#### 12-5 Current Condition and Problems with Energy

#### 12-5-1 Energy Management and Conservation

Consumption of electric power, oxygen gas and fuel oil — all representing different types of energy — is measured by instruments installed at the control pulpit; and daily, weekly, monthly and annual reports are prepared for management review together with other operation parameters by computer processing. IDC has organized, since the beginning of 1994, an Energy Saving Committee consisting of experts of the production and maintenance sections. The organization chart of the Energy Saving Committee is shown in Figure 12-6. Concerning energy saving, this committee examines and evaluates proposals by the workers, and reports the results of such evaluations to the top management. Daily operation results are reported and discussed in the morning meeting every day, represented by section managers including the Personnel Affairs Section, chaired by Mr. Eldem, Maintenance and Utilities Director.

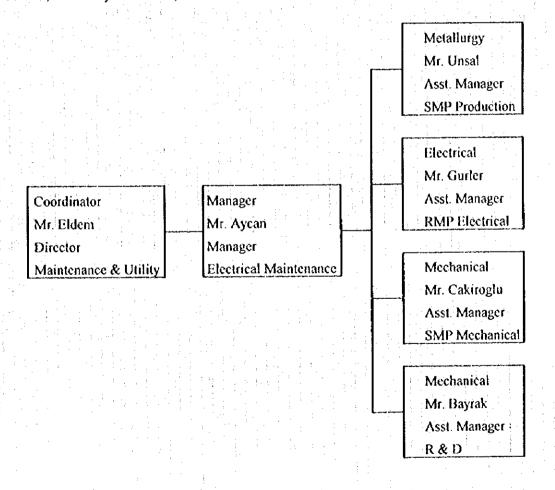



Figure 12-6 Organization Chart of Energy Saving Committee

#### 12-5-2 Results and Plan for Rationalization of Energy Use

The following measures for energy saving are taken.

- Scrap preheating utilizing exhaust gas from the EAF: Saves about 20 kWh per ton, compared with operation without scrap preheating.
- 2. Preheating of combustion air to the ladle using its own exhaust gas is being tested.
- 3. Hot charge of billets to the reheating furnace: About 10 kilograms of fuel is saved per ton of product compared with cold charge.
- 4. The exhaust heat from the reheating furnace is used to preheat the combustion air to the reheating furnace, produce hot water and steam for heating the buildings, and preheat fuel oil.

In addition to the above measures, IDC has employed the following state-of-the-art technologies. This contributes to energy saving.

- 1. Use of large capacity transformer for EAF
- 2. Application of high power and long are operation to the EAF, resulting in reducing melting time, or short tap-to-tap time.
- 3. Use of oxy-fuel burners in the EAF makes it possible to reduce melting time and ensures uniform temperature distribution, or elimination of cold spots.
- 4. Foamy slag operation is applied to the EAF to use the arc heat more efficiently and to prevent radiation of heat from damaging the furnace wall enveloping the arcs.
- 5. The EBT system (slag-free tapping) of the EAF results in shorter tapping intervals and heat loss.
- 6. The ladle furnace (LF) contributes to increasing production of steel by relieving the EAF of the refining load. The EAF is operated for the sole purpose of melting scrap and the LF for refining the heat.
- 7. Slit rolling contributes to increasing production and saving energy.
- 8. Application of frequency converters to controlling the speed of large motors.

As shown in Table 12-9, IDC has been improving productivity by expansion of the capacities of the relevant pieces of equipment and by adopting state-of-the-art technologies. IDC furthermore plans to improve productivity. Tap-to-tap time has been remarkably improved from 80 to between 52 and 55 minutes; this will be further reduced to 45 minutes in the near future.







Consequently, electric power consumption has also been reduced from 490 to 420 kWh per ton. This is expected to be further reduced to 360 kWh per ton.

Table 12-10 shows some examples of electric power consumption in Japan. These figures range from 330 to 510 kWh per ton. In light of these figures, IDC will certainly achieve electric power consumption of 360 kWh per ton.

Table 12-9 Improvement of SMP Operation

|                           | Design basis (*87)                           | '93 - '95  | Future              |
|---------------------------|----------------------------------------------|------------|---------------------|
| Specifications of EAF     | 13 60 18 11 11 11 11 11 11 11 11 11 11 11 11 |            |                     |
| Capacity (tons/heat)      | 60                                           | 70         | 80                  |
| Shell diameter (meters)   | 5.3                                          | 5,5        | 5.5                 |
| Transformer (MVA)         | 45                                           | 72         | 72                  |
| Operation Parameters      |                                              |            |                     |
| Tap-to-tap time (minutes) | 80                                           | 50 - 55    | 45 - 50             |
| Electric power (kWh/ton)  | 490                                          | 405-430    | 360                 |
| Oxygen gas (Nm³/ton)      | 23                                           | 30 -35     | 45                  |
| Electrode (kg/ton)        | 3.5                                          | 1.6 - 2.3  | 1.5                 |
| Refractories ( kg/ton)    | 20                                           | 10         | 8                   |
| Burnt lime (kg/ton)       |                                              | 30         | 25                  |
| Steel yield (%)           |                                              | 89         | 92                  |
| Technologies              | 1. UHP transformer                           |            | 1 Additional oxy-   |
|                           | 2. Scrap preheating                          |            | fuel/oxy-carbon     |
|                           | 3. Water cooled wall a                       | nd roof    | burner              |
|                           | 4. Spray water cooled                        | electrodes | 2. Scrap upgrading  |
|                           | 5. Oxy-fuel burners                          |            | 3. Ca-Si injection  |
|                           | 6. Oxy-lancing                               | •          | 4 Electromagnetic   |
|                           | 7. Foamy slag practice                       | <b>;</b>   | stirring            |
|                           | 8. Long are practice                         |            | 5. Ladle shrouding  |
|                           | 9 EBT (slag free tapp                        | ing)       | 6. Increased oxygen |
|                           | 10. Ladle furnace                            |            | injection           |
|                           | 11. Sequence casting                         |            | 7. EAF bottom       |
|                           | 12. Mold level control                       |            | blowing             |
|                           |                                              |            | 8. SPH improving    |

Source: IDC

Table 12-10 Example of Electric Power Consumption in Japan

| Com- |    | Nomina eapacity |              | Trans-<br>former | Burner<br>(Y/N) |   |          | Actual<br>Ton/ht | Power con-               | con-                     | Electrode con-          |
|------|----|-----------------|--------------|------------------|-----------------|---|----------|------------------|--------------------------|--------------------------|-------------------------|
|      |    | · <b>(t)</b>    | meter<br>(m) | (MVA)            |                 |   |          |                  | sump-<br>tion<br>(kWh/t) | sump-<br>tion<br>(Nm3/t) | sump-<br>tion<br>(kg/t) |
| KO   |    | 100             | 6.4          | 35               | 7               | N | 7        | 109.4            | 432,5                    | : 8,5                    | 3.4                     |
| KO   | 2  | 20              | υ.4<br>4     | 7.5              | N               | N | 11       | 109.4            | 513.5                    | 29.2                     | 4.6                     |
|      | 3  | 20              | 4            | 12.5             | 2               | Y | 14       | 21.6             | 345.1                    | 17.3                     | 4.6                     |
| V A  |    | 1.              |              | 41               | 2               | N | 21       | 73.5             | 397.1                    | 33.1                     | 2.1                     |
| KA : | 1  | 60              | 5.8          |                  | 3               |   | 22       | 126.2            | 363.6                    | 33.6                     | 2.1                     |
| GO   | 1  | 100             | 6.7          | 60               |                 | N | 22<br>31 | 60.3             | 383.2                    | 30.1                     | 2                       |
| * !  | 2  | 70<br>70        | 6.3          | 50               | 2               | Y |          |                  |                          |                          | 2                       |
|      | 3  | 70              | 5.8          | 35               | 3               | T | 25       | 74.4             | 410.7                    | 27.9                     |                         |
| AS   | 1  | 60              | 5.7          | 45               | N               | Y | 24       | 57.5             | 342.5                    | 32.8                     | 1.8                     |
| TY   | }  | 200             | 8            | 70               | 10              | N | 19       | 170              | 341                      | 36.4                     | 1.3                     |
| TO   | 1. | 140             | 7            | 60               | 3               | N | 21       | 132.6            | 380.4                    | 24.3                     | 1.9                     |
|      | 2  | 140             | 7            | 60               | 3               | N | 21       | 132.2            | 378.2                    | 22.1                     | 1.9                     |
|      | 3  | 150             | 8            | 140              | N               | N | 22       | 215.8            | 379.9                    | 30.6                     | 1.6                     |
|      | 4  | 60              | 5.2          | 27.5             | . 3             | N | 22       | 62.8             | 337.1                    | 40.9                     | 1.8                     |
|      | 5  | 60              | 5.2          | 27.5             | . 5             | N | 22       | 62.9             | 341.2                    | 39.1                     | 1.5                     |
|      | 6  | 130             | 7            | 100              | N .             | Y | 28       | 119.4            | 325                      | 27                       | 0.9                     |
| TOA  | 1  | 110             | 7            | 58               | . 4             | Y | 26       | 124.5            | 400.2                    | 30.6                     | 1.6                     |
|      | 2  | 70              | 5.8          | 30               | 3               | N | 19       | 77.2             | 410.6                    | 31.4                     | 2.1                     |
|      | 3  | 70              | 5.8          | 30               | 3               | N | 18       | 77.4             | 405                      | 30.7                     | 2.4                     |
|      | 4  | 50              | 5.1          | 22               | 3               | Y | 30       | 43.8             | 440.1                    | 20.1                     | 2.6                     |
|      | 5  | 150             | 7            | 55               | 4               | Υ | 28       | 133.6            | 353.3                    | 21.5                     | 1.7                     |
| TOP  | 1  | 30              | 4.6          | 15               | N               | N | 17       | 31.7             | 472                      | 25.1                     | 4.5                     |
|      | 2  | 30              | 4.6          | 15               | Ν               | N | 17       | 31.8             | 433.3                    | 25.2                     |                         |
|      | 3  | 120             | 6.5          | 56               | 7               | Υ | 19       | 136.4            | 329.1                    | 25.1                     | 1.6                     |
| NI   | 1  | 25              | 4            | 8.5              | 2               | Υ | 10       | 20.1             | 446.9                    | 39.7                     | 4.4                     |

# 12-6 Current Condition and Problems with Facilities

# 12-6-1 Major Energy Consuming Facilities

Major energy consuming facilities are as follows:

1. Electric arc furnace: 630,000 tons per year of molten steel

- Ladle furnace: 630,000 tons per year of molten steel
   Electric power consumption: 35 kWh per ton, 22,000 MWh per year
- Rolling mill: 510,000 tons per year of rebar
   Electric power consumption: 80 kWh per ton, 41,000 MWh per year
- Reheating furnace: 510,000 tons per year of rebar
   Fuel oil consumption: 25 kilograms per ton, 12,800 kilograms per year

#### 12-6-2 Identification of the Current Problems

# (1) Problem with Major Energy Consuming Facilities

As mentioned in section 12-5-2, IDC has also been improving productivity and energy saving by expansion of the capacities and introduction of state-of-the art technologies. IDC has achieved superb operation results, of which the following are particularly outstanding:

- 1. Electric power consumption of the electric arc furnace (400 to 420 kWh/ton-MS)

  Table 12-10 indicates that there is some room to further reduce electric power consumption.
- 2. Utilization of the scrap preheater

  Use of scrap preheater is limited; half the exhaust gas is used and the equipment capacity, time available and equipment configuration limit the preheating to 70 percent of the scrap.
- 3. Hot charge
  Application is limited; Application is limited only to low temperature billets due to metallurgical problems.
- (2) Problems in Energy Consumption Already Recognized, Items Requested for Auditing IDC has envisaged reduction of electric power consumption for the electric are furnace from 420 kWh/ton-MS to 360 kWh/ton-MS. Expansion of the scrap preheater is now under study as one of the means to achieve this objective.

To set a definite target for energy saving and confirm the results of energy saving efforts, it is important to determine the heat balance of the arc furnace operation regarding it as an integral system. Determination of the exact heat balance involves enormous amounts of measurement

and calculation. Nevertheless, IDC finds it necessary to determine the heat balance of the electric arc furnace.

#### (3) Major Items and Points of Factory Audit

The study team understands IDC's objective and agrees with IDC that determination of the heat balance is the cornerstone for promotion of energy saving. Consequently, major items for audit concern development of a heat balance of the are furnace.

## 12-7 Method and Procedure of Energy Audit

#### 12-7-1 General

As a basis for total energy control, determination of the energy balance is important. When the energy balance sheet are properly prepared, energy efficiency of an individual plant can be obtained. This enables one to compare his plants with those of other companies and helps identify their problems.

A properly prepared balance gives the entire picture of consumption of energy and comparison with other companies. The daily management of energy can be done more easily by smaller-scaled measurement, or measurements that can be made by existing on-line instruments may be enough.

The measurement of energy flow of an entire minimill plant is very difficult, and a great deal of work is required. Even measurement done only once or twice requires a project organization: many pieces of equipment and many experts, to be mobilized under well-planned preparation.

Generally, input energy flows are not very difficult to measure but output flows are. Even when they are measured, accuracy cannot easily be obtained within 20 percent. Determination of a heat balance requires a great deal of work, time, and precaution for possible dangers.

## (1) Premises of the Analysis

The entire minimil! plant is a rather complicated system, the main equipment being the EAF (Electric Arc Furnace). Related pieces of equipment include: an LF (Ladle Furnace) and auxiliary systems (pumps, heat-exchangers, dust collectors, etc.). To determine the energy balance of the entire system is really difficult; and as matter of fact the energy balance alone is not enough to understand the state of energy consumption of the EAF; therefore, a measurement plan



was developed not only for the EAF but for surrounding pieces of equipment.

The EAF alone required a great deal of preparation: equipment and personnel. IDC and the study team seriously considered and prepared for equipment and personal allocation.

The preparation IDC had to make was not limited to the measurement project and the above mentioned equipment and personnel. IDC had to do some preparation work on site, on the equipment, and other necessary work (analysis, weighing, etc.).

# (2) Formulation of Detailed Plan

## 1) Facilities, Studied and Purpose of the Audit

#### (a) Facilities

Ideally, the energy balance should be determined for the entire IDC factory. As already mentioned above and as the block flow diagram of Figure 12-7 below shows, the EAF itself has many inputs and outputs and hence required very elaborate work.

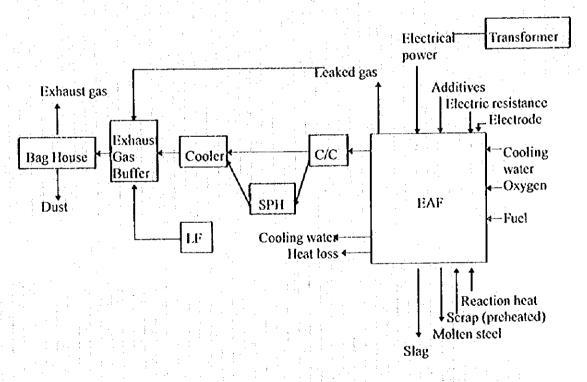



Figure 12-7 Block Diagram of Heat Inputs to and Heat Outputs from EAF

The EAF itself is a reactor: raw materials (scrap and pig iron) and additives melt at high temperatures accompanied by generation and absorption of heat.

#### (b) Purpose of the Audit

IDC has already attained energy efficiencies of relatively high levels. The following purposes of the audit were tailored to the conditions of IDC:

- 1. Confirmation of energy consumption levels and comparison with international levels
- 2. Management's grasp of the entire picture and basis for policy making
- 3. Enhancement of employees' morale by being exposed to the positive attitude of management
- 4. Acquisition of measuring skills throughout the whole company

#### 12-7-2 Measuring Items, Method and Frequency

The basic measurements are limited to the EAF and its immediately neighboring equipment, as mentioned above and energy balance should be determined as clearly, simply and easily as possible for the sake of making the difficulties with measurement easier.

#### (1) Measurement and Estimation Items

The measurement for heat balance of the EAF was done on both inputs and outputs of energy in the following five categories:

- 1. Measurement by existing instruments: by IDC
  - 1) Consumption of electric power
  - 2) Consumption of raw materials (scrap and pig iron)
  - 3) Consumption of fuel oil and oxygen gas for each of 4 furnace burners and 1 door burner (4 furnace/1 door burners) and oxygen gas for 2 lancings
  - 4) Composition of molten steel
  - 5) Composition of slag
  - 6) Consumption of additives (burnt lime and carbon injection)
  - 7) Temperature of molten steel
  - 8) How rate of cooling water for furnace
  - 9) Inlet temperature of cooling water for furnace
  - 10) Power-on-to-power-off time
- 2. Measurement by newly prepared instruments: by JICA study team
  - 1) Temperature of scrap
  - 2) Temperature, CO/CO<sub>2</sub>, and O<sub>2</sub> of the exhaust gas at C/C inlet
  - 3) Temperature, static pressure, flow rate, CO/CO<sub>2</sub>, and O<sub>2</sub> of the exhaust gas at C/C

- 4) Outlet temperature of cooling water for furnace
- 5) Temperature of the roof, shell and bottom of furnace
- 6) Surrounding conditions
- 3. Analysis: by IDC
  - 1) Calorie of fuel
  - 2) Composition of injected carbon
  - 3) Composition of additives (burnt lime and carbon injection)
  - 4) Composition of scrap
- 4. Calculation/estimation from existing data: by IDC/the study team
  - 1) Weight and temperature of hot heel --- estimation by experience
  - 2) Electrode consumption --- statistic estimation
  - 3) N<sub>2</sub> of the exhaust gas at C/C inlet and outlet --- calculation
  - 4) Weight of output (molten steel)---statistic estimation
  - 5) Weight and temperature of slag---calculation and estimation
  - 6) Surface area of the roof, shell and bottom of furnace---IDC data
- 5. Analogy: by IDC/the study team
  - 1) Heat loss at the secondary conductors and transformer

These works were done in close cooperation between IDC and the study team.

#### (2) Measuring Methods

The original basic plan was proposed by the study team. Through repeated discussions and cooperation between IDC and the study team, the plan was modified and finalized to fit the actual situations. The proposed methods for measurement and analysis were based on NKK's experience which is commensurate with JIS (the Japanese Industrial Standards) including the processing of data after the measurement.

The plan for analysis and measurement for energy audit is summarized in Table 12-11. Figures 12-8 and 12-9 are the flow diagram around EAF and layout around EAF, respectively.

The measurements were done in the following method,

- 1. Continuous measurement
  - 1) Consumption of electric power
  - 2) Temperature, CO/CO2 and O2 of exhaust gas at C/C inlet

- 3) Temperature, static pressure, flow rate, CO/CO<sub>2</sub> and O<sub>2</sub> of exhaust gas at C/C outlet
- 4) Outlet temperature of cooling water for furnace
- 5) Temperature of shell and bottom of furnace
- 2. Total amount/integration
  - 1) Consumption of raw materials (scrap and pig iron)
  - 2) Consumption of fuel oil and oxygen gas for each of 4 furnace /1 door burners and oxygen 2 lancings oxygen gas for two lances
  - 3) Consumption of additives (burnt lime and carbon injection)
- 3. Instantaneous value
  - 1) Temperature of molten steel
  - 2) Flow rate of cooling water for furnace
  - 3) Inlet temperature of cooling water for furnace
  - 4) Power-on-to-power-off time
  - 5) Temperature of raw materials (scrap and pig iron)
  - 6) Surrounding conditions
- 4. Analysis values
  - 1) Composition of molten steel:
  - 2) Composition of slag
  - 3) Composition of additives (burnt lime and carbon injection)
  - 4) Composition of scrap and pig iron
  - 5) Temperature of roof of EAF
  - 6) Calorie of fuel oil
- (3) Measuring Manual of Exhaust Gas, Temperature of Cooling Water and Temperature of Furnace Body

Details are shown in Appendix-1.

Table 12-11 Plan of Analysis and Measurement for Energy Audit (IDC) 1/3

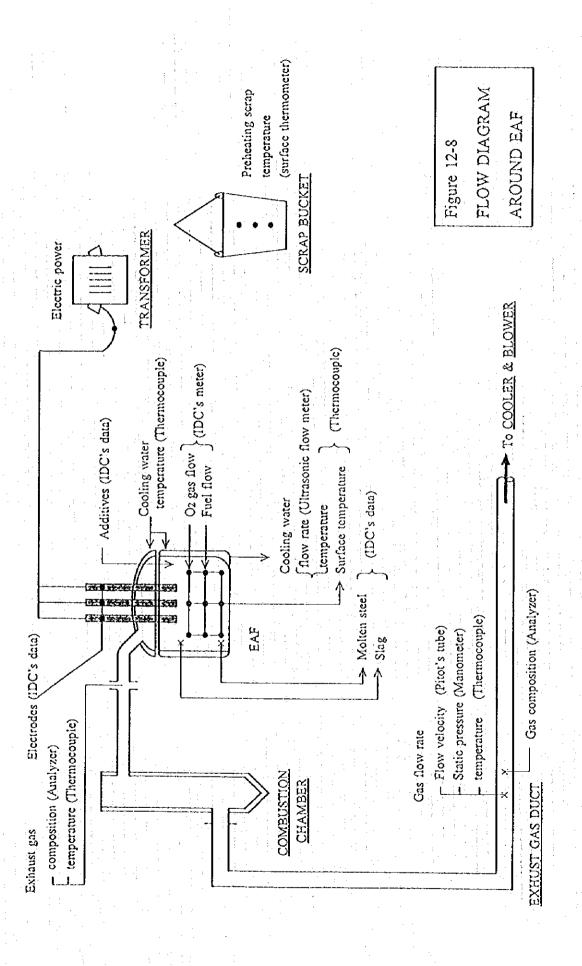
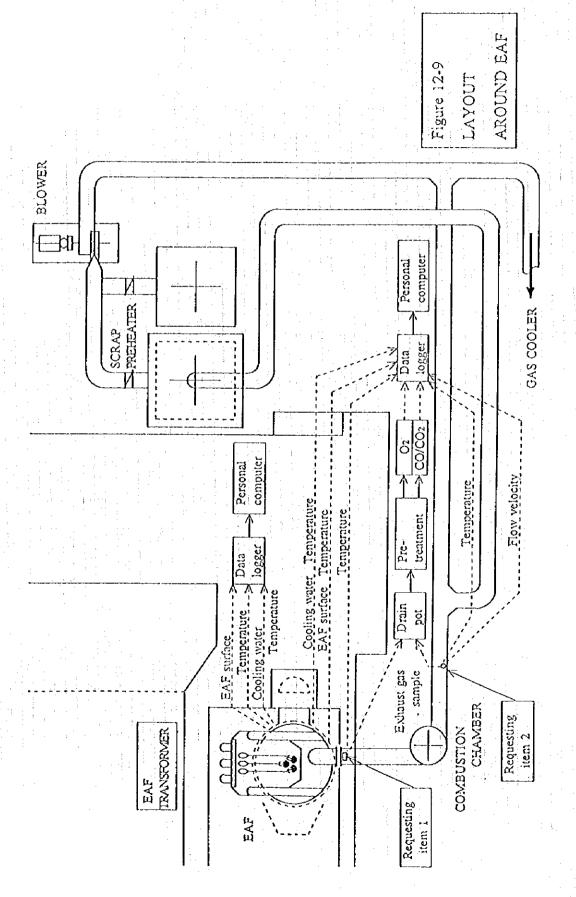

| Mayor Irems               |                                                               | X           | Methods of Analysis and Measurement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remarks                               |                  |
|---------------------------|---------------------------------------------------------------|-------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|
| of Energy                 | Subject Items and points                                      | Measurement |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Personnel Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                  |
| Audit                     |                                                               | or Estimate | Required Equipment Factory EIE JIC  | JICA Local Labo Additional JICA F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EIE Factory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Measuring Interval                    | Measuring Points |
| Electric Arc (<br>Furnace | (Heat input)                                                  |             |                                     | And the state of t | the state of the s |                                       |                  |
| 1                         | (. O <sub>2</sub> , for two lances                            | ,           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                  |
| ~ N                       | () Lune (hr-mm)  2) Consumption (Nm <sup>2</sup> )            | <b>X</b> X  | Uncerator                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Integration                           | Control room     |
| 11.4                      | 2. Oz. for cach of 4 furnaces/1 door burners                  |             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |
|                           | 1) Time (hr-min)                                              | ×           | Clock                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start & Finish                        | Control room     |
| +* <b>4</b>               | 2) Consumption (Nm³)                                          | ×           | Integrator                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integration                           | Control room     |
|                           | 3. Oil, for each of 4 furnaces/1 door burners                 | -           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>£</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                  |
|                           | 1) Time (hr-min)                                              | ·           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • • |                  |
| . •                       |                                                               | ×           | Clock                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start & Firush                        | Control room     |
| 4.4                       | 3) Calorie (kcal)                                             | ΣÞ          | Integrator X                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integration                           | Control room     |
| 9                         |                                                               | 1           | (виринс)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,54                                  |                  |
| •                         | 4. Carbon injection                                           | . ,         |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;<br>;                                |                  |
| •                         | 1) Time (hr-min)                                              | >           | Clock                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start & rimsh                         | Control room     |
|                           | 2) Consumption (kg)                                           | X           | (Calculation)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Heat                                  |                  |
|                           | 3) Composition (%)                                            | 11          | (Standard)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                  |
|                           | S. Additives, each                                            |             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |
|                           | 1) Time (hr-min)                                              | ×           | Clock                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start & Finnish                       | Control room     |
| •                         | 2) Consumption (kg)                                           | ×           | Weigher                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat                                  | Неат героп       |
|                           | <ol> <li>Composition (%)</li> </ol>                           | ய           | (Standard)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat                                  |                  |
| _                         | 6. Scrap (Scrap bucket)                                       |             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | :                |
|                           | <ol> <li>Consumption (kg)</li> </ol>                          | Z           | Weigher                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Each charge                           | Неат героп       |
|                           | 2) Composition (%)                                            | ω           | (Standard)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |
| :                         | <ol> <li>Temperature (°C)</li> </ol>                          | ×           | Thermocoupie                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selore charge                         | Scrap bucket     |
|                           | 7. Hot heel                                                   |             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | :                |
|                           | 1) weight (kg)                                                | u >         | · fuc                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Hear resour      |
|                           | <ol> <li>Composition (%)</li> <li>Temperature (%C)</li> </ol> | ន់ ពោ       | (Estimation)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |                  |
|                           | 8. Electric power                                             |             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                  |
|                           | 1) Time (hr-min)                                              | ×           | Clock                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start & Finish                        | Control room     |
|                           | 1) Consumption (RWh)                                          | ×           | kWh meter                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Every I mm. & integration             | Control room     |
| **                        | 9. Electrode                                                  | ł           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                  |
| ı                         | - 1                                                           | щ           | (Standard)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acat                                  | •                |
|                           |                                                               | •           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | VI               |
|                           | 1) Weight (vheat)                                             | ม )         | (Calculation)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | near<br>S                             | ricat rocord     |
|                           | 2) Composition (%)                                            | 2           | Analyzer                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Champion neats                        | neat record      |
|                           |                                                               |             |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                  |

