CHAPTER 6 METEOROLOGY AND HYDROLOGY

I

CONTENTS

CHAPTER 6	METEOROL	OGY AND	HYDROLOGY
CHAPILING	ぱんし しんいいへん	JUST MITU	HIDNOLOGI

6.1	Outline	of Meteorology and Hydrology in the Project Area	<u>P</u> :
0.1	6.1.1	Hydrology	
:	6.1.2	Meteorology	/ {
6.2	Runoff	Study Study	. (
1	6.2.1	Available Runoff Data	
	6.2.2	Monthly Inflows at Dam Sites	
6.3	Evapor	ation Study	
1	6.3.1	Available Evaporation Data	
	6.3.2	Reservoir Evaporation	
6.4	Sedime	ntation Study	
	6.4.1	Available Sedimentation Data	
	6.4.2	Suspended Load	
	6.4.3	Bed Load.	
	6.4.4	Density of Sediment Accumulation	
			:
6.5	Study o	of Probable Flood	
	6.5.1	Observed Annual Peak Discharge	
	6.5.2	Frequency Analysis on the Annual Peak Discharge	
	0.0.2	Trequency rinarysis on the rinnaul Cart bischarge	
6.6	Study	of the Probable Maximum Flood (PMF)	1
0.0	·	"我是一点,是一种美国,我们会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会会	
	6.6.1	Flood Discharge from the Probable Maximum Precipitation (PMP)	
	6.6.2	Snowmelt Runoff	-
	6.6.3	Maximum Base Flow	
	6.6.4	Estimates of PMF	- 1

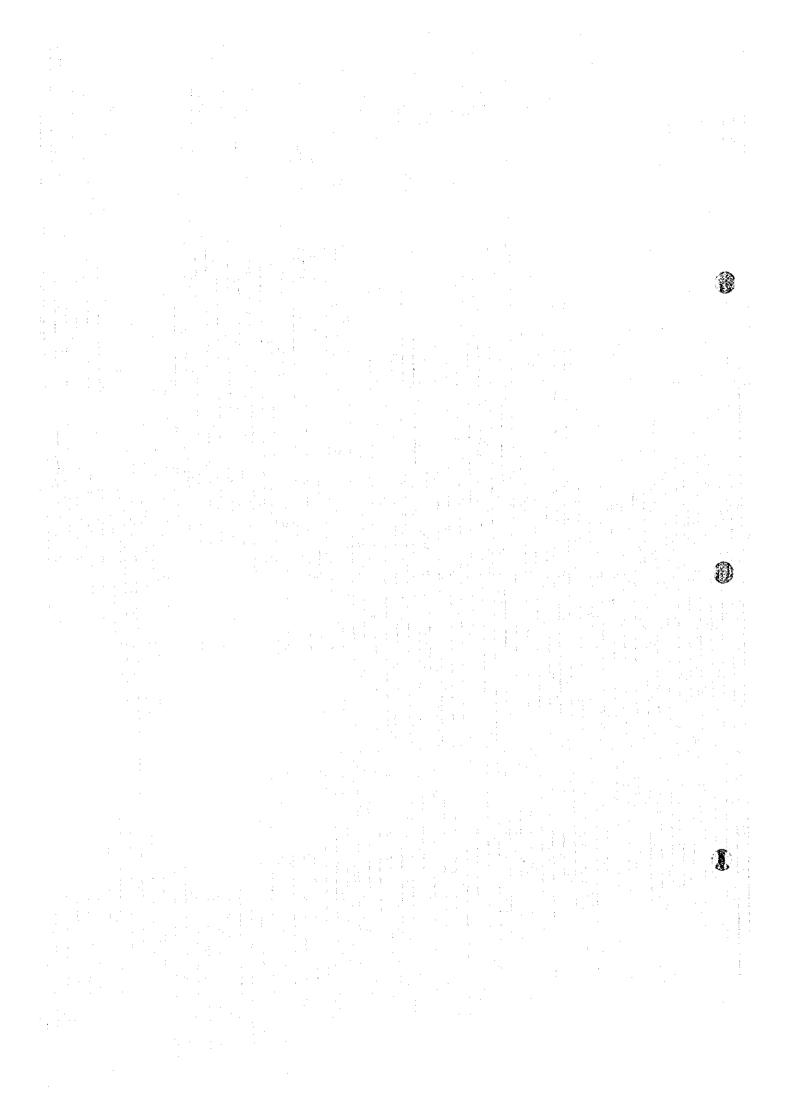

List of Figures

Figure 6-1	Monthly Precipitation at Meteorological Stations
Figure 6-2	Monthly Mean, Max. and Min. Temperature at Şavşat M.S.
Figure 6-3	Location Map 1
Figure 6-4	Location Map 2
Figure 6-5	Periodicity of Annual Precipitation observed at Artvin M.S.
Figure 6-6	Correlation between Runoff at G.S. No.2305 and No.2322
Figure 6-7	Correlation between Runoff at G.S. No.2315 and No.2322
Figure 6-8	Correlation between Runoff at G.S. No.2322 and No.2334
Figure 6-9	Correlation between Runoff at G.S. No.2322 and No.2327
Figure 6-10	Correlation between Runoff at G.S. No 2334 and No.2327
Figure 6-11	Double-mass Curve of Precipitation at Artvin M.S. and Runoff at G.S.
	No.2305
Figure 6-12	Double-mass Curve of Precipitation at Artvin M.S. and Runoff at G.S.
	No.2315
Figure 6-13	Double-mass Curve of Precipitation at Artvin M.S. and Runoff at G.S.
	No.2322
Figure 6-14	Double-mass Curve of Sum of Runoff at G.S. No.2305 and G.S. No.2327
Figure 6-15	Correlation between Monthly Mean Temperature and Monthly Evaporation
	observed at Bayburt M.S.
Figure 6-16	Correlation between Monthly Mean Temperature at Artvin M.S. and Şavşat
	M.S.
Figure 6-17	Correlation between Daily Runoff and Daily Sediment Discharge at G.S.
	No.2327
Figure 6-18	Correlation between Monthly Runoff Volume and Monthly Total Sediment
	Yield at G.S. No.2327
Figure 6-19	Relationship between Size of Catchment Area and Sediment Amounts in
	Turkey 1. Fine part of the state of the stat
Figure 6-20	Enveloping Curves of Maximum Persisting 12-hour Vapor Pressure
Figure 6-21	Variation of Vapor Pressure with Temperature at Percentage of Saturation
Figure 6-22	Pseudo-adiabatic Diagram for Dew Points Reduction to 1,000mb at Height of
	Zero
Figure 6-23	Deoths of Precipitable Water in a Column of Air

Figure 6-24	Enveloping-Depth-Area-Duration Curves of Probable Maximum Precipitation
	for Spring Storms
Figure 6-25	Enveloping-Depth-Area-Duration Curves of Probable Maximum Precipitation
	for Winter Storms
Figure 6-26	Average Hourly Rainfall Distribution at Artvin M.S.
Figure 6-27	Direct Runoff from a Storm by the SCS Method
Figure 6-28	Triangular Unit Hydrograph
Figure 6-29	Flood Discharge from PMP at Bağlık Dam Site
Figure 6-30	Flood Discharge from PMP at Bayram Dam Site
Figure 6-31	Flood Discharge from PMP at Kaleddüzű Dam Site
Figure 6-32	Hydrograph of PMF at Bağlık Dam Site
Figure 6-33	Hydrograph of PMF at Bayram Dam Site
Figure 6-34	Hydrograph of PMF at Kaledüzü Dam Site
Figure 6-35	Peak Discharge Value of Computed Probable Maximum Floods in Turkey

List of Tables

Table 6-1	Monthly Maximum Wind Velocity at Artvin M.S.
Table 6-2	Descriptions of Gauging Stations
Table 6-3	Correlation Analysis of Monthly Runoff
Table 6-4	Monthly Inflows at Bağlık Dam Site
Table 6-5	Monthly Inflows at Bayram Dam Site
Table 6-6	Monthly Inflows at Kaledüzü Dam Site
Table 6-7	Observed Monthly Class A Pan Evaporation Quantities at Bayburt M.S.
Table 6-8	Temperature at Reservoir Surface Levels
Table 6-9	Reservoir Evaporation at Bağlık dam site
Table 6-10	Reservoir Evaporation at Bayram dam site
Table 6-11	Reservoir Evaporation at Kaledüzü dam site
Table 6-12	Available Suspended Sediment Data
Table 6-13	Suspended Load observed at G.S. No.2327
Table 6-14	Estimated Monthly Sediment Yield at G.S. No.2327
Table 6-15	Annual Peak Discharge at G.S. No.2327
Table 6-16	Probable Flood Discharge at Dam Sites
Table 6-17	Maximization of Major Storms
Table 6-18	Land Usage in Şavşat District
Table 6-19	Runoff Curve Numbers for selected Agricultural, Suburban, and Urban Land
	Usage
Table 6-20	Design Rainfall
Table 6-21	Unit Hydrograph Parameters
Table 6-22	Estimates of Maximum Value of PMP
Table 6-23	Maximum Snowmelt Runoff for Each Dam Site

CHAPTER 6 METEOROLOGY AND HYDROLOGY

6.1 Outlines of Meteorology and Hydrology in the Project Area

6.1.1 Hydrology

The Berta basin, which contains the project area, is situated in the northeast part of the drainage area of the Çoruh river. The drainage area of the Berta river is 2,315 km², which is about 12 percent of the 19,750 km² drained by the Çoruh river.

The Berta basin is surrounded by lofty mountain ranges rising to over 2,000 m above sea level (hereinafter referred to as A.S.L.), the highest being Mt. Karçal (3,415 m A.S.L) in the north. The average basin elevation is 1,800 m A.S.L.¹

The Berta river is composed mainly of three tributaries, the Meydancik, the Şavşat and the Ardanuç, the drainage areas being 577.3 km², 586.1 km² and 572.0 km² respectively.

The Meydancik river, which extends the furthest distance upstream from the project site, originates in the northeast of the Berta basin and follows a southeasterly course. It then meets with the Şavşat river coming from the east to form the Berta river. After confluence, it changes its course to the southwest and runs, with a bed slope of approximately 1/100, through a narrow, steep-sided valley in which the proposed dam sites are located. This topography continues to immediately upstream of its confluence with the Ardanuç river. It finally joins the Çoruh river about 10 km upstream of the city of Artvin, at which point its overall length is 72 km.¹

Generally, the lower lying areas of the Berta basin are of rocky terrain with little vegetation, while the terrain higher than 1,000 m A.S.L is rich in vegetation and sparsely cultivated.²

6.1.2 Meteorology

The lower reaches of the Çoruh river are subject to the East Black Sea Climate in which the annual precipitation at some meteorological stations is over 2,000 mm. The upper reaches of the river are subject to great influence from the Continental Climate, which is characterized by its rigorous but arid climate; winters are long and cold and summers hot and dry.² The Berta basin also shows some characteristics of the Continental Climate, but is predominantly subject to the East Black Sea Climate.

Precipitation in northern Turkey, including the Çoruh basin, results primarily from cyclonic frontal storms.³ In the case of the Çoruh basin, easterly or southeasterly winds moving in from the Black Sea carry with them numerous storm fronts. These storms, occurring primarily during the winter months, are forced to rise and lose their moisture by the topographic barrier formed by the mountains situated in the north of the basin. In winter, precipitation falls in the form of snow at the higher elevation and this results in a snowmelt pattern of runoff at the runoff gauging stations in the basin. The lower portion of the basin receives most of its precipitation in the form of rain. Observed mean annual precipitation over the Berta basin varies from 761 mm at Veliköy meteorological station (hereinafter referrred to as M.S.) to 450 mm at Ardanuç M.S. The annual mean precipitation over the basin was previously estimated at 624 mm by EIE based on the isohyetal map.¹

Figure 6-1 shows the seasonal variation of the precipitation at meteorological stations in the Berta basin. It can be said that although there is a seasonal variation, it rains almost every month and an extreme dry season is not recognized.

Maximum snow cover depths previously recorded are 125 cm at Şavşat M.S., 125 cm at Veliköy M.S. and 214 cm at Meydancik M.S.

The average annual temperature at Şavşat M.S., which is at an elevation of 1,100 m A.S.L., is 9.8°C; extremes have varied from a minimum of -19.9°C to a maximum of 38.8°C. The seasonal pattern of maximum, minimum and mean temperatures are illustrated in Figure 62. Monthly maximum surface wind velocity and its direction observed at the Artvin M.S. from 1959 to 1990 are shown in Table 6-1.

Table 6-1 Monthly Maximum Wind Velocity at Artvin M.S.

(unit: m/s) Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Max. Velocity 18.8 22.1 21.4 21.8 18.8 21.5 17.8 16.0 17.5 15.2 24.2 23.0 24.2 Direction SE SSE NW NWN W SSW NW WNW NW SW NW SE NW

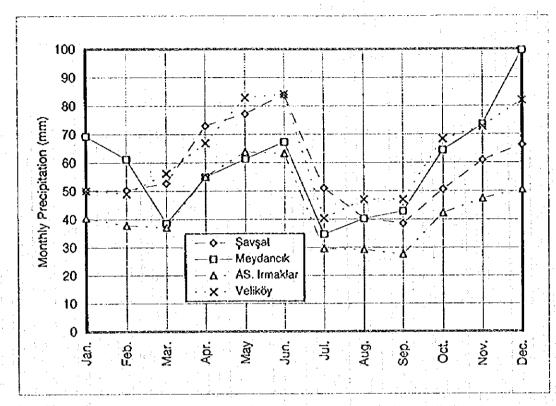


Figure 6-1 Monthly Precipitation at Meteorological Stations

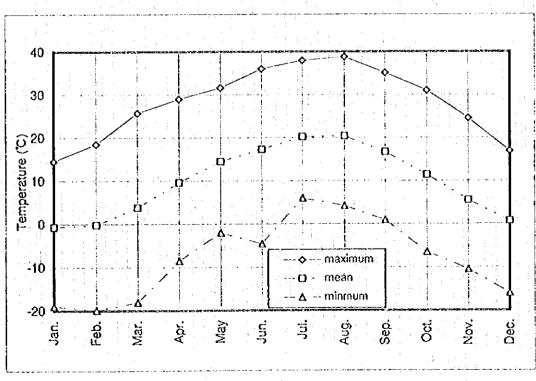


Figure 6-2 Monthly Mean, Max. and Min. Temperature at Şavşat M.S.

6.2 Runoff Study

6.2.1 Available Runoff Data

The descriptions of ElE's runoff gauging stations situated in and around the project area are listed in Table 6-2. The locations of these stations are shown in Figures 6-3 and 6-4. Of these, the runoff gauging stations (hereinafter referred to as G.S.) No.2333 and 2334 were newly established in 1989.

01-2:		Elevation	C.A	Available Period
Station	River	(m)	(km²)	of records
2305-Peterek	Çoruh	653	7,272	1942-1994
2315-Karşıköy	Çoruh	57	19,654	1965-1994
2322-Altınsu	Çoruh	201	18,326	1972-1994
2326-Dutulu	Meydancık	875	247	1982-1994
2327-Çiftehanlar	Berta	570	1,223	1982-1994
2328-Ferhati	Ardanuç	365	547	1982-1994
2333-Şavşat	Mansuret	830	330	1990-1994
2334-Bağlık	Berta	385	1,541	1990-1994

Table 6-2 Descriptions of Gauging Stations

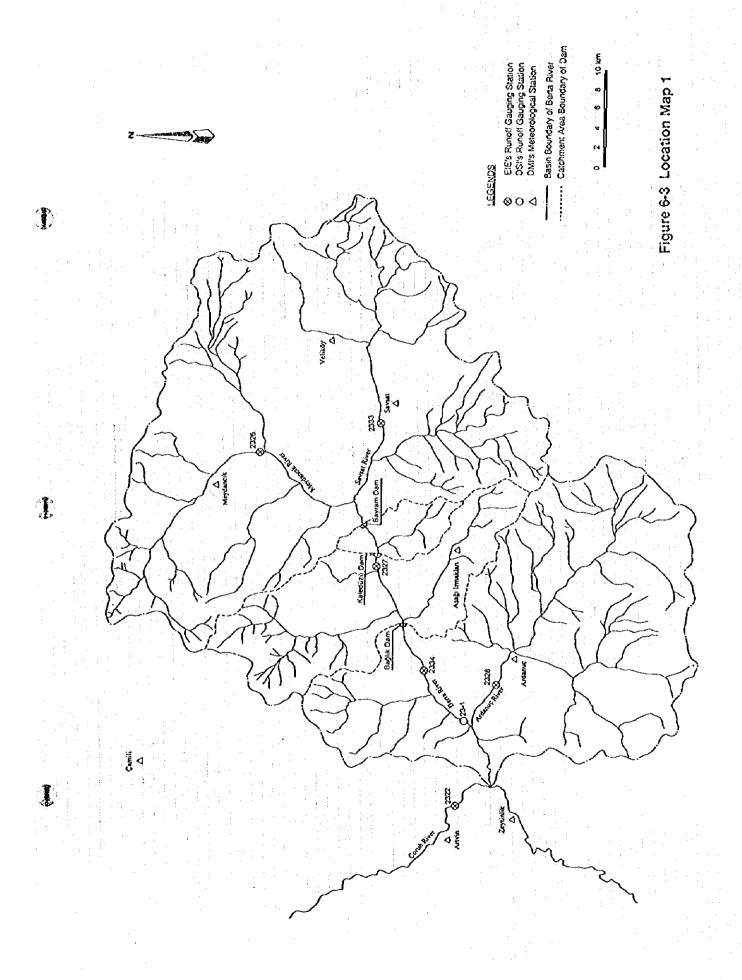
6.2.2 Monthly Inflows at Dam Sites

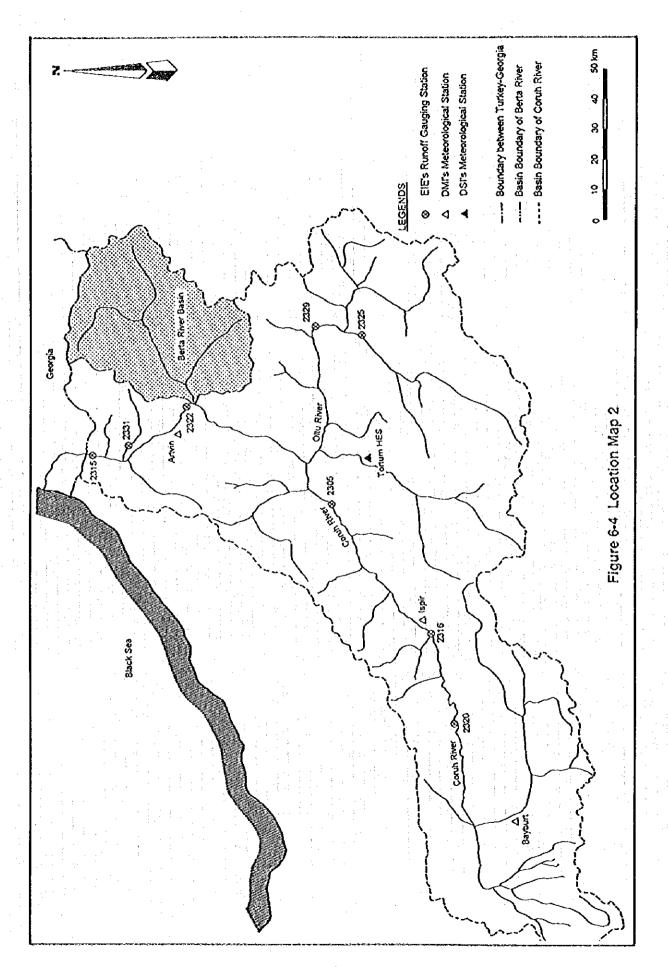
(1) Periodicity of Hydrological Data Observations

The observation period of runoff data in the Berta basin is relatively short (1982-1994), so therefore the periodicity was examined by use of the annual precipitation recorded at Artvin M.S. from 1946 to 1994.

The predominant period of the annual precipitation series was determined to find the maximum value of c_i^2 in the following equation:⁴

$$C_{L}^{2} = \left\{ \frac{2}{N} \sum_{t=1}^{N} \left((x_{t} - \overline{x}) \right) \cos \left(\frac{2\pi}{L} \right) t \right\}^{2} + \left\{ \frac{2}{N} \sum_{t=1}^{N} \left((x_{t} - \overline{x}) \right) \sin \left(\frac{2\pi}{L} \right) t \right\}^{2}$$
Eq.(6-1)


where


N = sample size

 $x_t = annual precipitation series$

 \bar{x} = mean of annual precipitation series

L = certain period (< N - 1)

1

The result of the analysis is shown in Figure 6-5. From the figure, the predominant period can be inferred as 23 to 24 years. Therefore, data series need be extended.

