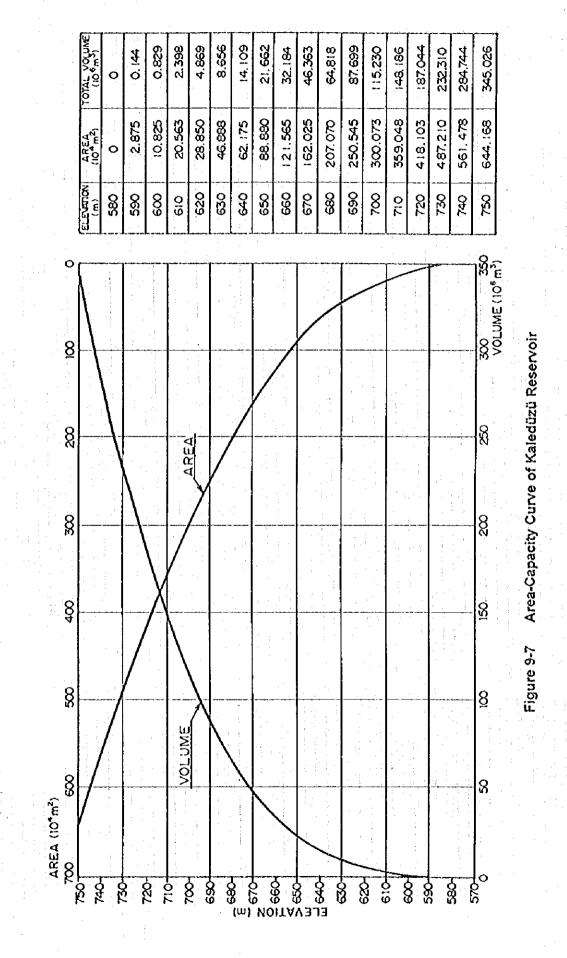


Figure 9-5 Area-Capacity Curve of Bayram Reservoir

1

ų

Î

0

J

9.2 Comparison Study of Alternative Development Plan

9.2.1 Method of Comparative Study

(1) Basic Condition

finition

The method used for a comparative study of the alternative development plan for optimization of the Çoruh-Berta project is the benefit cost method (BC Method) considering an alternative thermal power plant that would be built without the Çoruh-Berta project and taking the cost of the thermal power plant as the benefit of the project.

In order to select the optimum development plan an combination of imported coal-fired thermal power plant and natural gas combined cycle power plant which is supposed to be the future one of the main thermal power plants is used as the alternative facility to be installed in some sea coast region with an installed capacity of 300 MW.

Alternative development plans of the Çoruh-Berta project concerning dam site, waterway route, location of powerhouse and scale of reservoir are formulated and the optimum development plan is selected by comparison of these alternatives.

The annual surplus benefit (B-C) obtained from equalized annual costs (C) for the project life (50 years) of the hydropower facility, and the equalized annual cost (B) of the alternative thermal facility having an ability equivalent to the hydropower facility is used in the study as the indices. Prices in 1996 without import taxes are used in the comparisons.

The cost of the transmission line between the Powerhouse of the Çoruh-Berta project and the load center which should be born by the Çoruh-Berta project and the cost of transmission line between the alternative thermal power plant and load center are omitted.

Parameters of the alternative thermal power plant are as shown in Table 9-6.

(2) Equalized Annual Cost

The equalized annual cost of a hydropower facility consists of depreciation and operationmaintenance cost. This is estimated by multiplying the annual cost factor by the investment cost.

Equalized Annual Cost = Annual Cost Factor x Investment Cost

= Depreciation + Interest + Operation and Maintenance Cost

Depreciation + Interest = Investment Cost x Capital Recovery Factor

Capital Recovery Factor

$=\frac{\mathrm{i}(1+\mathrm{i})^{\mathrm{n}}}{(1+\mathrm{i})^{\mathrm{n}}-1}$

n: Service Life

Civil Facility			50 years
Hydro-mechar	35 years		
Electro-mecha	nical Fa	cility	35 years
i: Discount Rate			9.5%
Civil Facility	· . · ¹	9.6%	
Hydro-mechanical Facility	in the second se	9.9%	
Electro-mechanical Facility		9.9%	

Operation and Maintenance Cost (Rate to Direct Cost)

Civil Facility	0.5%
Hydro-mechanical Facility	1.5%
Electro-mechanical Facility	1.5%

Accordingly annual cost ratios of facilities are as follows:

Civil Facility	10.1%
Hydro-mechanical Facility	11.4%
Electro-mechanical Facility	11.4%

(3) Benefit

P

The benefits of the Berta project are summarized according to the project cost, maintenance and operation costs, and the fuel cost of an alternative thermal-power plant as shown in Table 9-6. The effective power output and effective energy that are used in calculating the advantages of the project, are given according to the below conditions.

(a) The effective power output at the receiving end is expressed by the below equation. This equation reduces the station service rate by 0.3%, the forced outage rate by 0.3%, the scheduled outage rate by 2.0%, and the transmission loss rate by 2.1% from the firm peak output. The firm peak output is defined as the 95% probable output for the 53 year period.

Effective power output = $(1 - 0.003) \times (1 - 0.003) \times (1 - 0.02) \times (1 - 0.021) \times$ Firm peak output

(b) The effective energy at the receiving end is expressed by the below equation that reduces the station service rate by 0.3% and transmission loss rate by 1.4% from the average energy for the 53 year period.

Effective Energy = (1 - 0.003) x (1 - 0.004) x Average annual energy

9 . 23

Table 9-6	Alternative	Thermal Power Plan	t for	Comparison	Study
					•

llem	Coal Thermal	Gas Combined Cycle
Type Unit		
Installed Capacity MW	300*1=300 * 0.5	150*2=300 * 0.5
Annual Plant Factor %	70.0	70.0
Thermal Efficiency %	38.3	40.0
Annual Energy Production GWh	1,839.6 * 0.7 = 1,287.7	1,839.6 * 0.3 = 551.9
Investment Cost 10^6US\$	420 * 0.5 = 210.00	198 * 0.5 = 99.00
Service Life Year	25	15
Construction Period Year	4	3
Capital Recovery Factor	0.10596	0.127744
Coal Calorific Value kcal/kg	6,500	
Coal Surface Moisture %	7	7
Oil Calorific Value kcal/kg	10,500	
Fuel Consumption Rate(Coal 95%)) kg/kWh	0.353	
Fuel Consumption Rate (Oil 5%) kg/kWh	0.011	
Fuel Consumption Rate (Gas 100%%) kcal/kW		2,200
O & M Cost Administration Cost %	3	3
Unit Fuel Cost (Coal) US\$/kg	0.055	•
Unit Fuel Cost (Oil) US\$/kg	0.013	· · · · · ·
Unit Fuel Cost (Gas) US\$/10^6kc		0.001646
Annual Cost	Fixed Cost Variable Cost	Fixed Cost Variable Cost
Capital Recovery 10^6US\$	22.25 0.00	12.65
O & M Cost Administration Cost 10^6US\$	5.67 0.63	2.67 0.30
Fuel Cost 10 ⁶ US\$	0.00 25.19	19.99
Total 10*6US\$	27.92 25.82	15.32 20.29
Annual Cost At Reciving End	······································	
kW Cost 1) US\$/kW		180.45
Firm KWh Cost 3) US\$/kWh		0.0270
Secondary KWh Cost 4) US\$/kWh		0.0217
1) ((27.92*10^6/300,000)*1.252)+((15.32*10^6/		180.45 US\$
2) ((25.82/1,287.7)*1.084*0.7)+(25.82/1,839.6)*	1.084°0.3}≐	0.0270 US\$
3) (25.82/1,287.7)*1.085=		0.0217 US\$
4) Ajustment Factor for kW & kWh	Thermal Power Plant	Hydro Power Plant
ltem	kW kWh	kW kWh
Transmission Loss Rate (%)	3.0 2.5	2.1 1.4
Station Service Rate (%)	7.0 7.0	0.3 0.3
Forced Outage Rate (%)	4.0 -	0.3
Scheduled Outage Rate (%)	12.0 -	2.0 -
kW Adjustment Factor = (1-0.021)*(1-0.003)* kWh Adjustment Factor = (1-0.014)*(1-0.003)	(1-0.003)*(1-0.02) / (1-0.003)*(1-0.07)*(1-0. / (1-0.025)*(1-0.07) = 1.084	04)*(1-0.12) = 1.252

1

1

Î

9 • 24

9.2.2 Alternative Plan

As described in 9.2.1(2) regarding the Bayram and Bağlık projects, alternative plans for the projects consisting of tailrace-type layouts in which underground powerhouses are provided immediately below the respective dams with discharge made by non-pressure tunnels in the vicinities of the ends of downstream reservoir backwaters were formulated.

(1) Dam Sites

T

Į,

(a) Bayram Dam

The location of Bayram dam must be selected between the Meydancik river-Şavşat river confluence and the Savail slope site 3.5 km downstream of the confluence due to conditions required of a reservoir. From the standpoint of topography, there are no sites other than the dam axis selected in the master plan of 2.5 km from the confluence, while it has been confirmed in this study that geologically, there is no decisive defect with this dam axis.

Consequently, it was decided not to select an alternative dam axis other than the other selected in the master plan.

(b) 👘 Bağlık Dam

In the master plan, the dam axis is selected at a narrows 300 m downstream from the confluence with the Sungu river, one of the important tributaries of the Berta river. Downstream of this site there is no inflow of an important tributary, while the river-bed gradient is more or less constant at about 1/66 down to the end of the Deriner reservoir backwater, while moreover, the valley width is broader compared with the narrows and moving the dam site further downstream than the narrows will be of no merit. Furthermore, because of theeffective storage capacity, if the dam site were to be moved downstream, it will be unavoidable for idle head to result in the inflow from the Karçal river which makes up the major part of inflow from the remaining catchment between Bayram dam and Bağlık dam.

On the other hand, if the dam site were to be moved upstream of the confluence with the Sungu river, not only will the inflow be reduced, but also the storage capacity will be greatly lowered.

Because of this, unless the narrows downstream of the Sungu river possesses a decisive defect geologically for a dam site, it will be unnecessary to select an alternative dam site.

The dam axis selected in the master plan is the point of smallest valley width in this narrows, and as mentioned in 7.2, it is not necessarily a favorable dam axis geologically, so that in the present study, a dam axis was newly selected at a point 200 m upstream of this dam axis. Since these two dam axes, new and old, can be considered to be the same site from the standpoint of studying the project, the upstream new dam axis was considered as the Bağlık dam site, and no other alternative was set up for the dam.

A comparison study of the new and old dam axes and the results are as described in 11.2.

(2) Tail Water Level

(a) Bayram Project

The tail water level of the Bayram project will depend on the reservoir high water level of the downstream Bağlık project so that the tail water level and the alternative tailrace tunnel route proposal will be in combination with the alternative storage capacity proposal for the Bağlık project.