Table 12-11 Detailed Plan of Analysis and Measurement for Energy Audit (IDC) 2/3

| Audit  Electric Arc (Heat output)  Furnace  1. Exhaust gas, C/C inlet  1) Time (hr-min)  2) Temperature (°C)  3) CO/CO, in gas (%)  4) O; in gas (%)  2) N; in gas (%)  2) Temperature (°C)  3) Static prossure (mmH-O)  4) Flow rate (Nm³/min)  5) CO/CO, in gas (%)  6) O; in gas (%)  7) N; in gas (%)  7) Cooling water  1) Time (hr-min)  2) Temperature, outlet (°C)  4) Flow rate (m³/min)  2) Flow rate (m³/min)  2) Flow rate (m³/min)  3) Temperature, inlet (°C)  4) Furnace body  1) Time (hr-min)  2) Temperature of 12 points of wall (°C)  4) Temperature of roof (°C)  5) Temperature of coof (°C)  5) Temperature of coof (°C)  5) Temperature of coof (°C)  7) Temperature of coof (°C)  8) Mosten steel including bot beel  1) Temperature (°C)  2) Weight (kg)  3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Measurement or Estimate or Estimate NA | Equipment of Analysis and Measurement Required Equipment Factory EIE JICA Local Labo Additional Automatic meter | Equipment of Analysis and Measurement Pactory FIE JICA Local Labo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1         | Personnel Allocation<br>JICA EIE Factory |                          | Measuring Points |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|--------------------------|------------------|
| มี มีกลดจดในกลดจดอย <sub>เพ</sub> ลลดจ\ กลดจ\ กลด                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            | Required Equipment Facto                                                                                        | r FIF JICA Local Labo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı           |                                          | A Comment of the comment | Measuring Points |
| # มีอลตรดใน ลลตรดอย แลลตร + ลลตร เมลล                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | Automatic meter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Measuring Interval       |                  |
| มี วลลา ประการ เมื่อ ลายา เมื่อ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | Automotic meter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | : : : : : : : : : : : : : : : : : : : :  |                          |                  |
| 1) Time (hr-min) 2) Temperature (°C) 3) CO/CO; in gas (%) 4) O; in gas (%) 5) N: in gas (%) 2) Exhaust gast, C/C outlet 1) Time (hr-min) 2) Temperature (°C) 3) Static prossure (mmH <sub>2</sub> O) 4) Flow rate (Nm <sup>3</sup> /min) 5) CO/CO; in gas (%) 6) O; in gas (%) 7) N: in gas (%) 7) N: in gas (%) 8) Cooling water 1) Time (hr-min) 2) Temperature, inlet (°C) 4) Temperature of 12 points of wall (°C) 4) Temperature of 12 points of wall (°C) 5) Temperature of 12 points of bottom (°C) 4) Temperature of coof (°C) 5) Temperature of coof (°C) 5) Temperature of coof (°C) 5) Weight (kg) 7) Composition (%) 7) Composition (%) 7) Composition (%) 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            | Automatic meter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i .         | A,B,C D                                  |                          |                  |
| 2) Temperature (°C) 3) CO/CO: in gas (%) 4) O: in gas (%) 5) N: in gas (%) 2. Exhaust gas, C/C outlet 1) Time (hu-min) 2) Temperature (°C) 3) Static prossure (mmH <sub>2</sub> O) 4) Flow rate (Nm³/min) 5) CO/CO: in gas (%) 7) N: in gas (%) 7) Time (hr-min) 7) Time (hr-min |                                                                            |                                                                                                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | O<br>,      |                                          | Continuously             | C/C inject       |
| 3) CO/CO: in gas (%) 4) O: in gas (%) 5) N: in gas (%) 2. Exhaust gas, C/C outlet 1) Time (hr-min) 2) Temperature (°C) 3) Static pressure (mmH <sub>2</sub> O) 4) Flow rate (Nm <sup>3</sup> /min) 5) CO/CO: in gas (%) 7) N: in gas (%) 7) Time (hr-min) 7) Time (hr-min) 7) Temperature of 12 points of wall (°C) 7) Temperature of 12 points of wall (°C) 7) Temperature of 12 points of bottom (°C) 7) Temperature of coof (°C) 7) Temperature (°C) 7) Temperature (°C) 7) Weight (kg) 7) Composition (%) 7) Composition (%) 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            | Thermocoupic                                                                                                    | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                          | Continuously             | C/C inlot        |
| 4) O; in gas (%)  2) N: in gas (%)  2) Temperature (°C)  3) Static pressure (mmH-C)  4) Flow rate (Nm³/mm)  5) CO/CO; in gas (%)  7) N: in gas (%)  7) N: in gas (%)  7) N: in gas (%)  7) Time (tr-min)  2) Temperature, outlet (°C)  4) Temperature, outlet (°C)  4) Temperature of 12 points of wall (°C)  5) Temperature of 20 points of wall (°C)  6) Temperature of 20 points of bottom (°C)  7) Temperature of 20 points of bottom (°C)  8) Mosten steel including hot beel  1) Temperature (°C)  2) Weight (kg)  3) Composition (°S)  3) Composition (°S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | Automatic meter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Continuously             | C/C infec        |
| 2. Exhaust gas. (%) 2. Exhaust gas. C/C outlet 1) Time (hr-min) 2) Temperature (°C) 3) Static pressure (mmH-O) 4) Flow rate (Nm <sup>3/min</sup> ) 5) CO/CO <sub>2</sub> in gas (%) 7) N: in gas (%) 7) N: in gas (%) 7) N: in gas (%) 7) Time (hr-min) 2) Flow rate (m <sup>3/min</sup> ) 3) Temperature, inlet (°C) 4) Temperature, outlet (°C) 4) Temperature of 12 points of wall (°C) 5) Temperature of 12 points of wall (°C) 6) Temperature of 20 points of bottom (°C) 7) Temperature of (°C) 8) Temperature of (°C) 7) Temperature (°C) 8) Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (°S) 3) Composition (°S) 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            | Automatic meter                                                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | J                                        | Continuously             | C/C inlet        |
| 2. Exhaust gas. C/C outlet  1) Time (hr-min)  2) Temperature (°C)  3) Static pressure (mmH <sub>2</sub> O)  4) Flow rate (Nm <sup>3/min</sup> )  5) CO/CO <sub>2</sub> in gas (%)  7) N: in gas (%)  7) N: in gas (%)  7) N: in gas (%)  7) Time (hr-min)  2) Temperature, inlet (°C)  4. Furnace body  1) Time (hr-min)  2) Temperature of 12 points of wall (°C)  4. Furnace body  1) Time (hr-min)  2) Temperature of 20 points of wall (°C)  4) Temperature of 20  5. Molten steel including hot beel  1) Temperature (°C)  2) Weight (kg)  2) Composition (%)  3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | (Calculation)                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                          | Continuously             | C/C inlet        |
| 1) Time (th'-min) 2) Temperature (°C) 3) Static pressure (mmH <sub>2</sub> O) 4) Flow rate (Nm <sup>3</sup> /min) 5) CO/CO <sub>2</sub> in gas (%) 7) N <sub>2</sub> in gas (%) 7) Time (th'-min) 7) Time (th'-min) 7) Temperature, outlet (°C) 4. Furnace body 1) Time (th'-min) 7) Temperature of 12 points of wall (°C) 7) Temperature of 12 points of wall (°C) 7) Temperature of (°C) 7) Temperature of (°C) 7) Temperature of (°C) 7) Temperature (°C) 7) Temperature (°C) 7) Weight (kg) 7) Composition (°C) 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.B.C A.B.C | B.C. D.                                  |                          |                  |
| 2) Temperature (°C) 3) Static pressure (mmH <sub>2</sub> O) 4) Flow rate (Nm <sup>3</sup> /min) 5) CO/CO <sub>2</sub> in gas (%) 6) O <sub>2</sub> in gas (%) 7) N <sub>2</sub> in gas (%) 3. Cooling water 1) Time (hr-min) 2) Flow rate (m <sup>3</sup> /min) 2) Flow rate (m <sup>3</sup> /min) 3) Temperature, outlet (°C) 4) Temperature, outlet (°C) 4) Temperature of 2 points of wall (°C) 5) Temperature of 2 points of bottom (°C) 6) Temperature of 2 points of bottom (°C) 7) Temperature of 2 points of bottom (°C) 8) Temperature of Cool (°C) 7) Temperature (°C) 8) Motten steel including bot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            | Automatic moter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Continuously             | C/Courler        |
| 3) Static pressure (mmH-O) 4) Flow rate (Nm <sup>3</sup> /min) 5) CO/CO <sub>2</sub> in gas (%) 6) O <sub>2</sub> in gas (%) 7) N <sub>2</sub> in gas (%) 3. Cooling water 1) Time (hr-min) 2) Flow rate (m <sup>3</sup> /min) 2) Flow rate (m <sup>3</sup> /min) 2) Temperature, outlet (°C) 4) Temperature, outlet (°C) 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 22 points of bottom (°C) 4) Temperature of Coof (°C) 5) Motten steel including bot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | Thrmocoupic                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | :                                        | Continuously             | C/Courses        |
| 4) Flow rate (Nm²/man) 5) CO/CO₂ in gas (%) 6) O₂ in gas (%) 7) N₂ in gas (%) 3. Cooling water 1) Time (hr-man) 2) Flow rate (m²/man) 2) Flow rate (m²/man) 2) Temperature, outlet (°C) 4) Temperature, outlet (°C) 4. Furnace body 1) Time (hr-man) 2) Temperature of 12 points of wall (°C) 3) Temperature of 12 points of bottom (°C) 4) Temperature of Coof (°C) 5) Motten steel including bot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            | Digital manometer                                                                                               | × .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                          | Continuously             | C/Contlet        |
| 5) CO/CO- in gas (%) 6) O- in gas (%) 7) N- in gas (%) 3. Cooling water 1) Time (hr-min) 2) Flow rate (m²/min) 3) Temperature, outlet (°C) 4) Temperature, outlet (°C) 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 2 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%) 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.                                                                         | Pitot, tube                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                          | Continuously             | C/Courier        |
| 6) O: in gas (%) 7) N: in gas (%) 3. Cooling water 1) Time (hr-min) 2) Flow rate (m³/min) 3) Temperature, outlet (°C) 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 24 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%) 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | Automatic meter                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Continuously             | C/Coutlet        |
| 7) No in gas (%) 3. Cooling water 1) Time (hr-min) 2) Flow rate (m²/min) 3) Temperature, inlet (°C) 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 2 points of bottom (°C) 4) Temperature of roof (°C) 5. Motten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%) 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ➣                                                                          | Automatic meter                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | ¥                                        | Continuously             | C/Courlet        |
| 3. Cooling water  1) Time (hr-min)  2) Flow rate (m²/min)  3) Temperature, inlet (°C)  4. Furnace body  1) Time (hr-min)  2) Temperature of 12 points of wall (°C)  3) Temperature of 4 points of bottom (°C)  4) Temperature of roof (°C)  5. Molten steel including hot beel  1) Temperature (°C)  2) Weight (kg)  3) Composition (°S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ĮĮ.                                                                        | (Calculation)                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                          | Continuously             | C/Coutlet        |
| 1) Time (hr-min) 2) Flow rate (m³/min) 3) Temperature, inlet (°C) 4) Temperature, outlet (°C) 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 4 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (°S) 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>)</b>    | F                                        |                          |                  |
| 2) Flow rate (m²/min) 3) Temperature, inlet (°C) 4) Temperature, outlet (°C) 6. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of roof (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (°S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×                                                                          | Clock                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | :                                        | One time a heat          | Control room     |
| 3) Temperature, inlet (°C) 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 4 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                                                                          | Magnetic flow meter x                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | `                                        | One time a heat          | Control room     |
| 4) Temperature, outlet (°C) 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 4 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            | Thermocouple N                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | One time a heat          | Inlet            |
| 4. Furnace body 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 4 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | įψ                                                                         | Thermometer                                                                                                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | )                                        | Continuously             | Outlet           |
| 1) Time (hr-min) 2) Temperature of 12 points of wall (°C) 3) Temperature of 4 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω           | •                                        |                          |                  |
| <ol> <li>Temperature of 12 points of wall (°C)</li> <li>Temperature of 4 points of bottom (°C)</li> <li>Temperature of roof (°C)</li> <li>Molten steel including hot beel</li> <li>Temperature (°C)</li> <li>Weight (kg)</li> <li>Composition (%)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                                                          | Clock                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                                          | Continuously             | Heat report      |
| 3) Temperature of 4 points of bottom (°C) 4) Temperature of roof (°C) 5. Molten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                                          | Thermocoupic -                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Continuously             | Hear report      |
| 4) Temperature of roof (°C)  5. Mosten steel including hot beel  1) Temperature (°C)  2) Weight (kg)  3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            | Thermocoupie .                                                                                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ) *************************************  | Continuously.            | Heat report      |
| 5. Motten steel including hot beel 1) Temperature (°C) 2) Weight (kg) 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>ម</u>                                                                   | (Standard)                                                                                                      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ):/ :                                    | One time during test     |                  |
| 1) Temperature (°C)  2) Weight (kg)  3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          |                          |                  |
| 2) Weight (kg) (3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | Thermocouple x                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Heat                     | Heat report      |
| 3) Composition (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ш                                                                          | (Calculation)                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Heat                     | Heat report      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                                          | Analyzer x                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                          | Heat                     | •                |
| 6. Slag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | •                                        |                          |                  |
| 1) Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | េជ                                                                         | (Estimation)                                                                                                    | The second secon |             |                                          | Heat                     | Heat report      |
| 2) Weight (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            | (Calculation)                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | -1-4                                     | Heat                     | Heat report      |

Table 12-11 Detailed Plan of Analysis and Measurement for Energy Audit (IDC) 3/3


| Major Items |                                                | Met             | Methods of Analysis and Measurement                             | Kemarks                  |
|-------------|------------------------------------------------|-----------------|-----------------------------------------------------------------|--------------------------|
| of Fromov   | Subject Items and points                       | Measurement     | nont Equipment of Analysis and Measurement Personnel Allocation |                          |
| Audit       |                                                | <br>or Estimate | ured Eq                                                         | nterval Measuring Points |
| lectric Arc | Electric Arc (Others)                          |                 |                                                                 |                          |
| '~<br>}     | 1. Operation results                           |                 | 9. С 3                                                          |                          |
|             | 2. Surrounding condition                       |                 |                                                                 |                          |
|             | 1) Weather                                     |                 |                                                                 |                          |
| . •         | <ol> <li>Atmospheric pressure (hpa)</li> </ol> |                 | N Start of Acat Operation                                       |                          |
| ••          | <ol> <li>Outdoor temperature (°C)</li> </ol>   |                 | N Start of near operation                                       | non Cutsiac              |
| •           | 4) Indoor temperature (°C)                     |                 | N. Start of boat operation                                      |                          |
|             | 5) Humidiry (%)                                |                 | x Start of heat operation                                       | tion Around EAF          |



13

12 - 42

8



#### (3) Measuring Frequency

- 1. 3 days including trial measurement 1
- 2. I heat of trial measurement and 5 heats for official measurement a day (measuring time of one heat: 1 hr), Total 11 heats
- 3. Total 11 heats

#### 12-7-3 Measuring Equipment

- 1. Study team: mainly energy outputs with the newly prepared instruments.
- 2. IDC: mainly energy inputs with the existing instruments.

Table 12-12 shows additional items, numbers and descriptions of the equipment brought by the study team. The measurements by these pieces of equipment were carried out by the study team, while measurements by existing equipment were all carried out by IDC.

Table 12-12 Equipment List of the Study Team

|      | ITEM                                                | DESCRIPTION                                                                                                                           |
|------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| a-1) | CO/CO <sub>2</sub> analyzer 1 set                   | To measure CO and CO <sub>2</sub> contents of the exhaust gas at C/C inlet                                                            |
| a-2) | CO/CO <sub>2</sub> analyzer 1 set                   | To measure CO and CO <sub>2</sub> contents of the exhaust gas at C/C outlet                                                           |
| b-1) | O <sub>2</sub> analyzer 1 set                       | To measure O <sub>2</sub> content of the exhaust gas at C/C inlet                                                                     |
| b-2) | O₂ analyzer 1 set                                   | To measure O <sub>2</sub> content of the exhaust gas at C/C outlet                                                                    |
| c)   | Pretreatment unit (filter, drain pot, cooler) 1 set | To remove dusts and moisture in the exhaust gas                                                                                       |
| d-1) | Data logger 2 sets                                  | To input into the personal computer the output data (analog signals) from the measuring devices after conversion into digital signals |
| d-2) | Data logger   1 set                                 | Stand-by                                                                                                                              |
| e-1) | Personal computer 2 sets                            | To record and exhibit on the monitoring screen the output data after being converted to the digital signals by the data logger        |

| e-2)       | Personal computer 1 set                                                                            | Stand-by. To be used in case of trouble of one of e-1). Actually this computer was used.                                            |
|------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| f-1)       | Thermocouple PR type (JIS type R) 4 sets                                                           | To measure the temperature of the exhaust gas at the C/C inlet                                                                      |
| f-2)       | Thermocouple CA type (JIS type K) 24 sets: 1 set for outlet, 16 sets for furnace, 7 sets for spare | To measure the temperature of the exhaust gas at the C/C outlet and temperature of the furnace shell and bottom                     |
| f-3)       | Thermocouple CC type (JIS type T)  10 sets (including 4 sets of spare)                             | To measure the temperature of the cooling water for the furnace                                                                     |
| g-1)       | Cable (100 m) for thermocouple for CA type                                                         | To connect the thermocouple to the data logger                                                                                      |
| g-2)       |                                                                                                    | To connect the thermocouple to the data logger                                                                                      |
| g-3)       | Cable (300 m) for thermocouple for CA type                                                         | To connect the thermocouple to the data logger                                                                                      |
| h)         | Ultrasonic flow meter 1 set                                                                        | To measure the flow rate of cooling water for<br>the furnace. Not used. IDC's instrument<br>was used.                               |
| i)         | Gas sampling unit 4 pieces                                                                         | Sampler for the exhaust gas at C/C inlet.  Water cooled. Stainless-steel, for C/C outlet.                                           |
| j-l)       | Digital manometer 2 sets                                                                           | To measure the dynamic and static pressure of<br>the exhaust gas for measurement of the flow<br>rate at the C/C outlet              |
| i-2)       | Digital manometer 2 sets                                                                           | Stand-by                                                                                                                            |
| k)         | Pitot' tube 4 sets                                                                                 | Used for measurement of the flow rate of the exhaust gas at the C/C outlet                                                          |
| <b>i</b> ) | Surface thermometer 2 sets                                                                         | To measure the surface temperature of the scrap bucket for scrap temperature                                                        |
| m)         | Printer 1 set                                                                                      | To print out the results of measurement                                                                                             |
|            | Transformer 3 sets                                                                                 | Step down transformer (200 V to 100V) and stabilizer for instruments                                                                |
| n-2)       | Transformer 1 set                                                                                  | Stand-by                                                                                                                            |
| 0)         | Pyrometer (Thermometer) 2 sets                                                                     | To measure the roof surface temperature and for back-up use for measurement of surface temperature of the furnace shell and bottom. |

One is for temperatures higher than 800°C and the other is for temperatures lower than 500 °C

p) Equipment for moisture 1 set

To measure moisture in the exhaust gas.

#### 12-8 Measurement Execution Procedure

#### 12-8-1 Site Survey

#### (1) General

In order to plan measuring methods in detail, a preparatory site survey was done before the field survey (measuring for heat balance of Electric Are Furnace (EAF) in IDC). This site survey was done by two experts. Their activities included explanation and discussions with IDC on the plant operation, site conditions, IDC's assistance to the measurement, and measuring methods.

Site survey was carried out by the measuring experts of the study team on the investigation for:

- 1. Proper locations for installation of instruments and protection shelter,
- 2. Utility supply for field instruments (electric wiring and water supply)
- 3. Existing on-line instruments (kinds and location)

#### (2) Surveyors

This preparatory field survey was done by the following two experts.

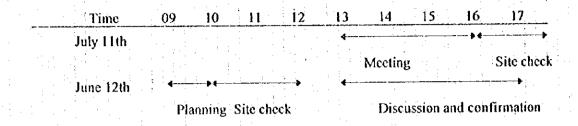
Mr. Isamu Kawakami (Process D, Iron and Steel)

Mr. Tokuyoshi Kawai (Measurement, Iron and Steel)

#### (3) Schedule of Site Survey

#### 1) Overall Schedule

| July 8th 1996 | Narita to Frankfurt                         |   |
|---------------|---------------------------------------------|---|
| 9th           | Frankfurt to Ankara                         | ŧ |
| 10th          | Visit to the IICA office and the EIE office |   |
| 11th          | Ankara to Izmir                             |   |
|               | Visit to IDC                                | • |
| 12th          | Visit to IDC                                |   |


13th

Izmir to Frankfurt

14th

to Narita

## 2) Schedule at IDC



#### (4) Site Check

#### 1) Location of Measuring Points

1. Elbow (Combustion Chamber (C/C) inlet): Fitting point of sampling probe

Approach to the fitting point

Area for preparation and maintenance for sampling probe

Feeding of cooling water for probe

Outlet of cooling water for probe

2. Duct (C/C outlet):

Probe inserting hole

Approach to measuring point for maintenance work

3. EAF cooling water:

Measuring points

Approach to measuring points

4. EAF wall and bottom:

Fitting thermocouples

Approach to fitting points

5. Scrap bucket:

Approach to bucket with hand-carried thermometers

6. Measuring instruments:

Space for 2 sets for exhaust gas and EAF cooling water

7. Others:

Operation room

# 2) Utility on Site

1. Electric source:

2-3 points for instruments, 200 V, 20-30 A

2. Cooling water:

For sampling probe, 3/4" diameter

3. Extension bar;

For thermometer for measuring bucket temperature, 2-3 meters

4. Others:

If necessary

#### 3) Modifications for Measurement

1. Rag plate:

Welding a rag plate of 200 x 200 x 10 thickness to sliding duct

for U-bolt to fit sampling probe

2. Thermocouple:

Welding thermocouples to the furnace shell and bottom

3. Water tap:

Installation of a water tap for cooling water of sampling probe

4. Stage:

Preparation for measurement and maintenance

5. Others:

Prepared as necessary

#### 4) Data Collection from Plant Instruments

1. Control room:

Timer

Watt meter

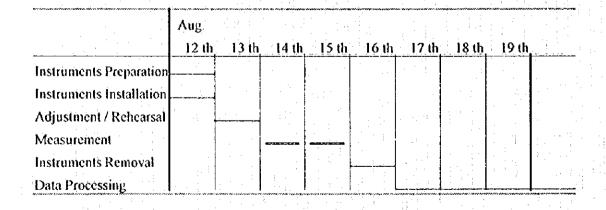
Weighing of scrap

Weighing of molten steel, etc.

2. Inlet energy:

O<sub>2</sub> meter

Fuel meter, etc.


3. Others:

Ás necessary

## 12-8-2 Execution of Measurements

#### (1) Schedule of Measurements

The schedule of the measurements is shown below.



#### 1) Aug. 12th

- 1. Meeting with EIE and IDC from 8:30 to 9:00
- 2. Unpacking of a wooden equipment and instruments box from 9:00 to 12:30
- 3. Welding of a rag plate to the sliding duct from 13:30 to 15:00
- 4. Fitting of thermocouples to the pipe for measuring outlet temperature of cooling water for furnace from 13:30 to 15:00
- 5. Welding of thermocouples to the furnace from 15.00 to 21:00
- 6. Preparation of instruments in AM and PM
- 7. Some work is not finished

This work was done during the furnace brick work shutdown time.

## 2) Aug. 13th

- 1. Meeting with EIE and IDC from 8:30 to 9:00.
- 2. Some work of connection not completed in Aug.12th in AM.
- 3. Adjustment of instruments in AM.
- 4. Trial measurement of one heat in PM.

#### 3) Aug. 14th

- 1. Meeting with EIE and IDC from 8:30 to 9:00.
  - 2. Official measurement of five heats.

#### 4) Aug. 15th

Same as Aug. 14th

## 5) Aug. 16th

- 1. Removing of instruments and connections in AM.
- 2. Packing instruments in the wooden box.

#### 12-8-3 Preparatory Work

Preparatory work was carried out on Aug. 12 and 13 is as follows:

# (1) Welding of a Rag Plate to the Sliding Duct (C/C inlet)

A rag plate supplied by the JICA Study Team was welded to the end of the sliding duct of EAF

(C/C inlet, combustion chamber inlet) on August 12 in the presence of the JICA Study Team.

Note: The rag plate with U-bolts is to hold a sampling probe for analysis of the exhaust gas and a thermocouple for measuring the exhaust gas temperature.

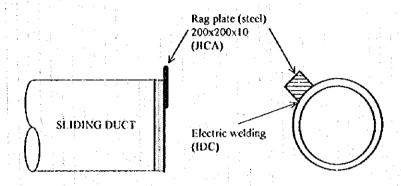
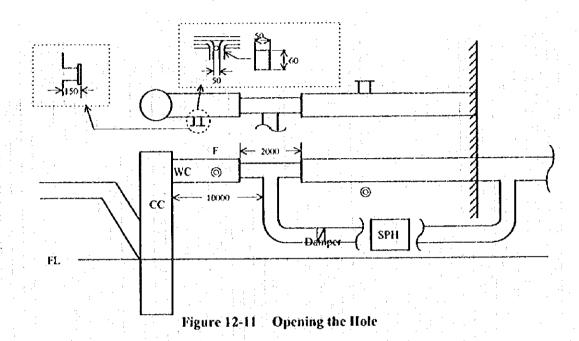




Figure 12-10 Welding of the Rag Plate

## (2) Opening the Hole (C/C outlet)

Before August 12, a hole of  $50 \times 60$  mm was opened at the tubular cooling duct behind C/C (combustion chamber).

Note: The 50 x 60 mm hole is for measuring the flow rate, composition and temperature of the exhaust gas.



# (3) Welding Thermocouples to the Furnace Shell and Bottom

Steel plates containing thermocouple supplied by the JICA study team were welded at the furnace shell and bottom on August 12 in the presence of the JICA study team.

Shell: 12 points on the cooling pipe of center of the cooling panel. 2 points for each panel of Nos. 2, 4, 6, 8, 10 and 12

Bottom: 4 points on the bottom equally spaced

Note: Thermocouples are to measure the furnace temperature.

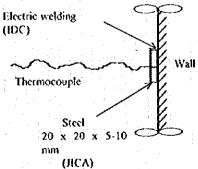



Figure 12-12 Welding Thermocouples to the Furnace Shell and Bottom

#### (4) Water Supply

Water tap device and basin for return water was installed near the C/C before August 12.

Note: Water is used for cooling the sampling probe at the C/C inlet.

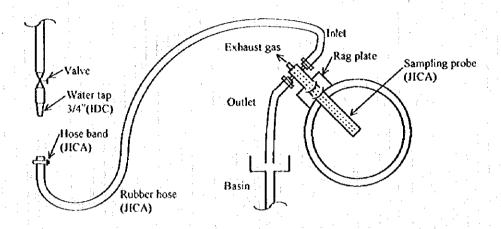



Figure 12-13 Water Supply

#### (5) Installation of the Holder for Cooling Water Outlet Temperature

A pipe was installed at each return water piping system before August 12.

Note: The pipe held the thermocouple to measure the furnace cooling water outlet temperature.

- 1: Return water piping system for the EBT
- 2: Return water piping system for the elbow
- 3: Return water piping system for the roof
- 4: Return water piping system for the shell-l
- 5: Return water piping system for the shell-2

12 - 52

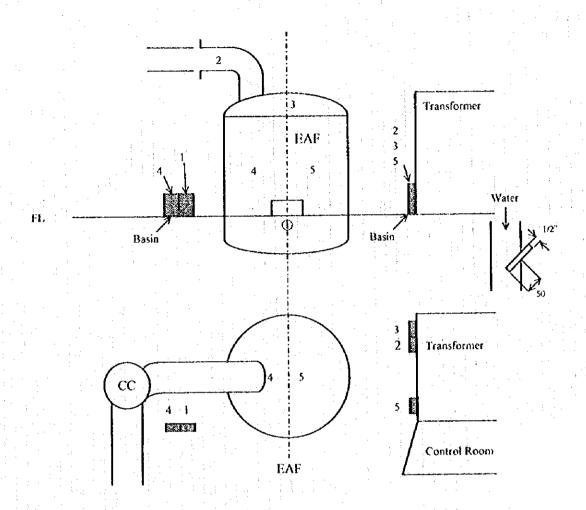



Figure 12-14 Installation of the Holder

# 12-9 Results of Measurement and Analysis

Measurement for the EAF heat balance was executed on following 11 heats including the trial heat.

Aug. 14 Heat No. 965729 trial

Aug. 14 Heat No. 965749 not completed in measurement of exhaust gas

Aug. 14 Heat No. 965750 not completed in measurement of exhaust gas

Aug. 14 Heat No. 965751 selected for analysis

| Aug. 14 | Heat No. 965752 | selected for analysis                       |
|---------|-----------------|---------------------------------------------|
| Aug. 14 | Heat No. 965753 | selected for analysis                       |
| Aug. 15 | Heat No. 965773 |                                             |
| Aug. 15 | Heat No. 965774 | not completed in measurement of exhaust gas |
| Aug. 15 | Heat No. 965775 | not completed in measurement of exhaust gas |
| Aug. 15 | Heat No. 965776 |                                             |
| Aug. 15 | Heat No. 965777 |                                             |

According to the procedure of JIS (the Japanese Industrial Standards), consecutive three heats of Heat No. 965751, 965752 and 965753 are selected. The operation results, measurement results, calculation of heat input and heat output and heat balance sheets are shown for three (3) selected heats in the following sections.

The study team studied and analyzed the selected three (3) heats referring to the other heats measured and observed.

#### 12-9-1 Profile of Facilities

Table 12-13 shows profile of facilities on which measurement was executed.

Table 12-13 Profile of the Electric Arc Furnace

| Name of comp | any                                      | IDC (IZMIR DEMIR CELIK<br>SANAYI A. S.)             |
|--------------|------------------------------------------|-----------------------------------------------------|
| Address      |                                          | Foca Celik Fabrikasi 35807<br>Aliaga, IZMIR, TURKEY |
| Furnace manu | facturer                                 | NKK Corporation (Japan)                             |
| Type         | Type of furnace                          | AC are furnace                                      |
|              | Charging method                          | Top charge                                          |
|              | Tapping method                           | EBT system                                          |
|              | Other facilities (Bottom stirrer, Bottom | Water sprayed electrode, Scrap                      |
|              | bubbling, Water sprayed electrode, Scrap | preheater                                           |
|              | preheater, etc.)                         |                                                     |
|              | Nominal capacity (ton)                   | 75                                                  |
| Molten steel | Bath diameter (mm)                       | 4,475                                               |

| Bath area (m²)                           | 7.0                                            |
|------------------------------------------|------------------------------------------------|
| Bath depth (mm)                          | 1,343                                          |
| Distance between sill level and roof (mr | n) 2,192                                       |
| Roof Thickness (mm)                      |                                                |
| Radius (mm)                              | 2,900                                          |
| Diameter of electrode hole (mm)          | 600                                            |
| Pitch circle diameter (mm)               | (,300)                                         |
| Proportion of water cooling area (%)     |                                                |
| Shell Inside diameter (mm)               | 5,215                                          |
| Thickness (mm)                           | Water cooled tubular panel                     |
| Height (mm)                              | 1,900                                          |
| Height from bottom to roof (mm)          | 4,300                                          |
| Proportion of water cooling area (%)     | 100                                            |
| Hearth Diameter (mm)                     |                                                |
| Thickness (mm)                           | 725                                            |
| Height of bank (mm)                      | 332                                            |
| Working door Width (mm)                  |                                                |
| Height (mm)                              |                                                |
| Tapping hole Diameter (mm)               | 159                                            |
| (EBT) Depth (mm)                         | 800                                            |
| Transformer Capacity (MVA)               | 72                                             |
| Primary voltage (kV)                     | 34.5                                           |
| Secondary voltage (V)                    | 900                                            |
| Connection                               | Open delta                                     |
| Reactor Capacity (kVA)                   | 12,000                                         |
| Reactance (Ohm)                          |                                                |
| Electrode Diameter (mm)                  | 508                                            |
| Oxygen Type and number                   | Manipulator                                    |
| injection Capacity (Nm³/hr)              | 1 1/4 inches x 2 lancings                      |
|                                          | (3,000 Nm³/hr, lance)                          |
| Burner Type, number and capacity         | 5 furnace oxy-fuel burners                     |
|                                          | oil: 200 liter/hr, unit                        |
|                                          | O <sub>2</sub> : 500 Nm <sup>3</sup> /hr, unit |
|                                          | 1 door oxy-fuel burner                         |
|                                          | oil: 300 liter/hr, unit                        |
|                                          |                                                |

|           |                                                                                                                                                                                                                                  | O <sub>2</sub> : 700 Nm <sup>3</sup> /hr, unit | - |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---|
|           | Kind of fuel and capacity (kg/hr)                                                                                                                                                                                                | Heavy fuel oil NO. 6                           | _ |
| Carbon    | Capacity and number (kg/hr)                                                                                                                                                                                                      | l set                                          |   |
| injection | en de la companya de<br>La companya de la co | 35 kg/min                                      |   |

# 12-9-2 Long-run Operation Results

Table 12-14 shows long-run operation results of each five (5) heats of the same grade of steel which were operated before and after sampled three (3) heats for heat balance calculation.