(2) Extension of Mean Monthly Runoff Data

1

1

The mean monthly runoff at G.S.No 2327 and 2334 was extended back to water year 1942 by using the correlation with runoff at stations in the vicinity. The regression lines used in this study are shown in Figures 6-6 to 6-10 and they are summarized in Table 6-3.

Table 6-3 Correlation Analysis of Runoff Gauging Station

(unit:m3)

Station	Years	Independent Variable (x)	Regression Equation	Common Observation Period	R²
Altınsu	1942-1964	2305	logY = 0.907logX + 0.594	1972-1994	0.9746
(2322)	1965-1971	2315	Y = 0.8571X - 41.764	1972-1994	0.9755
	1972-1994		Observed Value	***************************************	
Bağlık	1942-1982,Oct	2322	Y = 0.1567X +1.2494	1990-1994	0.9394
(2334)	1982,Nov1989,Sep.	2327	Y = 1.3082X - 0.145	1990-1994	0.9904
	1990-1994		Observed Value		
Çiftehanlar	1942-1982,Oct.	2322	$Y = 0.1011X^{1.0383}$	1990-1994	0.9002
(2327)	1982,Nov1994,Sep.		Observed Value		

Note: Unless otherwise noted, Years begin in October.

(3) Verification of Runoff Data Series

In order to check the consistency of the obtained monthly runoff data series, the double-mass curves were used, in which annual precipitation at Artvin M.S. for the water years 1948 to 1994 were used. In Figure 6-11, the double-mass curve for station No.2305 changes its slope at the water year 1959. As station histories are not available for the earlier years, the reason for the break could not be determined. But runoff before 1959 is on the conservative side, and therefore no adjustment was made to the data series obtained by correlations in the previous section. On the other hand, in both Figures 6-12 and 6-13, the double mass-curves for runoffs at G.S.No.2315 and No.2322 show no significant break in slope.

Furthermore, as shown in Figure 6-14, the double-mass curve of the cumulative estimated runoff series for G.S.No.2327 plotted against cumulative runoff observed at G.S.No.2305 for the water years 1942 to 1994, which is virtually an unbroken straight line, indicates that the obtained data series by correlation analysis is consistent although the applied equations are different over that period.

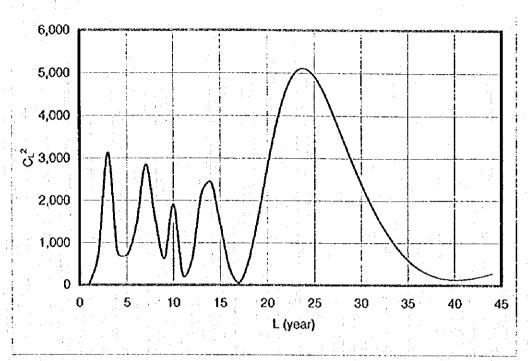


Figure 6-5 Periodicity of Annual Precipitation observed at Artvin M.S.

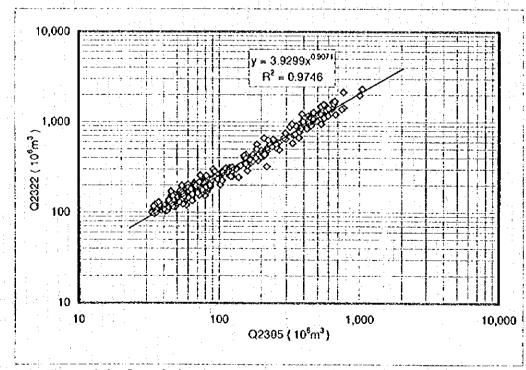


Figure 6-6 Correlation between Runoff at G.S. No.2305 and No.2322

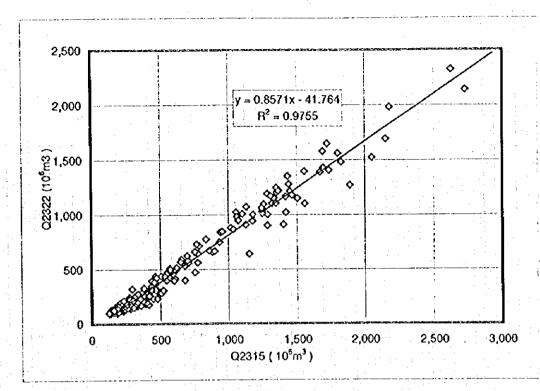


Figure 6-7 Correlation between Runoff at G.S. No.2315 and No.2322

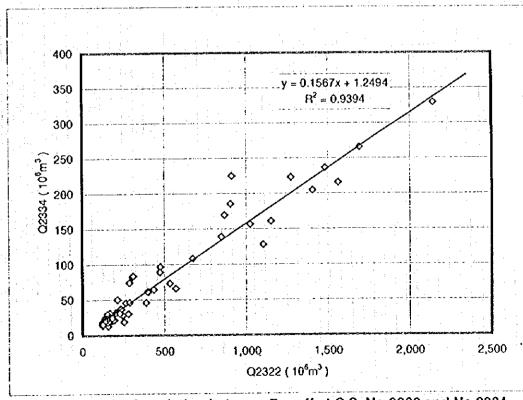


Figure 6-8 Correlation between Runoff at G.S. No.2322 and No.2334

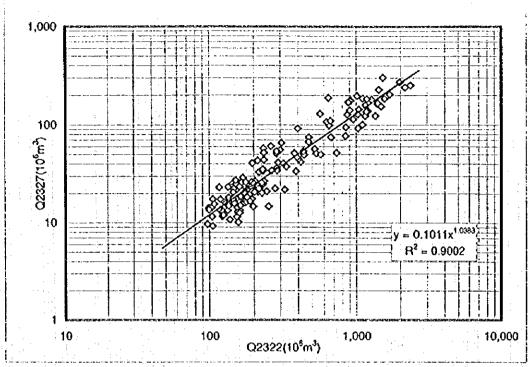


Figure 6-9 Correlation between Runoff at G.S. No.2322 and No.2327

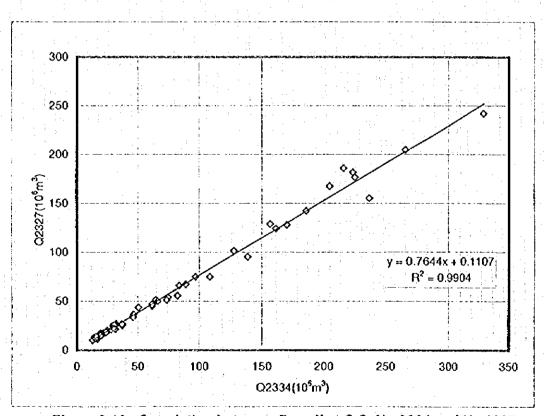


Figure 6-10 Correlation between Runoff at G.S. No.2334 and No.2327



Figure 6-11 Double-mass Curve of Precipitation at Artvin M.S. and Runoff at G.S. No.2305

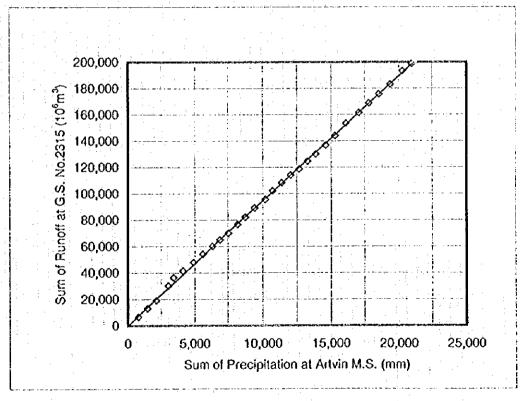


Figure 6-12 Double-mass Curve of Precipitation at Artvin M.S. and Runoff at G.S. No.2315

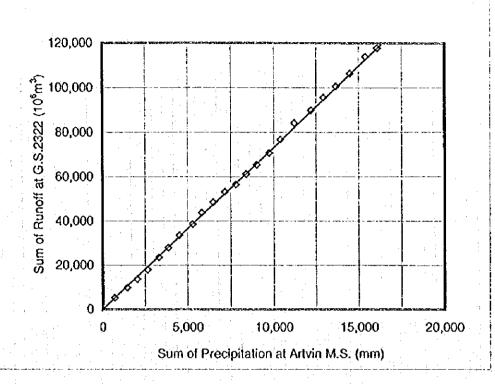


Figure 6-13 Double-mass Curve of Precipitation at Artvin M.S. and Runoff at G.S. No.2322

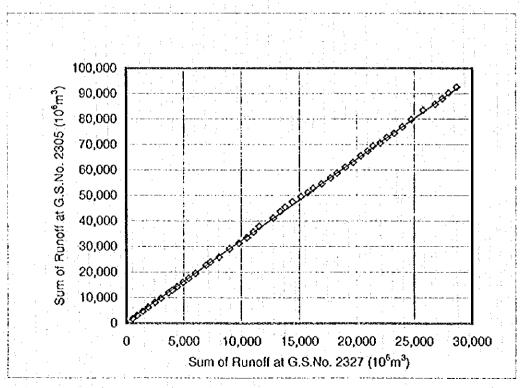


Figure 6-14 Doubte-mass Curve of Sum of Runoff at G.S. No.2305 and G.S. No.2327

(4) Estimates of Monthly Inflows at Dam Sites

The monthly inflows at dam sites were calculated by the following equations.

$$Q_{\textit{Baylik}} = Q_{2334} - \left(Q_{2334} - Q_{2327}\right) \times \left(\frac{A_{2334} - A_{\textit{Baylik}}}{A_{2334} - A_{2327}}\right)$$

Eq (6-2)

$$Q_{Bayram} = Q_{2327} \times \frac{A_{Bayram}}{A_{2327}}$$

Eq (6-3)

$$Q_{Kaleduzu} = Q_{2327}$$

Eq.(6-4)

The estimated monthly inflows are shown in Tables 6-4, 6-5 and 6-6.

Table 6-4 Monthly Inflows at Bağlik Dam Site

Dam Site

Bağlık

1508.6 km² Area (unit: 10°m3) Year Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. | Sep Total 44.7 1942 85.0 45.1 40.1 46.1 72.3 300.6 322.1 143.8 74.7 41.2 33.€ 1249.4 38.2 44.0 42.9 33.4 28.2 36.5 1943 109.1 158.2 100.6 56.0 35.4 27.7 710.0 1944 29.8 31.7 31.4 27.6 29.4 66.3 106.5 344.6 173.7 101.9 39.6 30.7 1013.4 1945 28.2 31.5 23.4 21.0 18.6 25.2 82.1 149.0 115.8 53.8 27.3 21, 596.9 21.9 23.2 22.5 27.1 19.2 1946 33.4 98.9 160.7 133.2 68.3 42.9 27. 678.4 25.3 41.2 31.0 24.8 25.4 70.3 1947 98.9 80.7 63.5 33.0 21.8 19.1 534.9 23.3 37.8 25.6 24.3 22.9 1948 25.4 105.7 159.0 138.1 47.2 28.0 26.2 663.5 1949 25.5 22.8 19.8 19.1 17.1 30.4 67.3 149.8 84.7 22.9 31.1 20.2 510.7 1950 21.5 19.5 18.5 17.5 17.7 39.8 128.2 159.0 87.0 49 6 25.8 18 € 602.8 22.0 28.0 1951 32.3 26.9 23.6 20.1 31.8 102.3 126.9 106.5 47.5 28.3 596.4 37.6 1952 49.0 28.5 26.2 29.1 37.4 135.6 149.8 108.2 64.9 31.0 23.1 720.5 154.8 1953 21.2 20.0 18.8 17.3 18.2 23.5 95.5 114.1 56.6 32.1 29.5 601.7 25.5 20.9 1954 25.2 20.7 23.0 43.3 134.0 207.7 152.8 83.7 37.6 28.1 802.4 1955 21.7 18.0 18.2 25.6 23.1 59.4 56.2 28.0 94.6 22.3 15.2 14.€ 397.0 1958 16.8 100.6 15.1 15.1 15.5 22.1 28.7 126.9 110.7 53.2 25.2 20.5 550.6 1957 19.0 17.5 16.1 13.5 19.1 52.4 104.0 151.5 124.9 54.8 26.2 21.1 620.2 1958 21.2 21.7 20.9 18.5 18.6 39.3 106.5 154.8 114.1 48.2 24.1 23.3 611.2 1959 22.6 21.8 22.3 22.3 17.2 43.3 109.1 183.9 140.5 64.2 35.1 27. 709.4 26.4 1960 36.2 32.9 44.7 70.9 102.8 235.3 267.1 160.9 85.7 41.2 25. 1129. 15.4 1961 24.5 21.7 20.3 14.6 29.2 104.0 122.7 82.1 25.2 13.8 13.2 486.7 1962 15.0 18.3 27.6 21.1 22.6 82.0 136.4 175.7 113.2 50.7 23.6 22.7 709.0 1963 23.2 23.4 24.1 25.4 26.2 37.6 188.1 291.6 266.2 147.3 60.0 29.7 1142.7 1964 **29.0** 25.9 24.7 23.4 22.4 48,4 144.6 211.7 154.4 52.1 28.0 24.6 789.3 1965 39.9 28.4 38.0 25.7 21.8 85.3 164.1 191.7 135.3 59.3 18.7 12.7 820.8 1966 42.6 45.2 30.3 32.3 35.5 48.7 135.2 217.4 114.0 47.9 19.6 18.7 787. 15.8 12.6 1967 15.6 13.1 14 9 107.9 225.7 34.7 116.9 97.6 32.6 43.9 731.3 1968 28.8 33.5 73.4 44.1 40.9 81.0 348.4 392.3 46.3 196.4 92.5 36.5 1414.C 1969 35.2 32.3 32.0 19,8 20.2 53.1 148.8 238.0 85.2 30.3 17.8 19.9 732. 1970 49.0 28.7 27.2 26.0 30.3 55.0 139.9 126.6 57.9 31.3 23.5 25.0 620.4 1971 51.3 34.5 31.3 25.1 29.8 68.3 99.7 197.9 131.5 45.61 37.5 16.5 769.9 1972 28.9 27.0 34.2 24.8 181.2 170.4 24.5 45.0 152.8 68.3 30.2 33.6 820.9 1973 30.6 30.6 23.9 22.0 31.3 40.6 102.9 24.9 190.3 147.2 66.3 18.6 729 4 1974 23.3 28.8 20.0 25.3 17.9 51.5 76.6 193.7 92.4 29.6 20.0 34.4 6136 1975 20.8 20.4 20.1 20.0 18.2 171.6 159.1 39.5 48.6 111.5 18.8 19.7 668.2 1976 28.4 22.1 19.6 21.3 21.0 49.1 155.9 255.9 166.6 79.6 30.6 25.5 875.6 1977 40.3 29.0 25.5 21.1 21.7 102.5 185.2 54.1 39.6 120.9 28.4 23.3 691.6 1978 29.9 27.2 22.0 20.7 30.4 57.6 146.8 244.9 155.7 75.7 35.0 22.7 868.8 1979 26.9 25.1 26.1 29.1 33.6 49.1 116.7 198.6 156.9 78.0 31.4 18.9 790.5 1930 27.1 47.5 38.5 27.5 27.3 188.6 216,7 90.9 62.7 38.6 25.4 21.1 812.1 27.4 1981 28.4 27.7 23.2 22.5 42.5 87.6 165.2 189.1 71.7 31.0 27.2 743.6 1982 27 7 28.4 22.2 28.4 31.7 118.5 159.1 66.3 33.3 48.0 29.9 19.9 613.4 1983 32.3 29.7 17.3 22.3 18.1 166.6 219.6 12.3 73.7 137.9 43.2 11.8 784.6 177.5 1984 29.6 52.8 26.9 22.8 22.9 77.7 127.1 98.9 63.0 28.6 16.1 744.0 1985 13.7 20.2 17,1 16.6 20.2 66.6 238.9 236.7 72.7 27.0 18.2 29.4 777.3 1986 52.1 37.0 32.7 26.2 30.5 65.9 185.1 204.4 175.7 68.9 16.4 17.1 911.9 22.4 1987 18.7 17.2 20.5 56.1 43.9 229.7 324.2 146.6 27.9 26.3 34.9 968. 27.9 26.4 1988 25.7 29.5 292.6 42.1 117.6 348.8 210.7 96.5 51.8 45.1 1314.1 65.4 53.7 1989 48.3 33.3 33.0 241.6 388.2 253.3 141.0 43.7 14.7 19.8 1336. 1990 21.4 20.5 18.8 12.9 259.6 18.0 63.2 157.2 134.5 20.2 60.1 19.1 805.6 1991 24.8 44.7 27.7 20.2 23.1 153.8 125.3 105.2 94.7 44.8 21.1 15.2 700.7 1992 14.0 16.6 17.8 15.4 14.4 45.6 181.2 228.3 212.7 71.2 30.5 24.4 872. 1993 79.5 72.3 36.2 31.5 30.9 59.9 219.0 320.6 200.8 64.5 29.7 23.8 1168.8 1994 19.6 49.8 32.1 30.8 29.3 82.0) 220.1 165.3 87.0 36.2 22.9 16.3 791.4 30.4

151.0

201.8

129.4

56.7

58.0

28.5

23.7

30.8

Ave

26.9

23.9

25.9

Table 6-5 Monthly Inflows at Bayram Dam Site

Dam Site	:	, €	Bayram									: .	
Area	;	,	1159.0 k	.m²						- ter led una harmini	- me wegatantoù	(unit:	10 ⁵ m ³)
Year	Oct.	Nov.	Dec	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aυg.	Sep.	Total
1942	33.8	66.5	34.1	30.1	34.9	56.1	248.1	266.6	115.2	58.0	30.9	24.9	999.1
1943	28.6	33.2	32.3	24.7	20.6	27.2	86.3	127.2	79.3	42.8	26.3	20.2	548.8
1944	21.9	23.4	23.1	20.2	21.6	51.2	84.2	285.9	140.3	80.4	29.7	22.6	804.5
1945	20.6	23.2	16.9	14.9	13.1	18.3	54.1	119.5	91.8	41.1	19.9	15.0	458.5
1946	16.7	16.1	15.7	19.8	13.6	24.7	77.9	129.3	106.3	52.8	32.3	19.9	525.1
1947	30.9	22.8	18.4	18.0	18.4	54.4	77.9	62.9	48.9	24.4	15.6	13.5	406.1
1948	16.8	28.2	18.6	17.6	16.4	18.4	83.5	127.9	110.4	35.7	20.5	19.0	513.1
1949	18.5	16.3	14.1	13.5	12.0	22.4	52.0	120.2	66.2	22.9	16.5	14.3	388.9
1950	15.3	13.8	13.0	12.3	12.4	29.9	102.2	127.9	68.1	37.7	18.8	13.1	464.5
1951	23.8	19.6	17.0	15.7	14.3	23.5	80.7	101.1	84.2	36.0	20.5	20.7	457.3
1952	37.2	28.1	20.9	19.1	21.3	27.9	108.4	120.2	85.6	50.0	22.8	16.7	558.1
1953	15.1	14.2	13.3	12.1	12.8	16.9	75.1	124.4	90.5	43.3	23.7	21.7	463.1
1954	18.5	18.3	14.7	14.9	16.5	32.6	107.0	168.9	122.7	65.4	28.1	<u>- 20.5</u>	628.2
1955	18.6	16.7	15.5	12.6	12.8	20.5	45.6	74.4	43.0	16.0	10.5	10.0	296.1 421.7
1956	10.4	10.4	11.7	10.7	15.8	21.0	79.3	101.1	87.7	40.6	18.3		478.7
1957	13.4	12.2	11.2	9.2	13.5	40.0	82.1	121.6	99.4	41.9	19.1	15.0 16.8	470.9
1958	15.1	15.5		13.0	13.1	29.4	84.2	124.4	90.5	36.6	26.1	19.8	551.4
1959	16.2	15.6	16.0	16.0		32.6	86.3	148.9	112.5	49.5	30.9	18.2	897.7
1960	26.9	24.3		33.8		81.1		219.4	129.5	67.0	9.4	8.9	370.2
1961	17.7	15.5	14.5	10.0	+		82.1	97.6	64.1	18.3 38.6	17.0	16.3	551.3
1962	10.3	12.9	20.2	15.0		64.0	109.0	141.9	89.8		46.1	21.8	913.9
1963	16.7	16.9	17.4	18.4	19.0		152.4	240.4		118.1	20.4	17.8	617.8
1964	21.2	18.9	17.9	16.9		36.7	115.9	172.3	124.0	39.7 45.5	13.2	8.5	643.0
1965	29.9	20.8	28.4	18.7	+		132.2	155.4	108.1	36.4	13.9	13.2	614.8
1966	32.1	34.2	22.3	23.9			108.0	177.2 184.2	90.4 92.8	76.9	33.1	24.1	571.5
1967	11.0	8.5	<u></u>	8.9	·}				92.8 159.4	76.9 72.6		27.2	1140.5
1968	21.1	24.8	57.0	33.2	+			327.1 194.7	159.4 66.6	22.3	12.5	14.1	572.2
1969	26.2	23.9		14.0				194.7	44.4	23.0	16.9	18.1	476.5
1970	37.2	21.0		18.9			111.9 78.6	160.6	104.9	35.3	28.0	11.5	599.5
1971	39.1	25.6		18.2				137.4	ļ	52.8	<u></u>	24.9	642.6
1972	21.2	19.7	_	18.0	4			154.3		51.2			567.5
1973	22.5	22.5			·	,		157.1	72.6	21.7		25.5	473.0
1974	16.8	21.1	18.3	14.2				128.0	·	29.6		13.9	519.0
19/5	14.8	14.5		14.2				209.9		62.1	22.5	18.5	690.5
1976	20.8	15.8		15.2				150.0		41.3			536.0
1977	30.2	21.3		15.0				200.5		58.9	L	16.3	683.5
1978	22.0	·				4	<u> </u>		·	60.8		13.3	617.6
1979	18.2	19.0			·		7	•					636.0
1980	19.8	36.0							+	·			579.1
1981	20.0		A		- 			+					455.9
1982	20.2			P			123.7		•	32.2		•	583.3
1983	24.0		··		*·				· i · - · · ·		÷	·	553.2
1984	22.1								- 1	·			577.9
1900	10.3									·			
1986	38.8							240.6					719.6
1987	16.7		·				· · · · · · · · · · · · · · · · · · ·			L			
1988	20.8				· • · · · · · · ·		·						
1989	48.6	<u> </u>		ļ			<u> </u>		·	+			
1990	16.8			Ļ	+				+				
1991	19.3					- 	+					÷	
1992	11.1						I						
1993	52.8		·							÷ ·		*	
1994	16.7	41.3	3 25.4	24.4	20.0	3. 02.4	1-101-0	,	<u>' ~ ~ · ~ · ~ · ~ · ~ · ~ · ~ · ~ · ~ · </u>	1		1	
<u> </u>	- 		10.7	17.4	4 18.9	· 9: 42.8	118.4	159.6	101.6	44.2	21.0	17.2	605.8
Ave.	22.4	22.7	7 19.7	1 17.	4: 10.3) 46.U). IIV	1 100.	11 10 10		******************************	*****	