(b) Bağlık Project

The tail water level of the Bağlık project, according to the master plan, will be the reservoir high water level of the Deriner project, which is already at the stage of development, since it is to make use of the entire head between it and the Deriner project.

The Berta river between the Bayram dam site and the end of the Deriner reservoir backwater flows down in a roughly straight line with the river gradient more or less a constant 1/66. Accordingly, there is no necessity consider an alternative plan which sets the tail water level at higher than the high water level of the Deriner project.

It will be possible for the tailrace tunnel of the Bağlık project to be made a non-pressure tunnel even if the tail water level of the Bağlık project were to be about 10 m lower to take advantage of the head produced by the fall in the water level of Deriner reservoir, but it is scheduled for Deriner reservoir to already have been completed when the Bağlık project is to be constructed, and in this case, it will be necessary for a cofferdam to be provided inside Deriner reservoir for construction work on the outlet part of the tailrace tunnel. Therefore, it was decided not to consider an alternative plan to make the tail water level lower than the high water level of EL. 392 m of the Deriner project.

(3) Effective Storage Capacity, High water Level of reservoir

(a) Effective Storage Capacity

texture of

According to the master plan, the Bayram project will have a dam 120 m in height with which a reservoir of high water level 720 m and effective storage capacity of 57.6 x 20^6 m³ will be made, while the Bağlık project would have a dam 125 m in height with which reservoir of high water level 570 m and effective storage capacity of 30.34 x 10^6 m³ will be provided.

The regulating effect of the reservoir in the Bayram project will be effective for the Bağlık project also. The regulating effect of the reservoir of the Bağlık project will be effective only for the Bağlık project itself, but the tail water level and the tailrace tunnel route of the Bayram project will be decided by the scale of Bağlık reservoir.

Consequently, the alternative proposal concerning storage capacity was made a combination of the respective storage capacities of the Bayram project and the Bağlık project.

For the Bayram project, effective storage capacities of 11 cases at 5 m intervals in a range from high water level 750 m and effective storage capacity 149 x 10^6 m³ to high water level 700 m and effective storage capacity 18 x 10^6 m³ were set up.

For the Bağlık project, in addition to the two cases of high water level 570 m, effective storage capacity 30×10^6 m³ and high water level 550 m, effective storage capacity 11×10^6 m³, a case of high water level 530 m and effective storage capacity 1×10^6 m³ consisting of daily regulating capacity for the generating discharge of the Bayram project and the residual runoff between Bayram dam and Bağlık dam was considered for a total of three cases.

Consequently, the alternative plans for storage capacities in the Bayram project and Bağlık project were the 33 combinations of cases given in below.

Bağlık Project		Bayram Projec	ot							
Low Water Level = 527 m	Lo	Low Water Lvel = 686 m								
High Water Level		High Water Lev	rel							
(m)		(m)								
	· · · · · · · · · · · · · · · · · · ·	·····	······································							
570	750 - 700	5 m pitch	total 11 cases							
550	750 - 700	5 m pitch	total 11 cases							
530	750 - 700	5 m pitch	total 11 cases							

These alternatives, as shown below, were based on minimum water level taking into consideration sediment volume and static draft head of intake. Since Bağlık project is planned together with Bayram project and not be constructed before Bayram project, therefor catchment area between Bayram project and Bağlık project is taken into account for calculation of sediment volume of Bağlık project.

		Bayram Project	Bağlık Project
Annual Sediment Volume	10 ⁶ m ³	0.235	0.071
Project Lift	Year	50	50
Design Sediment Volume	10 ⁶ m ³	11.76	3.55
Design Sediment Elevation	m	676.00	517.00
Intake Draft Head	m	10.00	10.00
Minimum Low Water Level	m	686.00	527.00

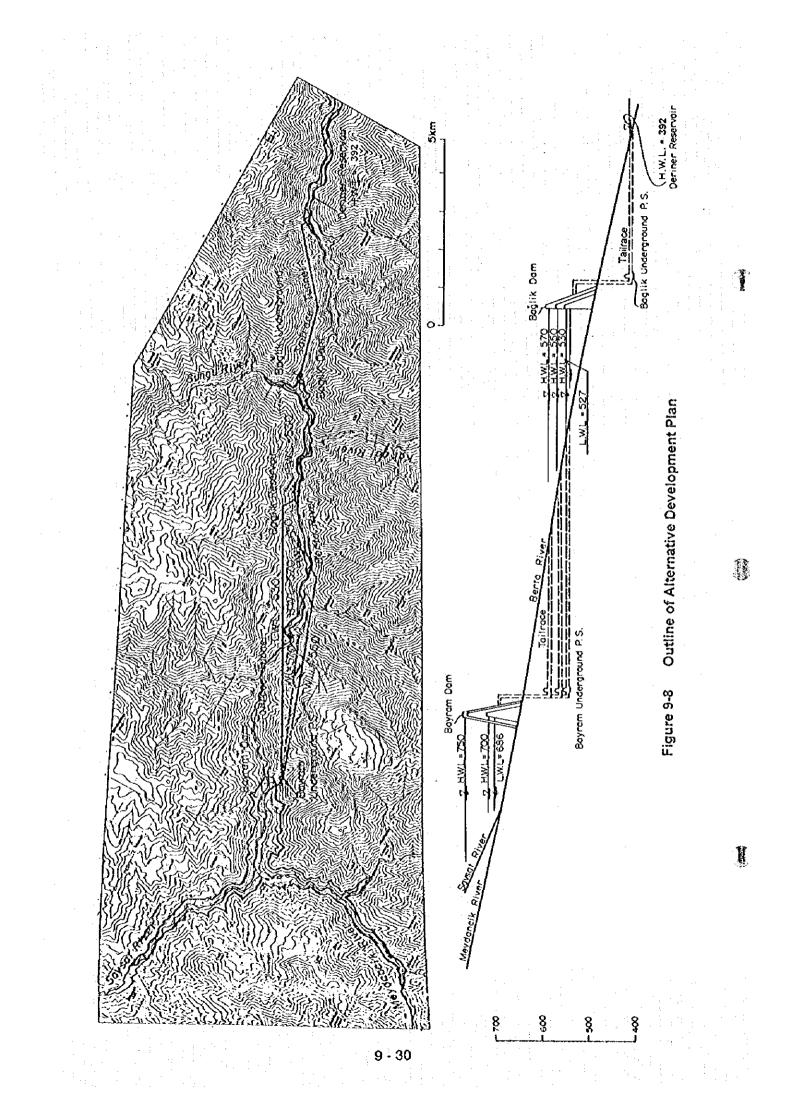
Outline of alternative plans for storage capacities in the Bayram project and Bağlık project are shown in Table 9-7.

(b) Reservoir Low Water Level

The alternative plans for the comparison studies regarding combinations of storage capacity of the Bayram and Bağlık projects were formulated with the minimum fow water levels determined from low water levels and sedimentation volumes as the low water levels, following which alternative plans with low water levels set above these minimum low water levels were formulated for making the comparison studies.

For the Bayram project, alternative plans were set up for the storage capacity which was determined as optimum in the comparison studies of alternative reservoir plans described in (a) and storage capacities around that storage capacity.

.


k

Here, as a result of comparative study of effective storage volume as mentioned in (a), an alternative with storage volume of Bağlık Project being minimum (daily regulation), i.e. an alternative with minimum dam became optimum. Therefore, various cases of Bayram project were compared setting a case with HWL 530 m for Bağlık Project as tentatively optimum as given in below.

Bayram Project High Water Level	Bayram Project (with Baglik project High Water Lvel = 530 m
(m)	two Low Water Level = 527 m)
750	686 705-745 5 m pitch total 10 cases
745	686 700-740 5 m pitch total 10 cases
740	686 700-735 5 m pitch total 9 cases
735	686 700-730 5 m pitch total 8 cases
730	686 700-725 5 m pitch total 7 cases

Optimum high water level and low water level of the Bağlık Project is to be determined after determination of optimum high water level and low water level of Bayram project as described in 9.2.3(2).

Table 9-8 shows outline of alternative plan concerning low water level of reservoir.

Table 9-7(1) Outline of Alternative Plan for Reservoir Capacity Bayram Protect Tailrace Type Undergroe, Pris Layout H W L, =750m, 700m, With Baglik H, W L, =570m.

Bayram Project Talira		Indergro	. P/S La	out H.W	L =750m	-700m V	Ville Bagli	<u> 1 H.W L.</u>				
	Danste		Baytam		Bayram						Bayram	Bayra/n
Reservoir	Luyout	750M P		74044 P	735M P	7304 P				710M P		700M.P
Catchment Area	КМ*2	1,159	1,159	1 159	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159
Annual Inflow	M*3 S	:19.20	19 20	19 20	19 20	19 20	19 20	19 20	19.20	19.20	19 20	19 20
High Weter Level	M	750.00	745.00	740 90	735.00	730.00	725.00	720 00	715 00	710.00	705 00	700 00
Normal Water Level	M	725,67	725.33	722 00	715.67	715 33	712-00	708 67	705.33	702 00	698 67	695 33
Low Water Level	M	665.00	666 00	688 00	685 00	636.00	686 00	686 00	666 00	686 00	666 00	685 00
AvaBable Drawdown	M	64.00	59 00	54.00	49.00	44.00	39.00	34 00	29 00	24 00	19 00	14 00
Gross Capacity	10^6M*3	169.00	150 00	133 00	116.00	102.00	88.00	76 00	65 00	55 00		\$69.00
Effective Capacity	104671,3	149.00	133 00	113-00	96.00	82.00	68.00	56 00	45 00	35 00	26 00	149.00
Dans			•	1.1								
Туре		Rockfill	Rockfill	Rocidill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill
Height from Found.	M	155	150	145	t40	135	130	125	. 120	115	110	105
Crest Langth	N .	462	442	415	. 395	379	363	351	337	324	311	292
Volume	10131413	8,500	7,200	5,144	5,400	4,800	4,300	3,900	3500	3100	2700	2400
Readrace Tunnel			5						1.1			
Тура		1.1						I				
Diameters	M .	1.1		1					$\{ e_{1}, e_{2} \}$			
Length	M		1 A 4	1. A.	1.1				1			
Penstock	1.5	1.1		· .				$(x_{i},y_{i}) \in \mathbb{R}^{n}$			1 1 1	
Тура		Tunnel	Turinel	Tunnel	Tunnet	Tunnel	Tunne!	Tunnel	Tunival	Tunnel	Tonnel	Tunnel
Diameters	M	35	3.4	33	32	3,1	:30	2.9		2.7	26	25
Longth	м	268	257.99	267.99	267.99	267 99	267.99	267.93	267.99	267.99	267.99	267.99
Powernouse	- N											
Туре		Uncergr.	Undergr.	Undergr	Undergr.	Undergr.	Unde or	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.
Tailsace Tunnet			1 1 1			1.1		1				1.1
Туре		Hosesho	Non-Pré.		Non-Pre	Non-Pre	Non-Pre	Non-Pre.		Non-Pre-		Non-Pre.
Diamete/s] M _	4.8	4.7	4.6	4.5	4,4	43	42	4,3	- 4.0	39	3.8
tength (Tunnel)	M	4,550	4,550	1,550	4,550	4,550	4,550	4,550	4,550	4,550	4,550	4,550
(Channel)	M			· · · · · ·								
Firm Discharge	M'3'S	12 20				\$ 50	8 90	8 30	7.70	7.20	6.60	6.10
Maximum Dischaerge	M*3/S	49.00		43,00			36 00		31 00	29.00	26.00	24.00
Tall Water Level	M .	570.00	570.00	570.00	570.00	570 00	570 00	570.00	570.00	\$70.00	570.00	570 OO
Gross Head		ية عدد										
Maximum Head	м	150.00			165.00		155 00	150.00	145.00	140.00	135 00	130 00 125 33
Normal Head	M ·	158.67	155 33		145 67	145.33	142 00		135 33	132 00	128 67	116 00
Minimum Head	M	116.00					116 00		115.00		6 80	6.90
Loss of Head	М.,	. 6.30	630	6 30	6 40	6.40	6 50	6.60	050	6.70	0~~	0.50
Effective Haad	l ·	1	محققه	102.20	1	153 60	145 50	143.40	138.40	133 30	128 20	123,10
Maximum	M	173.70	168.70	163.70 145.70	158.60	138 93	135 50		128.73	125.30	121 87	118.43
Normal	M	152 37 109,70			109 60		109.50		109.40	109 30	109 20	109.10
Minimum	M	109.70		109.70		109.60	42	109.40	34		27	24
Installed Cenecity	MV	52.4		44.8	49	37.2	345		27,6		23 8	21,1
Firm Peak Power	MVY	32.4	40.0	94.0	90,7	ar.z			"" [®]	£94 £	"°	* "
Annual Energy	GWh	215.0	207.6	159 5	188.2	178 9	170 9	158.4	149.8	139.7	127.3	117.3
Average	GYYN	135 0				93 5	872	78.5	70.5		56 2	
Firm	GWh	80.0				54.6	83.7	798	793		71.1	85 5
Secondary	1 0444		1 001			L 04.6	L		L	, ,,,		L

