5. 4 Agricultural Economy

5.4.1 Methodology of Survey

The study aimed to identify the prevailing conditions in the Study area pertaining to the marketing of agricultural products (including potentials for development of market-oriented hill agriculture) and inputs, the rural credit network and linkages, and farm household economy.

The methodology adopted by the study consisted of a comprehensive study of 202 rural household samples based on the different sizes of land holdings, i.e. marginal (less than 0.2ha), small (0.2-0.5ha), medium (0.5-1.0ha) and large (over 1ha) households, field investigations and case studies at 15 survey spots of different settlements in the Study area, literature review and collection of the latest reliable data. As the data collection for rural credit was sometimes severely constrained by the lack of background information and published data on the present situations of the area, the case studies on rural credit delivery were conducted. The data collected from field investigations were substantiated by interviews with concerned officials from various line agencies as well as managers from the private sector.

The data and information obtained through interviews and data collection are summarized in Appendix 5.4.1-1.

5.4.2 Marketing System for Agricultural Products and Inputs

(1) Marketing System for Agricultural Products

In the Study area, a number of market centers can be seen in Devighat, Battar, Bidur, Dhunge and Trishuli. These play an important role as a consumer source for cereals, pulses, vegetables, fruits and livestock products, and in turn serve as a source of cash income for farmers.

Agricultural marketing, especially for agricultural products such as paddy, maize, millet and wheat is entirely controlled by 21 private traders (1 in Gerkhutar, 4 in Battar, 2 in Gangate, 3 in Inarpati, 8 in Devighat, and 3 in Phirkep Devighat) at 6 collection centers (see Appendix 5.4.2-1). Cereal crops purchased at the centres are famous fine paddy Pokhareli, maize, millet and wheat. In 1996/97, 2,990 MT of paddy, 188 MT of rice, 777 MT of maize, 913 MT of millet and 353 MT of wheat totaling 5,221 MT were purchased mostly from neighbouring VDCs such as Jiling, Belkot and Madanpur for shipment to Kathmandu and other districts. It has been reported that about 11.6% of the total volume was purchased from the Study area (see Appendix 5.4.2-1). While paddy, maize and wheat were shipped to millers/ feed industries for poultry (Quality Feed Industry and Star Feed Industry) in Kathmandu, millet was marketed to Pokhara and Bhairawa for brewing.

Almost all of the cabbage, carrot, radish and other vegetables cultivated in the Study area are consumed by the farmers themselves, with a small portion of surplus

vegetables being shipped to markets in Battar and Trishuli. Demand for vegetables in the area cannot be met through local production, and consequently the bulk of vegetable supply is brought into the area from nearby VDCs and Kathmandu. As the price of paddy generally drops during the harvest season, some distributors buy up rice at harvest time and store it until prices rise again at which time it is shipped to major markets like Kathmandu for maximum profit. Due to the shortage of storage facilities for fresh vegetables, price fluctuations are significant not only at farmgate markets, but also at wholesale and retail markets both in the Study area and in Kathmandu. Farm gate, wholesale and retail prices for cereals, pulses and vegetables are shown in Table 5.4.2-1.

Table 5.4.2-1 Farmgate, Wholesale and Retail Prices for Cereals, Cash Crops and Vegetables (1996/97)

Commodities	Unit	Farmgate	Wholesale	Retail (Study Area) (Kai	Retail hmandu)
n 11 /n: /n-11 12	D. A.	13.00	14.00	21.50	24.00
Paddy/Rice (Pokhareli)	Rs/kg		100 400		
Paddy/Rice (Mansuli)	Rs/kg	10.25	11.00	16.00	16.00
Paddy/Rice (Mota)	Rs/kg	9.25	9.75	13.50	13.00
Maize	Rs/kg	8.50	9.00	9.00	
Millet	Rs/kg	6.75	7.75	8.50	
Wheat	Rs/kg	7.00	8.00	8.00	•
Lintle	Rs/kg	35.00	-	40.00	37.00
Brackgram (Whole)	Rs/kg	30.00	, f. e	35.00	35.00
Brackgram (Dal)	Rs/kg	39.00		43.00	37.00
Soyabean	Rs/kg	16.00	-	21.00	32.50
Mustard Seed	Rs/kg	17.00	-	20.00	25.00
Sesame	Rs/kg	35.00	• -	42.00	43.00
Cauliflower	Rs/kg	14.00	-	15.00	12.00
Cabbage	Rs/kg	5.00	:	8.00	7.50
Tomato	Rs/kg	13.50	-	14.50	15.50
Potato	Rs/kg	8.00	•	9.00	8.00
Eggplant	Rs/kg		•	15.00	10.00
Green Beans	Rs/kg			16.50	
Green Peans	Rs/kg	11.00	f.	17.50	12.00
Onion	Rs/kg	8.00	· 1	14.00	10.50
Garlie	Rs/kg	16.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25.00	40.00
Ginger	Rs/kg	15.00		20.00	19.00
Radish	Rs/kg	3.00	•	4.00	6.00
Green Chilli	Rs/kg	22.00	•	30.00	23.00

Source: Interview survey.

(2) Marketing System for Agricultural Inputs

1) Fertilizers

in so far as farming practices are concerned, availability of credit by itself does not extensively promote agricultural production; however, the most important support services are adequate and smooth input supply and extension services. Fertilizer distribution is generally characterized by: (a) a near monopoly position by the Agriculture Inputs Corporation (AIC) in procurement and distribution of fertilizer; (b) heavy dependence on imports, facilitated by foreign assistance (grant or otherwise); (c) shortage of financial resources for the AIC to supplement external assistance for additional importation of fertilizer and for buffer stocking, resulting in uncertainty, inadequacy and untimeliness associated with such supplies; (d) lack of institutional credit support for distributors/retailers in the private sector despite the fact that privatization of fertilizer trade is promoted by the Government; and (e) a low level of credit support for fertilizer sales to farmers.

Currently, wholesale fertilizer supply in the Study area is carried out by the AIC main office in Bidur through a distribution network whereby fertilizer is imported at Calcutta Port and then dispatched to the office either via receiving centres located in Birgunj/Biratnagar or directly from the port. Retailing to farmers is mainly handled by 11 fertilizer retailers and partially by the cooperative societies (see Appendix 5.4.2-3) supplying 21.5% (1,121 MT in 1995/96) of the total fertilizer (5,210 MT) distributed at the field level in Nuwakot district. The 11 retailers supply fertilizers such as urea, DAP and MOP. Breakdown for the total sales volume in 1995/96 was 915.4 MT (81.7% of the total) of urea, 203.3 MT (18.1%) of DAP, and 2.5 MT (0.2%) of MOP. A major constraint appears to be unavailability of fertilizers on a timely basis.

Wholesale and retail prices in 1996/97 for chemical fertilizer are shown in Table 5.4.2-2.

Table 5.4.2-2 Wholesale and Retail Prices of Fertilizers (1996/97)

	· · ·	the second of th
Unit	Wholesale	Retail
Rs/kg	6.72	6.95
Rs/kg	8.00	8.30
Rs/kg	8.50	8.70
Rs/kg	16.88	17.10
Rs/kg	10.00	10.30
Rs/kg	6.90	7.20
	Rs/kg Rs/kg Rs/kg Rs/kg Rs/kg	Rs/kg 6.72 Rs/kg 8.00 Rs/kg 8.50 Rs/kg 16.88 Rs/kg 10.00

Source: Interview survey and AIC main office in Bidur.

With the removal of a major part of subsidies on all types of fertilizer (the Government is still providing a transport subsidy for fertilizer distribution), all

fertilizer prices have gone up. This has helped substantially to bring down the burden on the Government for providing subsidies. As of February 1997, the retailers and the cooperative societies obtain the same sales commission as shown in Table 5.4.2-3.

 Table 5.4.2-3
 Sales Commission of Fertilizer

	Type of Fertilizer	Private R	Private Retailers & Cooperative Societies						
	Urea		Rs.196.00/mt						
	MOP		Rs.297.40/mt						
1	DAP		Rs.437.40/mt						
	Others		Rs.310.00/mt						

Source: AIC main office in Bidur.

2) Agro-chemicals

Pesticides and fungicides are primarily marketed to the farmer through 9 private dealers located in the Study area (see Appendix 5.4.2-3) and supplemented by the AIC main office. Most of these agro-chemicals are supplied by private agro-chemical and seed wholesalers in Kathmandu. Wholesale and retail prices for 1996/97 are in Table 5.4.2-4.

Table 5.4.2-4 Wholesale and Retail Prices of Agro-chemicals (1996/97)

Type of Agro-chemicals	Unit	Wholesale	Retail
BHC (Pesticide)	Rs/kg	9.10	10.00
Metacid (Pesticide)	Rs/100ml	65.00	75.00
Novan (Pesticide)	Rs/100ml	63.00	70.00
Forate (Pesticide)	Rs/kg	98.00	115.00
Thiodan (Pesticide)	Rs/100ml	50.00	60.00
Hinosan (Fungicide)	Rs/100ml	135.00	150.00
Diethane M45 (Fungicide)	Rs/kg	304.00	330.00
Blitox 50W (Fungicide)	Rs/kg	304.00	330.00

Source: Private dealers and AIC main office in Bidur.

3) Improved Seeds

Improved seeds such as cereal and cash crops, and vegetables are supplied to farmers mainly by the AIC main office in Bidur and 9 private agro-chemical dealers, and supplemented by fertilizer retailers in small quantities. However, a number of farmers engage in farmer-to farmer seed exchange, using old and degenerated seeds from their own previous production. Wholesale and retail prices for 1996/97 are shown below in Table 5.4.2-5.

Table 5.4.2-5 Wholesale and Retail Prices of Improved Seeds (1996/97)

Type of Sceds	Unit	Wholesale	Retail
Paddy (Pokhareli)	Rs/kg	18.00	20.00
Paddy (Mansuli)	Rs/kg	16.00	17.50
Paddy (Mota)	Rs/kg	13.50	15.00
Maize (Foundation)	Rs/kg	16.00	17.60
Maize (Certified 1)	Rs/kg	18.50	20.40
Maize (Certified 2)	Rs/kg	15.50	17.10
Wheat (Certified)	Rs/kg	14.75	16.20
Cauliflower (Certified)	Rs/kg	550.00	632.50
Radish (Certified)	Rs/kg	140.00	161.00
Okura (Certified)	Rs/kg	75.00	86.30
French Bean (Certified)	Rs/kg	165.55	190.40
Onion (Certified)	Rs/kg	225.00	258.80
Tomato (Certified)	Rs/kg	870.00	1,000.00
Cucumber (Local)	Rs/kg	3,480.00	4,000.00
Cowpea (Certified)	Rs/kg	87.00	100.00
Eggplant (Certified)	Rs/kg	435.00	500.00
Chilli (Certified)	Rs/kg	5,800.00	6,670.00

Source: AIC main office in Bidur and private dealers.

It is obvious that while provision of assured irrigation, fertilizers and improved seeds are essential for achieving higher yields, and assurance of reasonable prices to farmers is also important to motivate them to go in for better farming technologies.

(3) Post-harvest Facilities

In general, farmers are using traditional containers of various types and sizes, such as bamboo bins, earthen bins and sacks for storing food grains. Recently some farmers have been found using metal bins. These containers are not very moisture proof, and storage losses on account of insects and rodents stand at about 10%. Regarding processing of agricultural products, there are 26 small scale milling facilities in the Study area, which engage in milling of paddy, maize and wheat, as well as the extraction of oil from nigerseed and sesame. These processed items are for self-consumption by the farmers themselves (see Appendix 5.4.2-4). Some mills purchase paddy from the farmers for either wholesale to market center retail outlets, or direct sale to consumers.

(4) Present Marketing Conditions

The prevailing marketing conditions for agricultural products in the Study area are described below.

1) Geographic Location

Geographic location for marketing of agricultural products has been favourable given the fact that the largest consumption centre in Kathmandu is only 3-4 hours away (roughly 70km) by road.

2) Road Network

Extension of the road network from Kathmandu has essentially established Nuwakot district as a satellite sub-region of the Kathmandu Valley. The existence of the all weather road extending from the Study area to Kathmandu has facilitated trade and marketing of agricultural products, as well as transport of agricultural inputs even during rainy months. However, road surface conditions are not always good due to the fact that trucks overloaded with agricultural products and inputs, and consumer goods have caused road surface damage such as pot-holes, and at many locations pavement materials have been exposed. At present, the road between Kathmandu and Ranipauwa is undergoing improvements with funding by ADB, and the road between Ranipauwa and Trishuli is scheduled for 2 years of improvement works with funding by the World Bank from July 1997. Also, there exists a plan to widen the road between Trishuli and Galchi to allow for truck traffic. Should this project be implemented, the distance to Kathmandu will be shortened by 20 km thereby facilitating the flow of goods.

3) Food Supply Base for the Kathmandu Valley

Nuwakot district, due to its advantageous location and access, has become a food supply base for the Kathmandu Valley, which comprises a major consumption center for cereals, vegetables, fruits and livestock products produced in the district.

4) Trade of Agricultural Products

There are collection centers in the Study area at Gerkhutar, Battar, Gangate, Inarpati, Devighat, and Phirkep Devighat which purchase large amounts of paddy (particularly Pokhareli), maize, millet, wheat, etc. from farmers of nearby VDCs. With the exception of millet, shipping destination for these products is Kathmandu. The bulk of cereals shipped from the Study area is surplus produce from large farms, which crop high yield varieties in lowland areas where irrigation is possible even in the dry season. The collection centers serve as relay stations between villages and urban consumption centers, facilitating the collection and shipment of produce. Individual farmers are the basic operator units for sales to the traders, and transport of products to the centers is always on foot. Group collection is performed only at the Phirkep Devighat center.

As long as farmers are compelled to sell the products to the traders to meet the cash needs of their households, they are always price-takers and not price-setters.

5) Demand for Agricultural Products

Demand conditions exercise a significant influence on specialization and trade in agriculture, as farmers are not easily motivated to produce for the market without favourable demand. In the Study area, main market centres located in Devighat, Battar and Trishuli are responsive to the local demand of rural population. Local demand for agricultural products such as vegetables (cauliflower, tomato, cabbage,

onion and green chillies), pulses (lintle and blackgram) and oilseeds (mustard seed) is, at present, met through imports mostly from neighboring VDCs and Kathmandu.

Through the prevailing rural-urban trade and marketing linkages, the largest consuming area, Kathmandu, represents the most important potential for increased demand for agricultural products with increasing pace of urbanization and population pressure. Famous Trishuli fine paddy (Pokhareli and Mansuli) constitutes higher demand among urban consumers in Kathmandu due to its superior taste. If the Study area as a food production base is made more responsive to growing and diversified urban demand for such products, the impact on rural employment and income will be quite substantial.

6) Specialization and Commercialization of Agriculture

Nuwakot district, with its geographically competitive position as food production base for the Kathmandu valley, has already established itself as a specialized vegetable producing area responsive to consumer demand in Kathmandu. This is evidenced by the share accounted for by produce from Nuwakot out of the total transaction volume in vegetables at the Kalimati wholesale market. (see Table 5.4.2-6, and Appendix 5.4.2-5 for details)

Table 5.4.2-6 Transaction Volume of Vegetables in Kalimati Wholesale Market (1995/96)

(Commodities	Share of Nuwakot District (%)
	Cauliflower	10.7
(Cabbage	10.8
: : (Green Chilli	11.7
Ĭ	French Bean	14.5
I	Potato (white)	15.8
I	Potato (red)	18.9
1	Radish (white)	53.6
	Radish (red)	46.5

Source: "Agricultural Marketing Information Bulletin, 1996",
Marketing Development Division, Department of Agriculture.

Following specialization and commercialization of vegetables based on comparative advantages, farmers are likely to be better off through trading as compared to the prevailing subsistence production. Nevertheless, given the fact that there is strong competition with significant price fluctuations in the vegetable market, if the time advantages cannot fully be captured, vegetable trading will lose off-season advantages as supplies from other districts start arriving at the market.

7) Marketing Information

The information network for marketing activities operates poorly. Farmers have no adequate access to information on market prices of agricultural products across other markets. This despite the fact that marketing information on fruits and vegetables at the Kalimati Wholesale Market in Kathmandu from the Marketing Development Division of the Department of Agriculture is announced every morning on the radio.