Table 12-14 Summary of Long-Run Operation Results of Before and After Heat Measured

|   |                                           |         | -       |         |         |         |            |         |                  |         |        |         |
|---|-------------------------------------------|---------|---------|---------|---------|---------|------------|---------|------------------|---------|--------|---------|
|   | Date                                      | Aug. 13 | Aug. 14    | Aug. 14 | Aug. 14          | Aug. 14 | Aug 14 | Average |
|   | Heat Wo                                   | ٨١      | 1       |         |         | 965750  | 965754     | 965755  | 965756           | 965757  | 965758 |         |
|   | Charged raw material (excluding hot heel) | 85.800  | 85.700  | 85.080  | 85.700  | 86.000  | 85.600     | 85.440  | 86.020           | 85.680  | 85.620 | 85.660  |
|   | 1 1 1st broket (t) Scran                  | 43.300  | 44,300  | 43.080  | 41.200  | 42.400  | 41.300     | 40.100  | 41.200           | 41,100  | 40.260 | 41.820  |
|   |                                           | 27.300  | 26,200  | 26.500  | 28.400  | 32.400  | 31.100     | 29.200  | 27.660           | 27.320  | 27.300 | 28.340  |
|   | Scrape                                    | 21.000  | 23.000  | 22,200  | 24.000  | 29.000  | 28.000     | 25,500  | 7.000            | 27.300  | 27.300 | 23.430  |
|   | Piging                                    | 3 300   | 3.200   | 4.300   | 4.400   | 3.400   | 3.100      | 3.700   | 3,360            | 0.000   | 3.000  | 4.000   |
|   | 1.3. 3rd bucket (t) Scrap                 | 15.200  | 15.200  | 15.500  | 16.100  | 11.200  | 13,200     | 16.140  | 17.160           | 17.260  | 18.060 | 15.500  |
|   | 2. Output (Production) (t)                | 77.220  | 77.130  | 76.570  | 77.130  | 77,400  | 77.040     | 76,900  | 77,420           | 77.100  | 77.060 | 77.100  |
|   | 2.1. Good billet (t)                      | 76.620  | 76.530  | 75.980  | 76.530  | 76.800  | 76,440     | 76.300  | 76.820           | 76.510  | 76.460 |         |
|   |                                           | 0.600   | 0.600   | 0.590   | 0.600   | 0.000   | 0.600      | 0.600   | 0.600            | 0.590   | 0.600  | 0.600   |
|   | 3. Steel vield (%)                        |         |         |         |         | ٠       |            |         | :                |         |        |         |
|   | 3.1. Molten steel yield                   | 0.06    |         | :       | ٠       |         |            |         |                  |         |        |         |
|   | 3.2. Good billet vield                    | 89.3    |         |         |         |         |            |         |                  |         |        |         |
|   | 4. Operation time (min.)                  |         | 1       | :       |         |         | <i>3</i> . |         |                  |         | ٠      |         |
|   | 4.1. Tap-to-tap time                      | S       | 61      | 56      | 9       | 57      | 55         | 56      | 49               | 54      | 42     | \$5     |
|   | 4.2. Power on-to-power off time           | 47      | 50      | - 48    | 43      | 46      | 45         | 46      | 44               | 48      | 45     | 46      |
|   | 5. Consumption                            | :       |         |         |         |         |            | -:      |                  |         |        | · · ·   |
|   | 5.1. Electric power (kWh/t-output)        | 378     | 389     | 364     | 375     | 353     | 360        | 367     | 355              | 372     | 382    | 370     |
| 7 | 5.2. Fuel oil (kg/t-output)               | 4.7     | 4.9     | 4<br>Ci | 6.1     | 6.5     | 48         | 0.0     | 4                | 4       | 4.5    | 4.0     |
|   | 5.3. Oxygen gas (Nm³/t-output)            | 32.2    | 30.9    | 30.7    | 33.0    | 34.3    | 35.0       | 29.1    | 26.5             | 28.0    | 29.0   | 30.9    |
|   | Burner                                    | 17.1    | 16.0    | 14.8    | 18.2    | 19.5    | 18.6       | 15.6    | 15.6             | 15.7    | 16.4   | 16.8    |
|   | Lancing                                   | 15.1    | 14.9    | 15.9    | 4.8     | 16.8    | 16.4       | 13.5    | 10.9             | 12.3    | 12.6   | 14.3    |
|   | 5.4. Burnt lime (kg/heat)                 | 21.4    | 23.1    | 23.9    | 33.7    | 23.2    | 23.0       | 24.1    | 22.9             | 23.5    | 23.6   | 24.2    |
|   |                                           | 8.5     | 8 4     | 8.8     | 10.0    | 8.6     | 9.7        | 9.1     | 9.7              | 12.6    | 13.5   | 66      |
|   | 6. Composition and temperature of molten  |         |         |         |         |         |            |         |                  |         |        |         |
|   | steel before tapping                      | •       |         | 0       | (<br>(  | 6       | 71.0       | ć       | Ç                |         | · ·    |         |
|   |                                           | 0.10    | 0.04    | 0.05    | 000     |         | 0.10       | 7 6     | 01.0             |         | 2 6    | 7 6     |
|   | 6.2. Si (%)                               | 0.01    | 0.02    | 0.05    | 0.03    | 0.02    | 0.05       | 0.0     | 0.02             | 0.0     | 0.0    | 70.0    |
|   | 6.3. Mn (%)                               | 0.05    | 0.03    | 0.04    | 0.07    | 0.04    | 0.03       | 2.      | 9<br>2<br>2<br>3 | CO.O    | CO.O   | c0:0    |
|   |                                           |         |         |         |         |         |            |         |                  |         |        |         |

|         |                                          | (             | 000      | 6     |       | .000   | 7000  | 010   | 6,00  | 1100   | 600   | 0000  |
|---------|------------------------------------------|---------------|----------|-------|-------|--------|-------|-------|-------|--------|-------|-------|
| 0.4     |                                          | 2.0.2         | 0.00     | 0.010 | 2000  | 0.0.0  | 0.00  | 212   | 0.00  | 7.70.0 | 1.0.0 | 2.0   |
| 6.5. \$ | (%) S                                    | 0.065         | 0.074    | 0.076 | 990'0 | 0.058  | 0.078 | 0.070 | 0.061 | 0.048  | 0.054 | 0.065 |
| ) 99    | (%)                                      | 0.07          | 0.0      | 0.05  | 60.0  | 0.05   | 0.05  | 0 0 4 | 90.0  | 0.04   | 60.0  | 90.0  |
| 6.6.    | Temperature (deg. C)                     | 1620          | 1612     | 1622  | 1616  | 1630   | 1646  | 1603  | 1636  | 1601   | 1620  | 1621  |
| 7. We   | Weight of hot heel (t)                   | 10            |          |       |       |        |       |       |       |        |       |       |
| &<br> & | Composition of billet (%)                |               |          |       |       |        |       |       |       | -      |       | 0     |
| 8       | C (%)                                    | 0.24          | 0.19     | 0.18  | 0.18  | 0.20   | 0.20  | 0.23  | 0.19  | 0.21   | 0.21  | 0.20  |
| 8.2     | Si (%)                                   | 0,23          | 0.19     | 0.17  | 0.18  | 0.19   | 0.17  | 0.17  | 0.17  | 0.17   | 0.17  | 0.16  |
| 8.3     | Wn (%)                                   | 0.85          | 0.86     | 0.87  | 98.0  | 0.86   | 0.87  | 0.86  | 0.86  | 98.0   | 0.84  | 0.86  |
| 84      | P (%)                                    | 0.038         | 0.043    | 0.036 | 0.040 | 0.037  | 0.026 | 0.018 | 0.024 | 0.024  | 0.030 | 0.032 |
| 8.5     | (%) \$                                   | 0.039         | 0.052    | 0.048 | 0.047 | 0.045  | 0.044 | 0.040 | 0.037 | 0.039  | 0.039 | 0.043 |
| 8.6     |                                          | 0,46          | 0.51     | 0.52  | 0.47  | 0.45   | 0.45  | 0.39  | 0.41  | 0.41   | 0.36  | 0.44  |
| 8.7     |                                          | 0.14          | 0.13     | 0.12  | 0.12  | 0.13   | 0.15  | 0.13  | 0.16  | 0.13   | 0.14  | 0.14  |
| 88      |                                          | 0.13          | 0.11     | 0.11  | 0.12  | 0.10   | 0.08  | 0.07  | 0.10  | 0.10   | 0.10  | 0.10  |
| 8.9.    | Wo.                                      | 0.020         | 0.018    | 0.016 | 0.015 | 0.016  | 0.019 | 0.016 | 0.023 | 0.017  | 0.018 | 0.05  |
| 8.10.   | Sn                                       | 0.019         | 0.021    | 0.024 | 0.019 | 0.019  | 0.021 | 0.017 | 0.016 | 0.017  | 0.015 | 0.02  |
| 8.11    | A                                        | 0.003         | 0.003    | 0.003 | 0.003 | 0.003  | 0.003 | 0.003 | 0.003 | 0.003  | 0.003 | 0.003 |
| Note:   | 1) Heat No. 965757 is excluded for avera | verage of pig | g iron.  |       |       |        |       | 1     |       |        |       |       |
|         | 2) Heat No. 965755 is excluded for avera | verage of fu  | iel oil. |       |       | · · ·. | :     |       |       |        |       |       |

## 12-9-3 Results of Measurement and Heat Balance

# (1) Concened Personnel

Personnel are listed in Table 12-15.

Table 12-15 Personnel Involved in Measurement

| Date                                                                                |                                            | August 14, 199                                                                 | 6                                     |
|-------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|
| Heat No.                                                                            | 969                                        | 5751, 965752,                                                                  | 965753                                |
| Company                                                                             | Study team                                 | EIE                                                                            | IDC                                   |
| Staff                                                                               | - I. Kawakami<br>- H. Tokano               |                                                                                | - Suleyman Eldem<br>- Necati Unsal    |
| Measuring person                                                                    |                                            |                                                                                |                                       |
| Flow rate, temperature and composition of exhaust gas Outlet temperature of cooling | - T. Kawai<br>- S. Kinoshita<br>- N. Honda | <ul><li>(Bora Omurtay)</li><li>(Birgul Duman)</li><li>(Mehmet Sezer)</li></ul> | · · · · · · · · · · · · · · · · · · · |
| water for furnace Electric power Oxygen gas by lancings                             |                                            |                                                                                | - Sibel Ozkan<br>- Uguri Egeli        |
| Carbon injection                                                                    |                                            |                                                                                |                                       |
| Burnt lime Oxygen gas and fuel oil by                                               |                                            |                                                                                | - Hikmet Yuzuak                       |
| 4 furnace/1 door burners Flow rate and inlet temperature of cooling                 |                                            |                                                                                | - Talip Bostanci                      |
| water for furnace Temperature of scrap bucket                                       | - (H. Tokano)                              |                                                                                | - Duzgun Elitas                       |
| Surrounding conditions                                                              | - H. Tokano                                |                                                                                |                                       |

Note: Bracket means co-working with specialists.

# (2) Summary of Results for Measured Heats

Table 12-16 Summary of Operation Results for Three (3) Measured Heats

|           | 1            |                        |               |         |         |
|-----------|--------------|------------------------|---------------|---------|---------|
| Date      | <u> </u>     |                        | Aug. 14       | Aug. 14 | Aug. 14 |
| Heat No.  |              |                        | 965751        | 965752  | 965753  |
| I. Charge | ed raw mater | ial (excluding hot hee | 1) (t) 85.400 | 87.400  | 86.000  |
|           |              | стар                   | 42.100        | 41.1    | 41.2    |

| 1.2 2nd bucket (t)                             | 28 200 | 26.100 | 27.400 |
|------------------------------------------------|--------|--------|--------|
| Scrap                                          | 24.500 | 22,500 | 24.000 |
| Pig iron                                       | 3.700  | 3.600  | 3.400  |
| 1.3. 3rd bucket (t) Scrap                      | 15,100 | 20.200 | 17.400 |
| 2. Output (Production) (t)                     | 76.860 | 78.660 | 77.400 |
| 2.1 Good billet (t)                            | 76.260 | 78.050 | 76.800 |
| 2.2 Crop end, skull (t)                        | 0,600  | 0.610  | 0.600  |
| 3. Steel yield (%)                             | 14.7   |        |        |
| 3.1. Molten steel yield                        |        | 90.3   |        |
| 3.2. Good billet yield                         | ·      | 89.3   |        |
| 4. Operation time (min.)                       |        |        |        |
| 4.1. Tap-to-tap time                           | 53     | 53     | 70     |
| 4.2. Power-on-to-power-off time                | 43     | 43     | 57     |
| 5. Unit consumption                            |        |        |        |
| 5.1 Electric power (kWh/output)                | 363    | 360    | 379    |
| 5.2. Fuel oil (kg/t-output)                    | 6.3    | 5.9    | 7.2    |
| 5.3. Oxygen gas (Nm³/t-output)                 | 33.7   | 35.1   | 32.5   |
| Burner                                         | 20.3   | 16.1   | 18.0   |
| Lancing                                        | 13.4   | 19.0   | 14.5   |
| 5.4. Burnt lime (kg/t-output)                  | 24.4   | 22.9   | 28.0   |
| 5.5. Carbon injection (kg/t-output)            | 11.4   | 7.6    | 10.4   |
| 6. Composition and temperature of molten steel |        |        |        |
| before tapping                                 |        |        |        |
| 6.1. C(%)                                      | 0.05   | 0.03   | 0.05   |
| 6.2. Si (%)                                    | 0.01   | 0.01   | 0.01   |
| 6.3. Mn (%)                                    | 0.04   | 0.04   | 0.05   |
| 6.4. P(%)                                      | 0.026  | 0.026  | 0.025  |
| 6.5. S(%)                                      | 0.069  | 0.064  | 0.700  |
| 6.6. Cr (%)                                    | 0.06   | 0.07   | 0.06   |
| 6.6. Temperature (°C)                          | 1641   | 1673   | 1624   |
| 7. Weight of hot heel (t)                      |        | 10 ,   |        |
| 8. Composition of billet (%)                   |        |        |        |
| 8.1. C(%)                                      | 0.18   | 0.20   | 0.20   |
| 8.2. Si (%)                                    | 0.18   | 0.17   | 0.18   |
| 8.3. Mn (%)                                    | 0.87   | 0.91   | 0.92   |
| 8.4. P (%)                                     | 0.040  | 0.027  | 0.028  |
| 8.5. \$ (%)                                    | 0.043  | 0.055  | 0.048  |
| 8.6. Cu (%)                                    | 0.43   | 0.43   | 0.45   |
| 8.7. Ni (%)                                    | 0.13   | 0.12   | 0.15   |
| 8.8. Cr (%)                                    | 0.13   | 0.08   | 0.09   |
| 8.9. Mo (%)                                    | 0.018  | 0.017  | 0.017  |
| 8.10. Sn (%)                                   | 0.018  | 0.019  | 0.020  |
|                                                |        |        |        |

# (3) Results of Measurments

Results of measurement for the (3) heats are shown in Table 12-17.

Table 12-17 Results of Measurement

|                                                                   |         |               | 11              |
|-------------------------------------------------------------------|---------|---------------|-----------------|
| Date                                                              | Aug. 14 |               |                 |
| Heat No.                                                          | 965751  |               |                 |
| Amount of raw materials in 1st bucket (1)                         |         | 41.100        |                 |
| Amount of scrap in 2nd bucket (t)                                 |         | 22 500        | 2.0             |
| Amount of pig iron in 2nd bucket (t)                              | 3.700   | 3.600         | 3.400           |
| Amount of raw materials in 2nd bucket (t)                         | 28.200  | 26.100        | 27.400          |
| Amount of raw materials in 3rd bucket (t)                         | 15.100  | 20.200        | 17,400          |
| Charged raw material (excluding hot heel) (t)                     | 85.400  | 87.400        | 86.000          |
| Amount of scrap (t)                                               | 81.700  | 83.800        | 82.600          |
| Amount of pig iron (t)                                            | 3,700   | 3.600         | 3.400           |
| Output (excluding hot heel) (t)                                   | 76,860  | 78.660        | 77.400          |
| Consumption of electric power (kWh)                               | 27,900  | 28,300        | 29,300          |
| Unit consumption of electric power, w <sub>1</sub> (kWh/t-output) | 363     | 360           | 379             |
| Hot heel of raw material (t)                                      | 10      | 10            | 10              |
| Unit weight of hot heel of raw material, m2 (kg/t-output)         | 130     | 127           | 129             |
| Temperature of hot heel, m <sub>2</sub> (°C)                      | 1550    | 1550          | 1550            |
| Unit consumption of scrap, (kg/t-output)                          | 1063    | 1065          | 1067            |
| Unit consumption of pig iron, (kg/t-output)                       | 48      | : 46          | 44              |
| Unit consumption of raw materials, m3 (kg/t-output)               | 1111    | 1111          | 1111            |
| Temperature of top of 1st bucket (°C)                             | 148     | 215           | 135             |
| Temperature of middle of 1st bucket (°C)                          | 131     | 232           | 132             |
| Temperature of bottom of 1st bucket (°C)                          | 53      | 82            | 82              |
| Mean temperature of 1st bucket (°C)                               | 111     | 176           | 116             |
| Temperature of top of 2nd bucket (°C)                             | 108     | 121           | 110             |
| Temperature of middle of 2nd bucket (°C)                          | 118     | 108           | 128             |
| Temperature of bottom of 2nd bucket (°C)                          | 66      | 82            | 82              |
| Mean temperature of 2nd bucket (°C)                               | 97      | 104           | 107             |
| Temperature of top of 3rd bucket (°C)                             | -       | · · · · · · - | · · · · · · - · |
| Temperature of middle of 3rd bucket (°C)                          | 36      | 39            | 37              |
| Temperature of bottom of 3rd bucket (°C)                          |         |               |                 |
| Mean temperature of 3rd bucket (°C)                               | 1 36    | 39            | 37              |
| Mean temperature of raw materials after SPH (°C)                  | 93      | 123           | 97              |
| Consumption of fuel oil at No. 1 burner (kg)                      | 133     | 104           | 182             |
| Consumption of fuel oil at No. 2 burner (kg)                      | 162     | 107           | 136             |
| Consumption of fuel oil at No. 3 burner (kg)                      | 56      | 101           | 93              |
| Consumption of fuel oil at No. 4 burner (kg)                      | 112     | 117           | 124             |
| Consumption of fuel oil at door burner (kg)                       | 21      | 38            | 25              |
| Consumption of fuel oil (kg)                                      | 484     | 467           | 560             |
| Unit consumption of fuel oil, m4 (kg/t-output)                    | 6.3     | 5.9           | 7.2             |
|                                                                   |         |               | 7               |

| Mean CO <sub>2</sub> content in exhaust gas at elbow (CO <sub>2</sub> ) (%)          | 14.0  | 17.5  | 12.1  |
|--------------------------------------------------------------------------------------|-------|-------|-------|
| Mean CO content in exhaust gas at elbow (CO)(%)                                      | 7.1   | 3.5   | 1.5   |
| C content of molten steel before tapping (%)                                         | 0.05  | 0.03  | 0.05  |
| Si content of molten steel before tapping (%)                                        | 0.01  | 0.01  | 0.01  |
| Mn content of molten steel before tapping (%)                                        | 0.04  | 0.04  | 0.05  |
| P content of molten steel before tapping (%)                                         | 0.026 | 0.026 | 0.025 |
| Cr content of molten steel before tapping (%)                                        | 0.06  | 0.07  | 0.06  |
| Al content of molten steel before tapping (%)                                        | 0.000 | 0.000 | 0.000 |
| CaO content of slag (%)                                                              | 23.56 | 23.56 | 23.56 |
| Consumption of burnt lime (kg)                                                       | 1860  | 1790  | 2150  |
| Amount of slag (kg)                                                                  | 6868  | 6610  | 7939  |
| Unit weight of slag, mit (kg/t-output)                                               | 89    | 84    | 103   |
| FeO content of slag (FeO) (%)                                                        | 9.01  | 9.01  | 9.01  |
| Fe <sub>2</sub> O <sub>3</sub> content of slag (Fe <sub>2</sub> O <sub>3</sub> ) (%) | 22.16 | 22.16 | 22.16 |
| Consumption of carbon injection (kg)                                                 | 875   | 595   | 805   |
| Unit consumption of carbon injection (kg/t-output)                                   | 11.4  | 7.6   | 10.4  |
| P <sub>2</sub> O <sub>5</sub> content of slag (P <sub>2</sub> O <sub>5</sub> ) (%)   | 0.48  | 0.48  | 0.48  |
| SiO <sub>2</sub> content of slag (SiO <sub>2</sub> ) (%)                             | 17.31 | 17.31 | 17.31 |
| Temperature of molten steel before tapping (°C)                                      | 1641  | 1673  | 1624  |
| Weight of hot heel of molten steel (t)                                               | 10    | 10    | 10    |
| Unit weight of hot heel of molten steel (kg/t-output)                                | 130   | 127   | 129   |
| Power-on-to-power-off time (hr)                                                      | 0.72  | 0.72  | 0.95  |
| Flow rate of cooling water for roof (m³/hr)                                          | 323   | 323   | 323   |
| Average quantity of cooling water of roof, m14b (kg/t-output)                        | 3026  | 2957  | 3964  |
| Mean outlet temperature of cooling water for roof (°C)                               | 39.0  | 40.5  | 39.1  |
| Mean outlet temperature of cooling water for roof-1 (°C)                             | 39.1  | 40.6  | 39.2  |
| Mean outlet temperature of cooling water for roof-2 (°C)                             | 38.9  | 40.4  | 39.0  |
| Inlet temperature of cooling water for roof (°C)                                     | 34.0  | 34.0  | 35.0  |
| Flow rate of cooling water for EBT (m³/hr)                                           | 63    | 63    | 63    |
| Average quantity of cooling water for EBT, m <sub>He</sub> (kg/t-output)             | 590   | 577   | 773   |
| Mean outlet temperature of cooling water for EBT (°C)                                | 36.8  | 37.8  | 36.5  |
| Inlet temperature of cooling water for EBT (°C)                                      | 34.0  | 34.0  | 35.0  |
| Flow rate of cooling water for elbow (m³/hr)                                         | 117   | 117   | 117   |
| Average quantity of cooling water for elbow, m14a (kg/t-output)                      | 1096  | 1071  | 1436  |
| Mean outlet temperature of cooling water for elbow (°C)                              | 43.4  | 45.0  | 42.9  |
| Inlet temperature of cooling water for elbow (°C)                                    | 34.0  | 34.0  | 35.0  |
| Flow rate of cooling water for shell-1 (m³/hr)                                       | 273   | 273   | 274   |
| Average quantity of cooling water for shell-1, m144 (kg/t-output)                    | 2557  | 2499  | 3363  |
| Mean outlet temperature of cooling water for shell-1 (°C)                            | 37.0  | 38.3  | 36.8  |
| Inlet temperature of cooling water for shell-1 (°C)                                  | 34.0  | 34.0  | 35.0  |
| Flow rate of cooling water for shell-2 (m³/hr)                                       | 274   | 274   | 274   |
| Average quantity of cooling water for shall-2, m <sub>144</sub> (kg/t-output)        | 2567  | 2508  | 3363  |
| Mean outlet temperature of cooling water for shell-2 (°C)                            | 36.8  | 38.0  | 36.8  |
| Inlet temperature of cooling water for shell-2 (°C)                                  | 34.0  | 34.0  | 35.0  |
| Indoor temperature (°C)                                                              | 35.0  | 37.0  | 37.0  |
|                                                                                      |       |       |       |

| Surface area of roof (m <sup>2</sup> )                  | 40    | 40    | 40    |
|---------------------------------------------------------|-------|-------|-------|
| Mean surface temperature of roof (°C)                   | 65,0  | 65.0  | 65.0  |
| Surface area of shell (m <sup>2</sup> )                 | 35    | 35    | 35    |
| Mean surface temperature of shell (°C)                  | 41.4  | 42.4  | 41.2  |
| Mean surface temperature of shell-1 (°C)                | 39,3  | 40.3  | 39.4  |
| Mean surface temperature of shell-2 (°C)                | 43.5  | 44.5  | 42.9  |
| Surface area of furnace bottom (m²)                     | 34    | 34    | 34    |
| Mean Surface temperature of furnace bottom (°C)         | 276.1 | 276.4 | 297.5 |
| Heat in average flow of exhaust gas (1,000 kcal/min)    | 216   | 157   | 227   |
| Consumption of limestone, m <sub>12</sub> (kg/t-output) | 7     | 7     | 8     |

Flow rate, temperature, heat content, composition of the exhaust gas at C/C inlet and outlet are shown as follows:

Figure 12-18: Heat Content and Flow Rate of Exhaust Gas at C/C-inlet, Heat No. 965751

Figure 12-19: Temperature of Exhaust Gas at C/C-inlet and outlet, Heat No. 965751

Figure 12-20: Composition of Exhaust Gas at C/C-inlet, Heat No. 965751

Figure 12-21: Composition of Exhaust Gas at C/C-outlet, Heat No. 965751

Figure 12-22: Heat Content and Flow Rate of Exhaust Gas at C/C-inlet, Heat No. 965752

Figure 12-23: Temperature of Exhaust Gas at C/C-inlet and outlet, Heat No. 965752

Figure 12-24: Composition of Exhaust Gas at C/C-inlet, Heat No. 965752

Figure 12-25: Composition of Exhaust Gas at C/C-outlet, Heat No. 965752

Figure 12-26: Heat Content and Flow Rate of Exhaust Gas at C/C-inlet, Heat No. 965753

Figure 12-27: Temperature of Exhaust Gas at C/C-inlet and outlet, Heat No. 965753

Figure 12-28: Composition of Exhaust Gas at C/C-inlet, Heat No. 965753

Figure 12-29: Composition of Exhaust Gas at C/C-outlet, Heat No. 965753

Those figures are attached to the Appendix-1.

#### (4) Heat Input

Heat inputs for the measured three (3) heats are calculated as shown in Table 12-18. As for calculation formulas, refer to Annex-4.

Table 12-18 Heat Input

| Date         |             |            | <del></del> |    |       |        | <del></del>  | Aug 14 | Aug. 14 | Aug 14       |
|--------------|-------------|------------|-------------|----|-------|--------|--------------|--------|---------|--------------|
| Heat No.     | <del></del> |            |             |    |       |        |              |        | 965752  | <del>-</del> |
|              | ıantity of  | electric p | ower,       | Qı | (1000 | ) x kc | al/t-output) | 312.2  | 309.6   | 325.9        |
| Ratio of hea | •           | _          |             |    |       |        |              | 51.3   | 51.9    | 50.1         |

| ·                                                                                                  |         |           |       |
|----------------------------------------------------------------------------------------------------|---------|-----------|-------|
| Unit consumption of electric power, w <sub>1</sub> (kWh/t-output)                                  | 363     | 360       | 379   |
| (2) Potential heat of hot heel, Q2 (1000 x kcal/t-output)                                          | 41.8    | 40.8      | 41.5  |
| Percentage of potential heat of hot heel in heat input (%)                                         | 6.9     | 6.8       | 6.4   |
| Unit weight of hot heel of raw materials, m <sub>2</sub> (kg/t-output)                             | 130     | 127       | 129   |
| Temperature of hot heel (°C)                                                                       | 1550    | 1550      | 1550  |
| Heat content of hot heel, h <sub>2</sub> (kcal/kg)                                                 | 321.5   | 321.5     | 321.5 |
| (3) Sensible heat of raw materials, Q3 (1000 x kcal/t-output                                       | t) 11.8 | 15.8      | 12.3  |
| Percentage of sensible heat of raw materials in heat input (%)                                     | 1.9     | 2.6       | 1.9   |
| Unit consumption of raw materials, m3 (kg/t-output)                                                | 1111    | Ш         | 31111 |
| Mean temperature of raw materials after SPH (°C)                                                   | 93      | 123       | 97    |
| Heat content of raw materials after SPH hab (kcal/kg)                                              | 10.6    | 14.2      | 11.1  |
| (4) Calorific power of fuel oil, Q4 (kcal/t-output)                                                | 63.0    | 59.0      | 72.0  |
| Percentage of calorific power of fuel oil in heat input (%)                                        | 10.4    | 9.9       | 11.1  |
| Unit consumption of fuel oil, m4 (kg/t-output)                                                     | 6.3     | 5.9       | 7.2   |
| Low heating value of fuel oil, q1 (kcal/kg)                                                        | 10000   | 10000     | 10000 |
| (6) Oxidation heat of electrode, Q6 (1000 x kcal/t-output)                                         | 11.2    | 13.1      | 13.7  |
| Percentage of oxidation heat of electrode in heat input (%)                                        | 1.8     | 2.2       | 2.1   |
| Unit consumption of electrode, m6 (kg/t-output)                                                    | 1.9     | 1.9       | 1.9   |
| C content of electrode (%)                                                                         | 99.7    | . 99.7    | 99.7  |
| Amount of C oxidation of electrode (kg/t-output)                                                   | 1.9     | 1.9       | 1.9   |
| Oxidation heat of electrode at CO <sub>2</sub> formation, q <sub>6</sub> CO <sub>2</sub> (kcal/kg) | 7829    | 7829      | 7829  |
| Oxidation heat of electrode at CO formation, q <sub>6</sub> co (kcal/kg)                           | 2200    | 2200      | 2200  |
| Mean CO <sub>2</sub> content in exhaust gas (CO <sub>2</sub> ) (%)                                 | 14.0    | 17.5      | 12.1  |
| Mean CO content in exhaust gas (CO) (%)                                                            | 7.1     | 3.5       | 1.5   |
| (7) Oxidation heat of charge, Q, (1000 x kcal/t-output)                                            | 103.8   | 107.4     | 113.7 |
| Percentage of oxidation heat of charge in heat input (%)                                           | 17.1    | 18.0      | 17.5  |
| (7a) Oxidation heat of charged C, Q1 (1000 x kcal/t-output)                                        | 30.7    | 36.4      | 36.1  |
| Unit consumption of scrap (kg/t-output)                                                            | 1063    | 1065      | 1067  |
| Unit consumption of pig iron (kg/t-output)                                                         | 48      | 46        | 44    |
| C content of scrap (%)                                                                             | 0.35    | = 0.35  [ | 0.35  |
| C content of pig iron (%)                                                                          | 3.65    | 3.65      | 3.65  |
| C content of molten steel before tapping (%)                                                       | 0.05    | 0.03      | 0.05  |
| Oxidation amount of charged C, m <sub>7a</sub> (kg/t-output)                                       | 5.0     | 5.1       | 4.8   |
| Heat of C oxidation at CO <sub>2</sub> formation, q <sub>7cco2</sub> (kcal/kg)                     | 8075    | 8075      | 8075  |
| Heat of C oxidation at CO formation, q <sub>7cco</sub> (kcal/kg)                                   | 2448    | 2448      | 2448  |
| (7b) Oxidation heat of charged Si, Q7b (1000 x kcal/t-output                                       | 5.7     | 21.1      | 21.0  |
| Si content of scrap (%)                                                                            | 0.23    | 0.23      | 0.23  |
| Si content of pig iron (%)                                                                         | 1.05    | 1.05      | 1.05  |
| Si content of molten steel before tapping (%)                                                      | 0.01    | 0,01      | 0.01  |
| Oxidation amount of charged Si, m <sub>7b</sub> (kg/t-output)                                      | 2.85    | 2.83      | 2.82  |
| Heat of Si, q <sub>76Si</sub> (kcal/kg)                                                            | 7459    | 7459      | 7459  |
| (7c) Oxidation heat of charged Mn, Qrc (1000 x kcal/t-outpo                                        |         | 13.2      | 13.1  |
| Mn content of scrap (%)                                                                            | 0.75    | 0.75      | 0.75  |
| Mn content of pig iron (%)                                                                         | 0.70    | 0.70      | 0.70  |
| Mn content of molten steel before tapping (%)                                                      | 0.04    | 0.04      | 0.05  |
| Oxidation amount of Mn m <sub>7c</sub> (kg/t-output)                                               | 7.91    | 7.91      | 7.81  |
|                                                                                                    |         |           |       |

|                                                                                                                            | 1000  |          | 100   |
|----------------------------------------------------------------------------------------------------------------------------|-------|----------|-------|
| Heat of Mn, q <sub>2cMn</sub> (kcal/kg)                                                                                    | 1674  | 1674     | 1674  |
| (7d) Oxidation heat of charged P, Q7d (1000 x keal/t-output)                                                               | 3.2   | 3.2      | 3.3   |
| P content of scrap (%)                                                                                                     | 0.075 | 0.075    | 0.075 |
| P content of pig iron (%)                                                                                                  | 0.040 | 0.040    | 0.040 |
| P content of molten steel before tapping (%)                                                                               | 0.026 | 0.026    | 0.025 |
| Oxidation amount of P, m74 (kg/t-output)                                                                                   | 0.56  | 0.56     | 0.57  |
| Heat of P, q <sub>7dP</sub> (kcal/kg)                                                                                      | 5811  | 5811     | 5811  |
| (7e) Oxidation heat of charged Cr, Qze (1000 x kcal/t-output)                                                              | 2.6   | 2.4      | 2.6   |
| Cr content of scrap (%)                                                                                                    | 0.150 | 0.150    | 0.150 |
| Cr content of pig iron (%)                                                                                                 | 0.000 | 0.000    | 0.000 |
| Cr content of molten steel before tapping (%)                                                                              | 0.060 | 0.070    | 0.060 |
| Oxidation amount of Cr, m <sub>7c</sub> (kg/t-output)                                                                      | 0.99  | 0.90     | 1.00  |
| Heat of Cr, q <sub>hCr</sub> (kcal/kg)                                                                                     | 2620  | 2620     | 2620  |
| (7f) Oxidation heat of charged Al, Q71 (1000 x kcal/t-output)                                                              | 1.3   | 1.3      | 1.3   |
| Al content of scrap (%)                                                                                                    | 0.017 | 0.017    | 0.017 |
| Al content of pig iron (%)                                                                                                 | 0.000 | 0.000    | 0.000 |
| Al content of molten steel before tapping (%)                                                                              | - '   |          | •     |
| Oxidation amount of Al, m <sub>H</sub> (kg/t-output)                                                                       | 0.18  | 0.18     | 0.18  |
| Heal of Al, q <sub>7fAl</sub> (kcal/kg)                                                                                    | 7419  | 7419     | 7419  |
| (7g) Oxidation heat of charged Fe, Q7g (1000 x kcal/t-output)                                                              | 31.4  | 29.6     | 36.3  |
| Unit weight of slag, m <sub>7g</sub> (kg/t-output)                                                                         | 89    | 84       | 103   |
| Heat of Fe oxidation at FeO formation, 978FeO (kcal/kg)                                                                    | 1151  | 1151     | 1151  |
| Heat of Fe oxidation at Fe <sub>2</sub> O <sub>3</sub> formation, q <sub>7gFe2O3</sub> (kcal/kg)                           | 1756  | 1756     | 1756  |
| FeO content in slag, (FeO) (%)                                                                                             | 9.01  | 9.01     | 9.01  |
| Fe <sub>2</sub> O <sub>3</sub> content in slag (Fe <sub>2</sub> O <sub>3</sub> ) (%)                                       | 22.16 | 22.16    | 22.16 |
| (8) Oxidation heat of carbon injection, Q8 (1000 x kcal/t-                                                                 | 56.4  | 43.4     | 62.0  |
| output)                                                                                                                    |       |          |       |
| Percentage of oxidation heat of carbon injection (%)                                                                       | 9.3   | 7.3      | 9.5   |
| Unit consumption of carbon injection (kg/t-output)                                                                         | 11.4  | 7.6      | 10.4  |
| C content in carbon injection (%)                                                                                          | 80.0  | 80.0     | 80.0  |
| Oxidation amount of carbon injection, m <sub>8a</sub> (kg/t-output)                                                        | 91    | 6.1      | 8.3   |
| (9) Heat of slag formation, Q9 (1000 x kcal/t-output)                                                                      | 8.2   | 7.7      | 9,5   |
| Percentage of heat of slag formation in heat input (%)                                                                     | 1.3   | 1.3      | 1.5   |
| Heat of SiO <sub>2</sub> reaction at Ca <sub>2</sub> SiO <sub>4</sub> formation, q <sub>98iO2</sub> (kcal/kg)              | 502   | 502      | 502   |
| Heat of P2O <sub>5</sub> reaction at Ca <sub>3</sub> P <sub>2</sub> O <sub>3</sub> formation, q <sub>9P2O5</sub> (kcal/kg) | 1070  | 1070     | 1070  |
| SiO <sub>2</sub> content in slag (%)                                                                                       | 17.31 | 17.31    | 17.31 |
| P2Os content in slag (%)                                                                                                   | 0.48  | 0.48     | 0.48  |
| Heat Input,                                                                                                                | 608.3 | 596.7    | 650.6 |
| Qingut (1000 x kcal/t-output)                                                                                              |       | <u> </u> |       |
|                                                                                                                            |       |          |       |