Table 6-6 Monthly Inflows at Kaledüzu Dam Site

Dam Site

Kaledüzü

Dani Sia	-	•	Naigour										
Area		:	1213.91	ഗ്ന²								(บกโ	t: 10 ⁵ m ³)
Year	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May :	Jun. :	Jul.	Aug.	Seo.	Total
1942	35.6	70.2	35.9	31.8	36.8	59.2	261.8	281.3	121.6	61.2	32.6	26.3	1054.4
1943	30.1	35.0	34.1	26.1	21.7	28,7	91.1	134.3	83.7	45.2,	27.8	21.4	579.2
1944	23.1	24.7	24.4	21.3	22.8	54.0	88.9	301.8	148.1	84.8	31.4	23.8	849.1
1945	21.8	24.5	17.8	15.8	13.8	19.3	67.6	126.1	96.9	43.4	21.0	15.9	483.9
1946	17.6	17,0	16.5	20.9	14.3	26.1	82.2	136.5	112.2	55.7	34.1	21.0	554.2
1947	32.6	24.1	19.4	19.0	19.4	57.4	82.2	66.4	51.6				
1948	17.7	29.8	19.6	18.5	17.3	19.5	88.1			25.7	16.4	14.2	428.6
	19.5			+				135.0	116.5	37.7	21.6	20.1	541.6
1949		17.3	14.8	14.3	12.6	23.6	54.9	126.9	69.9	24.2	17.4	15.1	410.4
1950	16.2	14.6;	13.7	13.0	13.1	31.5	107.8	135.0	71.9	39.8	19.8	13.8	490.2
1951	25.2	20.7	18.0	16.6	15.1	24.8	85.2	106.7	88.9	38.0	21.6	21.8	482.6
1952	39.2	29.6.	22.0	20.1	22.5	29.5	114.4	126.9	90.3	52.8	24.1	17.6	589.1
1953	15.9	15.0	14.0.	12.8	13.5	17.9	79.3	131.3	95.5	45.7	25.0	22.9	488.8
1954	19.5	19.3	15.5	15.7	17.5	34.4	112.9	178.3	129.5	69.1	29.7	21.7	663.0
1955	19.6	17.6	16.4	13.3	13.5	21.6	48.1	78.5	45.4	16.9	11.1	10.6	312.5
1956	11.0	11.0	12.4	11.3	16.7	22.2	83.7	106.7	92.5	42.8	19.3	15.4	445.1
1957	14.2	12.9	11.8	9.7	14.3	42.2	86.7	128.4	104.9	44.2	20.1	15.9	505.2
1958	15.9	16.4	15.7	13.7	13.9	31.0	88.9	131.3	95.5	38.6,	18.4	17.7	497,0
1959	17.1	16.4	16.9	16.9	12.7	34.4	91.1	157.1	118.7	52.2	27.5	20.9	581.9
1960	28.4	25.7	20.3	35.6	58.0	85.6	203.0	231.6	136.6	70.7	32.6	19.2	947.4
1961	18.7	16.4	15.3.	10.6	11.2	22.6	86.7	103.0	67.6	19.3	10.0	9.4	390.7
1962	10.9	13.6	21,3	15.9	17.2	67.6	115.1	149.8	94.7	40.7	18.0	17.2	581.8
1963	17.6	17.8	18.4	19.5	20.1	29.6	160.8	253.7	230.8	124.6	48.6	23.0	964.5
1964	22.4	19.9	18.9	17.8	16.9	38.8	122.3	181.9	130.9	41.9	21.6	18.8	652.1
1965	31.5	21.9	30.0	19.7	16.5	70.4	139.5	164.0	114.0	48.0	13.9	9.0	678.6
1966	33.9	36.1	23.6	25.2	27.8	39.0	114.0	187.0	95.4	38.4	14.7	14.0	648.8
1967	11.6	8.9	11.4	9.3	10.8	27.2	90.0	194.4	97.9	81.1	35.0	25.4	603.1
1968	22.2	26.2	60.1	35.1	32.4	66.7	305.2	345.2	168.2	76.6	37.0	28.7	1203.7
1969	27.6	25.2	24.9,	14.8	15.2	42.7	125.9	205.5	70.3	23.5	13.2	14.9	603.9
1970	39.3	22.2	20.9	20.0	23.5	44.3	118.1	106.4	46.8	24.3	17.9	19.1	502.9
1971	41.2	27.0	24.3	19.2	23.1	55.7	82.9	169.5	110.7	37.2	29.5	12.1	632.7
1972	22.4	20.8	26.8	18.9	18.7	35.8	154.7	145.1	129.5	55.7	23.5	26.3	678.2
1973	23.8	23,7	18.2	16.7	24.4	32.1	85.7	162.8	124.6	54.0	19.1	13.8	599.0
1974	17.7	22.2	19.4	15.0	13.3	41.4	62.9	165.8	76.6	22.9	15.0	26.9	499.2
1975	15.6	15.3	15.1	14,9	13.5	38.9	146.1	135.1	93.2	31.2	14.0	14.7	547.8
1976	21.9	16.7	14.6	16.1	15.8	39.3	132.3	221.5	141.8	65.5	23.8	19.5	
1977	31.9	22.5	19.6	15.9	16.4	31.3	85.3	158.3	101.4	43.6	21.9	17.7	728.7 565.7
1978	23.2	20.9	16.6	15.6	23.6	46.6	124.2	211.6	132.1	62.1	27.5	17.2	721.4
1979	19.2	20.0	20.7	22.5	26.3	39.3	97.8	170.2	133.2				
1980	20.9	38.0	30.4	21.2	21.0	51.0	161.3	186.4	75.2	30.5	19.5	14.1	651.8
1981	21.1	21.9		17.6	17.1								671.2
1982	21.3	22.3	24.9	22.3	17.5	33.8 26.2	72.4 92.9	140.5	161.7	58.7	24.1	21.0	611.2
1983	25.4	23.3	13.6	17.5	14.3			124.7	52.0	37.7	23.6	15.7	481.1
1984	23.3	41.4	21.2	17.9		57.8	130.6	172.1	108.1	33.9	9.7	9.3	615.6
1985	10.8	15.9	13.5		18.0	60.9	99.7	139.1	77.6	49.4	22.5	12.7	583.8
1986		29.1		13.1	15.9	52.3	187.2	185.5	57.0	21.2	14.3	23.1	609.9
	40.9		25.7	20.6	24.0	51.7	145.0	160.1	137.7	54.1	12.9	13.5	715.3
1987	17.7	14.7	13.6	16.1	44.0	34.5	179.9	254.0	114.9	21.9	20.7	27.4	759.5
1988	21.9	20.8	20.2	23.2	33.1	92.2	229.2	273.2	165.1	75.7	40.7	35.4	1030.7
1989	51.3	42.1	38.0	26.2	26.0	189.3	304.0	198.5	110.5	34.3	11.6	15.6	1047.4
1990	17,8	16.4	14.8	10.2	14.3	51.4	124.2	204.9	95.4	46.9.	15.1	15.0	626.3
1991	20.4	34.2	21.1	16.4	18.2	75.0	128.8	101.5	74.9	33.7	16.7	12.1	553.1
1992	11.7	11.5	13.8	13.5	13.2	36.4	142.3	155.3	186.1	51.4	25.7	18.7	679.7
1993	55.7	54.2	25.1	25,4	21.6	45.0	182.0	242.1	167.4	50.1	22.5	18.4	909.4
1994	17.6	43.5	26.8	25.7	25.2	65.9	176.8	128.0	67.4	26.8	17.6	13.7	635.0
						·		i		- <u></u>			
Ave.	23.6	23.9	20.8	18.4	20.0	45.2	125.0.	168.2	107.2	46.6	22.2!	18.2	639.4

6.3 Evaporation Study

6.3.1 Available Evaporation Data

There is no meteorological station measuring the evaporation quantity in the Berta basin. In the Çoruh basin, monthly evaporation records at the meteorological stations at Ispir, Bayburt and Tortum H.E.S. are available. The evaporation quantities (mm) are measured by using the U.S. Weather Bureau Class A Pan.

Scrutinizing meteorological data observed at each station, such as relative humidity and surface wind velocity, it was found that Bayburt has the most similar climate to that of the Berta basin. The observed monthly Class A Pan evaporation quantities at Bayburt M.S. are shown in Table 6-7.

Table 6-7 Observed Monthly Class A Pan Evaporation quantities at Bayburt M.S.

(unit: mm)

Year	Jan.	Feb	Mar.	Apr	Мау	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec
1977	D	D	D	-	_	133.0	178.0	192.0	137.0	43.5	D	D
1978	D	D	D	-	127.0	159.0	206.0	183.0	157.0	77.1	D	D
1979	D	D	D	-	121.0	140.0	176.0	201.0	159.0	66.2	D	D
1980	D	D	D	_	121.0	178.0	230.0	185.0	144.0	75.3	D	D
1981	D	D	D	-	98.0	137.0	198.0	183.0	135.0	78.0	D	D
1982	D	D	D	-	105.0	152.0	160.0	168.0	117.0	73.1	D	D
1983	D	D	D	•	99.0	148.0	191.0	176.0	132.0	68.2	D	D
1984	Ð	D	D	•	92.2	138.0	198.0	148.0	153.0	79.2	(D)	D
1985	D	D	D	-	102.0	148.0	171.0	191.0	130.0	52.4	26.8	D
1986	D	D	D	-	*	141.0	186.0	181.0	127.0	-	D	D
1987	D	D	D	•	136.0	127.0	153.0	152.0	112.0	57.7	D .	D
1988	D	D	D	-	89.0	99.2	138.0	149.0	97.6	50.7	D	D
1989	D	D	D	-	125.0	136.0	171.0	-	116.0	50.9	D	D
1990	D	D	D	*	82.2	127.0	136.0	133.0	99.8	53.2	D	D
1991	D	D	D	72.0	86.8	123.0	144.0	149.0	119.0	60.6	D	D
1992	D	D	D	-	92.4	150.0	142.0	97.3	52.4	-	D	D
1993	D	D	D	1 1 2	63.1	97.9	140.0	123.0	105.0	63.2	D	- D
1994	D	D	D	•	-	-	-	128.0	122.0	-	D	D

D; unmeasurable due to frost

^{-;} no data available

6.3.2 Reservoir Evaporation

(1) Correlation between Monthly Mean Temperature and Monthly Evaporation

Figure 6-15 shows the relation between monthly mean temperature and evaporation quantity at Bayburt M.S. The regression line is expressed as follows.

$$E = 10.267T - 18.704$$

Eq.(6-5)

where

E = monthly evaporation quantity (mm)

T = monthly mean temperature (°C)

(2) Estimates of Monthly Mean Temperatures at Reservoir Surfaces

Eq.(6-6) expresses the relation between the monthly mean temperatures at Artvin M.S. and Şavşat M.S. (refer to Figure 6-16)

$$T_{Savsat} = \alpha T_{Artvin} + \beta$$

Eq.(6-6)

where

$$\alpha = 1.1927$$
, $\beta = -4.3455$

And then, assuming that the temperature at a certain location is predominantly dependent on its elevation, the temperatures at reservoir surfaces are given by:

$$T_{dam} = \alpha^i T_{Artvin} + \beta^i$$

Eq.(6-7)

where

T_{dam} = monthly mean temperature at reservoir surfaces (°C)

 T_{Artvin} = monthly mean temperature at Artvin M.S. (°C)

$$\alpha' = (\alpha - 1)(h_{Artvin} - h_{dam})/(h_{Artvin} - h_{Savsat}) + 1.0$$

$$\beta' = \beta (h_{Artvin} - h_{dam})/(h_{Artvin} - h_{Savsat})$$

 h_{Artvin} = elevation at Artvin M.S. (= 597m)

 h_{Savsat} = elevation at Şavşat M.S. (=1,100m)

 h_{dam} = elevation at reservoir surfaces (m)

Substituting the above values, the equation for each dam site is expressed as follows;

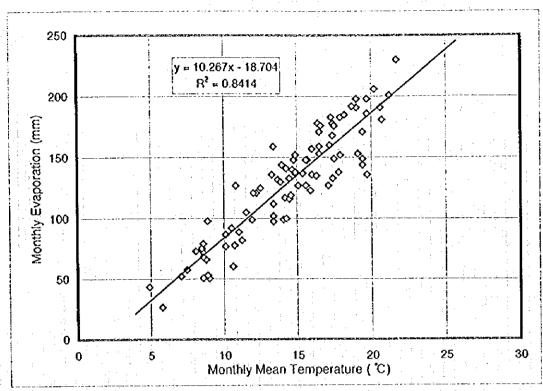


Figure 6-15 Correlation between Monthly Mean Temperature and Monthly Evaporation observed at Bayburt M.S.

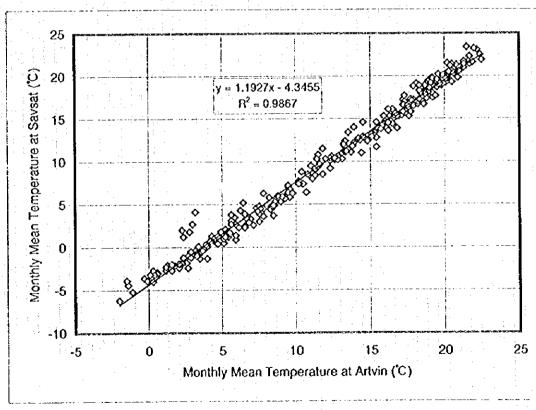


Figure 6-16 Correlation between Monthly Mean Temperature at Artvin M.S. and Şavşat M.S.

Table 6-8 Temperature at Reservoir Surface Levels

Dam Site	Water Level (m)	Equation
Bağlık	570	$T = 0.9897T_{Artvin} + 0.2333$
Bayram	745	$T = 1.0567T_{Artvin} - 1.2786$
Kaledüzü	720	T = 1.0417T _{Artvin} - 1.0626

(3) Estimates of Reservoir Evaporation

The reservoir evaporations are calculated by multiplying Eq.(6-5) by a pan coefficient of 0.7.⁵ The results are tabulated in Tables 6-9, 6-10 and 6-11.

Table 6-9 Reservoir Evaporation at Bağlık Dam Site

 $E = 0.7 \times (10.267 \times T - 18.704)$ (നന)

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1948	-	•	•	•	-	139.4	143.6	147.2	114.5	82.5	46.2	6.4	-
1949	0.0	0.0	37.7	46.9	115.9	135.8	137.2	132.3	105.2	83.2	73.2	22.7	890.2
1950	0.0	0.0	32.0	110.9	106.7	115.2	130.8	128.0	133.7	81.8	66.1	39.8	944.9
1951	15.6	19.2	72.5	91.0	106.7	120.9	139.4	151.5	120.2	59.0	61.8	14.9	972.6
1952	18.5	27.7	42.6	66.1	94.6	114.5	139.4	147.9	141.5	115.9	64.0	47.6	1,020.3
1953	34.1	19.2	16.3	77.5:	108.1	132.3	140.8	145.8	113.8	93.1	24.9	0.0	905.8
1954	0.0	9.9	48.3	57.6	118.7	137.2	152.9	155.0	130.1,	107.4	81.8	54.0	1,053.0
1955	34.8	53.3	52.6	73.2	108.1	131.6	145.8	145.8	128.7	115.9	61.1	21.3	1,072.2
1956	23.4	25.6	21.3	82.5	86.7	122.3	133.0	146.5	105.2	78.9	38.4	1.4	865.2
1957	0.0	30.5	34.1	84.6	116.6	133.7	149.3	154.3	143.6,	98.1	56.9	37.0	1,038.8
1958	33.4	32.7	53.3	75.4	121.6	129.4	134.4	140.8	111.6;	86.7	52.6	24.1	996.1
1959	33.4	0.0	24.1	79.6	99.5	122.3	148.6	140.1	96.7	64.7	59.7	44.1	912.9
1960	27.0	19.9	43.4	74.6	115.2	123.7	143.6	130.1	121.6	102.4	74.6	41.2	1,017.4
1961	8.5	17.7	20.6	83.2	113.8	128.7	131.6	138.0	97.4	91.0	54.0	31.3	915.7
1962	14.9	25.6	61.1	66.8	105.9	118.7	138.7	140.1	120.2	91.7	74.6	47.6	1,006.0
1963	25.6	44.8	2 5.6	64.0	93.1	115.2	134.4	135.8	124.4	91.7	54.7	12.8	922.1
1964	0.0	12.8	41,2	60.4	89.6	127.3	130.8	123.0	114.5	90.3	44.1	4.2	838.2
1965	4.9	13.5	47.6	64.7	105.9	125.9	131.6	138.0	118.0	61.8	48.3	34.8	895.1
1966	47.6	44.1	54.7	86.0	98.8	118.0	142.2	144.4	111.6	108.1	91.0	44.1	1,090.7
1967	7.8	0.0	29.8	67.5	108.1	107.4	125.2	128.0	107.4	96.0	49.8	9.2	836.1
1968	0.0	9.2	31.3	80.3	113.8	113.8	132.3	131.6	126.6	87.5	72.5	24.9	923.6
1969	14.9	19.9	40.5	61.1	105.2	137.2	123.0	134.4	110.9	69.0	49.8	37.0	902.9
1970	22.0	39.1	52.6	95.3	99.5	115.9	140.1	124.4	105.9	70.4	63.3	12.1	940.6
1971	24.9	11.3	51.9	66.8	103.8	114.5	136.5	130.1	127.3	71.1	51.9	0.0	895.1
1972	0.0	4.9	28.4	98.1	96.0	125.2	140.1	148.6	116.6	103.8	42.6	0.0	904.4
1973	0.0	30.5	30.5	69.0	91.7	106.7	132.3	122.3	111.6	93.9	27.0	4,9,	820.4
1974	0.0	22.0	46.9	50.5	102.4	123.0	128.0	127.3	108,1	120.9	56.2	25,6	910.8
1975	7.1	0.0	41.9	97.4	101,7	134.4	140.1	133.7	111.6	78.2	49.0	3.5	898.7
1976	0.0		28.4	76.1	84.6	110.9	129.4	125.2	105.9	83.9.	64.0	32.0	840.4
1977	0.0	43.4	40.5	76.8	98.8	118.0	129.4	131.6	110.9	56.2	56.9	5.7	868.1
1978	7.8	34.8	55.4	62.6	97.4	108.1	131.6	118.7	118.7	89.6	27.0	18.5	870.2
1979	17.0			76.1	110.2	120.2	122.3	147.9	118.7	81.8.	61.1	11.3	946.3
1980	0.0		41.9	62.6	103.8	127.3	142.9	130.1	101.7	81.8	54.7	32.0	890.1
1981	30,5		41.9	56.2	83.2	122.3	142.9	130.1	121.6	100.3	41.2	49.0	945.6
1982	1.4			78.9	101.0	115.9	119.5		113.1	79.6	35.5	7.1	
1983	0.0		31.3	76.1	103.1	115.9	135.1		106.7	79.6	51.9	22.0	856.0
1984	24.9		49.8	69.0	98.1	113.8	124.4		123.7	83.2	53.3	3.5	
1985	19.9		19.2	70.4		117.3	115.9	·	103.8	69.7	65.4	5.7	
1986	9.9		34.1	83.2	72.5	بالمساحدة	132.3	146.5	124.4	82.5	34.8	8.5	
1987	16.3	÷	20.6	56.9	106.7	113.8	134.4	124.4	104.5	78 2	52.6	16.3	
1988	0.0		37.7	73.9	91.7		135.1	131.6	107.4	86.7	28.4	22.0	849.6
1989	0.0		44.1	98.1		122.3	128.0	145.1	115.9	84.6	51.2	5.7	
1990	0.0		32.7	65.4	87.5	119.5	133.0	125.2	115.2	83.9	58.3	27.7	
1991	0.7			83.9	93.1	121.6	140.8	133.0	110.2;	103.8	56.2	9.9	888.7
Ave.	12.3	18.2	39.0	74.4.	101.7	121.7	135.1	135.4	1 15.5:	86.8	54.2	21.0	914.9