8) Standardization and Grading

Standardization and grading of agricultural products are important for ensuring more reasonable and attractive prices to farmers, as well as a proper margin to traders and millers. However, there is no such practice at the farm level by traders and millers.

Based on the above, it is concluded that no serious marketing problems are found in the Study area which would constrain a shift from the prevailing subsistence agriculture, a situation promoted by relatively small land holdings, to specialized/commercialized agriculture and development of a market-oriented multiple cropping system best suited to the local environment through effective use of scarce land resources, improved agricultural technology and appropriate fertilizer inputs. This is essential for generating gainful employment and income opportunities for farmers, especially for the disadvantaged poor such as marginal and small farmers. This will, in turn, lead to further promotion of directly related agri-businesses and a diverse range of related agro-based industries.

5.4.3 Rural Credit

Rural credit institutions play a pivotal role in upgrading the economic standard of the rural population. A vast majority of the population lack productive resources to adopt improved farm technologies and generate income and employment opportunities. The 8th National Plan (1991/92~1996/97) has accordingly emphasized the need for a strong rural credits system which will help break the stranglehold of low income, saving and investment, and subsistence agriculture. The objectives of the rural credit program are to provide the necessary financial resources to (a) generate income and employment opportunities for small and marginal farmers and landless households under the poverty alleviation programs such as the Small Farmer Development Programme (SFDP), Intensive Banking Programme (IBP) and Production Credit for Rural Women (PCRW), (b) promote agri-businesses and agro-industries and maximize the use of indigenous energy resources, and (c) bring sustainability in the credit programs based on banking principles.

Rural credit facilities in the Study area can be broadly divided into three categories, i.e. institutional, non-institutional and semi-institutional credits as described below.

(1) Institutional Credit

The Agricultural Development Bank of Nepal (ADB/N) in Trishuli, Nepal Bank Ltd. (NBL) in Bidur, and Nepal Bangladesh Bank Ltd. (NBBL) in Battar are the major vehicles to provide institutional credit to farmers in the Study area, though NBBL was newly established in November 1996. While SFDP is implemented by ADB/N in 11 other areas besides the Study area (see Appendix 5.4.3-1), IBP is carried out by NBL in the Study area.

1) Loan Purposes and Interest Rates

ADB/N has classified its loan operation according to 14 purpose categories, including financing related to cereal, cash and special crops, farm equipment, irrigation, bio-gas, agricultural inputs marketing, agro and cottage industry, agri-business, horticulture, rural housing, livestock, etc., and in terms of loan period, i.e. short term for a period of 18 months, medium term for over 5 years and up to 7 years, and long term for a period of 10 years. The current annual interest rate charged (e.g. 15% for cereal, cash and special crops) ranges from 14% to 17% for individual loanees; however, cooperative societies can enjoy 2% less than the current rate (see Appendix 5.4.3-2).

Loans under IBP undertaken by NBL are broadly classified into three sub-sectors, i.e. agriculture, services and cottage industries. While the loan maturity period for agriculture and services is 2 years, that for cottage industries is 3 years. Presently, NBL charges an annual interest rate of 12% on loans up to Rs.15,000 and 14.5% on loans above that level (see Appendix 5.4.3-3).

2) Eligibility Requirements for Loans

Eligibility requirements for loans are will-defined. ADB/N generally makes loans against collateral security up to the limit of 70-80% of the value of the collateral such as land and building. On the other hand, NBL provides loans up to 50% of the appraised value with an additional guarantee made by the Credit Guarantee Corporation. Loanees are generally required to make equity contribution of 20% of the project cost. Penal interests of 4% and 6% per annum are charged on overdues and loans misused, respectively, by ADB/N, while a penal interest of 1-2% is charged by NBL.

3) Interest Rate on Deposits

The annual interest rate on deposits stands at 8% for savings, and 11% and 11.5% for fixed deposits of up to one year and two years, respectively (see Appendix 5.4.3-4).

4) Loan Procedure

Both ADB/N and NBL have a well-documented, comprehensive procedures for loan processing, appraisal, approval, disbursement, post loan supervision and loan recovery; the details of which are shown in Appendix 5.4.3-5 and Appendix 5.4.3-6,

respectively. In the case of both banks, penal measures for loan default can include ultimate public auction of collateral such as land or building.

5) Loan Performance

While ADB/N disbursed loans totaling Rs.36, 422,000 to rural population in Nuwakot district in 1995/96, loans totaling Rs.28,984,000 were granted by NBL. Purpose-wise, agricultural inputs marketing accounted for 20.8%, agri-business for 19.3%, agro and cottage industries for 15.0%, cash and special crops for 13.4%, cereal crops for 13.0% and others for 18.5% of the total loans disbursed by ADB/N (see Appendix 5.4.3-7). IBP showed a very low share accounting for 9.9% of the total loans (see Appendix 5.4.3-8). This disbursement tendency is also prevalent in the Study area because of the largest share of the total disbursement by Bidur municipality.

The loan recovery performance of ADB/N improved from 35.4% in 1993/94 to 39.7% in 1995/96, with the exception of loans designated for cereal, cash and special crops, irrigation, bio-gas and horticulture for which the recovery rate deteriorated. Irrigation loans showed the highest overdue rate at 81.2% followed by horticulture (75.8%), cereal crops (73.2%) and cash and special crops (72.4%) in 1995/96 (see Appendix 5.4.3-7).

A major constraint appears to be that institutional credit is generally based on a collateral requirement; hence, the majority of the rural poor, who need credit, but face lack of collateral, do not qualify for institutional credit.

6) Small Farmer Development Programme (SFDP)

Two SFDPs were launched by ADB/N in 1974/75 as a pilot project at Tupche of Nuwakot district, located on the opposite bank of Gerkhutar in the Study area, and at Mahendranagar of Dhanusha district in the Terai with a view to experimenting the bankability and economic viability of the small and marginal farmers and other rural poor. Encouraged by the initial success, SFDP gradually expanded to cover all 75 districts. At present, 11 SFDPs are under operation in Nuwakot district (see Appendix 5.4.3-1 and Appendix 5.4.3-9).

The strategy of SPDP is to organize the small farmers, tenants and laudless households into groups to strengthen their credit receivability, and foster self-reliant development on a group basis with group financing. They are assisted by the SFDP project office established at the VDC level in the planning and implementation of various socio-economic activities. Credit is provided by ADB/N to undertake income generating activities on either an individual or group guarantee basis. Under the program, the target group is provided with credit supports in crop production, livestock raising, irrigation, cottage industries, etc. The group lending approach of the program has appeared to be an appropriate mechanism to cater to the needs of the most disadvantaged segment of the rural population.

In general, small agricultural development projects are implemented according to the following procedure.

- (a) A base survey of the project area is carried out by the Agricultural Development Bank of Nepal (ADB/N) with regard to topography, meteorology, land use patterns, natural resources, land ownership system, infrastructure, social structure, demography (distribution of ethnic groups), etc.
- (b) On the basis of the above base survey, the branch of ADB/N with jurisdiction over the project area then selects the Panchayats (village level administrative units) which necessitate the implementation of the said project.
- (c) Prior to actual project implementation, the group organizer responsible for the Project area carries out a household survey of the target Panchayats, in order to collect detailed data on assets, income, expenditure, employment, level of agricultural technology, literacy rate, health and sanitation, nutrition, etc. On the basis of this information, the group organizer identifies the small farmers to be targeted under the project.
- (d) The targeted small farmers are then organized into groups to facilitate their participation in the project. One group consists of 5~25 farmers.
- (e) Each group elects a group leader.
- (f) Each group holds meetings to discuss problems of individual members as well as issues affecting the group as a whole. After identifying the funding needs of the group members, a "group project" is formulated to increase income and improve the daily living environment.
- (g) The group then becomes eligible, upon the concurrence of the group organizer and the Small Farmer Development Project Office (administratively under the jurisdiction of the ADB/N branch office with authority over the project area) for receipt of funding without collateral, with liability for such loan to be borne by the group as a whole.
- (h) Each group continues to hold regular meetings (at least once a month) to confirm project progress and formulate measures to resolve any outstanding problems.
- (i) The group organizer monitors the activities of the groups for which he/she is responsible, and coordinates between groups and with the relevant agencies involved in the project. The group organizer also gives advice and counsel to the concerned groups with regard to project formulation and implementation, and makes arrangements for groups group members to receive the necessary inputs, extension services, vocational training, etc. under the project.

Target activities for credit include, among others, cereals and cash crop cultivation, special crops production, livestock raising, agro and cottage industries, etc. Group financing based on group guarantee is eligible for a 2% discount in interest rate (see Appendix 5.4.3-2). However, despite this preferential discount, loans by the group to

the individual farmer member include a 2% surcharge for group operation and overhead expenses, thereby negating any benefit in terms of lower interest rate.

Loan performance in Nuwakot district in 1993/94 was around Rs 12 million, of which toans directed at livestock raising accounted for 30.3% of the total, followed by agricultural inputs marketing at 12.6%, cereals production at 10.6%, special crops production at 10.4%, and cash crop production at 9.2% (see Appendix 5.4.3-10). Loan recovery rate deteriorated from 42.4% in 1989/90 to 33.4% in 1993/94.

As discussed above, SFDP is a funding structure predicated on the needs of the small farmer, and is seen to have the following group financing advantages:

- a) Group format allows the individual small farmer access to credit which would otherwise be impossible;
- b) Simplified credit procedure; and
- c) Reduced transaction cost for credit.

7) Intensive Banking Programme (IBP)

The establishment of NBL in 1937 marked the beginning of the institutional banking system in Nepal. Since its activities were confined to deposit mobilization and commercial lending only to commerce and trade, the agricultural sector remained unaffected by its lending operations despite the predominance of the sector in the economy. In these circumstances, the Nepal Rastra Bank (central bank of Nepal) initiated the IBP in 1981 as a strategy to boost priority sector lending.

The objectives of the IBP are: (a) to provide credit and supporting services to the population of specified geographical areas in order to help increase production, employment and income; (b) to motivate and assist them in making full use of their productive assets such as land, labour and skills; (c) to help make services and facilities available for social development through line agencies; and (d) to help develop institutions and institutional contacts which eliminate traditional dependence on non-institutional credit.

(2) Non-institutional Credit

Despite a sizable increase in the volume of rural credit supplied by institutional sources in conformity with national policy requirements, there are indications in the Study area that the actual access of rural households, especially the poor, to institutional credit is limited due to collateral requirements, and as a result the major part of their credit needs is still met by non-institutional sources such as local money lenders, landlords, traders, relatives and friends. Such credit generally involves higher interest rates ranging between 36% and 60%. Most of the lenders perform lending operations as an occasional practice when they have temporary surplus funds.

1) Landlord

The role of the landlord as a money lender is interlinked with land cultivation. His lending activity is not directed towards earning interest. His interest lies rather in the regular assurance of labour supply from landless and marginal farmers deprived of sufficient means of livelihood.

2) Trader

Traders sometimes advance cash credit to farmers on a pre-agreement basis to obtain repayment in kind. Loans are usually provided under verbal contract during the sowing period and recovered during the harvesting period.

3) Large or Medium Farmer

Large or medium farmers provide cash or in-kind loans to the landless or marginal farmers on a personal trust basis to ensure adequate labour supply during the sowing and harvesting periods. No interest is charged on such loans, but the repayment is made in terms of labour at a cheaper price.

4) Relatives and Friends

The role of relatives and friends has its own special importance in the non-institutional credit market. The mutual relationship and solidarity existing between parties leads to the continuation of this type of lending at a significant level. The loan tends to be smaller in size and shorter in duration, and usually without interest. The loan is provided on the basis of personal trust and mutual understanding.

(3) Semi-institutional Credit

The emergence of cooperative-type savings and credit groups can be seen at Pokhariphant and Gerkhutar, respectively. The former is a well-organized group which has been engaged in economic activities such as provision of credit to member farmers through its own bank (referred to as a community bank) located at Devighat, supply of consumers goods to members and non-members through its own shop located also at Devighat, and marketing of agricultural produce as well as livestock products. The annual interest rate is a uniform 18% regardless of the purposes of the loan, which is slightly higher than the institutional rate (see Appendix 5.4.3-11). The loan is only short term for a period from 6 months up to 18 months.

Source of loan capital comprises compulsory savings (interest at 9% p.a.) by group members, and membership dues. Monthly savings amounts are determined by the members themselves. Loan repayment is in principal on an installment basis, with penal interest rates levied on overdue loans (19% for the first month, and 20% for each month thereafter). Granting of loans is made according to both group and individual loance criteria, taking into account factors of group savings performance, community service record of the individual applicant, the individual applicant's savings performance, etc. Loan application procedure is as follows:

- a) The applicant submits an application form to his/her group of affiliation.
- b) The general assembly (held between the 25th and 30th of each month) of the group discusses the application, and either approves or rejects it.
- c) The approved application is submitted, along with minutes of meeting for the subject general assembly, by the group's treasurer to the community bank.
- d) The bank management committee (which meets on the 11th or 12th of each month) discusses the application, and moves to approve or reject it.
- e) The applicant is notified of the committee's decision.
- f) A loan contract is entered into by the bank and the applicant (in cases where the loan amount is Rs 10,000 or less, 2 group members are required as guarantors; 3 guarantors are required for loans in excess of Rs 10,000)

The group at Gerkhutar is engaged primarily in such activities as community development (road construction and canal maintenance), health sanitation education (potable water supply, skill training, educational programs to increase child literacy rates, etc.), agricultural livestock development (diffusion of high yielding varieties, introduction of improved breeds of livestock, etc.), environmental management (reforestation), income generating activities (vocational training), credit extension, etc. Interest rate on loans is a uniform 24% regardless of purpose. Loan repayment period is within one year, with some variation depending on loan purpose. A 12% penal interest rate is levied on overdue loans for a total rate of 36%. Source of loan capital is compulsory savings by group members.

The reasons behind the increasing popularity of this type of group financing are considered to be due to restrictions on loans by ADB/N or NBL, more specifically collateral requirements, and the cumbersome and time-consuming lending procedures.

This type of group lending system will continue mainly due to its simplicity in procedure compared to institutional credit, availability of money as per demand without any collateral, lack of restrictions as to the loan purpose, low interest and flexibility vis a vis repayment capacity of the loance. Under the system members are likely to feel assurance of self-reliance.

In order to portray the actual borrowing practices of farmers, case studies have been made at 15 different settlements. 5 interesting instances are highlighted below.

(a) Non-accessibility to Institutional and Non-institutional Credit

Mrs. A, a Tibetan refugee, has a 7-member family and has been living alone from her family in Chandipokhari for 25 years on land granted by the Government. Her husband, a priest, and children are living in Kathmandu. She possesses a granted house, 10 ropanis of granted land, 3 buffaloes and 2 goats. These are her total assets at present. The land is used for cultivation of paddy, maize, wheat and niger by employing two Kumal share-croppers. She found it extremely difficult to access institutional credit. As a matter of fact, she has so far had no experience in institutional borrowings, because the legal status of her land was not guaranteed by the Government, and accordingly she was not a legal holder of a land ownership

certificate. She could not borrow any money even from local money lenders because of her economic and legal uncertainty. Whenever some amount of money was needed for emergency purposes, borrowings were made from her relatives living in Mustang district. She complained that her share-croppers were better off and richer than she. The latter are owner cultivators-cum-share-croppers and possess their land ownership certificates.

(b) Short-cut of Institutional Credit Procedure

Mr. B has a 9-member family, living in Maharani Dihi. He owns 2.5 ropanis of land for paddy, maize and millet cultivation. His first application for a loan amounting to Rs.22,000 for poultry raising was made directly to A bank. Nevertheless, he realized that his frequent visits to the bank were time-consuming practices causing him higher transaction costs. The next measure he undertook was an indirect application for such a loan via a poultry broker in Battar. All the loan procedures and formalities were undertaken by the broker on his behalf. It took only 3 days to disburse the loan in kind, i.e. a specified number of chicken, and feed materials. Surprisingly, this loanee did not know the interest rate.

(c) Large Amount Borrowed from Informal Sector

Mr. C has a 6-member family, living in Inarpati. He owns a house, 6.5 ropanis of land for cultivation of paddy, maize, vegetables and papaya, 2 buffaloes and 1 milk cow. He was a merchant supplying foodstuff to the army base in Dhunche. All the agricultural activities were performed by his wife and children because of his frequent absence from home. He borrowed Rs.600,000 in cash at an interest rate of 60% per annum for his business purposes from a local money lender who is an owner of a construction firm. Non-institutional loans are generally provided on personal trust, but this case was exceptional. A written agreement was exchanged between the parties in order to reduce risk as much as possible. The loan disbursement took a week after his first contract with the lender. His wife did not know the reason why he had not taken advantage of institutional credit where business loans were available. She was not worried, however, about loan repayment.