laglik Project Talirace Type Undergro. F/S Layout H.W L =570.00m With Bayram H.W.L =750m 700m

Baglik Project Tailrac	e Type U	nder <u>or o</u> .	F/SLay:	NULH.W	570.00	kin With I	Bayram I	i.W.L.#7:	50m-700r	n		
	Demoite	Baglik	Baglik	Baglik	Baglik	8aglik	Baplik	Baglik	Baglik	Boglik	Baglik	Baglik
Reservoir	Layout	750M P	745MP	7401J P	735M.P	730M/P	725M P	7201A P	715MP	7104LP	7054 P	700Å£ P
Catchment Area	K34*2	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509
Annual Inflow	M*3 S	24.90	24.90	24 90	24.90	24.90	24.90	24.90	24.90	24.90	24.90	24.90
High Water Level	M	\$70.00	570.00	570 00	570.00	570.00	570.00	570.00	570.00	570 00	570.00	570 00
Normal Water Level	M	555.67	555.67	555 67	555 67	555.67	555.67	555 67	555 67	555 67	555.67	555 67
Low Water Level	N -	527.00	527.00	527.00	527.00	527.00	527.00	527.00	527 00	527.00	527.00	527.00
Available Drawdown	M	43 00	43.00	43 00	43 00	. 43 00	43 00	43.00	43.00	43 00	43.00	43 00
Gross Capacity	10161413	36.40	35 40	36.40	36.40	36 40	36,40	36.40	36.40	36.40	36.40	36.40
Effective Capacity	10*614*3	30.10	30.10	30 10	30.10	30.10	30.10	30.10	30,10	30.10	30,10	30.10
Dam												
Туре		Con-Gra.	Con-gra	Con-gra	Coni-pra.	Con-gra.	Con-óra	Con-gra	Con-pra	Con-gra.	Con-gra	Congra
Height from Found.	N.	114	1 114	114	1 114	114	1 114	114	114	114	114	114
Crest Langth	й.	254		284	284	284	284	284	284	284	284	284
Volume	10"344"3	690		680	680	630	660	683	680	680	680	680
Headrace Tunnel	r · · · ·											l
Тура		1							1			· ·
Diameters	w						i					
Length	ш								Í			
Perstock							i			·	i	
Туре		Tunnel	Typpof	Tunnel	Tunnel	Tunnel	Turnet	Tunsel	Tunnel	Tunnel	Tunnel	Tunnel
Diameters	N.	4.0	39	38	37	36	35	3.4	33			3.1
Length	l ü	213 01	213	213	213	213		213				
Powarhouse		, 10 U	•									
Тура	1 · ·	Underor	Undergir	Underer	Underor.	Inderat	a indexac.	Indecat	Lindaran	Godesor	Dodarar	Underor
Teilesce Tunnof		ion de gr		onverge.	V	onderge.	l and a gra			e nae ge		ernerge.
				treathe	Hososho	Mar usha	Haranka	Horarha	W. racha	Harasha	Haracha	Waracha
Туре	м	57	5 2	.51	50	40	4.8	47	4.6	46	45	
Diameters	й	4,454		4,454	4.454	4,454						4,454
Longth (Tunnel)	м	. 4,434		4.4.54	4,434	4,4.54		1 ,727		1,734	4,124	* ,*34
(Chance)	M*3/S	15 50	15 00	14 30	13.50	12 75	12 25	11.50	11.00	10 50	10.00	9.50
Firm Discharge		62.00	60.00	57.00	54.00	51.00		45 00	44.00			38.00
Maximum Dischaerge	M*3 S							392.00				392.00
Teil Water Level	м	392 00	392.00	392.00	392,00	392 00	392.00	395.00	33200	392,00	392.00	39200
Gross Head	l					174 00	1.1.00	474.00				
Maximum Head	M.	178.00	178.00	178 00	178.00	178 00 163 67	178 00	178-00	178.00	178-00		
Normal Head	м	163 67	163.67	153.67	163.67		163 67					163.67
Minimum Head	M	135.00	135 00	, 135 W								
Loss of Head	м	5 50	5.50	\$ 50	5.60	5 60	5 60	5.70	5.70	5.70	5 80	580
Effective Kead 👘 📜	1. I											
Maximum	м	172 50	172 50	172 50	172.40	172.40	172.40	172 30	172.30	172 30		172 20
Normal	М.	158.17	158.17	158.17	158 07	158 07	158 07	157.97		157.97		157.87
Minimum	м	129 50	129.50	129 50	129.40	129.43	129 40	129 30		129 30		129 20
Installed Capacity	MW.	85	82	78	74	69	67	63	60		\$4	52
Firm Peak Power	NW .	725	708	67.6	67.8	65 2	62.5	60.1	568	53 2	47.9	i 43.4
Annual Energy	1 · ·	1 A.	1	1.1	1 ·	· .						I
Average	GWh	287.0	2856	262.1	2795	276 3		263.1	257.1			
Firm	GWh	178 0	1722	163.7	156 2	147.9	1 140.1	132 7	126.1	121.5	1 114E	108.0
L (131)	GWA	109.0	113.4	113.4	123 3	128.4	128.5	130.4	131.0	129 8	128.8	125.3

F

1

Table 9-7(2) Outline of Alternative Plan for Reservoir Capacity

asarvoir	Layout								8aytam			Bayram
	1 1	750A	745A	740A	735A	730A	725A	720A	715A	710A	705A	700A
Catchment Area	NM*2	1,159	1,159	1,159]	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159
Annual Infers	M*3/S	19 20	19 20	19 20	19 20	19 20	19 20	19.20	19 20	19 20	19.20	19 20
High Water Level	M	750.00	745.00	743 00	735.00	730 00	725.00	720.00	715.00	710,00]	705 00	709.00
Normal Water Level	м	728 67	725.33	722 00	718.67	715.33	712 00	708.67	705.33	702.00	698.67	695.33
Low Water Level	M	686.00	688.00	688.00	686 00	686.00	685 00	688.00	636.00	688 00	566.00	688.00
Available Drawdown	м	64.00	59.00	54 00	49 00	44.00	39.00	34.00]	29.00	24 00	19.00	14.00
Gross Capacity	10*61.1*3	169 00	150 00	133 00	116 00	102 00	85.00	76.00	65 00		45.00	38.00
	10^614*3	149 00	130.00	113 00	96 00	82.00	68 00	56 00	45 00	35.00	26.00	18.00
Dam									1			
Type		Rockfill	Rockfill	Rockfill	Rockfill	Rsckfill	Rockfill	Rockfill	Rockfill	Rock5i	Rock50	Rockfill
Height from Found.	R.	155	150	145	140	135	130	125	120	115	110	105
Crest Length	LU L	462	. 442	415	395	379	363	351	337	324	311	292
Volume	10*341*3	8,500	7,200	6,141	5,400	4,800	4,300	3,900	3,500	3,100	2,700	2,400
Seadiace Turviel	.						1 - C			l I		
Туре	.						1.11	11				
Diameters	l M					1 A	1.1					1
Length	ü	÷			1.1	1.1						
Penslock	~			· ·		1. A 1.						
Тура		Tunnel	Tunnel	Tunnel	Turnal	Turnel	Tunnel	Tunnel	Tunnet	Tunnel	Tunnel	Tunnel
Diamolers	м	35	- 34	3.3	32	3.1	30	2.9	28	2.7	2.6	25
Length	м	294	294	294	254	294	294	294	294	294	294	234
Powerhouse							•••		1			
Туре	111	Induror	indura	Inderar	kinderor	Underor	Underat	Underor.	Underar.	Undergr.	Undergr	Underor.
faikace Tuncel		Grinder gri	01.00									
Туре		Hosesha	Incacho	Hosesto	Hosesha	Hosesho	Hosesto	Hosesho	Hosesho	Hosesho.	Hosesho.	Hosesha
Diameters	ia –	48				4.4	4.3	42	4.1	4.0	39	3.8
Length (Tunnel)	l iii	6,700					6,700		6,700	6,700	6,700	6,700
(Channel)	l m –											
Firm Discha/de	M*3/S	12 20	11.40	10.70	10.10	9.50	8 90	8.30	7.70	1.20	6 60	6.10
Valdmum Dischaerge	W-35	49 00					36.00	33.00			26.00	
Tail Water Level	м	550.00								550.00	550.00	550.00
Gross Head	· · · ·				1							
Vadmom Read	M	200.00	195.00	190.00	\$85 00	180.00	175.00	170.00	165.00	160.00	155.00	150.00
Normal Head	u .	175 67										145.33
Minimum Haad	M.	136.00								136.00	136.00	136.00
Loss of Head	M	8 00						8.40		8 50	8,60	8.70
Effective Haad	. .									1.1	1.	
Maximum	M .	192.00	157.00	181 90	176 80	171.80	156.70	161.60	156 60	151.50	146.40	141.30
Normal	M	170 67					153.70		148.93			135.63
Minimum	l 🖬 🗄	128.00										
installed Capac≷y	MN .	72					47	42				28
Firm Paak Power	MAN .	60.4					357	33.9	32.2		27.8	25.5
Annual Energy	M T	- ~··	l ""	1	1 77		l	l	1	1	1	
	GMB	226.7	233 0	223.3	2132	203 3	1942	182.7	171.4	161.0	145.4	135.4
Avelaga Film	GWh	143 2						89.1	81.2			58.6
	I OID1	83.5						93.6				