-; no data available

Table 6-10 Reservoir Evaporation at Bayram Dam Site

1

 $E = 0.7 \times (10.267 \times T - 18.704)$ (mm) Feb. Mar. Apr. May Year Jan. Jun. Jul. Aug. Sep. Oct. Dec. Nov. Total 138.7 143.3 147.1 112.1 1948 78.0 39.2 0.0 0.0 0.0 113.7 30.1 40.0 134.9 136.4 1949 131.1 102.3 78.7 68.1 14.2 849.5 0.0 0.0 24.0 108.3 103.8 112.9 129.6 1950 126.6 132.6 77.2 60.5 908.0 32.4 103.8 1951 6.6 10.4 67.3 87.1 119.0 138.7 151.6 118.2 52.9 55.9 5.8 917.3 35.4 1952 9.6 19.5 60.5 90.9 112.1 138.7 147.8 141.0 113.7 58.2 40.8 968.2 26.3 72,6 10.4 7.3 105.3 131.1 140.2 145.6 111.4 89.4 1953 16.4 0.0 856.1 0.0 0.5 41.5 1954 51.4 116.7 136.4 153.1 155.4 128.8 104.5 77.2 47.6 1,013.3 27.1 46.8 46.1 68.1 105.3 130.4 145.6 1955 145.6 127.3 113.7 55.2 12.7 1.023.7 17.2 14.9 12.7 78.0 120.5 82.5 131.9 146.3 0.0 1956 102.3 74.2 30.9 811.3 1957 0.0 22.5 26.3 80.2 114,4 132.6 149.4 154.7 143.3 94.7 50.6 29.4 998.1 119.7 25.6 24.8 70.4 46.8 128.1 133.4 109.1 1958 140.2 82.5 46. i 15.7 942.4 25.6 0.0 15.7 74.9 96.2 120.5 148.6 139.5 93.2 59.0 53.7 37.0 1959 863.7 18.7 11.1 36.2 69.6 112.9 122.0 143.3 128.8 119.7 99.2 69.6 33.9 1960 965.2 0.0 8.9 11,9 78.7 111.4 127.3 130.4 137.2 93.9 87.1 1961 47.6 23.3 857.E 5.8 17.2 55.2 61.3 103.0 116.7 138.0 139.5 118.2 1962 87.8 69.6 40.8 953.0 17.2 37.7 17.2 58.2 89.4 133.4 112.9 134.9 122.8 1963 87.8 48.3 3.5 863.4 0.0 3.5 85.6 1964 33.9 54.4 125.8 129.6 121.3 112.1 86.3 37.0 0.0 789.5 0.0 4.3 40.8 59.0 103.0 124.3 130.4 137.2 115.9 1965 55.9 41.5 27.1 839.4 40.8 37.0 48.3 81.8 95.4 115.9 141.8 144.0 109.1 1966 105.3 87.1 37.0 1.043.4 0.0 0.0 21.8 62.0 105.3 123.5¹ 1967 104.5 126.6 104.5 92.4 43.0 0.0783.7 0,0 0.023.3 75.7 111.4 111.4 131.1 130.4 125.0 83.3 67.3 1968 16.4 875.3 5.8 11.1 33.2 55.2 102.3 136.4 121.3 133.4 108.3 1969 63.5 43.0 29.4 842.9 13.4 1970 31.6 46.1 91.6 96.2 113.7 139.5 122.8 103.0 65.1 57.5 2.8 883.2 16.4 2.0 45.3 106.1 112.1 61.3 135.7 128.8 125.8 65.8 45.3 844.7 1971 0.0 20.2 0.0 0.094.7 92.4 123.5 139.5 148.6 114.4 100.7 1972 35.4 0.0 869.5 0.0022.5 22.5 63.5 87.8 103.8 131.1 109.1 90.1 1973 120.5 18.7 0.0 769.8 0.0 13.4 40.0 43.8 99.2 121,3 126.6 125.8 105.3 119.0 1974 49.9 17.2 861.4 0.0 0.0 34.7 93.9 98.5° 133.4 139.5 132.6 109.1 1975 73.4 42.3 0.0 857.4 0.0 0.0 20.2 71.1 80.2 108.3 128.1 123.5 103.0 79.5 1976 58.2 24.0 796.3 128.1 0.0 36.2 33.2 71.9 95.4 115.9 130.4 108.3 1977 49.9 50.6 0.0 819.9 0.0 1978 27.1 49.1 56.7 93.9 105.3 130.4 116.7 116.7 85.6 18.7 9.6 809.8 8.1 14.9 49.9 71.1 107.6 118.2 120.5 147.8 116,7 77.2 55.2 2.0 1979 889.2 0.0 2.0 34.7 56.7 100.7 125.8 142.5 128.8 98.5 77.2 48.3 1930 24.0 839.4 22.5 18.0 34.7 78.7 49.9 120.5 142.5 128.8 119.7 97.0 33.9 42.3 1981 888.5 0.00.017.2 74.2 97.7 113.7 117.5 127.3 110.6 1982 74.9 27.8 0.0 760.9 0.0 3.5 23.3 71.1 100.0 113.7 103.8 74.9 134.2 119,7 1983 45.3 13.4 802.9 1984 16.4 8.1 43.0 63.5 94.7 111.4 122.8 109.1 122.0 78.7 46.8 0.0 816 6 0.0 109.9 11.1 10.4 65.1 115.2 113.7 141.0 100.7 64.3 59.7 1985 0.0 791.0 0.5 10,4 26.3 67.3 131,1 146.3 1986 78.7 118.2 122.8 78.0 27.1 0.0 806.7 7.3 17.2 11.9 50.6 1987 103.8 111.4 133.4 122.8 101.5 73.4 46.1 7.3 786.7 0.0 8.1 30.1 68.9 87.8 115.9 134.2 104.5, 1988 130.4 82.5 20.2 13.4 796.1 0.00.0 37.0 1989 94.7 94.7 120.5 126.6 144.8 113.7 80.2 44.5 0.0 856.6 0.0 3.5 1990 24.8 59.7 83.3 117.5 131.9 123.5 112.9 79.5 808.2 52.1 19.5 0.0 0.0 25.6 79.5 140.2 1991 89.4 119.7 131.9 107.6 100.7 49.9 0.5 845.0 Ave. 7.4 11.7 31.5 69.3 98.5 119.9 134.1 134.5 113.2 82.6 14.2 47.7 864.3

-; no data available

Table 6-11 Reservoir Evaporation at Kaledüzu Dam Site

$E = 0.7 \times (10$			•	(mm)
			AND AND PROPERTY OF THE PARTY O	

-			Man.	ا معام	L.C.	1		A		^-1		D	
Year	Jan.	Feb.	Mar.	Apr.	May !	Jun. 138.8	Jul. 143.3	Aug. i 147.1	Sep. 112.5	Oct. 78.6	Nov. 1	Dec. :	Total
1948	0.0	0.0	31.2	41.0	114.0	135.0	136.6	131.3	102.7	79.4	68.8	15.4	855.3
1949	0.0	0.0	25.2	108.7	104.2	113.2	129.8	126.8	132.8	77.9	61.3	33.5	913.2
1950 1951	7.9	11.6	68.1	87.6	104.2	119.2	138.8	151.6	118.5	53.8	56.8	7.1	925.2
	10.9	20.7	36.5	61.3	91.4	112.5	138.8	147.8	141.1	114.0	59.0	41.7	975.6
1952	27.4	11.6	8.6	73.3	105.7	131.3	140.3	145.6	111.7	89.9	17.6	0.0	863,2
1953	0.0	1.8	42.5	52.3	117.0	136.6	153.1	155.4	129.0	104.9	77.9		1.018.9
1954	28.2	47.8	47.0	63.8	105.7	130.5	145.6	145.6	127.5	114.0	56.0		-
1955	16.1	18.4	13.9	78.6	83.1	120.7	132.0	146.3	102.7	74.8	31.9	0.0	818.8
1956	0.0	23.7	27.4	80.9	114.7	132.8	149.3	154.6	143.3	95.2	51.5	30.4	1,003.9
1957	26.7	25.9	47.8	71.1	120.0	128.3	133.5	140.3	109.5	83.1	47.0	16.9	950.0
1958 1959	26.7	0.0	16.9	75.6	96.7	120.7	148.6	139.6	93.7	59.8	54.5	38.0	870.7
1	19.9	12.4	37.2	70.3	113.2	122.3	143.3	129.0	120.0	99.7	70.3	35.0	972.6
1960	0.3	10.1	13.1	79.4	111.7	127.5	130.5	137.3	94.4	87.6	48.5	24.4	865.0
1961	7.1	18.4	56.0	62.0	103.4	117.0	138.1	139.6	118.5	88.4	70.3	41.7	960.6
1962	18.4	38.7	18.4	59.0	89.9	113.2	133.5	135.0	123.0	88.4	49.3	4.9	871.8
1963	0.0			55.3	86.1	126.0	129.8	121.5	112.5	86.9		0.0	795.8
1964	0.0		41.7	59.8	103.4	124.5	130.5	137.3	116.2	56.8		28.2	846.6
1965	41.7	38.0	49.3	82.4	95.9	116.2	141.8	144.1	109.5	105.7	87.6	38.0	1,050.1
1966	0.0	0.0		62.8	105,7	104.9	123.8	126.8	104.9	92.9	44.0	1.1	789.8
1967	0.0	1.1	24.4	76.3	111.7	111.7	131.3	130.5	125.3	83.9	68.1	17.6	882.0
1968	7.1	12.4	34.2	56.0	102.7	136.6	121.5	133.5	108.7	64.3		30.4	851.5
1969	14.6	ļ	!	92.2	96.7	114.0	139.6	123.0	103.4	65.8	58.3	4.1	891.3
1970	17.6	~ `	ļ	62.0	106.4	112.5	135.8	129.0	126.0	66.6	46.2		851.9
1971 1972	0.0		i	95.2	92.9	123.8	139.6	148.6	114.7	101.2		0.0	873.8
	0.0		ţ	64.3	88.4	104.2	131.3	120.7	109.5	90.6			776.3
1973 1974	0.0		·	44.7	99.7	121.5	126.8	126.0	105.7	119.2			868.4
1975	0.0		35.7	94.4	98.9	133.5	139.6	132.8	109.5	74.1		0.0	861.7
	0.0	1	ł	71.8	80.9	108.7	128.3	123.8	103.4	80.1	59.0	25.2	802.6
1976 1977	0.0		34.2	72.6	95.9	116.2	128.3		108.7	50.8	51.5	0.0	825.9
1978	0.0	j	50.0	57.5	94.4	105.7	130.5	117.0	117.0	86.1	19.9	10.9	817.3
1979	9.4	16.1	50.8	71.8	108.0	118.5	120.7	147.8	117.0	77.9	56.0	3.4	897.4
1980	0.0		35.7	57.5	101.2	126.0	142.6	129.0	98.9	77.9	49.3	25.2	846.6
1981	23.7			50.8	79.4	120.7	142.6	<u> </u>	120.0	97.4	35.0	43.2	896.6
1982	0.0	}—	(74.8		· 1	117.7			75.6	!	0.0	
1983	0.0	<u> </u>		71.8		ii	134.3	t	104.2	75.6	46.2	14.6	810.5
1984	17.6			64.3	95.2	111.7	123.0	} ;		79.4		0.0	824.0
1985	12.4	 		65.8	110.2	115.5	114.0	· :		65.1	60.5	~ - , - · - · - ·	797.3
1986	1.8	i	ł	79.4	68.1	118.5	131.3			78.6	28.2		814.6
1987	8.6	<u> </u>	<u> </u>	51.5	104.2	111.7	133.5			74.1		8.6	795.8
1988	0.0	i	31.2			116.2	134.3	130.5	104.9	83.1	·		803.7
1989	0.0	}		95.2	95.2	120.7	126.8		114.0	80.9	45.5		861.0
1990	0.0	!	<u> </u>	60.5		117.7	132.0	<u>-</u>		80.1	53.0	20.7	815.7
1991	0.0			80.1		120.0	140.3			101.2		1.8	850.8
Ave.	8.0					120.1	134.2		-	83.2			871.2
		available		-									

-; no data available

6.4 Sedimentation Study

6.4.1 Available Sedimentation Data

Table 6-12 shows descriptions of the sampling sites of the suspended load in the Çoruh Basin. There is no observation data on bed loads in the Çoruh Basin.

Table 6-12 Available Suspended Sediment Data

Station	River	Elevation (m)	Effective C.A. (km²)	Available period of records	Number of Samples
2315-Karşıköy	Çoruh	57	18,308	Jun.1967 - Apr.1996	316
2316-İspir Köprüsü	Çoruh	1,170	5,505	Sep.1969-Apr.1996	305
2320-Laleli	Çoruh	1,365	4,759	Jul 1971-Nov.1983	88
2322-Altınsu	Çoruh	201	16,394	Mar 1984-Apr 1996	150
2325-Oltu	Oltu	1,135	1,800	Jun.1977-Apr.1996	217
2327-Çiftehanlar	Berta	570	1,223	Oct.1995-Oct.1996	13
2329-Çoşkunlar	Oltu	1,005	3,605	Oct 1991-Apr.1996	63
2331-Gündoğdu	Deviskel	560	94	Feb.1988-Apr.1996	71
2334-Bağlık	Berta	385	1,541	Oct.1995-Oct.1996	13

6.4.2 Suspended Load

(1) Estimates of suspended sediment during the runoff observation period

Table 6-13 shows the suspended load data observed at G.S.No. 2327, based on which the sediment rating curve shown in Figure 6-17 was constructed.

Table 6-13 Suspended Load observed at G.S.No.2327

Date observed	Discharge (rn³/sec)	Concentration (p.p.m)	Sediment discharge (ton/day)	Date observed	Discharge (m³/sec)	Concentration (p.p.m)	Sediment discharge (ton/day)
1995, Oct. 11	11.559	65	64.92	1996, May. 7	59.637	190.7	982.61
1995, Nov.7	8.897	21.4	16.45	1996, Jun. 5	34.924	332.4	1,002.99
1995, Dec 5	7.315	27.8	17.57	1996, Jul. 3	10.394	24.9	22.36
1996, Jan. 9	9.149	31.7	25.06	1996, Aug. 6	4.236	31.3	11.46
1996, Feb. 7	4.945	2.2	0.94	1996, Sept. 11	5.356	59.1	27.35
1996, Mar. 5	5.302	19.1	8.75	1996, Oct. 16	7.756	45.3	30.36
1996, Apr. 2	21.705	393.6	738.2	-	-	-	<u>.</u>

The regression analysis gave the following relationship of the form.

$$q_s = 0.2116q_w^{2.2582}$$

Eq.(6-8)

where

q = sediment discharge (ton / day)

 q_w = water discharge (m^3 / sec)

Furthermore, in order to avoid underestimating the mean sediment discharge, the following modification to the Eq.(6-8) was made.⁴

$$q_s = \alpha \times 0.2116 q_w^{2.2582}$$

Eq.(6-9)

where

$$\alpha=10^{1.2s^2}$$

$$s^{2} = \sum_{i=1}^{n} \left(\log yi - \log \overline{yi} \right)^{2} / (n-2) \approx 0.131$$

y, = actual sediment discharge (ton / day)

 $\overline{y_i} = y_i$ on mean given x_i (ton / day)

n = dala size

Then, Eq.(6-9) becomes,

$$q_s = 0.2460 q_w^{2.2582}$$

Eq.(6-10)

(2) Estimates of suspended sediment quantity over a long time period
Figure 6-18 shows the relation between monthly total sediment yield (ton) computed with
Eq.(6-10) and monthly total runoff volume. The following equation was obtained by
regression analysis.

$$Q_s = 0.9437 Q_w^{22765}$$

Eq.(6-11)

where

Q, = monthly total sediment yield (ton)

 $Q_w = monthly total runoff volume (10^6 m^3)$

Monthly sediment yields over a long time period were computed by using Eq.(6-10) and Eq.(6-11). The results were summarized in Table 6-14.

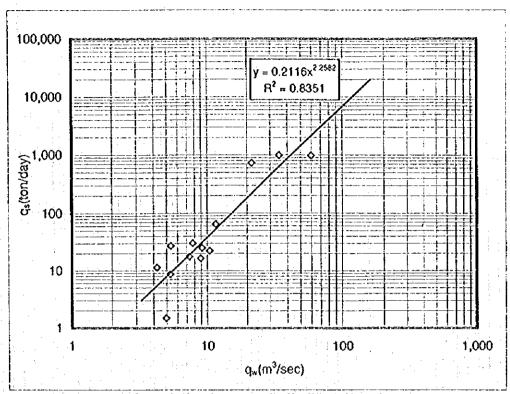


Figure 6-17 Correlation between Daily Runoff and Daily Sediment Discharge at G.S. No.2327

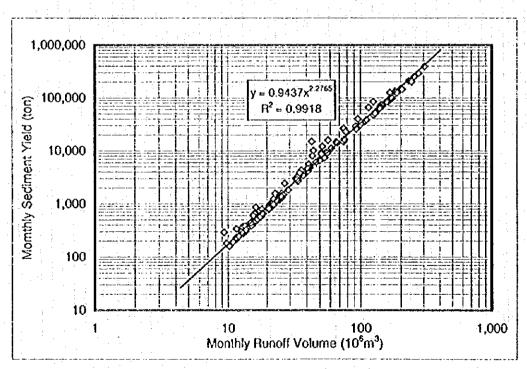


Figure 6-18 Correlation between Monthly Runoff Volume and Monthly Total Sediment Yield at G.S. No.2327

Table 6-14 Estimeted Monthly Sediment Yield at G.S.No. 2327

Station Name

Çıftehanlar

Effective Drainage Area

1223 km²

Station No.

