11-11 Formulation and Recommendation of Countermeasures for Energy Conservation

IBF plans to construct a new dycing factory next to the new IPM factory in a suburb of Izmir in the near future. According to this plan, natural gas will be used instead of coal. The open width bleaching range, the mercerizing unit and Max Goller washing range in the factory will be moved to the new factory and used. The existing utility supply facilities will be discarded. Against this background, recommendations for energy conservation measures are prepared for the new factory and the existing factory as below.

11-11-1 New Factory Case

蠽

(1) CHP System (Co-generation System)

The CHP is recommended. There are many types of CHP system; therefore, a case study based on the demand and supply condition of utilities for the new IBF factory is needed for optimizing the CHP system. An example of a CHP system using a gas engine as generator is shown in Figure 11-21. In this case, the generated utilities are electricity, steam and hot water.

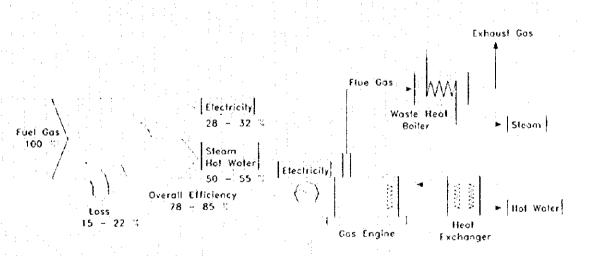


Figure 11-21 CHP System Using Gas Engine

(2) Package Boiler System

The package boiler system is recommended as an alternative steam supply system for the CHP system. The package boiler system consists of a few fully automated small-capacity boilers. Operation of each boiler is intermittent depending upon the demand for steam, which fluctuates as operation changes.

(3) Direct Heating System

11 - 96

The direct heating system is recommended as a local heating device in the finishing unit as an alternative for the hot oil system. Natural gas is a very useful fuel for this system. Figure 11-22 illustrates an example of a direct heating system burning LPG.

(4) Establishment of Good Energy Management System

A computer control system including measuring equipment for operation control and energy management is recommended. The system should incorporate a data logger capable of monitoring energy consumption. This system should be a good tool for energy management. Various pieces of information useful in energy management will be obtained from the analysis of energy consumption.

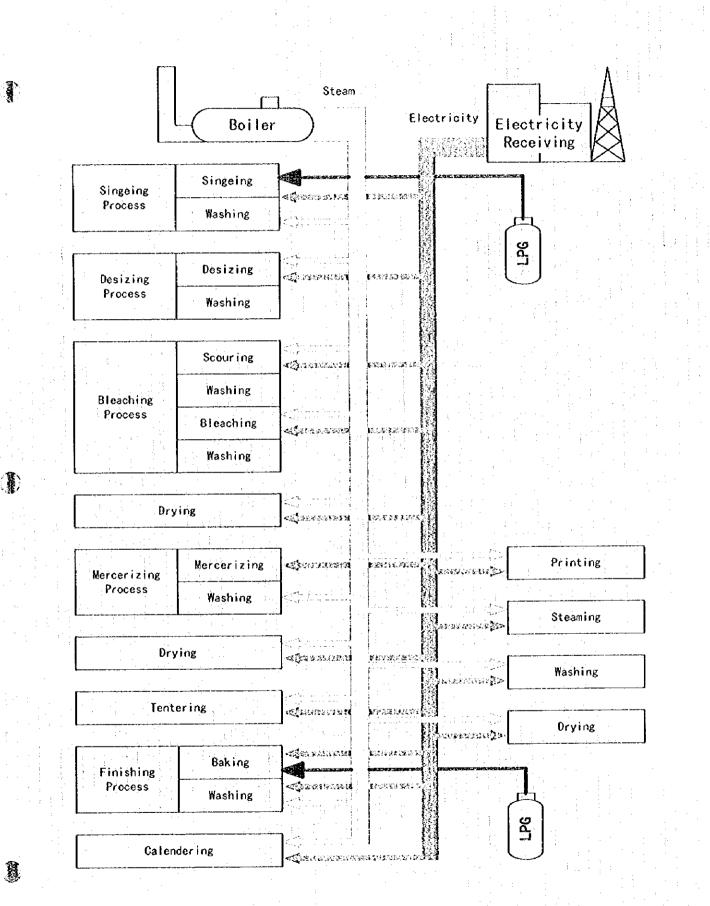


Figure 11-22 Direct Heating System Using LPG

11-11-2 Existing Factory Case

(1) Heat Recovery from Waste Water of Open Width Bleaching Range

As shown in Figure 11-17, an energy flowchart of the open width bleaching range, the heat loss associated with the waste water leaving the range at higher temperatures represents the largest portion, 77.2 percent, of the heat loss from the range. This includes the following.

1) Heat Loss with Waste Water Directly from the Machine (49.5 %)

The heat content of this effluent (based on 0° C) is large. This effluent is rather cool at 50°C. This means that the potential for recovering energy from it is low. Supposing that heat is recovered from this effluent and the temperature of the effluent is reduced to 40°C, the recovered heat is:

 $25,000 \text{ kg/h x} (50 - 40)^{\circ}C \text{ x 1 kcal/kg} ^{\circ}C = 256 \text{ x 10}^3 \text{ kcal/h} (9.9 \%).$ The heat loss still remains at 39.6 %.

2) Heat Loss with Waste Water Overflowing before Recovery by the Heat Recovery Unit (27.7 %)

The temperature of this effluent is 99.6°C, or high temperature energy. When heat is recovered at 40°C, the recovered heat is:

7,200 kg/h x (99.6 - 40)°C x 1 kcal/kg °C = 429 x 10³ kcal/h (16.6 %)

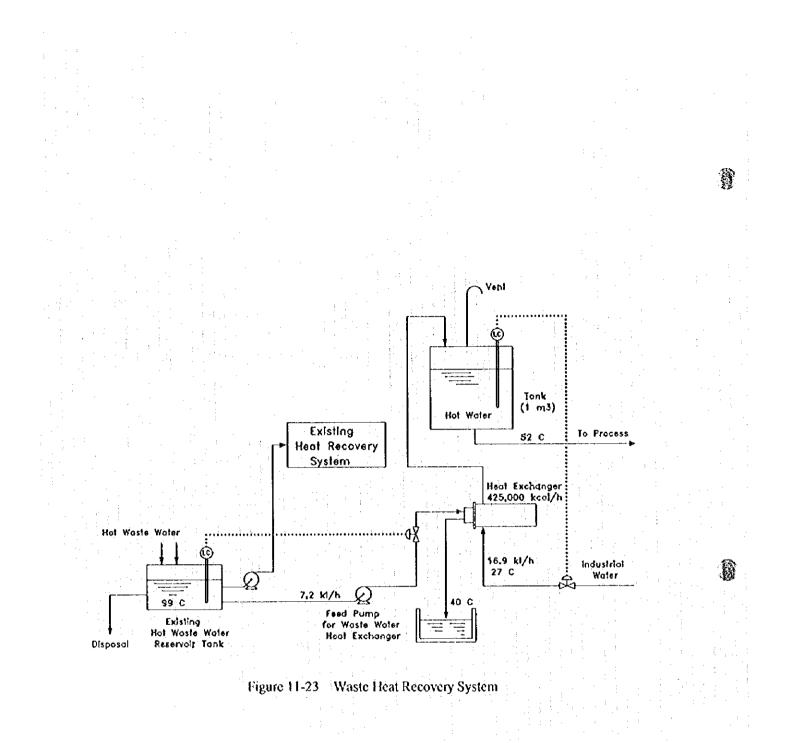
Based on the above calculation and observations made during the field survey, the following countermeasures for energy conservation from the waste water are recommended.

- 1. Fundamentally, reduction of water use and lowering the standard operation temperature should be tried, as far as product quality permits, in a careful and stepwise manner.
- 2. Improvement of the system for water supply including bath connections and operating conditions, and improvement of heat recovery system from hot waste water, such as installation of a high temperature waste water reservoir, automatic cold and hot water supply system, etc.

3. It is recommended to install a series waste heat recovery system in parallel to the existing waste heat recovery system in the open width bleaching unit. An outline of the system is shown in Figure 11-23.

S.

1.	Pump	2 Kg/cm ² , 7.2 m ³ /h, 0.75 kW		
2.	Plate type heat exchanger	425,000 kcal/h, 8 m ²		
3	Hot water tank	1 m ³		
4	Instrument	LIC x 2		
5	Pining	1.5 B x 20 m, 2 B x 20 m		


The system consists of the following pieces of equipment.

And also better maintenance of the rotary filter, heat exchanger, and related facilities of the recovery unit is important.

4. Although not quantified during the field survey, overheating of Baths 1, 2, 5, 6 and others was frequently observed. The operating temperatures of these baths were set very near to 100°C, the standard temperature, but the temperature was controlled by manual adjustment of steam valves and it was difficult. At times, the water was boiling in the baths and the steam generated lifted the top covers. As Figure 11-24 indicates, the heat dissipation from water surface becomes large when the temperature is high and vaporization takes place. The recommendations are:

(1) The steam flow to higher temperature baths should be controlled automatically.

(2) The standard operating temperature should be lowered as far as product quality permits. (Refer to Item 1.)

11 - 100

ß

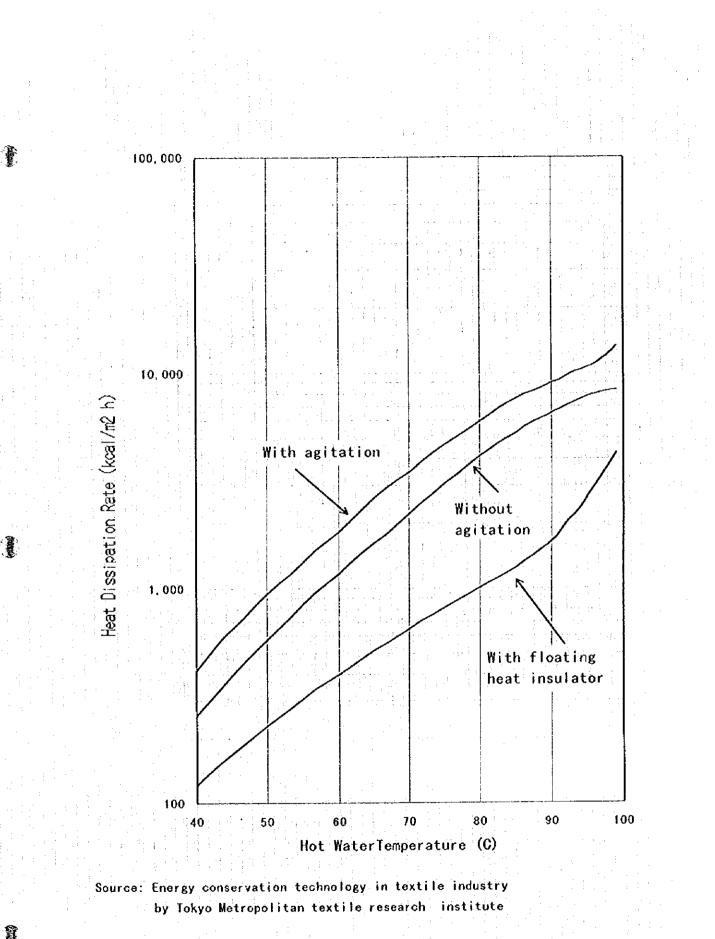


Figure 11-24 Heat Dissipation from Hot Water Surface

(2) Recommendations for the Max Goller Washing Range

The Max Golter washing range of IBF is new, built in 1995, and fully automatically controlled. When the energy audit by the study team was executed, the range was operated more intermittently than the open width bleaching range was. From the technical point of view, including energy conservation, the Max Goller washing range is rationally designed. The steam consumption of the range was measured to be 370 kg/h at the flash ager plus 1,580 kg/h at the washer, with a total of 1,950 kg/h, by the method described in Section 11-9-2. The nominal value is 1,600 kg/h, and the measured value may include the excess as described in the same section. Assuming the measured results of the steam flow rate to the range to be correct, the following countermeasures for energy conservation are recommended.

1) Measurement of Steam Flow Rate to the Range

From the energy flowchart, steam is the major input of energy to the range, accounting for 68.2 %. As already described, direct and accurate measurement of steam flow to the range is essential. Installation of a flow meter on the steam line to the range is recommended.

2) Heat Recovery from Waste Water

The heat loss with the hot waste water was calculated to be $1,414 \ge 10^3$ kcal/h, or 74.9 %. Presently, the range is not equipped with a unit for heat recovery from hot waste water. Max Goller's brochure says, "When washing continuously, still considerable quantities of waste water, having temperatures about 90°C, flow to the drainage. Because of increasing energy costs the waste water is more and more reused for preparation of fresh water. This is done by using heat exchangers with a capacity, calculated according to machine size and the required processes." When operation is stabilized, a heat recovery unit should be considered. If the heat recovery reduces the temperature from 70°C to 40°C,

 $20,200 \text{ kg/h x} (70 - 40)^{\circ}C \times 1 \text{ kcal/kg}^{\circ}C = 606 \times 10^3 \text{ kcal/h} (32.1\%)$ will be recovered.

Although a heat recovery system should be designed as quoted above, the study team considered a system in a way similar to the open width bleaching range. The system consists of the following components.

I. Pump

2. Filter

20 m³/h 300,000 kcal/h (To obtain 10 m³/h fresh water of 57 °C), 8 m²

2 Kg/cm², 20 m³/h, 2.1 kW

N

3. Plate type heat exchanger

- Hot water tank
- 5. Instrument

Since

1

6. Piping

LIC x 2 1.5 B x 20 m, 2 B x 20 m

(3) Condensate Recovery

To install a condensate recovery system is recommended in the drying unit and the open width bleaching range for effective use of steam traps. The number of steam traps is 13 in the drying unit and 9 in the open width bleaching range. Amount of condensate recovered is estimated to be 2,650 kg/h based on the system design. The condensate directly goes to the elevated hot water tank planned in the waste heat recovery system in the open width bleaching range through a newly installed 2 inch line. Length of the line is estimated at about 30 meters. Usable heat is estimated to be 193,000 kcal/h based on the following assumption.

2 m³

- 1. Condensate temperature is 100°C.
- 2. Fresh water in the open width bleaching range is 27°C.
- 3. Specific heat of water is 1 kcal/kg 'C.
- 4. Usable heat = 2,650 x 1 x (100 27) = approximately 193,000 kcal/h

(4) Insulation on Hot Valves and Flanges

To insulate the valves and flanges in the hot oil system and the steam supply system is recommended. Some valve portions and flange are not insulated to facilitate maintenance and inspection work, but they should be insulated. Figures 11-25, 11-26 and 11-27 (sources: JICA Report) show insulation on a valve, a flange, and a pipe hanger, respectively. The equivalent lengths of valves and the flanges in terms of bare pipe lengths of the same size are given in Table 11-33. These equivalent lengths are used for estimating heat losses from the insulated valves and flanges. The rate of heat release from pipe surface may be estimated by using Figures 11-28, 11-29 and 11-30.

Table 11-33	Equivalent Lengths of '	Valve and Flange in ter	ms of Bare Pipe Length
		· · · · · · · · · · · · · · · · · · ·	

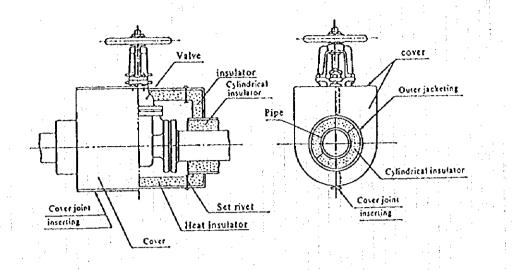
Pipe	Amm	15	25	40	50	65	80	100
Size	B inch	1/2	1	1 1/2	2	2 ¹ / ₂	3	4
Glove valve	with flange	1.15	1.22	1.11	1.11	1.23	1.25	1.27
Gate valve w	with flange	1.12	1.15	1.31	1.22	1.16	1.31	1.20
Valve for rec	lucing pressure	1.96	1.67	1.49	1.55	1.60	1.66	1.58
Control valv	e		1.84	1.56	1.60		1.54	
Flange		0.50	0.53	0.47	0.44	0.42	0.42	0.39

Source: "Energy Conservation Technology in Textile Industry" by Tokyo Metropolitan Textile Research Institute

Illustration: Heat release rate from 6 B valve in the hot oil line

1.	Surface temperature on valve, 'C 167
2.	Room temperature, C 37
3.	Heat release rate from 6 B bare pipe, kcal/m h 1,100
4.	Heat release rate from 6 B insulation pipe, kcal/m h 100
1	(insulation thickness is 50 mm)
5	Difference of heat release rate, kcal/m h
6.	Heat release rate from 6 B valve, kcal/h 1,200
	(equivalent length factor is 1.2)

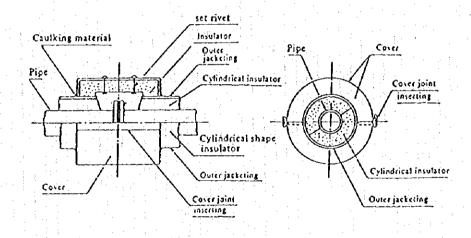
(5) Necessity of Measuring Equipment for Monitoring Energy Consumption

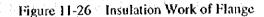

It is recommended to install a steam flow meter at the outlet of generated steam line of each boiler and also a hot oil flow meter for each hot oil heater. Each machine should have water, electric and steam flow meters.