1

Baglik Project Talkece Type Undergro. F/S Leyoot H W L=550 00m With Beyran H.W L=750m-700m Demake Baglik Reservoir Leyout 750A 745A 740A 735A 730A 725A 720A 715A 710A 705A 700A

(eservoir	Leyout	750A	745A	740A	735A	730Ā	725A	720A	715A	710A	705A	700A
Catchment Area	KM ² 2	1.509	1,509	1,509	1,509	1.509	1,509	1,509	1,509	1,509	1,509	1,509
Annual Inflow	M43/S	24,90	24.90	24,90	24.90	24.90	24.90	24.90	24 90	24 90	24.90	24.90
High Water Level	M	550.00	550.00	550 00	550.00	550.00	550 00	550 00	550.00	550.00	550.00	550.00
Normal Water Lavel	N.	538 50	538.50	538.50	538.50	538 50	538.50	538.50	538.50	538 50	538 50	538.50
Low Water Level	M.	527.00		527.00	527.00	527.00	527.00	527.00	527.00	\$27.00	527.00	527.00
Available Onewskym	M ·	23.00	23.00	23.00	23.00	23,00	23.00	23.00	23 00	23.00	23.00	23 00
	10*614*3	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17.70	17.70
	16*EM*3	11.40	11.40	11.40	11.40	11.40	11.40	11.40	\$1.40	11.40	11.40	11.40
am .				ъ.			· · .					1 - F
Туре		Con-Gra	Con Gra	Con-Gra	Con-Gra	Con Gra	Con-Gra.	Con-Gra	Con-Gra.	Con-Gra	Con-Gra.	Con-Gra.
seight hom Found.	M.	94	. 94	- 94	. 94	94	94	94	94	94	94	. 94
Crest Langth	й.	240	240	240	240	240	240	240	240	240	240	240
	10*344*3	420	420	.420	420	420	420	420	420	420	420	420
lasdrace Tunnel						100	l					
Тура									1.1			
Diameters	ม	í (1	1				
Length	M	Į					Į	· .		(¹		
anstock								.			1.1	
Type		Tunnol	Tunnet	Tunnel	Tunnel	Tuisnol	Tunnel	Tunnol	Tunnel	Tunnat	Tunnal	Tunnel
Diameters	5	39		37	3.6	3.5	3.4	33	32	. 3.1	: 30	. 29
enotite	M	213.01	213	213	213	213	213	213	213	213	213	213
owerhouse							· .	1.1				
Type	· .	Underor.	Underar.	Underar.	Underat	Underar.	Underar.	Undergr.	Underbr.	Underor.	Undergi.	Undergr.
airace Tunnel												
Туре	1	Kasasho	Hosesho.	Hosesho.	Hosesha	Hosesho	Hosesho	Houesho	Hosesha	Hosesha.	Hosesho	Hosesho.
Diameters	M	5.1	5.1	50	4.9	4.8	47	4.6	. 4.5	4.4	4.3	1 4.2
Length (Turinel)	М	4,454			4,454	4,454	4 454	4.454	4,454	4,454	4 454	4,454
(Channel)	M											
im Discharge	M*3-S	14.60	14 25	13 50	13 00	11.75	11.25	10.50	10.00	9.50	8.75	8.25
Ledmum Dischaeroe	M-3/S	59 00									35.00	33.00
al Water Level	N	392.00							392.00	392.00	392 00	392.00
Sess Head	ι,	1										
admum Head	M	158 00	158.00	158.00	158 00	158 00	158.00	158.00	158.00	158 00	158.00	158.00
iomat Heed	N	146 50							145 50		145.50	
Snimum Head	M	135 00										
oss of Head	M	5 50									5 90	
fective Head				1	1	1	1				1	
Madmum	м	152 50	152 50	152.40	152.40	152 30	152.30	152.30	152 20	152 20	152.10	152.10
Nermal	, M	141.00									140 50	
Minimom	M .	129 50										
nstailed Capacity	MM	72								46	42	40
am Peak Power	MW	65 8									41.0	
un Peak Powor Goual Energy	100.4.1	1	1	1	1	۳°	1	1 ~~	1			1
	GWA	255 0	252.9	250.5	245 8	240 2	235.2	227.5	221.0	214.0	2035	196 \$
Average 1	GWb	152 0										
Firm	GVA	103.0		1115								

Table 9-7(3) Outline of Alternative Plan for Reservoir Capacity

Ĩ

Bayram Project Talica	ce Type	Undergro	P/Staj	out H.W	L.=750m	-700m w	ith Ba slib	H.W.L.	530.00m	1		
	Damsite	Bayram	Bayram	Beytam	Baytam	Bayram	Sayram	Bayram	8ayram	Sayram	Bayram	Say am
Reservoir	Leyout	750C	745C	740C	7350	730C	725C	720C	7150	710C	705C	700C
Catchment Area	KM 2	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159
Annual Inflow	M*3:S	19.20	19 20	19 20	19 20	19 20	19 20	19 20	19 20	19.20	19 20	19 20]
High Water Level	M.	750.00	745.00	740 00	735.00	730.00	725.00	720.00	715 00	710 00	705.00	700.00
Normal Water Levis	14	728 67	725 33	722 00	718.67	715 33	712.00	708 67	705.33	702.00	638 67	695 33
Low Water Level	м	686 00	688 00	686 00	688 00	688 00	686.00	688 00	635 00		686.00	685 00
Available Drawdown	м	64 00	59.00	54.00	49.00	41.00	39.00	34.00	29 00	24 00	19.00	14.00
Gross Capacity	10*61/1*3	169 00	150.00	133 00	116 00	102 00	88.00	76 0 0	65 00		46 00	33 00
	10^6M^3	149 00	130.00	113.00	96.00	82.00	68 00	56 00	45 00		26.00	18.00
Dam			9,95	B 73	7.74	6 91	6.13	5.43	4,85	4.28	3.76	3.22
Type		Rectful	Rockalt	RocidM	Rockfill	Racidia	Rocidii	Rockfift	Rockfill	Rocidit		Rocidif
Height from Found.	м	155	150	145	140	135	- 130	125	120		110	105
Crest Length	м	462	4.42	- 415	395	379	363	351	337	324	- 311	. 292
Volume	10*3#1*3	8,500	7,200	6,144	5,400	4,800	4,300	3,900	3,500	3,100	2,700	2,400
Readrace Tunnel	1.1											
Type	· ·	1			1.1		1.1					
Diamoters	M 5						1.1		· · · ·			12
Length	14		1.1					1	1		1.1	- F
Penstock			1.1				1 :		· ·			
Туре	1 · · ·	Tunnel	Tunnel	Tuanal	Tunnel	Tunnel	Tunnet	Tunnel	Tunnet	โกยอา	Tunnel	โนกกตไ
Diameters	ม -	35	3.4	33	32	3.1	30	29	2.8	2.7	26	25
Length	<u> </u>	321	321.14	321.14	921.14	321.14	321.14	321.14	321.14	321.14	321.14	321.14
Powerbouse	1					1.1			1 · · ·	4		
Type		Undergr.	Underar.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr
Tailrace Lunnal			· ·	Ť			1 T.			Į –		
Туре	Ľ	Hosesha.	Hosesho.	Hosesho	Hosesho	Hesesha	Hosèsho	Hosesho	Hosesho	Hosesho	Hosesho	Hosesho
Diameters	I M	4.8	4.7	4.6	4.5	4.4	4.3	4.2	4.5	4.0	3.9	. 3,8
Langth (Tunnel)	M	7.930	7,930	7,930	7,930	7,930	7,930	7,930	7,930	2,930	7,930	: 7,930
(Chancel)	M											
Firm Discharge	M'3'S	12 20	11.40	10,70	10.10	9 50	8.90	8 30	7.70			6.10
Maximum Dischaerce	H-3.5	49 00	45 00	43 00	40.00	38.00	36.00	33.00	31.00	29.00	26 00	24.00
Tall Water Lavel	M	530.00	530.00	530.00	530.00	\$30.00	530 00	530.00	530.00	530.00	530.00	530.00
Gross Head	1							1 - E		1.1.1		
Madmum Head	м	220 00	215.00	210.00	205 00	200.00	195 00	190 00	135.00	160.00	175.00	
Normal Head	м	198.67	1 195 33	192 00	188 67	185 33	132 00	178 57	175 33	172 00		165.33
MinImum Head	м	156 00	156 00	158 00	156 00	156.00	156.00					
Loss of Head	M	9 00		9.10	9 20	.9 20	9.30	9.40	9 50	9.50	9.70	9.80
Effective Head			1				[1.1	1 · `	1.1.1	1 1	1.1
Maximum	l M [™]	211.00	206 00	200.90	195 80	190.80	185.70	180 60	175 50			160 20
Normal	N.	189.67	186 33	182.90	179.47	176.13						155 53
Miamum	м	147.00	147.00	145.90	146 80	145 80			146 50			145 20
Installed Capacity	MW	80	- 74	68	62	57	53					32
Firm Peak Power	SW	67.4		58 0	52.4	48.5	43 6	39.0	36 9	35.0	33.8	29.5
Annual Energy				· .			1.11	· ·			1.5	1 . s
	GWh	266 8	257.7	247.9	237.0	227.0	216.6	204 9	1933	180.8		
AV6 208												
Average	GWh	168.5			128 2		110 7					

Baglik Project Tailrace Type Undergro. P/S Leyoul H.W L= 530.00m with Bayram H.W L=750m-700m