2327

Elevation

570 m 219 ton/year/km²

Sediment Yield : 219 ton/year/km² (unit; ton)

													(unit; ton)
Year	Öct. I	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Seo.	Total
		1	i	1	1	1			: [1	_ 1	
1942	3,217	15,049	3,283	2,477	3,464	10,231	301,541	355,207	52,600	11,043	2,637	1,613	762,361
1943	2,199	3.092	2,912	1,580	1,046	1,963	27,250	65,958	22,499	5,527	1,826	1,005	136,855
1944	1,201	1,400	1,363	997	1,163	8,290	25,774	416,719	82,375	23,181	2,406	1,290	566,156
1945	1,050	1,369	662	504	371	797	13,839	57,194	31,402	5,033	970	510	113,701
1946	648	598	560	953	405	1,580	21,607	68,464	43,808	8,904	2,912	962	151,400
1947	2,637	1,319	805	766	808	9.540	21,607	13,289	7,475	1,535	554	398	60,733
1948	655	2,138	828	728	624	812	25,291	66,788	47,759	3,661	1,032	872	151,191
1949	820	617	438	400	304	1,260	8,593	57,964	14,904	1,331	627	458	87,717
1950	535	419	368	323	330	2,434	40,039	66,788	15,898	4,137	844	372	132,486
1951	1,458	937	677	567	456	1,405	23,411	39,104	25,774	3,733	1,032	1,057	99,609
1952	4,006	2,113	1,078	877	1,127	2.092	45,761	57,964	26,753	7,885	1,321	644	151,621
	516	447	383	313	352	669	19,881	62,694	30,334	5,682	1,437	1,175	123,883
1953	820	795	485	497	634	2,975	44,454	125,696	60,712	14,513	2,119	1,039	254,739
1954	828	644	547	342	352	1,032	6,370	19,429	5,592	587	225	203	36,153
1955	221	221	290	238	574	1,096	22,499	39,104	28,258	4,887	797	475	98,661
1956			259	166	400	4,723	24,341	59,518	37,626	5,266	877	510	134,400
1957	394	319		·	376:		25,774	62,694	30,334	3,859	713	658	128,684
1958	516	547	497	368	308	2,349 2,975	27,250	94,277	49,803	7,674	1,790	954	187,363
1959	607	553	587	587			168,946	228,080	68,627	15,337	2,637	787	525,399
1960	1,925	1,526	894	3,217	9,766	23,657		36,042	13,839	797	177	155	78,687
1961	743	547		202	233	1,143		84,552	29,808	4,366	677	611	182,948
1962	218	357	997	510	609	13,822			226,274	55.672	6,525	1,187	675,621
1963	6 50	662	711	812	873	2,117		280,689			1,027	748	261,487
1964	1,118	854	759	664	593	3,902		131,601	62,253 45,474	4,657 6,355	379	140	250,538
1965	2,435	1,065	2,172	836	556	15,172	71,972	103,982	·	3,809	426	381	235,113
1966	2,870	3,309	1,254	1,464	1,835	3,946	45,392	140,140			3,081	1,496	240,066
1967	249	139	239	153	214	1,735			32,163				
1968	1,100	1,601		3,105	2,593	13,414		566,000	·		3,498 336	1,964 444	1,159,997 258,299
1969	1,800	1,465	1,425	435	462	4,867		173,678	15,135	1,251	668	781	110,400
1970	4,016	1,096	957	862	1,247	5,291	49,265	38,870	5,999	1,349		277	201,027
1971	4,485	1,710	1,349	787	1,202	8,916	22,023	112,107		3,557	2,099		
1972	1,114	943	1,676	764	742	3,262	91,068	78,627		8,901		1,612	250,708
1973	: 1,279	1,277	700	571	1,358	2,542			55,627	8,294		374	198,812
1974	657	1,101	803	448	339,	4,531	11,746	106,545	18,379			1,700	147,878
1975	494	470	454	445	356	3,935	79,970	66,884	28,750			430	184,949
1976	1,066	573	423	524	504	4,032	63,708	206,088	74,624		1,281	819	
1977	2,497	1,125	822	510	548	2,403		95,896	34,834	J		656	
1978	1,213	959	568	488	1,260	5,923			63,553		1,782	613	
1979	788	869	931	1,130	1,613	4,024	32,047		64,724			388	1
1980	951	3,732	2,236	987	970	7,267	100,106				813	514	
1981	980	1,067	1,005	646	603	2,845						963	
1982	999	970	1,180	920	601	1,334						462	
1983	1,307	1,124	350		408	15,888	·			3,223		293	
1984	1,173	5,626	1,001	567	643	11,235							
1985	193	655	297	280	539	12,103	129,552		9,138				
1986	4,183	1,825	1,356	777	1,510	9,188			63,579			381	
1987	575				8,073	3,187			66,398			2,443	
1988	990			1,066	3,030				125,557				
1989	7,336				1,586	132,699	395,098		38,755				
1990	645				401	9,323		144,720	40,102	6,096			
1991.	803					26,578	54,332	34,868	15,051	2,886	512	247	
1992	220				302	4,352			125,081		1,404	657	
1993	9,438			i	L				102,458				
1994	591						113,917		14 161	1,486	569	328	
334	I		1	i	1		1	1	1	1	1		
Ave.	2,189	3,374	1,018	741	1,562	21.540	115,868	126,016	51,307	5,201	1,002	942	268,358
AVE.	£,109	0,014	.,010				Martin Walter						

The annual average suspended sediment quantity for the water years 1942 to 1994 was estimated at 219 tonf/km². This figure can be applied to the whole basin, since there is no significant difference in vegetation and topography over the basin.

Figure 6-19 shows the relationship between the size of catchment area and sediment amounts for the river catchments in Turkey, which was originally made by EIE. From this figure, the annual sediment amount for the Bağlık dam site for a 50 percent upper prediction interval is 284,698 tons. This is converted to a sediment yield of 189 t/km². It can be said that this computed figure of 219 t/km² is reliable and on the conservative side.

6.4.3 Bed Load

The bed load quantity is generally expressed as a percentage of the suspended load. In this study, taking into account the steep topography of the Berta Basin, it was assumed as 20 %.¹

6.4.4 Density of Sediment Accumulation

The average unit weight of sediment deposited in T years of operations was calculated by the following equation of Millar.⁶

$$W_T = W_1 + 0.4343K \left[\frac{T}{T-1} (\ln T) - 1 \right]$$
 Eq.(6-12)

where

 W_r = average unit weight after T yeas of reservoir operation (lb / ft³)

 $W_t = initial unit weight (lb / ft^3)$

K = density increase coefficient

For initial density W1 and density increase coefficient K, the figures shown below were employed taking into consideration the sediment components ratio and operation condition of the reservoir.⁹

	sand	silt	clay
Ratio(%)	46	29	25
W ₁ (lb./ft. ³)	97	70	35
K	0	5.7	16

As a result, the average density of sediment accumulation after 50 years of operation was calculated as 1.298 t/m³.

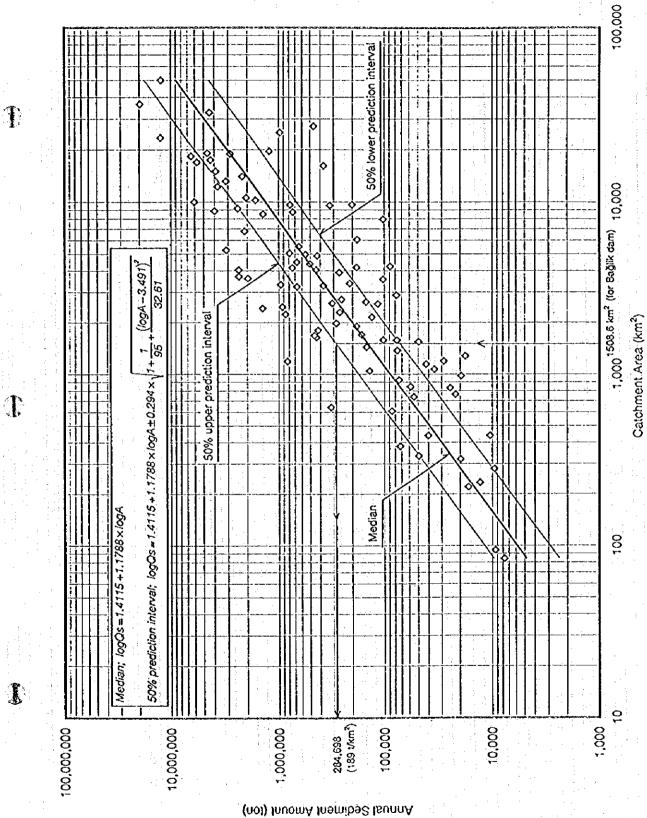


Figure 6-19 Relationship between Size of Catchment Area and Sediment Amounts in Turkey

6.5 Study of Probable Flood

6.5.1 Observed Annual Peak Discharge

The annual peak discharge observed at GS.No.2327, which has the longest observation period, is listed in Table 6-15.

Table 6-15 Annual Peak Discharge at G.S. No. 2327

Year	Date observed	Peak Discharge (m³/sec)	Year	Date observed	Peak Discharge (m³/sec)
1982	May 15	72.5	1989	Apr.14	214.0
1983	May 18	118.0	1990	Apr.27	289.0
1984	May 19	109.0	1991	May 2	109.0
1985	Apr.23	138.0	1992	May 30	163.0
1986	Jun.15	140.0	1993	Apr. 16	148.0
1987	May 2	181.0	1994	Apr.21	127.0
1988	May 19	186.0	-	:-:	- 1

6.5.2 Frequency Analysis on the Annual Peak Discharge

The probable flood discharge at G.S.No.2327 was computed in accordance with the Gumbel method.⁴

The probable flood discharge at each dam site was calculated on the basis that the specific discharge (m³/sec/km²) is constant in the basin. The results are shown below.

Table 6-16 Probable Flood Discharge at Dam Sites

(unit; m³/sec)

	Drainage Area	Return Period (year)								
	(km²)	2	- 5	10	25	50	100			
No.2327	1,223	145.9	206.5	246.5	297.2	334.7	372.0			
Bağlık	1,509	179.9	254.7	304.0	366.5	413.0	459.0			
Bayram	1,159	138.2	195.7	233.6	281.6	317.0	352.0			
Kaledüzü	1,214	144.8	204.9	244.6	294.9	332.2	369.3			

6.6 Study of the Probable Maximum Flood (PMF)

6.6.1 Flood Discharge from the Probable Maximum Precipitation (PMP)

(1) Persisting 12-hour dew points

Cam.

Vapor pressure values are observed at Artvin M.S. and Ardanuç M.S. three times a day, at 7 a.m., 2 p.m. and 9 p.m.

All values of the maximum persisting 12-hour vapor pressure, selected by 10-day intervals, were plotted against date observed and a smooth envelope drawn, as shown in Figure 6-20. Since both Artvin M.S. and Ardanuç M.S. are regarded as being located inside the rain area, the representative persisting 12-hour dew point was computed by averaging the values of both stations. Vapor pressures were transformed into dew points by using Figure 6-21. Both storm and maximum dew points were reduced pseudo-adiabatically to the 1,000 mb level by using Figure 6-22, so that dew points observed at stations at different elevations were comparable.⁷

(2) DAD Analysis of Major Storms

A depth-area-duration (DAD) analysis of major storms was made.⁸ The obtained DAD values were maximized by multiplying the ratio of the precipitable water for the maximum 12-hour 1,000 mb dew point within 15 days of the storm date with that for the representative 12-hour 1,000 mb dew point for the storm.⁷ The precipitable water was determined by using Figure 6-23. The ratios (r_m) of the maximum precipitable water (w_m) to the precipitable water (w_s) estimated for each storm are summarized as follows.

Table 6-17 Maximization of Major Storms

Storm date	Station numbers	Storm duration (hour)	Precipitable water for storm (w _s) (mm)	Maximum precipitable water (w _m) (mm)	r _m =w _m /w _s
1967, Dec. 3-4	: 4	60	16.51	33.78	2.05
1968, Apr. 18	4	18	34.54	47.00	1.36
1969, Oct. 28-30	7	48	19.30	49.53	2.57
1971, Dec. 24-25	6	48	12.75	27.74	2.18
1975, Mar. 3-4	7	30	13.34	29.21	2.19
1985, Dec. 5-6	5	48	14.61	29.20	2.00

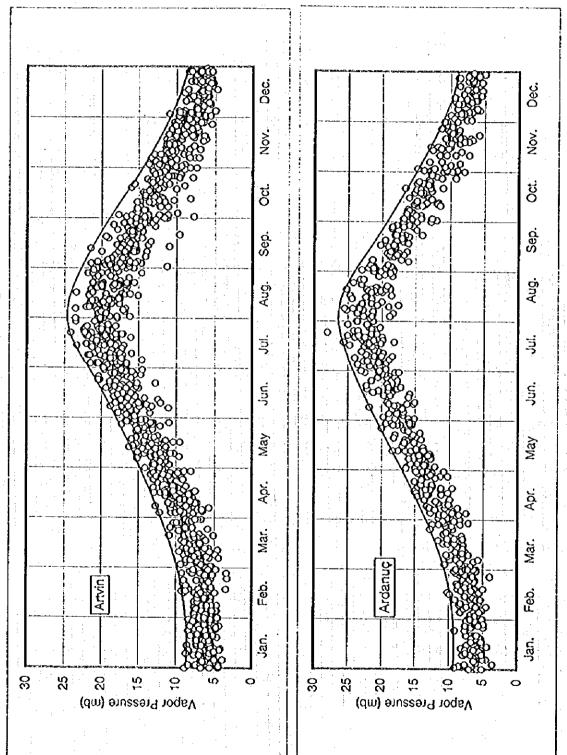


Figure 6-20 Enveloping Curves of Maximum Persisting 12-hour Vapor Pressure

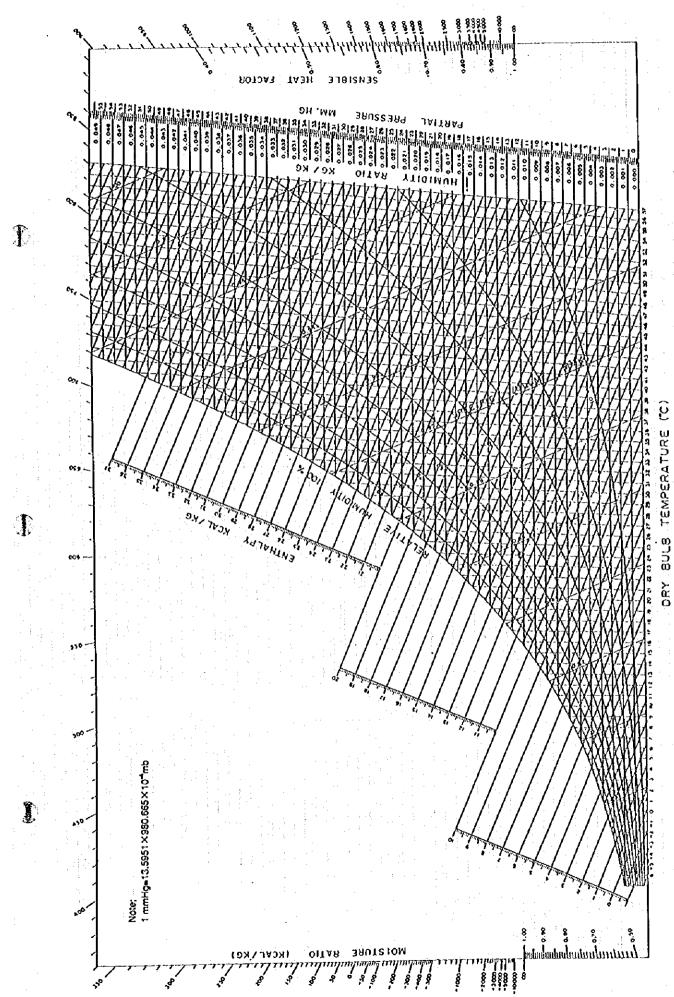


Figure 6-21 Variation of Vapor Pressure with Temperature at Percentage of Saturation

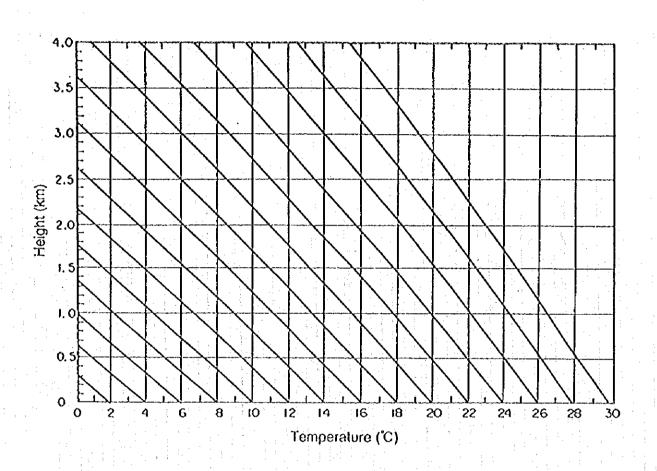
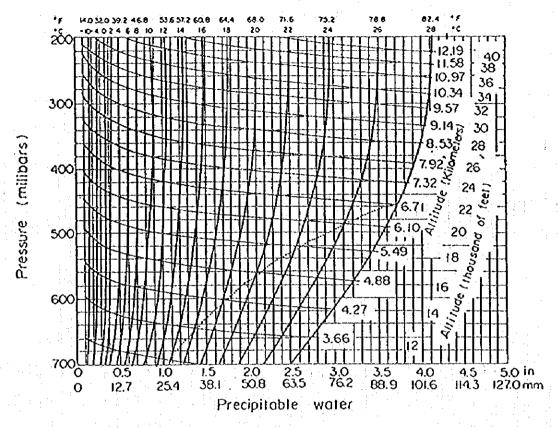
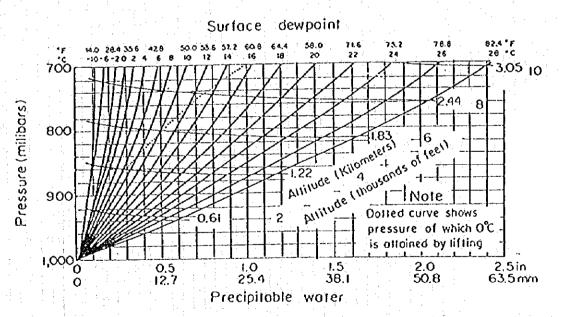




Figure 6-22 Pseudo-adiabatic Diagram for Dew Points Reduction to 1,000mb at Height Zero

Depths of precipitable water in a column of air of any height above the 1000-milibar level as a function of the 1000-milibar dewpoint, assuming saturation and pseudo-adiabatic lapse rate.

(U.S. National Weather Service.)

Figure 6-23 Depths of Precipitable Water in a Column of Air

The maximized rainfall data for each duration was plotted and by enveloping the values, the DAD curves of PMP in winter and spring were obtained as shown in Figures 6-24 and 6-25, respectively.

The maximized winter storms seem to provide the critical points for PMP but precipitation falling in the form of snow at the higher elevations in winter and spring is more critical for the maximum snowmelt. In this study, therefore, PMF in spring was closely studied.

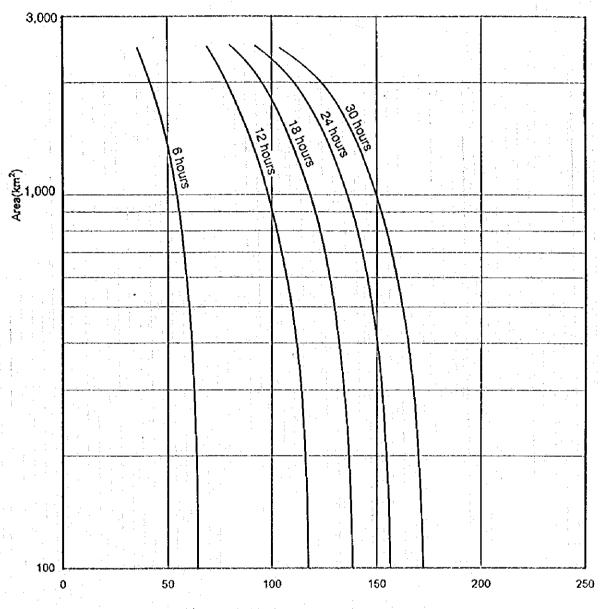
(3) Determination of Design Rainfall

By use of Figure 6-24, PMP increments at 6-hour intervals were determined for each dam site. In order not to smooth out the peak discharge value, the maximum (first) 6-hour period was divided into 3 blocks (2-hour increments) by using Figure 6-26. Figure 6-26 is the average hourly rainfall distribution within 6 hours, which was constructed based on the pluviograph records of Artvin M.S.³

Furthermore, the obtained incremental rainfall was rearranged to give the greatest flood.

(4) Estimates of Excess Rainfall

In order to compute the excess rainfall, the SCS curve number method was applied in this study.⁹ The land usage in Şavşat district is given below.


Table 6-18 Land Usage in Şavşat District

and the second second		of the second of the second
%	CN	Product
10.7	78	835
17.3	79	1,367
12.4	61	756
7.6	58	441
27.0	55	1,485
3.1	68	211
21.9	72	1,577
100.0		67
	10.7 17.3 12.4 7.6 27.0 3.1 21.9	10.7 78 17.3 79 12.4 61 7.6 58 27.0 55 3.1 68 21.9 72

(Source: 1991 Census of Agriculture; Results of Village Survey)

Taking into consideration the values shown in Table 6-19,¹⁰ the weighted curve number of the project area was estimated at 67.

Next, the excess rainfall was computed using Figure 6-27. The results are summarized in Table 6-20.