(6) Computerized Maintenance System

To improve the maintenance management by using a personal computer is recommended.

(7) Adjustment of the Load of Steam Boiler


It is recommended to operate two, instead of three, boilers in summer when the load is low.



1

8

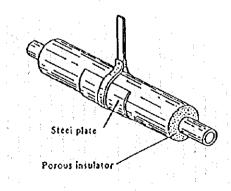
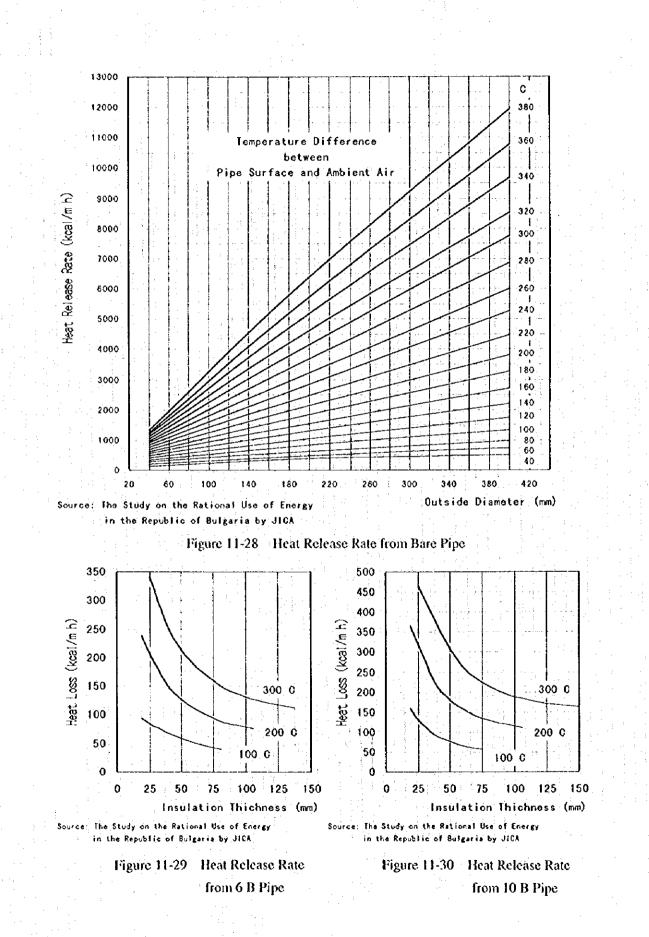



Figure 11-27 Insulation Work of Hanger

11 - 106

3

11-12 Cost Estimation of Countermeasures for Energy Conservation

Y

ţ

Budget-type costs as of August 1996 were estimated for four recommended modification works (1) heat recovery in the waste hot water of the open width bleaching, (2) Max Goller washing ranges, (3) condensate recovery, and (4) insulation on hot valves and flanges. The exchange rates used for estimation are 86,500 TL/US\$, 109 Yen/US\$, the rates prevailing in August 1996.

		Yen	Million TL
1.	Pump and Motor		35
2.	Heat exchanger		630
3.	Tank		150
4	Filter		3
5.	Instrument		333
6 .	Piping and Others		25
7.	Total		1,175

	Yen		Million TL
1. Pump and Motor	274,000		
2. Filter	500,000		
3. Heat exchanger	1,320,000		· :
4. Tank	300,000		
5. Instrument	420,000		
6. Piping and Others	348,000	· · ·	
7. Total	3,162,000		2,509

3,	Condensate recovery plan		antan ing Tanang	- ·			· · · · ·
		a la di A la di	Yen			Million TL	· · · · · · · · · · · · · · · · · · ·
1.	Piping		184,000		· · · · · · · · · · · · · · · · · · ·		an a
2.	Insulation		115,000				
3.	Valve		317,000			· · .	
4	Total		616,000	1		489	· · · · · ·
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.1.1.1.1		

4. Insulation on valve

Cost of insulation on the 6 B valve is estimated 31,200 Yen, or 25 Million TL.

It should be noted that the Japanese costs were not merely converted into Turkish Lira; instead the general price difference between the two countries was taken into account.

11-13 Overall Evaluation of Countermeasures for Energy Conservation

11-13-1 Energy Cost

The unit cost of energy in the IBF factory is estimated as below. 1. Steam type energy 2.875 1. Coal price, Million TL/ton 2.5 x 1.15 2. Low heating value of coal, kcal/kg 4,385 85.4 Energy conversion efficiency, % 3. Steam delivery to user/generated steam * 0.907 4. 5. Usable heat of steam 540/640 0.84 6. Unit cost of energy of steam type, TL/kcal 1 (Boiler evaporation rate-Steam consumption rate of degasifier in boiler unit)/ Note* Boiler evaporation rate (9,680 - 900)/9,680 = 0.9072. Hot oil type energy 1. Special fuel oil/No. 6 fuel oil price, TL/kg 23,700 - 15,500 2. Low heating value, kcal/h 9,600 3. Energy conversion efficiency, % 73.8 3.3 - 2.2 4. Unit price energy of hot oil type, TL/kcal 11-13-2 Overall Evaluation of Countermeasures (1) Heat Recovery Plan of Open Width Bleaching Range The amount of money saved by this plan is estimated as follows: Money saving calculation 425,000 1. Recovery heat rate, keal/h 360 2. Operation time a month (take), h 3. Total recovery heat a month, Million keal 153 4. Unit cost of energy, TL/keal 1 Amount of money saved per month, Million TL 153 5.

Investments are evaluated in terms of the repayment period, because the costs are low and the working times are short. Here, internal rate of return is not calculated.

Repayment period calculation		
1. Amount of saving money a month	, Million TL	153
2. Investment money, Million TL		1,175
3. Pay back period, month		7.7

(2) Heat Recovery Plan of Max Goller Washing Range

The investment in modification of the Max Goller Washing Range is evaluated as follows

1.	Recovery heat rate, kcal/h	300,000
	Operation time a month (take), hour	360
	Total recovery heat a month, Million keal	108
11	Unit cost of energy, TL/kcal	1
5	Amount of saving money a month, Million TL	108
	Investment money, Million TL	2,509
	Repayment period, months	23.2

(3) Condensate Recovery Plan

A

S)

Thè	e plan	is eva	aluated	as fo	llows:	, i

1	Usable heat rate, kcal/h	193,000
	Operation time per month (take), hour	360
	Total recovery heat per month, Million kcal	69
4.		l
5.	Amount of saving money per month, Million TL	69
	Investment money, Million TL	489
	Repayment period, month	7.1

(4) Insulation on 6 B Valve Plan

The plan is evaluated as follows.
1. Heat saving rate, kcal/h
2. Operation time per month , hour
3. Total saving heat per month, Million kcal

4. Unit cost of energy for hot oil, TL/kcal

5. Amount of money saved, Million TL

1,200

720

0.864

2.8

2.4

- 6. Investment money, Million TL
- 7. Repayment period, month

(5) Overall evaluation

11 - 110

The results of evaluations of (1), (3) and (4) mean that execution of these plans are justifiable. Plan (2) should be examined as one of the candidates in the new factory. The study team recommend IBF to recheck the cost of the each plan in the Turkish background and to reevaluate the situation of IBF.

11-14 Technical Guidelines for Energy Conservation

11-14-1 Outline of Major Production Facilities

In general, typical production facilities in the factory of the textile industry are as follows.

1. Spinning

(SHE

1

Blowing/Opening/Beating

Carding

Drawing

Roving

Spinning

Winding Weaving

2.

4.

Warp winding

Warp beaming

Sizing

Drawing-in

Weft preparation (weft winder, loom winder, etc.)

11 - 111

Weaving

3. Knitting

Dyeing and finishing

Singeing

Desizing

Scouring

Bleaching

Mercerizing

Dip dyeing

Soaping Printing

Steaming

Washing

Drying

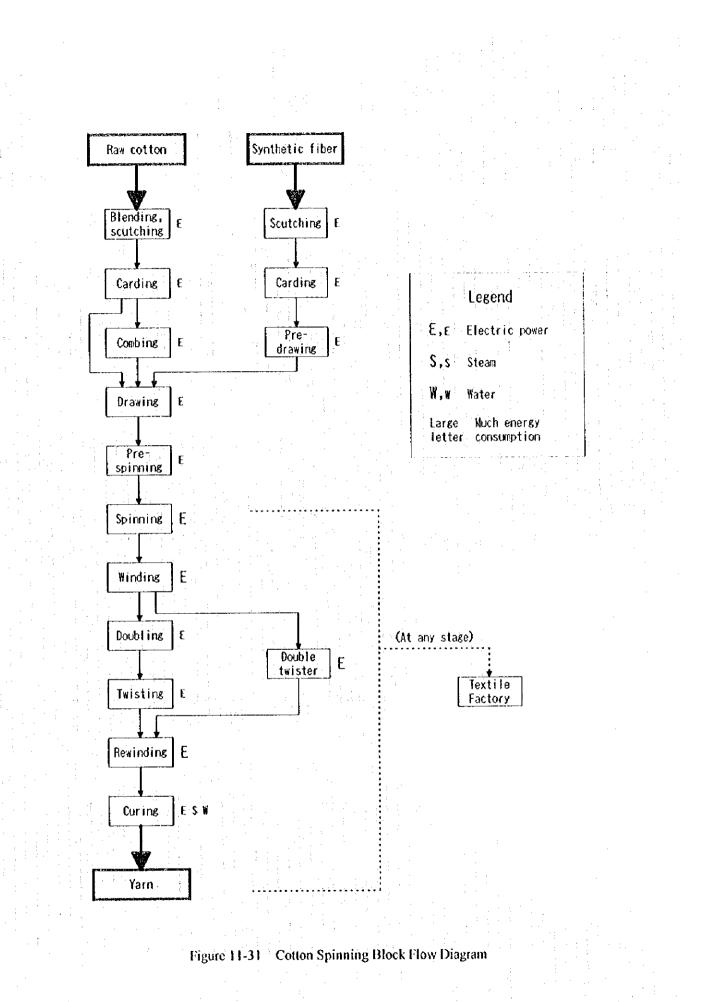
Finishing

Raizing

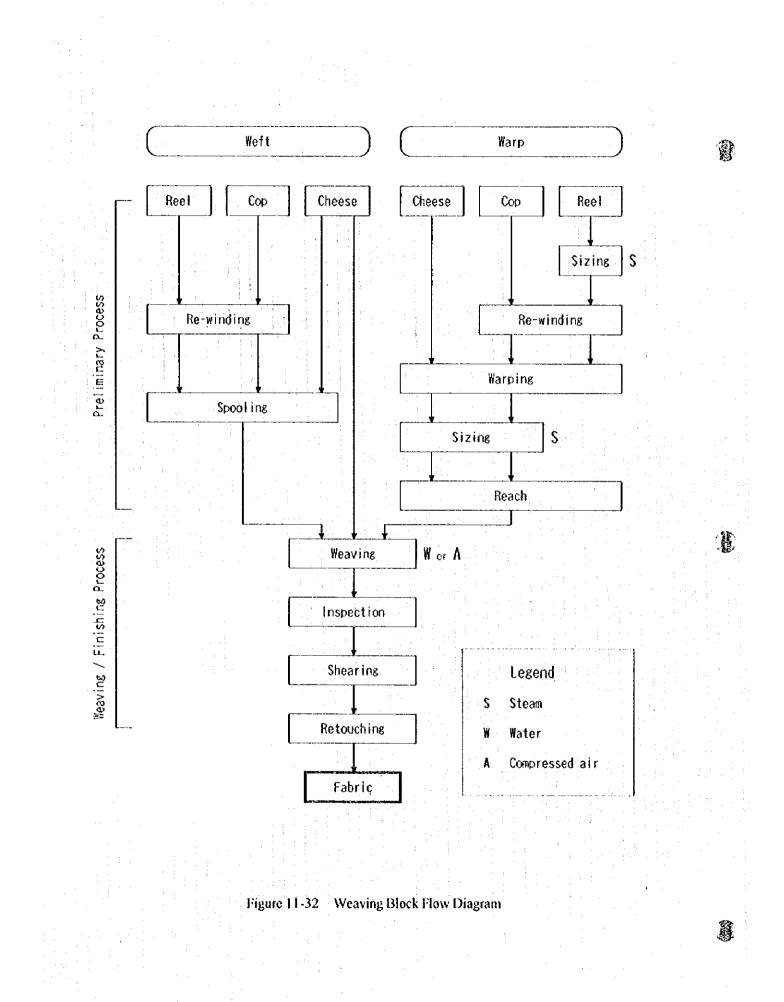
Calendering

5. Garment Manufacturing

Cutting

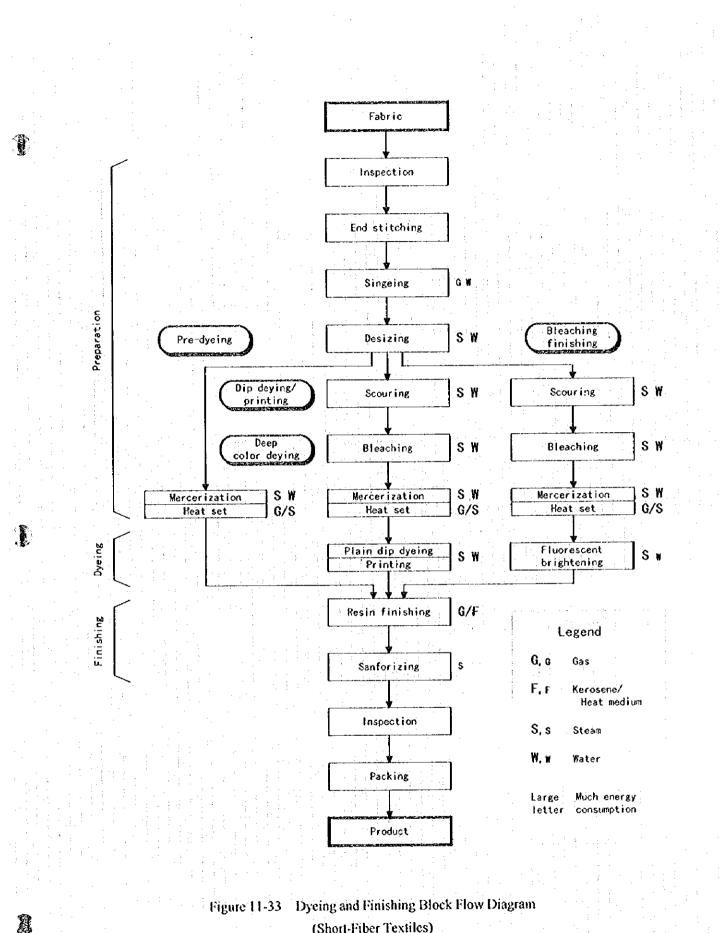

Sewing

11 - 112


6. Packaging and Other facilities

Figures 11-31, 11-32; and 11-33 show a typical block flow diagram of production facilities in a textile factory.

P



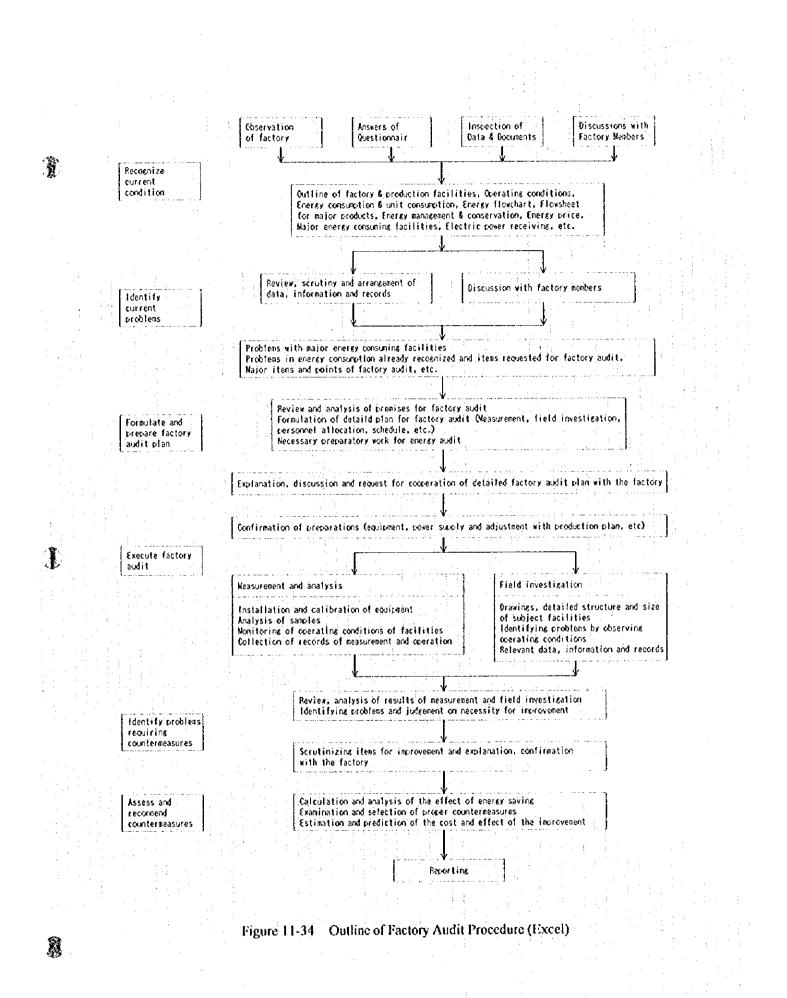
X

11 - 114

114

(Short-Fiber Textiles)

11-14-2 General Procedure for Energy Audit


The outline of the factory audit procedure is shown in Figure 11-34.