Baglik Project Tailrac	e Type U			XAH W	• 530 D	Will Mail Da B	ayram H	.WIL. #75	012-1001			
	Damsle	Beglik	8aglik	Baglik	Baglik	Baglik	8a qiik	8agiik	Baglik	Baglik	Baglik	Baglik.
Reservoir	Liyout	750C	745C	740C	735C	730C	7250	720C	715C	710C	7060	700C
Cetchmont Area	KM12	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509
Assignt Inflow	M*3-S	24 90	5 24.90	24 90	24.90	24.90	24.90	24.90	24.90	24.90	24 90	24 90
High Water Level	М. ¹	530 00	530.00	530.00	530 00	530.00	530 00		530.00		530.00	530.00
Normal Water Level	M	528.50	528.50	528 50	528.50	528.50	528 50	528.50	\$26.50		528 50	528 50
Low Water Lavel	M	527.00	527.00	\$27.00	527.00	527.00	527.00		527,00		527.00	527 00
Available Drawdown	м	3,00	3.00	3 00	3.00	3.00	3 00	3.00	3.00	3.00	3.00	3 00
Gross Capacity	10*6M*3	7.30	7.30	7,30	7.30	7.30	. 7.30	7.30	7.30	7.30	7.30	7.30
Effect Capacity	10'614'3	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Dam						: -!	1.3					
Туре	200	Con-Gra	Con-Gra	Con-Gra.	Con-Gra.	Con-Gra	Con-Gra.	Con-Gra	Cori-Gra.	Con-Gra	Con-Gra	Con-Grs
Height from Found	м	74	. 74	74	74	74	74	· 74	- 74	74		74
Crest Length	M	190	190	190	190	. 190	190	\$90	190	190	130	190
Volume	16434443	195	195	195	195	195	195	195	195	195	195	195
Haadrace Turanoi												
Тура								1. 1	•			
Diameters	м	ł	:					. · ·		1.1		
Length	M			1.1								
Penstock												
Type		Tunnel	Tunnel	Tunnel	Tunnel	Tunnel	Tunnel	Tunnet	Tunnel	Turinel	Tunnel	Tunnel
Diamaters	M	3.8	3.7	38	35	3.4	33	. 32	31	30	29	28
Length	ü.	213.01	213 01	213 01	213 01	213 01	213 01	213 01	213.01	213 01	213 01	213 01
Powerhouse							1					
Type		tindoror.	linderer.	Underor	Undergr	Undergr.	Underpr.	Underor.	Undergr.	Undergr.	Undergr.	Undergr.
เป็นอีกเอง โหกกลง								1 1 7				
Type	10 N T 10	Hosesha	Hocesho	becaution	Hociesta	Hosesho.	Hosesho	Hosesho	Hosesho	Hosesha.	Hosesha.	Hosesha.
Dismeters	ม	5.1	50	49	48	47	4.6	4.5	. 44	43	42	4.1
Length (Tungel)		4 454	4,454		4 454	4,454	4,454	4.454	4,454	. 4,454	4,454	4,454
(Channel)	M :	-,,-		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
Firm Discharge	M-3.5	14.50	13.75	13.00	12.00	11.25	1075	10.00	9 50	9.00	8 25	7.75
Maximum Dischaetce	M-3-S	58 00	55.00			45.00	43 00	40.00	36.00		33 00	31.00
Tel Water Level	M	392.00	392.00			392.00	392.00		392.00	392.00	392.00	392.00
Gross Head	M	352.00	387.00			,		1				
Maximum Head	м	135.00	138.00	138.00	128.00	138 00	138 00	138 00	138.00	138.00	138 00	138.00
Normal Head	M.	135 50				136.50					136 50	
Maimum Head	m -	135 00			135 00	135 00	135 00					
Cost of Head	M	5.50	5.60		5 60							
	M	9.50	3.00	1		· ···						
Effoctive Head	M	132 50	132.40	132.40	132.40	132.30	132.30	132 20	132 20	132 20	132.10	132 00
Madmun	M.	131.00	132.40		130.90	130 80	120.80					
Nomai		129.50			129.40	129.30	129 30					
Minimum	M	129.50	129,40		123.40	51	43	45	43		37	
Installed Capacity	MW											
Firm Peak Power	MM	62.9	596	1 - 20.4	520	l ••••	· ···	1	1 7.3	1 33.0	1	
Annual Energy				221.4	215.7	210.5	206.8	200 6	192.6	185 9	176 9	170 4
Average	GWh	227.0					1025		89 5		78 6	
Fem	GWh	139 2					102.5				SS 3	
Secondary	GWh	87.8	93.3	1 4/3	102.1	1 1033	1-104.5	T 1045	ι <u></u>	L	L	

Table 9-8(1) Outline of Alternative Plan for Bayram Reservoir Water Level

(T)

Bayrem Project Tellre	ce Under	raro. PiS	Layouth	W.L.=7	50m L.W	L.+681-7	45m With	Baglik F	IW.L.+5	30.00m	
	Camste	Bayram	Bayram	Bayram	Bayram	Bayram	Bayram	Bayram	Sayram	Bayram	Bayram
Reservoir	Leyout	750-565	750-705	750-710	750-715	750-720	750-725	750-730	750-735	750-740	750-745
Calchment Area	KM*2	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159
Annual Inflow	M*3/\$	19 20	19 20	19 20	19 20	19.20	19.20	19 20	19 20	19 20	19/20
High Water Level		750 00	750 00	750 00	750.00	750.00	750 00	750.00	750.00	753 00	750.00
Normal Water Level	ม	728.67	735 00	736 67	738.33	740.00	741.67	743.33	745 00	745.67	748.33
Low Weter Level	й.	686 00	705.00	710.00	715.00	720 00	725.00	730.00	735 00	740.00	745.00
Available Drawdown	м	64 00	45.00	40.00	35 00	30.00	25.00	20.00	15 00	10 00	5.00
Gross Capacity	10^61/3	169.00	159.00	169.00	159 00	159.00	169.00	169.00	169 00	169.00	169.00
Effective Cabacity	10^6М*3	149.00	123.00	114.00	104.00	93.00	81.00	67.00	53.00	36.00	19.00
Dam Dam	(m*3's-0)		1,423.6	1,319.4	1,203.7	1,078,4	937.5	775.5	613.4	416.7	219.9
Тура					Rockfill	Rockfill	RockM	Rockfill	Rockfill	Rockfill	Recidial
Halaht from Found.	<u>м</u> –	155	155	155	155	155	155	155	155	155	155
Crest Length	M.	462	462	462	452	462	452	462	452	462	462
Volume	10-34-3		8,500	8,500	8,500	8,500	8.500	8,500	8,500	8,500	8,500
Headrace Tunnol	12 040 0	0.000	0,000			-,					-,
				1.1.1			2	1 A.			
Туре	м	1		1. 1.							
Diameters	M			1	1.1		1 - C				
Length	M			1	1.1		1.1				
Penstock	Ì	Tunnel	Tunnel	Tunnet	Tunnet	Tunnel	Tunnet	Tunicet	Tunnet	Tuncet	Tutinef
Type	·			33	33	32	3.1	30	29	2.7	2 5
Diameters	М	35	3.4	321	321	321	321	321	321	321	321
Length	М	321	321	321	: 321	321	321	521	341	341	361
Powerhouse	1	1	ι		L						
Туре	1 :	Undergr	Undergr.	Undergr.	evridergr.	Undergr.	Opdergr.	Undergr.	Undergr.	Undergr.	undergr.
Tail:ace โนเทค	1.11	· .								I	
Type	1.1.1						Hosesho	Hosesho			
Diamaters	м	4.8	4.7	4.5	4.6	45	4.4	j 3	42	4.0	38
Length (Tunnel)	M	7,930	7,930	7,930	7,930	7,930	7,930	7,900	7,930	7,933	7,930
(Channel)	M.			1					·		
Firm Discharge	M*3/\$	12 20									
Maximum Dischaorpe	Mr3/O	43 00						35.00			
Tall Water Level	M	\$30.00	530.00	\$30.00	530.00	530.00	530.00	530 00	500.00	530.00	\$30.00
Gross Hesd	I .					I	I			I	
Haximum Head	M.	220.00						220.00			
Normal Head	м	138 67						213.33			
Koinum Head	М.	156 00									
Loss of Read	м	9.00	9,10	j (9.10	8.10	920	9 20	9 30	9.40	9.50	9.80
Effective Head	1				1	1	1			I	
Maximum	M	211 00									
Normal	M 🗄	189 67						204.03	205 60		
Minimum	M	147.00									
Installed Capacity	MN	80									
Firm Peak Power	MW	67.4	66.4	i] 64.1	62 4	60 2	58.6	54.7	52.1	45.8	40.3
Annual Energy	1 1 1	1.11	1	1 ·	1	1.1		1.1.5		1.1.1	1.11
Average	GWh	266,6	266.0	265.2	264.5	1 263.5	259 5				
Fam	GWA	165 5									
Secondary	GWA	\$3.3	99.4	103.8	108 5	114.0	117.7	125 0	124 8	122 5	: 111.5

Beglik Project Tallrace Undergro. P/S Leyout H.W.L= 530.00m With Bayram H.W.L.=750m L.W.L.=588-745m

DECIMATION CLARMEN					_						
	Damste	8aglik	Baglik	Baglik	Saglik	Baglik	Baglik	Baglik	Baglik	Baglik	8aglik
Reservoir	LIYOU	750-695	750-705			750-720		750-730	750-735	750-740	
Catchmont Area	KM*2	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509
Annual Inform	M*3 S	24 90	24,90	24.90	2,4.90	24.90	24.90	24.90	24.90	24,90	24.90
High Water Level	м	530.00	530 00	530.00	\$30.00	530 00	533.00	530.00		\$30.00	530.00
Normal Water Level	N I	528 50	528 50	528 50	528 50	525 50	528 50	528.50		528 50	525.50
Low Water Level	M .	527.00	527.00	527.00	527.00	527.00	527.00	527.00	\$27.00	527.00	527.00
Available Drawdown	M 1	3 00	3.00	3.00	· 3 00	3 00	3 00	3.00	3 00	3.00	3.00
Gross Capac≹y	10.64-3	7.30	7.30	7.30	7.30	7.30	7.30	7,30	- 7.30	7.30	. 7.30
Effect Capecky	10.6%*3	1.00	1.00	1.00	1 00	1.00	1 00	1,00	÷ 1.00	1,00	- 1.00
Dam		1.1			14	1.1					
Туре		Con-Gra	Con-Gra	Con-Gra.	Con-Gra	Con-Gra	Con-Gra	Con-Gra.	Con-Gra	Con-Gra	Con-Gra
Holaht from Found	ม	74	. 74	74	74	: 74	74	74	74	- 74	- 74
Crest Langin	<u>й</u> -	190	190	190	190	190	190	190	190	190	190
Volume	10-34-3	195	195	195	195	195	195	195	195	195	195
feadrace Tunnel	14 200 2	1.04	1.04	1.04	104	1.04	1.04	1 04	1.04	1.04	1.04
Туре											
Diamoters	N										
-	M								1.1.1		
Length	M .		· ·	1		1.1		· · ·			
Penslock			*	Tunnel	Tunnel	Tunnel	Tunnel	Tunnet	Tunnel	Funnel	Tunnel
Туре	.	Funcial	Tunnel					33	32	30	28
Diameters	M:	36	3.7	36	3.6	3.5	3.3		213	213	
Length	M	213	213	213	213	213		213	1 413	1 213	20
2cmathouse		1.1	1							I	1 I
Туре		Undergr.	Undergr.	Undergr	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Ondergr.
Taliface Territol									2.1		
Type	1	Hosesho		Hosesho			Hosesho	Hosesho			
Diameters	1 M 👘	. 5.1	5.0	49	49	. 48	4.7	4.6	4.5	. 4.4	. 4.1
Longth (Tunner)	[М	4,454	4,454	4,454	- 4,454	4,454	4,454	4,454	4,454	4,454	4,454
(Channel)	[M ≤ −	÷				÷.,	1 A 1	15 B. J.		,	
Firm Discharge	M*3/S	14.50	13.40	13 00	12.40	11.80	.11.10	10.50		L 8 90	
Paximum Dischaerpe	W3'S	53 00	54.00	52 00	50.00	47.00	44.00			36 00	
Tail Water Level	и и	392.00	392 00	392.00	392.00	392.00	392.00	392.00	392.00	392.00	392.00
Gross Head			5.1			1.1				1.1.1	
Yaximum Head	I M E S	133.00	138 00	1 138 00	138.00	135.00	138.00	138.00	138.00	138.00	138.00
Normal Head	1 🖬 🗄	136.50				136 50		138 50	136 50	136 50	136.50
Kinimum Head	1 พี่ :	135.00							135.00	135.00	135.00
Loss of Head	1.6	5 50								5 80	6 00 8
Effective Head	l ‴ 🦾	1	1	l - • •	""	1	1	1			
Maximum .	M	132 50	132.40	132.40	132.40	132 30	132.30	132.30	132.29	132 20	132.00
Normal	I III	131 00				130 60					
	L M	129 50		129.40	129.40	129.30					
Minimum	MW.	65				53				40	
installed Capacity						51.0					
Firm Peak Power	MM	62 9	590	56.4	1 330	91.0	40.0	"00	1 **	1 30	۳°
Annual Energy				1		316.5		206.4	155 0	156.1	169 0
Average	GWh	227.0				216.5					
Fun	GWh	-1392				- 111.7					
Secondary	GWh	87.8	950	978	996	\$04.8	106.9	105.7	1050	§ 101.0	945