# (5) Heat Output

The Heat outputs for the three (3) measured heats are calculated as shown in Table 12-19. As for calculation formula, refer to Annex-4.

| Date                                                                          |        | Aug. 14                               |                       |
|-------------------------------------------------------------------------------|--------|---------------------------------------|-----------------------|
| Heat No.                                                                      | 965751 | 965752                                |                       |
| (10) Potential heat of molten steel, Q10 (1000 x keal/t-output)               | 384.9  | 391.4                                 | 380.5                 |
| Ratio of potential heat of molten steel (%)                                   | 63.3   | 65.7                                  | 58.5                  |
| (10a) Potential heat of output, q10a (1000 x kcal/t-output)                   | 340,6  | 347.3                                 | 337.0                 |
| Temperature of molten steel before tapping (°C)                               | 1641   | 1673                                  | 1624                  |
| Heat content of molten steel before tapping, h <sub>10a</sub> (kcal/kg)       | 340.6  | 347.3                                 | 337.0                 |
| (10b) Potential heat of hot heel, q10b (1000 x kcal/t-output)                 | 44.3   | 44.1                                  | 43.5                  |
| Unit weight of hot heel of molten steel, m2 (kg/t-output)                     | 130    | 127                                   | 129                   |
| (11) Potential heat of slag, Q11 (1000 x kcal/t-output)                       | 43.1   | 42.3                                  | 48.8                  |
| Ratio of potential heat of slag in output (%)                                 | 7.1    | 7.1                                   | 7.5                   |
| Unit weight of slag, m <sub>11</sub> (kg/t-output)                            | 89     | 84                                    | 103                   |
| Temperature of slag (°C)                                                      | . 1641 | 1673                                  | 1624                  |
| Heat content of slag, h <sub>H</sub> (kcal/kg)                                | 484.2  | 503.4                                 | 474.1                 |
| (12) Heat of limestone decomposition, Q12 (1000 kcal/t-output)                | 2.9    | 2.9                                   | 3.3                   |
| Ratio of heat of limestone decomposition (%)                                  | 0.5    | 0.5                                   | 0.5                   |
| Unit consumption of limestone, m <sub>12</sub> (kg/t-output)                  | 7      | 7                                     | 8                     |
| Heat of decomposition of limestone, q <sub>12CaCO3</sub> (kcal/kg)            | 757    | 757                                   | 757                   |
| CaO content in limestone (%)                                                  |        | 55                                    | 55                    |
| (14) Heat in cooling water, Q <sub>14</sub> (1000 x kcal/t-output)            | 41.9   | 54.0                                  | 40.9                  |
| Ratio of heat in cooling water (%)                                            | 6.9    | 9.1                                   | 6.3                   |
| (14a) Heat in cooling water for clbow, Q14a (1000 x kcal/t-                   | 10,3   | 11.8                                  | 11,3                  |
| output)                                                                       |        |                                       |                       |
| Average quantity of cooling water for elbow, m143 (kg/t-output)               | 1096   | 1071                                  | 1436                  |
| Mean outlet temperature of cooling water for elbow (°C)                       | 43.4   | 45.0                                  | 42.9                  |
| Inlet temperature of cooling water for elbow (°C)                             | 34.0   | 34.0                                  | 35.0                  |
| (14b) Heat in cooling for roof, Q14b (1000 x kcal/t-output)                   | 15,1   | 19.2                                  | 16.3                  |
| Average quantity of cooling water for roof, m <sub>14b</sub> (kg/t-output)    | 3026   | 2957                                  | 3964                  |
| Mean outlet temperature of cooling water for roof (°C)                        | 39.0   | 40.5                                  | 39.1                  |
| Inlet cooling water for roof (°C)                                             | 34.0   | 34.0                                  | 35.0                  |
| (14c) Heat in cooling water for EBT, Q <sub>14c</sub> (1000 x kcal/t-         | 1.7    | 2.2                                   | 1.2                   |
| output)                                                                       |        |                                       | 1                     |
| Average quantity of cooling water for EBT, m <sub>14c</sub> (kg/t-output)     | 590    |                                       |                       |
| Mean outlet temperature of cooling water for EBT (°C)                         | 36.8   |                                       |                       |
| Inlet temperature of cooling water for EBT (°C)                               | 34.0   | · · · · · · · · · · · · · · · · · · · |                       |
| (14d) Heat in cooling water for shell-1, Q14d (1000 x kcal/t-                 | 7.7    | 10.7                                  | 6.1                   |
| output)                                                                       |        |                                       | 222                   |
| Average quantity of cooling water for shell-1, m <sub>141</sub> (kg/t-output) | 2557   |                                       |                       |
| Mean outlet temperature of cooling water for shell-1 (°C)                     | 37.0   |                                       | and the second second |
| Inlet temperature of cooling water for shell-1 (°C)                           | 34.0   | <del></del>                           |                       |
| (14e) Heat in cooling water for shell-2, Q <sub>14e</sub> (1000 x kcal/t-     | 7.2    | 10.0                                  | 6.1                   |
| output)                                                                       | 02/0   | 0500                                  | 2262                  |
| Average quantity of cooling water for shell-2, m <sub>t40</sub> (kg/t-output) | 2567   |                                       |                       |
| Mean outlet temperature of cooling water for shell-2 (°C)                     | 36.8   | 38.0                                  | 36.8                  |

#### (6) Heat Balance

Heat balance sheets are shown in Figures 12-30, 12-31 and 12-32.

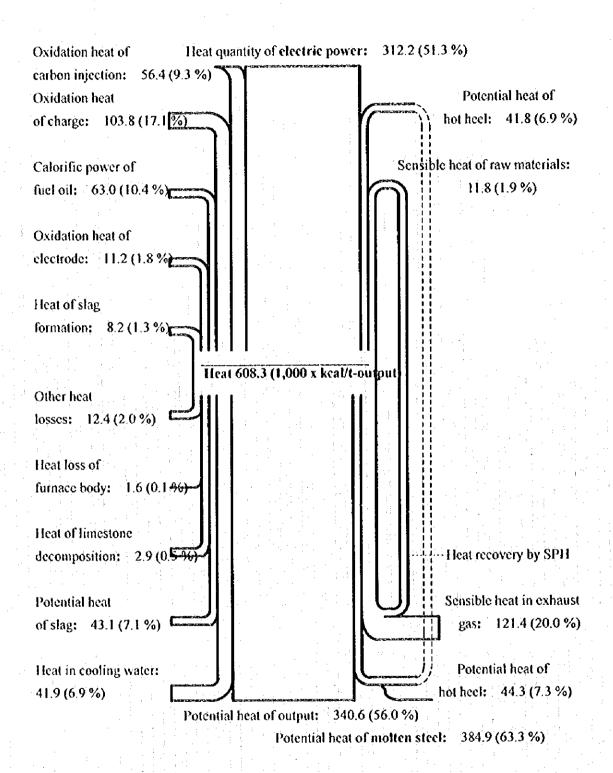



Figure 12-30 Heat Balance of Heat No. 965751

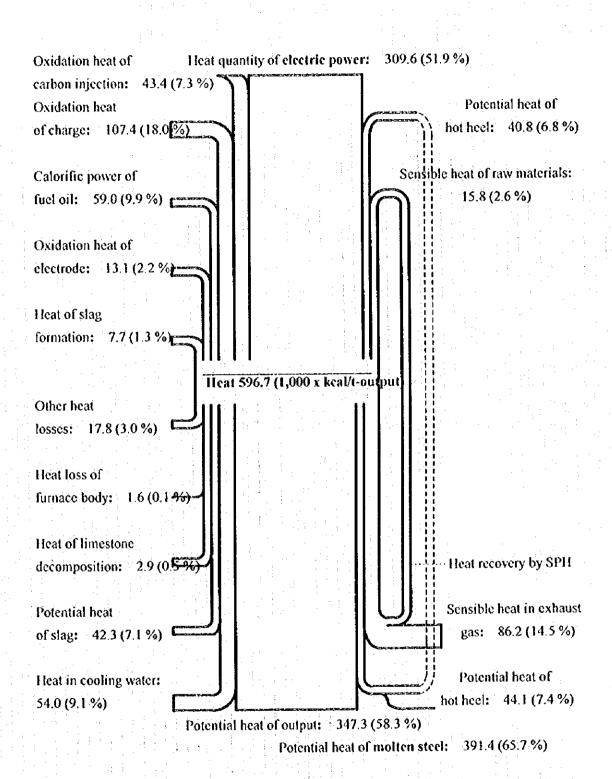



Figure 12-31 Heat Balance of Heat No. 965752

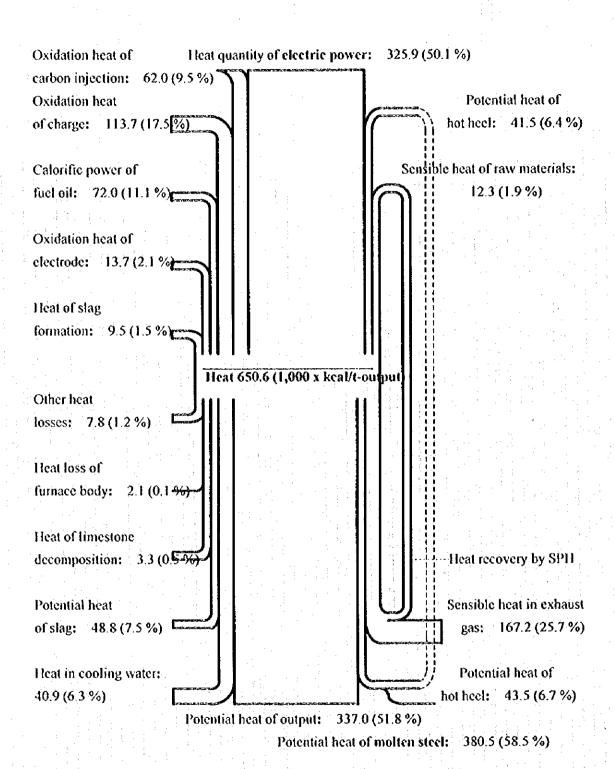



Figure 12-32 Heat Balance of Heat No. 965753

#### 12-9-4 Analysis

## (1) General Analysis

#### 1) Observed Characteristics of Heat Balance

Each heat balance sheef shows the following characteristics.

- 1. "Other heat losses" shows almost the same values for all heats, 2.0 % for Heat No. 965751, 3.0 % for Heat No. 965752 and 1.2 % for No. 965753.
- 2. Production of one ton required 650,600 kcal for Heat No. 965753, which is approximately 7 to 8 percent higher than 608,300 kcal for Heat No. 965751 and 596,200 kcal for Heat No. 965752.

In this measurement the electrical heat loss was not measured. The electrical heat loss is usually approximately 2 percent. Therefore, for Item 1 above, "other heat losses" of 1.2 to 3.0 percent is very close to the practical minimum value and also corresponds to the accepted level of electrical heat loss. This may be interpreted to mean that the selected three heats were successfully measured. Incidentally, for other heats, Heat Nos. 965729, 965773, 965776 and 965777 for example, "other heat losses" shows 6.6, 4.9, 11.4, and minus 0.2 percent, respectively. For Item 2 above, Heat No. 965753 required a longer tap-to-tap time than other heats; naturally, heat consumption increased.

#### 2) Comparison with Other Furnaces

Table 12-19 compares the heat balances of IDC with certain Japanese cases. The following may be noted from this table.

- 1. IDC's heat quantity of electric power. Not different for the Japanese cases
- 2. IDC's potential heat of hot heel: No comment
- 3. IDC's sensible heat of raw materials: Lower than the Japanese cases. This could be attributable to operation of the SPH of which improvement is required in IDC.
- 4. IDC's calorific power of fuel oil: Higher. This shows a better performance of IDC from the standpoint of heat balance.
- 5. IDC's oxidation heat of electrode: Lower. This shows inferior performance from the standpoint of heat balance, although the operation is better.
- 6. IDC's oxidation heat of charge: Lower. Oxidation heat of charge depends on the types of the raw materials.
- 7. IDC's oxidation heat of additives: Lower. Furnaces in Japan usually use lump

cokes in the first bucket which IDC does not use.

- 8. IDC's heat of slag formation: No comment.
- 9. IDC's potential heat of molten steel: Higher. This is indicative of better operation.
- 10. HDC's potential heat of hot heel: No comment.
- 11. IDC's potential heat of slag: Higher. Higher potential heat of slag is undesirable from the standpoint of heat balance.
- 12. IDC's heat of limestone decomposition: No comment.
- 13. IDC's heat in cooling water: Lower, Lower ration means that the heat balance is better.
- 14. IDC's sensible heat in exhaust gas: Higher. Higher sensible heat is worse from the standpoint of heat balance.
- 15. IDC's heat loss at furnace body: No comment.
- 16. IDC's other heat loss: No comment.

Table 12-19 Comparison of Heat Input and Output

|                                     | Trace VI             | Leat Mo   | Light V.  |           |                                        |           |
|-------------------------------------|----------------------|-----------|-----------|-----------|----------------------------------------|-----------|
| Fumace                              | 965751               | 965752    | 965753    | 125 t Fce | 80 tF'ce                               | 50 t F'ce |
| items ***                           | Ratio (%)            | Ratio (%) | Ratio (%) | Ratio (%) | Ratio (%)                              | Ratio (%) |
| 1. Heat Input                       |                      |           |           |           |                                        | :         |
| (1) Heat quantity of electric power | 51.3                 | 51.9      | 50.1      | 50.4      | 47                                     | 54.9      |
| (2) Potential heat of hot heel      | 6.9                  | 6.8       | 6.4       | 8.0       |                                        | *         |
| (3) Sensible heat of raw materials  | 5.1                  | 2.6       | 1.9       | 4.9       |                                        | 2.9       |
| (4) Calorific power of fuel oil     | 10.4                 | 6.6       | 11.1      | 0.5       | ************************************** | 4.7       |
| (5) Oxidation heat of electrode     | 1.8                  | 2.2       | 2.1       | 2.8       | <b>પ</b>                               | 4.3       |
| (6) Oxidation heat of charge        | 17.1                 | 18.0      | 17.5      | 21.0      | 20                                     | 9.5       |
| (7) Oxidation heat of additives     | 9.3                  | 7.3       | 5.6       | 12.4      | 20                                     | 23.7      |
| (8) Heat of stag formation          | 61<br>61<br>61<br>61 | 1.3       | 1.5       | 0.4       |                                        |           |
| (9) Heat input, total               | 100.0                | 100.0     | 100.0     | 100.0     | 100                                    | 100.0     |
| 2. Heat Output                      |                      |           |           |           |                                        |           |
| (1) Potential heat of molten steel  | 26.0                 | 58.3      | 51.8      | 51.2      | 51                                     | 51.5      |
| (2) Potential heat of hot heel      | 7.3                  | 7.4       | 6.7       | 8.0       |                                        |           |
| (5) Potential heat of slag          | 7.1                  | 7.1       | 7.5       | 4.9       | <b>v</b>                               | 4.4       |
| (4) Heat of limestone decomposition | 0.5                  | 0.5       | 0.5       | •         | •                                      |           |
|                                     |                      |           |           |           |                                        |           |

| (5) Heat in cooling water        | 6.9   | 1.6   | 6.3   | 7.6   | 15.0  | 20.1  |
|----------------------------------|-------|-------|-------|-------|-------|-------|
| (6) Sensible heat in exhaust gas | 20.0  | 14.5  | 25.7  | 16,4  | 15.0  | •     |
| (7) Heat loss at furnace body    | 0.1   | 0.1   | 0.1   | •     | t .   | •     |
| (8) Other heat loss              | 2.0   | 3.0   | 1.2   | 11.9  | 14.0  | 24.0  |
| (9) Heat output, total           | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |

Note: 1) Oxidation heat of additives means that of carbon charged and injected.

2) In case of IDC's heat, electrical heat loss is not measured.

3) In case of 125 t Fice, heat loss at fumace body and electrical heat loss are not measured.

4) In case of 80 t Fice, heat of slag formation is not measured.

5) In case of 80 t Fice, oxidation heat of charge includes the calorific power of oil adhered to scrap of 8%.

6) In case of 80 t Fee, other heat loss is of heat loss at furnace body and electrical heat loss.

7) In case of 50 tFce, heat of slag formation is not measured.

8) In case of 50 tFice, sensible heat in exhaust gas is included in other heat loss.

# (2) Heat Quantity of Electric Power

It may be noted from Table 12-19 that the heat quantity of electric power of about 51 percent is not different from those of the selected furnaces of Japan.

#### (3) Potential Heat of Hot Heel

3

The Potential heat of hot heel is about 7 percent in the heat input on the assumption that the temperature of hot heel is 1,550 °C. From the standpoint of heat balance, if its temperature is higher by 10 °C, energy saving of 2,100 kcal/t (2.4 kWh/t) will be realized. Therefore, power-on of the subsequent heat should start immediately to prevent the temperature drop of hot heel.

## (4) Sensible Heat of Raw Materials - Effectiveness of SPII

In this measurement, temperature of raw materials is represented by bucket temperature. Raw materials are charged to the EAF by three buckets, of which the first and second buckets are preheated in SPH. Figure 12-33 shows the relationship between bucket temperature and the residence time in SPH. With the exception of one measurement, longer residence times in SPH indicate a possibility to raise the bucket temperature higher. The residence time in SPH should be as longer as possible within the tap-to-tap time limit of EAF.

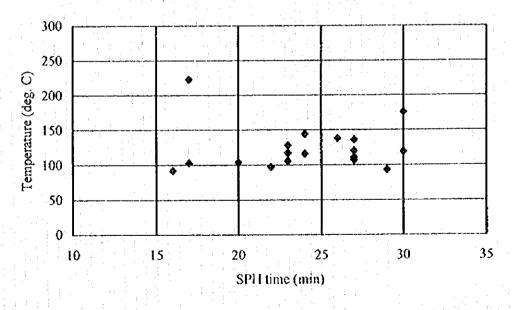



Figure 12-33 Relationship between Bucket Temperature and SPH Time

The heat balance indicates that if the third bucket could also be preheated by modification of the existing SPH, electric power of 6.8 kWh/t and production cost of 17,900 USD/M will be saved.

At present:

1st bucket 42 t x 150 °C after 30 min. preheating

2nd bucket 28 t x 100 °C after 15 min. preheating

3rd bucket 16 t x 35 °C at indoor temperature

Average

112.3 °C

Heat input = 12.88 kcal (heat of scrap at 112.3 °C for 1 kg)

x 1111 kg (unit consumption of raw materials)

/860 kcal (per kWh) = 16.6 kWh/t

Improvement: 1st bucket 42 t x 150 °C after 30 min. preheating

2nd bucket 28 t x 180 °C after 40 min. preheating

3rd bucket 16 t x 130 °C after 25 min. preheating

Average

156.0 °C

Heat input = 18.14 kcal (heat of scrap at 156 °C for 1 kg)

x 1111 kg (unit consumption of raw materials)

/860 kcal (per kWh) = 23.4 kWh/t

Saving of electric power: 23.4 - 16.6 = 6.8 kWh/t

Saving of production cost: 6.8 kWh/t x 0.044 USD/kWh = 0.299 USD/t

= 17,900 USD/M at production of 60,000 t/M.

Schematic diagrams of SPH operation and bucket charge for existing and after modification are shown in Figure 12-34 and Figure 12-35, respectively.

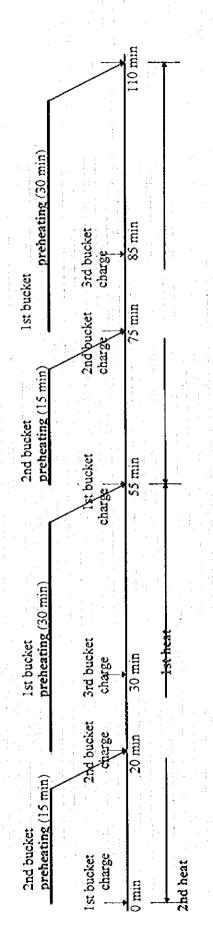



Figure 12-34 Schematic Diagram of SPH Operation and Bucket Charge - Existing -

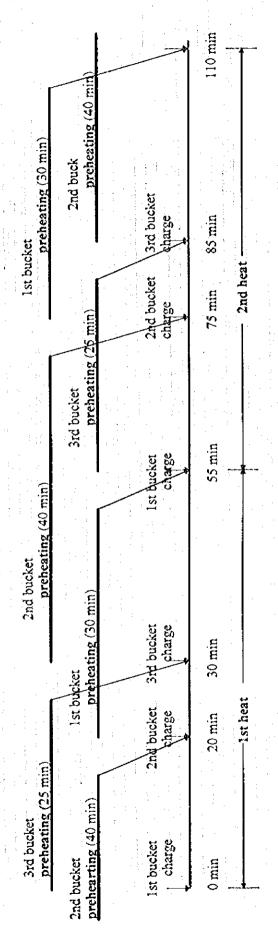



Figure 12-35 Schematic Diagram of SPH Operation and Bucket Charge - After Modification -

#### (5) Calorific Power of Fuel - Effectiveness of Oxy-Fuel Burners

= 5.2 kWh/t-output

The ratio of calorific power of fuel oil to the total heat input is approximately 10 percent. The charged material, scrap and pig iron, shall be melted of as fast as possible by energy of electric power with the help of the oxy-fuel burners and oxy-lancing method.

The ratio of O<sub>2</sub>/Oil (Nm<sup>3</sup>/kg) of oxy-fuel burners varies from one heat to another and with the burner as shown in Table 12-20. The ratio of O<sub>2</sub>/Oil occasionally varies accidentally due to clogging of the burner tip. Clogging must be prevented by daily maintenance and the burner designs must be improved to prevent clogging.

Table 12-20 shows that the oxy-fuel burners were used for 24 minutes and the flow rate of fuel oil was 293 kg/hr. If the flow rate of fuel oil is increased to 380 kg/hr and a constant ratio of O<sub>2</sub>/Oil is maintained by improvement of this system, electric power consumption of 5.2 kWh/t-output, which corresponds to the production cost of 9,700 USD/M, will be saved.

Saving of electric power: (380 - 293) kg/hr x 24 min./60 min. = 35 kg/heat = 0.45 kg/t-output (x 10,000 kcal/kg) = 4,500 kcal/t-output (/860 kcal/kWh)

Saving of production cost: 5.2 kWh/t x 0.044 USD/kWh - 0.45 kg/t x 0.15 USD/kg = 0.161 USD/t = 9,700 USD/M at production of 60,000 t/M

Table 12-20 Flow Rate of Oxygen Gas and Fuel Oil for Oxy-Fuel Burner

| Heat No  |                                      | 965749 | 965750 | 157596 | 965752 | 965753 | 965773 | 965774 | 965775 | 96 977 896 | 965777 | Average |
|----------|--------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|---------|
| No. 1    | Duration (min)                       | 24     | 25     | 20     | 26     | 23     | 24     | 25     | 21     | 24         |        | 23.6    |
| Burner   | O <sub>2</sub> (Nm <sup>3</sup> )    | 280    | 290    | 232    | 365    | 249    | 252    | 273    | 236    | 268        |        | 272     |
| -        | Oil (kg)                             | 121    | 105    | 133    | 104    | 182    | 94     | 121    | 95     | 107        |        | 118     |
|          | O <sub>2</sub> (Nm <sup>3</sup> /nr) | 700    | 969    | 969    | 842    | 650    | 630    | 655    | 674    | 029        |        | 690     |
|          | Oil (kg/hr)                          | 303    | 252    | 399    | 240    | 475    | 235    | 290    | 271    | 268        |        | 304     |
|          | O <sub>2</sub> /Oil (Nm³/kg)         | 2.31   | 2.76   | 174    | 3.51   | 1.37   | 2.68   | 2.26   | 2.48   | 2.50       |        | 2.40    |
| No.2     | Duration (min)                       | 24     | 25     | 25     | 26     | 23     | 24     | 25     | 21     | 24         |        | 24.1    |
| Burner   | O. (Na.)                             | 248    | 283    | 285    | 301    | 255    | 278    | 293    | 257    | 278        | t.     | 275     |
|          | Oil (kg)                             | 132    | 158    | 162    | 107    | 136    | 101    | 151    | 169    | 164        |        | 142     |
|          | O. (Nm3/hr)                          | 620    | 619    | 684    | 695    | 665    | 695    | 703    | 734    | 569        |        | 989     |
|          | Oil (kg/hr)                          | 330    | 379    | 389    | 247    | 355    | 253    | 362    | 483    | 410        |        | 356     |
|          | O <sub>2</sub> /Oil (Nm³/kg)         | 1.88   | 1.79   | 1.76   | 2.81   | 1.88   | 2.75   | 1.94   | 1.52   | 1.70       |        | 2.00    |
| No.3     | Duration (min)                       | 24     | 25     | 112    | 26     | 23     | 24     | 25     | 21     | 24         |        | 22.7    |
| Burner   | O. (Nm³)                             | 265    | 286    | 152    | 307    | 249    | 264    | 282    | 250    | 268        | 1 1+   | 258     |
| :        | Oii (kg)                             | 8      | 100    | 56     | 101    | 93     | 82     | 95     | 85     | 87         |        | 88      |
|          | O <sub>2</sub> (Nm³/hr)              | 663    | 989    | 760    | 708    | 650    | 099    | 677    | 714    | 670        |        | 688     |
| : :      | Oil (kg/nr)                          | 240    | 240    | 280    | 233    | 243    | 205    | 228    | 275    | 218        | i i    | 240     |
|          | O <sub>2</sub> /Oil (Nm³/kg)         | 2.76   | 2.86   | 2.71   | 3.04   | 2.68   | 3.22   | 2.97   | 2.94   | 3.08       |        | 2.92    |
| No.4     | Duration (min)                       | 24     | 25     | 25     | 26     | 23     | 24     | 25     | 21     | 24         | •      | 24.1    |
| Burner ( | O. (Nm³)                             | 288    | 307    | 297    | 308    | 272    | 332    | 330    | 275    | 297        |        | 301     |
|          | Oil (kg)                             | 106    | 113    | 112    | 117    | 124    | 102    | 116    | 83     | 105        |        | 110     |
|          | O <sub>2</sub> (Nm <sup>2</sup> /hr) | 720    | 737    | 713    | 711    | 710    | 830    | 792    | 786    | 743        |        | 749     |
|          | Oil (kg/hr)                          | 265    | 27.1   | 269    | 270    | 323    | 255    | 278    | 266    | 592        |        | 273     |
|          | O <sub>2</sub> /Oil (Nm³/kg)         | 2.72   | 2.72   | 2.65   | 2.63   | 2.19   | 3.25   | 2.84   | 2.96   | 2.83       |        | 2.76    |
|          |                                      |        |        |        |        |        |        |        |        |            |        |         |

#### (6) Oxidation Heat of Electrodes

The oxidation heat of electrodes is approximately 2 percent on the heat input. It is lower than that of other furnaces in Japan. Lower oxidation heat of electrodes is worse from the standpoint of heat balance but is better in operation results.

#### (7) Oxidation Heat of Charge

The oxidation heat of charge is approximately 18 percent, second only to the 51 percent of electrical energy in heat input. This figure varies depending on the kind of raw materials. Table 12-21 compares oxidation heat of pig iron and scrap. Calculation was done assuming the conditions to be the same as those of the measurement. Oxidation heat of pig iron is higher by 298,200 kcal/t than that of scrap. This means that pig iron has an additional value of approximately 14 USD/t compared with scrap in the heat balance. This will be a factor for judging which raw material should be purchased.

(373,400 - 98,100) kcal/860 kcal (per kWh) x 0.044 USD (per kWh) = 14.09 USD/t

Table 12-21 Comparison of Oxidation Heat of Pig iron and Scrap

| interior de la companya de la compa | and the second second |       |
|----------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| Kind of raw materials                                                                                          | pig iron              | scrap |
| Mean CO <sub>2</sub> content in exhaust gas (CO <sub>2</sub> ) (%)                                             | 14.7                  | 14.7  |
| Mean CO content in exhaust gas (CO) (%)                                                                        | 4.7                   | 4.7   |
| (7) Oxidation heat of charge, Q <sub>1</sub> (1000 x kcal/t-output)                                            | 373.4                 | 98.1  |
| (7a) Oxidation heat of charged C, Q <sub>7i</sub> (1000 x kcal/t-output)                                       | 245.8                 | 23.6  |
| Unit consumption of scrap (kg/t-output)                                                                        | 0                     | 1000  |
| Unit consumption of pig iron (kg/t-output)                                                                     | 1000                  | 0     |
| C content(%)                                                                                                   | 3.65                  | 0.35  |
| C content of molten steel before tapping (%)                                                                   | 0.00                  | 0.00  |
| Oxidation amount of charged C, m <sub>7a</sub> (kg/t-output)                                                   | 36.5                  | 3.5   |
| Heat of C oxidation at CO <sub>2</sub> formation, q <sub>2CCO2</sub> (keal/kg)                                 | 8075                  | 8075  |
| Heat of C oxidation at CO formation, q <sub>7CCO</sub> (kcal/kg)                                               | 2448                  | 2448  |
| (7b) Oxidation heat of charged Si, Q <sub>7b</sub> (1000 x keal/t-output)                                      | 78.3                  | 17.2  |
| Si content                                                                                                     | 1.05                  | 0.23  |
| Si content of molten steel before tapping (%)                                                                  | 0.00                  | 0.00  |
| Oxidation amount of charged Si, m <sub>76</sub> (kg/t-output)                                                  | 10.50                 | 2.30  |
| Heat of Si, q <sub>nss</sub> (kcal/kg)                                                                         | 7459                  | 7459  |
| (7c) Oxidation heat of charged Mn, Q <sub>rc</sub> (1000 x kcal/t-output)                                      | 11.7                  | 12.6  |
| Mn content(%)                                                                                                  | 0.70                  | 0.75  |
| Mn content of molten steel before tapping (%)                                                                  | 0.00                  | 0.00  |
| Oxidation amount of Mn, m <sub>7c</sub> (kg/t-output)                                                          | 7.00                  | 7.50  |
| Heat of Mn, q <sub>1cMn</sub> (kcal/kg)                                                                        | 1674                  | 1674  |
| (7d) Oxidation heat of charged P, Q2d (1000 x kcal/t-output)                                                   | 2.3                   | 4.4   |
|                                                                                                                |                       |       |

|                                                                                                  |       | :     |
|--------------------------------------------------------------------------------------------------|-------|-------|
| P content (%)                                                                                    | 0.040 | 0.075 |
| P content of molten steel before tapping (%)                                                     | 0.000 | 0.000 |
| Oxidation amount of P, m <sub>74</sub> (kg/t-output)                                             | 0.40  | 0.75  |
| Heat of P, $q_{7dP}$ (kcal/kg)                                                                   | 5811  | 5811  |
| (7e) Oxidation heat of charged Cr, Q <sub>1e</sub> (1000 x kcal/t-output)                        | 0.0   | 3.9   |
| Cr content of scrap (%)                                                                          | 0.000 | 0.150 |
| Cr content of molten steel before tapping (%)                                                    | 0.000 | 0,000 |
| Oxidation amount of Cr, m <sub>7e</sub> (kg/t-output)                                            | 0.00  | 1.50  |
| Heat of Cr, q <sub>xcr</sub> (kcal/kg)                                                           | 2620  | 2620  |
| (7f) Oxidation heat of charged Al, Qn (1000 x kcal/t-output)                                     | 0.0   | 1.3   |
| Al content (%)                                                                                   | 0.000 | 0.017 |
| Al content of molten steel before tapping (%)                                                    | 0.0   | 0.0   |
| Oxidation amount of Al, m <sub>71</sub> (kg/t-output)                                            | 0.00  | 0.17  |
| Heat of Al, q <sub>7/Al</sub> (kcal/kg)                                                          | 7419  | 7419  |
| (7g) Oxidation heat of charged Fe, Q <sub>Ig</sub> (1000 x kcal/t-output)                        | 35,3  | 35.3  |
| Unit weight of slag, m <sub>7g</sub> (kg/t-output)                                               | 100   | 100   |
| Heat of Fe oxidation at FeO formation, q <sub>1gFeO</sub> (kcal/kg)                              | 1151  | 1151  |
| Heat of Fe exidation at Fe <sub>2</sub> O <sub>3</sub> formation, q <sub>1gFe2O3</sub> (kcal/kg) | 1756  | 1756  |
| FeO content in slag, (FeO) (%)                                                                   | 9.01  | 9.01  |
| Fe <sub>2</sub> O <sub>3</sub> content in slag (Fe <sub>2</sub> O <sub>3</sub> ) (%)             | 22.16 | 22.16 |

## (8) Oxidation Heat of Carbon Injection

Carbon injection is originally one of the operation methods to generate foamy slag in order to save electrical energy surrounding the arc by foamy slag. But in heat balance, it is considered one of the energy sources. In the case of IDC the oxidation heat is approximately 8 percent of the heat input and is lower than that of furnaces in Japan, because furnaces in Japan usually use lump cokes in the first bucket in addition to carbon injection.