(1) Determination of Current Conditions

- 1. Factory outline (name of factory, type of business, capital, sales, number of employees,
 - brief history, market share, and position in the industry)
 - 2. Production of main products in the past 5 years
 - 3. Energy consumption in the past 5 years
- 4. Production process of main products
- 5. Types, capacities, and operating conditions of main energy consuming facilities
- 6. Energy flowchart
- 7. Electrical single-line diagrams; condition of power receiving facilities
- 8. Equipment layout
- 9. Problems pointed out by the factory management and desired to be checked
- 10. Energy conservation measures taken in the past
- 11.7 Energy conservation measures planned for the future
- 12. Business condition of the industry and the factory, and factors negatively affecting the promotion of energy conservation measures

(2) Identification of Current Problems

- 1. Problems with major energy consuming facilities
- 2. Problems with energy consumption already recognized and items requested for energy audit
- 3. Major items and points of energy audit

^{11 - 117}

(3) Formulation of and Preparation for a Detailed Energy Audit Plan

1) Review and Analysis of Premises for Energy Audit

Following items were reviewed and analyzed as premises for energy audit.

- 1. Problems with facilities and operation
- 2. Major points and facilities of energy audit
- 3. Degrees of superannuation and maintenance of facilities
- 4. Fluctuation of operating load
- 5. Trends of unit energy consumption figures
- 6. Necessary precaution for implementation of energy audit
- 7. Measuring equipment possibly provided by EIE
- 8. Measuring equipment possibly owned by factory for energy audit
- 9. Installed instrument and equipment in the plant for energy audit

2) Formulation of Detailed Plan

The following items were formulated and prepared as a detailed plan for energy audit.

- 1. Details of subject facilities and objectives of energy audit
- 2. Methods of energy audit (measurement, utilization of operating data and calculation)
- 3. Points, methods, frequency and equipment of measurement
- 4. Points and methods of field investigation
- 5. Personnel allocation and schedule of energy audit
- 3) Preparation for Energy Audit

11 - 118

The following items were reviewed and prepared for energy audit.

- 1. Detailed plans for modifications for measurement
- 2. Items of preparation requested for energy audit
- 3. Specifications and number of additional pieces of measuring equipment

(4) Execution of Measuring and Surveying

1) Measurement and Analysis

Ť

- 1. Arrangement and installation of equipment
- 2. Adjustment and calibration of equipment
- 3. Measurement, analysis and confirmation of data obtained
- 4. Monitoring of operating conditions
- 5. Collection of relevant data and records of measurement

2) Field Investigation

- 1. Investigation of drawings, detailed structure and size of subject facilities
- 2. Identifying problems by observing operating conditions
- 3. Collection of relevant data, information and records
- (5) Review, Analysis and Scrutinizing of the Results
- 1) Checking the Results of Measurement and Field Investigation
 - 1. Review and analysis of the results of measurement and field investigation
 - 2. Identifying problems in facilities

2) Analysis of Results

- 1. Detailed analysis of results of energy audit
- 2. Calculation and analysis of heat and energy balance
- 3. Judgment of necessity for improvement
- 4. Preparation of items for improvement

(6) Formulation and Recommendation of Countermeasures

- 1. Studying the improvement plan
- 2. Calculation and analysis of the effect of energy saving
- 3. Engineering calculation and cost estimation of countermeasures
- 4. Assess and evaluation of countermeasures for energy conservation.
- 5. Recommendations

11-14-3 Questionnaire

The questionnaire on energy audit is needed for recognizing the outline of the current condition of the factory. The questionnaire including required items and the data sheet are shown below.

Ħ

9

, · · · ·		
1. Oi	illine of the factory	
(1)	Name of the factory	
(2)	Address	
(3)	President	
	Factory manager	
	Energy manager	
(4)	Type of industry	
(5)	Capital	
(6)	Organization chart	n an Arrange An Arrange
(7)	Number of employees	
(8)	Number of engineers	
(9)	Number of energy related engineers	•
(10)	Factory area	
(11)	Building area	
(12)	Factory layout	
(13)	Plant layout (Confidential)	
(14)	Major products	
(15)	Trend of annual sales amount (Confidentia!)	
	1) Total products	
	2) Each major products	data sheet F-1
(16)	History of the factory	
(17)	Share and position in its industrial sub-sector	
<u>2. Pr</u>	oduction and energy consumption	· · · · · · · · · · · · · · · · · · ·
[(I)]	Production capacity and trends of production amount of major products	data sheet F-2
(2)	Plan for increasing production capacity (Confidential)	
(3)	Flow sheet of major products	
(4)	Trends of unit consumption figure of raw materials of major products	data sheet F-3
	(Confidential)	
(5)	Material loss in the production process (Confidential)	
(6)	Details of major production facilities (without know-how)	

	(7)	Annual operating hour and day	data sheet F-2
	(8)	Type of operation (batch/semi-batch/continuous)	
	(9)	Trends of annual utility consumption	data sheet F-4
	(10)	Frends of unit consumption figure of energy	data sheet F-3
		1) Heat/Product	
		2) Electricity/Product	
	(11)	Production costs of each major product (Confidential except for util	ity data sheet F-S
		cost)	
	(12)	Trends of unit price of energy	data sheet F-4
	(13)	Energy flow chart	
	(14)	Details of major energy consuming facilities	
		1) Boilers	data sheet F-6
		2) Furnaces	data sheet F-7
		3) Other major facilities	data sheet F-8
	(15)	Ratio of electric consumption of house generation to received power	
n an	(16)	Electric power receiving	
		1) Received voltage	
		2) Maximum demand	
		3) Power factor	
an an The start as		4) Flow sheet of single-line connection	
		5) Transformer capacity per unit and number of transformers	
		6) Capacity of reserving power generation for emergency	
	3. E	nergy management/conservation and others	· · ·
	(1)	Establishment of target for energy conservation	
	(2)	Systematic energy management in the organization	
1. 1. 1		Energy management utilizing data and records	
	(4)	Education, training of employees for energy management	
	(5)	Maintenance management of facilities	
	(6)	Schedule of annual maintenance	
	(7)	Measures carried out for energy conservation and their effects	
	(8)	Planning measure for energy conservation and their expected effects	
	(9)	Economic condition of the factory and its industrial sub-sector (Confide	ntial)
	(10)	Problems in promotion of energy conservation	
	(1)	Environmental pollution management	
2		1) Working condition	

	2) Waste gas
	3) Waste water
	4) Waste disposal
4. R	emarks on energy audit
· (I)	Problems in major energy consuming facilities
(2)	Problems in energy consumption and requested items for energy audit
(3)	Schedule of energy audit
(4)	Implementation of energy audit
5. P	reparation for energy audit
(1)	Drawings of the facilities to be audited (Confidential)
(2)	Detailed structure and size of the facilities to be audited (Confidential)
(3)	Arrangement of equipment for energy audit
6. C	onfirmation of installation of equipment for energy audit
-(1)	Necessary approval procedure for installation of measuring equipment, such as flow
	meters and pressure gauges.
(2)	Possible measuring equipment owned by factory for energy audit

8

8

(3) Instruments installed in the plant for energy audit

Ì

Data Sheet F-1 Trends of annual sales amounts (Confidential) (Unit: Million TL)

2		1992	1993	1994	1995	1996	
o Z	Name of major products						
. :							
	(including other products)						

Data Sheet F-2 Production capacity, production amount and annual operating hour, etc.

Ĩ

Data Sheet F-3 Unit consumption figure of raw materials and energy of each major products

1

9

1996 1995 1994 1993 1992 Unit kWh/ kcal Unit consumption figure (2) Electricity / Product 1. Raw materials* (1) (2) (3) Energy
 Heat / Product Name of major products

11 - 125

* Confidential

Data Sheet F-4 Annual consumption and unit price

Name of utility Unit heating Image Unit Consump- Unit Constret <thc< th=""><th></th><th></th><th></th><th>Lower</th><th>1992</th><th></th><th>5661</th><th>6</th><th>1994</th><th>-+</th><th>2661</th><th>5</th><th>1996</th><th>و</th></thc<>				Lower	1992		5661	6	1994	-+	2661	5	1996	و
valuevalueconsump-Unitconsump-UnitConsump-Consump-UnitConsump-Consump-Consump-Consump-Consump-Consump-Consump-Consump-Consump-Consump-Consump-<	Ż		Unit	heating						11 - 11 - 11 - 11 - 11 - 11 - 11 - 11				· .
Kiloliter Mean Price Word Price Word Mean kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kön mon kiloliter kiloliter kiloliter kiloliter kön mon nor-mix nor-mix kön kön kön kön kön nor-mix nor-mix nor-mix kön kön kön kön kön nor-mix nor-mix nor-mix kön kön kön kön kön nor-mix nor-mix nor-mix kön kön kön kön kön mix nor-mix nor-mix nor-mix kön kön kön kön kön mix mix nor-mix nor-mix kön kön kön kön kön mix mix nor-mix nor-mix kön kön kön	Į.			value	Consump-	Umit	Consump-	 ;	Consump-	Unit	Consump-	Unit	Consump-	Unit
kiloliter kiloliter kiloliter kiloliter kiloliter kiloliter kon ton ton ton nor-m3 ton kiloliter ton ton ton water ton ton ton water m3 tor ton ton t	: .	- I	Lilolitor	(KCH/KS)	HOL		HOU		lion	bucc	11011	3) III		BIG
kiloliter kiloliter ton ton ton ton nor-m.3 ton nor-m.3 ton ton ton nor-m.3 ton nor-m.3 ton nor-m.3 ton kwh ton kwh ton kwh ton kwater m3 m3 ton	:	Dickel oil	kiloliter			1								
kiloliter non-mat end	. e	Kerosene	kitoliter											: :
Itom	4	Gasoline	kiloliter											
not-m3 no-m3 no-m3 no-m3 <th>N.</th> <th></th> <th>ton</th> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>¢</td> <td></td> <td></td> <td></td> <td></td> <td></td>	N.		ton					-	¢					
Now coal ton Now coal ton Now coal ton Water ton KWh 100 KWh 100 Water 100 Mater 1000 Mat	े	Natural gas	nor-m3										-	
water top top <t< td=""><th>۲</th><th></th><th>ton</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	۲		ton											
WAILCT 1001 WAILCT 1001 KW/h 1001 KW/h 1001 WAILCT 1001 1001 WAILCT 1001 1001 1001 WAILCT 1001 1001 1001 1001 WAILCT 1001 1001 1001 1001 1001 WAILCT 1001 1001 1001 1001 1001 1001 WAILCT 1001 1001 1001 1001 1001 1001 1001 WAILCT 1001	¢.	Other fuels												
Image: state of the state	6		ton											
	io 1	Electricity	kWh											
	1		ę. E											• .
	13		m3		a 									-
	13.												i	
	臣	Well water												
	15. 15	Citv water	m3											

11 - 126

9

Ŷ

1996					
1995					
Production cost of each major product (Confidential except for utility cost) Unit 1992 1993 1994					
each major product (Con 92 1993					
	5				
Data Sheet F-S Name of maior	products 1. Variable cost (1) Raw materials (2) Utility 1) Fuel 2) Electricity 3) Steam	 4) Others (Sub-total) 2. Fixed cost (1) Labor 	 (2) Maintenance (3) Depreciation (4) Tax / Insurance (5) Administration (6) Interest for loan 	(7) Sales, Research & Development (Sub-total) Total production cost	

No. Particulars of boiler 1. Manufacturer's name 2. Date of construction / Modification 3. Type of boiler 3. Type of construction / Modification 3. Type of boiler 3. Max. working pressure 6. Normal pressure 7. Normal pressure 8. Boiler heat transfer area 10. Economizer heat transfer area 11. Air preheater heat transfer area 13. Cambustion chamber volume 13. Canonistic near transfer area 14. Fuel 15. Burner type / Number 16. Drafting method 17. Smokestack (top bore x height) 18. Control system	
	Sheet F-6 Detail of Boilers
	Specifications
· · · · · · · · · · · · · · · · · · ·	

Detail of fumaces	Specifications																					
Data Sheet F-7		No. I Manufacturer's name	 3. Type of furnace	4. Heated material	5. nominal capacity	5. Effective length & width	7. Normal heating load	8. Kind of energy (Fuel or Electricity)	9. Burner type, capacity and numbers	10. Fan capacity	11. Recovery system for waste heat	12. Smokestack (top bore x height)	13. Combustion chamber volume	14. Calorific capacity of combustion chamber	15. Transformer capacity (Electric furnace)	16. Operating situation (1) operating method	(2) operating time	(3) operating days	17 Control system	-		

Data Sheet F-8 Detail of other major facilities

1000

. . .

4

E

Ć

Facility mane Construction/ material entryy output	Ż		Manutacturer S	Date of	Ircated	Kinds of	Nominal	Nominal			
Shift/day hour/shift		Facility	name	Construction/ Modifications		energy	output	Consuming	0 O	crating condit	tion
									shift/day	hour/shift	day/month dav/vear
		•	· · · · · · · · · · · · · · · · · · ·			-			-		
		•			-						
		· · · · ·								:	
		-									
						•					
					:			-			
				:	-	•		· · ·		•	:
					- · ·			•			-
					· · ·						
				-						-	
								•			
										-	
										•	
						•					
					- - - -	•••					
			-								
									-		
								:	:		
								•			
											· .
					:		:		:	-	••••
		-			:	· ·		•		-	
					:				-		
				:	-::	•					

ß

11-14-4 Check Points of Energy Audit on Processes in the Textile Industry

(1) Spinning and Weaving Process

钧

<u>1)</u>	Production Technology and Managemen	t
1.	Monitoring system	1. Introduce a production monitoring system, if
		possible with the aid of computers, for
·		(1) Broken thread
		(2) Idle spindle
		(3) Idle running motor, etc.
2.	Review of package size	1. Review the size and unit quantity of
		individual packages.

2) Conservation of Electricity (See also Items 3) and 4))

1. Checking motor performance	 Measure the power of each motor, and re- adjust or replace depending on the fault. Reduce the unevenness of performance of each machine.
2. Reducing the motor base load	 Adjust correctly the means of power transmission, such as tension of belts, etc. Selection and/or replacement of the correct
	size and materials of (1) Belt (2) Tape (3) Gear wheel
	(4) Metal/bearings, etc.3. Thorough lubricating, cleaning and maintenance of machines.
3. Optimization of machine speed	 Increase of machine speed causes an exponential energy consumption increase. Optimization of machine speed should be examined from an energy consumption point of view as well as an economic one.
4. Proper illumination in the factory	 Unnecessary lighting should be avoided. In Table 11-34 the recommended

11-131

illumination in Japanese factories is shown for reference.

Table 11-34 Recommended Illumination in a Spinning and Weaving Factory (Japan)

· ·					Unit: Ix
	Working Place	•			Recommended Illumination
Blowing, O	pening & Beating		•		80
Carding					100
Drawing					100
Roving					100
Spinning - I	Finishing	$\phi_{ij} = \phi_{ij}$	ł.		200
Preparation	for Weaving			н. А. Д.	100
Weaving					200
Fabric Insp	ection			1	200
Passage			s is g		from 30 to 50
Source: Jap	an Spinners' Association	n, 1995		•	

3) Conservation of Air	
I. Reduction of air use	1. Air is used for many purposes, such as
	(1) Transport of material fibers
	(2) Handling of yarn
	(3) Collection of yarn waste and dust for
	cleaning, etc.
	for energy conservation, examine the following
	methods
	(1) Centralize the air supplying machines
	(2) Replace by smaller capacity fans, etc.
	(3) Reduce the fan rpm.
	(4) Reduce the diameter of the pneumatic fan
	impellers.
	(5) Intermittent operation of the dust and waste
	yarn collector.
2. Improvement of the air compressor	1 Integration of air compressors to reduce the
operation	number of operating units.