(d) Bitter Experience in Institutional Credit Delivery

Mr. D has a 9-member family, living in Pipaltar. He owns a house, 12 ropanis of land for maize, millet and niger cultivation, 2 buffaloes and 2 milk cows. He borrowed Rs.5,000 in cash for educational purpose at an interest rate of 36% per annum from his farmer friend in Jiling VDC on personal trust. It took 10 days to disburse the loan. He explained the main reason why he had not borrowed from B bank where a social loan was made available at the lower rate of 17%. The reason indicated was closely related to his past unfortunate experience regarding his younger brother's borrowing from B bank. His younger brother borrowed Rs.15,000 for business purposes from the bank. The actual amount disbursed was only Rs.14,000 and the balance of Rs.1,000 was used as lubricant. After his death in 1991, all his debts amounting to Rs.22,000, including principal and interest, had to be compulsorily taken over by his elder brother.

(e) Refusal to Pay Lubricant

1

Mr. E has a 4-member family, living in Majhitar. He possesses a house, 10 aana of his own land as well as 3 ropanis of share-cropped land for cultivation of maize, upland paddy and sesame, 1 brewing machine and 2 milk cows. His first approach for a buffalo raising loan was made to A bank, but some lubricant was asked for by the bank officer.

His refusal to pay such lubricant resulted in disapproval of his application stating that there is a budget constraint at the bank. With his disappointment in the prevalence of lubricant practices, he had to make an alternative visit to B bank. He was told that the bank would inform him if the budget in the bank was adequately secured. Nevertheless, no reply has yet come to him; he had been eagerly waiting for the last 2 months.

As can be seen from the above, farmers in the Study area exhibit a deep distrust of institutional credit. This coupled with the fact that collateral is required in the case of said institutional credit, reliance on high interest, non-institutional credit sources remains strong.

The following are the main constraints to the institutional credit:

- (a) Compulsory collateral requirements;
- (b) Complex, cumbersome and time-consuming loan formalities;
- (c) No provision for emergent, consumption and social loans (except for NBL where such loans are made available by pledging gold or silver as collateral);
- (d) Prevalence of lubricant practices to expedite the loan procedure; and
- (e) Budget constraint and loan purpose-wise specific ceiling.

For the non-institutional credit, the following are the major advantages:

- (a) No collateral requirements;
- (b) Fast and easy procedure;
- (c) Availability of loans for emergent, consumption and social purposes;
- (d) Availability of loans at the desired time; and
- (e) No fear of the auction of the mortgaged land and building due to repayment failure.

These evidences can explain the major reasons for the continued dominance of the non-institutional lending practices despite higher interest rates charged by them.

According to the results of household survey, number of households which have received credit in the past comprise 52% of total households. Breakdown by type of credit is 48.5% for institutional and semi-institutional credit, and 51.5% for non-institutional credit. Sources of institutional and semi-institutional credit are ADB/N for 68% of households, NBL for 27.5% and credit and savings groups for 3.9%.

Neighbors are the largest sources of informal sector credit, accounting for 48.1% of households availing themselves of non-institutional credit, followed by landlords at 20.4%, relatives at 18.5% and others at 13.0%.

5.4.4 Household Economy

The Study area is characterized by a predominantly subsistence agricultural economy and small land holdings with widespread poverty. Agriculture is largely traditional with low productivity. Disparities in income and employment opportunities are wide and persistent due to land holding size. Apart from the disadvantaged segment of the rural population, food security is guaranteed through higher income groups who are practicing a multiple cropping system in lowlying areas along the Trishuli and Tadi rivers, based on comparative area advantages. Smaller land holding households indicate increasing difficulties in supporting food requirements of their livelihood.

(1) Cash Income Sources

The main cash income sources of the farmers of different land holding size are summarized below.

1) Surplus Food Grains

The large farmers sell their surplus food grains to the local collectors and earn cash income required for household necessity. Similarly, the medium farmers also sell a limited quantity of food grains during the harvesting period of crops such as maize and millet to solve the household cash crisis and buy some needed quantity during the summer season.

2) Livestock Raising

Livestock raising is an important source of household income. Farmers domesticate cattle, buffaloes, goats, and chicken. Large farmers earn more income from raising livestock than smaller farmers. Milk production is popular among the farmers in Khadga Bhanjyang VDC where a milk processing center is set up. The processed milk is distributed to households of Bidur municipality. Thus, there may be a considerable scope as well as need for promoting livestock and poultry raising as an important source of income and employment, especially for the small, marginal and landless households, given appropriate credit support of ADB/N and NBL, and line agency support of DLSO.

3) Horticulture

Fruit growing is an important source of household income; and a few large farmers of Khadga Bhanjyang VDC and Bidur municipality area are growing fruits such as mango, papaya, banana, litchi, etc. in a separate patch of land. However, commercial fruit production is still insignificant due to poor marketing network and processing facilities. Much of the production, therefore, has to go for either home consumption or sale at the local markets like Battar and Trishuli bazars. A

great majority of the households traditionally own a few fruit trees, which are at no additional and visible cost to them, and whose produce is entirely used for home consumption.

4) Business

Business has been run mostly by the Newar large, medium and even small farmers in Bidur, Battar, Dhunge and Devighat areas. Drapery, grocery, utensils, drug stores, tea stalls, hotels/lodges, stationery, food grain shops are run by the richer households with large capital whereas small tea stalls and groceries are run by the relatively poorer households for their livelihood. Pottery production is the traditional occupation of the Kumals to maintain their livelihood.

5) Service

The service sector is the important sector after agriculture, both in terms of income and employment. Since most of the Study area is located in the municipality of the district capital, there are opportunities of getting low paid jobs as clerical staff or peons. This is evident from the class-wise distribution of household income size, which indicates that the annual income derived from this sector is even higher than that derived from crop farming.

6) Labour

Since the majority of the marginal and small farmers suffer a food deficit, they have to work as labourers to eke out their livelihood. They work as agricultural labourers during the peak agricultural season at the average daily wage rate of Rs.40 (average wages of male and female employment). If a ploughman comes to work together with his oxen, he is paid Rs.100 per day. Some poor people break stone for which they are paid Rs.15 per meter. Thus, agricultural labour is particularly important for the landless, marginal and small households, who are able to earn a higher income from provision of their agricultural labour force than from crop production. As agriculture becomes commercialized, it also creates a number of employment opportunities in the local labour market as an immediate impact of the project.

(2) Irrigation Block-wise Crop Incomes

Irrigation block-wise crop incomes are summarized in Table 5.4.4-1.

Table 5.4.4-1 Crop Incomes by Irrigation Block

Irrigation	Gross	income (Rs.	(000,	Net i	Net income (Rs. 1,000)				
block	Each block	Per household	Per capita	Each block	Per household	Per capita			
Λ	616	17.6	2.26	280	8	1.03			
В	1,227	19.79	3.03	620	10	1.53			
c	1,715	5.77	0.93	906	3.05	0.49			
D	1,931	. 17.88	3.89	1,027	9.51	1.54			
\mathbf{E}	2,585	20.68	3.67	1,290	10.32	1.83			
F&G	1,541	8.66	1.36	912	5.12	0.81			
Н	178	5.02	0.89	407	2.63	0.46			
1	886	6.66	1.21	598	4.5	0.82			
; 3 ·	1,043	20.45	3.37	606	11.88	1.97			
K	1,450	20.14	3.52	842	11.69	2.04			
L.	3,438	15.01	2.48	1,631	7.12	1.18			
Total:	17,210	11.91	1.97	9,020	6.24	1.03			

Source: Household survey

Gross crop income per household for the Study area as a whole is Rs. 11,910. Adjusted to per capita income, this is Rs. 1,970. On a block-wise basis, E block exhibits the highest income at Rs. 20,680, while H block shows the lowest at Rs. 5,020. This represents roughly a 4 fold variation in income. Per capita income is again highest for E block at Rs. 3,670, which is 186% of the average for the Study area as a whole at Rs. 1,970. Per capita income is lowest in H block at Rs. 890.

(3) Farm Income

Farm incomes based on different land holding size, i.e. marginal (less than 0.2 ha), small (0.2~0.5 ha), medium (0.5~1.0 ha) and large (over 1 ha), are calculated in Table 5.4.4-2.

Table 5.4.4-2 Farm Incomes by Different Land Holding Size

Item	Unit	Marginal	Small	Medium	Large	Average
Average land size	ha	0.12	0.37	0.78	1.60	0,524
Average household size	no.	5.3	5.8	6.5	7.7	6.0
1. Farm income	Rs/year					
(1) Agriculture		10,177	14,714	24,143	38,167	17,757
- Crop		2,637	8,725	19,418	32,572	11,838
- Livestock and casual farm wage		7,540	5,989	4,725	5,595	5,919
(2) Non-agriculture		5,096	6,809	10,731	14,106	8,467
- Business and service		5,096	6,809	10,731	14,106	8,467
Total	1. 1	15,273	21,523	34,874	52,273	26,224
2. Farm Expenditure	Rs/year	100				
(1) Agriculture	1 1	1,452	4,429	10,263	17,263	6,291
- Crop		1,257	4,158	9,246	15,502	5,635
- Livestock		195	271	1,017	1,761	656
(2) Household		13,639	16,724	22,394	28,417	19,188
• Food		10,625	11,891	15,917	18,841	13,642
- Others		3,014	4,833	6,477	9,576	5,476
Total	-	15,091	21,153	32,657	45,680	25,409
3. Net farm income	Rs/year	13,821	17,094	24,611	35,010	19,933
Agricultural income	%	66.6	68.4	69.2	73.0	67.7
Non-agricultural income	%	33.4	31.6	30.8	27.0	32.3
Per capita net income	Rs/year	2,608	2,917	3,786	4,547	3,322
Possible saving amount	Rs/year	182	370	2,217	6,593	815
Engel's coefficient	%	77.9	71.1	71.1	66.3	71.4

Source: DDC survey and household survey

Results of analysis by scale of farmer landholdings for the Study area are as follows:

- 1) Average annual income for large farmers (Rs. 52,000) is 3.4 times that of marginal farmers, and consists 73% of agricultural income.
- 2) Main source of income for marginal farmers is farm labor, accounting for 42.8% of total income. Crop income only accounts for 17.3% of total income.
- 3) Engel's coefficient for marginal farmers at 77.9% is the highest for all groups, and indicates that the average land holding of 0.12 ha for this group cannot produce sufficient food to support the average number of household members of 5.3. This situation applies to the small farmer group as well.

As the agricultural sector continues to be a major source of employment and income, and is overwhelmingly dominant in terms of labor force absorption, introduction of market oriented multiple cropping to the Study area constitutes a major potential for generating substantial employment and income opportunities especially for subsistence farmers.

5.5 Irrigation and Drainage

5.5.1 System Assessment

(1) Battar Lift Irrigation Scheme in the Study Area

The Study area comprises about 630 ha (Zone A) between the Trishuli and Tadi River, and about 130 ha (Zone B) on the right bank of Trishuli River. Zone A (630 ha) encompasses a benefit area of 424 ha of Battar Lift Scheme.

The Lift Scheme was commenced in 1974/75 as a pilot project for lift irrigation for the country under the Rasuwa Nuwakot Rural Development Project by DOI, and was completed in 1978/79.

The Lift scheme was serving irrigation water to 424 ha of land belonging to Battar, Majhitar, Pipaltar, Maharani Dihi and Chandi Pokhari of Battar Municipality

Listing of irrigation water was done from the main pump station from the lest side of Trishuli River and was distributed to the command area through another 3 relay pump stations.

The project was formulated in 3 phases as mentioned below, with an initial benefit area of 582 ha. During phase III, due to rise in electricity tariff and lack of constant guaranteed voltage, DOI reduced the benefit area by 158 ha to a design benefit area of 424 ha (see table below).

Changes in Battar Lift Irrigation Benefit Area

Project Phase	Ward No.	Tar	Original Benefit Area	Final Benefit Area
Phase I	No. 6	Maharani Dihi	86 ha	86 ha
Phase II	No. 6	Chandi Pokhari	70 ha	60 ha
Phase II	No. 4	Battar	54 ha	54 ha
	No. 5	Majhitar	54 ha	54 ha
Phase III	No. 7	Pipaltar	270 ha	170 ha
		Padma Khadka	30 ha	
	•	Gauri Gaon	18 ha	-
	Total		582 ha	424 ha

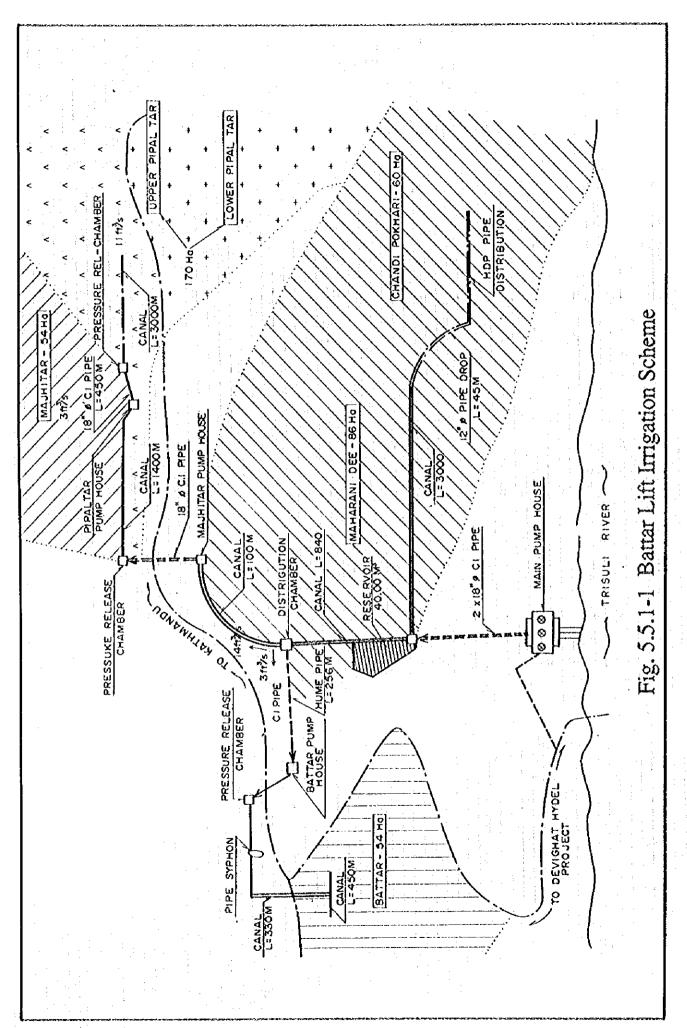
Source: Rapid Appraisal Report, Battar Irrigation Report 1988, by Water and Energy Commission Secretariat (WECS)

The Battar Lift Irrigation System is no longer functioning at present, and all 4 pump stations are out of order due to operational problems, silt entry, etc.

All the existing main canals have deteriorated, being filled up with soil and covered under newly built dwellings in some places. For this reason, existing irrigation facilities can not be reused in some places.

Moreover, the water in the river at the intake point of the main pump station is below the suction head during the dry season after construction of Devighat Power Station by Nepal Electricity Authority (NEA) for hydropower production in 1984, which uses the tailrace water of the Trishuli hydropower station.

Thus the sustainability of lift schemes and their functioning are a source of doubt among user beneficiaries.


No channels exist in the command area for surface drainage. There is on evidence of water logging in the area. The surplus discharge during the rainy season is drained out through a natural drainage that crosses Maharani Dec.

The number and pumping capacity of the Battar Lift Irrigation pumps are given below.