Probable Maximum Precipitation (mm)

Figure 6-24 Enveloping-Depth-Area-Duration Curves of Probable Maximum Precipitation for Spring Storms

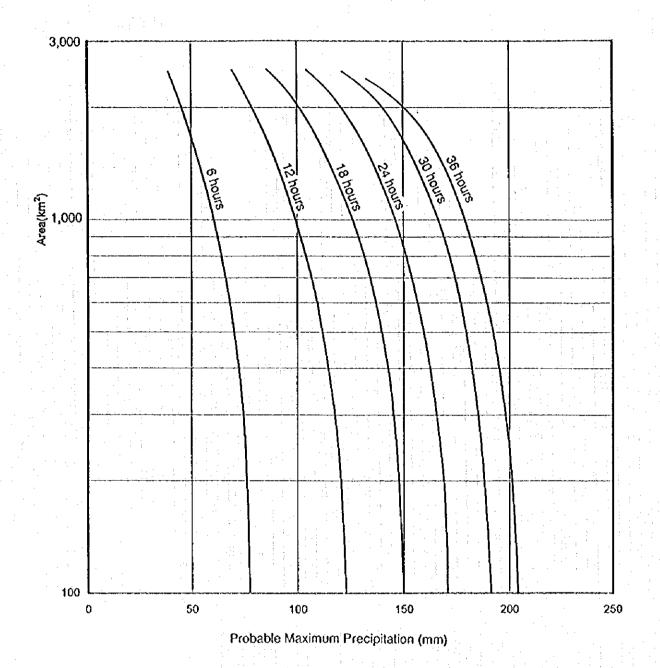


Figure 6-25 Enveloping-Depth-Area-Duration Curves of Probable Maximum Precipitation for Winter Storms

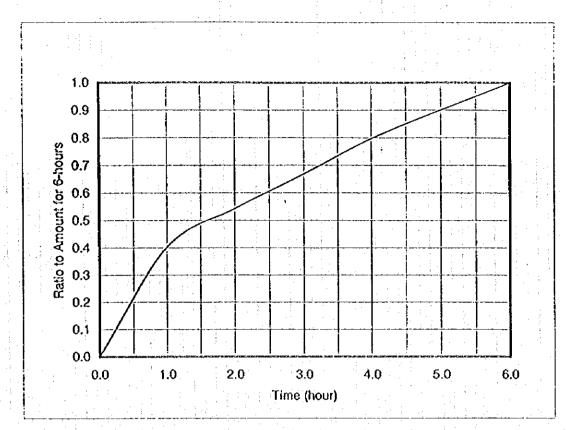


Figure 6-26 Average Hourly Rainfall Distribution at Artvin M.S.

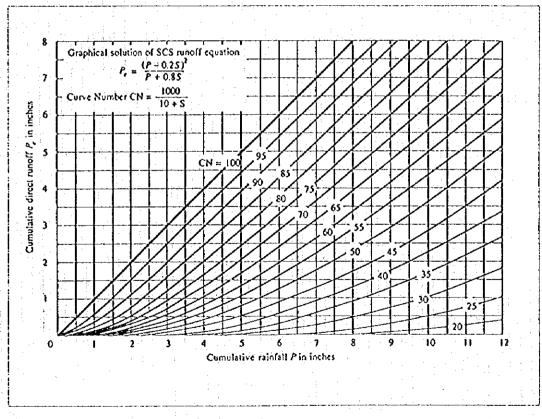


Figure 6-27 Direct Runoff from a Storm by the SCS Method

Table 6-19

Runoff curve numbers for selected agricultural, suburban, and urban land uses (antecedent moisture condition II, $I_a = 0.2S$)

Land Use Description	Кус	rologic	Soil Gre	очр
	A	В	С	D
Cultivated land is without conservation treatment	72	81	88	91
with conservation treatment	62	71	78	81
Pasture or range land; poor condition	68	79	86	89
good condition	39	61	74	80
Meadow: good condition	30	58	.71	78
Wood or forest land: thin stand, poor cover, no mulch	45	66	77	83
good cover2	25	55	70	77
Open Spaces, lawns, parks, golf courses, cemeteries, etc.	34			
good condition: grass cover on 75% or more of the area	39	61	74	80
fair condition: grass cover on 50% to 75% of the area	49	69	79	- 84
Commercial and business areas (85% impervious)	89	92	94	95
Industrial districts (72% Impervious)	81	88	91	93
Residential3:				
Average lot size Average % impervious4	1.11			
1/8 acre or less 65	77	85	. 90,	92
1/4 acre 38	61	75	83	87
1/3 acre 30	57	72	81	86
1/2 acre 25	54	70	80	85
1 ocre 20	51	68	79	84
Paved parking lots, roofs, driveways, etc.5	98	98	98	98
Streets and roads:				
paved with curbs and storm sewers5	98	98	98	98
gravel	76	85	89	91
din	72	82	87	89

¹ For a more detailed description of agricultural land use curve numbers, refer to Soil Conservation Service, 1972, Chap. 9

²Good cover is protected from grazing and litter and brush cover soit.

³Curve numbers are computed assuming the runoff from the house and driveway is directed towards the street with a minimum of roof water directed to tawns where additional infiltration could occur.

⁴The remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.

⁵In some warmer climates of the country a curve number of 95 may be used.

Table 6-20 Design Rainfall

(unit.	,,,,,,

A STATE OF THE PERSON NAMED IN	Dam	C.A.	0 - 6 hr	6 - 12 hr		12 - 18 hr		18 - 24 hr
	Site	(km²)			12 - 14 hr	14 - 16 hr	16 - 18 hr	
PMP	Bağlık	1,509	19.8	39.0	26.0	12.2	9.7	16.8
	Bayram	1,159	19.8	42.1	28.6	13.4	10.6	17.9
	Kaledůzů	1,214	19.8	41.9	28.1	13.2	10.4	17.6
Loss	Bağlık	1,509	19.8	31.8	13.9	5.2	3.7	5.7
	Bayram	1,159	19.8	33.7	14.5	5.4	3.8	5.6
	Kaledüzü	1,214	19.8	33.6	14.3	5.4	3.7	5.6
Excess	Bağlık	1,509	0.0	7.2	12.1	7.0	6.0	11.1
Rainfall	Bayram	1,159	0.0	8.4	14.1	8.0	6.8	12.3
	Kaledüzü	1,214	0.0	8.3	13.8	7.8	6.7	12.0

(5) Estimates of the Flood Discharge from PMP

The estimates of the flood discharge were based on the SCS triangular hydrograph, defined as follows, 11

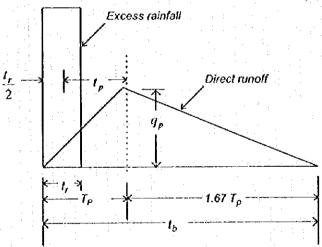


Figure 6-28 Triangular Unit Hydrograph

 T_e = time of concentration (hour) = 0.0003245(L/ \sqrt{S}) $^{\circ 17}$

L = length of channel from devide to outlet (m)

S = average watershed slope

t, = duration of effective rainfall (hour)

 $t_p = lag time (hour) \approx 0.6T_c$

 T_p = time from start of rise to peak discharge (hour) = $\frac{t_r}{2} + t_p$

 q_{ρ} = peak discharge (m³ / s) = $\frac{2.08A}{T_0}$

A = catchment area (km²)

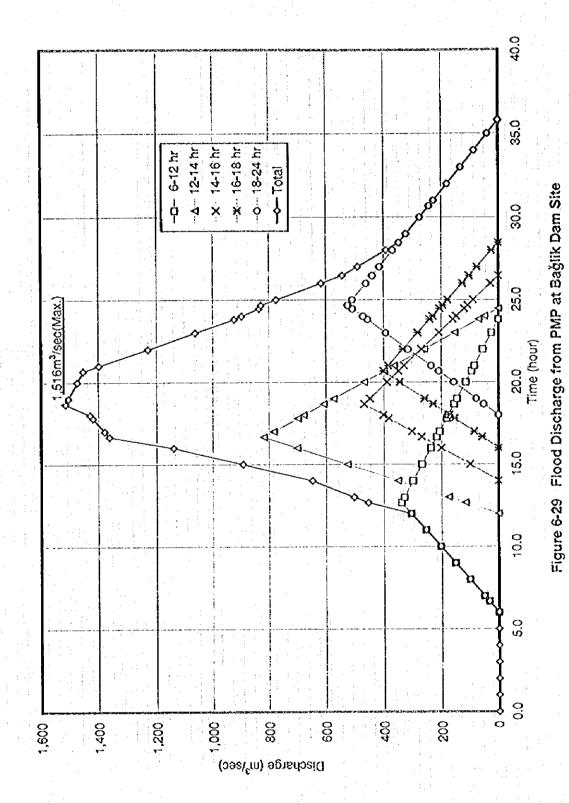

The parameters used in the analysis are listed below,

Table 6-21 Unit Hydrograph Parameters

Dam Site	L (km)	S	C.A. (km²)	t, (hour)	* ⁾ T _c (hour)	T _p (hour)	q _p (m³/sec)
Bayram	46.9	0.027	1,159	2.0	5.15	4.09	589
11			:	6.0	5.15	6.09	396
Bağlık	59.0	•	1,509	2.0	6.11	4.67	672
				6.0	6.11	6.67	471
Kaledüzü	50.7	-	1,214	2.0	5.46	4.27	591
				6.0	5.46	6.27	403

^{*)} The figures for Bağlık and Kaledüzü dam sites were obtained by routing the flood for Bayram dam site, assuming flood wave propagates at the velocity of 12.6 km/hr. (Kraven's value).

The results of the computation for each dam site are shown in Figures 6-29, 6-30 and 6-31.

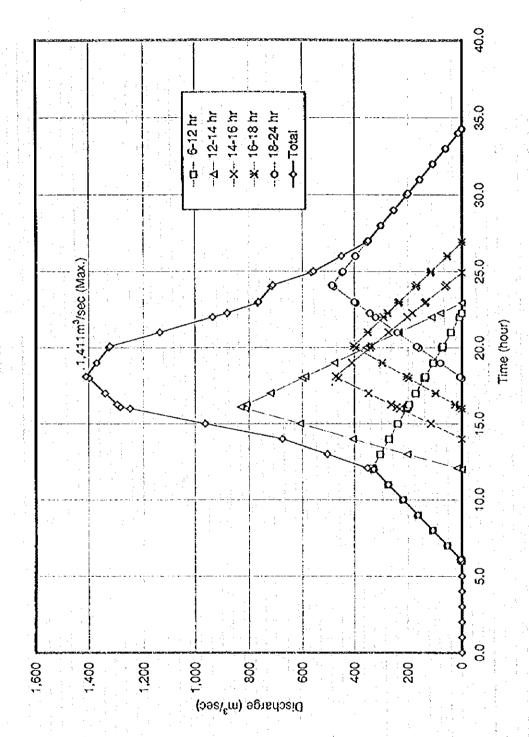


Figure 6-30 Flood Discharge from PMP at Bayram Dam Site

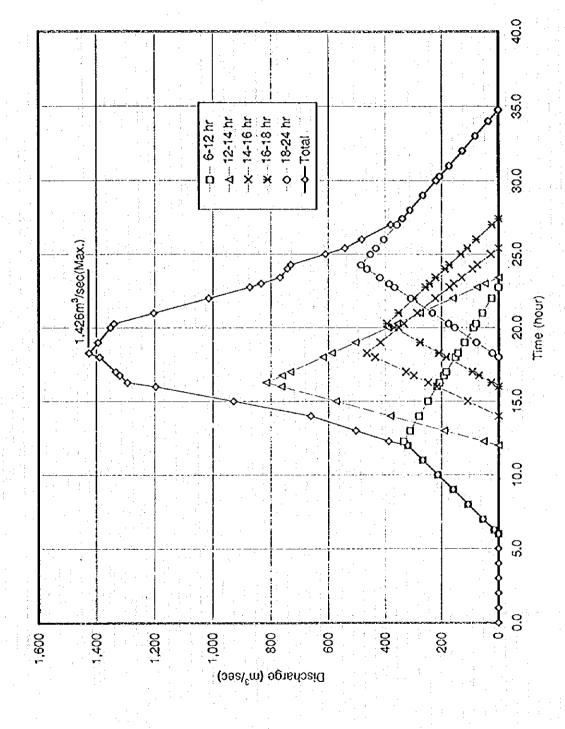


Figure 6-31 Flood Discharge from PMP at Kaledüzu Dam Site

6.6.2 Snowmelt Runoff

The snowmelt runoff previously calculated by EIE for the Berta Basin was applied to this study. The results of this estimation are shown in Table 6-23.

6.6.3 Maximum Base Flow

By scrutinizing the daily runoff records at G.S.No.2327 and 2334, the maximum base flow at Bağlık, Bayram and Kaledüzü dam sites were determined as 39.0, 29.5 and 31.0 m³/sec, respectively.

6.6.4 Estimates of PMF

The estimates of PMF at the proposed dam sites were based on the superposition of the runoff from PMP, the snowmelt runoff and the base flow.

Obtained hydrographs for dam sites are illustrated in Figures 6-32, 6-33 and 6-34. The results of maximum PMF value for each dam site are summarized below.

Table 6-22 Estimates of Maximum Value of PMF

unit (m³/sec)

	Flood from PMP	Snowmelt runoff	Base flow	PMF
Bağlık	1,516	268.5	39.0	1823.5
Bayram	1,411	217.6	29.5	1658.1
Kaledüzü	1,426	217.6	31.0	1674.6

Figure 6-35 shows the peak discharge value of computed PMF for the planned and constructed dams in Turkey.

Table 6-23 Maximum Snowmelt Runoff for Each Dam Site

ے ا	Maximum	Maximum	Temb.	Temp.		Bayram	ram	Baglik	X	Kaleduzn	düzu
	Cumulative	· - :	Design	at Average		Daily	Daily	Daily	Daily	Daily	Daily
	Temp.	Difference	Pattern	Elevation	× 0.312	Snowmelt	Snowmelt	Snowmelt	Snowmelt	Snowmelt	Snowmelt
	ည်	ဉ်	ည	ဉ		Volume	Discharge	Volume	Discharge	Volume	Discharge
				• • • • • • • • • • • • • • • • • • • •		(10° m³)	(m ₃ /sec)	(10 ⁶ m³)	(m ³ /sec)	(10° m³)	(m ₃ /sec)
	19.0	19.0	14.6	6.2	1.934	10.0	115.7	12.3	142.4	10.0	115.7
	38.7	7.67	16.7	8.3	2.590	13.3	153.9	16.4	189.8	13,3	
	56.3	17.6	17.6	9.2	•		171.3	18.2	210.6	14.8	1
	73.0	16.7	19.0	10.6	3.307	17.0		21.0		17.0	196.8
	88.9		20.1	11.7		18.8	217.6	23.2	268.5	18.8	
	106.1	17.2	19.7	11.3	3.526	18.2	210.6	22.4	259.3	18.2	210.6
	119.5		18.5	10.1		16.2	187.5	20.0	231.5	16.2	187.5
	138.0	18.5	17.2	ထ	•	14.1	163.2	17.4	201.4	14.1	163.2
	152.6	14.6	15.9	7.5		12.0		14.9	172.4	12.0	138.9
	1707	20.1	13,4	5.0	1.560	0.0	92.6	6.6	114.6	8.0	92.6

(2) Lowest Elevation of Maximum Snowmelt for 10 days (1) Maximum Snowmelt Rate

(3) Average Elevation of Area above 1,900 m

: 2,300 m : 2,300 m : 2,300 m Bağiik Dam Kaledüzu Dam Bayram Dam

(4) Area above the Elevation of 1,900 m

: 515.0 km² : 635.0 km² : 515.0 km² : 0.7°C/100 m Bayram Dam Bağlik Dam

(5) Temperature Decrease Rate Kaledüzu Dam

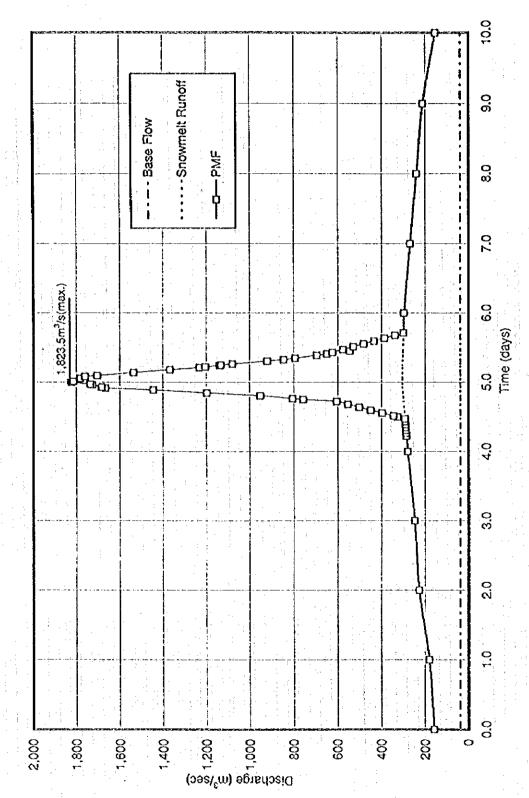


Figure 6-32 Hydrograph of PMF at Bağlik Dam Site

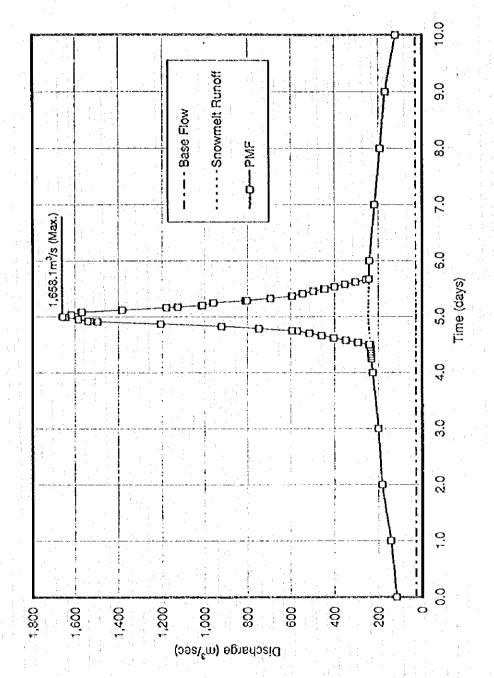


Figure 6-33 Hydrograph of PMF at Bayram Dam Site

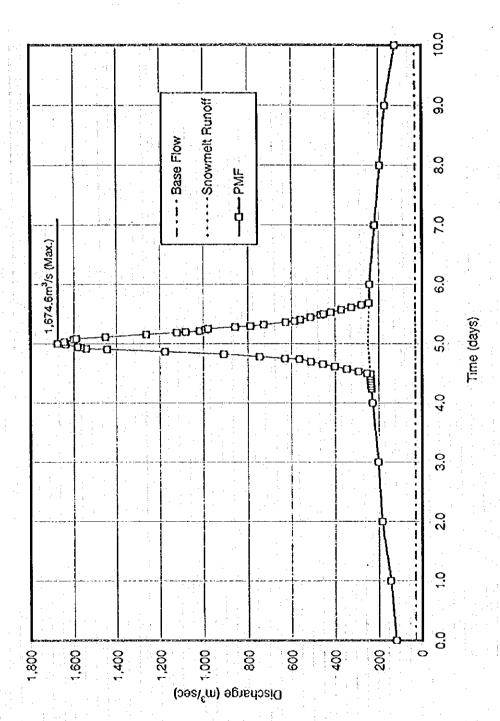


Figure 6-34 Hydrograph of PMF at Kaleduzu Dam Site

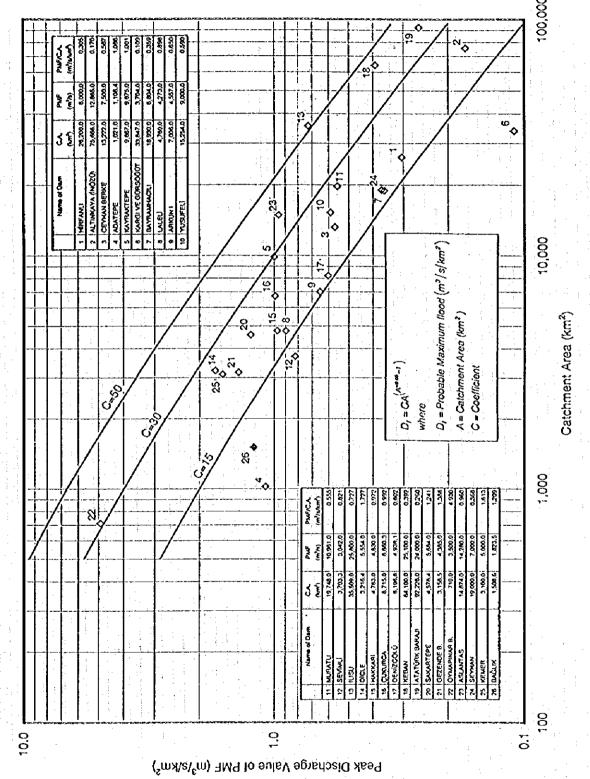


Figure 6-35 Peak Discharge Values of Computed Probable Maximum Floods in Turkey

References

- EİE, Çoruh N.-Berta Kolu Üzerinde Tasarlanan Proje Yerlerinin Mühendislik Hidrolojisi Raporu, 1990.
- 2. ElE, Çoruh-Berta Kolu Havzası Master Plan Raporu, 1992.
- 3. DSI, Volume I Point Precipitation Frequency Analysis, 1989.
- 4. David R.M., Handbook of Hydrology, McGraw-Hill, New York, 1992.
- 5. Doorenbos, J., and W.O.Pruitt, "Crop Water Requirements," *Irrigation and Drainage Paper*, 24, UN Flood and Agriculture Organization, Rome, Italy, 1977.
- 6. Miller, Carl R., "Determination of the Unit Weight of Sediment for Use in Sediment Volume Computation," Bureau of Reclamation, Denver, Colo., 1953.
- WMO, "Manual for Estimation of Probable Maximum Precipitation," WMO No.332,
 Operational Hydrology Report No.1, 1973.
- WMO, "Manual for Depth-Area-Duration Analysis of Storm Precipitation,"
 WMO-No.237, Technical Paper No.129.
- U.S. Bureau of Reclamation, Design of Small Dams, U.S. Government Printing Office, Washington, 1977.
- 10. Chow V.T., Applied Hydrology, McGraw-Hill, New York, 1988.
- 11. Soil Coservation Service, Hydrology, sec. 4 of *National Engineering Handbook*, Soil Conservation Service, U. S. Department of Agriculture, Washington, D.C., 1972.