		2.	Automatic start/stop system with pressure
			switch.
		3.	Reduction of discharge pressure, as far as
			possible.
		4.:	Reduction of air nozzle diameter.
.		5.	Periodic and thorough maintenance.
4) Air Conditioning		
		1.	Air conditioning consumes about one-third
			of the energy for yarn production. In Table
			11-35, the recommended conditions in the
		ę.	Japanese factories are shown for reference.
		2	The temperature and humidity should be
		i t	varied gradually, and check the quality of
			yarn. Then the new conditions can be
			determined.
2	Change the spray nozzles	1	When air is cooled directly by cold water,
			entarging the spray nozzles and reducing the
		:	number of them will reduce the original
			pressure. This results in reduction of the
		:	power of pumps.
3	. Control the number of units and rotations of	1.	When load is largely fluctuating, using
	refrigerating machine	•	turbo-compressors, the control of the
	문의 전문 가족의 전문의 가격 바람이다. 이 문화 방법이 이 물가 있는 것을 가죽다. 문화 문		number of units or rotations contributes to
			reduction of the power.

Ð

緣

	Cotte	on 100%	Polyester/Cotton	
Process	°C	%RH	'C	%RH
Blowing, Opening & Beating	26±2	70±5	26±2	65±5
Carding	26 ± 2	60±3	26±2	58 <u>+</u> 3
Drawing, Roving	26±2	60±3	26±2	58±3
Spinning	28±2	58±3	28±2	53±3
Winding	27±2	60±3	27±2	60±3
Preparation for Weaving	27±2	65±3	27±2	65土3
Weaving	28上2	78±3	2812	68±3
Finishing	26 1 2	65±5	26 ± 2	65±5
Source: Japan Spinners' Associatio	n 1995			

Table 11-35Recommended Conditions of Air Temperature and Relative Humidity in aSpinning and Weaving Factory (Japan)

ß

ce:	Japan	Sp	unners	Α	sso	cial	lon,	15
						· .		

5)	Sizing	
		_

ì	7	Olding	ŕ.	
1		Change the type of sizing agent	Í.	This makes it possible to obtain a thicker
				agent, and makes possible preparation and
				sizing at lower temperature.
2) .::	Increase the number of yarn sized at a time	1.	Increasing the number of yarns sized at one
	* : : :			time reduces the speed and contributes to energy conservation.
.3	3 . [Reduce the number of repetitions of dipping	1.	Reduce the number of repetitions of dipping
				into the sizing bath as far as the results permit.
4	I.	Squeeze at high pressure	1.1	After dipping, increase the squeezing
				pressure. For example, the pressure
		2	•	increase from 350 kg to 1,500 kg
				contributes to a 33 percent reduction of
				moisture.
5	5.	Dryer	1, -	Provide proper thermal insulation.
			2	Avoid overdrying (Refer to (2) of this
				section.)

6) Unit Consumption of Energy

P

Compare the unit consumption of energ	y 1.	Carefully examining the difference of the
with that of a similar factories		premises of two factories, compare the unit
		consumption.
	2.	Notes and examples in Japan (Tables 11-36
		to 11-42) are given below.

Note: Difficulty of comparison of unit energy consumption

When unit consumption is compared between different factories, the following premises should be carefully examined.

- 1. The circumstances surrounding the factory, climate, site, cost compositions (personnel expense, etc.), for example
- 2. The difference of the quantity and quality of the product, process and operation of each factory

In the case of a textile industry, for instance, a yarn count, fabric weight, fabric style, kind of color, finish, size of lot, the use of product, operation mode, etc., and naturally the difference of operating conditions according to those factors

Table 11-36 Example of Unit Raw Material Requirement at a Typical Spinning Factory in Japan (Case of Comber Ne 40)

Process	Cotton Waste (%) B	Cotton Waste (%) C	1/1-(B+C)
	that cannot be	that can be recycled	
	recycled		
Raw Cotton	. .	•	1.373
Blowing, Opening & Beating	1.9	4.0	1.292
Carding	3.6	0.8	1.235
Combing	15.0	1.3	1.034
Drawing	0.1	0.5	1.028
Roving	0.1	0.4	1.022
Spinning	0.2	1.4	1.006
Finishing	0.6		1,000

Source: Japan Spinners' Association, 1995

					Unit: ton/ton Fabri
	Type of	Fabric	Warp	Weft	Total
	Ne	g/m²			
Shuttle		• • •			
Light Weight	40 x 40	133	0.66	0.35	⁶ 1.01
Heavy Weight	14 x 14	304	0.69	0.32	1.01
Air Jet			· · ·	• •	
Light Weight	40 x 40	133	0.68	0,35	1.03
Heavy Weight	14 x 14	304	0.71	0.32	1.03

Table 11-37	Unit Requirement of Material by Processes in a Weaving Factory in Japan
	(Cotton and Polyester/Cotton)

Ø

8

Source : Japan Chemical Fibres Association, 1993

			2. 2. 2. 3. 4. 3.	
TO 11 11 10			- • · · • • • · · • • · ·	. Balanda biya bi Tanana a s
10000		1 FM 120910 01 0 1	UN1091 W09WN1	Y HOOIARV IN TANAN
1 8010 11-30	Example of Waste Ya	11 H INAUR AL A F	vi/ik.al. m.ca.viii)	

		1+ 				Unit: percent
·	Yarn Count	١	Warp		Weft	
Shuttle Loom						
less Ne 10			2		2.5	
over Ne 10	н.				1.5	
Innovated Loo	m	 		· · ·	0.2~0.5	· · · · · · · · · · · · · · · · · · ·

Source: Japan Spinners' Association, 1995

	Yarn Count	Elect	ricity	Fuel	Process Water	Total
		kWh/kg	kcal/kg	kcal/kg	kcal/kg	kcal/kg
Standard	10	1.485	1,277	248	50	1,575
Cotton	20	2,416	2,078	403	82	2,563
Yarn	30	3.405	2,928	569	116	3,613
	40	4.354	3,744	727	148	4,619
	50	5.547	4,770	926	189	5,885
	60	6.670	5,736	1,114	227	7,077
	20/2	2.933	2,522	489	100	3,111
Two Folded	30/2	4.134	3,555	691	141	4,387
Cotton	40/2	5.286	4,546	883	180	5,609
Yarn	50/2	6.734	5,791	1,124	229	7,144
	60/2	8.097	6,963	1,352	276	8,591

11 - 137

Table 11-39 Unit Energy Consumption by Varn Count at a Spinning Factory in Japan

Source: Japan Chemical Fibres Association, 1993

(when

Table 11-40Unit Electricity Consumption in a Spinning Factory in Japan (Ne 40 Comber,50,000 Spindle Capacity)

		Unit : kWh/kg
Fiber l	Manufacturing Machines	
	Blowing, Opening & Beating	0.116
	Carding	0.198
	Combing	0,249
	Drawing	0.039
:	Roving	0.138
	Spinning	1.702
·	Winding	0.471
	Others	0.038
	Sub-Total	2.950

	for Front Proce	ss (Blowing	g> Roving)	- 	0.220
an an tràin. An an tràin	for Back Proce	ss (Spinnin)	g - Winding))		0.403
	Sub-Total				0.623

Refrigerating		•		
for Front Processes				0.096
for Back Processes		· . ·	÷	0.183
Sub-Total	a ad Atte			0.278

Lighting

Blowing, Opening &	Beating	0.005
Carding		0.017
Combing → Roving		0.043
Spinning		0.066
Winding		0.033
Sub-Total		0.164

4.015

Fiber Production - Total

Source: Japan Spinners' Association, 1995

L	Type of Fabric		Elect	tricity	St	Total	
	Ne	g/m^2	kWh/ton	kcal/ton	ton/ton	kcal/ton	kcal/ton
Shuttle		R		x 10 ⁶		x 10 ⁶	x 10 ⁶
Light	40 x 40	133	2,630	2.262	1.88	1.462	3,724
Heavy	14 x 14	304	893	0.768	1.14	0.887	1.665
Air Jet	. *			·			. 4
Light	40 x 40	133	2,460	2.116	1.90	1.478	3.594
Heavy	14 x 14	304	773	0.665	1,18	0.918	1.583

Table 11-41Estimated Mean Value of Unit Consumption of Electricity and Steam inWeaving Factories in Japan (Cotton and Polyester/Cotton)

Source: Japan Chemical Fibres Association, 1993

R

11 - 139

÷

Table 11-42 Unit Consumption of Electricity and Steam by Processes in a Weaving Factory (Cotton and Polyester/Cotton)

Unit: 106 kcal/ton-Fabric

Type of Fabric	Energy	Weft	Warp	Sizing	Drawing-in	Weaving	Finishing	:	Total
(as of Table 11-37))	Preparation	Beaming				Inspection		
Shurtle								(
Light Weight	Electricity	0.110	0.019		0.003	2.049	0.007	2.188	2.188 2.845
	Steam	4		1.657			•	1.657	
Heavy Weight	Electricity	0.112	0.008		0.001	0.615	0.003	0.739	2 1.703
	Steam			0.964				0.964	
Air Jet						· · ·	: ; ;		
Light Weight	Electricity	•	0.018	•	0.002	2.029	0.007	2.056	2.686
	Steam	-		1.63				1.63 _	
Heavy Weight	Electricity	- - - - - - -	0.008	• •	0.001	0.622	0.003	0.634	× 1.632
	Steam	•		0.998				0.998	,

Source: Japan Chemical Fibres Association, 1993

(2) Dycing, Printing and Finishing Process

Ť

<u>])</u>	Production Technology and Management	·	
1.	Production schedule	1.	Rational production schedule considering
			the rational use of energy.
2.	Re-examination of the present operating	1.	Less water use results in reduction of steam
	conditions		consumption.
		2.	Lower temperature operating conditions
			result in reduction of both water and steam.
.			
2)	Reduction		
Ī.		1.	Skip unnecessary process steps.
		(1)	For some types of fabric, the drying process
• •			can be omitted. Some types of fabric can
			be forwarded to the next process. This is
			called the "Wet on wet method"
		(2)	For dark color dyeing, the bleaching process
		Ĺ	may be eliminated.
5	Liquor ratio	h .	Liquor ratio (the quantity (liter) of water
			used to dye 1 kg of fabric) is dependent or
			dyeing equipment and dyeing method.
-		2	Low liquor ratio contributes to productivity
			increase and hence energy conservation.
	지 않는 말에서 제가 가슴을 많이 ?	3.	An excellent example of a low liquor ratio is
			1:5 by jet dyeing
1	Washing water	1	From experience, normally the amount o
	. mount man		washing water required is 4 to 5 times the
			weight of fabric.
		2.	Efficient washing machines incorporate the
			following techniques.
		a) Increase the frequency of contact between
			fabric and water
		0	Direction of water flow is counter to that o
			fabric.
·		13	Agitating fabric and water.
		10	· · · · · · · · · · · · · · · · · · ·

Steam	1.	Provide both energy supply and consuming
		facilities with proper thermal insulation.
	2.	Prevent leakage of steam.
	3.	Good steam trap management and promote
		condensate recovery.
	4	Improve drying efficiency (Refer to Item 3)
Time	1.	Speed up the fabric treating by improved
		machine and/or operating conditions.
Treatment temperature	1	Reduce bleaching, dyeing and other
		treatment temperatures by changing
	· ;	chemicals used.
	2	
		lowered, as far as the quality of products
		permits.
	÷	
) Improvement of Dryer Efficiency		
Thorough dewatering using mangle	1.	Sufficient water should be removed before
		drying. For example, by using a non-woven
		fabric roller and vacuum, the water content
		of from 25 to 50 % is attained.
Increase of dryer efficiency	1.	Select an efficient dryer, for instance a
		cylinder type, and maintain it well.
Moisture content in exhaust air and drie		Measure the moisture content in exhaust air
fabric	-	and adjust operation conditions.
	2	Measure the moisture content of dried
		fabric, to avoid overdrying. The equivalent
		moisture content of cotton at room
		temperature is 8 %.
) Recovery		
Waste water	1	Separate higher temperature waste water
		(about 70 to 90°C) and lower temperature
	· ·	waste water (room temperature to 50°C).
		Keep the higher energy potential.
	2	For higher temperature waste water, a
	- 17	<i>q</i>

11 - 142

£P

[liquid-liquid type heat exchanger, and for
		lower temperature waste water, the use of a
		heat pump should be investigated.
2	Hot exhaust gas from dryer	1. A rotary disk-type sensible heat exchanger
		should be examined.
3.	Steam condensate	(as Item 2)-4)

5) Unit Consumption of Energy
 1. Compare the unit consumption of energy 1. Carefully examine the difference of the premises of two factories, and compare the

Ì

8

unit consumption. 2. Notes are as in (1) of this section. Examples in Japan are given in Tables 11-43 to 11-47.

Process	Products	Flow & Material Requirement	Energy Type	Unit Energy Consumption
Dyeing,	Shirt	Raw Fabric>Singeing>Scouring,	Electricity	1.260
Bleaching	$(130g/m^2)$	Bleaching->Dip Dycing->Resin Finish->	Steam	7.158
•		Sanforizing-→Inspection→Shipment	Gas	4.510
		(Material Requirement:	Water	0.002
		Raw Fabric/Product=1.087)	Total	12.930
	ан 1			· ·
Dyeing,	Casual Pant	s Flow: as above	Electricity	0.790
Bleaching	(250g/m ²)	Material Requirement: 1.064	Steam	6.071
			Gas	3.820
			Water	0.002
			Total	10.683
Printing	Lady's	Raw Fabric-Singeing-Scouring,	Electricity	2.264
	Dress Fabric	Bleaching >Secondary Bleaching>	Steam	11.574
	(130g/m ²)	Printing->Steaming->Washing->	Gas	3.730
		Drying >Resin Finish->Sanforizing->	Water	0.003
		Inspection ->Shipment	Total	17.571
	:	Material Requirement: 1.075		
Printing	Home	Flow: as above	Electricity	1.558
	Textiles	Material Requirement: 1.075	Steam	12.147
	(200g/m ²)		Gas	4.010
			Water	0.003
		그는 것 같은 것 같		

Table 11-43Estimated Mean Unit Consumption of Utilities in Dyeing, Printing andFinishing Factories in Japan (Cotton)

ß

ß

Table 11-44Estimation of Unit Heat Consumption for Dycing, Printing and FinishingProcesses

1. Material to be processed

Cotton Fabric (150g/m²) with 1500mm Width

2 Notation

×.

I

A: Estimated unit consumption of effective heat for processing

B: Heat discharged with effluent (liquid and/or gas)

C: Heat loss from apparatus (via surface, etc.)

E1: Heat input necessary for processing

 $E_{I} = A + B + C$

E2: Heat loss during idling time

Ea: Heat for warming up apparatus

EP: Total unit heat consumption at present

 $EP = E_1 + E_2 + E_3$

EN: Total unit heat consumption after heat conservation

Heat recovery is done by

(1) Waste water (higher temperature) --- Liquid/liquid heat exchanger.

Waste water (lower temperature) ---

(2) High temperature exhaust gas ----

Liquid/liquid heat exchanger. Heat pump. Recovered hot water is used as boiler feed water. Gas/gas or gas/liquid heat exchanger.