#### (9) Iteat of Slag Formation

Table 12-22 gives consumption of burnt lime, slag generation and their heat balance recorded in Heat No. 965752 and 965753 as an example of heat of slag formation.

Table 12-22 Consumption of Burnt Lime, Slag Generation and Heat Balance

| Heat No.                                                 | 965752 | 965753 |
|----------------------------------------------------------|--------|--------|
| Consumption of burnt lime (kg/heat)                      | 1790   | 2150   |
| Unit consumption of burnt lime (kg/t-output)             | 22.8   | 27.8   |
| Slag generation (kg/heat)                                | 66t0   | 7939   |
| Unit weight of slag (kg/t-output)                        | 84     | 103    |
| Heat of slag formation (1,000 kcal/t-output), Heat Input | 7.7    | 9,5    |

The potential heat of slag of Heat No. 965753 is higher by 6,500 kcal/t-output than that of Heat No. 965752 while the heat of slag formation of the former is higher only by 1,800 kcal/t-output than the latter. This suggests excessive charging of burnt lime; therefore, the consumption of burnt lime should be restudied taking the heat balance and also content of phosphorus and sulfur in the molten steel into consideration.

If consumption of burnt lime would be decreased to 25.6 kg/t-output (2,000 kg/heat) from 38.4 kg/t-output (3,000 kg/heat), the data collected during the first field survey, Table 12-23 shows the expected improvements in lime consumption, slag generation and heat balance resulting from the decrease in the use of burnt lime.

Table 12-23 Expected Improvements from Reduction of Burnt Lime Use

|                                                           | Jan Oct. | Proposed | Improve- |
|-----------------------------------------------------------|----------|----------|----------|
|                                                           | 1995     | target   | ment     |
| Consumption of burnt lime (kg/heat)                       | 3,000    | 2,000    | + 1,000  |
| Unit consumption of burnt lime (kg/t-output)              | 38.4     | 25.6     | + 12.8   |
| Slag generation (t/heat)                                  | 11.078   | 7.385    | + 3.693  |
| Unit weight of slag (kg/t-output)                         | 142      | 95       | + 47     |
| Heat of slag formation (1,000 kcal/t-output), Heat Input  | 13.1     | 8.7      | -4.4     |
| Potential heat of slag (1,000 kcal/t-output), Heat Output | 67.0     | 44.8     | 1 22.2   |

Accordingly, 17,800 kcal/t-output (20.7 kWh/t-output) will be reduced in heat balance and unit consumption of burnt lime will also be reduced by 12.8 kg/t-output.

Production cost saving: Burnt time 12.8 kg/t-MS x 0.043 USD/kg = 0.55 USD/t-MS 20.7 kWh/t/MS x 0.044 USD/kg = 0.91 USD/t-MS

Total: 1.46 USD/t-MS

= 87,000 USD/M at production of 60,000 VM.

#### (10) Potential Heat of Molten Steel

The potential heat of molten steel, excluding that of hot heel, is 56.0, 58.3 and 51.8 percent of the heat output. These percentages are higher than the approximate Japanese value of 51 percent and may be regarded as an indication of IDC's good performance.

#### (11) Potential Heat of Slag

See sub-section 12-9-4 (9) above.

#### (12) Heat of Limestone Decomposition

The quality of burnt lime used by IDC is not always good. It contains approximately 30 percent of uncalcined limestone. If burnt lime of good quality could be purchased at the same price as the present burnt lime, 3.4 kWh/t will be saved from the standpoint of heat balance.

2.900 kcal/t (/860 kcal/kWh) = 3.4 kWh/t at the unit consumption of burnt lime of 23.3 kg/t

## (13) Heat in Cooling Water

Heat carried out by cooling water was 6.9, 9.1 and 6.3 percent on the heat output, rather large heat losses. As shown in Table 12-24, average temperature difference between the inlet and outlet was 9.7 °C for the elbow, 5.0 °C for the roof, 2.6 °C for EBT, 2.3 °C shell-1 and 2.5 °C shell-2. These temperature differences were very small. Mean maximum outlet temperatures were 49.8 °C for elbow, 42.1 °C for roof, 38.7 °C for EBT, 38.3 °C for shell-1 and 38.1 °C for shell-2. If the mean maximum outlet temperature could be raised to 58 °C, the design temperature rise of 23 °C higher than the inlet temperature of 35 °C in tubular cooling system, the quantity of cooling water would be decreased by about 7.7 t/t-output (800 m³/hr) and 6,500 USD/M would be saved from the standpoint of heat balance.

(10,159 - 2,442) kg/t-output x 0.014 USD/t = 0.108 USD/t-output = 6,500 USD/M at 60,000 t/M of production

 $(1.053 - 254) \text{ m}^3/\text{hr} = 799 \text{ m}^3/\text{hr}$ 

The present practice of muffling the arc by slag, thereby preventing water cooling panels from being exposed directly to the arc, is a very good one. In case IDC decreases the amount of cooling water, it should be done step by step each time by a small amount and IDC should see the results before further decreasing cooling water.

Table 12-24 Improvement of Cooling Water for Furnace

|                                                                      |               |       |        |        | :      |        |        |        |        |            |        |               |
|----------------------------------------------------------------------|---------------|-------|--------|--------|--------|--------|--------|--------|--------|------------|--------|---------------|
| Date                                                                 | Aug.          | Aug.  | Aug.   | Aug.   | Aug.   | Aug.   | Aug.   | Aug.   | Aug.   | Aug. Aver- |        | Im-<br>prove- |
| Heat No.                                                             | 5749          | 5750  | 5751   | 5752   | 5753   | 5773   | 5774   | 5775   | 5776   | 5777       |        | ment          |
| (14) Heat in cooling water,<br>Q14 (1000 x kcal/t-output)            | 42.2          | 44.5  | 41.9   | 54.0   | 40.9   | 44.3   | 39.4   | 40.8   | 26.7   | 25.7       | 40.6   | 9.04          |
| Quantity of cooling water (kg/t-output)                              | 5066          | 10576 | 9836   | 9612   | 12898  | 10113  | 9848   | 8439   | 8993   | 11373      | 10159  | 2442          |
| Output (t/heat)                                                      | 77.130 77.400 |       | 76.860 | 78.660 | 77.400 | 77.238 | 76.914 | 76.824 | 75.960 | 76.626     | 77.101 | 77.101        |
| Power on-to-power off time (hr/heat)                                 | 0.72          | 0.77  | 0.72   | 0.72   | 0.95   | 0.73   | 0.72   | 0.63   | 0.65   | 0.83       | 0.74   | 0.74          |
| Flow rate of cooling water (m³/far)                                  | 1061          | 1063  | 1050   | 1050   | 1051   | 1070   | 1052   | 1029   | 1051   | 1050       | 1053   | 254           |
| (14a) Heat in cooling water for elbow, Q;4a (1000 x kcal/t-output)   | 11.8          | 11.3  | 10.3   | 11.8   | 11.3   | 11.3   | 12.5   | 10.5   | 8.8    | 8.0        | 10.9   | 10.9          |
| Quantity of cooling water for elbow, m <sub>14a</sub> (kg/t-output)  | 1092          | 1164  | 9601   | 1071   | 1436   | 1106   | 1095   | 956    | 1001   | 1267       | 1129   | 637           |
| Maximum outlet temperature of cooling water for elbow $(^{\circ}C)$  | 50.3          | 48.1  | 6.65   | 51.3   | \$2.1  | 48.2   | 51.1   | 50.1   | 49.3   | 47.5       | 49.8   | 28.0          |
| Mean outlet temperature of cooling water for elbow (°C)              | 44.8          | 43.7  | 43.4   | 45.0   | 45.9   | 42.2   | 45.4   | 45.0   | 44.8   | 41.3       | 43.9   | 52.1          |
| Inlet temperature of cooling water for elbow $({}^{\circ}C)$         | 34.0          | 34.0  | 34.0   | 34.0   | 35.0   | 32.0   | 34.0   | 34.0   | 36.0   | 35.0       | 34.2   | 35.0          |
| (14b) Heat in cooling for roof,<br>Q14b (1000 x kcal/t-output)       | 15.2          | 16.7  | 15.1   | 19.2   | 16.2   | 17.9   | 15.1   | 14.8   | 11.9   | 11.9       | 15.6   | 15.6          |
| Quantity of cooling water for roof, m <sub>148</sub> (kg/t-output)   | 3109          | 3343  | 3026   | 2957   | 3963   | 3138   | 3024   | 2469   | 2764   | 3499       | 3129   | 776           |
| Maximum outlet temperature of cooling water for roof $({}^{\circ}C)$ | 41.3          | 41.6  | 42.3   | 43.3   | 41.9   | 40.7   | 42.1   | 42.3   | 43.6   | 42.2       | 42.1   | 58.0          |
| Mean outlet temperature of cooling water for roof (°C)               | 38.9          | 39.0  | 39.0   | 40.5   | 39.1   | 37.7   | 39.0   | 0.0    | 40.3   | 38.4       | 39.2   | 55.1          |

|                                                                                  |      | :<br>- ( |        |          | 0    | 000  | 076  | , C  | 3,40 | 35.0 | 6      | 35.0 |
|----------------------------------------------------------------------------------|------|----------|--------|----------|------|------|------|------|------|------|--------|------|
| Inlet cooling water for fool $({}^{\circ}C)$                                     | 0.46 | 0.40     | 5<br>5 | )<br>1   | 0.00 | 0.70 | 74.0 | 7.0  | 20.0 | 3.00 | i<br>r | S    |
| (14c) Heat in cooling water for EBT, Qiac (1000 x kcal/t-output)                 | 1.6  | 8        | 1.7    | 5.<br>Ci | 1.2  | 1.7  | 8.   | 8 .  | 8.0  | 8.0  | 1.5    | 1.5  |
| Average quantity of cooling water for EBT m <sub>14c</sub> (kg/t-output)         | 588  | 627      | 290    | 577      | 773  | 595  | 290  | 517  | 239  | 682  | 809    | 71   |
| Maximum outlet temperature of cooling water for EBT (°C)                         | 38.2 | 40.1     | 39.2   | 39.3     | 37.5 | 36.4 | 40.1 | 38.6 | 39.4 | 38.1 | 38.7   | 58.0 |
| Mean outlet temperature of cooling water for FBT (°C)                            | 36.7 | 36.8     | 36.8   | 37.8     | 36.5 | 34.8 | 37.0 | 37.4 | 37.5 | 36.2 | 36.8   | 56.1 |
| Inlet temperature of cooling water for EBT (°C)                                  | 34.0 | 34.0     | 34.0   | 34.0     | 35.0 | 32.0 | 34.0 | 34.0 | 36.0 | 35.0 | 34.2   | 35.0 |
| (14d) Heat in cooling water for shell-1, Old (1000 x kcal/t-output)              | 6.4  | 8.9      | 7.7    | 10.7     | 6.1  | 6.4  | 5.1  | 6.3  | 1 6  | 1.2  | 9      | 0.9  |
| Quantity of cooling water for shell-1, mise (kg/t-output)                        | 2558 | 2716     | 2557   | 2499     | 3363 | 2665 | 2565 | 2247 | 2336 | 2957 | 2646   | 652  |
| Maximum outlet temperature of cooling water for Shell-1. (°C)                    | 37.8 | 37.7     | 41.7   | 40.6     | 38.7 | 35.7 | 38.2 | 38.0 | 37.8 | 36.8 | 38.3   | 58.0 |
| Mean outlet temperature of cooling water for shell-1 (°C)                        | 36.5 | 36.5     | 37.0   | 38.3     | 36.8 | 34.4 | 36.0 | 36.8 | 36.8 | 35.4 | 36.5   | 44.2 |
| Inlet temperature of cooling water for shell-1 $(^{\circ}C)$                     | 34.0 | 34.0     | 34.0   | 34.0     | 35.0 | 32.0 | 34.0 | 340  | 36.0 | 35.0 | 34.2   | 35.0 |
| (14e) Heat in cooling water for shell-2, Q <sub>14e</sub> (1000 x kcal/t-output) | 7.2  | 6.2      | 7.2    | 10.0     | 6.1  | 7.0  | 6.9  | 7.4  | 3.3  | 3.9  | 9.9    | 9.9  |
| Quantity of cooling water for shell-2, m <sub>3.44</sub> (kg/t-output).          | 2558 | 2726     | 2567   | 2508     | 3363 | 2609 | 2574 | 2247 | 2353 | 2968 | 2647   | 306  |
| Maximum outlet temperature of cooling water for shell-2 $(^{\circ}C)$            | 38.5 | 37.9     | 38.4   | 39.1     | 37.9 | 36.2 | 37.7 | 38.6 | 38.5 | 37.8 | 38.1   | 58.0 |
| Mean outlet temperature of cooling water for shell-2 (°C)                        | 36.8 | 36.9     | 36.8   | 38.0     | 36.8 | 34.7 | 35.9 | 37.3 | 37.4 | 36.3 | 36.7   | 56.6 |
| Inlet temperature of cooling water for shell-2 $({}^{\circ}C)$                   | 34.0 | 34.0     | 34.0   | 34.0     | 35.0 | 32.0 | 34.0 | 34.0 | 36.0 | 35.0 | 34.2   | 35.0 |

## (14) Sensible Heat in Exhaust Gas

The sensible heat of the exhaust gas was 20.0 %, 14.5 % and 25.7 % of the heat output. These heat losses are slightly higher than those of the furnaces in Japan.

According to Table 12-17, CO gas remains in the exhaust gas at 1.5 to 7.1 percent. The CO gas is now burned out in the combustion chamber in which the energy of CO gas is transferred to the cooling water. If the residual CO gas could be burned in the EAF by supplying more oxygen gas and its heat of combustion could be transferred to the molten steel, better energy efficiency would be achieved. This application is called post combustion technology.

The obtainable heat of combustion of CO gas is calculated from the following equations.

$$C + O_2 = CO_2 + 33,810 \text{ kj/kg-C}$$

$$C + 1/2 O_2 = CO + 10,250 \text{ kg/kg-C}$$

Therefore,

$$CO + 1/2 O_2 = CO_2 + 23,560 \text{ kj/kg-C}$$

The heat of 23,560 kj/kg-C is arithmetically converted into 3,015 kcal/Nm3-CO.

Based on the measured data in IDC, the heat contents of residual CO gas for each heat number are calculated.

| Heat No. |     | F <sub>IN</sub> (Nm³/min) | Time  | - 1 T 1 |           | F-CbO <sub>2</sub> | T-CbO2 (Nm3/heat) |
|----------|-----|---------------------------|-------|---------|-----------|--------------------|-------------------|
|          | (%) | (isin rinni).             | (min) |         |           |                    | -                 |
| 965751   | 7.1 | 555                       | 43    | 111,600 | 4,800,000 | 18.5               | 796               |
| 965752   | 3.5 | 401                       | 43    | 40,400  | 1,730,000 | 6.7                | 288               |
| 965753   | 1.5 | 657                       | 57    | 29,900  | 1,700,000 | 5.0                | 285               |
| Average  | 4.0 |                           |       |         | 2,743,000 |                    | 456               |

Note:

Cb-Ht<sub>in</sub>: Calculated combustion heat flow rate (kcal/min)

Cb-Ht<sub>IN</sub> =  $(CO_{IN}/100) \times F_{IN} \times 3,015$ 

T-Ch-Ht<sub>IN</sub>: Total calculated combustion heat (kcal/heat)

 $T-Cb-Ht_{IN} = Cb-Ht_{IN} \times Time$ 

Time: Power-on to power-off time (min)

F-CbO<sub>2</sub>: Calculated combustion O<sub>2</sub> gas flow rate to burn CO gas flow rate (Nm<sup>2</sup>/min)

 $F-CbO_2 = F_{EN} x (CO_{EN}/100) x 1/2$   $T-CbO_2$ : Total calculated combustion  $O_2$  gas quantity to burn CO gas flow (Nm³/heat)  $T-CbO_2 = F-CbO_2 x$  Time

The calculation results show that the heat of 2,743,000 kcal/heat (41.1 kWh/t) will be generated by burning the CO gas of 4.0 % with consumption of the oxygen gas of 456 Nm³/heat (5.9 Nm³/t). Namely, the 26.6 kWh/t seems to be added to the molten steel considering that the average ratio of potential heat of molten steel is 62.5 percent of heat input (See ratio of potential heat of molten steel in Table 12-19).

All of the 26.6 kWh/t will not be saved for the following reasons.

- 1. There is much difference between heat input mainly consisting of electric power, oxidation heat of charge and hot heel and heat generated by burning of CO gas in the exhaust gas. It is considered that the former is directly added to the molten steel and the latter is indirectly added. In other words, efficiency of heat radiation of the latter is small. Therefore the ratio of potential heat of molten steel will be far smaller than 62.5%.
- 2. Heat generated above the molten steel in the EAF is absorbed not only in the molten steel but also in the shell and the roof. Considering that the heat absolution area of shell and roof is larger than the surface of molten steel, heat to be absorbed in the molten steel will be smaller than that of shell and roof.

The results shown in the above table are calculated on the assumption that all the residual CO gas of 4 percent is burned by the oxygen consumption of 5.9 Nm³/t. However, in actual operation, generation of CO gas varies during heat melt time shown in Figure 12-20. The flow rate of oxygen gas could not be controlled following the generation of CO gas. Therefore, several times as much oxygen as 5.9 Nm³/t will be necessary to burn all CO gas generated.

From the above considerations, the effect of post combustion technology is doubtful. In addition, this technology has not yet been introduced in Japan.

#### (15) Heat Loss at Furnace Body

The ratio of heat loss at furnace body to the heat output is very small.

(16) Other Heat Loss See sub-section 12-9-4 (1) 1) above.

### 12-10 Energy Flowchart of Factory and Major Energy Consuming Facilities

The energy flow chart is shown in Figure 12-36.

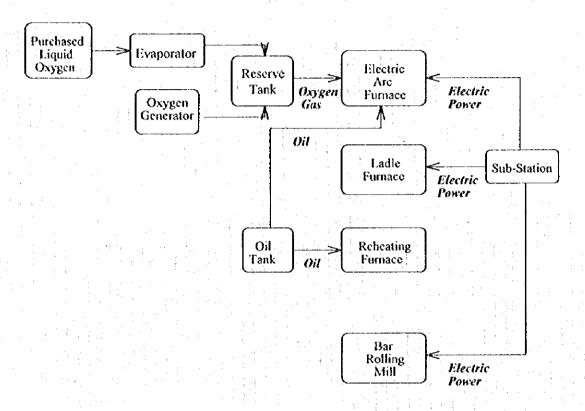



Figure 12-36 Energy Flow in IDC

Major energy consuming facilities are described in sub-section 12-6-1.

#### 12-11 Formulation and Recommendation of Countermeasures for Energy Conservation

## 12-11-1 Modifications of Facilities and Operation

Based on the measurement and analysis of the heat balances of the electric arc furnace (EAF), the following measures for streamlining of energy use are recommended. Hot temperature charge of billets to the reheating furnace is also recommended based on NKK's experience. Recommendations 1 to 5 are analyzed above in monetary terms and 6 to 8 are analyzed in terms of operation improvement.



Modify the scrap preheaters (SPH) to accommodate a 3rd bucket for preheating.
 The following facilities should be installed to operate SPH's simultaneously and independently:

A new 2nd hood and a new 2nd inlet duct to the existing 2nd chamber

A new 2nd outlet duct from the existing 2nd chamber

A new 2nd damper for a new 2nd outlet duct

Two blowers for the existing 1st and a new 2nd outlet ducts.

- 2. Improve maintenance of oxy-fuel burners of EAF to keep the O2/Oil ratio constant.
- 3. Standardize burnt lime addition into EAF.
- 4. Decrease flow rate of cooling water for EAF.
- 5. Introduce billet cooling system at higher temperature in front of the reheating furnace to prevent crack generation in cast billet.

Pumping system, water piping, spray nozzles and control system should be installed. (Detail concept is shown in the end of this chapter in Annex-3 HOT CHARGE OF BILLET).

- 6. Turn power on as immediately as possible to prevent the drop of hot heel temperature
- 7. Preheat scrap as longer as possible to raise it temperature.
- 8. Purchase as well calcined burnt lime as possible to prevent heat loss in decomposition of limestone.

#### 12-11-2 Enhancement of Morale

To streamline energy use, concerned people at all levels of management, engineers and workers should have their respective roles to play.

# (1) Energy Conservation Activity at Management Level

The management should set the ground rules for the activities. The following three items are essential in the promotion of energy conservation throughout the steel works.

- 1. Establishment of policy (top management's stance)
  - (1) Announcement of firm determination for energy saving
  - (2) Setting quantitative target
  - (3) Conditions and criteria (investment limit, ROI/PBP)
  - (4) Others
- 2. Establishment of organization for promotion of energy use streamlining (committee of engineers)

- (1) Investigation of energy consumption and costs
- (2) Planning and following up of the results of activities
- (3) Collection of proposals from staff and employees
- (4) Budgeting
- (5) Education, PR
- (6) Others
- Promotion of small team's activities (encouragement of worker team's motivation and adoption of their ideas)
  - (1) Formation of teams
  - (2) Introduction of study support system
  - (3) Result of study presentation and following up of performance
  - (4) Appraisal and prize system
  - (5) Others

These are important ground rules that the measurement can set and are indispensable to creating an atmosphere for energy saving in the entire steel works.

#### (2) Energy Conservation of Activity at Engineer Level

The level of activity is no less important and should be the core of energy saving, because only at this level can technical studies be done.

- 1. Decrease heat input.
  - (1) Change of heat sources.

Auxiliary combustion (Oxy-fuel burner)

Oxygen injection

Scrap preheating by fuel

(2) Utilization of waste heat

Scrap preheating

Utilization of hot return scrap

Utilization of recuperator

Hot heal operation

Hot charge of billet

(3) Lowering of molten steel temperature

Increase of ladle temperature

Ladle hood on molten steel

2. Reduction of heat loss

(1) Improvement of facilities

Furnace capacity up

High electric power system

Enhancement of performance of automatic electrode controller

Minimization of secondary conductors and electrodes

Reduction of openings on furnace

(2) Improvement of operation

Prompt analysis of molten steel

Improvement of scrap mixing

Shorter time for scrap charge

Optimization of electric power use

Shorter time of refining and repair

Effective operation of dust removal system

Prevention of electrode breakage

Elimination of waiting time of continuous casting

Prevention of uneven melting of steel

Longer carbon injection time for slag foaming

Others

- 3. Improvement of good quality billet yield
  - (1) Reduction of errors in casting
  - (2) Decrease of residual molten steel
- 4. Utilization of waste heat
  - (1) Utilization of hot waste water (for air conditioning, boiler water preheating)
  - (2) Utilization of exhaust gas (steam, electricity)
  - (3) Utilization of slag sensible heat (steam, electricity)
  - (4) Utilization of molten steel sensible heat (steam, electricity)

## (3) Energy Conservation Activity at Workers Level

This level of activity is very important for enhancing the morale of field workers. At the same time this can put into practice their ideas based on practical knowledge and operational experience that concern not only energy saving but safety and environmental conservation.

- 1. Heat energy saving
  - (1) Proposal for small improvements
    Insulation cover on slag door
    Sand gasket of flange of EAF

#### Others

(2) Standardizing operation
Opening and closing of burners
Reheating of scrap
Opening of slag door
Removing of water from scrap

- 2. Electric energy saving (Rotating machines: pumps, compressor, etc)
  - (1) Change of rotation speed

Change of pulleys

Change of motor poles

Installation of VVVF (Variable voltage variable frequency)

Others

(2) Remodeling of equipment Impeller diameter reduction Replacement of pumps Optimization of pump line-up

Others

(3) Energy recovery, etc.

Suspension of pump operation (Transfer by pressure)

Suspension of blower operation (Use of stack effect)

Hydraulic turbine/expansion turbine

Pressure reduction turbine

Thermo compressor/heat pipe

Others

To perform these activities successfully, the staff, who are in the position to support the workers technically, should prepare the instruction materials and guide them in detail.

An example of these activities is shown in Annex-5.

#### 12-12 Cost Estimation of Countermeasures

#### 12-12-1 Modification of scrap preheater (SPH)

1 2nd hood

- 2. Inlet duct and damper to 2nd chamber
- 3. Outlet duct and damper from 2nd chamber
- 4. Blowers for 1st and 2nd chambers
- 5. Electrical equipment
- 6. Erection

Total budget cost: 200,000 US Dollars

Schematic layout is shown in Figure 12-37.



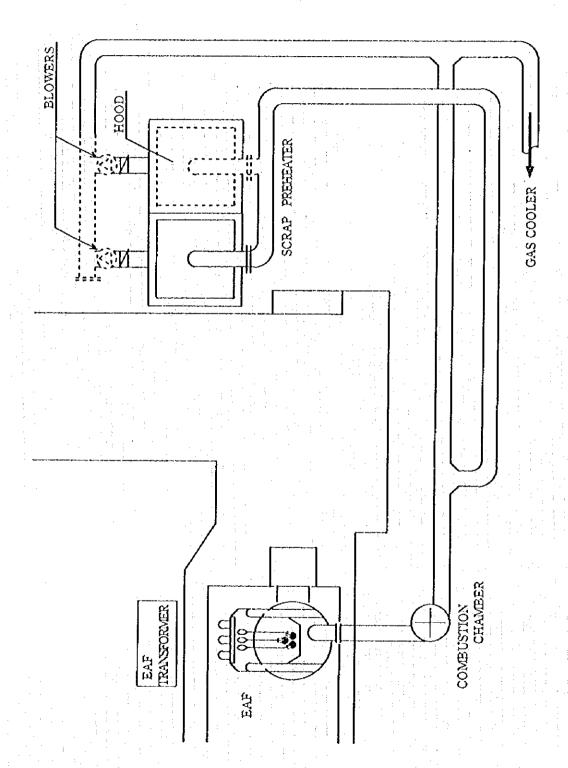



Figure 12-37 Schematic Layout of SPH Modification



### 12-12-2 Introduction of Billets Cooling System

- 1. Pumps: 2 units for 300 m<sup>3</sup>/hr of water spray
- 2. Piping, valves and fittings
- 3. Spray nozzles: 144 pieces
- 4. Electrical equipment
- 5. Erection

Total budget cost: 21,300 US Dollars

### 12-13 Overall Evaluation of Countermeasures for Energy Conservation

Payout periods for the recommended modifications are calculated below.

1. Modification of scrap preheater (SPH) to accommodate preheating the 3rd bucket.

See sub-section 12-9-4 (4).

Saving of electric power: 6.8 kWh/t-MS (Molten Steel).

Saving of production cost: 0.299 USD/t-MS.

= 17,900 USD/ M at production of 60,000 t/M.

Modification budget cost: 200,000 USD.

Conclusion: Full recovery of investment is expected within 12 months.

2. Maintenance of oxy-fuel burners of EAF to keep the constant O2/Oil ratio.

See sub-section 12-9-4 (5).

Saving of electric power: 5.2 kWh/t-output.

Saving of production cost: 0.161 USD/t-MS.

= 9,700 USD/M at production of 60,000 t/M.

3. Standardization of burnt lime addition into EAF.

See sub-section 12-9-4 (9).

Saving of burnt lime: 12.8 kg/t-MS comparing 1st half year of 1995.

Saving of electric power: 20.7 kWh/t-MS.

Saving of production cost: 87,000 USD/M at production of 60,000 t/M.

4. Decreasing flow rate of cooling water for EAF.

See sub-section 12-9-4 (13).

Saving of flow rate of cooling water: 800 m<sup>3</sup>/hr.
Saving production cost: 6,500 USD/M at production of 60,000 t/M.

- 5. Introduction of billets cooling system in front of reheating furnace (Detail is shown in the end of this chapter titled as HOT CHARGE OF BILLET).
- (1) At present: 60 70 % (65 %) of billet is hot charged at 300 -600 °C (average 450 °C) and heated to 1,100 1,150 °C (1,125 °C).
- (2) Improvement: 60 70 % (65 %) of billet is hot charged at 690 °C and heated to 1,100 1,150 °C (1,125 °C).

Saving of fuel oil: Heat content (100.8 kcal/kg at 690 °C - 58.1 kcal/kg at 450 °C) x Billet weight 1,000 kg/Low heating value of fuel oil 10,000 kcal/kg = oil 4.3 kg/t-BT (billet)/Combustion efficiency 50 % = oil 8.5 kg/t-BT x 65 % = oil 5.6 kg/t-BT

Saving production cost: 5.6 kg/t-BT x 0.15 USD/kg-oil = 0.84 USD/t-BT = 50,400 USD/M at production of 60,000 t/M.

Construction cost: 21,300 USD

Conclusion: Full recovery of investment is expected within one month.

#### Following recommendations are guidelines for EAF's operation.

- 6. Turn power on immediately to prevent the drop of hot heel temperature.

  If hot heel temperature is higher by 10 °C, electricity of 2.4 kWh/t-MS will be saved.
- 7. Preheat scrap as long as possible to obtain higher temperature.
- 8. Purchase as well calcined burnt lime as possible to prevent heat loss for decomposition of limestone.

#### 12-14 Technical Guidelines for Energy Conservation

Measurement procedure is described for determination of heat balance of the electric arc furnace.

#### 12-14-1 Heat balance

Heat balance consists of heat input and heat output.

## (1) Items of Heat Input

Heat input includes the following items.

- 1. Heat quantity of electric power
- 2. Potential heat of hot metal, hot heel of raw materials and residual slag
- 3. Sensible heat of raw materials
- 4. Calorific power of fuel oil
- 5 Sensible heat of fuel oil
- 6. Oxidation heat of electrode
- 7. Oxidation heat of charge
- 8. Oxidation heat of additives
- 9. Heat of slag formation

## (2) Items of Heat Output

Heat output includes the following items.

- 10. Potential heat of output and hot heel of molten steel
- 11. Potential heat of slag
- 12. Heat of decomposition for limestone and iron ore
- 13. Electrical heat loss
- 14. Heat in cooling water
- 15. Sensible heat of exhaust gas
- 16. Heat loss at furnace body
- 17. Other heat loss difference between heat input (items from 1 to 9) and heat output (items from 10 to 16)

## 12-14-2 Measuring Hems and Equipment/Instruments

# 資

# (1) Measuring Items

Table 12-25 shows measuring items for calculation of heat input and output.