CHAPTER 7 GEOLOGY AND MATERIALS

Contents

7.	GEOLOGY AND MA	۸.	TERI.	ALS
f -		•		

1 .	Regional Geology	•••••••
	7.1.1 Topography	
	7.1.2 Geology	**************************
2	Outline of Investigation	
	7.2.1 Existing Data	
	7.2.2 Geological Investigation Works	
	7.2.3 Seismic Prospecting	
3	Site Geology	
	7.3.1 Bayram Project	
	7.3.2 Bağlık Project	
4	Savail Slope	
	7.4.1 General	.,
	7.4.2 Geology around Savail Slope	• • • • • • • • • • • • • • • • • • • •
	7.4.3 Geology of Savail Slope	
5	Materials	
	7.5.1 Soil Material	
	7.5.2 Rock Material	,
	7.5.3 Filter Material and Concrete Aggrega	ate

List of Figures

Figure 7-1	Regional Geological Plan
Figure 7-2	Bayram Project, Geologic Plan of Reservoir Area
Figure 7-3	Bayram Project, Geologic Plan of Dam Site
Figure 7-4	Bayram Project, Geologic Profile of Dam Site
Figure 7-5	Bayram Project, Geologic Profile of Penstock and Powerhouse
Figure 7-6	Bayram Project, Geologic Plan and Profile of Waterway (Tailrace)
Figure 7-7	Bağlık Project, Geologic Plan of Reservoir Area
Figure 7-8	Bağlık Project, Geologic Plan of Dam Site
Figure 7-9	Bağlık Project, Geologic Profile of Dam Site
Figure 7-10	Bağlık Project, Geologic Profile of Penstock and Powerhouse
Figure 7-11	Bağlık Project, Geologic Plan and Profile of Waterway (Tailrace)
Figure 7-12	Savail Slope Area, Geologic Plan
Figure 7-13	Savail Slope Area, Geologic Log
Figure 7-14	Savail Slope Area, Geologic Profile
Figure 7-15	Savail Slope Area, Geologic Profile
Figure 7-16	Location of Construction Material Borrow Area
Figure 7-17	Gradation Analysis of Test on Borrow Area C
Figure 7-18	Gradation Analysis of Test on Borrow Area F

List of Tables

Table 7-1	Geologic Sequence
Table 7-2	Reference Data
Table 7-3	List of Drill Holes on the Bayram Project
Table 7-4	List of Drill Holes on the Bağlık Project
Table 7-5	List of Test Pits for Impervious material at Savail Slope
Table 7-6	List of Seismic Prospecting Survey at Savail Slope
Table 7-7	Investigation Areas for Construction Materials
Table 7-8	Volume of Dam Embankment and Concrete Aggregate
Table 7-9	Result of Gradation Analysis
Table 7-10	Test Results of Impervious Core Material of Borrow Area A and B
Table 7-11	Result of Gradation Analysis
Table 7-12	Test Result of Impervious Core Material of Borrow Area C
Table 7-13	Result of Gradation Analysis

GEOLOGY AND MATERIALS

7.1 Regional Geology

7.1.1 Topography

The Berta river is one of major tributaries of the Çoruh river of total length approximately 410 km which runs through the northeastern part of the Republic of Turkey. This river is the northernmost (downstreammost) of the tributaries which flow into the Çoruh river from the right-bank side inside Turkey. The mouth of the Çoruh river at the downstreammost part is not inside Turkey, but in the Republic of Georgia, the distance from the mouth to the border being approximately 35 km.

The Berta river is located in the northeastern part of the basin of the Çoruh river which is the mainstream, the catchment area being 1,159 km² for the upstream Bayram Project and 1,509 km² for the downstream Baylik Project.

The Berta river consists of a mainstream which is also called the Okçular river or the Bulanık river, and three major tributaries, namely, from the downstream side, the Ardanuç river (Ferhatlı river), the Meydancık river, and the Şavşat river. Topographically, the vicinities of confluences between the mainstream and tributaries are generally of broad widths with thick alluvial deposits and gentle gradients, but at other parts the river widths are narrow, deposits are thin, and the river gradients are steep.

This region is bounded by the Karçal and Yalnızçam mountains which have many high peaks from 2,000 to 3,000 m in elevation, the northern side of the catchment being at the border with the Republic of Georgia. Other than the mountain groups bounding the project catchment, there are steep mountains of elevations of 1,000 to 2,000-m class found inside the basin. Particularly, the southwestern part of the catchment area, in the downstream mountainside of the Bayram dam site, there is a continuation of mountains which have little vegetation, where basement rocks are directly exposed. On the other hand, in the northeastern part of the basin, the mountainside along the Meydancık and Şavşat rivers of the catchment area has much vegetation, with the gently sloped parts of the mountainland upstream of Şavşat village covered widely by cultivated fields and grasslands.

7.1.2 Geology

(1) Outline

The Berta river basin is a region which has been influenced by the Hercynian Orogeny in Carboniferrous time of the Paleozoic and the Alpine Orogeny from the Mesozoic to the Cenozoic.

The geology in this region, as shown in the geological map and the geologic sequence of Figure 7-1 and Table 7-1, consists of the Yusufeli Formation of Jurassic age and the Berta Formation of Cretaceous age, both of the Mesozoic, the İkizdere granitic rocks intruded in both the Berta and Yusufeli formations, and Quaternary deposits overlying these strata.

The relation between these Yusufeli and Berta formations excepting the Quaternary Period deposits is unconformable.

(2) Description of Each Formation

(a) Yusufeli Formation

The Yusufeli Formation belongs to Lower to Middle Jurassic period in the Mesozoic. Typical outcrops of the formation are distributed in an area downstream of Yusufeli village located in the midstream area of the Çoruh river, while along the Berta river there are two places where outcrops in comparatively narrow bands are distributed.

One of the places in the Bağlık dam site where the İkizdere granitic rocks are contacted, upstream of which a band-like distribution of width approximately 800 m extends from north-northeast to south-southwest from the right bank of the Berta river to the left bank, while the other is a distribution extending from north-northeast to south-southwest from the Bağlık powerhouse site to the end of the tailrace tunnel route.

This formation is composed of ophiolite, sandstone, slate, basic tuff, and diabase, and since all are extremely hard. The topography where this formation exposed is featured by exceedingly rugged mountain terrain. Folds and faults are also developed in a complex

manner depending on the location, while further, intrusions of the lkizdere granitic rocks can be seen, so that the relations between the rocks in this formation are complicated. This formation was partially metamorphosed by the lkizdere granitic rocks. Metamorphic rocks mainly consist of hornfels.

(b) Berta Formation

1

The Berta Formation belongs to Upper Cretaceous period. Typical outcrops of this formation are distributed widely from the vicinity of Yusufeli Village on the Çoruh river upstream to the midstream area of the Çoruh river. Along the Berta river, it is widely distributed at the upstream area east of the Yusufeli Formation distributed at the Bağlık dam site.

This formation is composed of tuff, tuff breccia, volcanic breccia, basic or acidic volcanic rocks (basalt, dacite, etc.), interbedded strata of thin limestone and marl, and calcareous sandstone. Calcareous strata are seen at upper parts of this formation, and generally are distributed at higher than EL. 1,000 m. Although irregularities in deposits may be seen in this formation due to local minor faults and lava flows, as a whole these are gentle folds or roughly horizontal sedimentary structures continuous over a wide range. The rocks are adequately hard and form steep slopes and sheer cliffs at many places.

Furthermore, this formation contacts the underlying the Yusufeli Formation in unconformity or with thrust faults.

(c) Ikizdere Granitic Rocks

The Ikizdere granitic rocks comprise batholiths intruded in the above-mentioned Yusufeli and Berta formations and are distributed widely in the Çoruh river basin, particularly, the midstream and downstream areas.

The lkizdere granitic rocks, as a whole, were reported to consist of a granodiorite-tonalite group, an adamellite group, a porphyritic microgranite group, and a granite-gneiss group (according to the EIE study).

(d) Terrace Deposit

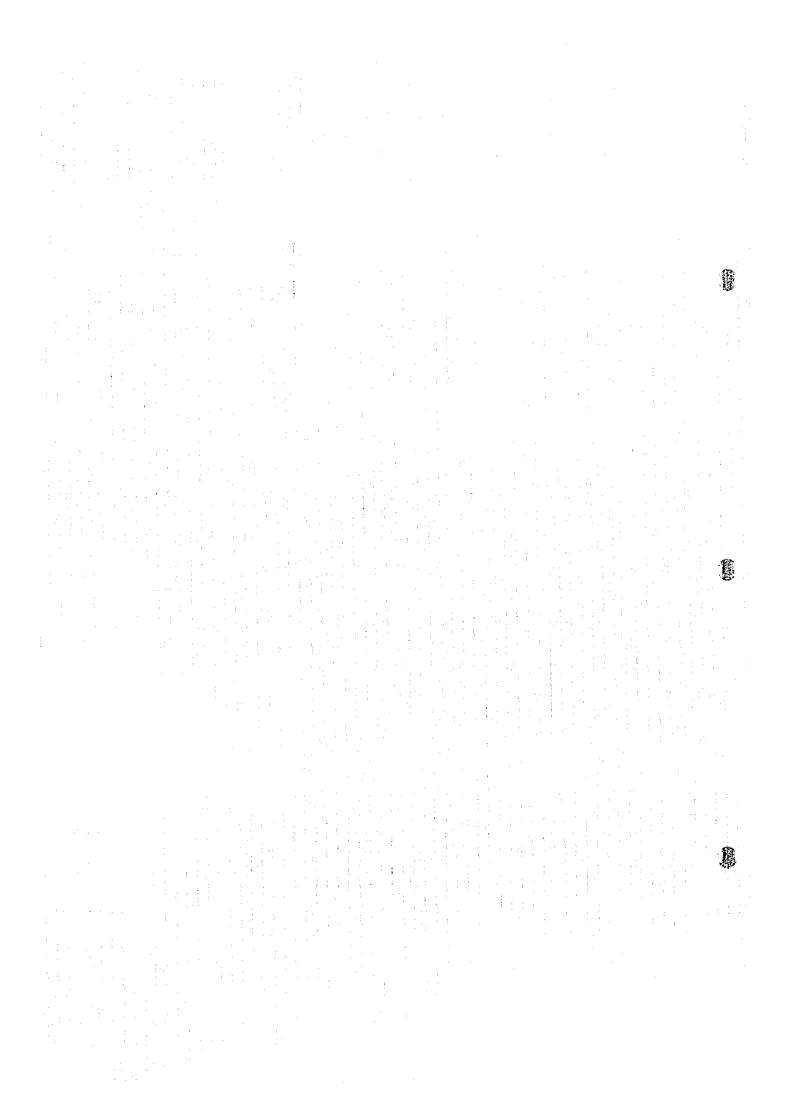
As previously mentioned, the project area is featured by a rugged mountain terrain. Consequently, terrace landform and terrace deposit are not very prominently seen. Terraces which are comparatively noticeable in such an environment are those of slightly large scale developed from an elevation of approximately 650 m to around 700 m. These typical outcrops are seen in spots at the right bank of the Berta river midstream. The thicknesses are generally not more than several meters.

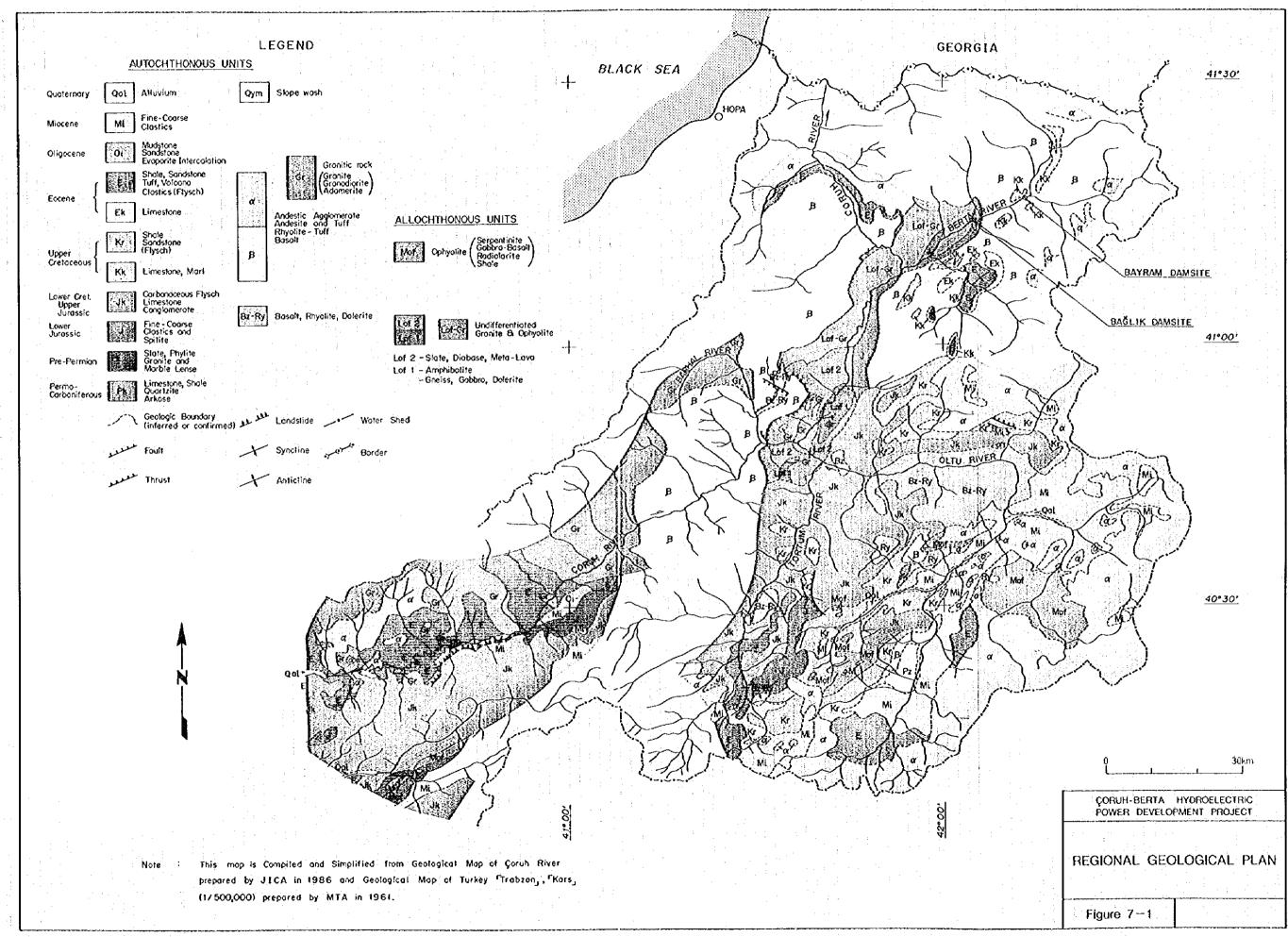
(e) Talus Déposit and Colluvial Deposit

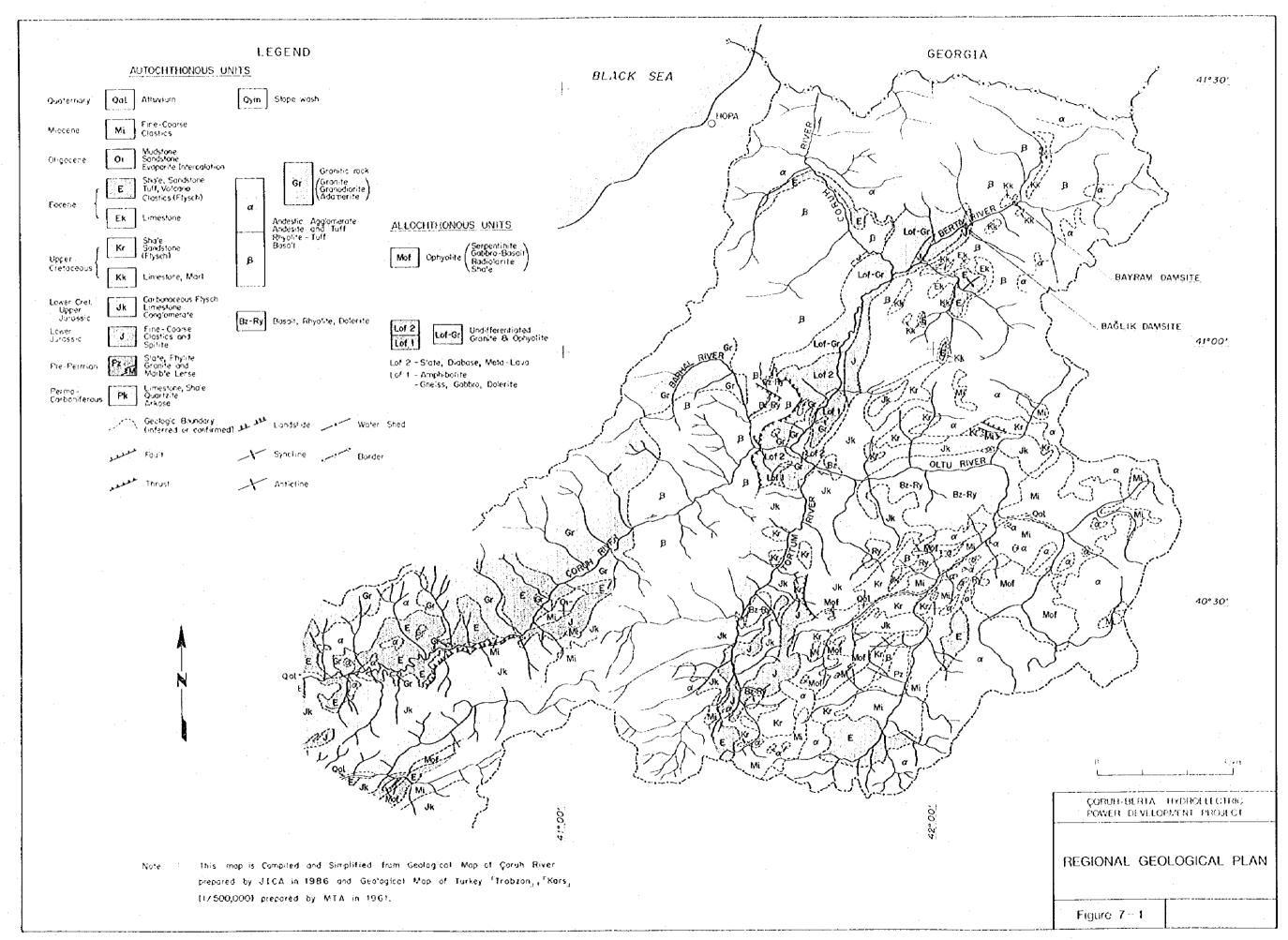
These are deposits formed by collapses of slopes seen from midheight down to foots of the steep mountainland. The scales are thicknesses differ depending on the inclination of slopes and geological conditions of the hinterland.