3. Unit

kcal/kg and (percent)

Source: Japan Textile Machinery Association, 1983

Process A	pparatus	Λ	В	C	E	E ₂	Ea	<u> </u>	EN
Singeing Sir	ngeing	32	213	11	256	i t	1	258	258
M	achine	(12.4)	(82.6)	(4.3)	(99.2)	(0.4)	(0.4)	(100)	·
Pa	d-Steamer	430	393	45	868	21	28	918	896
Scouring	•	(46.8)	(42.8)	(4.9)	(94.6)	(2.3)	(3.1)	(100)	
Wa	asher	30	764	53	847	21	27	895	210
		(3.4)	(85.4)	(5.9)	(94.6)	(2.3)	(3.1)	(100)	· · · ·
Pa	d-Steamer	430	393	45	868	21	28	918	895
		(46.8)	(42.8)	(4.9)	(94.6)	(2.3)	(3.1)	(100)	
Bleaching W	asher	21	544	38	603	15	19	637	210
		(3.3)	(85.4)	(6.0)	(94.6)	(2.3)	(3.1)	(100)	
Су	linder	53,2	0	122	654	16	21	691	
Dr	yer	(77.0)	(0)	(17.7)	(94.6)	(2.3)	(3.1)	(100)	
Sub-total of	Singeing-	1475	2308	314	4097	96	125	4318	2470
Scouring-Bleac	hing	(34.2)	(53.5)	(7.3)	(94.9)	(2.2)	(2.9)	(100)	
M	ercerizer	24	617	43	685	20	21	726	\mathbf{i}
	n de la composición de La composición de la c	(3.3)	(85.0)	(5.9)	(94.4)	(2.7)	(2.8)	(100)	286
Merceri W	asher	42	1084	75	1201	35	36	1271	J.
zation		(3.3)	(85.3)	(5.9)	(94.5)	(2.7)	(2.8)	(100)	
Cy	linder	529	0	121	650	19	20	689	322
Dr	yer	(76.8)	(0)	(17.6)	(94.4)	(2.7)	(2.9)	(100)	
Sub-total of		595	1701	239	2536	73	77	2686	608
Mercerization		(22.2)	(63.3)	(8.9)	(94.5)	(2.7)	(2.8)	(100)	
Total	<i></i>	2070	4009	554	6633	169	202	7005	3078
	·	(29.6)	(57.2)	(7.9)	(94.7)	(2.4)	(2.9)	(100)	

Table 11-45 Estimated Unit fleat Consumption for a Scouring - Bleaching - Mercerizing Process Process

Table 11-46 Estimated Unit Heat Consumption for a Dyeing - Finishing Process

Process	Apparatus	Α	B	С	E ₁	E ₂	E ₃	EP	EN
. · · · · ·	Dyeing	178	231	250	659	11	40	710	רן הייני
	Machine	(25.0)	(32.5)	(35,2)	(92.8)	(1.5)	(5.6)	(100)	391
	Roller	448	264	22	734	13	51	798)
	Dryer	(56.1)	(33.1)	(2.8)	(92.0)	(1.6)	(6.4)	(100)	
Continuous	Steamer	690	706	130	1526	72	1.1.1	1630	291
Dyeing		(42.3)	(43.3)	(8.0)	(93.6)	(4.4)	(2.0)	(100)	
	Washer	63	1407	94	1564	74	32	1670	951
	· · · · · · ·	(3.8)	(84.3)	(5.6)		(4.4)		(100)	
	Cylinder	695	0	163	858	39	18	915	••••
: 	Dryer	(76.0)	(0)		(93.8)	(4.3)	(2.0)		
Sub-total of		2074	2608	659	5341	209	173	2.23	1633
Continuous	Dyeing	(36.2)		(11.5)	(93.2)	(3.6)		(100)	
, ,	Pad-Roller	394	234	14	643	19	22	684	583
	Dryer	(57.6)			(94.0)		(3.2)		
Finishing	Tenter	568	205	53	825	24	28	877	753
		(64.8)						(100)	662
	Baking	153	384	86	623	18	21	662	002
	Machine	(23.1)						(100) 2223	1998
Sub-total of		1115	823	153	2091	61	70	(100)	1990
Finishing		(50.2)			(94.1)		243		3631
Total		3189	3431	812	7432	271 (3.4)		(100)	: 3031
<u></u>		(40.1)	(43.2)	(10.2)	(93.5)	(0.4)	()	(100)	

Table 11-47 Estimated Unit Heat Consumption for a Printing - Finishing Process	Table 11-47	Estimated Unit Heat	Consumption for a	Printing -	 Finishing Process
--	-------------	---------------------	-------------------	------------	---------------------------------------

3

Process	Apparatus	* A	B	C	E,	E2	E ₃	EP	EN
Tentering	Tenter	350	245	71	665	27	38	730	730
		(47.9)	(33.6)	(9.7)	(91.1)	(3.7)	(5.2)	(100)	
Printing	Screen	1466	1860	217	3543	749	170	4461	4521
· · · ·	Printing	(32.9)	(41.7)	(4.9)	(79.4)	(16.8)	(3.8)	(100)	
Steaming	Steamer	926	892	185	2003	38	129	2169	2169
		(42.7)	(41.1)	(8.5)	(92.3)	(1.8)	(5.9)	(100)	
Sub-total	of Tentering	- 2742	2997	472	6211	813	336	7360	7420
Printing-Sto	aming	(37.3)	(40.7)	(6.4)	(84.4)	(11.0)	(4.6)	(100)	
	Washer	1184	666	311	2161	39	77	2276	453
Washing		(52.0)	(29.3)	(13.7)	(94.9)	(1.7)	(3.4)	(100)	
	Cylinder	532	0	122	654	23	30	707	457
	Dryer	(75.2)	(0)	(17.3)	(92.5)	(3.3)	(4.2)	(100)	
Sub-total of		1717	666	432	2815	62	107	2984	918
Washing		(57.5)	(22.3)	(14.4)	(94.3)	(2.1)	(3.6)	(100)	
	Roller	392	233	14	639	20	2	662	Ϋ́,
	Dryer	(59.2)	(35.2)	(2.1)	(96.5)	(3.0)	(0.3)	(100)	} 322
Finishing	Tenter	565	203	53	821	26	29	876	J
		(64.5)	(23.2)	(6.1)	(93.7)	(3.0)	(3.3)	(100)	
i i i i i i i i i i i i i i i i i i i	Baking	153	384	86	623	18	21	662	222
	Machine	(23.1)	(58.0)	(13.0)	(94.1)	(2.7)	(3.2)	(100)	· · · ·
Sub-total of	F	1110	821	152	2083	64	53	2199	544
Finishing		(50.5)	(37.3)	(6.9)	(94.7)	(2.9)	(2.4)	(100)	:
Total		5568	4483	1057	11108	939	496	12543	8882
	i.	(44.4)	(35.7)	(8.4)	(88.6)	(7.5)	(4.0)	(100)	

Note * Smaller lots are assumed.

11-14-5 Check Points for Energy Audit on Unit Operation

In Japan, the Ministry of International Trade and Industry sets forth the items to be observed by factory operators as criteria in achieving efficient use of energy within technically and economically possible limits, in the Energy Conservation Law.

The Ministry classifies energy conservation techniques into the following seven categories, which are not compulsory but serve as guidelines.

- 1. Improvement of fuel combustion in combustion equipment
 - 2. Improvement of heating, cooling, heat transfer, etc. in heat using equipment
 - 3. Prevention of heat loss due to radiation, conduction, etc. from heat using equipment
 - 4. Recovery and utilization of waste heat
 - 5. Improvement of conversion from heat to power in combined heat and power generation equipment
 - 6. Prevention of electricity loss due to resistance, etc. in electrical equipment
 - 7. Improved conversion from electricity to power, heat, etc. in electrical equipment

The Japanese standards, targets and examples of improvement measures as guidelines are useful for planning check points and judging the results of energy audit in the textile industry. These guidelines are shown for reference as follows.

(1) Improvement of Fuel Combustion

1) Standard Air Ratio

Standard air ratios in boilers and furnaces are given in Table 11-48 and Table 11-49 respectively.

Amount of Evaporation	Solid Fuel	Liquid Fuel	Gascous fuel
Large Boiler for Electric Company	1.2 1.3	1.05 1.1	1.05 1.1
30 tons/h or more	1.2 1.3	1.1 1.2	1.1 1.2
10 to 30 tons/h	•••	1.2 1.3	1.2 1.3
Smaller than 10 tons/h		1.3	1.3
Remark Load factor: 75 to 100 %			

Table 11-48 Standard Air Ratio of Boiler

Table 11-49 Standard Air Ratio of Furnace

Purpose	Liquid Fuel Gaseous Fuel
Oil Heating Furnace	1.4 1.4
Gas Generating Furnaces	1.4
2) Check points Check points are as follows.	
1. Burner selection	Type, Size, Turn down ratio, Maintenance, Cleaning tip
2. Better atomization	Fuel temperature, Viscosity,
	Proportion of atomizing air or steam to fuel,
	Fuel pressure, Dispersion reagent,
	Emulsified fuel
3. Prevention of air intrusion	Furnace pressure control, Reduction of openin
	Double door, Sealing, Shortening door op time
4. Advanced automatic control	Fuel air ratio control by oxygen content
	exhaust gas,
	Fuel air ratio control by carbon oxide content
	exhaust gas,
	Fuel air ratio cascade control
	Fuel air ratio cross limit control
5. Load leveling	Optimum load sharing,
	Operation unit number control,
	Steam accumulator
6. Flame temperature raise	Combustion with enriched oxygen,
	Gas atomized fuel oil combustion,
	Fluid bed combustion

11 - 150

(2) Improvement of Heating, Cooling and Heat Transfer

Check points are as follows.

	Heating in industrial furnaces	Distinguish standard
1)	Optimum heating temperature	Setting work standard
2)	Search for best heat pattern	Temperature distribution, heating velocity,
:		Improvement flow of gas in furnace
3)	Optimum load	Optimum load on furnace bcd,
		Load sharing to multiple facilities,
		Load leveling
4)	Improve furnace shape	
(5)	Decrease heat content of furnace body	Lighten the weight
6)	Increase of flame emissivity	
(7)	Direct heating	Modify to direct firing
2.	Heating by steam	
(1)	Adjusting steam pressure to proper level	
(2)	Perfect air purge	
(3)	Improvement of direct steam injection	
	Heat transfer	
(1)	Decrease of heat transfer resistance	Prevention of scaling, Sludge deposit, Frost,
		Boiler feed water quality control,
		Chemicals injection,
		Optimum blow off of boiler water,
		Tearing off condensate film, Defrosting,
		Cleaning of heat transfer surface,
		Soot blowing, Filter cleaning
(2)	Improvement of heat transfer coefficient	High-speed gas flow, Jet heating,
		High-speed burner, Fluid bed heat transfer
		Mist cooling
(3)	Heat exchange system	Addition of heat exchanger,
• • •		Minimization of energy loss
(4)	Advanced heat exchanger	High heat conductivity material,
,		Shape of heat transfer tube,
		Heat exchanger tube arrangement

Operation	
) Start/stop time optimization	Adjusting operation plan
P) Decrease of load	Air conditioning (temperature, rate of ai circulation),
	Utilization of holding heat of material from
	previous process,
	Shortening of waiting time between processes,
	Shortening of furnace idling time,
	Lot concentration,
	Distillation (optimum reflux ratio, selection o
	feed or extraction tray)
Process	
) Controlling method improvement	Decrease of margin
2) Automation	
b) Heat utilization as cascade	Multiple effect evaporator, vapor recompression
	Increasing distillation tray, plant integration,
	Inter-factory energy pooling
) Separation process	Mechanical separator instead of heating process
	Separation through membrane, Adsorption,
	Extraction, Supercritical separation
 Improvement of layout 	Shortening of transport distance,
	Prevention of complicated transport,
	Decrease of idling time through shortening o
	transport pass
b) Operating reactor under less extreme	Improvement of catalyzer,
onditions	Improvement of reagent, bio reactor
) Change of product specification	Avoidance of providing quality that surpasses
	the market requirement.,
	Material not requiring heat treatment in nex
	process
B) Change of raw material	Recycle
)) Scale up	Shortening operating time by increasing electric power

19 19

ß

	2		 · · · · · · · · ·	Ì
(11) Modification to high speed process	l.			
(12) Simplified process		Hot charge	 	
(13) Use of high-efficiency devices			 	 _

(3) Prevention of Heat Loss Due to Radiation, Conduction, etc.

1) Standard for Surface Temperature

1

The standards for surface temperature for furnaces are given in Table 11-50.

			(Unit: °C)
:	Internal Temperature	Outer Ceiling Surface	Outer Wall Surface
	1,300	140	120
	1,100	125	110
•	900	110	95
	700	90	80

Table 11-50 Standard for Surface Temperature on Furnace

2) Check Points

Ê

Ì

1. Prevention of leakage	Inspection and repair,
	Selection and maintenance of steam trap, Reinforcing seals of rotary parts and joints
2. Narrowing heat radiation surface area	Improvement of steam piping route, Removing unnecessary pipe,
	Shutting main valve of unused pipe, or inserting blind plate
3. Insulation	Enforcement of insulation at flange and valve,
	Use of heat insulating material of low hea
병원 같은 말 물건 것 같아.	conductivity,
	Lowering emissively of insulator cover,
	Setting cover, lid,
	Maintenance of insulator,
	Use of lightweight heat insulation material fo
	batch furnace (bulk specific gravity < 1.3)
4 Preventing heat loss by exhaust of internal	Reducing size of openings, closing openings, o

gas	mounting doors on openings,	
	Shortening door open time	
5. Optimum boiler water blow		

Ð

(4) Recovery and Utilization of Waste Energy

1) Standard Temperature of Exhaust Flue Gas

The standard temperature of exhaust flue gas of boiler and industrial furnace is shown in Table 11-51 and Table 11-52

Table 11-51 Standard Temperature of Exhaust Flue Gas of Boiler

a <u>an taona ao amin'ny sama</u> na	(Unit: °C)	
Solid Fuel	Liquid Fuel	Gaseous Fuel
145	145	110
200	200	170
	200	170
	320	300
	145	145 145 200 200 200

Remark Load ratio 100 %

Table 11-52 Standard Temperature of Exhaust Flue Gas of Industrial Furnace

Furnace Outlet	그는 물건은 물건은 도가운 방법이 있는 것을 가지 않는 것 같아. 이번 문건은 물건을 가지 않는 것 같아.				
Exhaust Gas					
Temperature					
	Larger than 19 10 ⁶ kcal/h	4.8 - 19	10 ⁶ kcal/h	1 - 4.8	10 ⁶ kcal/h
500 °C	200 C (20) %	200 'C	(20) %		
600	290 (20)	290	(20)		
700	300 (30)	330	(25)	370 °C	(20) %
800	370 (30)	410	(25)	450	(20)
900	400 (35)	490	(25)	530	(20)
1,000	420 (40)	520	(30)	570	(25)
ligher than 1,000	(40)		(30)		(25)

Remark Liquid fuel, Air ratio 1.2

2) Check Points

1. Source of waste energy	Exhaust gas, air,
	Exhaust water, liquid, condensate,
	Hot solid, product, ash,
	Mechanical energy (water head),
	Unused pressure, combustible gas,
	Natural energy (solar energy)
2. Use	Heating material,
	Heating air for combustion or process,
	Preheating boiler feed water,
	Preheating fuel (oil, gas), steam generation,
	Power generation, electricity generation,
	Air conditioning
3. Measures	Heat exchanger, heat pipe,
	Fluid bed (suspension preheater),
	Heat pump, heat transport medium,
	Waste heat boiler,
	Vacuum evaporation type water heater,
	Turbine (steam, organic reagent)

(5) Improvement of Conversion from Heat to Power

Check points are as follows.

1.	Increase of energy efficiency	Steam condition upgrade,
		Combined system, cogeneration,
		Recovery of drive power at depressurization of
		steam
2.	Operation improvement in power plant	Improvement of turbine, nozzle shape,
		Vacuum maintenance of condenser of turbine
	# 1997年1月1日(1997年1月1日)日日(1997年) 1月17日(1997年)(1997年)(1997年)(1997年)	(cleaning, water temperature),
		Optimization of power plant use,
		Variable pressure operation according to load,
		Auxiliary equipment load control, revolution,
		Optimizing back and extraction pressure,

.

	Peak shift (use of electricity during midnight
	hours and holidays, heat storage as ice)
3. Improvement of engine efficiency	
4. Rational operation of steam ejector	Optimization of number of stages,
	Steam pressure, substitution to vacuum pump

(6) Prevention of Electricity Loss by Resistance

Check points are as follows.

1. Power transportation	Higher voltage
2. Wiring	
(1) Minimization of length	Arrangement of receiving facility and load,
	Improvement of wiring route
(2) Improvement of wiring way	
(3) Optimization of wire size	
(4) Balancing loads between 3-phase	
3. Transformer	
(1) Optimum capacity	
(2) Load allotment, Adjusting the number of operating units	
(3) Connection way	
(4) Cutting off in unused time	
4. Facilities using electricity	Minimization of resistance at contact point
5. Improvement of power factor	Installing condenser (Capacitor),
	Power factor control by synchronous generator, Avoidance of low load running of motor
6. Operation	Suppression of peak demand (Low leveling, Demand control)

8

(7) Improvement of Conversion from Electricity to Power, Heat, etc.

Check points are as follows.

Sec.

1. Motor	High efficiency type, optimum capacity
2. Power transmission	Improvement of transmission,
	Transmission belt (material, relaxation degree),
	Lubrication control
3. Operation	Keeping rated voltage,
	Preventing idling, intermittent running
4. Fluid transportation	
(1) Reduction of load	Decrease of flow (preventing leakage),
	Reducing pipe resistance (streamlining of pipe
	route, cleaning pipes),
	Lowering suction temperature,
	Selection of transport measures,
	High-efficiency devices, impellers,
	Movable blades
(2) Optimizing equipment capacity	Modifying shape of impeller
(3) Control	Rotation speed control, unit number control
5. Electric heating	Hot charge,
	Comparative study between electric and othe
	heating methods
6 Air conditioning	Reduction of load,
	Shape, structure, direction, surroundings o
	building,
	Induction of outdoor air,
	Total enthalpy heat exchange,
	Prevention of outdoor air invasion (automatic
	doors, curtains)
	Optimum rate of air circulation, insulation,
	Isolation of heat generating body,
	Lighting facilities, localized air conditioning,
	Zoning (setting different condition by zone)
	Far infrared ray heating

(1) Ventilation	Lowering flow resistance in duct,
	Filter cleaning, fan rpm control,
	Optimum size of humidifier nozzle
(2) Operation	Cooling water temperature control,
	Water quality control in cooling tower line,
	Cleaning of heat exchanger
7. Lighting	
(1) Optimum illuminance	
(2) Better interior finishing of room	Wall color
(3) Improving lighting fixture arrangements	
(4) Utilization of daylight	
(5) Enforcement of turn-off of unnecessary	
lamps	
(6) Illumination control	
(7) Cleaning fixtures	
(8) Replacing bulbs at proper intervals	
(9) High efficiency facilities	Lamp

11-14-6 Evaluation Method of the Result of Energy Audit

(1) Evaluation of Main Operating Condition

There are some standard guidelines for evaluating the operation condition of energy consuming facilities. The main items are as follows.