# (2) Equipment/Instruments

Equipment/instruments are also shown in Table 12-25 and all equipment/instruments prepared by JICA are shown in Table 12-26.

Table 12-25 Measuring Items and Method and Equipment/Instruments

| Measuring Items                               | Measurement/ | Measurement/ Equipment/Instruments | its Preparation of | Measuring/Estimation             | Remarks                            |
|-----------------------------------------------|--------------|------------------------------------|--------------------|----------------------------------|------------------------------------|
|                                               | Estimation   |                                    | Equip./Instruments | Interval                         |                                    |
| 1 Heat quantity of 1) Consumption of electric | )<br>M       | 1) kWh meter                       | 1) Existing, IDC   | 1) Each heat                     |                                    |
| electric power power                          |              |                                    |                    |                                  |                                    |
| 2) Output                                     | 2) E         | 2)                                 | 2) .               | 2) Each heat                     | 2) Calculation. See Note 1).       |
| 2 Potential heat of                           |              |                                    | · .                |                                  |                                    |
| hot metal, hot heel of                        |              |                                    |                    |                                  |                                    |
| raw material and slag                         |              |                                    |                    |                                  |                                    |
| 2-1 Potential heat of                         |              |                                    |                    |                                  |                                    |
| hot metal                                     |              |                                    |                    |                                  | Hot metal was not used in this     |
|                                               |              |                                    |                    |                                  | study.                             |
| 2-2 Potential heat 1) Weight of hot heel      | 1) E         | 1) -                               | 1)                 | 1) Constant value                | 1) Amount of hot heel was          |
| of hot heel                                   |              |                                    |                    |                                  | estimated 10 t/heat in this study. |
| 2) Temperature of hot heel                    | 2)<br>E      | 2) -                               | <b>3</b>           | 2) Constant value                | 2) Hot heel temperature was        |
| 3) Output                                     |              |                                    |                    |                                  | estimated 1,550 °C in this study.  |
|                                               | з) Е         | . (6                               | 3) -               | 3) Each heat                     | 3) Calculation. See Note 1).       |
| 2-3 Potential heat                            |              |                                    |                    |                                  | Small amount of residual slag      |
| of residual slag                              |              |                                    |                    |                                  | was not considered in this study.  |
| 3 Sensible heat of 1) Consumption of raw      | 1) M         | 1) Weigher                         | 1) Existing, IDC   | 1) Each bucket                   |                                    |
| raw materials materials                       |              |                                    |                    |                                  |                                    |
| 2) Temperature of raw                         | 2) M         | 2) Surface thermo-                 | 2) JICA            | 2) At top, middle                | 2) Surface temperature of bucket   |
| materials                                     |              | meter                              |                    | and bottom of each               | represented scrap temperature in   |
|                                               |              |                                    |                    | bucket before charge—this study. | this study.                        |
|                                               |              |                                    |                    | to EAF                           |                                    |
|                                               |              |                                    |                    |                                  |                                    |

|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | - :           |                                    |                                 |   |
|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------------------------------|---------------------------------|---|
| 4         | Calonific powe     | Calonific power 1) Consumption of fuel oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) X              | 1) Integrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1           | Existing, IDC | 1) Each heat                       |                                 |   |
|           |                    | 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ć            |               |                                    | 1) In the second of the second  |   |
| ö<br>. 10 |                    | 2). Low heating value of fuel 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n (7.            | - (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₹            |               | <ol> <li>Constant value</li> </ol> | 2) IDC prepared standard        |   |
| fuel oil  | Ę                  | oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | value.                          |   |
|           |                    | 3) Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3) E             | 3) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3            |               | 3) Each heat                       | 3) Calculation. See Note 1).    | : |
| N<br>N    | 5 Sensible heat of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | The small sensible heat of fuel |   |
| fuel oil  | Ę                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | oil was not considered in this  | 1 |
|           |                    | The second secon |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | study.                          |   |
| 0 9       | xidation heat of   | Oxidation heat of 1). Unit consumption of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1) E             | 1) • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | •             | 1) Constant value                  | 1) Unit consumption of          |   |
| electrode | apo.               | electrode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : .          |               |                                    | electrode was statistically     |   |
| : · .     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | estimated in this study.        |   |
|           | · .                | 2) C content of electrode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2) <sup></sup> E | 2) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5            |               | 2) Constant value                  | 2) IDC prepared standard        |   |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | value.                          |   |
|           |                    | 3) CO2 and CO contents of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3) M             | 3) CO/CO2 analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>     | JICA          | 3) Continuously                    |                                 |   |
|           |                    | exhaust gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | and the second of the second o |              |               |                                    |                                 |   |
| 7         | Oxidation heat of  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *.           |               |                                    |                                 |   |
| charge    | 9                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    |                                 |   |
| 7-1       | Oxidation heat     | 7-1 Oxidation heat 1) Consumption of scrap, pig 1) M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M (1             | I) wheigher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\widehat{}$ | Existing, IDC | 1) Each heat                       | 1) Charged carbon powder was    |   |
| of ch     | of charged carbon  | iron and charged carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | not used in this study.         |   |
|           | -                  | powder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2) E             | 2) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2)           |               | 2) Constant value                  | 2) IDC prepared standard        |   |
|           |                    | 2) C content of scrap, pig iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ď                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    | value.                          |   |
|           | -                  | and charged carbon powder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •            |               |                                    |                                 |   |
|           |                    | 3) C content of molten steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3) M             | 3) Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ୍ଟି          | Existing, IDC | 3) Each heat                       |                                 |   |
| :         |                    | before tapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : :          |               |                                    |                                 |   |
|           |                    | 4) CO2 and CO content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4) M             | 4) CO/CO <sub>2</sub> analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>4</u>     | JICA          | 4) Continuously                    |                                 |   |
|           |                    | exhaust gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    |                                 |   |
|           |                    | 5) Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5) E             | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$           |               | 5) Each heat                       | 5) Calculation. See Note 1).    |   |
|           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |                                    |                                 |   |

| 7-2 Oxidation heat 1) Consumption of scrap and 1) M 1) Weigher | 1)        | Existing, IDC    | 1) Each heat      |                                         |
|----------------------------------------------------------------|-----------|------------------|-------------------|-----------------------------------------|
| of charged silicon pig iron                                    |           |                  |                   |                                         |
| 2) Si content of scrap and pig 2) E 2) -                       | 7         |                  | 2) Constant value | Constant value 2) IDC prepared standard |
| iron                                                           |           |                  |                   | value.                                  |
| 3) Si content of molten steel 3) M. 3) Analyzer                | 3)        | 3) Existing, IDC | 3) Each heat      |                                         |
| before tapping                                                 |           |                  |                   |                                         |
| 4) Output                                                      | 4)        |                  | 4) Each heat      | 4) Calculation. See Note 1).            |
| 7-3 Oxidation heat of charged manganese                        |           |                  |                   | Same as 7-2.                            |
| 7-4 Oxidation heat of charged phosphorus                       |           |                  |                   | Same as 7-2.                            |
| 7-5 Oxidation heat of charged chromium                         |           | 4 7              |                   | Same as 7-2.                            |
| 7-6 Oxidation heat of charged aluminum                         |           | i i              |                   | Same as 7-2.                            |
| 7-7 Oxidation heat 1) Slag weight 1) E 1)                      | 1)        | :<br>            | 1) Each heat      | 1) Calculation. See Note 2).            |
| of charged iron 2) FeO, FeO, and CaO 2) M 2) Slag analyzer     | /zcr 2)   | Existing, IDC    | 2) Each heat      | 2) Mean value of 7 heats was            |
|                                                                |           |                  |                   | used in this study.                     |
| 3) Consumption of burnt lime 3) M 3) Weigher                   | 3)        | Existing, IDC    | 3) Each heat      |                                         |
| 4) CaO content of burnt lime 4) E 4) -                         | (4        | •                | 4) Constant value | 4) IDC prepared standard                |
|                                                                |           |                  | S) Hook heat      | value.                                  |
|                                                                | •         |                  |                   |                                         |
|                                                                |           |                  |                   |                                         |
| 8-1 Oxidation heat 1) Consumption of carbon 1) M 1) Weigher    | <u>(1</u> | Existing, IDC    | 1) Each heat      | 1) Fe-Si, Fe-Mn and Si-Mn               |
| of carbon of injection, Si-Mn, Fe-Si and Fe-                   |           |                  |                   | were not used in this study.            |
| additives                                                      |           |                  |                   |                                         |
| 2) C content of carbon 2) E 2)                                 | 2)-       |                  | 2) Constant value | 2) IDC prepared standard                |
| injection, Si-Mn, Fe-Si and Fe-                                |           |                  |                   | value.                                  |
|                                                                |           |                  | -                 |                                         |

| Standard gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2) Continuously  4) Each heat  7) Calculation. See Note 1).  7-Si, Fe-Mn and Si-Mn were not used in this study.  7-Fe-Si, Fe-Mn and Si-Mn were not used in this study.  7) Each heat  7) Calculation. See Note 2).  7) Each heat  7) Mean value of 7 heats was used in this study.  7) Each heat  8) See Note 2). |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| exhaust gas  4) E 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4) Each heat 1) Each heat 2) Each heat 3) Each heat                                                                                                                                                                                                                                                               |
| 8-2 Oxidation heat of silicon of additives 8-3 Oxidation heat of manganese of additives 9 Heat of slag 1) Slag weight content of slag 3) Consumption of burnt lime 3) M 3) Weigher 2) 10 Potential heat of Molten steel 10-1 Potential heat 1) Temperature of molten 10-2 Potential heat 1) Weight of hot heel 10 Potential heat 1) Temperature of molten 10 Potential heat 1 Temperature of molten 1 Temperature 1 Temperature of molten 1 Temperature 1 | 4) Each heat 1) Each heat 2) Each heat 3) Fach heat                                                                                                                                                                                                                                                               |
| tion heat  to heat  to heat  to heat  se of.  2) CaO, SiO <sub>2</sub> and P <sub>2</sub> O <sub>3</sub> 2) M  2) Siag analyzer  2) CaO, SiO <sub>2</sub> and P <sub>2</sub> O <sub>3</sub> 3) Consumption of burnt lime 3) M  3) Weigher  4) CaO content of burnt lime 4) E  5) Output  5) E  5) Output  5) Informocouple  1) M  1) Thermocouple  1) steel before tapping.  1) Right of hot heel  1) E  1) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) Each heat 2) Each heat 3) Each heat                                                                                                                                                                                                                                                                            |
| tion heat  se of  slag 1) Slag weight 1) E 1) -  content of slag  3) Consumption of burnt lime 3) M 3) Weigher 3)  4) CaO content of burnt lime 4) E 4) -  5) Output 5) Dutput 5) E 5) -  5) Output 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  steel before tapping 1) E 1) -  11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) Each heat 2) Each heat 3) Fach heat                                                                                                                                                                                                                                                                            |
| stag 1) Slag weight 1) E 1) -  slag 1) Slag weight 1) E 1) -  content of slag  3) Consumption of burnt lime 3) M 3) Weigher 3)  4) CaO content of burnt lime 4) E 4) -  5) Output 5) E 5) -  5) Output 5) E 5) -  5) Inflicat of an anial heat 1) Thermocouple 1) mital heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1) Each heat 2) Each heat 3) Each heat                                                                                                                                                                                                                                                                            |
| ste of  slag 1) Slag weight 1) E 1) -  content of slag  3) Consumption of burnt lime 3) M 3) Weigher 3)  4) CaO content of burnt lime 4) E 4) -  5) Output 5) E 5) -  5) Output 5) E 5) -  5) Infermocouple 1) M 1) Thermocouple 1)  all heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1) Each heat 2) Each heat 3) Fach heat                                                                                                                                                                                                                                                                            |
| slag 1) Slag weight 1) E 1) - 1)-  slag 1) Slag weight 1) E 1) - 1)-  2) CaO, SiO <sub>2</sub> and P <sub>2</sub> O <sub>3</sub> 2) M 2) Slag analyzer 2)  content of slag  3) Consumption of burnt lime 3) M 3) Weigher 3)  4) CaO content of burnt lime 4) E 4) - 4)  5) Output 5) E 5) - 5)  ial heat of  nital heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  nital heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1) Each heat 1) Calculation. 2) Each heat 2) Mean value of used in this study. 3) Fach heat                                                                                                                                                                                                                       |
| slag 1) Slag weight 1) E 1) - 1)-  2) CaO, SiO <sub>2</sub> and P <sub>2</sub> O <sub>3</sub> 2) M 2) Siag analyzer 2)  content of slag  3) Consumption of burnt lime 3) M 3) Weigher 3)  4) CaO content of burnt lime 4) E 4) - 4)  5) Output 5) E 5) - 5)  ial heat of  nital heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  nital heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1) Each heat 1) Calculation. 2) Each heat 2) Mean value of used in this study.                                                                                                                                                                                                                                    |
| 2) CaO, SiO <sub>2</sub> and P <sub>2</sub> O <sub>3</sub> 2) M 2) Siag analyzer 2) content of slag 3) Consumption of burnt lime 3) M 3) Weigher 3) 4) CaO content of burnt lime 4) E 4) - 4) ial heat of 5) Output 5) E 5) - 5) ial heat of nital heat 1) Temperature of molten 1) M 1) Thermocouple 1) steel before tapping nital heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2) Each heat 2) used as Each heat                                                                                                                                                                                                                                                                                 |
| content of slag  3) Consumption of burnt lime 3) M 3) Weigher 3)  4) CaO content of burnt lime 4) E 4) - 4)  5) Output 5) E 5) - 5)  ial heat of  intial heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  intial heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3) Hach heat                                                                                                                                                                                                                                                                                                      |
| 3) Consumption of burnt lime 3) M 3) Weigher 3) 4) CaO content of burnt lime 4) E 4) - 4)  ial heat of  nitial heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  nitial heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                 |
| 4) CaO content of burnt lime 4) E 4) - 4)  ial heat of  intial heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  intial heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ì                                                                                                                                                                                                                                                                                                                 |
| 5) Output       5) E       5) -       5)         ial heat of       1) Temperature of molten       1) M       1) Thermocouple       1)         ntial heat 1) Temperature of molten       1) M       1) Thermocouple       1)         ntial heat 1) Weight of hot heel       1) E       1) -       1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4) Constant value 4) IDC prepared standard                                                                                                                                                                                                                                                                        |
| 5) Output  ial heat of  full heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  futal heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | value.                                                                                                                                                                                                                                                                                                            |
| ial heat of  Integration of molten 1) M 1) Thermocouple 1)  Integrated before tapping  Integrated 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5) Each heat 5) Calculation, See Note 1).                                                                                                                                                                                                                                                                         |
| ntial heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  ntial heat 1) Weight of hot heel 1) \( \mathbb{E} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                   |
| ntial heat 1) Temperature of molten 1) M 1) Thermocouple 1)  steel before tapping  ntial heat 1) Weight of hot heel 1) E 1) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                   |
| steel before tapping ntal heat 1) Weight of hot heel 1) E 1) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , IDC 1) Each heat                                                                                                                                                                                                                                                                                                |
| ntial heat 1) Weight of hot heel 1) E 1) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) Constant value 1) Amount of hot heel was                                                                                                                                                                                                                                                                       |
| of hot beel of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | estimated 10 theat in this study                                                                                                                                                                                                                                                                                  |
| molten steel 2) Temperature of hot heel 2) M 2) Thermocouple 2) Existing, IDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , IDC 2) Each heat 2) Temperature of hot heel is                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | same as that of molten steel                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | before tapping.                                                                                                                                                                                                                                                                                                   |
| 3) Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3) Each heat 3) Calculation. See Note 1).                                                                                                                                                                                                                                                                         |

| 11 Potential heat of 1) Slag weight | Slag weight 1                         | ) 臣      | 1).              | 1)                                    | 1) Each heat      | 1) Calculation See Note 2).    |
|-------------------------------------|---------------------------------------|----------|------------------|---------------------------------------|-------------------|--------------------------------|
| slag 2)                             | CaO content of slag 2                 | ×        | 2) Slag analyzer | 2) Existing, IDC                      | 2) Each heat      | 2) Mean value of 7 heats was   |
|                                     |                                       |          |                  |                                       |                   | used in this study.            |
| 3)                                  | 3) Consumption of burnt lime 3)       | X        | 3) Weigher       | 3) Existing, IDC                      | 3) Each heat      |                                |
| (†                                  | 4) CaO content of burnt lime 4)       | ш        | 4).              | 4)                                    | 4) Constant value | 4) IDC prepared standard       |
| :                                   |                                       | :        |                  |                                       |                   | value.                         |
| (\$                                 | 5) Output 5)                          | ) E      | 5) -             | 5) - (5                               | 5) Each heat      | 5) Calculation. See note 1).   |
| 12 Heat of                          |                                       |          |                  |                                       |                   |                                |
| decomposition                       |                                       |          |                  |                                       |                   |                                |
| 1                                   | Consumption of limestone 1)           | <u>ы</u> | 1) -             | 1) -                                  | 1) Each heat      | 1) Limestone of 30 % was       |
| Limestone                           |                                       |          |                  |                                       |                   | included in burnt lime in this |
| Decomposition                       |                                       |          |                  |                                       |                   | study.                         |
| 2                                   | CaO content of limestone 2)           | щ        | 2) -             | 2) -                                  | 2) Constant value | 2) IDC prepared standard       |
|                                     |                                       | :<br>    |                  | * * * * * * * * * * * * * * * * * * * |                   | value                          |
| 3)                                  | Output 3                              | ш        | 3) -             | 3) -                                  | 3) Each heat      | 3) Calculation, See Note 1).   |
| 12-2 Heat of iron                   |                                       |          |                  |                                       |                   | Iron ore was not used in this  |
| ore decomposition                   |                                       |          |                  |                                       |                   | study.                         |
| 13 Electrical heat                  |                                       |          |                  |                                       |                   | Electrical heat loss was not   |
| toss                                |                                       |          |                  |                                       |                   | measured.                      |
| 13-1 Heat loss in                   | · · · · · · · · · · · · · · · · · · · |          |                  |                                       |                   |                                |
| secondary conductors                |                                       |          |                  |                                       |                   |                                |
|                                     |                                       |          |                  |                                       |                   |                                |
| 15.2. Heat loss of                  |                                       |          |                  |                                       |                   |                                |
| transformer                         |                                       |          |                  |                                       |                   |                                |
|                                     |                                       |          |                  |                                       |                   |                                |
|                                     |                                       | ٠        |                  |                                       |                   |                                |
|                                     |                                       |          |                  |                                       |                   |                                |
|                                     |                                       |          |                  |                                       |                   |                                |
| ٠                                   |                                       |          |                  |                                       |                   |                                |

| 12  | 14 Heat in cooling | 81                                                                 | ÷                          |                                        | •                                       |                 |              |
|-----|--------------------|--------------------------------------------------------------------|----------------------------|----------------------------------------|-----------------------------------------|-----------------|--------------|
| - 1 | water              |                                                                    |                            |                                        |                                         |                 |              |
| 04  | 14-1 Heat in       | 1) Flow rate of cooling water 1) M                                 | 1) Magnetic flov           | Magnetic flow meter 1) Existing, IDC   | 1) At start of heat                     |                 |              |
|     | cooling water for  | 2) Outlet temperature of 2) M                                      | 2) Thermocouple            | ple 2) JICA                            | 2) Continuously                         |                 |              |
|     | elbow              | cooling water                                                      |                            |                                        |                                         |                 |              |
|     |                    | 3) Inlet temperature of 3) M                                       | 3) Thermocouple            | ple 3) Existing, IDC                   | 3) At start of heat                     |                 |              |
|     |                    | cooling water                                                      |                            |                                        |                                         |                 | ٠.           |
|     |                    | 4) Power-on to power-off 4) M                                      | 4) Clock                   | 4) Existing, IDC                       | 4) Each heat                            |                 |              |
|     |                    | time                                                               |                            |                                        |                                         |                 |              |
|     | 5) Output          | 5) Output 5) E                                                     | - (5                       | - (5                                   | 5) Each heat                            | 5) Calculation. | See Note 1). |
|     | 14-2 Heat in coo   | 14-2 Heat in cooling water for roof                                |                            |                                        |                                         | Same as 14-1.   |              |
|     | 14-3 Heat in coo.  | 14-3 Heat in cooling water for EBT                                 |                            |                                        |                                         | Same as 14-1.   |              |
|     | 14-4 Heat in coo.  | 14-4 Heat in cooling water for shell                               |                            |                                        |                                         | Same as 14-1.   |              |
|     | 15 Sensible heat   | 15 Sensible heat of 1) CO <sub>2</sub> /CO content of exhaust 1) M | 1) CO/CO <sub>2</sub> and  | 1) CO/CO <sub>2</sub> analyzer 1) JICA | 1) Continuously                         | :               |              |
|     | exhaust gas        |                                                                    |                            |                                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | :               |              |
|     |                    | 2) O <sub>2</sub> content of exhaust gas 2) M                      | 2) O <sub>2</sub> analyzer | r 2) JICA                              | 2) Continuousiy                         |                 |              |
|     |                    | 3) Temperature of exhaust 3) M                                     | 3) Thermocouple            | ple 3) JICA                            | 3) Continuously                         |                 |              |
|     |                    | gas 4) M                                                           | 4) Digital manometer 4)    | nometer 4) JICA                        | 4) Continuously                         |                 | •            |
|     |                    | 4) Dynamic and static                                              |                            |                                        | : 1                                     |                 |              |
|     |                    | pressure of exhaust gas 5) M                                       | 5) Clock                   | 5) Existing, IDC                       | 5) Each heat                            |                 |              |
|     |                    | 5) Power-on to power-off                                           |                            |                                        |                                         |                 |              |
|     |                    | time 6)E                                                           | - (9                       | - (9                                   | 6) Each heat                            | 6) Calculation. | See Note 1). |
|     |                    | 6) Output                                                          |                            |                                        |                                         |                 |              |
|     | •                  |                                                                    |                            |                                        |                                         |                 |              |

| Heat loss at 1) Power-on to power-off 1) M 1) Clock 1) Existing, IDC 1)  2) Surface area of roof 2) E 2) - 2)  3) Output 3) E 3) - 31 - 33  4) Surface temperature 4) M 4) Pyrometer 4) IICA 4) heat loss at 1) Power-on to power-off 1) M 1) Clock 1) Existing, IDC 1) time  2) Surface area of shell 2) E 2) - 2) - 2)  3) Output 3) E 3) - 31 - 33  4) Surface temperature 5) M 5) Pyrometer 6) IICA 6)  5) Indoor temperature 7) M 4) Pyrometer 7) IICA 4)  5) Indoor temperature 5) M 5) Pyrometer 7) IICA 5)  Heat loss at 30 Output 5) M 5) Pyrometer 7) IICA 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 Heat loss at   |                                  |            |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 2) Surface area of roof       2) E       2) -       2)         3) Output       3) E       3) -       3)         4) Surface temperature       4) M       4) Pyrometer       4) IICA       4) heat         5) Indoor temperature       5) M       5) Pyrometer       5) IICA       5)         Heat loss at 1) Power-on to power-off       1) M       1) Clock       1) Existing, IDC       1)         2) Surface area of shell       2) E       2) -       2)         2) Surface temperature       4) M       4) Pyrometer       4) IICA       4)         4) Surface temperature       5) M       5) Pyrometer       5) IICA       5)         5) Indoor temperature       5) M       5) Pyrometer       5) IICA       5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-1 Heat loss at  | 1) Power-on to power-off         | 1) M       | 1) Clock     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 3) Output 4) Surface temperature 4) M 4) Pyrometer 4) IICA 4) hea  5) Indoor temperature 5) M 5) Pyrometer 5) IICA 5) Indoor temperature 5) M 5) Pyrometer 5) IICA 5) Indoor temperature 6) M 6) Pyrometer 7) IICA 6) IICA 7) Indoor temperature 7) B 7) Clock 7) Indoor temperature 7) B 7) Indoor temperature 7) M 7) Pyrometer 7) IICA 7) Indoor temperature 7) M 7) Pyrometer 7) IICA 8) I |                   | 2) Surface area of roof          | 2) E       | 2)           | <b>?</b>         | 2) Constant value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) IDC prepared standard value.         |
| 4) Surface temperature 4) M 4) Pyrometer 4) JICA hea  5) Indoor temperature 5) M 5) Pyrometer 5) ICA 5)  time  2) Surface area of shell 2) E 2) - 2)  2) Surface temperature 4) M 4) Pyrometer 4) JICA 4)  4) Surface temperature 5) M 5) Pyrometer 4) JICA 4)  Heat loss at  Heat loss at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 3) Output                        | 3)<br>E    | 3)           | 3) -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3) Calculation. See Note 1).            |
| heat loss at   1)   Power-on to power-off   1)   M   1)   Clock   1)   Existing, IDC   1)   time   2)   E   2)   Clock   2)   Surface area of shell   2)   E   2)   Clock   3)   Clock   3)   Clock    |                   | 4) Surface temperature           | 4) M       | 4) Pyrometer | 4) JICA          | 4) A few times a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4) Mean value of ten tunes              |
| Solution    |                   |                                  |            |              |                  | heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | measurement was used for each           |
| Solution temperature   Solution   |                   |                                  |            |              |                  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | heat in this study.                     |
| Heat loss at         1) Power-on to power-off         1) M         1) Clock         1) Existing, IDC         1)           2) Surface area of shell         2) E         2) -         2) -         2)           3) Output         3) E         3) -         3) -         3)           4) Surface temperature         4) M         4) Pyrometer         4) IICA         4)           5) Indoor temperature         5) M         5) Pyrometer         5) IICA         5)           Heat loss at         5) Accounter         5) IICA         5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 5) Indoor temperature            | 5) M       |              | •                | 5) At start of heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
| time  2) Surface area of shell 2) E 2) - 2)- 2) 3) 3) Output 3) E 3) - 4) Surface temperature 4) M 4) Pyrometer 4) IICA 5) Indoor temperature 5) M 5) Pyrometer 5) IICA 5) Heat loss at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-2 Heat loss at  | 1) Power-on to power-off         | 1) M       | 1) Clock     | 1) Existing, IDC | 1) Each heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| 3) - 3) - 3) - 3) - 3) - 3) - 3) - 3) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hell              | time<br>2) Surface area of shell | 2) E       | 2) •         | 2)-              | 2) Constant value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) IDC prepared standard                |
| 3) Output 3) E 3) - 3) - 3) 6 4) Surface temperature 4) M 4) Pyrometer 4) JICA 4) Heat loss at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                  |            |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | value                                   |
| 4) Surface temperature 4) M 4) Pyrometer 4) JICA 4)  5) Indoor temperature 5) M 5) Pyrometer 5) JICA 5)  Heat loss at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 3) Output                        | 3) E       | 3) - (8      | 3)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3) Calculation. See Note 1).            |
| 5) Indoor temperature 5) M 5) Pyrometer 5) JICA 5) Heat loss at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 4) Surface temperature           | <b>4</b> M | 4) Pyrometer |                  | 4) Continuously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 16-3 Heat loss at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 5) Indoor temperature            | s) M       | 5) Pyrometer | s) JICA          | 5) At start of heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *************************************** |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16-3 Heat loss at |                                  |            |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Same as 16-2                            |
| ροποιο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oottom            |                                  |            |              |                  | The second secon |                                         |

Note 1) Output means molten steel tapped into the ladle. It consists of billets, crop and skulls in the ladle and tundish. These weights could not be actually weighed. Output is calculated as follows:

Output = Charged raw materials x steel yield

Steel yield is statistically determined.

Note 2) As generated slag could not be actually weighed, slag weight is calculated by mass balance of CaO as follows: Amount of slag = Consumption of burnt lime x CaO content of burnt lime/CaO content of slag.



|                   | ITEM                                                                                               | DESCRIPTION                                                                                                                                   |
|-------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| a-1)              | CO/CO <sub>2</sub> analyzer 1 set                                                                  | To measure CO and CO <sub>2</sub> contents of the exhaust gas at C/C inlet                                                                    |
| a-2)              | CO/CO <sub>2</sub> analyzer 1 set                                                                  | To measure CO and CO <sub>2</sub> contents of the exhaust gas at C/C outlet                                                                   |
| b-1) <sup>(</sup> | O <sub>2</sub> analyzer 1 set                                                                      | To measure O <sub>2</sub> content of the exhaust gas at C/C inlet                                                                             |
| b-2)              | O <sub>2</sub> analyzer 1 set                                                                      | To measure O <sub>2</sub> content of the exhaust gas at C/C outlet                                                                            |
| c)                | Pretreatment unit (filter, drain pot, cooler) 1 set                                                | To remove dusts and moisture in the exhaust gas                                                                                               |
| d-1)              | Data logger 2 sets                                                                                 | To input into the personal computer the output data (analog signals) from the measuring devices after they are converted into digital signals |
| d-2)              | Data logger 1 set                                                                                  | Stand-by                                                                                                                                      |
| e-1)              | Personal computer 2 sets                                                                           | To record and exhibit on the monitoring screen<br>the output data after being converted to digital<br>signals by the data logger              |
| e-2)              | Personal computer 1 set                                                                            | Stand-by. To be used in case of trouble of one of e-1). Actually this computer was used                                                       |
| f-1)              | Thermocouple PR type (JIS type R) 4 sets                                                           | To measure the temperature of the exhaust gas at C/C inlet                                                                                    |
| f-2)              | Thermocouple CA type (JIS type K) 24 sets: 1 set for outlet, 16 sets for furnace, 7 sets for spare | To measure the temperature of the exhaust gas at C/C outlet and temperature of the furnace shell and bottom                                   |
| f-3)              | Thermocouple CC type (JIS type T)  10 sets (including 4 sets of spare )                            | To measure the temperature of the cooling water for the furnace                                                                               |
| g-1)              | Cable of 100 m for thermocouple for CA type                                                        | To connect the thermocouple to the data logger                                                                                                |
| g-2)              | Cable of 1,000 m for thermocouple for CC type                                                      | To connect the thermocouple to the data logger                                                                                                |
| g-3)              | Cable of 300 m for thermocouple for CA                                                             | To connect the thermocouple to the data logger                                                                                                |

|              | type                           |                                                                                       |
|--------------|--------------------------------|---------------------------------------------------------------------------------------|
| h)           | Ultrasonic flow meter 1 set    | To measure the flow rate of cooling water for the furnace. Not used. IDC's instrument |
|              |                                | was used.                                                                             |
| i)           | Gas sampling unit 4 pieces     | Sampler for the exhaust gas at C/C inlet.                                             |
|              |                                | Water cooled. Stainless-steel-made for C/C outlet.                                    |
| j-1)         | Digital manometer 2 sets       | To measure the dynamic and static pressure of                                         |
| :            |                                | the exhaust gas for measurement of the flow rate at the C/C outlet.                   |
| j-2)         | Digital manometer 2 sets       | Stand-by                                                                              |
| k)           | Pitot' tube 4 sets             | Used for measurement of the flow rate of the exhaust gas at the C/C outlet.           |
| <b>l</b> )   | Surface thermometer 2 sets     | To measure the surface temperature of the                                             |
| <u> </u>     |                                | scrap bucket for scrap temperature                                                    |
| m)           | Printer: 1 set                 | To print out the of measurement results.                                              |
| n-1)         | Transformer 3 sets             | Step down transformer (200 V to 100V) and stabilizer for instruments                  |
| n-2)         | Transformer 1 set              | Stand-by                                                                              |
| 0)           | Pyrometer (Thermometer) 2 sets | To measure the roof surface temperature and                                           |
|              |                                | for back-up use for measurement of surface                                            |
|              |                                | temperature of the furnace shell and bottom.                                          |
|              |                                | One is for temperatures higher than 800°C and                                         |
| - : : : : :  |                                | the other is for temperatures lower than 500 °C                                       |
| <b>p</b> ) l | Equipment for moisture 1 set   | To measure moisture in the exhaust gas.                                               |

# 12-14-3 Calculation Formulas and Reference Figures for Heat Balance, and Calculation of Heat Content of Exhaust Gas

穩

The heat balance calculating method in arc furnace complies with Heat Balance System in Arc Furnace (JIS G 0703).