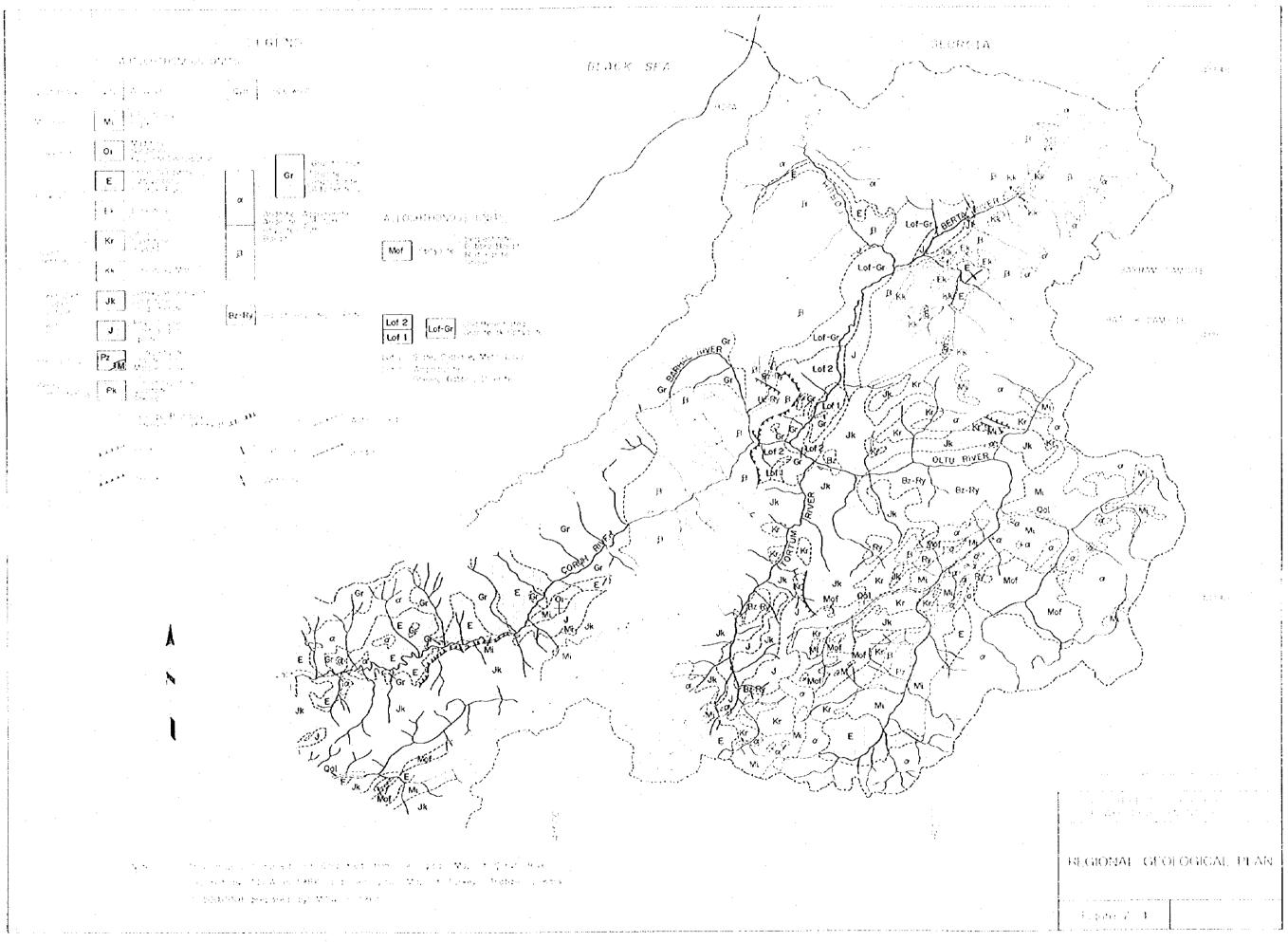
As outcrops of these talus deposits, those of scale several meters in thickness are seen in the vicinity of Bayram village.

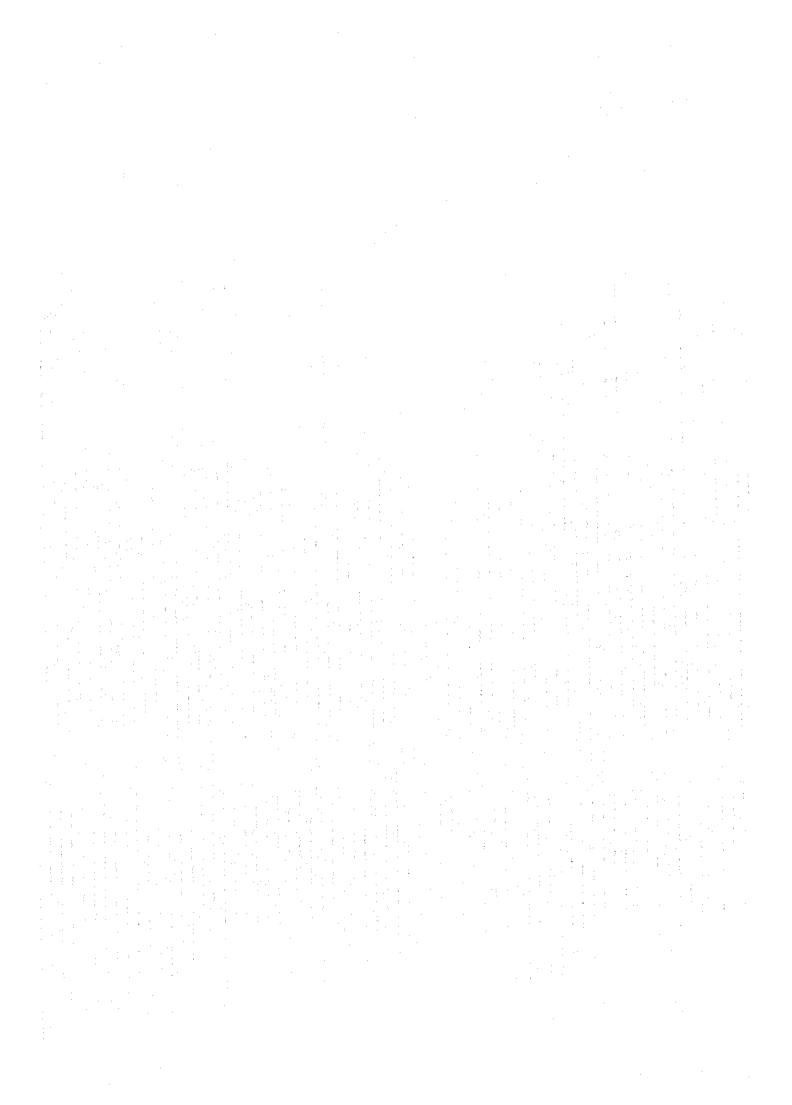
(f) Alluvial Deposit

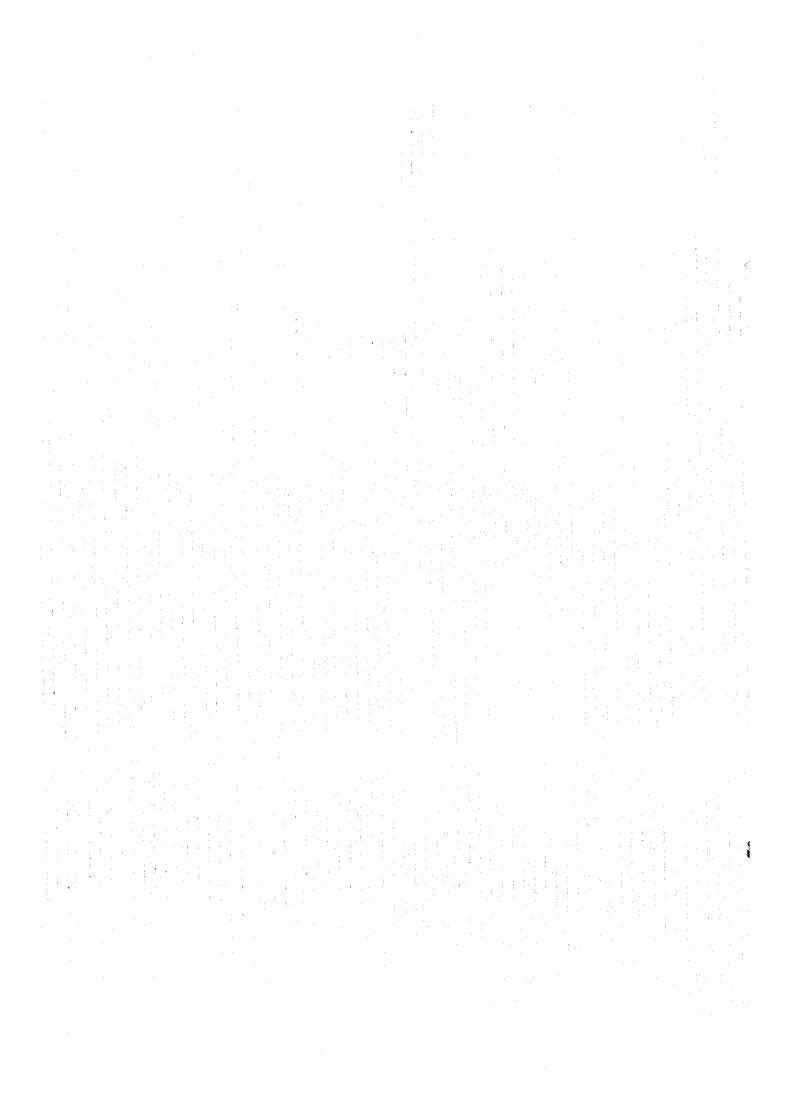

Generally speaking, there is a difference in the thickness of alluvial deposit upstream and downstream of the vicinity of the Bayram dam site. For example, the thickness of sand-gravel at the Bayram dam site is approximately 33 m, whereas it is not more than 6 meters at the Bağlık dam site.


The deposit are composed of silt, sand, and gravel, with the gravel made up of granite, granodiorite, diabase, limestone, and various volcanic rocks.


Table 7-1 Geologic Sequence


GEOLOGIC TIME		Regional Geology of Coruh-Berta		River (EiE June, 1990)
Era	Period	Formation	Lithology	Remarks
CENOZOK	Quaternary	Quaternary System	Alluvial deposit, Terrace deposit Talus deposit Slope wash Colluvial deposit Landstide deposit	
ENOZOIC	Tertiary	Borçka F. (Tb) Oltu F. (To)	Basic and andecitic lava, Volcanoclastics, Tuff, Agglamerate, Mort, Impure Limestone, Claystone, Sandstone	
	Cretaceous	Berto F. (Kb) +	Mudstane Marl Limestone Sandstane, Conglamerate Alternation of Basalt, Rhyolite 8 Oacite Volcanoclastic rock — İkizdere Granitic Rocks intruded (Ti)	Bayrom dam site
MESOZOIC	Early 143Ma Late (Molm) Jurassic Mid (Dogger)	Pugey F. (J-Kp) Ayvalı Voicanics (Jo)	Up: Alternation of Limestone 8 Morl with Silexite Low: Bosal conglomerate, Alternation of Sandstone a Mart Rhyolite, Acidic and Bosic lova, Volcanaclastic rock, Tuff, Aglomerate, Granite	
PALEO-	Early (Lios) 212Ma 247Ma Permo-Carboni-	Yusufeli F. + + + +	Up : Greywocke, Slate, Phyllite Mid : Spilite (pillow lava), Metalava, Green Schist Low: Gabbro, Amphibalite XX : Harnfels [kizdere Granitic Rocks intruded]	Bağlık dom site
ZOIC	ferous Pre-Permion		(Ti)	


Ma: million years



7.2 Outline of Investigation

7.2.1 Existing Data

The existing data referred to in compiling this report are as given in Table 7-2.

7.2.2 Geological Investigation Works

The geological investigation works carried out at the Bayram and Bağlık project sites are as listed below. The details of these works are given in Tables 7-3 to 7-5.

Bayram Project

- Drilling with permeability test			
Dam site	14 holes	Total 1,435.45 m	
Powerhouse site	1 hole	Total 100 m	
Tailrace tunnel route	1 hole	Total 60 m	
- Savail Slope investigation	7 holes	Total 472.5 m	
- Impervious materials investigation		Total 23 pits	
- Rock materials investigation	2 holes	Total 170 m	
- Concrete aggregate investigation		Total 3 pits	
- Surface geological survey			
Dam site	Scale 1/1,000		
Dam, tunnel route	Scale 1/5,000		

Bağlık Project

- Duning with betweening rest		
Alternative dam site	14 holes	Total 1,479.2 m
Selected dam site	3 holes	Total 280 m
Alternativepowerhouse site	1 hole	Total 100 m
Selected powerhouse site	1 hole	Total 130 m
- Surface geological survey		
Dam site	Scale 1/1,000	
Dam, tunnel route	Scale 1/5,000	

Table 7-2 Reference Data

No.	Name of Data	Publication
1.	Çoruh River Basin Barhal-Oltu-Berta Creeks Hydroelectric Projects	ElE, 1984
	Investigations on Engineering Geology	
2.	Çoruh-Berta Kolu Bayram ve Bağlık Baraj Yerleri Mühendislik Jeolojisi Raporu (by Turkish)	ElE, 1989
3.	Master Plan Report on Çoruh-Berta River Basin	ElE, 1991
4.	Çoruh-Berta Kolu Enerji Kademeleri Doğal Yapı Gereçleri Raporu (by	ElE, 1992
	Turkish)	
5.	Construction Material Report for Coruh River Berta Creek Dam and HPP	ElE, 1995
	Projects	
6.	Çoruh-Berta Kolu Bayram Baraj Yeri ve HES Projesi Geçirimsiz	ElE, 1996
1.5	Malzeme Deney Sonuçları (by Turkish)	
7.	Geological Map of Turkey, TURKEY, 1:2,000,000	MTA, 1989
8.	Geological Map of Turkey, TRABZON, 1:500,000	MTA, 1961
9.	Geological Map of Turkey, ERZURUM, 1:500,000	MTA, 1961
10.	Geological Map of Turkey, KARS, 1:500,000	MTA, 1961
11.	Geological Map of Turkey, VAN, 1:500,000	MTA, 1961

Table 7-3 List of Drill Holes on the Bayram Project

No. of Hole	Location	Length	Direction	Elevation (m)	Remarks
NAIO Alama	, pp. process common and an included and constituting of the process of a superior and a superior and the constitution of the constitution and the constitut	<u>(m)</u>		(111)	-
M/S stage SK-7	Dam site, right bank	150.00	Vertical	744.62	G.W.L. 94.90m
SK-8	Dam site, right bank	100.30	Vertical	692,74	G.W.L. 57.70m
SK-9	Dam site, riverbed	54.00	Vertical	639.13	
SKE-10	Dam site, left bank	100.00	45°inclined	690.49	
SKE-11	Dam site, right bank	100.00	45°inclined	692.74	
SK-12	Dam site, left bank	150.00	Vertical	754.71	G.W.L. 65.60m
SK-13	Dam site, left bank	100.00	Vertical	690.49	G.W.L. 54.40m
SKE-14	Dam site, left bank	100.00	45°inclined	754.71	
SK-15	Dam site, left bank	100.00	Vertical	660.05	G.W.L. 21.10m
SK-16	Dam site, right bank	104.00	Vertical	661.64	G.W.L. 25.60m
SKE-17	Dam site, right bank	100.00	45°inclined	744.62	
SKE-18	Dam site, left bank	75.00	45°inclined	660.05	. I v.,
SKE-19	Dam site, right bank	75.00	45°inclined	661.64	
		1308.3			
F/S stage					
SK-7AD	Oam site, right bank & powerhouse site	100.00	Vertical	744.62	Additional drilling of SK-7
SK-101	Dam site, riverbed	127.15	Vertical	- ;	
BYT-1	Tailrace tunnel	60	Vertical		
RQ-1	Quarry site	75	45°inclined	· . <u>-</u>	
RQ-2	Quarry site	95	Horizontal	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	: :
H-1(HS-1)	Savail Slope area	55	Vertical	878.74	
	Savail Slope area	85	Vertical	796.66	
H-3(HS-3)	Savail Slope area	74.80	Vertical	750.53	
H-4(HS-4)	Savail Slope area	80	Vertical	837.13	
H-5(HS-5)	Savail Slope area	55.40	Vertical	678.76	
H-6(HS-6)	Savail Slope area	57.90	Vertical	862.03	
	Savail Slope area	64.4	Vertical	670.22	
-		929.65			
	I		L	L	L

Remarks: M/S stage; Master plan stage F/S stage; Feasibility study stage

G.W.L.; Depth of ground-water level

Table 7-4 List of Drill holes on the Bağlık Project

No. of Hole	Location	Length	Direction	Elevation	Remarks
		(m)		(m)	
M/S stage				Control of the Contro	TO A THE STREET OF THE STREET
SG-1	EIE Dam site, right bank	230.00	Vertical	601.80	G.W.L. 44.55m
SL-2	EIE Dam site, left bank	200.00	Vertical	589.41	G.W.L. 107.06m
NI-3	EIE Dam site, NEHIR ICI	50.00	Vertical	469.04	
SK-4	EIE Dam site, right bank	12	Vertical	534.65	G.W.L. 70.34m
SK-5	EIE Dam site, left bank	100.00	Vertical	519.79	G.W.L. 49.44m
SK-6	EIE Dam site, NEHIR ICI	28.00	Vertical	. 	
SKE-7	EIE Dam site, left bank	100.00	45°inclined	519.78	
SKE-8	EIE Dam site, right bank	101.20	45°inclined	534.65	
SKE-9	EIE Dam site, right bank	100.00	45°inclined	601.80	
SKE-10	ElE Dam site, left bank	100.00	45°inclined	589.41	
SK-11	EIE Dam site, right bank	100.00	Vertical	469.42	G.W.L. 2.45m
SK-12	EIE Dam site, left bank	100.00	Vertical	-	
SKE-13	EIE Dam site, left bank	75.00	45°inclined		
SKE-14	ElE Dam site, right bank	75.00	45°inclined	469.43	
		1479.2			
F/S stage					
BGA-1	Proposed dam site, left bank	100	Vertical	543.81	
BGA-2	Proposed dam site, right bank	100	Vertical	539.84	
BGA-3	Proposed dam site, riverbed	80	Vertical		
BGA-15	Proposed underground powerhouse site	130	Verticval		
BGP-1	Alternative underground powerhouse site	100	Vertical	499.37	
		510			

Remarks: M/S stage; Master plan stage F/S stage; Feasibility study stage

G.W.L.; Depth of ground-water level

Table 7-5 List of Test Pits for Impervious Material at Savail Slope

No. of Line	Location	Depth(m)	Remarks
F/S stage	ngan mangangangangangan yan ngan ngan ngan kanababahahahahahahahahahahahahahahahahah	era kitor en ego estable ar anno establica kindenda, delenda kindenda en establica del del 1900 del 1900 del 1	engan and anticological and an anticological and an anticological and anticological and anticological and anticological and an anticological and anticological and anticological and anticological anticological anticological and anticological
MÇ-1	Savail Slope area	1.55	
MÇ-2	Savail Slope area	1.50	
MÇ-3	Savail Slope area	3.30	
MÇ-4	Savail Slope area	3.00	
MÇ-5	Savail Slope area	4.50	
MÇ-6	Savail Slope area	3.50	
YMÇ-7	Savail Slope area	3.00 `	
YMÇ-8	Savail Slope area	3.00	
YMÇ-9	Savail Slope area	5.00	
		28.35	

Remarks: F/S stage; Feasibility study stage

7.2.3 Seismic Prospecting

The seismic prospecting carried out in connection with materials investigations for the Bayram Project were those listed in Table 7-6.

Table 7-6 List of Seismic Prospecting at Savail Slope

No. of Line	Location	Length(m)	Remarks	
F/S stage	THE CONTROL PROGRAMMENT OF WHICH STORES OF MESTATE AND ARREST MAY SEE AND COMMAND AND COMM	MT n.C. samstättä (Silla säätäste kendja kuljansääste om tapi <u>ne ken</u> g <u>cama kentera, sa</u> n		
(A)	Savail Slope area	1,350		
В	Savail Slope area	1,100		
C	Savail Slope area	650		
D	Savail Slope area	450		
E	Savail Slope area	800		
F	Savail Slope area	650		
Total		5,000		

Remarks: F/S stage; Feasibility study stage