9 - 34

Table 9-8(2)

Outline of Alternative Plan for Bayram Reservoir Water Level

Beyrain Project Tallrad			ي في الم	W1 =74	5	#885-7	40m With	Boolik H	W.L = 5	10.00m		
Bayram Project Talifak	Ce Under	Bayrami		E	8. ran	Bayram	Bayram				Bayrem :	
		745-686	246 200	246 705	745.710	745.715	745-720		745-730	745-735	745-740	
1.4 2.4 1.4 1.	layout				1,159	1,159	1,159	1,159	1,159	1,159	1,159	
Catchment Area	X:M*2	1,159,	1,159	1,159	19 20	19 20	19 20	19 20	19 20	19.20	19 20	
Annual Inflow	M*3/S	19 20	19 20	19 20	745 00	745.00	745 00	745 00	745 00	745.00	745 00	
High Water Level	м	745.00	745.00	745 00	733 33	735.00	738.67	738 33	740.00	741.67	743 33	
Normal Water Level	M	725 33	7 30 00	731.67	710.00	715.00		725 00	730.00	735 00	740.00	
Low Water Level	M	\$85.00	700.00	705 00	35.00	30.00	25 00	20 00	15 00	10.00	5 00	
Avadable Drawdown	м	59.00	45 00	43 00		150.00	150 00	150.00	150 00	150.00	150 00	
Olives way with	10°6M13		150.00	150.00	95.00	85 00	74.00	62 00	45 00	34,00	17.00	
Effective Capacity	10°644*3	130.00	112 00	104.00	1.099.5	963 8	856.5	717.6	555 6	393.5	195.6	
Dam	(m*3's ⊲		1,296.3	1,2037	Rockfill			Rockfill	Reckfill	Rockfill	Rock	
Type				Rockfill		150	150	150	150	150	150	
Height from Found	м	150	150	150		442	4 42	442	442	442	442	
Crest Leopth	м	442	442	442		7,200	7,200	7,200	7,200	7,200	7,200	
Volume	10*3M*3	7,200	7,200	7,200	7,200	1.20	1 1,400	1,400				:
Hasdrace Tunnel	· ·			1								
Type	1 . ·						1 · · · ·	1	· · ·			
Diamoters	м	1. V.	1.1		1 1 1		4	1.1	1.4	1.1		
Length	мЕ	1	1 a -			· ·			1.1.1	1 - E		
Perstock	1				L .	T 1	Tuncel	Tunnel	Tunnel	Tunnel	Turnel	
Type		Tunnel	Tunnel	Tunnel	Tunnel	Tunnel		29	29			
Diamotars	М	3.4	. 33	33			1 · · · · · ·	321				Į.
Length	М :	321	321	321	321							i i
Powerhouse		1	1		l		Undergr.	linearor	Undotor	Underor.	Undergr.	1
Type		Unrurph.	Undergr.	Undergr	Undergr.	Undergr.	Uncergr.	once gr	Consultant.			
Tallrace Tunnel	1.344	1.1			L		Luines.	Baracha	Hocasha	Hosesho	Hosesho.	
Type		Hosesho			phosesho	nosesno	4 3	4 2	4 2	4.0	.38	i i
Diamoters	N .	4.7	- 4.E									
Length (Tunnel)	M	7,930	7,930	7,930	7,900	1,93	1 1.50	1	1			i i
(Channel)	Į M	1				9.66	9.10	8.50	7.90	7.10	6.00	1
Firm Discharge	M*3 S	10.40										
Maximum Dischaerge	M-3/S	48.00										1
Tañ Water Level	M ·	\$30.00	530.00	530.0	o[530.00	0.000	1 330.00	1				1.
Gross Head			1		215.00	215.0	215.00	215 0	215.00	2150	215 00	1
Maximum Read	M N	215.00									7 213.33	1
Normal Haad	M -	195.3						_			210 00	1
Minimum Hoad	м	158.0									0 8.60	1
Loss of Head	M	9.04	0 9.1	9 9.1	V 3.4		`I	1				Ł
Effective Head	1.			205 9	0 205.8	205 6	0 205.7	205.6	205.6	205.4	0 205 20	1
Maximum	м	206.0								202.0	7 203 53	1
Normal	M	186 3								0 195.4	a 200 20	
Minimum	M.	147.0							· · · · · ·		8 42	1
Installed Capacity	MW	1 .	· ·		• ·		-			5 45.	4 40 3	
Firm Peak Power	MW	63	o] 60.	× ∾	'l :**	″ [™]	-	۳ I	1		1.1	ľ
Annual Energy	1	1		1 256	5 253	6 249	4 245	5 241	2 235	2 221.	1 199.8	1
Average	GWh	257.								4 59	3 85 2	2
Firm	GWh	154					•			8 121.	8 1116	<u>ا</u>
Secondary	GWh	103	51 108	4 103			-					÷.,

aglik Project Tailrad				Con all's	Baglik	Baglik	Baglik	Bagtit	Bag/k	Seglik	BagEk
and the second sec	Op T site	Baglik	0.000	C P P A	8agiik 745-710	Colora	745 120			745-735	
eservoir	Layout		745-700		1.509	1,509	1.509	1,509	1,509	1,509	1,509
atchment Area	KM*2	1,509	1,509	1,509	24.90	24.90	24 90	24.90	24 90	24.90	24.90
nnual infow	м^з/\$	24,90	24.90	24.90		530.00		530.00	530.00	530 00	530.00
ligh Weter Level	M	\$30.00	530.00	530.00	530.00	528.50	528 50	528 50	528 50	528.50	528.50
Inmail Water Level	M	528 50	525 50	528 50	528 50		527.00	527.00	527.00	527.00	527.0C
ow Weter Level	м	527.00	527.00	527.00	527.00	527.00	3 00	3 00	3 00	3 00	3 00
Available Drawdown	м	3 00	3 00	3 00	3 00	3.00	7.30	7.30	7.30	7.30	7.30
Gross Capacity	10°6M'3	7.30	7.30	7.30	7.30	7.30	1.00	1.00	1 00	1.00	1.00
Fast Cecacity	10^6М^3	1.00	1.00	1.00	1.00	1 00	100	1.00			
ka mu	- 4 I		1.11			1 2 4		المتح منام	التحتيم	Caniforn	Con-Gra
Îγ Ω ●		Con Gra.	Con-Gra.	Con-Gra.	Con-Gra	Con Gra	Con-Gra	Con Gn 74	74	74	74
aight from Found.	1 14	74	1. 74		74	74	74		190	190	190
Crest Longth	M	190	190	190		190	190	190	195	195	195
/olume	10*3M*3	195	195	195	195	195	195	195	כצו	, 150	133
isadrece Turanel		1		1	1						
Type	1.1	L .		•	ļ						
Diameters	м		1	i .					1.1	1.1	
Length	M										
Penstock		1		1	1 A A 1				- ·		4
		Tunne	Tuncel	Time	Tunnel	Tunnel	Tunnel	feanu F	Tuncel	Tunnel	Tunnel
[ypa	м	3.7	3.6	3.5	. 35	. 3.4	3.3	5 33		30	2.8
Diameters	M I	213	1			213	213	213	213	213	213
Length				1 .	1 .	100 A.	1.1.1		1	5	
ewenouse		and server	Sta faire	Inderer	Undergr.	Underor.	Undergr	Undergr	Undergr.	Uncergr.	Undaror.
Тура	1.	0000091	Chicerge.								
failrace Tunnel		he and	Hosesho	Heenche	Hickory	Hosesbo	Hosestia	Hosesho	Hosesho	Hoseste	Hosesho
Туре		5.0				1 17	4.6		4,4] 4.3	FI 4.1
Diameters	M	4,454				4,454	4,454	4,454	4,454	4,454	4,454
Length (Tunne)	м	1.4.454		1 7.757							
(Channel)	M	1	1300	12.30	12 00	11.30	10.80	10:30	9 50	8 70	7.50
Firm Discharge	M*3.S	13.75							38 00	35.00) . 30.00
Meximum Dischaerge	M'3'S	55.00							392 00	392.00	0 Sec
Fall Water Level	M	392.00	392.00	1 235.00	1 332 00		1			1 1 1	1.1
Gross Head			نه د ا	138 0	138.00	138.00	138.00	138 00	138.00	138.00	ງ 138 0
Maximum Hess	M	133.00								136 50	5 138 5
Normal Head	M	136.50									
Minlmum Head	M -	135.00									
Loss of Head	M	5.64) 5.64	5 5 5	אַ <u>א</u>	1	7	1			
Effective Read						132 30	132.30	132.20	132 20	132.1	ol 1320
Madmum	L M	132.4									
Normal	M	130.9									
Minimum	1 M	129.4					· · · ·				
installed Capacity	I MW	6	2 5		-	1	•				-
Firm Peak Power	MN.	59	6 56.	4 54:	0 52 (49 (S] 47.4	45.0	4 🗥	1 38.	Ϋ́
Annual Energy	1		1	1						185	0 169
Averege	lown	224	0 220	7 218							
	GWh	130									
Fam Secondary	GWh	93			2 101.i	7 105	21 105	6 105	0 102 2	101	8 96