Physical Characteristics of Battar Lift Irrigation Pumps

Pumps:	N	o. of	Type	Motor	Rated	Pumping	Pipe su	ction	Pipe de	livery	Remarks
· umps		ımps		power (hp)	head (m)	capacity (m³/s)	Dia (cm)	Length (m)	Dia. (m)	Length (m)	
Main pump		2 ! !	centrifugal	350 250 100	76.2 76.2 70.7	0.25 (each) 0.17 0.07	35.5 (each) 30.5 (1 no.)	40 40	45.7 (2 nos.)	350	Electricity supply received at 400 volts from 2 × 500 KVA transformer
Majhitar		3	centrifugal	100	48.8 70.0 48.8	0.17 0.07 0.08	25.5 (3 nos.) 20.0	<u></u>	45,7 (1 no.)	215	Electricity supply received at 400 volts from 315 KVA transformer
Battas		2	centrifugal	50	29.9	0.06	20.0		25.5 (1 no.)	27	Electricity supply received a 400 volts from 100 KVA transformer
Pipaltar		2	centrifugal	40 40	24.7 24.7	0.07 0.11	30,5 30,5		45.7 (1 no.)	450	Electricity supply received at 400 volts from 100 KVA transformer

Source: Rapid Appraisal Report, Battar Irrigation Report, 1988, WECS

(2) Trishuli-Devighat Hydropower Upgrading Project

The main water source under this Feasibility Study is the Trishuli River itself. The river flow is monitored since 1967 by the Department of Hydrology and Meteorology (DHM) at Betrawati gauging station (No. 447) and is utilized by NEA for Trishuli Hydropower at Trishuli Bazaar.

The Trishuli Hydropower Project was completed in 1970. It was originally targeted to generate power of 21 MW utilizing 31.15 m³/sec of water from Trishuli River.

Similarly Devighat Hydropower Project was completed in 1984 using the tailrace water of the Trishuli Hydropower Project. The targeted electricity generation was 14.1 MW.

Since the economic life of the Trishuli Hydropower Project was finished, the Trishuli-Devighat Hydropower Upgrading Project under IDA was launched in May 1992 and was completed in December 1995.

Thus the generation of power from Trishuli Hydropower was targeted to 24 MW, 3 MW more than the original target to meet the demand of electricity in the country.

At present NEA requires 45.6 m³/s of water for the power generation of 24 MW under the Trishuli Hydropower Project.

Simultaneously with this Upgrading Program, the Ministry of Water Resources formulated a plan to divert 3 m³/sec of water for an irrigation project from the Trishuli-Devighat Hydropower Upgrading Project above aqueduct no. 2.

Thus the headrace canal was upgraded for a canal capacity of 48.6 m³/s design discharge in 1995. Provision of 3 m³/s of water was made for irrigation purposes. An opening was made at the upstream of aqueduct no. 2 on the left side of headrace canal in 1992.

During the stay of the Study Team from early December 1996 to early March 1997, findings are made as follows:

- 1) There was a consent between DOI and NEA about the availability of 3 m³/s of water during the wet season without affecting any power generation (refer to Volume II Appendices, Part A-8). It was understood that the decision was accomplished by the Honourable State Ministry of Water Resources dated 2048/12/9 (March, 1992). The Study Team could not find, however, any formal agreement between DOI and NEA in this regard. These facts were discussed in the Central Coordinating Group (CCG) meeting held on December 25, 1996 at DPTC Seminar Hall and it was recognized that further confirmation should be needed between DOI and NEA.
- 2) An opening sill level for irrigation use was made at aqueduct no.2 for discharge above 45.6 m³/s, to be released for irrigation purposes.

Considering the available discharge, water availability is critical from January to March for 3 months, and the irrigation system can hardly expect any water from this constructed sill level (refer to Figure 5.5.1-2). During the 3 month stay of the Study Team, water level was always at least 40 cm below the sill level. Only during the wet season after the melting of snow, from April to December, water may be available at more than 48.6 m³/s through this sill level (refer to Table 5.5.1-1).

5 m³/s of water is to be discharged to Trishuli bazaar for river maintenance. At present 5 m³/s of water is not diverted to the Trishuli Bazaar for the maintenance purposes, thus the Battar List Scheme can hardly expect any water from the Trishuli river during the dry season.

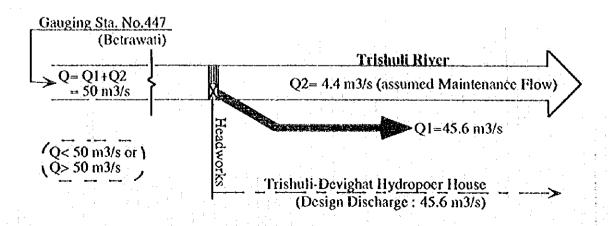


Table 5.5.1-1 Assumed Water Deficit Period for Irrigation in Dry Season

				: Mo	nth o f	Wate	r Defi	et Per	iod		Un	it : Fre	equen	tDays	/Mont	h
Month	N	οv	D	ec.	Ja	เท	F	eb	M	S ar	A	la.	M	ay	Jı	ın
Year	Q < 5 0	Q>50	Q<50	Q>50	Q<50	Q>50	Q<50	Q>50	Q<50	Q>50	Q<50	Q>50	Q<50	Q>50	Q <50	Q>50
1977	0	30	0	31:	23	8	23	5	21	10	28	2	0	31	0	30
1978	0	30	0	31	16	5	28	0	9	22	9	21	0	31	0	30
1979	0	30	2	29	13	18	28	0	31	0	15	15	0	31	0	30
1980	0	30	5	26	31	0	29	0	31	0	15	15	0	31	0	30
1981	0	30	7	24	31	0	28	0	31	0	15	15	0	31	0	30
1982	0	30	8	23	31	0	28	0	17	14	0	31	0	31	0	30
1983	0	30	1	30	31	0	28	0	31	0	28	1	8	23	0	30
1984	0	30	21	10	21	0	29	0	31	0	30	0	4	27	0	30
1985	0	30	0	31	31	0	28	0	31	0	25	5	15	15	0	30
1986	0	30	0	31	0	31	0	28	0	31	0	30	0	31 -	0	30
1987	0	30	0	31	1	30	0	28	0	31	0	30	0	31	0	30
1988	0	30	0	31	9	22	27	2	25	6	0	30	0	31	0	30
1989	0	30	22	9	1	30	27	1	24	7	0	30	0	31	0	30
1990	0	30	19	12	31	0	28	0	31	0	15	15	1	30	0	30
1991	0	30	29	2	31	0	28	0	31	0	28	2	1	30	0	30
1992	0	30	31	0	31	0	29	0	31	0	30	0	26	5	0	30
1993	0	30	30	1	31	0	28	0	31	0	27	3	0	31	0	30

Source : DHM, Hydrology Section

State of the state

(3) Formulation of an Appropriate Project Cost and Sustainability of the Project

The Study Team targeted that availing of Japanese Grant Aid would be an option of the Nepalese Government in implementing the Project. Thus Project cost must be structured in such a way as to take into account the conditions prevailing in Nepal and be suitable for consideration under the Japanese Grant Aid Program.

Given the fact that the degree of sediment inflow to the irrigation canal has a major impact on the sustainability of the envisioned irrigation system under the Project, the Study Team considered it imperative that selection of a suitable intake point instead of the originally agreed point at aqueduct no.2 would be carried out through the Study period.

In the meantime, the Study Team took into consideration the maximum use of inherent energy as determined by topographical conditions in the Study area. Mainly consideration was given to introduction of a gravity irrigation system which could be easily maintained and operated by users.

With regard to adopting an appropriate project cost and sustainability of the Project, the Study Team carefully studied cost aspects, sediment inflow and a gravity water distribution system.

During the Study, 2 intake points shown in Figure 5.5.1-3 were identified by the Study Team as follows:

[<u> </u>		Preliminary Assessme	nt
Alternative plan	Location of Intake Point	Investment Cost	Influence of Sediment inflow	Gravity irrigation Aspects
Original	Aqueduct No.2		O .	0
Alternative-1		0	0	0
(Option 3)	Balancing Reservoir			<u> </u>

Note: O: Suitable, D: to be studied further

From points of view of appropriate project cost and sustainability of the Project, Alternative-1 (Option 3) appears to be most suitable as the intake point for this Study.

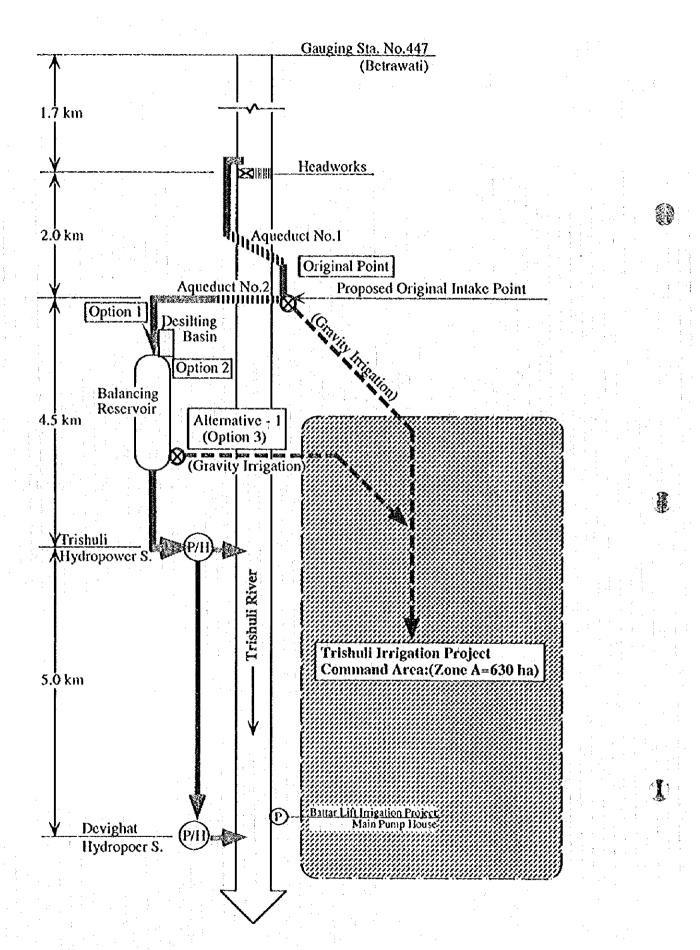


Fig. 5.5.1-3 Alternative Intake Points for Zone A of Prishuli Irrigation Project

(4) Balancing Reservoir

1) Introduction

- ① The balancing reservoir is located 1.635 km upstream of the penstock intake and downstream of the desilting basin
- The water conductor system of Trishuli Hydropower Project was designed for a maximum discharge for 31.15 m³/s up to the balancing reservoir and 45.31 m³/s beyond the balancing reservoir.
- This balancing reservoir was not improved under the Trishuli-Devighat Hydropower Upgrading Project.
- At present, this reservoir is filled with sediment. The live storage is almost completely lost and the reservoir does not accomplish the daily flow regulation needed to generate peaking capacity during the peak demand period of the day.
- This live storage could supply an additional discharge of 14.51 m³/s to the 31.15 m³/s brought in by the upstream water conductor for a total discharge of 45.6 m³/s.
- This would provide a peak output of 19.5 MW for about 4 hours daily.
- The water conductor downstream of the balancing reservoir, designed for a discharge of 45.31 m³/s can carry this discharge to the powerhouse with no need for upgrading.

2) Features of Balancing Reservoir

<Reservoir>

Full supply level: 663.0 Ft = 202.65 m (=573.6 m)

Surface area: $1.58 \times 10^3 \text{ km}^2$ Gross canacity: $765 \times 10^3 \text{ m}^3$

Gross capacity: $765 \times 10^3 \text{ m}^3$ Live storage: $255 \times 10^3 \text{ m}^3$

Live storage: $255 \times 10^3 \text{ m}^3$ Dead storage: $510 \times 10^3 \text{ m}^3$

<Embankment>

Length: 1,219.50 m

Height: 16.15 m

Top width: 4.57 m

3) Condition of Sedimentation in Balancing Reservoir

The balancing reservoir constructed under the Trishuli Hydropower Project in 1970 has suffered progressive sedimentation. As a result, NEA commenced dredging of the reservoir in 1976. With cessation of dredging in 1986, cross-section survey of the reservoir was initiated to quantitatively ascertain degree of sedimentation. Again in 1995, mechanical removal of sediment was carried out. Trial calculations by the Study Team estimate present sediment content in the reservoir at 510,000 m³. The history of reservoir sedimentation, and dredger features are described below:

<History of reservoir sedimentation>

Year	Sedimentation condition	Remarks
1970	Total reservoir capacity: V = 760,000 m ³ Live capacity: V1 = 250,000 m ³ Dead capacity: V2 = 510,000 m ³	Design discharge: Q = 31.15 m³/s (up to reservoir) Q = 45.31 m³/s (from reservoir)
1976-86	Dredger operation is only partial, with reportedly little dredging effect	Introduction of dredger with capacity of Q = 150 m ² /hr Sediment survey carried out over 1976~79
1986	Sedimentation amount confirved at V = 430,000 m ³	Cross-section survey carried out by NEA (16 sections)
1995	Partial removal of sediment (by backhoe and domp truck)	V = 146,000 m ³ of sediment removed (according to NEA interview)
Dec 1996 ~ Mar 1997	Sedimentation amount estimated at V = 510,000 m³ as of Mar 1997	Amount estimated by JICA Team (on the basis of field survey and 1986 cross-sectional survey maps)

<Dredger features>

- A cutter-dredger was installed at the reservoir in 1976. Presently, it is not in working order, awaiting the arrival of spare parts (gear box and seal) from the manufacturer in the Netherlands.
- When the equipment was in order from 1976 to 1988, it was only partially successful in restoring the live storage of the balancing reservoir.
- During this period, the Trishuli power plant was reported to generate a peaking capacity of up to 15 MW, but never 18 MW as originally designed. It is understood that dredging was only done for one shift a day during this period.
- Equipment specifications are as follows:

Outer dredger of Trishuli:

Made in 1976 by N.V. Madhinefaereik de Holladsche Ussle - Oudewater, Holland

Dredging depth:

 $8.0 \, \mathrm{m}$

Dredging capacity:

150 m3/hr

Length:

13.56 m

Breadth:

5.39 m 2.10 m

Depth: Discharge depth:

100.00 m (approx.)

Cabin weight:

1.2 t

Sediment Data (5)

Sediment Concentration in the main Trishuli River 1)

Sediment concentration in the main Trishuli River, based on the 1990 Trishuli-Devighat Upgrading Project Feasibility Study and data (1977~79) collected by the JICA Team is summarized below. (see Table 5.5.1-2)

According to the tabulation, values for November-June are roughly the same, while river discharge and sediment concentration differ from year to year during the rainy season (July-October).

2) Sediment Concentration for Discharge into the Balancing Reservoir (rainy season)

Collected data has been collated in Table 5.5.1-3. According to the table, average sediment concentration of discharge into the reservoir is 360 mg/l, which is equivalent to 38% of the sediment concentration for the main Trishuli river.

Sediment Load Inflow into the Reservoir

Observation data for May~September (1977~79) is collated in Table 5.5.1-4. According to this data, annual sediment inflow into the reservoir is 115,000 m³. Of this, 80% is fine sediment with particle size less than 0.075 mm.