#### (1) Calculation Formulas and Reference Figures for Heat Balance

Calculation formulas and reference figures for the heat balance are shown below:

Table 12-27 Calculation Formulas for Heat Input

Table 12-28 Calculation Formulas for Heat Output

Table 12-29 Heat Content (Iron, Steel and Slag)

Table 12-30 Reaction Heat

Table 12-27 Calculation Formulas for Heat Input

| (1) Heat Quantity of Electric    | $Q_1 = W_1 \times 860$                                             |
|----------------------------------|--------------------------------------------------------------------|
| Power, Qt (kcal/t-output)        | W <sub>1</sub> . Unit consumption of electric power                |
|                                  | (kWh/t-output)                                                     |
|                                  | 860: Conversion factor (kcal/kWh)                                  |
| (2) Potential Heat of Hot Metal, | $Q_2 = Q_3 + Q_{2b} + Q_{2c}$                                      |
| Hot Heel of Raw Materials and    | (a) Potential Heat of Hot Metal, Q2a (kcal/t-output)               |
| Slag, Q2 (kcal/t-output)         | $Q_{2a} = M_{2a} \times H_{2a}$                                    |
|                                  | M2a: Unit consumption of hot metal (kg/t-output)                   |
|                                  | H <sub>2a</sub> : Heat content of metal (kcal/kg)                  |
|                                  | Note: Hot metal was not used in this study.                        |
|                                  | (b) Potential Heat of Hot Heel, Q26 (keal/t-output)                |
|                                  | $Q_{2b} = M_{2b} \times H_{2b}$                                    |
|                                  | M <sub>2b</sub> : Unit consumption of hot heel (kg/t-output)       |
|                                  | H <sub>2b</sub> : Heat content of hot heel (kcal/kg)               |
|                                  | Note: 1) The amount of hot heel was estimated                      |
|                                  | to be 10t/heat in this study.                                      |
|                                  | 2) Heat content depends on the hot heel                            |
|                                  | temperature which was estimated to be 1,550 °C i                   |
|                                  | this study.                                                        |
| <b>名《新聞》。 第4日本教</b>              | (c) Potential Heat of Residual Slag, Q2. (kcal/t-                  |
|                                  | output)                                                            |
|                                  | $Q_{2e} = M_{2e} \times H_{2e}$                                    |
|                                  | M <sub>2c</sub> : Unit consumption of residual slag (kg/t-output)  |
|                                  | H <sub>2c</sub> : Heat content of residual slag (kcal/kg)          |
|                                  | Note: Small amounts of residual slag were not                      |
|                                  | considered in this study.                                          |
| (3) Sensible Heat of Raw         | $Q_3 = M_3 \times (II_{3h} - II_{3a})$                             |
| Materials, Q3 (kcal/t-output)    | M <sub>1</sub> : Unit consumption of raw materials (kg/t-output)   |
|                                  | H <sub>sh</sub> Heat content of raw materials at temperature after |
|                                  | preheating (kcal/kg)                                               |
|                                  | H <sub>3a</sub> Heat content of raw materials at indoor            |
|                                  | temperature (kcal/kg)                                              |
|                                  | Note: 1) H <sub>3</sub> was assumed 0 kcat/kg of heat conter       |

|                                  | at 0 °C as basis in this study.                                                                                 |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------|
| (4) Calorific Power of Fuel Oil, | $\mathbf{Q_4} = \mathbf{M_4} \times \mathbf{q_4}$                                                               |
| Q4 (kcal/t-output)               | M4: Unit consumption of fuel oil (kg/t-output)                                                                  |
|                                  | q4: Low heating value of fuel oil (kcal/kg)                                                                     |
| (5) Sensible Heat of Fuel Oil,   | $Q_5 = M_5 \times C_5 \times (Z_{51} - Z_{52})$                                                                 |
| Q <sub>5</sub> (kcal/t-output)   | Ms: Unit consumption of fuel oil (kg/t-output)                                                                  |
|                                  | C <sub>5</sub> : Mean specific heat of fuel oil (kcal/kg)                                                       |
|                                  | Z <sub>sf</sub> : Temperature of fuel oil (°C)                                                                  |
|                                  | Z <sub>5a</sub> : Indoor temperature (°C)                                                                       |
|                                  | Note: Small sensible heat of fuel oil was not                                                                   |
|                                  | considered in this study.                                                                                       |
| (6) Oxidation Heat of Electrode, | $Q_6 = M_6 \times C_c \times 10^{-2} \times (q_{6CO2} \times CO_2)/(CO_2 + CO)$                                 |
| Q6 (kcal/t-output)               | $+ q_{6CO} \times CO/(CO_2 + CO)$                                                                               |
|                                  | Ms: Unit consumption of electrode (kg/t-output)                                                                 |
| · 新闻《自己》 (1) [4] [6] [6] [6]     | Ce. Carbon content of electrode (%)                                                                             |
|                                  | q <sub>CO2</sub> : Oxidation heat of electrode in CO <sub>2</sub> formation                                     |
|                                  | (kcal/kg)                                                                                                       |
|                                  | q <sub>6CO</sub> : Oxidation heat of electrode in CO formation                                                  |
|                                  | (kcal/kg)                                                                                                       |
|                                  | CO <sub>2</sub> : CO <sub>2</sub> content of exhaust gas (%)                                                    |
|                                  | CO: CO content of exhaust gas (%)                                                                               |
|                                  | Note: Unit consumption of electrode was estimated                                                               |
|                                  | 1.9 kg/t-output.                                                                                                |
| 7) Oxidation Heat of Charge,     | $Q_7 = Q_{7a} + Q_{7b} + Q_{7c} + Q_{7d} + Q_{7c} + Q_{7l} + Q_{7g}$                                            |
| Q7 (kcal/t-output)               | (a) Oxidation Heat of Charged Carbon,                                                                           |
|                                  | Q <sub>7s</sub> (kcal/t-output)                                                                                 |
|                                  | $Q_{1a} = M_{7a} \times (q_{7CO2} \times CO_2/(CO_2 + CO) + q_{7CO} \times CO$                                  |
|                                  | /(CO <sub>2</sub> + CO))                                                                                        |
|                                  | M7a = M7aPig iron + M7aScrap + M7aCarbon position                                                               |
|                                  | $-1,000 \times C_{Tap} \times 10^{-2}$                                                                          |
|                                  | $M_{7aPig iron} = M_{7Pig iron Charge} \times C_{Pig iron} \times 10^{-2}$                                      |
|                                  | $M_{7aScrap} = M_{7Scrap Charge} \times C_{Scrap} \times 10^{-2}$                                               |
|                                  | M <sub>7aCarbon powder</sub> = M <sub>7Carbon powder Charge x C<sub>Carbon powder</sub> x 10<sup>-2</sup></sub> |
|                                  | M7. Oxidation amount of charged carbon (kg/t-output)                                                            |
|                                  | 1071. Oxidation amount of charged carbon (kg/courput)                                                           |

M7aScrap: Carbon in scrap (kg/t-output)

M<sub>7aCarbon powder</sub>: Carbon in charged carbon powder (kg/t-output)

M<sub>7Pig iron Charge</sub>: Unit consumption of pig iron (kg/t-output)

M78crap Charge: Unit consumption of scrap (kg/t-output)

M<sub>7Carbon powder Charge</sub>: Unit consumption of charged carbon powder (kg/t-output)

Cpig iron: C content of pig iron (%)

C<sub>Scrap</sub>: C content of scrap (%)

Ccarbon powder. C content of charged carbon powder (%)

C<sub>Tap</sub>: C content of molten steel before tapping (%)

1,000. Output (kg)

q<sub>7CO2</sub>: Heat of carbon oxidation in CO<sub>2</sub> formation (kcal/kg)

q<sub>2CO</sub>: Heat of carbon oxidation in CO formation (kcal/kg)

CO<sub>2</sub>: CO<sub>2</sub> content of exhaust gas (%)

CO: CO content of exhaust gas (%)

Note: Charged carbon powder was not used in this study.

# (b) Oxidation Heat of Charged Silicon, Q<sub>7b</sub> (kcal/t-output)

 $Q_{7b} = M_{7b} \times q_{7b}$ 

 $M_{7b} = M_{7b \text{Fig iron}} + M_{7b \text{Scrap}} - 1,000 \text{ x Si}_{\text{Tap}} \text{ x } 10^{-2}$ 

 $M_{7bPig iron} = M_{7iSg iron Charge} \times Si_{Pig iron} \times 10^{-2}$ 

M76Scrap = M7Scrap Charge x Siscrap x 10-2

M7b: Oxidation amount of charged silicon (kg/t-output)

M7bFig iron: Silicon in pig iron (kg/t-output)

M7bScrap: Silicon in scrap (kg/t-output)

M<sub>7Pig iron Charge</sub>: Unit consumption of pig iron (kg/t-output)

M7Scrap Charge: Unit consumption of scrap (kg/t-output)

Sirigiron: Si content of pig iron (%)

Siscrap: Si content of scrap (%)

Si<sub>lap</sub>: Si content of molten steel before tapping (%)

1,000: Output (kg)

q76: Heat of silicon (keal/kg)

(c) Oxidation Heat of Charged Manganese, Q<sub>7c</sub> (keal/t-output)

Same as (b).

(d) Oxidation Heat of Charged Phosphorus, Q<sub>7d</sub> (kcal/t-output)
Same as (b).

(e) Oxidation Heat of Charged Chromium, Q7. (kcal/t-output)
Same as (b).

(f) Oxidation Heat of Charged Aluminum,
Qn(kcal/t-output)
Same as (b).

(g) Oxidation heat of Charged Iron, Q7g (keal/t-output)

 $Q_{7g} = M_{7g} x$  (FeO x 0.777 x  $q_{7gFeO} + Fe_2O_3 x 0.699 x$ 

 $q_{7gFe2O3}$ ) x  $10^{-2}$ 

M<sub>7g</sub>: Unit weight of slag (kg/t-output)

FeO: FeO content of slag (%)

Fe<sub>2</sub>O<sub>3</sub>: Fe<sub>2</sub>O<sub>3</sub> content of slag (%)

q<sub>76</sub>FeO: Heat of iron oxidation in FeO formation (kcal/kg)

q<sub>7gFe2O3</sub>: Heat of iron oxidation in Fe<sub>2</sub>O<sub>3</sub> formation (kcal/kg)

0.777; Ratio of Fe in FeO

0.699: Ratio of Fe in Fc<sub>2</sub>O<sub>3</sub>

Note: Unit weight of slag was calculated as follows in this study:

 $M_{7g} = M_{7gl,ime} \times CaO_1/CaO_8$ 

M<sub>7gl inc</sub>. Unit consumption of burnt lime (kg/t-output)

CaOs: CaO content of slag (%)

CaO<sub>L</sub>: CaO content of burnt lime (%)

Note: Mean value of seven heats was used for slag

### (8) Oxidation Heat of Additives, Q<sub>8</sub> (kcal/t-output)

 $Q_8 = Q_{8a} + Q_{8b} + Q_{8c}$ 

(a) Oxidation Heat of Carbon in Additives, Q82 (kcal/t-output)

 $Q_{8a} = M_{8a} \times (q_{8CO2} \times CO_2/(CO_2 + CO) + q_{8CO} \times CO$ /(CO<sub>2</sub> + CO))

 $M_8 = M_{8aCarbon\,injection} + M_{8aSi-Mn} + M_{8aFe-Si} + M_{8aFe-Mn}$ 

 $M_{8aCarbon injection} = M_{8Carbon injection Additives} \times C_{Carbon injection}$   $\times 10^{-2}$ 

 $M_{\text{SaSi-Mn}} = M_{\text{SSi-Mn Additives}} \times C_{\text{Si-Mn}} \times 10^{-2}$ 

 $M_{8aFe-Si} = M_{8Fe-Si~Additives} \times C_{Fe-Si} \times 10^{-2}$ 

 $M_{8aFe-Mn} = M_{8Fe-Mn \text{ Additives}} \times C_{Fe-Mn} \times 10^{-2}$ 

M8a: Carbon of additives(kg/t-output)

MsaCarton injection: Carbon in carbon injection (kg/t-output)

M<sub>8aSi-Mn</sub>: Carbon in Si-Mn (kg/t-output)

M<sub>8aFe-Si</sub>: Carbon in Fe-Si (kg/t-output)

M8aFe-Mn Carbon in Fe-Mn (kg/t-output)

M<sub>8Carbon injection Additives</sub>: Unit consumption of carbon injection (kg/t-output)

M<sub>88i-Ma Additives</sub>: Unit consumption of Si-Mn (kg/t-output)

MsFe-Si Additives: Unit consumption of Fe-Si (kg/t-output)

M<sub>8Fe-Mn Additives</sub>. Unit consumption of Fe-Mn (kg/t-output)

Ccarbon injection: C content of carbon injection (%)

C<sub>Si-Mn</sub>: C content of Si-Mn (%)

CFe-Si C content of Fe-Si (%)

CFe-Mn: C content of Fe-Mn (%)

q<sub>8CO2</sub>: Heat of carbon oxidation in CO<sub>2</sub> formation (kcal/kg)

 $q_{sco}$ . Heat of carbon exidation in CO formation (kcal/kg)

CO2: CO2 content of exhaust gas (%)

CO: CO content of exhaust gas (%)

Note: Si-Mn Fe-Si and Fe-Mn were not used in this

study.

## (b) Oxidation Heat of Silicon in Additives,Q<sub>8b</sub> (keal/t-output)

18

 $Q_{8b} = M_{8b} \times q_{8b}$ 

 $M_{8b} = M_{8bSi-Mn} + M_{8bFc-Si} + M_{8bFc-Mn}$ 

 $M_{888i-Mn} = M_{88i-Mn Additives} \times Si_{8i-Mn} \times 10^{-2}$ 

 $M_{8Fe-Si} = M_{8Fe-Si \ Additives} \times Si_{Fe-Si} \times 10^{-2}$ 

 $M_{8NFe-Mn} = M_{8Fe-Mn \ Additives} \times Si_{Fe-Mn} \times 10^{-2}$ 

M<sub>8b</sub>: Silicon in additives (kg/t-output)

M<sub>8bSi-Mn</sub>: Silicon in Si-Mn (kg/t-output)

M<sub>SbFe-Si</sub>: Silicon in Fe-Si (kg/t-output)

Mshre-Ma. Silicon in Fe-Mn (kg/t-output)

M<sub>8Si-Mn Additives</sub>: Unit consumption of Si-Mn (kg/t-output)

Mare-Si Additives: Unit consumption of Fe-Si (kg/t-output)

M<sub>SFe-Mn Additives</sub>: Unit consumption of Fe-Mn (kg/t-output)

Sisi-Mn: Si content of Si-Mn (%)

Sire Si Si content of Fe-Si (%)

SiFe-Mn: Si content of Fe-Mn (%)

1,000. Output (kg)

q<sub>8b</sub>: Heat of silicon (kcal/kg)

Note: Si-Mn, Fe-Si and Fe-Mn were not used in this study.

# (c) Oxidation Heat of Manganese in Additives,Q<sub>8c</sub> (kcal/t-output)

Same as (b).

### (9) Heat of Stag Formation, Q2 (kcal/t-output)

### $Q_9 = M_9 x (SiO_2 x q_{9SiO_2} + P_2O_5 x q_{9P2O_5}) x 10^{-2}$

M9: Unit weight of slag (kg/t-output)

Note: Sec (7) (g).

q<sub>98iO2</sub>: Heat of SiO<sub>2</sub> reaction in Ca<sub>2</sub>SiO<sub>4</sub> formation (kcal/kg)

q<sub>9P2O5</sub>: Heat of P<sub>2</sub>O<sub>5</sub> reaction in Ca<sub>3</sub>P<sub>2</sub>O<sub>3</sub> formation (kcal/kg)

SiO<sub>2</sub>: SiO<sub>2</sub> content of slag (%)

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P2O5: P2O5 content of slag (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Note: The mean value of seven he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ats was used for                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | slag analysis in this study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| Heat Input,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Q_{ilest  loput} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_$ | $Q_6 + Q_7 + Q_8$                     |
| QHeat Input (kcal/t-output)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + Q <sub>9</sub> (kcal/t-output)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · |
| the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |



# (10) Potential Heat of Molten Steel, Q<sub>10</sub> (kcal/t-output)

 $Q_{10} = Q_{10a} + Q_{10b}$ 

### (a) Potential Heat of Output (excluding hot heel),

Q102 (kcal/t-output)

 $Q_{10a} = 1,000 \times H_{10a}$ 

1,000: Output (kg)

H<sub>10a</sub>: Heat content of molten steel before tapping (kcal/g)

Note: Heat content is dependent on temperature.

#### (b) Potential Heat of Hot heel, Q(Da (kcal/t-output)

 $Q_{10b} = M_{10b} \times H_{10b}$ 

M<sub>10b</sub>: Unit weight of hot heel (kg/t-output)

H<sub>10b</sub>: Heat content of hot heel (kcal/g)

Note: 1) Amount of hot heel was assumed 10 t/heat in this study.

2) Heat content is dependent on temperature

### (11) Potential Heat of Slag, Q<sub>11</sub> (kcal/t-output)

 $\mathbf{Q_{H}} = \mathbf{M_{H}} \times \mathbf{H_{H}}$ 

M<sub>11</sub>: Unit weight of slag (kg/t-output)

H<sub>11</sub>: Heat content of slag (kcal/g)

Note: 1) Concerning unit weight of slag, see (7) (g) in Heat Input.

2) Heat content is dependent on temperature which is same as that of molten steel in this study.

# (12) Heat of Decomposition, Q<sub>12</sub> (kcal/t-output)

 $\mathbf{Q_{12}} = \mathbf{Q_{12a}} + \mathbf{Q_{12b}}$ 

(a) Heat of Limestone Decomposition,

Q12. (kcal/t-output)

 $Q_{12a} = 10^{-2} \text{ x M}_{12a} \text{ x CaO x } q_{12aCaCO3}$ 

M<sub>12a</sub>: Unit consumption of limestone (kcal/t-output)

q<sub>12aCaCO3</sub>: Heat of decomposition of limestone (kcal/kg)

CaO: CaO content of limestone (%)

Note: 1) 30 % of limestone was included in burnt lime in this study.

(b) Heat of Iron Ore Decomposition,

Q<sub>12b</sub> (kcal/t-output)



 $Q_{12b} = 10^{-2} \text{ x M}_{12b} \text{ x (FeO x } q_{12bFeO} + Fe_2O_3 \text{ x } q_{12bFe2O_3})$ 

M<sub>126</sub>: Unit consumption of iron ore (kcal/t-output)

q<sub>12N/co</sub>: Heat of decomposition of FeO in iron ore (kcal/kg)

q<sub>12bFe2O3</sub>: Heat of decomposition of Fe<sub>2</sub>O<sub>3</sub> in iron ore (kcal/kg)

FeO: FeO content in iron ore (%)

Fe<sub>2</sub>O<sub>3</sub>: Fc<sub>2</sub>O<sub>3</sub> content in iron ore (%)

Note: Iron ore was not used in this study.

# (13) Etectrical heat Loss, Q<sub>13</sub> (keal/t-output)

$$Q_{13} = Q_{13a} + Q_{13b}$$

(a) Heat Loss in Secondary Conductors,

Q17. (keal/t-output)

$$Q_{13a} = (R_0 \times I_0^2 \times T \times 860) \times 3.6/\Gamma$$

$$R_0 = R_S + O_X (E_1 + E_2 + E_3)/S$$

$$I_0 = (W_0 \times 10,000)/(3^{1/2} \text{ VO } \times \cos \text{ U})$$

$$W_0 = W_0 / \Gamma$$

$$V_0 = V \times T/\Gamma$$

$$\cos U = W_p/(W_0^2 + W_0^2)^{1/2}$$

R<sub>o</sub>: Combined resistance of secondary conductor and electrode (Ohm)

Io. Mean current (A)

t: Output (ton)

R<sub>S</sub>: Combined resistance of secondary conductor resistance and contact resistance between electrode and holder (Ohm)

O. Specific resistance of electrode (Ohm-cm)

S: Sectional area of electrode (cm²)

 $E_1$ ,  $E_2$ ,  $E_3$ : Average length of electrode in each phase exposed from roof

Wo: Mean electric power (kW)

V<sub>0</sub>: Mean voltage (V)

cos U: Mean power factor (-)

Wn: Electric power consumed (kW)

Wo: Reactive energy (kVar)

- V: Secondary voltage of transformer tap(V)
- T': Conducting period of each tap in transformer (hr)
- T: Power-on to power-off time (hr)

  Note: Heat loss in secondary conductor was not measured.
- (b) Heat Loss of Transformer,

Q<sub>13b</sub> (kcal/t-output)

$$Q_{136} = (W_1 - W_2) \times 860/t$$

- W<sub>1</sub> = Electric power on primary side of transformer (kWh)
- W<sub>2</sub> = Electric power on secondary side of transformer (kWh)

Note: Heat loss in secondary conductor was not measured.

# (14) Heat in Cooling Water, Q<sub>14</sub> (keal/t-output)

$$Q_{14} = Q_{14a} + Q_{14b} + Q_{14c} + Q_{14d}$$

(a) Heat in Cooling Water for Elbow, Q<sub>14</sub>, (kcal/t-output)

 $Q_{14a} = M_{14a} \times C_{14} \times (t_{a14aO} - t_{14aI})$ 

 $M_{14a} = F_{14a} \times T/t$ 

M14a: Average quantity of cooling water (kg/t-output)

 $C_{14}$ : Specific heat of water (kcal kg, °C) = 1

t<sub>14aO</sub>: Mean outlet temperature of cooling water (°C)

t<sub>14at</sub>: Mean inlet temperature of cooling water (°C)

F<sub>14a</sub>. Flow rate of cooling water (kg/hr)

T: Power-on to power-off time (hr)

t: Output (ton)

(b) Heat in Cooling Water for Roof, Q146 (kcal/t-output)

Same as (a).

(c) Heat in Cooling Water for EBT, Q14c (kcaVt-output)

Same as (a).

(d) Heat in Cooling Water for Shell, Q14d (keal/t-output)

Same as (a).

Q15 (kcal/t-output)

1

H<sub>15</sub> = Heat in average flow of exhaust gas (kcal/min)

T = Power-on to power-off time (hr)

t = Output (ton)

Note: Heat in average flow of exhaust gas is described in another pages (3. Calculation of Heat Content of Exhaust Gas).

(16) Heat Loss at Furnace Body, Q16 (kcal/t-output)

 $y_1 = Q_{16} = Q_{16} + Q_{16} + Q_{16}$ 

(a) Heat Loss at Roof, Q164 (kcal/t-output)

 $Q_{16a} = T x (q_{16aR} + q_{16aC}) x Mt$ 

 $q_{16aR} = 4.88 \text{ x r x} \left[ (T_0/100)^4 - (T_a/100)^4 \right]$ 

 $q_{16aC} = p \times (t_0 - t_a)^{1.25}$ 

q16ak: Radiation heat loss at roof (kcal/m2, hr)

q<sub>16aC</sub>: Convection heat loss at roof (kcal/m<sub>2</sub>, hr)

T: Power-on to power-off time (hr)

A: Surface area of roof (m<sub>2</sub>)

t: Output (ton)

r. Degree of blackness on furnace surface due to radiation (0.8)

To: Surface temperature of roof (°C)

Ta: Indoor temperature (°C)

p. 2.8 for horizontal wall facing upward, roof

2.2 for vertical wall facing sideways, shell

1.5 for horizontal wall facing downward, bottom

Note: Degree of blackness of 0.8 is based on "Heat

Calculating Figures for Iron and Steel Making

(1966)" by the Japan and Steel Association, Society

of Japan Academic Development).

(b) Heat Loss at Shell, Q166 (kcal/t-output)

Same as (a)

(c) Heat Loss at Bottom, Qtec (kcal/t-output)

Same as (a)

(17) Other Heat Loss,

Q17 (kcal/t-output)

 $Q_{17} = Q_{heat Input} - (Q_{10} + Q_{11} + Q_{12} + Q_{13} + Q_{14} + Q_{15}$ 

+ Q16

Table 12-29 Heat Content (Iron, Steel and Stag)

|             |                   |                    |                    |         |         | <del></del> |          | <del></del> | Unit    | kcal/kg          |
|-------------|-------------------|--------------------|--------------------|---------|---------|-------------|----------|-------------|---------|------------------|
| Tempera-    | Pig iron          | Pure iron          | Mild steel         | 0.23 %  | 0.4 %   | 0.8 %       | 1.2 %    | 18 Cr       | 13 Cr   | Slag             |
| ture (°C)   |                   |                    |                    | СС      | c       | C           | <u> </u> | - 8 Ni      | ·       |                  |
| . 0         | : -               | 0.0                | -                  | 0.0     | 0.0     | 0.0         | 0.0      | 0.0         | 0.0     | -                |
| 50          | · · · · •         | · -                | •                  | 5,6     | 5.6     | 5.4         | 5.4      | 5.9         | 5.2     | -                |
| 100         |                   | 11.0               | <del>.</del>       | 11.4    | 11.4    | 11.2        | 11.2     | 12.0        | 10.8    | 19.1             |
| 150         |                   | •                  | -                  | 17.4    | 17.4    | 17.4        | 17.4     | 18.3        | 16.8    |                  |
| 200         | -<br>: :          | 23,0               | · • •              | 23.6    | 23.5    | 23.8        | 23.9     | 24.7        | 23.0    | 39.9             |
| 250         |                   |                    |                    | 30,0    | 29.8    | 30.3        | 30.4     | 31.1        | 29.3    |                  |
| 300         | * :               | 35.0               |                    | 36.6    | 36.4    | 37.1        | 37.1     | 37.7        | 35.9    | 60.0             |
| 350         | -                 | -                  |                    | 43.5    | 43.2    | 44.1        | 44.0     | 44.3        | 42.8    |                  |
| 400         |                   | 49.0               | •                  | 50.6    | 50.2    | 51.3        | 51.1     | 51.1        | 50.0    | 81.0             |
| 450         |                   | •                  |                    | 58,1    | 57,5    | 58.8        | 58.8     | 58.1        | 57.6    | · · · · · ·      |
| 500         | <u> </u>          | 64.0               |                    | 66.0    | 65.3    | 66.8        | 66,1     | 65.2        | 65.8    | 101.9            |
| 550         |                   |                    |                    | 71.4    | 73.5    | 75.1        | 74.0     | 72.7        | 74.4    |                  |
| 600         | - <u>-</u>        | 82.0               | · . · · · <u>-</u> | 83.3    | 82.0    | 83.6        | 82.3     | 80.5        | 83.8    | 129.0            |
| 650         | : •               | ·                  |                    | 92.7    | 90.7    | 92.3        | 91.2     | 88.0        | 93.5    | · .              |
| 700         | •                 | 102.0              |                    | 102.8   | 99.9    | 101.5       | 101.0    | 95.5        | 104.0   | 151.9            |
| 750         |                   | •                  | •                  | 119.9   | 118.8   | 126.8       | 125.9    | 102,9       | 114.8   | 7                |
| 800         | -                 | 125.0              | -·                 | 131.3   | 126.2   | 133.6       | 133.7    | 110.6       | 123.0   | 177.0            |
| <b>8</b> 50 |                   |                    | -                  | 140.1   | 132 3   | 141.5       | 141.5    | 118.3       | 132.6   |                  |
| 900         |                   | 145.7              | _                  | 147.8   | 138.8   | 148.9       | 148.9    | 126.0       | 140.6   | 201.8            |
| 950         |                   | 4 - 1 - 1 <u>-</u> |                    | 155,6   | 146.3   | 156.3       | 156.4    | 133.8       | 148.4   | · : · · <u>-</u> |
| 1000        | <u>.</u>          | 163,0              | <u> </u>           | 163.3   | 153,7   | 163.9       | 163.8    | 141.5       | 156.1   | 227.9            |
| 1050        | ·                 | •                  |                    | 171.1   | 161,3   | 171.5       | 171.5    | 149.3       | 163.9   |                  |
| 1100        | •                 | 178.0              |                    | 178 8   | 168.8   | 179.3       | 179.1    | 157.2       | 171.7   | 254,8            |
| 1150        |                   | · .                | -                  | 186.7   | 176.5   | 187.2       | 186.9    | 165.2       | 179.5   |                  |
| 1200        | 264.9             | 194.0              | •                  | 194.6   | 184.3   | 195.2       | 194.7    | 173.2       | 187.2   | 286.9            |
| 1250        | : -               | 1 1                |                    | 202.7   | 192.3   | 203,3       | 202.7    | 181.3       | 195.0   |                  |
| 1300        | 280.9             | 209.0              |                    | 210.9   | 200.5   | 211.4       | 210.7    | 189.4       | 202 8   | 321.7            |
| 1350        | •                 |                    | -                  | (219.2) | (208.9) | (219.5)     | (218.7)  | (197.5)     | (210.6) | _                |
| 1400        | 301.9             | 231.0              |                    | (227.5) | (217.5) | (227.5)     | (226.7)  | (205.6)     | (218.4) | 365.7            |
| 1450        | <sup>10</sup> , 2 | ÷ .                | : ·                | (236.1) | (226.3) | (235.6)     | (234,7)  | (213.6)     | (226.2) |                  |
| 1500        | 322.0             | 247.9              | (311.0)            |         |         |             |          |             |         | 406.8            |
| 1550        | ·                 |                    |                    | •       |         |             |          |             | •       | 431.6            |
| 1600        | 343.0             | 331.0              | 332.0              |         |         |             | 1 1 2    |             | ·       | 459.8            |
| 1650        | -                 |                    | •                  | -       | •       |             |          | 11.         |         | 489.6            |
| 1700        | 361.0             | 349.9              | 353.0              |         |         |             |          |             | •       | 519.7            |

Basic stag of steelmaking process, CaO = 43.55 %, SiO<sub>2</sub> = 34.22 %, FeO = 10.27 %, Fe<sub>2</sub>O<sub>3</sub> = 3.68 %, Al<sub>2</sub>O<sub>3</sub> = 4.63 %,

MgO = 11.84 % and MnO = 6.60 %

|                |                 |                                         | Ont. Kcankg                                  |
|----------------|-----------------|-----------------------------------------|----------------------------------------------|
|                | item            | Reaction Heat                           | Reaction                                     |
| Oxidation Heat | Graphite carbon | 7,829 (Graphite carbon)                 | $C + O_2 = CO_2$                             |
|                | Graphite carbon | 2,200 (Graphite carbon)                 | $C + 1/2 O_2 = CO$                           |
|                | C               | 8,075 (C)                               | $C + O_2 = CO_2$                             |
|                | $\mathbf{c}$    | 2,448 (C)                               | $C + 1/2 O_2 = CO$                           |
|                | <b>S</b> i      | 7,459 (Si)                              | $Si + O_2 = SiO_2$                           |
|                | Mn              | 1,674 (Mn)                              | $Mn + 1/2 O_1 = MnO$                         |
| ÷ .            | Þ               | 5,811 (P)                               | $P + 5/4 O_2 = 1/2 P_2 O_5$                  |
|                | Cr              | 2,620 (Cr)                              | $Cr + 3/4 O_2 = 1/2 Cr_2O_3$                 |
|                |                 | 7,419 (AI)                              | $A1 + 3/4 O_2 = 1/2 Al_2O_3$                 |
|                | Fe              | 1,151 (Fe)                              | $Fe + 1/2 O_2 = FeO$                         |
|                | Fe              | 1,756 (Fe)                              | $Fe + 3/4 O_2 = 1/2 Fe_2O_3$                 |
| Formation Heat | Slag            | 502 (SiO <sub>2</sub> )                 | 2 CaO + SiO2 = CaSiO <sub>4</sub>            |
|                | Slag            | 1,070 (P <sub>2</sub> O <sub>5</sub> )  | $3 \text{ CaO} + P_2O_5 = \text{Ca}_3P_2O_3$ |
| Decomposition  | Iron ore        | 896 (FeO)                               | $FeO = Fe + 1/2 O_2$                         |
| Heat           | Iron ore        | 1,228 (Fe <sub>2</sub> O <sub>3</sub> ) | $Fe_2O_3 = 2 Fe + 3/2 O_2$                   |
|                | Lime stone      | 757 (CaO)                               | $CaCO_3 = CaO + CO_2$                        |

#### (2) Calculation of Heat Content of Exhaust Gas

#### 1) Measurement of Velocity, Flow Rate and Composition of Exhaust Gas

At C/C-outlet point, velocity and flow rate of exhaust gas are continuously measured based on JIS Z 8808 -7 ("Method of measuring dust concentration in flue gas" 7. Measurement of Velocity and Flow of Flue Gas).