Table 9-8(3) Outline of Alternative Plan for Bayram Reservoir Water Level

I

Bayram Project Talles	an blada.		العنصية	11411			728- W	the Beat		
Bayfell Project Lenie	Ce Unce Osciale	010. 13 Burn	Beytam	Seizen	Ravram i	Aadam	Bauram	8ayram	Bavtam	8-0.00
Resolved				740-705	740 710			740-725		743-735
Cetchmoni Area	KU ²	1,155	1,159	1,159	1,159	1,159	1,159	1,159	1,159	1,159
Cetonnoni Azea Azausi Infow	11'3'S	19 20		19 20	19 20	19 20	19 20	19 20		19 20
	N 35	740 00	740.00			740.00		743.00		740.00
High Water Level	N	722 00		728 33	730.00	731 67	233.33	735.00		738.33
Normal Water Level	u i	665 00		705.00	710.00	715 00		725.00		735.00
Low syster Lover Available Orawdown	м	54.00	40.00	35.00	30.00	25 00	20.00	15 00		5 00
Gross Capacity	0^6M*3	133 00		133.00	133.00	133.00		133.00		133.00
	1046M-3	113.00	95 00	87.00	75 00	68 00	57.00	45 00	31.00	17.00
Effactive Capacity	30.9M-3	113.00	\$300	\$7.00	1.000		37.07	43.00	\$1.00	11.00
Den:		Rockill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill	Rockfill
Type Matchildren Frank		145	145	145	145	145		145		145
Height from Found.	м.			415		415	415	415	415	415
Crest Length	M	415	415							
Volume	10431443	6,144	6,144	8 144	6,144	8,144	6,144	6,144	6,144	6,144
Headrace Tunnel					1					
Type		1	1.1			ļ			1	
Dismelars	M	11.00			1.1					
Length	M	1 A A	÷		1.1				4	
Penstock			L :			-	-	-		
Туре		Tunnel	Turne	Tunnel	Tunnel	Tunnel	Tunnel	Tunnei	Tunnel	Tunnel
Diameters	м	3 30	3.19	3.15	3 07	3 03	2 90	2 81	2 62	2.47
Length	M	321	321	321	321	321	321	321	· 321	321
Powerhouse	1			ł						
Type	,	Undergr.	Uncergi.	Undergr.	Uncergr.	Undergr.	Undergr.	Undergr.	Undergr	Undergr.
Talirace Tunnel		I	L		I	l	1			
Туре		Hosesho	11050570				Hosesho	Husesho		Hosesha
Diameters	M	4.6	4.5	4.5	4,4	4.3	4.2	4.1	3.9	3.8
Length (Turnel)	м	7,930	7,930	7,930	7,930	7,\$30	7,930	7,930	7,930	7,930
(Channel)	м					·	1 · • •		·	
Firm Discharge	M*3/S	10 70						1,70		6 00
Maximum Discheeroe	M-3-S	43.00						31.00	27.00	24.00
Tail Water Level 💠	M (530.00	\$30.00	530.00	530.00	530.00	530.00	530.00	530.00	530.00
Gross Head	1				-					
Hadmum Head	м	210 00						210.00		
Normal Head	м	192.00						205 00		208.33
Міліпчки Неэз	M	156 00						195.00		
Loss of Head	M	9.10	9 20	920	í: 9 ,3≎	9 30	9.40	9.50	800	9.80
Effective Head		1								
Maximum	м	200.90						200 50		
Notreal	M	1 182 90								198.53
Minimum	M	145 90						185 50		
Installed Capacity	MW	68						52	45	41
Firm Peak Power	MW	58.0	55 6	54.0	52.1	.51.0	49 0	46 5	42 9	39.3
Annual Energy	-					1				
Average	GWh	247.9						225.8	212.5	
Firm	GWh	143.4						107.8	97.4	85.1
Secondary	GWh	106 5	1119	114.1	116 5	117.8	119.2	118.0	115 2	107.8

Baglik Project Tailrad	+ Under	pro. P/Ś I	Layout H.	W L= 53	3.00m Wi	th Beyra	m H.Ŵ.L,	=740m L	W L.=68	6m 700m	1
	Damsite	Baglik	Baglik	Baglik	Ez-plik	Baglik	Baglik	Barin	Baglik	Baglik	-
Reservoir	Leyout	743-686			740-710						
Cetchment Area	KM'2	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	1,509	
Annual Infow	M'3'S	24 90	24.90	24.90	24.90	24 90	24 90	24.90	24.90	24,90	l
High Water Level	M	530 00	530.00	530.00	530.00	530.00	530.00	530.00	530.00		i i
Normal Water Level	M	528 50	528 50	528.50	528.50	\$28 50	528.50	528 50	528.50	528 50	
Low Water Lavel	u i	527.00	527.00	527.00	527.00	527 00	527.00	527.00	527.00	527.00	1
Available Drawdown	м :	3.00	3.00	5 3 00	3 00	5 00	3.00	3.00	3.00	3.00	1
Gross Capecity	10 64-3	7.30	7.30	7.30	7.30	7.30	7.30	7.30	7.30	7.30	
Effect Capacity	10 01 3	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	÷.,
Dam				1.1	1.1	1 A A	4.54				
Type		Con-Gra	Con-Gra.	Con-Gra	Con-Gra	Con-Gra	Con-Gra.	Con-Gra	Con-Gre.	Con-Gra	
Height from Found	M	1 74	74	74	74	24	74	. 74	74	24	•
Crest Length	M	190	190	. 190	190	. 190	: 190	190	190	190	1
Volume	10-314-3	195		195	195	195	\$95	195	155	195	1 :
Headrace Tunnel											
Type	1	· ·				l		{		l '	•
Diameters	М	[`				ł					
Length	м	L .						1.1			L
Penstock						í					
Туре		Tunnel	Tunnel	Tunnel	Tuonel	Tuncet	Turaiel	Tuhriel	Tunnel	Tunnel	
Diameters	l M	3.60		3.4	33	3.3	32	3.1	23	2.8	
Length	M	213		213	213	213	213	213	213	213	1
Powerhouse	17										
Type	· · · `	Underor	Undergr.	Underat	Undersi	Undergr	Undergr.	Underar.	Underor.	Undergr.	
Telrace Tunnel	1				1						
Type	1.1	Hosesha	Hosesha	Hoseshe	Hosesho	hososho	Hosesho	Hosesha	Hotesho	Hosesho.	
Diameters	м	49	4.8	47	46	46	4.5	44	43	4.1	
Length (Tunnel)	M	4.454	4.454		4,454	4.454	4.454	4.454	4,454	4,454	
(Channel)	M			1							
Firm Discharge	M-3.S	13.00	12:00	11.50	11.00	10 50	10.00	9.30	8.50	7.50	
Maximum Dischaerge	M*3.5	52 00		45.00	44.00	42.00	40.00	37.20	34 00	30.00	
Tall Water Level	I M	392.00				392.00		392.00	392-00	392.00	1
Gross Haad	1.		1		1 E - 1		···-,				
Meximum Head	м	338 00	138.00	138.00	138.00	133.00	138.00	138.00	135.00	138 00	1
Normal Head	ый	138 50					136 50				1
Minimum Read	Г щ н	135 00									
Loss of Head	l m	5.70									
Effective Read	1	I	l	· · · · · ·	1			1	l	1	Ł
Maximum	м	132 30	132.40	132 30	132.30	132.30	132 29	132 20	132.10	132.00	Ł
Normal	N N	130.60									
Minimum	I M	129 30			129.30	129.30	129 20				
installed Capacity	mw.	59				47					
Fixin Peak Power	MW	56.4		500				-			
Annual Energy				1 ~~~	1	1 7	1 -1.4	1 7	1	1	1
Average	GWh	223.4	216 3	2135	2107	206.8	201.0	192 8	180 B	169 5	L
Firm	GWh	1242									
	CWh	97 2		104 0		106.1	1049				
Sacondary	1.0.44	1	1 1021	1	1	1. 100.1		L_:02	L	L	

Table 9-8(4)

Ø

Outline of Alternative Plan for Bayram Reservoir Water Level

	abie a-o(4)	U		a vi							0.00
e	ayram Project Talles	e Unde	roro, P/S	Layout]	<u>.w.t1</u>	<u>Scal.W</u>	1+685m	730m Wil	h Sagaki	H. HI. C 32 Reveant	0.001
ſ		Damsit●						Beytam 735-720		35-730	
	lasarvoir			1,159	1,159	1,159	1,159	1,159	1,159	1,159	
	Catchmant Area	XM*2 M*3/S	1,159	19 20	19 20	19 20	19 20	19 20	19 20	19 20	
	Annual Inflow	M-35 M	735.00	735.00	735 00	735.00	735.00	735.00	735.00	735 00	
	High Water Level Normal Water Level	м I	718 67	723.33	725.00	726 67	728.33	730.00	731 87	733.33	
	Normal Water Level	M I	636.00	700.00	705.00	710 00	715 00	720 00	725 00	730.00	
	Low yyater Level Ayallable Drawdows	ü.	49.00	35 00	30.00	25 00	20.00	15.00	10 03	5.00	
	Gross Cepacity	10-64-3	116.00	116 00	116.00	116 00	\$16.00	115 00	116.00	116.00	
	Effective Copacity	10*6M*3	96.00	78 00	70.00	61.00	51.00	40.00	28.00	\$4.00	
	Dam									Rockfill	
- F	Туре			Rockfill		Rocidi	Rockfill 140	Rocidiii 140	Recidii 140	140	
	Height from Found.	M -	- 140	140	140	140	395	395	395	395	
1	Crest Length	м	395	395 5,400	395 5,400	395 5,400	5,400	5,400	5,400	5,400	
1	Volume	10-34-3	5,400	5,400	5,400	3,400		0,,00	-,		
- 1	Headrace Tunnel	1			1.15						
	Туре	м		· ·							
•	Diametors Length	1 ŭ -				1	1		1		
	Panstock	"	1 - C		1			1		_	
	Тура	1	Tunnel	Tunnel	Tunnel	Tunnel	Tunnel	Tunnet	Tunnel	Tunnel	
÷,	Diametors	M	3.2	31	30	29	29		26	2.4	:
	Length	м	321	321	321	321	321	321	321	34	÷
1	Pewerhouse	1			l			Undergr	the	Universit	
	Type		Undetgr.	Undergr.	Underge.	Undergr.	Quoeigi.	i Cheerge.	Convarge.		1.1.1
	Tailrace Tunnel		1	l.	Hacasha	Heres	Hesasha	Hosesho	Hosesho	Hosesho	
	Туре	L M	Hosesho 4 5				42	4.1	39	3.4	
	Diamoters	M I	7,930					7,900	7,930	7,930	
	Length (Fuanel) (Channel)	l iii -		1			1	1			
	Fam Discharge	M"3'S	10.10	ંક્ર							
	Naximum Dischaeige	MA3S	40.00	37.00							· .
	Tail Water Level	W .	530.00	530.0	530.00	530.0	\$30.0	\$30.00	530.00	530.00	
	Gross Head			1.			205.0	205 00	205.00	295.00	
	Maximum Head	М	205.00								1
	Normal Head	м	188.62								
11	Minimum Head	M	9.2							9.90	
	Loss of Head	M .	3.6	1 .	1 1				12		
	Effective Head Maximum	м	195 84	195.7	195 7	195 6					
	Normal	l m	179.4		3 185.7	0 187.2					
	Minimum	м	145.8	0 160 7							
	Installed Capacity	MM.	5								1
	Firm Peak Power	MW.	52.	4 50	5 49	6 49	5 47.	3 46.	1		1
	Annual Energy			0 235	1 233	2 228	9 233	3 215	204.	184.7	1. A.
	Ave: 235	GWh	237							82.4	1.1
	Firm	GWh	108						9 113:	102.3	
	Secondary	1011									
	t station and st		- : · ·				· · · ·				
			1.00	$(-1)^{-1}$		14 J I		dis de l		1 같아요.	
	Bagilk Project Talk			s i inversit		30.00m ·	aith Bayr	am H.W.	.=735m	L W L=586	m-730m
	Baglik Project Tall	Dams ¹	ergro. rr	i Baoli							
-	Reservoir	Layou			0 735-70	6 735-71	3 735-71	5 735-72	0 735-72	5 735-730	
1	Cutchment Area	KV [*]		8 15	9 1.50					9 1,509	
	Annual Inflow	M'3'S									1 ·
	High Water Level	₩.	530 0								1
:	Normal Water Level	м.	528								
	Low Water Lovel	- M	527.0							0 3.00	1 · '
-	Available Drawdown	10/61/					30 7		0 7.3	0 7.30	1
ŝ	Gross Capacity	10°6W						00 1.0	xi io	0 1.00	1.1
	Effect Capacity Dam			~			1				1
	Type	1.1	con-G				n Con-G				1
	Height from Found	м		74					· · · ·	74 74 90 190	
÷	Crest Langth	M								20 190 25 195	
	Volume	10^36	4°3 - 1	95 1	95] 1	95 · 1	95 1	23 6	~ "	~ ~	1
-	Headrace Tunnel			1		1				1	1