- 1. Temperature of exhaust flue gas in the boiler and the furnace
- 2. Air ratio on combustion in the boiler and the furnace
- 3. Surface temperature on the equipment
- 4. Power factor of electricity -
- 5. Temperature of waste water

Rough evaluation of energy management will be done by comparing the audit result with standard for related items.

(2) Evaluation of Energy Unit Consumption

Unit consumption is the most important factor for evaluating the energy management. There are

two methods for the evaluation. One is checking the level of unit consumption in comparison with that of similar factories and facilities in Turkey and foreign countries, and the other is checking the trend of unit consumption, whether it is improving or becoming worse. The factors for evaluation of unit consumption of energy are total energy, fuel (coal, liquid fuel, gas), electricity, steam, and water.

(3) Evaluation of Investment for Energy Saving

A recommendation to expand a factory is sometimes made for energy saving. In this case, two evaluation methods for investment may be used. One is rate of return on investment. The other is repayment period for investment.

(4) Evaluation of Awareness of Factory Employees

The most important thing is awareness of those who work for the factory, managers in particular, for energy saving, improving energy unit consumption. In the energy audit, this item must be evaluated in comparison with their awareness after promotion activity by the audit team.

11-14-7 Reporting

R

A

The report consists of the following items.

I. Preface

2. Introduction

3. Background of the study

4. Achievement of the study

5. Summary of the result of the study

6. Characteristics of each industrial sub-sector

7. Outlines of factory, facilities and flow sheet for major products

8. Outline of operating conditions

9. Trends of consumption and unit consumption of energy

10. Current condition and problems with major energy consuming and supply facilities

11. Method and procedure of energy audit

12. Execution procedure of measurement

13. Results of measurement and analysis

14. Energy flow chart of factory and major energy consuming facilities

15. Formulation and recommendation of countermeasures for energy conservation

16. Cost estimation of countermeasures

17. Overall evaluation of countermeasures for energy conservation

18. Conclusions and recommendations

Chapter 12 Technical Study for IDC

8

A

Chapter 12 Technical Study for IDC

12-1 Characteristics of Minimill Subsector

T

ġ

Minimill is one steel production process. The main products made by this process are rebar and section, which are long products. Production of long products was 9.3 million tons in 1995 in Turkey, 78 percent of the total steel production of 12.0 million tons in Turkey. Minimill consists of production plants including a steelmaking plant (Electric Arc Furnace, Ladle Furnace and Continuous Casting Machine) and rolling mill plant (Bar Rolling Mill and/or Rod Rolling Mill) with auxiliary facilities such as oxygen plant, compressed air plant, water treatment station, main receiving sub-station, analysis and inspection laboratory, maintenance shop, etc.

Total energy consumption of minimill is generally 65 percent in the steelmaking plant (SMP); and 85 percent of electricity is consumed in the SMP. For energy conservation, electric arc furnace (EAF) measurements are essential considering that the EAF is the greatest energy consuming facility in the minimill.

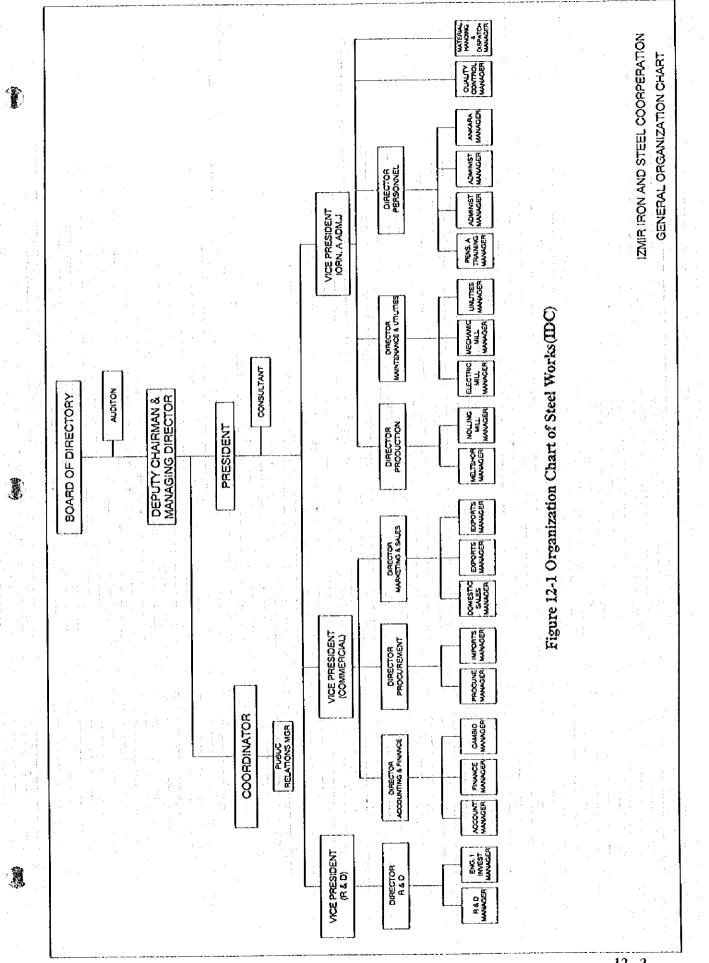
Energy saving in the electric arc furnace has been achieved together with efforts to increase the productivity. Energy saving in an electric arc furnace includes (1) utilizing oxygen gas by means of oxy-lancing and oxy-fuel burners, (2) adoption of a large-scale furnace and a large-capacity transformer, (3) introduction of new technologies, EBT (eccentric bottom tapping system), ladle furnace operation, scrap preheating, DC (direct current) arc furnace system, and twin furnaces to use most efficiently the exhaust gas heat, for example, and (4) improvement of operational technique such as long arc operation and foamy slag operation. Nowadays the DC twin furnace operation is considered the most advanced furnace. In the rolling mill plant, energy use is reduced in the reheating furnace, by adoption of hot charge operation together with improvement of the refractory, heat exchangers, combustion burners and combustion control. The slit rolling practice has also contributed to increased productivity.

12-2 Outlines of Factory, Facilities and Flowsheet of Major Products

12-2-1 Outline of Factory

(1) General

Izmir Demir Celik Sanayi A. S. (IDC) is one of the five minimills located in the Foca Area:


Cukrova, Habas, Cbitas, Ege Metal and IDC. IDC was established in 1975 as a rolling mill. After a series of expansions IDC now has production capacities of 550,000 tons per year of rebar and 700,000 tons per year of billet. The production in 1994 of rebar and billet was 506,000 tons and 621,000 tons, respectively. The company's paid capital was 3,684 billion TL in December 1995. IS Bank holds 60 percent of the shares and general investors hold the rest.

(2) Organization

12-2

Mr. Dogan Arikan is president of the factory. The number of employees is about 600 at present. The organization chart of IDC is shown in Figure 12-1. The organization comprises three divisions, seven departments and 21 sections.

R

(3) Employment and Training

1) Employment

The school education system of Turkey is basically the so-called 5-3-3-4 system. In Turkey 100 percent school enrollment has almost been attained at the elementary education level. Though it is relatively easy to employ competent workers, IDC does not need to employ new workers at this moment, because their workers do not leave the company. When additional personnel are required, IDC can obtain them from its subsidiaries. When recruiting employees, the company interviews the applicants after examination of written applications.

2) Education and Training

Education and training may be classified into three categories: Basic Education, Training Abroad and Management Education.

(a) Basic Education

New employees are given room lectures for about one week on the outlines of the works, plants, equipment and facilities, operation process, quality and cost controls and safety measures. Workers are given on-the job training (OJT) for a week. Newly recruited engineers spend one month visiting all the plants and facilities and they are also given room lectures for one month. From time to time, all employees are given brush-up training and education in the works and outside.

(b) Training Abroad

Selected people are given OJT at similar mills abroad and have opportunities to attend seminars, symposiums, conferences, etc. held overseas.

(c) Management Education

This course is to provide the department manager or section manager classes with management education, human relations for example, in Turkey and abroad.

(4) Area

IDC occupies an area of 550,000 square meters. IDC has its own mineral jetty capable of berthing two 50,000 dw1 vessels two kilometers from the works.

(5) Grade of Steel

The steel produced by IDC is mainly of rebar quality.

(6) Main Products and Production

The products are as follows:

- 1. 100 to 140 square millimeter billets from 5.5 to 6 meters long, and
- 2. 8 to 50 millimeter diameter plain and deformed bars from 6 to 18 meters long.

Production in 1994 is shown in Table 12-1, Production in Recent 5 Years. Products are mostly exported to Europe, the Middle East and the Far East. Export reached 90 percent in 1994 because of the supply and demand situation then prevailing in Turkey.

			(Unit: tons per year)
	Molten steel	Billet	Rebar
1990	498,790,799	494,598,000	339,642,000
1991	508,775,250	500,202,000	304,959,000
1992	558,264,500	542,069,000	340,123,000
1993	490,604,929	485,712,000	432,262,000
1994	626,325,569	620,841,000	506,062,000
1995	563,992,037	561,394,000	407,619,000
First 11 Months)			

Table 12-1 Production for Recent Five Years

(First 11 Mon Source: IDC

As the production capacity of the steelmaking plant (SMP) exceeds that of the rolling mill plant (RMP), the surplus billets are sold to the local market.

(7) Main materials

The main raw materials to be charged to the electric are furnace (EAF) are scrap and pig iron, both almost entirely imported from Europe and USA, though domestically available in small amounts. Ferro-alloys, about 70 percent of refractories, and electrodes are also imported.

12-2-2 Outline of Production Facilities

(i) Layout of the Steel Works

The layout of the steel works is shown in Figure 12-2.

SCRAP YARD

SCRAP YARD

ELECTRIC STEEL MAKING PLANT NOO O ADMINISTRATION <u>000</u> BAR ROLLING MILL SUBSTATION CLOSED STOCK YARD NO ...I. OPEN STOCK YARD

SCRAP YARD

DEDUSTING

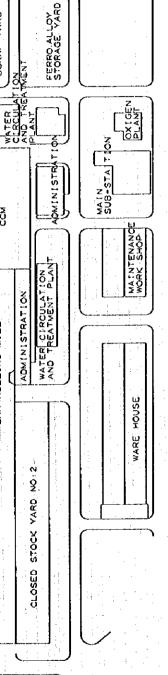


Figure 12-2 Layout of Steel Works

Ø

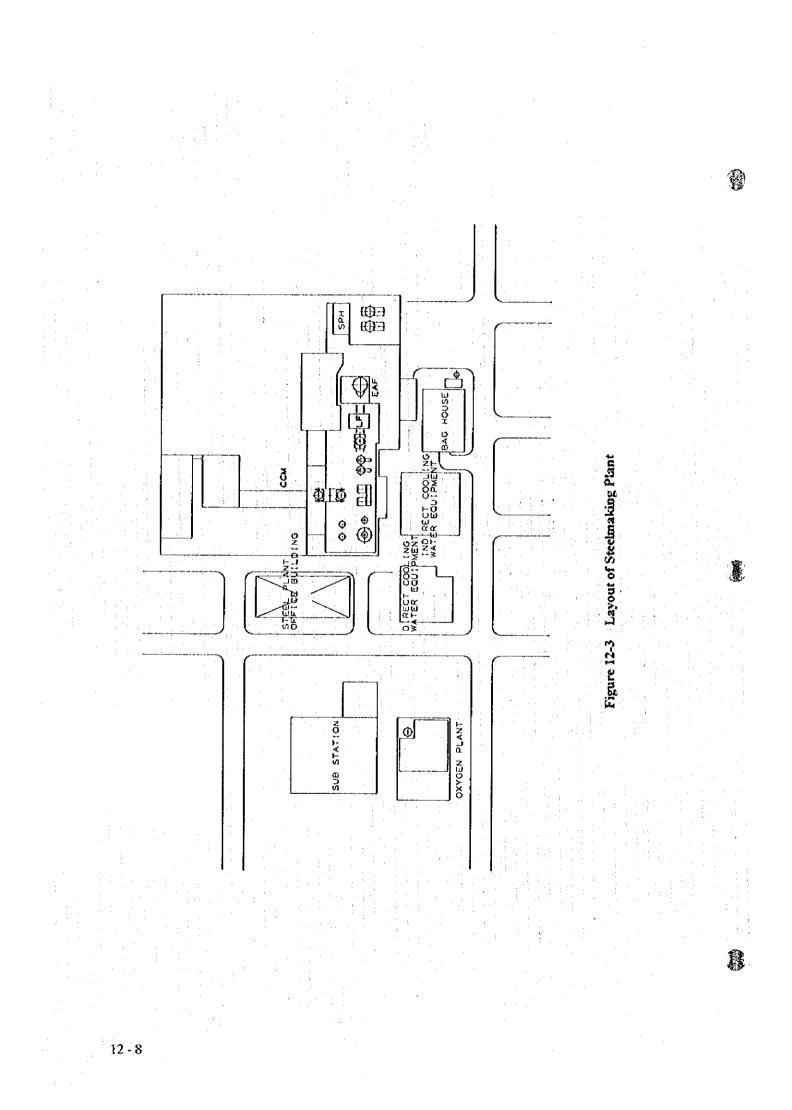
Ŋ

(2) Steelmaking Plant (SMP)

1) Outline of SMP

The main facilities of the SMP are as follows:

- 1. Electric Arc Furnace (EAF)
 - One unit x 70 tons/heat (hereinafter the unit "heat" is used to mean one melt.) with
 - eccentric bottom tapping system (EBT), a transformer of 72 MVA (Mega volt
 - ampere), 5 oxy-fuel burners
- 2. Ladle Furnace (LF)
 - One unit x 70 tons/heat with a transformer of 10 MVA
- 3. Continuous Casting Machine (CCM)
 - One unit x 6 strands for billets 100 to 140 mm square and 5.5 to 6 meters long


The SMP was originally designed to produce 400,000 tons per year of billets with one 60 ton EAF using scrap, one 60 ton LF and one CCM of 4 strands. It has been expanded to produce 700,000 tons per year of billets with 70 tons/heat of EAF, 70 tons/heat of LF and 6 strands of CCM.

The plant began operation in May 1987. The plant has been satisfactorily operated since startup except when the supply of scrap was insufficient. As shown in Table 12-1, the production of molten steel in 1994 reached 626,300 tons and that of billets 620,800 tons. Billets produced in the SMP are mainly of rebar quality, from low carbon steel of between 0.15 and 0.20 percent carbon to high carbon steel of 0.45 percent carbon.

2) Layout

淵

The layout of the plant is shown in Figure 12-3.

3) Main Equipment

I

The steelmaking plant (SMP) facilities, except for the continuous casting machine (CCM), were supplied by NKK, Japan. The electric are furnace (EAF) was originally of NKK/5300 MH type, with a shell diameter of 5.3 meters, capacity of 60 tons/heat and transformer capacity of 45 MVA, capable of being overloaded to 120 percent. It has been expanded to a shell diameter of 5.5 meters, a capacity of 70 tons/heat and a transformer capacity of 72 MVA. Moreover, IDC has a plan to expand the heat capacity of 80 tons/heat together with an increase of the ladle crane capacity to 140 tons.

The CCM was supplied by CONCAST of Switzerland, with four strands which were also expanded to six strands.

The dust removal system was originally installed to treat the exhaust gas from the EAF only. Now another unit has been added as a secondary dust removal system from the viewpoint of environmental conservation.

The equipment specifications are shown in Table 12-2.