Table 5.5.1-2 Sediment Data on Trishuli River (1977~1979)

1. Mean Monthly and Yearly Discharge - For Trishuli River At Betrawati (sta. No. 447)

(unit: m³/s)

Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
1977	48.1	46.5	49.8	54.9	77.8	192.0	591.0	609.0	368.0	164.0	94.0	61.7	197.2
1978	46.6	44.1	45.4	57.4	151.0	335.0	520.0	625.0	332.0	215.0	108.0	70.1	213.9
1979	51.3	43.5	43.9	52.4	91.9	185.0	468.0	504.0	280.0	137.0	83.0	55.6	167.5
AVG	48.7	44,7	46.4	: 54.9	107.0	237.0	526.0	579.0	327.0	172.0	95.0	62.5	192.9
(77~79)													}
					4 4								

67~93													
AVG													201.4
MAX :	55.1	57.5	56.0	74.6	151.0	366.0	815.0	802.0	525.0	288.0	110.0	70.1	233.7
MIN	33.2	- 29.t	27.2	34.5	43.1	122.0	325.0	432.0	260.0	106.0	62.5	41.8	148.3

2. Summary of Mean Monthly Sediment Transport (m'/day) at Betrawati

Year	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
1977	103	119	171	366	966	7,040	54,000	41,100	10,000	1,300	325	211	9,642
1978	144	: 119	149	` 360	7,080	20,300	18,100	20,500	7,370	26,200	512	288	8,427
1979	125	150	706	772	1,680	13,500	61,500	26,700	7,170	2,060	492	251	9,592
AVG	124	129	342	499	3,242	13,613	44,533	29,433	8,180	9,853	443	250	9,220
(77~79)											2 1		1 1

3. Summary of Sediment Concentration (mg/L) at Betrawati

1	Year	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
ı	1977	25	30	40	77	144	424	1,058	781	315	92	40	40	255
1	1978	36	31	38	73	543	701	403	380	257	1,410	55	48	331
١	1979	28	: 40	186	171	212	845	1,521	613	296	174	69	52	351
j												2		
1	AVG	30	34	88	107	299	657	994	591	289	559	. 54	46	312
1	(77~79)									4				

4. Recommended Monthly Sediment Concentration in F/S Report on Trishuli-Devighat Hydropower Upgrading Project (August 1990)

[JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
River Flow	44.0					226.6			368.0				
1	(m^3/s)												(m³/s)
Mean Monthly	35.0	51.0	80.0	96.0	351.0	778.0	1798.0	1231,0	757.0	272.0	79.0	65.0	466.1
Sediment	(mg/L)												(mg/L)
concentration										+			

 Table 5.5.1-3 Calculation for Sediment Concentration

1. In case of Q=31.15m7s <1977>

	0	Trisholi River		(Qu	s of Desilting	Tank	④To	Balancing Res	ervior	İ	
Month	River Flow	Sediment	Concentration	Flow:	Sediment	Concentration	Flow	Sediment	Concentration	④/①	@/ @
	(m/s)	(m/month)	(mg/L)	(m ¹ /s)	(m/month)	(mg/L)	(m/s)	(m/month)	(mg/L)	(%)	(%)
JUN	192	21.12×10	424	31.15	3.11×10	385	31,15	1.15×10	142	33	37
JUL.	591	167,40×10°	1,058	31.15	7.34×10	909	31.15	2.59×10°	320	.30	35
AUG	609	127,41 × 10°	781	31.15	6.22×10	770	31.15	2,12×10	262	. 34	34
SEP	368	31,00×10°	325	31.15	5.30 × 10	656	31.15	1.95×10	241	74	37
AVG	440	86.73×10'	647	31.15	5.49×10°	680	31.15	1,95×10°	243	42.8	36

<1978>

	0	Trisholi River		Qu'	s of Desilting	Tank	@ То	Balancing Res	ervior		
Month	River Flow	Sediment	Concentration	Flow	Sediment	Concentration	Flow	Sediment	Concentration	@/ (1)	@/ @
	(m³/s)	(m/month)	(mg/L)	(m/s)	(m/month)	(mg/L)	(m½)	(m')	(mg/L)	(%)	(%)
MAY	151	21.95×10°	543	31,15	2.38×10	294	31.15	0.92×10 ⁴	113	21	38
JUN	3,35	60.90 × 10°	701	31.15	7.16×10 ⁴	886	31.15	2.73×10 ^t	337	48	38
JUL	520	56.11×10	403	31.15	15.28×10	1,892	31.15	6.13×10	754	-	.,40
AUG	625	63.55×10°	380	31.15	8.38×10	1,035	31.15	3.15×10°	389		38
L	ll						1.00				i
AVG	408	50.63 × 10°	507	31.15	8.30×10	1027	31.15	3.10×10'	398	35	39

<1979>

ſ		0	Trishuli River		Qu'	s of Desilting	Tank	@то	Balancing Res	ervior		. ,
H	Month	River How	Sediment	Concentration	Flow	Sediment	Concentration	Flow	Sediment	Concentration	④/①	@/ @
ı	2.5	(m/s)	(m\/month)	(mg/L)	(m/s)	(m/month)	(mg/L)	(m/s)	(m¹)	(mg/L)	(%)	(%)
Г	JUL.	468	190.65 × 10°	1,520	31.15	11.09×10	1330	31.15	4.23×10 ⁴	522	34	62
ı	AUG	501	82,77×10	613	31.15	8.10×10'	971	31.15	1.96×10°	240	39	32
L		ll							<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>	
	AVG	486	136,71×10	1067	31.15	9.60×10°	1151	31.15	3.10×10 ⁴	381	37	47

2. In case of Q=41.06m3

-	0	Trishuli Riyer		(Qu	s of Desilting	Tank	Фто	Balancing Res	ervior		i
Month	River Flow	Sediment	Concentration	How	Sediment	Concentration	Flow	Sediment	Concentration	③/①	@/ @
;	(m/s)	(m/month)	(mg/L)	(m/s)	(m/month)	(mg/L)	(m/s)	(m/month)	(mg/L)	(%)	(%)
MAY	107			41.06	11.2×10	1,052	41.06	4.46 × 10 ⁴	419	•	40
: JUŃ	237	- 1	-	41.06	9.85×10	925	41.06	3.76×10°	353		.38
JUL	526	-		41.06	19.32×10	1,814	41.06	7.17×10°	673	•	37
AUG	579	88 · 🕶 - 1 · 1 · 1		41.06	13.34×10	1,191	41.06	4.35×10	408		34
SEP	327			41.06	8.24×10	774	41,06	3.24×10°	304		39
AVG	355		•	41.06	12.39×10	1,151	41.06	4.60×10°	431	-	38

Table 5.5.1-4 Sediment Data on Headrace Canal of Trishuli-Deright Hydropower $(1977 \sim 1979)$ Station

1. Sediment Data in 1977~1979

<1977>

	① 1	Trisbuli River				Monthly S	ofinient (×	(10 ⁴ m ³ /mo	nt h)		
Month	River Flow	Monthly Sediment	Qu/s o	f Desiltir	g Tank	3 Flush out t	brough Desil	ting Tank	 To Bal	ancing Res	ention
	(m/s)	Transport(X10'm/month)	Total	C+M	F	Total	C+M	F	Total	C+M	F
JUN	192	21.12	3.11	0.53	2.50	1.96	0.41	1.55	1.15	0.12	1,03
JUL	591	167.40	7.34	1.56	5,78	4.75	1.28	3.47	2.59	0.28	2.31
AUG	609	127.41	6.22	1,60	4.62	4.11	1.34	2.77	2.12	0.27	1,85
SEP	368	31.00	5.30	0.61	4.69	3.35	0.54	2.81	1.95	0.07	1.88
Fotal	Ī	346.93	21.97	4.3	17.67	14.17	3.57	10.60	7.81	0.74	7.07

<1978>

	0	Frishuli River			_ ; _ ; _	Monthly Se	ediment (X	10'm7mo	in(h)		
Month	River Flow	Monthly Sediment	@u/s o	f Desiltin	g Tank	This hout t	hrough Desilt	ing Tank	To Bal	alancing R	eservior
MAY	(m¹/s)	Transport(X10'm\/month)	Total	C+M	F	Total	C+M	F	Total	C+M	F
MAY	151	21.95	2.38	0.32	2.06	1.46	0.22	1.24	0.92	0.10	0.8.
JUN	335	60.90	7.16	1.54	5.26	4.43	1.06	3.37	2.73	0.48	2.2
JUL	520	56.11	15.28	3.69	11.59	9.15	2.20	6.95	6.13	1.49	4.6
AUG	625	63.55	8.38	2.83	5.50	5.23	1.93	3.30	3.15	0.95	2.2
Ttal		202.51	33.20	8.43	24.77	20.27	5.41	14.86	12.93	3.02	9.9

	①Trishuli River		Monthly Sediment (×10 m/month)								
Month	River Flow Monthly Sediment		@u/s of Desilting Tank			3 Flush out through Desilting Tank			@To Ballalancing Reservior		
1.1	(m/s)	Transport(X10'm/month)	Total	C+M	F	Total	C+M	F	Total	C+M	F
JUL	468		11.09	3.40	7.69	6.86	2.25	4.61	4.23	1.15	3.03
AUG	504	82.77	8.10	4.36	3,74	6.14	3.90	2.24	1.96	0.46	1.50
Total		273.42	19.19	7.76	11.43	13.00	6.15	6.85	6.19	1,61	4.58

2. An Average Year Sediments (1977~1979)

Month	OTrishuli River		Monthly Sediment (× 10 m/month)								
	River Flow	Monthly Sediment	Qu's of Desitting		g Tank	k @Flush out through Desiliting Tank			To Balalancing Reservior		
	(m7s)	Transport(X10°m\/month)	Total	C+M	F	Total	C+M	F	Total	C+M	F
MAY	[51	21.95	2.38	0.32	2.06	1.46	0.22	1.24	0.92	0.10	0.8.
JUN	264	41.01	5.14	1.04	4.10	3.20	0.74	2.46	1.94	0.30	1.6
JUL.	526	138.05	11.23	2.88	8.35	6.92	1.91	5,01	4.31	0.97	3.3
AUG	579	91.24	7.57	2.95	4,62	5.16	2.39	2,77	2.41	0.56	1.8
SEP	368	31.00	5 ,30	0.61	4.69	3.35	0.54	2,81	1.95	0,07	1.8
Total		323.25	31.62	7.80	23.82	20.09	5.80	14.29	11.53	2.00	9.5

Note(1)

River Flow: Mean Monthly Discharge (× 10 m/month)

Monthly Sediment Transport: Mean Monthly Sediment (ml/day) × 30 or 31

C+M = Coarse Sediment (d>0.2mm) + Medium Sediment (0.075<d<0.2mm)

F = Fine Sediment (d<0.075mm)

5.5.2 Water Resources

(1) Introduction

The main source of water for this irrigation project is the Trishuli river. It originates from the Himalayas and is perennial.

The Study area comprises 2 zones along the left and right bank of the Trishuli river, respectively.

During the Study period, field survey, data collection, field investigations and review of pervious studies were conducted. Collected data on hydrology and meteorology are as follows:

- 1) Climatological Records in and around the related stations (1976 to 1990, 14 years). General meteorological data (precipitation, air temperature, relative humidity) at Nuwakot station for 1985~90 is given in Table 5.5.2-1.
- 2) Monthly rainfall records in and around the related stations (1971 to 1990, 20 years) (refer to Table 5.5.2-2)
- 3) Mean monthly and yearly discharges for Trishuli river at Betrawati station (1967 to 1993, 27 years) (refer to Table 5.5.2-3)
- 4) Mean daily discharges for Trishuli river at Betrawati station (1977 to 1993, 17 years. From 1994 onwards, data are not yet available from DHM) (refer to Table 5.5.2-4)
- 5) Daily Generation Report at Trishuli powerhouse (Jan. to Apr. 1995, Dec. 1995, Jan. to Dec. 1996, Jan. 1997) (refer to Table 5.5.2-5 and Figure 5.5.2-1)

(2) River Systems

The Study area is located at the tail end of the Trishuli river basin. Catchment area and available water source of the related Study area are as given below;

Zone	Study Area (ha)	River Basin	Catchment Area (km²)	Available Water Source
Zone A (L/B of Trishuli R.)	630 ha	Trishuli R. Betrawati ~ Weir Point	4,640.0 4.1 Total: 4,644.1	Trishuli Hydropower Project: headrace water
Zone B (R/B of Trishuli R.)	130 ha	Bhorele Khola Sere Khola Judi Khola	Total : 4.5	
	nprises Gerkhuta hare Phant only	r, Simbutar, Bidor, Battar, Pipa	altar, Maharani Dihi and C	handi Pokhari

(3) Available Water Source for the Study area

1) Zone A

The main source of irrigation water for Zone A is from the Trishuli river diverted at the weir which was raised 1.52 m above the previous 1.32 m, giving a total crest

height of 2.8 m to accommodate the canal capacity of 48.6 m³/s of water under the Trishuli-Devighat Hydropower Upgrading Project.

The headrace canal has a capacity of 48.6 m³/s water just upstream of aqueduct no. 2. An opening made at aqueduct no.2 is the diverting point for irrigation use of 3.0 m³/s water.

At present, irrigation water is not used from the opening located at 2 km downstream of the headworks. Therefore, all diverted discharge from the weir goes to the Trishuli powerstation and is being utilized for hydropower production.

Diversion discharge records for this headrace canal were collected by the Study Team as follows (see Table 5.5.2-5~6 and Figure 5.5.2-1):

Trish	nuli H	lydrop	ower H	eadrace	e Cana	al Discl	harge R	tecords	3	ř	(Un	it: m³/s)
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug So	p Oct	Nov	Dec
1995	Min	10.6	22.6	16.1	30.7	•	-	-		•	-	20.7
1.	Max	42.5	44.1	48.7	48.7	. •		- :	- 75	-	•	56.6
1996	Min	37.4	31.0	28.3	34.0	28.3	24.4	29.6	25.5 28	.3 28.3	28.3	34.0
	Ave	44.6	36.1	38.2	43.5	45.1	46.5	45.1	44.1 43	.0 45.2	44.1	40.3
5 5 A	Max	53.7	39.6	48.1	50.9	50.9	50.9	48.1	48.1 48	.1 48.1	49.5	50.9
1997	Min	41.6	N.A.	N.A.	* :		1456	1 7/	9			- '
	Max	46.7	N.A.	N.A.			1 1				1.47	

Source: Daily Generation Report, NEA; Station: Trishuli Power House

2) | Zone B

Runoff of the 4.5 km² of catchment area seems to be not enough for year-round irrigation as compared with the extent of 130 ha command area.

During the survey 2 options for off take points were identified.

Option 1: D/S of Zone A main canal across the Trishuli River
(9 months irrigation by gravity system together with lift system in some isolated area)

Option 2: Devighat hydropower station tailrace water (Year round irrigation by overall lift system)

Above all, beneficiaries of this area expressed a desire for a year-round irrigation system through the 1st and 2nd FLAG meeting held by the Study Team, and declared their intention to maintain the lift irrigation system by themselves after hand over. Thus, Option 2 was to be adopted for the system design during the subsequent Study.

Table 5.5.2-1 Precipitation, Air Temperature and Relative Humidity (Average of 6 years; 1985 ~ 1990)

			Day Copean	. 400	 			Wat Concor			-	Day Source	2000		
				1				1					1		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	
Precipitation	(mm)	7	27	গ্ন	64	112	287	583	499	260	101	9	ı	1990	June to Sept
Ratio	(%)	0.1	1.1	1.3	3.2	5.6	14.4	29.3	25.1	13.1	5.1	0.3	7.	100.0	81.9%
Air Temperiture	(*C) Max.	14.2	15.6	1.81	25.3	31.7	31.4	30.1	30.4	24.8	23.8	21.2	18.3	23.7	
-1	Min.	7.9	8.9	11.7	17.7	19.3	21.4	21.5	21.4	20.8	17.7	13.3	6.6	16.0	
	Daily	11.0	12.3	14.9	21.5	25.5	26.4	25.8	25.9	22.8	20.7	17.2	14.1	19.8	
Relative Humidity	(%) mor.	70	. 67	62	7.1	7.5	84	68	06	-68	85	81	79	78	
	cve.	62	55	5]	62	65	11	87	98	82	82	78	08	72	
	mean	8	9	57	8	2	8	88	88	87	84	5	8	75	

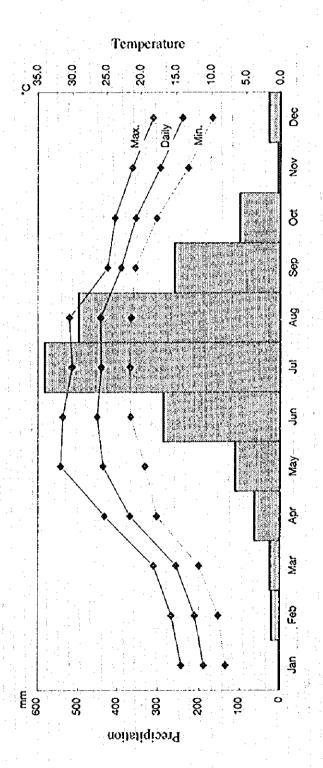


Table 5.5.2-2 Precipitation Summary (1971 ~ 1990 : 20 Years)