leadrace Tunne Type Diameters M ₩ Diameters Length Panslock Type Diameters Tunnel 3.03 213 Tunnet 3.15 213 Tunnel 2 90 213 Tunnef 3 50 213 Tunnei Tannel Turinel Funcel 2.72 3.35 3 27 213 3 23 213 9 9 Length Powerhouse Type Tailrace Tunnel dergr nderigi Indergr ndergr Undora ndergr ndorgi n der or oséshi loseshi eseshi oseshi Hosesh osest ses losesh 4,454 Yype Diamolers 4.7 4 5 4.5 4.454 4.2 4.454 4. M M M M'3/S M'3/S M 4.6 4.454 4.8 4,454 Diamolors Length (Tunnei) (Channei) Firm Discharge Madmurn Dischaorge Tail Water Level 9.10 36.00 392.00 9 70 39 00 7.30 \$ 30 10.60 42.00 392.00 10 20 **41 0**0 12 00 48 00 392 00 11.00 33.00 392.00 29.00 392.00 44.00 392.00 392 00 392.00 Taß Water Level Gross Head Maximum Head Normal Head Loss of Head Encrive Head Maximum Normal Minimum Installed Cepacity Firm Peak Power Arreust Enorgy Average 138 00 136 50 135 00 138 00 136.50 135.00 5.70 138.00 138.50 135.00 5.70 138 00 136 50 135 00 5 80 138.00 136.50 135.00 5.90 M M M M 135.00 138.00 138 00 138 50 135 00 5.60 136 50 135 00 5 80 136 50 135.00 5 80 6 00 132 20 130 70 129 20 45 45 132 20 130.70 129 20 44 42 132 20 130 70 129 20 40 39 132.10 130.60 129.10 37 36 132 00 130 50 129 00 32 31 132 30 130 80 129 30 47 45 132,30 130,60 129,30 49 43 M M MW MW 132.40 130.90 129.40 54 52 150.0 75.8 101.2 166.0 67.9 53.1 210.1 105.1 105.0 207.2 100 7 106 5 203 2 58 6 104 7 197.5 92.0 105.5 189 S 85.4 104.1 GWN GWN GWN 215.7 113.6 102.1 Average Firm Secondary

Table 9-8(5)

Outline of Alternative Plan for Bayram Reservoir Water Level

1

 Lable 5-6(5)
 Utiline of Alternative Plan for Bayram Res

 Bayram Project Tailrace Undergro, P/6 Layout H.W.L.=730m L.W.L.=836 m.725m With Beglik H.W.L.=830 00m

 Reservoir
 Demote Bayram Bayram Begram Bayram Bayrayram Bayrayrawayram Bayram Bayram Bayrayrawayram Bayram Bayram B Dam Dem Type Height from Found, Crest Length Volume ckfill 135 379 4,800 េត្រឥ -1-54 1.64 x kfiil -660 k fié 135 379 4,800 135 379 4,800 M M 135 135 379 135 379 135 379 4,800 10*344*3 4,800 4,800 4,800 Headrake Turnof Type Diameters M M Length Penstock Type Diamoters Tunnel Tunnei Tunnel Tunnel Tunnel Tunnel Tunnel 3.1 321 3.0 321 29 321 28 321 27 321 2.6 321 2.4 321 M M Length วงจัดว่ากับรล Powernouse Type Talirace Tuncel vdergr. dergr. nderor. nderoi Undergr Indergi Inderpr losesh Type Diameters osesho 37 locash wash. -caeh each м 42 3.9 40 Length (Tunnel) (Channel) Firm Discharge Patimum Dischaerge 7,930 M 7,930 7,930 7,930 7,930 7,930 7,930 M*3/S M*3/S 9 50 38 00 530 00 7.80 8.70 8 30 7.10 5 80 6.60 35.00 530.00 33 00 530.00 31.00 28.00 26 00 23 00 Tail Water Level Gross Head M 530 00 \$30.00 530.00 530 00 200 00 185 33 156 00 9.10 200 00 190.00 170 00 200 00 191.67 175 00 200.00 193.33 183.00 200 00 195 00 185 00 200.00 196.67 190.00 200.00 198.33 195.00 Maximum Head M M M Normal Head Minimum Head Loss of Head Effective Head Maximum 9.20 9.30 9,40 9 50 9.60 9.60 M M M MW MW 190.40 187.07 180.40 42 39.5 190 90 190 80 190 70 190 60 190 50 185 50 175 50 190.20 182 37 165 70 52 45 0 176 23 145 90 57 48 5 150.80 150.80 150.80 54 45.3 Normal Minimum 183.93 170 60 183.53 185.20 = 44 42.4 Installed Capacity 49 43 6 37 36 3 Firm Peak Power Annual Energy GWh GWh GWh 227.0 119.5 108.8 223 9 110 8 113 1 221 0 107.1 113.9 215.4 103 2 112 2 187.8 87.3 100.5 206 5 97.1 109.4 160.0 79.4 80.5 Average Firm Secondary

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Damste	530.00	530.00	W L= 53	530.00	530,00	530 00	\$30,00	1		··. · -	
Reservoir	Luyout	730-686	730-700			730-715	130-720	730 725	ł			
Catchmont Area	KM ⁴ 2	1,509	1,509	1.509								
Annual Inflow	M-35	24.90							1.		1	
High Water Level	M	530.00	530 00									
Normal Water Level	M C	528 50							1			
Low Water Levol	M	527.00										
Available Orasidown	М	3 00										
Gross Capacity	10"6M*3	7.30	1 7 30						1.			
Effect Cepacity	10'6M'3		100							1		
Cam	1.1.1					1		1		÷	÷	
Type		Con-Gra	المتمديا	Concre	Concon	Cia Cra	Cori-Gra.		Į	1	6 1	
Height from Found,	M	74	74	74		74	74	74		,		1
Crest Length	1 u -	190	190				190	190		÷.,	÷	
Volume	10-314-3		195				5 190	190	1.1		1	
Headrace Tunnot	10 370 3	173	192	193		[135	ା ସ େଇ	. 195				
Type												
Dametors	M			+				· · .			$c \in \mathcal{J}$	
Langth	l ü						- A					
Penstock	1 **					[1.1					÷
Type		v				<u> </u>	_ `.					
Diameters	1	โยกกยไ	Tunnel	Tunnet	Tunnal	Tunnel	Tunnel	Tunnel		, A.		
	M M	34	32	32	3.1	30	29	. 27			÷	. 1
Langth	1 ×	213	213	213	213	213	213	213			1	
Powerhouse										'		
Type	1	Undergr.	Undergr.	Undergr.	Undergr.	Undergr.	Underor.	Undergr.				
failiace Tunnet	J			1.11						· .		
Туре				Hosesho.	Hosesha.	Hosesho.	Hosesha.	Hoseshe		÷.,		
Diameters	. M.	. 4.7	45	45	. 4.4	. 4.3	4.2	40				
Length (Tunno)	M N	4,454	4,454	4,454	4,454	4,454	4,454	4,454	1			
(Channel)	M I	1.1	1.1.1	5								_ *÷
Firm Discharge	[M*3/S	11 25	10.30	9 90	9 50	: 820	8.10	7.30	1			÷.,
Waximum Dischaorge	M*3-S	45.00	41.00	40 00	38.00	35 00	32.00	29 00				
(a) Water Level	M	392 00	392.00	392.00	392.00	392 00	392.00	392.00				
Gross Head	1 ;				· ·							
Maximum Head	M	138 00	138.00	138 00	138 00	138.00	138,00	133 00				
Normal Head	I M -	106 50	136.50	136 50	136 50	136,50						
dinimum Head	м	135.00	135 00	135 00	135.00	135 00						
oss of Head	ผ่	5.70	5 80	5.80	5.80	5 90		6 00				
Effective Head	1.1			•	0.00							
Madmum	lw l	132.30	132 20	132 20	132 20	\$32,10	132.10	132.00				
Normal	Гй I	130.80	130,70	130 70	130 70	130.60	130.60	130 50				
Minimum	มีมี 1	129 30	129 20	129 20	129 20	129 10	129.10	129 00				
estalled Capacity	iw I	51	45	45	43	39						
irm Peak Power	MW	49	45	40	41		36	32				
Annual Energy		43	: 7 2	. 44	41	38	. 35	31				
	GWN	210.6		000.0								
Average	GWA		204.0	200.0	193.3	183 0	371.7	152.0				
Firm		107.1	93.3	96.4	83 5	63 2	76.4	67.9				
Secondary	GWh	103.5	105.7	1036	103.5	99 8	95 3	84.1				

9 -	38
-----	----