No.	Equipment	Q'ty	Main Specification	Remarks
1 Scrap	Preheater (SPH)	2 Scra	p heating by exhaust gas from EAF	· · · · ·
		35,0 Heat	nd 2nd of three buckets heated by 00 Nm ³ /hr hot gas. ing scrap upto 200 - 250°C, upto 20 /ton-MS of energy saving.	
2 Elect	rie Arc Furnace (EAF)	1 70 t	ons/heat, 72 MVA transformer, 900) .
		V m	ax. tap voltage, 5.5 meter shell, 1.3	I
		mete	er pitch circle diameter, water cooled	
		shel	I and roof, EBT type, four furnace	antonina Estatoria
		oxy-	fuel burners and one door oxy-fue	
		burr	er, two oxygen/one carbon manipu	
		lator	, 20 inches electrode with water	ſ.
		spra	y cooling, automatic alloy charging	2
			em, 50 minutes of tap-to-tap for	

Table 12-2 Equipment List - Steelmaking Plant (SMP)

No	Equipment	Q'ty	Main Specification	Remarks
			three bucket practice	
3	Ladle Furnace (LF)	1	10 MVA transformer, 240 V max. tap voltage, water cooled roof, 12 inches	
	and a second		electrode with water spray cooling, automatic charging system	
4	Continuous Casting Machine		Six strands, 100 - 140 mm square	
-	(CCM)		diameter billet, turret type, two tundish	
			cars, mechanical shear cutting, pusher type cooling bed, mold level equipment	:
5	Cranes	11	Ladle crane	
		į	Main hoist: 100 tons	
;			Auxiliary hoist: 30 tons	
· ·			Charging crane Main hoist: 60 tons Auxiliary hoist: 15 tons	
			Casting hoist crane Hoist: 25 tons	
6	Scrap Stock Yard and		Open scrap yard, concrete foundation,	
	Facilities		four Sumitomo crab equipped scrap	
			loaders, bulldozers, magnets, etc., two Hino scrap bucket transport cars	
7	Slag Transport	1	Slag pot transport car	
8	Additive Charging Facilities		Automatic charging system for lime, limestone and ferro-alloys, serving EAF,	
		· .	LF and ladle during tapping	

2

Ĵ,

Source: IDC

(3) Rolling Mill Plant (RMP)

1) Outline of RMP

Main facilities of the RMP are as follows:

I. Reheating furnace

One unit x 85 tons per hour for cold charge and 100 tons per hour for hot charge with walking beams, oil fired burners

2. Rolling stands

One unit x continuous rolling with 8 roughing stands, 4 intermediate stands, 4 finishing stands, shears, finishing facilities

The RMP was designed to produce 350,000 tons per year of rebar with one 60 tons per hour reheating furnace and 16 rolling strands. Now production capacity has been expanded to 550,000 tons per year, associated with an increase in capacity of the reheating furnace of 85 tons per hour for cold charge and 100 tons per hour for hot charge. The plant started in 1983; since then the plant has been satisfactorily operated. As shown in Table 12-1, production of final products reached 506,000 tons in 1994.

2) Layout

(incom

Availabilit

The layout of the plant is shown in Figure 12-4.

8 ADM [N I STRATION ELECTRIC STECL MAKING PLANT CCM ы Ч Ч ۵ ĩ WATER CIRCULATION AND TREATMENT PLANT ADM IN STRATION Figure 12-4 Layout of Rolling Mill Plant BAR ROLLING MILL SUBSTATION ---R CLOSED STOCK YARD NO. 1 CLOSED STOCK YARD NO.2 OPEN STOCK YARD ß 12 - 12

3) Main Equipment

1

豪

The facilities belonging to the rolling mill plant (RMP) were designed by IDC and supplied by ASMAS (a sister company of IDC). The reheating furnace was supplied by OFU of Germany.

The specifications of the equipment are shown in Table 12-3.

No.	Equipment	Q'ty	Main Specification Remarks
I R	cheating Furnace	en de la composición de la composición Composición de la composición de la comp	Design capacity: 60 tons/hour + 20 %
			6 m x 120 m x 120 mm
			Walking beam type
			Top and bottom firing
2 R	colling Mills		
N	los. 1 and 2 stands		300 mm length x 460 mm diameter
4	los. 3,4,5, & 6 stands		800 mm length x 540 mm diameter

Table 12-3 Equipment List - Rolling Mill Plant (RMP)

2Rolling MillsNos. 1 and 2 stands300 mm length x 460 mm diameterNos. 3,4,5, & 6 stands800 mm length x 540 mm diameterNos. 7 & 8 stands800 mm length x 400 mm diameterShear 1Max. 50 mm diameterNos. 9,10,11 & 12 stands700 mm length x 360 mm diameterShear 2Max. 40 mm diameterNos. 13, 14, 15 & 16 stands600 mm length x 340 mm diameter3Cooling Bed7.5 m width x 80 m length4Cold Shear400 tons cutting force

Source: IDC

(4) Auxiliary Facilities

In addition to the above major facilities, the steel works has the following auxiliary facilities:

- 1. Open scrap yard,
- 2. Oxygen plant (air separation),
- 3. Compressed air plant,
- 4. Water treatment station,
- 5. Main receiving sub-station (MRSS),
- 6. Analysis and inspection laboratory,
- 7. Maintenance shop, etc.

12-2-3 Flow Sheet for Major Production

(1) SMP

In the open scrap yard, scrap is loaded by mobile hydraulic loaders into the scrap bucket placed on the bucket carrier that is equipped with an automatic weighing device, and then transported to the EAF yard. The EAF is normally charged with three buckets of scrap by a charging crane. Before charging, two bucket scrap (1st and 2nd charges) is preheated in the scrap preheater (SPH), utilizing the heat of the exhaust gas generated from the EAF to save electric power for melting.

In the EAF scrap is melted by electric power with the help of five oxy-fuel burners and oxylancing as well as carbon injection to achieve rapid melting and generation of foamy slag. After melting at the target temperature and achieving the desired composition of molten steel, the heat is tapped through the EBT (eccentric bottom tapping system) into the ladle lying on the ladle transfer car, leaving 15 tons hot heel in the furnace. After tapping is completed, the heat is transferred to the LF station adjacent to the EAF by the ladle transfer car. The burnt lime and deoxidants are fed into the ladte during tapping by means of an automatic alloy feeding system. Before receiving steel from the EAF, ladles are heated by oil fired burner. As of this writing preheating of the combustion air by own exhaust gas is being tested as a means to improve thermal efficiency.

At the LF station, molten steel is finally subjected to metallurgical treatment for adjustment of composition, and temperature is also adjusted by electric means, alloy addition and inert gas bubbling. Then the heat is transferred by the ladle crane to the CCM turret and cast into billets. Those billets are directly charged to the reheating furnace of the rolling mill by a chain conveyer.

(2) : RMP

Billets transferred from the CCM cooling bed are generally charged hot into the walking-beamtype reheating furnace equipped with oil burners. To save fuel oil, hot charge and preheating of combustion air by the exhaust gas from the reheating furnace are adopted. Some 60 to 70 percent of the billets are subjected to hot charge of from 300 to 600 °C. Billets heated to from 1,100 to 1,150 °C are rolled into 8 to 50 millimeter plain and deformed bars in eight stands of the roughing mill; four stands of the intermediate mill and four stands of the finishing mill. The products are cut into 6 to 18 meter lengths after being cooled on the 80 meter cooling bed. Slit rolling is applied to manufacturing small-size products to increase the productivity. After being bundled, the products are shipped. 鎫

12-3 Outline of Operating Conditions

Î

1

Annual production of molten steel, billet and rebar for recent 5 years is shown in Table 12-1. The material balance sheet in 1994 in SMP is shown in Figure 12-5.

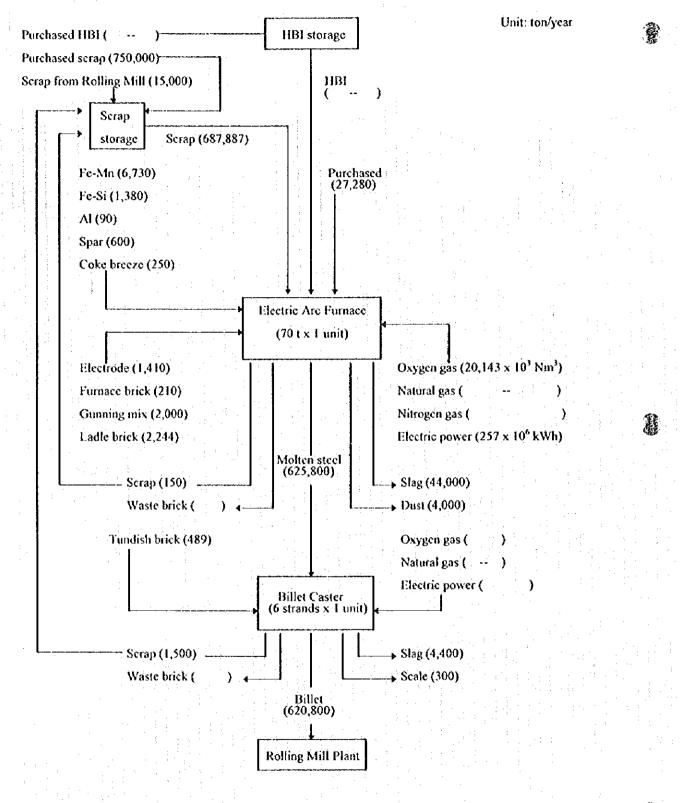


Figure 12-5 Material Balance Sheet for Steelmaking Plant, 1994

8

12-4 Trends of Energy Consumption and Unit Consumption

¥.

X

g

Monthly operation parameters in SMP including the unit consumption are shown in Tables 12-4, 12-5 and 12-6. These tables indicate superb operation results of tap-to-tap time of 53 minutes, electric power consumption of from 400 to 420 kWh/ton-MS (Molten steel), at the oxygen consumption of 30 Nm^3 /ton-MS in EAF, and electrode consumption of less than 2.0 kilograms/ton-MS.

Monthly operation parameters in RMP including the unit consumption and productivity for the tast five years are shown in Tables 12-7 and 12-8, respectively. These tables show superb productivity of 70 - 90 tons per hour, with oil consumption of 25 kilogram per ton.

r Plant (SMP)	
 r EAF - Steelmakins	
2-4 Monthly Operating Parameters for EAF - Steelmaking Plant (SMP)	
Operating Par	
4 Monthly	
Table 12-4	

		NA1/20	95/FEB	SAMAR	JAPR.	AVW/S6.	NUT/36	JUT1/20	95/AUG	95/SEP	95/OCT	70N/26	95/DEC
_ ∢	EAF			•									
+	l Nominal capacity (tons/heat)	70	70	20	20	0 2	20	70	70	70	70	70	70
ы	Transformer Capacity (MVA)	. 72	72 -	72	72	72	72	72	7	2	72	72	72
മ	B. Main raw materials				· ·	•	:						
ŝ	Scrap (tons/heat)	80.49	80.20	36.64	80.25	79.60	79.53	77.90	77.74	78.58	78.26	80.16	
4	Total (tons/month)	61.330	55.097	44,378	60,669	56.038	56.069	65,202	58,694	53.749	54,938	60,680	
с С	C Products		· · ·					· · · · · · · · · · · · · · · · · · ·			·		
Ś.	Molten steel (tons/heat)	71.25	71.67	72.10	71.69	71.63	71.18	70.79	71.21	73.29	70.70	69.55	
ò.	Molten steel (tons/month)	54.292	49.237	40,016	54,196	50,428	50.180	59.251	53,766	50,128	49,640	52,645	
A	D Production parameter	•••		•		: .		: :		·			
.7	Operating hours (hours/month)	645.8	590	465	645.7	587	607	661	596.5	562	563.5		
8	Total heats (heats/month)	762	687	555	756	704	705	837	755	664	702		
¢.	Average heats (heats/day)	28.32	27.94	28.63	28.13	28.78	27.86	30,38	30.26	29.21	28.87		
0	Charging time (minutes/heat)	5.88	5 44 44	4.94	5.84	5.92	5.92	4 52	4.76	5.88	5.94		
11	Melting time (minutes/heat)	32.12	33.56	33.06	32.16	30.08	33.08	33.08	32.48	32.24	30.1		
1 1 1	Refining time (minutes/heat)	10	0	80	10	10	10	8	00	10	10		
13.	Fettling time (mnutes/heat)	œ	6	13	7	8	σ	00	6	7	2		
4	. Tap-to-tap time (minutes/heat)	56	57.	59	55	54		53	54	23	54		
15.	Steel yield (%)=6/4	88.53	89.37	91.39	89.34	89.97	85:50	90.86	91.61	90,47	90.35		
	-												

8

		. *			•	:					:		:			:
		 1 ··			•		· . ·					÷		.		a se se Se Se se se
- (2)		· / / / / / / / / / / / / / / / / / / /														
		6.56		5.40	1.82	0.27	4,1	17.04		• .						
	•	5.63	425 31.8	5,1	1.83	0.54	3.60	2.71	26.8	40.6	3.9	115.9	44.6	583.5	• • •	
						- - -			-	•		e see e de res e	, àt € i			
	346	4 9	423 32.5	5.10	1.92	0.34	3.53	5 .00	16.9		101.6	118.5	39.4	562		
	37.5	46	405 31.2	4 35	1.57	0.56	3.61	3.01	26.1	•	4 4	26 56.5	89	574.5		
	36.0	5.1	406 30,4	5,40	1.77	0.07	3.89	2.88	7 . 4.	11. • 1	. 1.5	- 6.8	74.1	661		
	42.0	4.8	423 30.1	5.00	1.88	0.81	3.84	2.75	42.65	- - -	3.4	46.05	67	607		
	36.0	5.70	408 29.9	4.10	2.00		•	2.94				114	43	587		
					÷.,					:						
	42.7	5.8	417 33.2	5.3	2.08	0.50	3.64	2.55	27.3		•	27.3	47.7	645.0		
	37.6 0.72	7.5	416 32.7	4.24	2.27	0.62	3.10	3.64		24.1		24.1	38.2	681.7		
	39.4 0.52	8.2	430 33.7	5.20	2.63	0.34	3.92	2.79	16.25	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		16.25	65.8	590	:	
	42.0 0.73	8.1	414 35,0	5.13	2.48	0.29	3.93	2.56	26.33	•		4 30.33	67.90	645.77		
										. [.]		1.				
		()	1-MS) 4S)			(Si	(SM-nc		ctory repa	al repar)	icity)	: holidays) r=26+27+	· · · ·	idar hours		
aterials	/ton-MS) /ton-MS)	kg/ton-MS	r (kWh/to: ⁵ m ³ /ton-N	n-MS)	ton-MS)	(kg/ton-N	nals (kg/t	g/ton-MS	unourino air (Refra	air (Gener	air (Electi	air (Public tuled repa		ırs = caler		
Auxiliary raw materials	Burnt lime (kg/ton-MS) Limestone (kg/ton-MS)	Coke breeze (kg/ton-MS) tilities	Electric power (kWh/ton-MS) Oxygen gas (Nm ³ /ton-MS)	Fuel oil (kø/ton-MS)	Electrode (kg/ton-MS)	Furnace brick (kg/ton-MS)	Gunning materials (kg/ton-MS)	Ladle brick (kg/ton-MS)	Scheduled repair (Refractory repair)	Scheduled repair (General repair)	Scheduled repair (Electricity)	Scheduled repair (Public holidays) Total of scheduled repair=26+27+28+29	Down-time	Operation hours = calendar hours-30-31	Å	
E Aurdii	16. Burr 17. Lime	18. Coke br F Utilities	19. Elec 20. Oxy	21. Fuel	-	23. Fur		25 Lad)	27. Sch		29. Sch 30. Tot		32. Ope	Source: IDC	• • • •
		•						•								
				•											12 - 19	

95/DEC 2 ្ព AONVS6, 0.43 0.94 11.7 0.06 2.2 8.0 5.9 ខ 2 2 100/36 397.8 040 10.6 702 1.76 2,0 0.04 7.9 3 2 2 34 1 33 95/SEP 376.2 0.89 0.07 684 6 6 0.41 S.1. 6.j 0 4.6 2 2 5 85 e 95/AUG 0.38 402.7 0.86 755 8.1 2.6 Ś 2.5 40 8 2 9.7 2 JU1/56. 446,4 0.37 0.39 0.01 837 ۴ 6.1 1 2.6 9.6 5.5 35 2 20 ND1/56. 399.5 0.55 0.02 0.40 705 . Э. Э. 2.5 92 2 2 8.1 7 35 35 YAMA20 375.5 0.39 401 0.80 0.10 8 2 2 6 10 33 2 8.0 5.3 g 95/APR 415.8 0.37 0.74 10.4 0.10 2 756 8.2 2.6 2 g 8 Ë Ŕ SAMAR 286.7 10.9 0.43 0.28 555 0.10 г. сі 2 2 8 엌 8 33 5 '95/FEB 366.4 0.38 0.54 11.7 0.12 683 5.6 * 64 64 50 2 2 33 S 95/JAN 406.4 0.38 0.43 11.7 2.7 762 0.11 ü 2.5 2 $\underline{\circ}$ 33 ŝ ŝ C Auxiliary raw materials (kg/ton-MS) 5. LF operation time (minutes/heat) Operating hours (hours/month) 13. Electric power (kWh/ton-MS) 2. Transformer Capacity (MVA) 1. Nominal capacity (tons/heat) 4. Total heats (heats/month) 14. Electrode (kg/ton-MS) B Production parameter Burnt lune 7. Fluorspar Dolomite E Electrode Fe-Mn Si-Mn D Utilities Fe-Si R A LF o, Ś ğ 11. *c* --ŝ 멸

ŝ

8

12 - 20

Table 12-5 Monthly Operating Parameters for LF - Steelmaking Plant (SMP)

399.5 446.4 402.6 1.03 1.25 3.65 226.7 273.6 315 22.8 22.8 22.8	415.8 375.5 599.5 446.4 0.71 0.17 1.03 1.25 280.7 345.5 296.7 273.6 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8	415.8 375.5 399.5 446.4 0.71 0.17 1.03 1125 280.7 345.5 296.7 273.6 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8
		366.4 286.8 415.8 0.63 1.15 0.71 222 433.2 280.7 22.8 22.8 22.8 22.8 22.8

		V '95/DEC																					- -		•••		
		95/SEP 95/OCT 95/NOV					70.9 70.5	48,503 49,496	•	570 585	684 702	28.8 28.8	20.92 20.65	50 50 50 50		99.7 99.7	0.5 0.5	0.084 0.082	0.1 0.1	<u>.</u> .		· · ·	:	•		•	•
ng Plant (SMP)		95/JUL '95/AUG '95/					71.0 70.9 70	59,390 53,557 48,		655.6 604 51	837 755 66	30.6 30 28	20.4	-47		56 9.66 6.66	0.5 0.5 0	0.089 0.083 0.0	0.1 0.1 0				· · · · · · · · · · · · · · · · · · ·	•			
Table 12.6 Monthly Overating Parameters for CCM - Steelmaking Plant (SMP)		156. NUT1/26. YAM/26.					11.1 11.1 11.1	<u>50,466 50,115 59,</u>		575 611 65	704 705 8	29.4 27.7 3(23.47 16.79 19	49 52 4		6 6 66 6 66	0.5 0.5 0	0.07 0.10 0.	01 01 0	· · · · · · · · · · · · · · · · · · ·							···· · ·
tino Parameters fo	AT 0111111111111111111111111111111111111	95/MAR '95/APR '95/					72.0 71.9 7	39,940 54,369 50		462.5 642.6	555 756	28.S 28.2 :	25.23 29.08 2	50 51	N - - - -	6.66 8.66	0.5 0.5	0.066 0.06 (0.1 0.1				-				
Monthly Oners		95/JAN 95/FEB 95					70.9 71.4	54.032 49.038 3		647.7 595.4 4	762 687	28.2 27.7	17.72 19.63	51 52		9.66 99.6	0.5 0.5	0.095 0.085	0.1							•	
Tahle 12-K		356.	ccM	Billet size	Number of strands	Products	Sound billets (tons/heat) 7	Sound billets (tons/month) 54	C Production parameter	Operating hour (hour/month)	Casting heats (heats/month) 7	7. Average casting heats (heats/day) 2	Avarage CCC heats (heats/tundish) 11	Avarage casting time (minutes/heat)	Yield (%)	Sound billets	Scale and cutter loss	Skull in tundish	Top and bottom crop	Accident loss	Rejected billets						

.