Gas composition is also measured continuously both at C/C-outlet point and C/C-inlet point.

#### 2) Calculation of Heat Content of Exhaust Gas

Combined gas flow rate at C/C-outlet with change of gas composition from CC-inlet point to CC-outlet point, mass balance equilibrium gives gas flow rate at C/C-inlet. To calculate the heat content of exhaust gas at C/C-inlet point, linearized specific heat is referred to JIS G 0703 ("Method of heat balance calculation of are furnace")

$$g_0 = \{ (44 \times CO_{20H} + 32 \times O_{20H} + 28 \times (100 - CO_{20H} - O_{20H}) \} \times (1 - H/100) + 18 \times H \}$$
/(22.4 x 100) (kg/Nm<sup>3</sup>)-------(1)

$$g = (g_0 \times 273/(273 + T_{OUT})) \times \{(P_{Alm} \times 100/9.81 + SP_{OUT})/(13.6 \times 760)\} \quad (kg/m^3) - \cdots$$
----(2)

$$V = 0.854 \text{ x} \sqrt{2 \times 9.81 \text{ x} DPour / g}$$
 (m/s) .....(3)

$$F_{OUT} = V \times p \times (1840/2000)^2 \times 60 \times \{273/(273 + T_{OUT})\} \times (P_{Atm} \times 100/9.81 + SP_{OUT})/(13.6 \times 760) \text{ (Nm}^3/min)------(4)$$

$$F_{IN} = F_{OUT} \times (CO_{IN} + CO_{2IN}) / (CO_{OUT} + CO_{2OUT}) (Nm3/min) ------(5)$$

$$q_{IN} = F_{IN} \times T_{IN} \times \{q_{CO} \times CO_{IN} + q_{CO2} \times CO_{2IN} + q_{O2} \times O_{2IN} + q_{N2} \times (100 - CO_{IN} - CO_{2IN} - O_{2IN})\} / (4.186 \times 100)$$

$$q_{CO} = 0.00013 \text{ T x T}_{IN} + 1.28 \text{ (kj / Nm}^3 \text{ C)}$$

$$q_{CO2} = 0.000397 \text{ T x T}_{IN} + 1.826 \text{ (kj / Nm}^3 \text{ C)}$$

$$q_{02} = 0.000148 \text{ T x T}_{IN} + 1.33 \text{ (kj/Nm}^3\text{C)}$$

$$q_{N2} = 0.000128 \text{ T x T}_{IN} + 1.271 \text{ (kj/Nm}^3\text{C)} \text{ (kcal/min)}-----(6)$$

#### Whereas:

go: Gas density at 0°C and 1 atm. pressure. (kg/Nm³)

g: Gas density at actual state. (kg/m<sup>3</sup>)

V: Gas velocity at actual state. (m/s)

Note: Measurement was done using a Pitot tube, of coefficient 0.845.

Four: Gas flow rate at C/C-outlet. (Nm³/min)

Note: Duct diameter is 1840 mm.

F<sub>IN</sub>: Estimated gas flow rate at C/C-inlet. (Nm<sub>3</sub>/min)

q<sub>N</sub>: Estimated gas heat content at C/C-inlet. (kcal/min)

DP<sub>OUT</sub>: Gas dynamic pressure at C/C-outlet (mmAq)

SPour: Gas static pressure at C/C-outlet. (mmAq)

P<sub>Atm</sub>: Atmospheric pressure. (hPa)

Tour: Gas temperature at C/C-outlet. (C)

CO<sub>OUT</sub>: CO content of exhaust gas at C/C-outlet. (%)

CO<sub>20UI</sub>: CO<sub>2</sub> content of exhaust gas at C/C-outlet. (%)

O<sub>2OUT</sub>: O<sub>2</sub> content of exhaust gas at C/C-outlet. (%)

N<sub>20UI</sub>: N<sub>2</sub> content of exhaust gas at C/C-outlet. (%)

 $T_{IN}$ : Gas temperature at C.C. outlet. (C)

CO<sub>IN</sub>: CO content of exhaust gas at C/C-inlet. (%)

CO<sub>2N</sub>: CO<sub>2</sub> content of exhaust gas at C/C-inlet. (%)

O2IN: O2 content of exhaust gas at C/C-inlet. (%)

N<sub>2IN</sub>: N<sub>2</sub> content of exhaust gas at C/C-inlet. (%)

p: Pi, 3.14

H: Moisture (%)

#### 12-14-4 Data Sheets for Measurement

Results of measurement of the exhaust gas, outlet temperature of cooling water and surface temperature of furnace body are automatically recorded in the personal computer. Other data are recorded on the data sheets.

Examples of data sheets for measurement are shown below:

Table 12-31 Operational Data: Electric Power

| Date     |   |  |  |   | <br> |   |   |   |          |
|----------|---|--|--|---|------|---|---|---|----------|
| Heat No. | : |  |  | : |      | : |   | : |          |
| Name     |   |  |  |   |      |   | · |   | <u>.</u> |

|      |    |                                         |                 | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
|------|----|-----------------------------------------|-----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----|------------------|--------------------|-------|----------|-----------------------------------------|-----------------------------------------|
| Time | 1  |                                         | Vol             | tage                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     | c power          |                    |       | Remark   | S                                       | 1                                       |
| hr m |    |                                         |                 | V)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | (k' | Wh)              |                    | · · · |          |                                         |                                         |
| 0    |    | . !                                     |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     | ·                | 1.<br><u>- 1 -</u> |       | 1        |                                         |                                         |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     | <br>             |                    |       |          | ****                                    |                                         |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
| 2    |    |                                         | <b></b>         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          | 1                                       |                                         |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
| 5    |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       | 1        |                                         |                                         |
|      |    | <del></del> -                           | <del>: '`</del> |                                       | <del>!</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |     | *                |                    |       |          |                                         |                                         |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
|      |    | :                                       |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     | :                |                    |       |          |                                         |                                         |
|      |    | <u>ئى</u><br>ئىرى                       |                 | ••••••••                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
|      |    |                                         |                 | <b></b>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
| 10   | 0  | <del></del>                             | <del></del>     | <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  | <u>-</u>           |       |          |                                         |                                         |
|      |    | ·<br>·                                  |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |     |                  |                    |       | :        |                                         |                                         |
|      |    | <u></u>                                 | وند             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     | :<br>:           |                    |       |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | *************************************** |
|      |    |                                         |                 | ••••••                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>:                                |     |                  |                    |       | ,        |                                         |                                         |
|      |    |                                         |                 | <del>.</del>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  | ,                  |       |          |                                         | بنت                                     |
| 1    | 5  |                                         |                 | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - : :                                 |     |                  |                    |       | <u> </u> |                                         | · <u>-</u>                              |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                     |     |                  |                    |       |          |                                         |                                         |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
|      |    | ;<br>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |                                       | iang ikananaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |     |                  |                    |       |          |                                         | · · · · · · · · · · · · · · · · · · ·   |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  | · · · · · ·        |       |          |                                         |                                         |
| 2    | 0  |                                         | 1 <u>1 1</u>    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                     |     | <u> </u>         |                    |       |          |                                         | · ;                                     |
|      | Ī. |                                         |                 |                                       | i de la compansión de l | 1                                     |     |                  |                    |       |          | :                                       |                                         |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         | : :                                     |
|      |    |                                         |                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         | . :                                     |
| :    |    |                                         | ,               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |     |                  |                    |       |          |                                         |                                         |
|      | .5 |                                         |                 |                                       | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |     | .,,,-4-444444444 |                    | :     |          |                                         |                                         |



| Date     |  |
|----------|--|
| Heat No. |  |
| Name     |  |

| Tin       | ie  | 02     | by lancing | Саг           | bon injection                           | Λd  | ditives - CaO | Additives - |
|-----------|-----|--------|------------|---------------|-----------------------------------------|-----|---------------|-------------|
| hr        | min | (Nn    | n3)        | (kg           |                                         | (kg |               | Kg)         |
|           | 0   |        |            |               |                                         |     |               |             |
| . :       |     |        |            |               | :                                       |     |               |             |
|           |     |        |            | : <del></del> |                                         |     |               |             |
|           |     |        |            |               | :                                       |     |               |             |
|           |     |        |            |               |                                         |     |               |             |
| -         | 5   |        |            | :             |                                         |     |               |             |
|           |     |        |            | . :           | 1. )                                    |     |               |             |
|           |     | - :    |            |               | ,                                       |     |               |             |
|           |     |        |            |               |                                         | Ī   |               |             |
|           |     |        |            |               |                                         |     |               |             |
|           | 10  |        |            |               |                                         | ļ   |               |             |
|           | ,   |        |            |               |                                         |     |               |             |
| •••••     |     | -      |            |               |                                         |     |               |             |
|           |     |        |            | : :           |                                         |     |               |             |
|           |     |        |            |               |                                         |     |               |             |
|           | 15  |        |            | *****         |                                         |     |               |             |
| :         |     |        |            |               |                                         | -:  |               |             |
|           |     |        |            |               | *************************************** |     |               |             |
|           |     |        |            |               |                                         |     |               |             |
|           |     |        |            |               |                                         |     |               |             |
| <u> </u>  | 20  |        |            |               |                                         |     |               |             |
| ,         |     | :<br>i |            |               |                                         | · . |               |             |
|           |     |        |            |               |                                         |     |               |             |
|           |     |        |            |               |                                         |     |               |             |
| ********* |     |        |            |               |                                         |     |               |             |
|           | 25  |        |            | : "           |                                         |     |               |             |





Table 12-33 Operational Data: Oxy-Fuel Burner

| Date     |  |              |   |   |  | <br> |   |  |   | ٠ |
|----------|--|--------------|---|---|--|------|---|--|---|---|
| Heat No. |  | <br><u>:</u> |   | · |  | :    | - |  | - |   |
| Name     |  |              | : |   |  |      |   |  | 1 |   |

|                | ·        |    | No. 1 Furn                             | ace burner |          | No. 2 Furna                            | ce burner |
|----------------|----------|----|----------------------------------------|------------|----------|----------------------------------------|-----------|
| Fim            | ie       |    | O <sub>2</sub>                         | Oil        |          | O <sub>2</sub>                         | Oil       |
| 11             | min      |    | (Nm3)                                  | (kg)       |          | (kg)                                   | Kg)       |
|                | 0        |    |                                        |            |          |                                        |           |
|                |          | 1. |                                        |            |          |                                        |           |
| - ;            |          |    | ······································ |            | İ        | ······································ |           |
| <br>:          |          |    |                                        | <u> </u>   | <b></b>  |                                        |           |
| <u></u>        |          |    |                                        |            | <b> </b> |                                        |           |
| <u>.</u>       |          |    |                                        |            |          |                                        |           |
| <u> </u>       | 5        |    |                                        |            |          |                                        |           |
|                |          |    |                                        |            | <b> </b> |                                        |           |
| . <del>.</del> |          |    |                                        |            | 1        |                                        |           |
| :              |          |    |                                        |            | <u> </u> |                                        |           |
|                | 1 .      | '  |                                        |            |          |                                        |           |
| ; :            | 10       |    |                                        |            |          |                                        |           |
| - [            |          |    |                                        |            |          |                                        |           |
|                |          |    |                                        |            | 1        |                                        |           |
|                | ·        |    |                                        |            |          |                                        |           |
|                |          |    |                                        |            |          |                                        |           |
|                |          |    |                                        |            |          |                                        |           |
|                | 15       |    |                                        |            | -        |                                        |           |
|                | <u> </u> |    |                                        |            |          |                                        |           |
|                | <u> </u> |    |                                        |            |          |                                        |           |
|                |          |    |                                        |            | <u> </u> |                                        |           |
| :              | ,        |    |                                        |            |          |                                        |           |
| : :            | 20       |    |                                        |            |          |                                        |           |
|                |          |    |                                        |            |          |                                        |           |
|                |          |    |                                        |            |          |                                        |           |
|                |          | ., |                                        |            | -        |                                        |           |

### Table 12-34 Operational Data: Scrap

| Date     |      |  |   |  |
|----------|------|--|---|--|
| Heat No. |      |  |   |  |
| Name     | <br> |  | : |  |

| 1st bucket         | 2nd bucket         |                                       |
|--------------------|--------------------|---------------------------------------|
| Bucket No.         | Bucket No.         |                                       |
| Time               | Time               |                                       |
| Temperature (°C)   | Temperature (°C)   | ·                                     |
| Upper              | Upper              | · · · · · · · · · · · · · · · · · · · |
| Middle             | Middle             |                                       |
| Lower              | Lower              |                                       |
| Raw materials (kg) | Raw materials (kg) |                                       |
| Scrap              | Scrap              |                                       |
| Pig iron           | Pig iron           |                                       |
| Total              | Total              |                                       |

| <del> </del>       | <br>               |   |
|--------------------|--------------------|---|
| 3 rd bucket        |                    | · |
| Bucket No.         | •                  |   |
| <b>Fime</b>        | -                  |   |
| Temperature (°C)   |                    |   |
| Upper              | •                  |   |
| Middle             | -                  |   |
| ower               | -                  |   |
| Raw materials (kg) | Raw materials (kg) |   |
| Scrap              | Scrap              |   |
| Pig iron           | Pig iron           |   |
| l'otal             | Total              |   |

Table 12-35 Operational Data: Cooling Water

| Date                  |              | ,              |                                       |                                       |          |          |
|-----------------------|--------------|----------------|---------------------------------------|---------------------------------------|----------|----------|
| Heat No.              | <del> </del> |                | ;                                     |                                       |          |          |
| Name                  |              |                | · · · · · · · · · · · · · · · · · · · | ٠.,                                   |          |          |
|                       |              |                |                                       | <u> </u>                              | <u> </u> | :<br>    |
| Time                  |              | 4 14 <u>41</u> | :                                     |                                       | :        |          |
| Flow rate (m³/hr)     |              |                |                                       |                                       |          |          |
| EBT                   | 1 4          |                |                                       |                                       |          | <u> </u> |
| Elbow                 | 111          |                |                                       | ·<br>                                 |          |          |
| Roof                  | : 1          |                |                                       | · · · · · · · · · · · · · · · · · · · |          |          |
| Shell-1               | :<br>:<br>:- | ·              | · ·                                   | <u>:</u>                              |          |          |
| Shell-2               | :            |                |                                       |                                       |          |          |
| Total                 |              |                | <u> </u>                              |                                       | · .      |          |
| Inlet temperature (°C | <b>:</b> )   |                |                                       |                                       |          |          |

#### 12-14-5 Measurement Results

Following data shall be recorded.

- 1 Profile of facilities
- 2 Long-run operation results of each five heats of same grade steel which are operated before and after sampled three consecutive heats for heat balance.
- 3 Concerned personnel for measurement
- 4 Operation results of sampled three heats for heat balance
- 5 Results of measurement of sampled three heats for heat balance

Examples are shown as follows:

| Name of compan  | y                                         | IDC (IZMIR DEMIR CELIK                    |
|-----------------|-------------------------------------------|-------------------------------------------|
|                 |                                           | SANAYI A. S.)  Foca Celik Fabrikasi 35807 |
| Address         |                                           | Aliaga, IZMIR, TURKEY                     |
| Furnace manufac | <u></u>                                   | NKK Corporation (Japan)                   |
|                 | Type of furnace                           | AC arc furnace                            |
| •               | Charging method                           | Top charge                                |
|                 | Tapping method                            | EBT system                                |
|                 | Other facilities (bottom stirrer, bottom  | Water sprayed electrode, Scrap            |
|                 | bubbling, water sprayed electrode, scrap  | preheater                                 |
|                 | preheater, etc.)                          |                                           |
|                 | Nominal capacity (ton)                    |                                           |
| Molten steel    | Bath diameter (mm)                        |                                           |
| Monen seed      | Bath area (m²)                            |                                           |
|                 | Bath depth (mm)                           |                                           |
|                 | Distance between sill level and roof (mm) |                                           |
| Roof            | Thickness (mm)                            |                                           |
|                 | Radius (mm)                               |                                           |
|                 | Diameter of electrode hole (mm)           |                                           |
|                 | Pitch circle diameter (mm)                |                                           |
|                 | Ratio of water cooling area (%)           |                                           |
| Shell           | Inside diameter (mm)                      |                                           |
|                 | Thickness (mm)                            |                                           |
|                 | Height (mm)                               |                                           |
|                 | Height from bottom to roof (mm)           |                                           |
|                 | Ratio of water cooling area (%)           |                                           |
| Hearth          | Diameter (mm)                             |                                           |
|                 | Thickness (mm)                            |                                           |
|                 | Height of bank (mm)                       |                                           |
| Working door    | Width (mm)                                |                                           |
| :               | Height (mm)                               |                                           |
| Tapping hole    | Diameter (mm)                             |                                           |
| (EBT)           | Depth (mm)                                |                                           |

| Transformer         | Capacity (MVA) Primary voltage (kV)                          |               |  |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
|                     | Secondary voltage (V)                                        |               |  |  |  |  |  |  |  |
| <u> </u>            | Connection                                                   |               |  |  |  |  |  |  |  |
| Reactor             | Capacity (kVA)  Reactance (Ohm)                              | :             |  |  |  |  |  |  |  |
| Electrode           | Diameter (mm)                                                |               |  |  |  |  |  |  |  |
| Oxygen injection    | Type and number  Capacity (Nm³/hr)                           | <del></del> . |  |  |  |  |  |  |  |
| Burner              | Type, number and capacity  Kind of fuel and capacity (kg/hr) | <del></del> . |  |  |  |  |  |  |  |
| Carbon<br>injection | Capacity and number (kg/hr)                                  |               |  |  |  |  |  |  |  |

Table 12-37 Summary of Long-Run Operation Results of Before and After Heat Measured

| Date                                     | Aug. 13 Aug. 14 Aug. 14 Aug. 14 Au | Aug. 14 Aug. 14 Aug. 14 Aug. 14 |               | Aug. 14 Aug. 14 Aug. 14 Average | erage |
|------------------------------------------|------------------------------------|---------------------------------|---------------|---------------------------------|-------|
| Heat Mo.                                 | 965746 965747 965748 965749 96     | 965750 965754                   | 965755 965756 | 965757 965758                   | ٠,    |
| 1. Charged raw material (excluding hot   |                                    |                                 |               |                                 |       |
| 1.1. 1st bucket (t) Scrap                |                                    |                                 |               |                                 |       |
| 1.2. 2nd bucket (t)                      |                                    |                                 |               |                                 | ٠     |
| Scrap                                    |                                    | 1                               |               |                                 |       |
| Pig iron                                 |                                    |                                 |               |                                 |       |
| 1.3. 3rd bucket (t) Scrap                |                                    |                                 |               |                                 |       |
| 2. Output (Production) (t)               |                                    |                                 |               | :                               |       |
| 2.1. Good billet (t)                     |                                    |                                 |               |                                 |       |
| 2.2. Crop end, skull (t)                 |                                    |                                 |               |                                 |       |
| 3. Steel yield (%)                       |                                    |                                 |               |                                 | :     |
| 3.1. Molten steel yield                  |                                    |                                 |               |                                 |       |
| 3.2. Good billet yield                   |                                    |                                 |               |                                 |       |
| 4. Operation time (min.)                 |                                    |                                 |               |                                 |       |
| 4.1. Tap-to-tap time                     |                                    | 1.                              |               |                                 |       |
| 4.2. Power on-to-power off time          |                                    |                                 |               |                                 |       |
| 5. Consumption                           |                                    |                                 |               |                                 |       |
| 5.1. Electric power (kWh/t-output)       |                                    |                                 |               |                                 | •     |
| 5.2. Fuel oil (kg/t-output)              |                                    |                                 |               |                                 |       |
| 5.3. Oxygen gas (Nm3/t-output)           |                                    |                                 |               |                                 |       |
| Burner                                   |                                    |                                 |               |                                 |       |
| Lancing                                  |                                    | -<br>-                          |               |                                 |       |
| 5.4. Burnt lime (kg/heat)                |                                    |                                 |               |                                 |       |
| 5.5. Carbon injection (kg/heat)          |                                    |                                 |               | A SECTION ASSESSED.             |       |
| 6. Composition and temperature of molten | U                                  |                                 |               |                                 |       |
| steel before tapping                     |                                    |                                 |               |                                 |       |
| 6.1. C(%)                                |                                    |                                 |               |                                 |       |
| 6.2. Si (%)                              |                                    |                                 |               |                                 |       |

|                                         | ature (deg. C)<br>f hot heel (t) | on of billet (%)         |                 |           |            |         |         |         |         |          |         |  |
|-----------------------------------------|----------------------------------|--------------------------|-----------------|-----------|------------|---------|---------|---------|---------|----------|---------|--|
| 6.4. P (%)<br>6.5. S (%)<br>6.6. Cr (%) | 6.6. Tempera 7. Weight of        | 8. Composition 8.1 C (%) | <br>8.3. Mn (%) | 8.4 P (%) | 8.5. S (%) | 8.6. Cu | 8.7. Ni | 8.S. Cr | 8.9. Mo | 8.10. Sn | 8.11 Al |  |

Note: 1) Heat No. 965757 is excluded for average of pig iron. 2) Heat No. 965755 is excluded for average of fuel oil.

Table 12-38 Concerned Personnel for Measurement

| Date                                                                                                      | August 14, 1996                            |                                                          |                                    |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|------------------------------------|--|--|
| Heat No.                                                                                                  | 96                                         | 5751, 965752,                                            | 965753                             |  |  |
| Company                                                                                                   | Study team                                 | EIE                                                      | IDC                                |  |  |
|                                                                                                           | - I. Kawakami<br>- H. Tokano               |                                                          | - Suleyman Eldem<br>- Necati Unsal |  |  |
| Measuring person  Flow rate, temperature and composition of exhaust gas  Outlet temperature of cooling    | - T. Kawai<br>- S. Kinoshita<br>- N. Honda | - (Bora Omurtay)<br>- (Birgul Duman)<br>- (Mehmet Sezer) |                                    |  |  |
| water for furnace Electric power Oxygen gas by lancings Carbon injection                                  |                                            |                                                          | - Sibel Ozkan<br>- Uguri Egeli     |  |  |
| Burnt lime Oxygen gas and fuel oil by 4 furnace/1 door burners Flow rate and inlet temperature of cooling |                                            |                                                          | - Hikmet Yuzuak - Talip Bostanci   |  |  |
| water for furnace Temperature of scrap bucket Surrounding conditions                                      | - (H. Tokano)<br>- H. Tokano               |                                                          | - Duzgun Elitas                    |  |  |

Note: Bracket means co-working with specialists.



| Date                                             | Aug. 14     | Aug. 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aug. 14                               |
|--------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Heat No.                                         | 965751      | 965752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 965753                                |
| 1. Charged raw material (excluding hot heel) (t) |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 1.1. 1st bucket (t) Scrap                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 1.2: 2nd bucket (t)                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Scrap                                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Pig iron                                         |             | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                     |
| 1.3. 3rd bucket (t) Scrap                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 2. Output (Production) (t)                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |
| 2.1. Good billet (t)                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 2.2. Crop end, skull (t)                         | •           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 3. Steel yield (%)                               |             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 3.1. Molten steel yield                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 3.2. Good billet yield                           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |
| 4. Operation time (min.)                         | <del></del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 4.1. Tap-to-tap time                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 4.2. Power-on-to-power-off time                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 5. Unit consumption                              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 5.1. Electric power (kWh/output)                 |             | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| 5.2. Fuel oil (kg/t-output)                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 5.3. Oxygen gas (Nm³/t-output)                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - t                                   |
| Burner                                           | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| Lancing                                          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 5.4. Burnt lime (kg/t-output)                    |             | The second secon |                                       |
| 5.5. Carbon injection (kg/t-output)              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 6. Composition and temperature of molten steel   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| before tapping                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 6.1. C(%)                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 6.2. Si (%)                                      | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 6.3. Mn (%)                                      |             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| 6.4. P(%)                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 6.5. S (%)                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 6.6. Cr (%)                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 6.6. Temperature (°C)                            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 7. Weight of hot heel (t)                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 8. Composition of billet (%)                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 8.1. C (%)                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 8.2. Si (%)                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 8.3. Mn (%)                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 8.4. P(%)                                        |             | $= \{ \sum_{i \in \mathcal{N}}  \lambda_i - \lambda_i  \geq \epsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |
| 8.5 S (%)                                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 8.6. Cu (%)                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 8.7. Ni (%)                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |

8.8. Cr (%) 8.9. Mo (%) 8.10. Sn (%) 8.11 Al (%)

### Table 12-40 Measurement Results

| ; | 1000 | 100 |  |
|---|------|-----|--|
|   |      |     |  |

| Date                                                                        | Aug. 14      | Aug. 14 Aug. 14 |
|-----------------------------------------------------------------------------|--------------|-----------------|
| Heat No.                                                                    | 965751       | 965752 965753   |
| Amount of raw materials in 1st bucket (t)                                   |              |                 |
| Amount of scrap in 2nd bucket (t)                                           |              |                 |
| Amount of pig iron in 2nd bucket (t)                                        |              |                 |
| Amount of raw materials in 2nd bucket (t)                                   | 1 1 × 1      |                 |
| Amount of raw materials in 3rd bucket (t)                                   |              |                 |
| Charged raw material (excluding hot heel) (1)                               |              |                 |
| Amount of scrap (t)                                                         |              |                 |
| Amount of pig iron (t)                                                      |              |                 |
| Output (excluding hot heel) (t)                                             | :            |                 |
| Consumption of electric power (kWh)                                         |              |                 |
| Unit consumption of electric power, w <sub>1</sub> (kWh/t-output)           |              |                 |
| Hot heel of raw material (1)                                                | :            |                 |
| Unit weight of hot heel of raw material, m2 (kg/t-output)                   |              |                 |
| Temperature of hot heel, m <sub>2</sub> (°C)                                | 4 1          |                 |
| Unit consumption of scrap, (kg/t-output)                                    |              | ·               |
| Unit consumption of pig iron, (kg/t-output)                                 |              |                 |
| Unit consumption of raw materials, m3 (kg/t-output)                         |              |                 |
| Temperature of top of 1st bucket (°C)                                       |              |                 |
| Temperature of middle of 1st bucket (°C)                                    |              |                 |
| Temperature of bottom of 1st bucket (°C)                                    |              |                 |
| Mean temperature of 1st bucket (°C)                                         |              |                 |
| Temperature of top of 2nd bucket (°C)                                       | 14 Table 1   |                 |
| Temperature of middle of 2nd bucket (°C)                                    |              |                 |
| Temperature of bottom of 2nd bucket (°C)                                    |              |                 |
| Mean temperature of 2nd bucket (°C)                                         |              |                 |
| Temperature of top of 3rd bucket (°C)                                       |              |                 |
| Temperature of middle of 3rd bucket (°C)                                    | 1.           |                 |
| Temperature of bottom of 3rd bucket (°C)                                    |              |                 |
| Mean temperature of 3rd bucket (°C)                                         |              | **              |
| Mean temperature of raw materials after SPH (°C)                            | · .          |                 |
| Consumption of fuel oil at No. 1 burner (kg)                                |              |                 |
| Consumption of fuel oil at No. 2 burner (kg)                                |              |                 |
| Consumption of fuel oil at No. 3 burner (kg)                                |              |                 |
| Consumption of fuel oil at No. 4 burner (kg)                                |              |                 |
| Consumption of fuel oil at door burner (kg)                                 |              |                 |
| Consumption of fuel oil (kg)                                                |              |                 |
| Unit consumption of fuel oil, m4 (kg/t-output)                              |              |                 |
| Mean CO <sub>2</sub> content in exhaust gas at elbow (CO <sub>2</sub> ) (%) |              |                 |
| Mean CO content in exhaust gas at elbow (CO) (%)                            | <del> </del> | ·<br>           |
| C content of molten steel before tapping (%)                                |              |                 |
| Si content of molten steel before tapping (%)                               |              |                 |

|                                                                                                           |               | : |
|-----------------------------------------------------------------------------------------------------------|---------------|---|
| Mn content of molten steel before tapping (%)                                                             |               | : |
| P content of molten steel before tapping (%)                                                              |               |   |
| Cr content of molten steel before tapping (%)                                                             |               |   |
| Al content of molten steel before tapping (%)                                                             |               |   |
| CaO content of slag (%)                                                                                   |               |   |
| Consumption of burnt lime (kg)                                                                            |               |   |
| Amount of slag (kg)                                                                                       |               |   |
| Unit weight of slag, m11 (kg/t-output)                                                                    |               |   |
| FeO content of slag (FeO) (%)                                                                             |               | _ |
| Fe <sub>2</sub> O <sub>3</sub> content of slag (Fe <sub>2</sub> O <sub>3</sub> ) (%)                      |               |   |
| Consumption of carbon injection (kg)                                                                      |               | _ |
| Unit consumption of carbon injection (kg/t-output)                                                        |               |   |
| $P_2O_3$ content of slag $(P_2O_3)$ (%)                                                                   |               |   |
| SiO <sub>2</sub> content of slag (SiO <sub>2</sub> ) (%)                                                  |               |   |
| Temperature of molten steel before tapping (°C)                                                           |               |   |
| Weight of hot heel of molten steel (t)                                                                    |               | - |
| Unit weight of hot heel of molten steel (kg/t-output)                                                     |               |   |
| Power-on-to-power-off time (hr)                                                                           |               | - |
|                                                                                                           |               | _ |
| Flow rate of cooling water for roof (m³/hr)                                                               |               |   |
| Average quantity of cooling water of roof, m14b (kg/t-output                                              | ,             |   |
| Mean outlet temperature of cooling water for roof (°C)                                                    |               |   |
| Mean outlet temperature of cooling water for roof-1 (°C)                                                  |               |   |
| Mean outlet temperature of cooling water for roof-2 (°C)                                                  |               |   |
| Inlet temperature of cooling water for roof (°C)                                                          |               | _ |
| Flow rate of cooling water for EBT (m³/hr)                                                                | ·<br><b>·</b> |   |
| Average quantity of cooling water for EBT, m <sub>14c</sub> (kg/t-output                                  | ,             |   |
| Mean outlet temperature of cooling water for EBT (°C)                                                     |               |   |
| Inlet temperature of cooling water for EBT (°C)  Flow rate of cooling water for elbow (m³/hr)             |               | _ |
|                                                                                                           | it).          |   |
| Average quantity of cooling water for elbow, m <sub>143</sub> (kg/t-outpu                                 |               |   |
| Mean outlet temperature of cooling water for elbow (°C) Inlet temperature of cooling water for elbow (°C) |               |   |
| Inlet temperature of cooling water for elbow (°C)  Flow rate of cooling water for shell-1 (m³/hr)         |               |   |
| Average quantity of cooling water for shell-1, m <sub>144</sub> (kg/t-outp                                | art\          |   |
| Mean outlet temperature of cooling water for shell-1 (°C)                                                 | uij           |   |
| Inlet temperature of cooling water for shell-1 (°C)                                                       |               |   |
| Flow rate of cooling water for shell-2 (m³/hr)                                                            |               | - |
| Average quantity of cooling water for shell-2, m <sub>144</sub> (kg/t-outp                                | ort).         |   |
| Mean outlet temperature of cooling water for shell-2 (°C)                                                 |               |   |
| Inlet temperature of cooling water for shell-2 (°C)                                                       |               |   |
| Indoor temperature (°C)                                                                                   |               |   |
| Surface area of roof (m <sup>2</sup> )                                                                    |               |   |
|                                                                                                           |               |   |
| Mean surface temperature of roof (°C) Surface area of shell (m²)                                          |               |   |
|                                                                                                           |               |   |
|                                                                                                           |               |   |
| Mean surface temperature of shell-1 (°C)                                                                  |               |   |

| Mean surface temperature of shell-2 (°C)                |  |
|---------------------------------------------------------|--|
| Surface area of furnace bottom (m²)                     |  |
| Mean Surface temperature of furnace bottom (°C)         |  |
| Heat in average flow of exhaust gas (1,000 kcal/min)    |  |
| Consumption of limestone, m <sub>12</sub> (kg/t-output) |  |