1003 : Trishuli -1004(IMD): Nuwakot

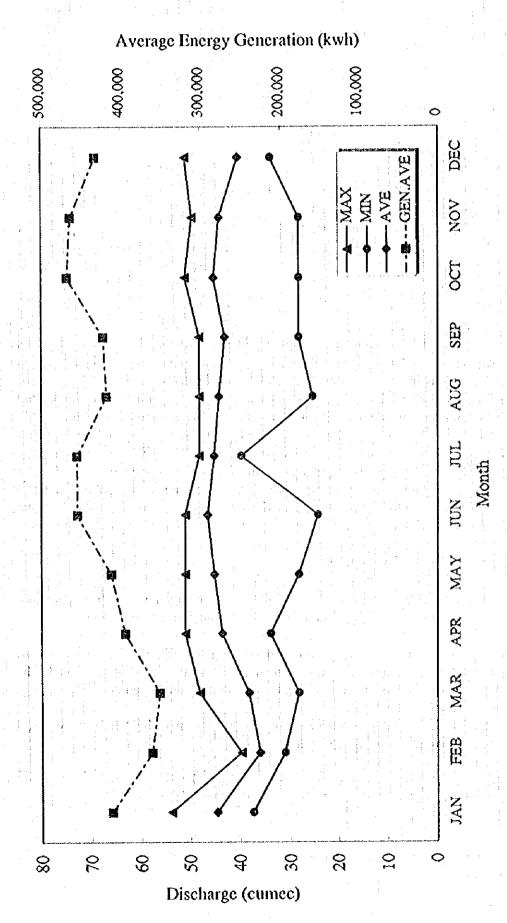
Station No

: 447

River

: Trishuli

Station Name : Betrawati


Table 5.5.2-3 Mean Monthly and Yearly Discharges for Trishuli River at Betrawati

Tables									iver at				·
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
1967	47.4	38.0	35.6	41,2	63,7	137.0	429.0	518.0	326,0	199.0	66.9	48.2	156.9
1968	37.9	32.1	31.0	38.7	64.9	220,0	486.0	479.0	281.0	170.0	75.8	51.0	164.8
1969	40.5	35.5	33.2	38.1	62.3	133.0	398.0	451.0	335.0	126.0	67.7	47.4	148.3
1970	36.7	31.9	29.9	40.5	65.3	162,0	468.0	512.0	290.0	152.0	83.6	57.9	162.1
1971	45.0	38.6	36.8	46.5	65.1	348.0	448.0	549.0	320.0	154.0	81.5	54.8	183.3
1972	42.9	37.3	38.9	42.9	101.0	163.0	431.0	473.0	283.0	106.0	62.5	43.0	152.8
1973	37.3	36.8	40.2	60.4	96.6	366.0	510.0	663,0	525,0	288.0	100.0	65,7	233.7
1974	50.8	39.7	36.2	53.8	82.2	200.0	546.0	640.0	390.0	106.0	86.4	60,6	199.6
1975	51.2	46.2	44,2	60,2	91.6	264.0	548.0	561,0	516.0	222,0	110.0	69 .8	216.5
1976	49.3	41.9	40,3	46.6	85.2	207.0	367.0	487.0	372.0	165,8	99.0	65.5	169.4
1977	48.1	. 46.5	49.8	54.9	71.8	192.0	591.0	609.0	368.0	164.0	94.0	61.7	197.2
1978	46.6	44.1	45.4	57.4	151.0	335.0	520.0	625.0	332.0	215.0	108.0	70.1	213.9
1979	51.3	43,5	43.9	52.4	91.9	185.0	468.0	504.0	280.0	137.0	83.0	55.6	167.5
1980	43.5	40.2	40.8	59.4	80.6	276.0	663.0	678.0	390.0	162.0	91.0	58.9	216.4
1981	42.5	36.4	37.2	50.0	85.0	290.0	714.0	619.0	369.0	140.0	87.1	56.0	212.2
1982	43.8	39.8	56.0	74.6	81.4	212.0	407.0	596.0	393.0	120.0	77.5	54,1	180.6
1983	40.1	34.8	36.3	38.5	69.9	161.0	377.0	506,0	438.0	200.0	94.9	60.4	172.4
1984	46.6	33,4	34.2	34.5	107.0	298.0	619.0	517.0	417.0	117.0	69.5	48.9	196.0
1985	35.6	33.8	41.9	46.3	54,6	156.0	486.0	432.0	369.0	200.0	91.7	69.1	169.1
1986	55.1	54.5	53.9	64.6	77.1	319.0	694.0	595.0	454.0	169.0	96.4	67.9	226.0
1937	54.2	50.1	48.8	56.7	69.9	177.0	396.0	, -	, . .	116.0	78.7	61.8	
1988	52.2	48.5	49.3	59.7	86.3	178.0	488.0	566.0	260.0	109.0	71.8	58.8	170.0
1939	53.8	47.5	48.4	57.2	105.0	188.0	356.0	441.0	282.0	120.0	65.1		
1990	-	37.1	36.1	47.9	91.2	315.0	815.0	650.0	452,0	167.0	77.1	49.1	<u> </u>
1991	38.5	32.5	: 32.5	38.0	86.4	210.0	448.0	802.0]	45.1	-
1992	35.4	29.1	28.6	34.6	43.1	122.0	325.0	709.0	410.0	140.0	66.5	41.8	166.0
1993	33.2	30.5	27.2	38.2	84.5	192.0	446.0	728.0	422.0	166.0	67.7	42.1	191.0
AVG	48.3	42.5	43.2	53.2	88.3	237.2	533.4	615.6	400.6	171.6	90.3	61.3	201.4
MAX	55.1	57.5	56.0	74.6	151.0	366.0	815.0	802.0	525.0	288.0	110.0	70.1	233.7
MIN	33.2	29.1	27.2	34.5	43.1	122.0	325.0	432.0	260.0	106.0	62.5	41.8	148.3

Table 5.	5.2-4	Mont	hly an	d Yea	arly D	ischa	rges	. :					
			•		•		0		River:		Trishu		
								* ;	Station i	Name:	Betrav		No. 447
<u>MEAN MO</u>										~~~~			Cumec)
Year	<u>Jan</u> 48	l'eb 47	Mar 50	Apr 55	May 78	Jun 192	Jul 591	Aug 609	Sep 360	Oct 164	Nov 94	Dec 62	Yearly 196
1977 1978	46	44	45	57	151	335	520	625	332	215	108	70	212
1979	51	44	44	52	92	185	468	504	280	137	83	56	166
1980	44	40	41	59	81	276	663	678	390	162	91	59	215
1981	43	36	37	50	85	290	714	619	369	140	87	56	211
1982	43	40	56	75	81	212	407	596	393	120	78	54	180
1983	40	35	36	39	70	161	377	506	438	200	95	60	171
1984	47	33	34	35	107	298	619	517	417	117	70	49	195
1985	36	34	42	46	55	156	486	432	369	200	92	69	168
1986	55	55	54	65	77	319	694	595	454	169	96	68	225
1988	52	49	49	60	86	178	488	566	260	109	72	59	169
1989	54	48	48	57	105	188	356	441	282	120	65 77	49	151
1990	42	37	36	48	91 · 43	315 122	815 325	628 709	452 410	167 140	67	49 42	230 165
1992 1993	35 33	29 31	29 27	35 38	43 85	192	323 446	728	422	166	68	42	190
1993													
Average	45	40	42	51	86	228	531	584	375	155	83	56	190
MAXIMŪ	N	NITELL	V AND	:: . WIZ 4.1	DLVN	iecii	ADCE						
Year	Jan i	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yearly
1977	52	51	58	78	155	432	772	820	505	262	125	74	820
1978	52	49	55	87	248	620	652	918	424	540	141	85	918
1979	59	52	46	83	123	404	1,040	790	468	194	97	75	1,040
1980	49	45	43	105	110	667		1,080	575	265	110	; · 70	1,080
1981	50	39	40	73	127	678	862	784	760	218	116	66	862
1982	47	46	75	81	129	364	662	838	667	167	94	61	838
1983	48	37	39	52	108	400	520	662	601	355	123	81	662
1984	57	35	37	45	221	382	808	820	748	188	81	61	820
1985	41 60	41 58	46 58	73 83	86 93	423 832	922	596 856	656 970	525 247	116 123	75 81	667 970
1986 1988	55	53	54	62	190	324	655	758	508	148	86	69	758
1989	82	53	55	63	324	512	512	592	440	214	79	54	592
1990	46	42	46	67	152	552	1,330	840	737	266	99	59	1,330
1992	38	34	32	43	61	285	600	1,360	630	229	86	50	1,360
1993	37	33	30	73	116	320	832	1,850	645	276	91	51	1,850
Extreme	82	58	75	105	324	832	1,330	1,850	970	540	141	85	1,850
MINIMU	M MON	STH V	VAND	VEAR	N V IN	ech i	DCRS						
Year	Jan	Feb	Mar	Apr	May	Jun	Jul		Sep	Oct	Nov	Dec	Yearly
1977	44	44	46	49	55		440	436	245	117	78	52	44
1978	43	41	43	43	. 85	170	376	364	225	141	83	59	41
1979	44	42	42	43	73	93	195	307	159	99	· 70	49	42
1980	41	38	36	42	62	99	405		261	110	72	49	36
1981	38	34	34	35	60	97	500		188	118	68	47	34
1982	40	37	45	68	69	133	167		167	92	62	47	37
1983	35	33	35	35	43	86	244		275	110	76	49	33
1984	34	32	32	31	34	196			199	83	61	41	31
1985	32 52	31 - 51	37 51	38 52	43 64	73 81	373 432	343 436	221 247	118 125	77 80	60 59	31 51
1986 1988	48	46	47	55	61	95			158	87	63	54	46
1989	50	45	44	51	58	· 102		332	220	80	54	46	44
1990	38	35	34	34	50	158	472		273	102	60	42	34
1992	32	27	27	27		54			210	86	49	37	27
1993	31	28	25	26	59	110		468	288	92	46	35	25

	Table 55.25 (U.Z.) Dally regulate Callal Discussing and Scarci secon in 2000	0.40	77 /77	ally near	וו שנע	i i i		S. ame												}				
		1		'	,	FEB	'	(MAR				APR	1		, encoupeed	MAX			Headmine	Ganal (comec)	(Jumin	Н
Date	Headrace Canal (cumec) Max Mini Ave	Canal Mini (e	:umec) Ave	Cwb)	Headrace Canal Max Mini		(cumec) Ave	1.E.C (kwh)	неаогасе Мах	Mini Ave	Ave.	(kwh)	Max	Mini Ave	Ave	(kwh)	Max	Mini Ave		(kwh)		N.		(kwh)
	L	51.0	1	428,430	37.4	36.8	37.0		35.4	35.4	35.4	353,110	39.6	34.0	36.9	328,920	51.0	45.3	45.1	421,460	49.0	31.1		375,150
71	<u>.</u>	1.8		420,200	36.8	36.8	36.8	380,790	36.8	35.4	36.1	349,670	39.6	36.8	37.4	360,620	45.3	34.0	4. 8.	419,300	48.1	45.3		472,540
<u> </u>		51.0		429,180	. 36.8	31.1	36.6	354,390	36.8	34.0	35.3	344,140	36.8	36.8	36.8	362,490	48.1	45.3		421,900	51.0	24.4		449.290
4		51.0	51.0	435,390	36.8	36.8	36.8	368,780	34.0	34.0	340	340,800	38.2	36.8	36.9	358,910	48.1	34.0		295,210	51.0	45.3		464,390
Ý		49.6	50.7	428,890	36.8	36.8	36.8	374,660	36.8	% 0	36.1	343,730	39.6	39.6	39.6	361,520	36.8	28.3		290,580	51.0	45.3		464,150
*		49.6	9.65	424,600	36.8	36.8	36.8	372,930	36.8	31.1	32	333,070	39.6	39.6	39.6	356,250	42.5	31.1	38.7	354.610	1.8	45.3		446,120
		49.6	49.6	416,500	36.8	36.8	36.8	370,240	34.0	31.1	33.4	321,120	39.6	39.6	39.6	362,860	42.5	39.6	41.9	371,770	49.6	45.3	47.2	468,930
٥		8.1	49.0	414,620	36.8	36.8	36.8	370,280	34.0	34.0	34.0	328,440	42.5	34.0	6. 0.	352,820	45.3	42.5	43.2	386,700	48.1	42.5	46.7	479.030
0		48.3	.3	414.550	36.8	36.8	36.8	364,750	34.0	34.0	30	326,000	39.6	39.6	39.6	356,190	45.3	45.3	45.3	397,910	48.1	45.3	8.94	467,820
0		48.1	8	400,600	36.8	36.8	36.8	374,570	39.6	36.8	35.4	336,950	42.5	39.6	40.2	374,170	48.1	45.3	45.9	409,100	48.1	45.3	47.5	472,960
=	84	39.6	45.6	384,910	36.8	36.8	36.8	385,950	41::1	36.8	39.0	365,940	45.3	42.5	4.3	397,960	51.0	28.3	44.2	356,970	49.6	48. 1.	48.4	454,620
12		48.1	48.1	410,740	36.8	36.8	36.8	375,840	48.1	41.1	41.8	376,160	45.3	45.3	45.3	407.840	51.0	42.5	45.9	422,770	50.4	45.3	46.8	480,550
	84	48.1	48.1	408,590	36.8	36.8	36.8	352,260	45.3	39.6	41.9	378,800	45.3	45.3	45.3	398,880	45.3	45.3	45.3	420,910	48.1	45.3	47.5	461.490
77		48.1	8 4	407,510	36.8	35.4	36.3	364,160	42.5	39.6	40.9	382,910	45.3	45.3	45.3	408,020	45.3	45.3	65.3	417,090	48.1	42.5	47.4	445,470
<u></u>		39.6	6.14	419.290		35.4	35.4	364,650	42.5	28.3	41.6	311,800	45.3	45.3	45.3	403,110	45.3	45.3	45.3	424,240	48.1	45.3	47.5	457,380
91	48.1	42.5	47.6		35.4	35.4	35.4	354,760	42.5	39.6	5.04	361,740	45.3	42.5	4,	401.760	45.3	39.6	45.1	413,130	48.1	42.5	47.5	474,900
17	48.1	41.8	8	417,190	36.8	35.4	35.8	346,790	42.5	36.8	39.3	374,710	45.3	45.3	45.3	410,760	45.3	45.3	45.3	418,160	48.1	48 .	£8.1	466,390
81	41.8	8.14	8.14	437,900	35.4	35.4	35.4	343,650	42.5	42.5	42.5	383.580	45.3	45.3	45.3	394,180	45.3	45.3	45.3	432,660	48.1	45.3	47.8	485,140
19		41.8	8.14	416,720	35.4	35.4	35.4	336,060	42.5	225	2.5	389,090	45.3	42.5	<u>4</u> .	395,390	\$\$ 1.	45.3	45.6	425,670	48.1	42.5	46.7	469,130
2		41.8	8.1.8	414,990	39.6	35.4	36.9	371,900	42.5	42.5	42.5	386,990	84	42.5	45.9	403,390	48.1	8. 1.	48,1	454,260	49.8	42.5	45.8	462,600
21		41.1	4	419,320	36.8	%	35.8	347,940	42.5	39.6	41.5	383,730	1.84	34.0	47.5	410,970	48.1	1.84	48.1	457,070	84	45,3	46.3	438,410
ਸ 		41.14	7	414,400	35.4	34.8	35.2	343,800	39.6	39.6	39.6	377,420		45.3	47.7	428,230	48.1	\$3°	.	468,040	48.1	39.6	46.3	431,710
z		39.1	40.0	401.370	35.4	34.0	34.7	345,460	4	39.6	39.9	386,590	84	45.3	46.2	410,040	51.0	48.1	49.4	486.290	48.1	39.6	47.4	440,570
24	39.1	39.1	39.1	400,470	8	34.0	, 2	350,120	42.5	39.6	40.3	367.850	45.3	45.3	45.3	420,860	51.0	51.0	51.0	491,500	48.1	39.6	45.3	417,110
23	39.1	39.1	39.1	400,240	34.8	34.0	34.1	349,270	39.6	39.6	39.6	364,710	51.0	45.3	48.3	425,880	51.0	28.3	46.5	398,450	48.1	42.5	45.8	441.500
8	39.1	39.1	39.1	389,290	34.0	34,0	34.0	367,190	42.5	36.8	39.5	356,620	51.0	42.5	47.2	431,990	48. 1.	28.3	38.5	317,680	8 4.	45.3	99	439,050
27	7 39.1	39.1	39.1	392,900	36.8	34.0	36.1	364,100	39.6	36.8	38.5	360,720	84	45.3	45.7	440,150	51.0	42.5	46.4	457,310	48.1	3 6	.	458,830
78	39.1	39.1	39.1	395,020	36.8	36.8	36.8	365,340	39.6	36.8	37.3	362,550	45.3	45.3	45.3	429,240	51.0	45.3	\$ \$	477,300	48,1	39,6	45.1	463,930
8	39.1	37.4	38.4	387,480	36.8	35.4	36.3	357,180	36.8	28.3	33.8	181,140	21.0	45.3	4.	427,140	51.0	39.6	47.5	389.780	46.7	39.6	1 4	438,600
8	27.4	. :	37.4	388,050		,	٠	:	39.6	31.1	35.6	337,210	51.0	45.3	\$	438,490	46.7	45.3	8.5	411.900	46.7	42.5	3.	463,920
31			37.4	388,350		; ;		1	39.6	36.8	37.2	329.780					49.0	42.5	46.2	476,880	:	: .		
		٠ ا						ŀ				- 1				- 1								
L	53.8	37.4	44.6	411,521	39.6	31.1	36.1	361,350	48.1		28.3 38.2	351,518	51.0	34.0	43.5	395,301	\$1.0	28.3	45.1	412,471	51.0	24.4	46.5	455.058
																								*