E Refractories		
16. Refractories for tundish (kg/ton-MS)	0.54 0.44 0.45 0.40 0.47 0.70 0.52 0.52 0.54 0.55	
F Working time (hour/month)		
17. Casting time	647.7 595.4 462.5 642.6 575 611 655.6 604 570 585	
18. Preparation time	8.6 7 4.4 5.2 6 8.4 8.8 7.4 6.8 6.8	14.
19. Accidents	1.25 . 0.4 1.3 3.8 0.3 0.6 9.9 5.25 3.5	
20. Waiting time	63.65 46.8 253.9 48.7 136.4 77.5 56.2 99.9 115.15 145.9	. *
		: : : :
		; }
32. Scale a state of the state	0.5	
33. Scrap		
34. Waste brick		
Source: IDC		
		• •
:		
		·
		•
		•
		•
		I
		·
		•
		•

	Table 12-7	Monthl	v Operati	Monthly Operating Parameters - Rolling Mill Plant (RMP)	acters - F	kolling N	(ill Plant	(RMP)	•	:		•		
												- 1999 - 1		
	'94/DEC	NA1/20'	95/FEB	'95/MAR	847/S6.	YAM/20	NJU/\$6.	JUT/20'	95/AUG	'95/SEP	100/56.	N/\$6,	•	
A Production (tons/month)				1. 1									•	
1. Products	44,398	31,538	36,921	44,233	40,922	38,282	43.053	46,329	42,864	19,424	27,472	36,582		
2 By-products=3-4	1.535	1,182	1,795	1,952	2,157	1,894	1.876	1,884	1.813	669	1,540	1,909		
3. Scrap and Cobble	1,059	845	1,400	1,504	1,607	1,505	1,393	1,142	1,267	463	1,303	1.307	•	
4. Scale	476	337	395	448	550	389-	483	742	546	206	237	602		
B Utilities						: :.						*.		
5. Fuel oil (kg/ton-product)	26	26	53	25	26	52	26	24	26	52	33			
6. Electric power (kg/ton-billet)	68	84	84	70	83	2	12	7	75	82	88			
7. Make-up water for direct	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
cooling (m ³ /ton-billet)		•			· · ·		4						:	
8. Make-up water for in-direct	0.1	0,1,	0.1	0.1	0.1	01	0.1	0.1	0.1	0.1	1.0			
cooling (m ³ /ton-billet)					· ·	· · · · · · · ·	• •.	: ' : :						
9. Compressed air (Nm ³ /ton-billet)	30-40	30-40	30-40	30-40	30-40	30-40	30-40	30-40	30-40	30-40	30-40			
			•		•					· .				
	•		•			•								
		•	-			•	•	•						
				•	- 			, .'						
			:					·						
	. *			· ·				· .	• .					
							- 				÷			
						• . • •								
		: -	· ·		· .		·							
			•			•		•	• •					
				·										-
			• .	:		•	•	• •		•				
					: : : :					•				
	• . •	· .		Wreathery					•	. • •				
						•								
	:					4 · · · • · ·								

		:								-												1 : 1				
			';			· ·		:	:					:												
					:							•		172	F	172		;	:						:	• •
	57.91	25.31	9.25		16.06	4.34	3.22	1.12	12.44	42.09		•		244	•	24 4				•						
	29.29	9.78	3.07	1.0 11 1	6.71	1.43	1.20	0.23	59.50	70.71				487	•	-487				1				t e t	•	•
	71.29	21.21	4.62		16.59	5.90	2.09	0.81	4.60	28.71		, •		180	· ·	180	· ·			· ·			• •	· · .		
	69,72	21 89	5.48		16.41	6.16	2.35	3.81	2.23	30.28		24		160		184		· ·	:	•	· · ·		•	2		
	69.12	22.09	7.76		14.33	6.35	5.1	1.25	2,44	30.88				166		166						· .		• • •		4,
	60.59	17.58	3.92		13.66	1.62		0.27			:.		:	264		264	 	. *		·	÷.,			· ·		
	5.0				19.16	3.24	~ .		, ¹	н Нас		•		168	1	168						· · · · · · · · · · · · · · · · · · ·		· · · ·	· :•	• .
	68.92	4	5.41		15.96	2.71	1.33	1.38		31.08		•		191	4	191	14 14 14							•		
	68.43 6	26.90	4,46		22.44	2.45	1.73	0.72	2.22	31.57		11	•••	1.2.1	•	182										
	52.11 6	17.83 2	5.07		12.76 2	3.01	2.21	0.80	27.05	47.89 3	· · ·	2 C 2 30		312	•	318										
		•		•			. :	• • •					•	· · ·		1.7										
	69.82	21.99	4.97		17.02	3.62	2.56	1.06	4.57	30.18		S		172	11	188										
	18	13	justment	•								ours														
	ratio=100-	down=12+	nge and ad		: 	l+21=uwoj	pment	nem		11-14-17	th)	ore than 3 h	a day)		•	: <u> </u>										
Working ratio (%)	Effective rolling ratio=100-18	Operational shutdown=12+13	Roll, groove change and adjustment	of roll, guide	llo.	Equipment shutdown=15+16	Mechanical equipment	Electrical equipment	TS	Shutdown total=1 1+14+17	Repair (hour/month)	Major repair (more than 3 hours	shutdown in a day)	20. Minor repair	21. Periodical repair	Total=19+20+21									:	
				ö	Mis-roll				Others				43	Mine	. Perio			-	: . :		· · ·					
υ	.0 10	11.	12		13.	4	15.	16.	17.	18.	A	19.		20	21	53		•	· .'						•	· .

10 893 910 942 940 940 944 943 940 943 940 943 953 953 11 11 11 11 918 943 940 944 943 953 953 15 918 943 945 943 955 943 944 943 953 <th>0 1 1 1 1 1 1 1 1 2 1 2 3 1 1 2 3 1 1 2 3 1 1 2 1 2</th> <th>89.8</th> <th>9. 24 - 24 - 25 - 25 - 25 - 25 - 25 - 25 -</th> <th>94.2 93.8</th> <th>: </th> <th>94.0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	0 1 1 1 1 1 1 1 1 2 1 2 3 1 1 2 3 1 1 2 3 1 1 2 1 2	89.8	9. 24 - 24 - 25 - 25 - 25 - 25 - 25 - 25 -	94.2 93.8	: 	94.0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 13 19 19 19 19 19 19	9.18	, 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42	93.8			• /	94.0	94.8	94 0		•	92.8
91.8 94.5 94.8 93.4 94.2 94.5 95.5 95.7 93.8 95.3 95.5 95.4	13 16 19 2 19 5	91.8	42 - 42 - 42 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25		93.5	94 4	94.6	94.9	94.0	94.4	94.3	93.5	95 3
2 94.3 94.5 95.1 95.5 95.7 91.8 95.5 2 94.8 94.8 95.1 95.3 95.5 95.5 95.3 95.3 2 94.7 94.2 95.8 95.1 95.3 95.5 95.3 95.3 94.7 94.7 94.2 95.8 95.4 95.3 96.1 95.5 95.4 94.7 94.7 94.2 95.8 95.4 95.3 96.1 94.3 94.3 94.7 94.6 95.5 95.4 95.2 95.1 96.1 95.5 95.4 97.4 94.8 94.6 94.6 95.1 95.0 95.3 95.1 94.3 94.9 94.6 95.1 95.0 95.2 95.1 94.3 95.4 95.7 94.0 93.5 95.1 95.0 95.2 95.1 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4	14 18 19.2		- 94.8 94.2	94.8	93.4	•	94.2	•	94.9	•	•	r	94.3
2 94.8 94.9 95.1 95.3 95.7 95.6 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.4 95.3 95.4 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 95.3 95.4 <t< td=""><td>16 19.2 19.5</td><td>•</td><td>94.8 94.2</td><td>94.3</td><td></td><td>94.5</td><td>1 1 1 1</td><td>93.4</td><td>95.5</td><td>95.7</td><td>93.8</td><td>1</td><td>94,4</td></t<>	16 19.2 19.5	•	94.8 94.2	94.3		94.5	1 1 1 1	93.4	95.5	95.7	93.8	1	94,4
2 942 933 - 910 945 935 940 2 - - - - 947 942 953 954 953 951 943 - <t< td=""><td>18 19.2 19.5</td><td></td><td>94.2</td><td>•</td><td>94.9</td><td>95.1</td><td>95.3</td><td>95.5</td><td>95.7</td><td>95.6</td><td>95.3</td><td>93.5</td><td>93.0</td></t<>	18 19.2 19.5		94.2	•	94.9	95.1	95.3	95.5	95.7	95.6	95.3	93.5	93.0
2 94,7 94,7 94,3 94,4 94,6 94,3 94,4 94,6 95,1 94,3 95,1 94,3 95,1 94,3 94,4 94,6 95,1 94,3 95,1 94,3 95,1 94,3 95,1 94,3 95,1 94,3 95,4 <t< td=""><td>19.5</td><td></td><td></td><td>•</td><td>93.8</td><td></td><td>х ¹ 1</td><td>0.16</td><td>94.5</td><td>93.5</td><td>95.3</td><td>94.0</td><td>95.1</td></t<>	19.5			•	93.8		х ¹ 1	0.16	94.5	93.5	95.3	94.0	95.1
5 94.7 94.2 95.8 95.8 95.4 95.2 95.3 96.1 95.5 95.1 94.3 94.7 94.2 95.2 95.8 95.8 95.4 95.2 95.3 95.1 94.3 94.7 94.2 95.2 95.3 95.4 95.3 95.4 95.4 95.4 95.4 95.3 95.4 95.4 95.3 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.2 95.4 9	19.5 · · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	94.7	•	•	•	, , .		1
94.7 94.2 95.9 95.8 95.4 95.2 95.1 95.5 95.1 94.3 - 94.2 - 92.5 - 92.5 - 95.1 94.3 - 95.4		•		1		1 1	•	•	•	94.3	•	•	94.2
94.2 - 92.5 - 91.1 94.3 - 95.4 - 94.4 94.6 - 95.1 95.0 95.2 95.0 95.3 95.4 95.7 95.3 94.4 94.6 - 95.1 95.0 95.2 95.0 95.3 95.4 95.7 95.3 94.6 93.9 92.3 94.5 95.0 95.0 95.0 95.6 95.4 95.6 -		94.7	94.2	95,9	95.8	95,4	95.2	95.3	96.1	95.5	95.1	94.3	94.9
94.4 94.6 - 95.1 95.0 95.2 95.0 95.3 95.4 95.7 95.3 94.6 93.8 - 95.1 95.0 95.2 95.0 95.5 95.3 95.4 95.7 95.3 94.6 93.9 92.3 94.5 - 95.1 95.0 95.2 95.2 95.2 95.4 95.7 95.4 95.7 95.4 95.4 95.7 95.4 95.7 95.4 95.6 -	22		94.2	• •	92.5			91.1	94.3	•	95.4	•	95.3
94.4 94.6 - 95.1 95.0 95.2 95.0 95.3 95.4 95.7 93.2 94.6 93.8 - 93.1 95.0 95.0 95.0 95.5 93.4 93.4 94.6 93.9 92.3 94.5 95.2 94.2 94.2 93.4 93.4 94.1 94.1 94.7 95.1 92.3 94.2 94.2 - - - 93.4 94.1 94.7 95.1 92.4 94.2 94.1 94.2 -	24			•	· · · ·		•	95.1	•	•		1	4
93.8 - 95.1 95.0 95.5 95.4 93.4 93.4 94.6 93.9 92.3 94.5 95.2 92.7 93.8 94.2 - - - 94.1 94.1 94.2 92.3 94.2 94.1 94.2 -	25	94.4	94.6	•	95.1	95.0	95.2	95.0	95.3	95.4	95.7	93.2	93.9
94.6 93.9 92.3 94.5 95.2 92.7 95.8 94.2 -<	26	•	93.8	•	: : : :	95.1	95.0	95.0	95.9	95.5	93.4	93.4	•
94.1 94.7 95.1 92.4 94.2 94.1 94.4 95.0 95.6 95.3 94.0 94.0 95.0 94.7 94.3 95.0 918 93.2 95.0	28	94.6	93.9	92.3	94.5	95.2	92.7	93.8	94.2	•		•	٠
95.3 94.0 • 95.0 94.7 94.3 95.0 91.8 93.2 95.0 88.9	32	94.1	94.7	95.1	92.4	94.2	94.1	94.4	95.0	95.6	•	•	,
94.0 - 95.0 94.7 94.3 95.0 91.8 93.2 95.0 - 88.9	36	•	- •	ن الا در الا در		•	•	95.3	•		ŧ	•	•
	40	94.0	•	95.0	94.7	94.3	.95.0	91.8	93.2	95.0	•	94.0	1
	50	•	88.9		•	· 	•	•			•	\$6.4	
												21.	

Ø

- 92.5 - 91.9	95.0 91.6 94.2 		
93.2	95.4 •		
4. 1/8").			
No.3 (BS standad, 1/8") No.4	No.5 No.6 Source: IDC		12 - 27

:					(Unit: tons/hr)
Size of products (millimeter)	1990	1991	1992	1993	1994
10	-	38.5	47.0	64.3	72.9
12	54.0	55.4	51.0	77.0	75.9
13	58.0	55.5	58.8	73.6	81.9
14	61.4	71.3	76.4	74.5	80.6
16	65.0	76.5	77.3	81.0	90.1
18	57.5	54.3	69.8	77.3	82.5
20	62.0	80.0	74.0	79.2	90.0
22	62.3	71.8	74.0	76.7	74.8
24	66.4	63.9	66.1	67.4	-
25	66.0	66.4	74.4	83.7	89.7
26	64.2	64.6	83.6	77.7	80.2
28	52.3	65.2	72.3	76.2	81,3
30	-	-		77.0	•
32	63.9	42.2	73.5	77.9	86.2
36	-	49.3	66.4	72.4	71.7
40	62.2	53.5	58.7	82.3	86.0
50	-	-	•	56.3	59.0
No.3		33.0	33.3	51.6	59.5
No.4	50.4	55.8	54.2	64.8	70.5
No.5	60.0	62.2	71.2	65.1	74.0
No.6	62.9	63.0	94.2	82.1	72.1
No.7	70.0	62.3	81.2	· · · ·	-
No.8	60,4	71.1	· · · · · ·	88.5	· · · · · · · · ·
No.10	· • ·	-	•	84.0	

 Table 12-8
 Productivity for Recent Five Years - Rolling Mill Plant (RMP)

Î

譿

Source: IDC