۲.	·	0	0	0	~	0	~	0	0	ô	Q.	ō.	ō	Ö	Ó	Q	Q	δ	Ω	0	8	0	0	0	0	2	9	8	9	8	2		⁻ [छ्री
	T.E.G (kwh)	375,150	472,540	449.290	464,390	\$1.5	446.120	468,930	479,030	467.820	472.960	454,620	480,550	461.490	445,470	457,380	474,900	466,390	485,140	469.180	462,600	438,410	431,710	440,570	417,110	41 500	439,050	458,830	463.930	438,600	463,920			455.058
	Canal (cusec) Mini Ave	1,413	1.67	1.661	708	1.673	889.	1.667	1.650	1,654	629	 38	,654	679.1	1,675	3.29	629	200	1.688	.650	1.617	1,635	1.635	 84.	8	1,617	1,626	32	1.582	1,567	1,554			1.66
N.	_		8	8	8	8	8	8	8	900.	8	 8	1.600	8	200	8	8	1.78	89.	. 1.500	88.	8	8	- 8	<u></u>	<u>8</u> 8	8	1.700	84.	1,400	58			88
	Headrace Max	1,730	28	300	800	800	 8	1,750	1,700	.78	200	1,750	1,780	.700	200	.78	200	8	3,78	 8	1.76	28	28	8	1.78	700	 8	1,78	28	1,650	1.650			88.
	T.E.G 1	421,460	419,300	421,900	295,210	290.580	\$54,610	077,178	386.700	997,910	409.100	356,970	422,770	420.910	417,090	424,240	413,130	418,160	432,660	425,670	454,260	457,070	968.040	486,290	491,500	398,450	317,680	457,310	477.300	389.780	411,900	476.880	.F. 	412,471
	(cusec) T Ave (i	1,594 42	583 41			173 28	367 33	479 37	525	8 8	.621 46	561	.621 4.	88.	4 .000	.600	592 4	88	88	900.	8,	-	2007.	-	88	642	361	,638 4	710 4	.677 3	.617 4	.633 4	:	594 4
200		.1 009	.200	_			.i 801:	1 00	.500		.600	80.	.500	.:	.009	900,	400	98.	86.	88	85	700	. 007	_	.800	8	8	500	8	8		8		<u>∞</u>
	Headrace C.	1.800		2007.	-	38	500 1.	500	.600	.600	700	.1.	.500	98	.688	.600	600	,600	.600	700	.700 1.	700	200	 88.	.1	800	.700	2008	1.800	88	1.650	730 1	:	1.800
				. 			_		-		_			_							,			_		-							-	
	T.E.G (kwh)	1 328,920	360,620	362,490		361,520	356,250	362,860	3 352,820	356,190	1 374,170	3 397,960	0 407.840	398,880	2 408,020	0 403,110	8 401,760	0 410,760	394,180	8 395 390	1 403,390	9 410,970	3 428 230	0 410,040	0 420.860	4 425,880	7 431,990	3 440,150	0 429.240	3 427,140	0 438,490			7 395.301
	l (cusec) Ave	1.304	1,321	1.300	7.	1.400	94.	.400	> 1,413	005.	1.421	1,563	009:1	89.	009:1	009.1	578	009:	009,1	3 1.558	1,62	679.1	0 1,683	0.1.630	0097	0 704	799.1	5 1.613	009:1	0 1,663	0 1.700			0 1,537
	S Caral	1,200	8	1,300	8	.400	8	400	1.200	204.	8	1.500	.68	8	.60	009:1	.500	89.	009.	1,500	1.500	1,200	909:	1,600	1.600	009:1	005,1	009.1	1,600	1.600	009:1			1200
	Headrace	.400	94.	98.	1,350	\$	\$	84.	28	\$	1.58	8	1.68	89.	8,	8	89:	88.	89.	009,1	87:	87.	1.78	1.70	1,600	280	008*1	1.700	99.	1.88	8.			1.800
	T.E.G	353,110	349,670	34.48	340,800	343,730	333.070	321.120	328,440	326,000	336,950	365,940	376,160	378,800	382,910	311,800	361,740	374,710	383,580	389,090	386,990	383,730	377,420	386,590	367,850	364,710	356,620	360,720	362,550	181,140	337,210	329,780		351,518
8	Ave.	1.250	1,275	248	200	1,275	1.208	1.179	1,200	1 200.	1,250	1.379	. 477	1.478	344.	1.468	1 429	388	500	8	1,500	1.467	99.	1.408	1.423	8	1,396	1,358	1,317	1,193	1,257	1313		1.348
on in 1	MAR Canal Kini	1.250	1,250	38	1,280	200	8	1.18	1,200	200	300	38	1.450	8	8	8	8	38	.500	288	885	9	8	\$	400	400	8	38	38	8	1,100	300		
eneration in 1996	MAR eadrace Canal (cusec) Max Mini Ave	1250	38	1,300	700	300	300	28	1,200	1 200	8	1.450	92	009.1	8	200	200	8	200	8	200	88	8	55.	500	8	88	8	8	8	84.	9		1,700 1000
and G	TEG H		380,790	354 390	368,780	374,660	372.930	370,240	370,280	364,750	374,570	385,950	375,840	352,260	364,160	364,650	354,760	346,790	343,650	336,060	371,900	347,940	343,800	345,460	350,120	349,270	367,190	364,100	365,340	357.180				361.350
barge	_	ı		291 35	300 36	1.300 37	1300 37			300 36		300 38	300 37	300 35						250 33		1,266 34	1,243 34	1,225 34	1200 35	204 34	1,200 36	36 272 36		1281		2		1,274 36
al Disc	3			.100	300		300		,											-	-	1 230 1.	1230 1	1,200	1 200 1	1 200 1	1,200			1,250 1.	•			1.08
ce Can	FEB Headrace Canal			300		_	_			_				•				- 7	:			300		250 1,	200	230 1,	.200							1,400
Cadra		1				-										_	-												_			8		
Saily E	TEG											1										419.320		401,370		400,240								411.521
(22)	(casec)	-		- 1				_								. –					_	·	-	1,412				- •						1.574
Table 5.5.25 (22) Daily Headrace Canal Discharge and G	Headrace Canal (cusec)	8								. –				-	. +-				-				~-	1,380	-				-					1,320
Table	Headrac	٤	8	88	88	88.	750	780	750	700	8	700	700	700	78	28	700	38	475	1.475	475	1,475	1,450	1,450	338	1380	1,380	1.380	86				1	1,900
		<u>y</u> -	- ~	~	. 4	٧,	9	, 1	00	0	. 0	-		~	4	Ý	9	2 2	00	0	្ត		:3	83	7	ង	3	7	ং	8	S	3		

J

Fig. 5.5.2-1 Daily Discharge and Energy Generation Records at Trishuli Power House in 1996

5-91

5.5.3 Main Canal Alignment

(1) Topographic Conditions along Survey Route

With the original intake at aqueduct no. 2 the main canal alignment has to pass through various geologically fragile stretches of land at the left bank of the Trishuli river at the initial portion for about 4 km. The topographic condition varies from steep to gentle slope towards the cross-section of the alignment. Compared to a piped canal system, the open canal system encounters more in case of rock outcrop, forest lands, steep slopes, weathered and fractured rocks at its beginning.

The remaining portion is generally alluvial deposit and occasionally colluvium gravel mixed soil.

(2) Geological Conditions in the Project Site

The left bank of the Trishuli river in the upstream part of the command area is very steep and unstable with huge rock outcrop and thick alluvium and colluvium deposits containing coarse cobbles and boulders. Soil of the area is sandy and gravelly in nature, and permeable. The command area of the Project has different levels of ancient and recent alluvial terraces. Upper terraces such as Majhitar and Pipaltar are made up of lateritic soil, whereas the lower terraces mainly contain reddish grey sandy to silty soil layers with fine pebbles. Geologically the area is very fragile. Gullies with deep soil crosion can be found in the right bank of Tadi river from Majhitar to Devighat. This is because of rapid river cutting and local scale faulting passing through at SW~NE direction in the area. Similar to the Tadi river, bank cutting and old landslide with gullies can be observed towards the intake site of the canal alignment on the banks of the Trishuli river.

(3) Methodology and Works Done

The Study Team made a preliminary reconnaissance of the main canal alignment from the original intake point of the hydropower headrace canal to the Study area.

Prior to this route surveying, the Team and counterpart officials executed 8 km of longitudinal survey along the existing road in the Project area, so as to identify the hydraulic gradients to know the possibility of shifting the canal alignment.

With reference to this gradient obtained, the Team identified the difference of level between the intake point and the Study area.

The Study Team used aerial photos together with the longitudinal survey for identifying the boundary of the command area.

Based upon the findings of the survey and existing topography, alternatives were sought namely for;

Canal system

Location of intake site

1) Open canal system

2) Piped canal system

3) Alternative canal system (Option 3)

upstream of aqueduct no. 2
-dodownstream of balancing reservoir

1) Open Canal System

It was found that the open canal system will be very expensive requiring a number of aqueducts, siphons, tunnel, and road cutting works at many places, with hill cutting affecting the environment.

The proposed open canal system passes through many rock outcrops near the intake site, at Gerkhukhola, Simutar and Dhunge. In other places the colluvium and alluvium deposits are predominant along the alignment. Besides this, it is necessary to cross many wide lateral streams coming from above river scouring areas. To pass the canal along this alignment requires high rock cutting, long tunnel construction and well lined canal to protect against seepage and leakage of water. Although there are no existing, large landslides there will be chance of sliding during and after implementation because of steep slope, loose soil deposit and soft and weak rock outcrop.

2) Piped Canal System

The pipe canal alignment runs through the left bank of the Trishuli river the same as the open canal up to Simutar, and then crosses the river two times to reach the command area. In this system, rock excavation and length of tunnel construction is less. But to cross the Trishuli river, it is necessary to construct two aqueducts through sandy soil with grave!

In case of piped line canal the alignment avoids the geologically fragile fractured rock outcrops and passes mainly through the alluvial deposits of cultivated terraced lands, fallow lands and some portions of forest lands. These alluvial deposits are generally gravel, boulder, sand mixed silty clay.

The alignment passes through forest land around 200 m and requires a tunnel of 200 m at ch.1+950m. The alignment crosses the Trishuli river at ch.3+500 m and then passes along the right bank of the river.

On the right bank of the Trishuli river, the alignment mainly passes through cultivated land of alluvial silty soil with large boulders at its foot hill. Then it crosses beneath the Trishuli bridge at Trishuli Bazaar. At ch.4+200 m it crosses the Trishuli river via an aqueduct and the alignment then follows the left bank of the river just downstream of Dhunge.

At Dhunge the texture of the soil is grey to reddish silty clay, and the area comprises moderate to gentle slope cultivated terrace.

The alignment passes over two deep valleys at both sides of the army camp from ch.6+110 m to ch.6+390 m. All along the alignment, the alignment passes through reddish gray soil. The main control tank would be proposed at ch.7+900 m. It will be the ending point of the main canal.

3) Alternative-1 Canal System (Option 3)

The proposed Alternative-1 (Option 3) alignment starts from the tail end of the NEA balancing reservoir about 1.7 km downstream of the other two alignments on the left bank of the Trishuli river. This alignment mainly runs through gentle alluvial river terraces except an existing landslide and rock outcrop at one place and crosses the river as in the case of the other alignments.

With the intake for Alternative-1 (Option 3) at the downstream of the NEA balancing reservoir (refer to Figure 5.5.1-3), the alignment meets the original alignment from aqueduct no. 2 at ch.3+500 m. The chainage for the new alignment at this point will be ch.1+450 m.

The new alignment from the downstream of the balancing reservoir will reduce main pipeline length by around 2 km. Here the soil is loose gray silty soil to silty clay mixed with gravel, cobble, boulder.

5.5.4 Comparative Study on Main Canal System

(1) Comparative Study

Based on the main canal alignment survey, the Study Team estimated preliminary construction costs for three (3) different alignments, using the latest unit construction rates from related agencies, in cooperation with Nepalese counterparts.

Preliminary construction costs of each alignment are shown in Table 5.5.4-1 up to the proposed main control tank (see Figure 5.5.4-1). Related unit costs of construction works are shown in Table 5.5.4-2.

Cost estimate criteria are as follows:

- 1) Estimates do not include the downstream portion of Zone A from the proposed main control tank, nor any of Zone B.
- 2) Design discharge is assumed at $Q = 1.50 \text{ m}^3/\text{s}$.
- 3) Open canal cross-section is assumed at W = 2.00 m, H = 1.50 m.
- 4) Pipe is 1,250 mm dia. steel pipe.

The following table summarizes the above construction costs compared with canal length and total construction cost for three (3) different systems of main canal.

Comparative Study of Canal System

Length up to Proposed Control Tank

		Length of I	Main Canal A	lignment (n	n)	Construction Cost
Systems	Open Canal	Piped Line	Aqueduct /Siphon	Tunnel	Total Length	Million Rs. (US\$/ha)
(1)Open Canal	5,130m	220m	650m	1,010m	7,010m	650 (US\$ 18,000/ha)
(2)Piped Canal	1,380m	4,870m	920m	140m	7,310m	370 (US\$ 10,300/ha)
(3)Alternative-1 Canal (Option 3)	1,380m	3,305m	840m	0m	5,525m	250 (US\$ 6,800/ha)

Note: Unit construction costs (US\$/ha) are calculated on the basis of 630 ha of Zone A command area, not including Zone B.

(2) Adoption of Alternative-1 (Option 3)

The Study Team discussed with the Department of Irrigation construction costs and methods for the above 3 alternatives. DOI personnel (both central government and district level) and Study Team members reconnaissanced the entire canal alignment in the field and identified both level of construction difficulty and any adverse environmental impacts.

On this basis, it was agreed that Alternative-1 (Option 3) should be adopted for the main canal under the Project. With regards to intake location (balancing reservoir), discussions are to be pursued with the responsible agency, NEA.

Table 5.5.4-1 Comparison on Preliminary Construction Cost of Three(3) Different Canal Systems

	Amount	(N.Rs.000')	20.274	7,998	12,736								41.008		2,469	29.571	15.858	16,245	2,339	12,996	910	12,217	92,606		3.399	5,718	2,399	28,129	39,646	(3)-173.261
Canal System	Unit Cost	(N.Rs.)	25,993	39,988	25,993										25.993	74.863	158,585	25,993	25,993	25,993	25,993	25,993	٠.		39,988	25,993	39,988	20,384		
10	Length ((m)	780	88	\$								1,470		95	395	8	625	8	8	35	470	2.310		88	220	8	1.380	1,745	5.525
(3) Alternative	No. Works		1. Pipeline	2. Siphon	3. Pipeline							The state of the s	Sub-total		11. Pipeline		Pipe Aqueduct		15. Pipeline	Pipeline	17. Pipeline	18. Pipeline	Sub-total		19. Siphon			22. Open Canal	Sub-total	Total
	Amount	(N.Rs.000')	13,475	27.552	5.199	3,752	2,469	28,000	14.556	3.379	16,895	15,858	131,136		2,469	29.571	15.858	16,245	2,339	12.996	016	12,217	92,606		3 399	5,718	2,399	28,129	39,646	(2)=263.389
(2) Piped Canal System	Unit Cost	(N.Rs.)	74,863	25,993	25.993	26.801	25,993	200,000	25,993	25.993	25.993	158,585			25.993	74,863	158,585	25,993	25,993	25.993	25.993	25,993			39 988	25.993	39.988	20,384		
Piped C	Congrit	Ξ	180	980	88	5	95	4	<u>\$</u>	130	650	8	3,255	:	95	395	8	3	8	88	35	470	2,310	:	85	220	8	1,380	1,745	7.310
(7)	Works		1. Pipe Aqueduct	2. Pipeline	3. Pipeline	4. Pipeline	5. Pipeline	6. Tunnel	7. Pipeline	8. Pipeline	9. Pipeline	10. Pipe Aqueduct	Sub-total		11. Pipeline	12. Pipe Aqueduct	13. Pipe Aqueduct	14. Pipeline	15. Pipeline	16. Pipeline	17. Pipeline	18. Pipeline	Sub-total		19 Sinhon	20. Pipeline	(V)	22. Open Canal	Sub-total	Total
	Amount No.	(N.Rs.000")	40,987	10,192	32,204	40,000	8669	32,936	2,999	10,701	15.736	30,000	7,861	000.00	5.615	42,000	40,987	2,999	10,192				422,408 Sub-to		3 300	5.718	2,399	28.129	39,646	(1)-462.054 Total
(1) Open Canal System	Length Unit Cos:	(N. R.)	73,192	20,384	73,192	200,000	39,988	73,192	39.988	20,384	73,192	200,000	74,863	200,000	74.863	200,000	73,192	39.988	20,384						30 05	25.993	39,988	20,384		
pen Cana	Length	(E	8 8	8	3	200	175	450	75	525	215	150	105	450	75	210	\$	75	8	: -			5,265		8	55 G	8	1,380	1,745	7.010
0(1)	No Works		1. Open Canal	2. Open Canal	3. Open Canal	4. Tunnei	S. Srphon	6. Open Canal	7. Siphon	8. Open Canal	~		11. Pipe Aqueduct	12. Tunnel	13. Pipe Aqueduct	•	15. Open Canal			4	:		Sub-total	,	(Common)	20. Procline	21. Siphon	22. Open Canal	Sub-total	Total

Open Canal System:
 Piped Canal System:
 Alternative Canal System:

N.Rs.462,054 x 1.4 –647Million (USS 13,014/ha) N.Rs.263.389 x 1.4 –369Million (USS 10,269/ha) N.Rs.173,261 x 1.4 –243Million (USS 6,755/ha)

Table 5.5.4-2 Tentative Unit Cost for Preliminary Construction Works

Materials/Works		Unit	Unit Cost (NRs)	Remarks
1. Excavation	And the second s			
Common	Machinery	m^3	90	
Rock	Machinery	m³	1,500	assumed cost using DOI projects
Removal of excavated		m³-km] = 7 90	assumed cost using DOI projects
2. Fill Placement				
Backfill at structure	random	m³	90	assumed cost using DOI projects
Grass Sod	·anaoiii	m²	30	assumed cost using DOI projects
01833 300			4 1	
2 0.11		: :	:	
3. Gabions		,,,,	3,909	NEA 1992, Esca.20%
Gabion Box		m ²	1,202	NEA 1992, Esca 20%
Mattresses	t=500mm	B1	1,202	NEA 1992, Esca.2076
	*			
4. Formwork		2		Pot the
Straight formwork	en de la companya de La companya de la co	m²	1,200	assumed cost using DOI projects
Curved formwork		m²	1,200	assumed cost using DOI projects
5. ReinforcingSteel		1.3		
Reinforcing Steel	Tor steel	kg	48	NEA 1992, Esca.20%
	to the second second			
6. Cast-in-place Concrete				
Class M150	PCC	m^3	5,134	NEA 1992, Esca 20%
Class M200	RCC	m^3	6,187	NEA 1992, Esca.20%
Chiss Miles		: ITT .		
7. Plastering				
Mortar Plastering	t=25mm	m^2	300	assumed cost using DOI projects
	(2511ka	m²	1,000	and the state of t
Shotcreting		111	1,000	ussumed cost using to or project
8. Materials		m³	204	KTM Valley 1992, JICA Study
Sand		m	324	K IWI Valley 1992, Her Study
	•		2 222	DOL maiorte
9. Stone Masonry		m³	3,200	assumed cost using DOI projects
			1	Tallia Canada da Canada
10. Truss Bridge	Q=1.5m ³ /s	· m	186,141	NEA 1992, Esca.20%
	D=1.25m	m	100,000	bidded by class A Pipe Maker
		• •		
11. Pipeline Fabrication				
from Japan, Korea	D=1.25m	m	10,873	bidded by class A Pipe Maker
from Norway	D=1.25m	m	25,630	bidded by class B Pipe Maker
from India	D=1.25m	m	27,464	bidded by class B Pipe Maker
110111 1110111			18,000	discussed with DOI counterparts
· · · · · · · · · · · · · · · · · · ·		m	10.000	012002200 Mill DOL commerheres
Adopted Cost		m	18,000	discussed with 1907 council parts

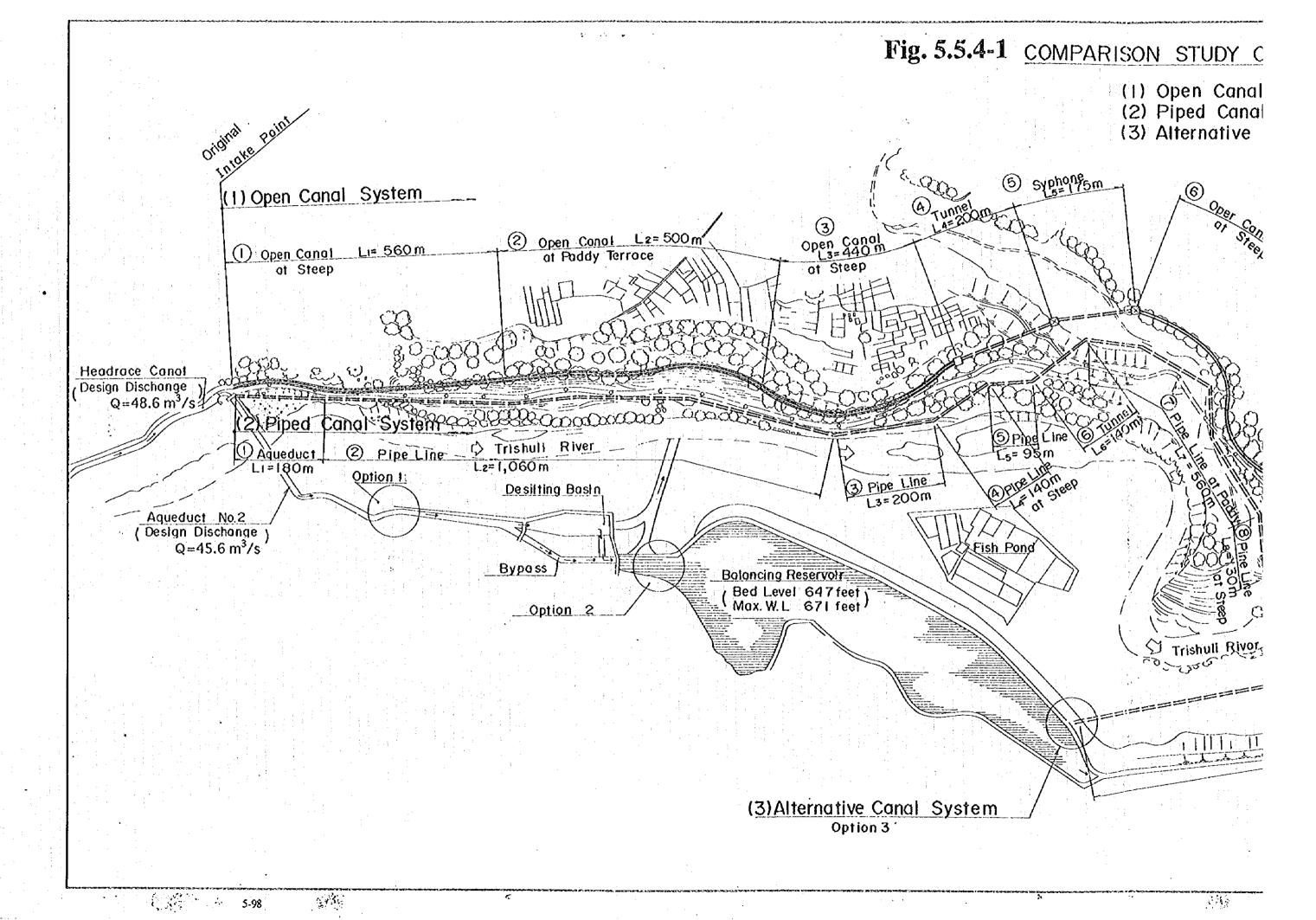
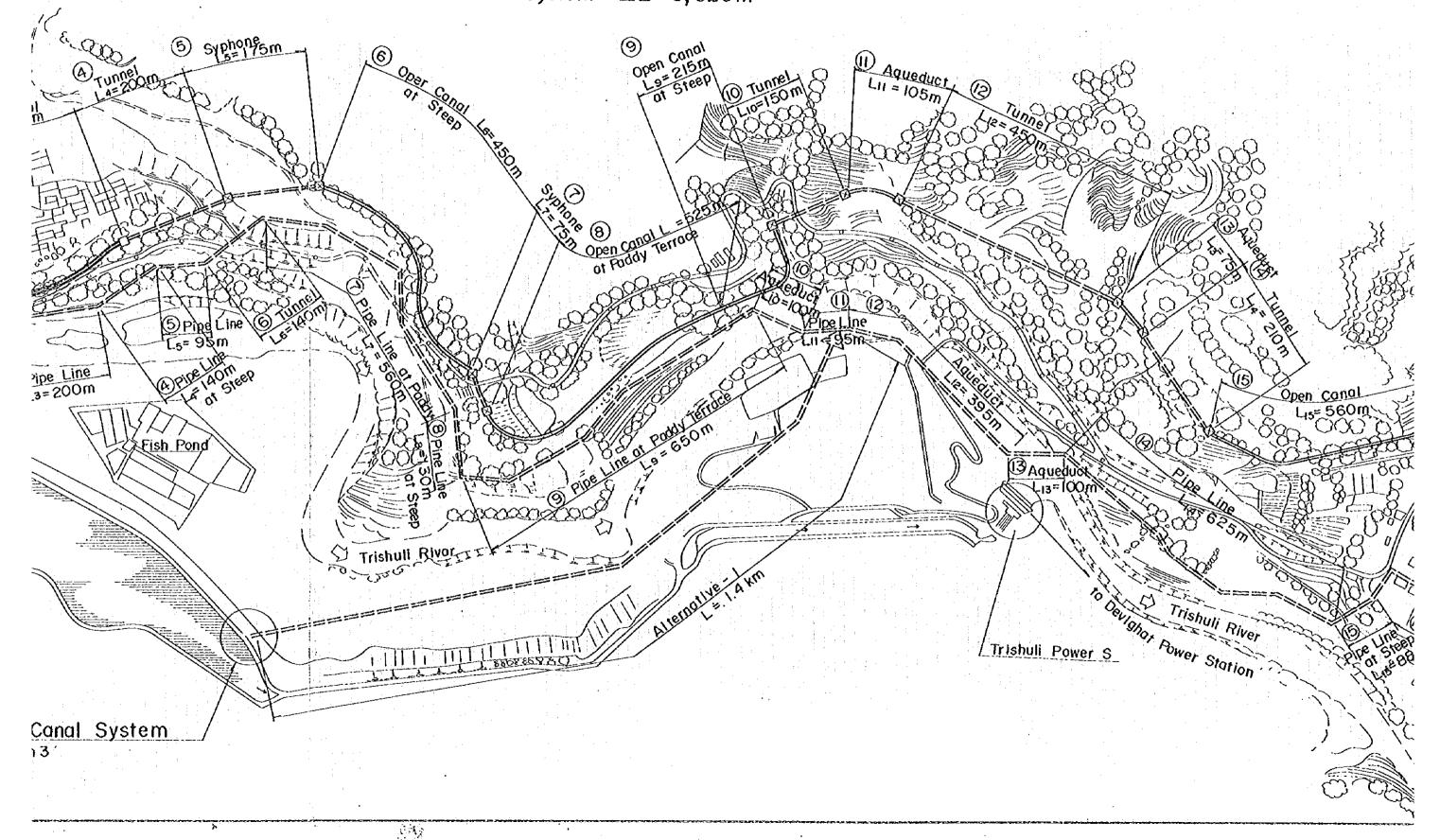
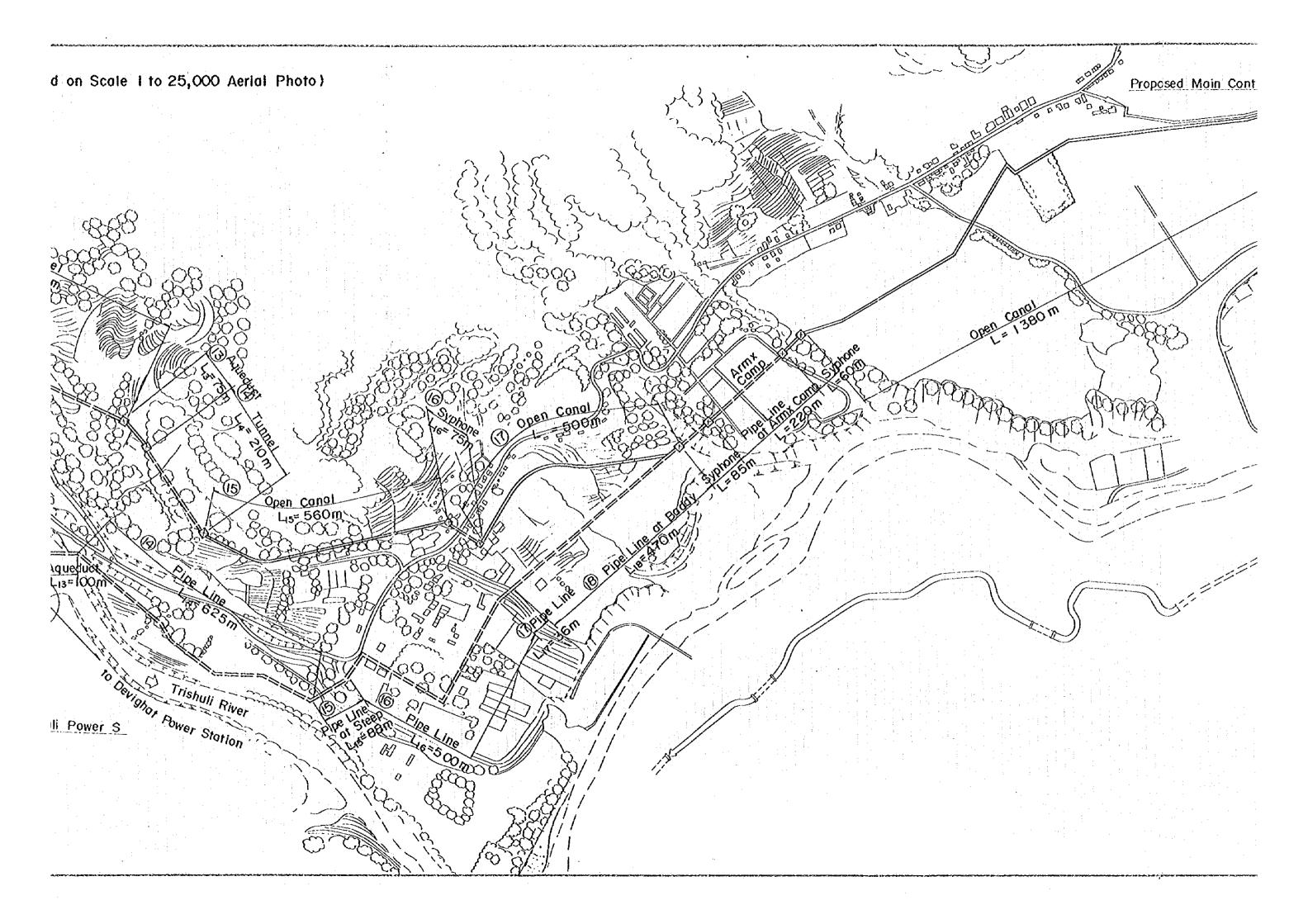
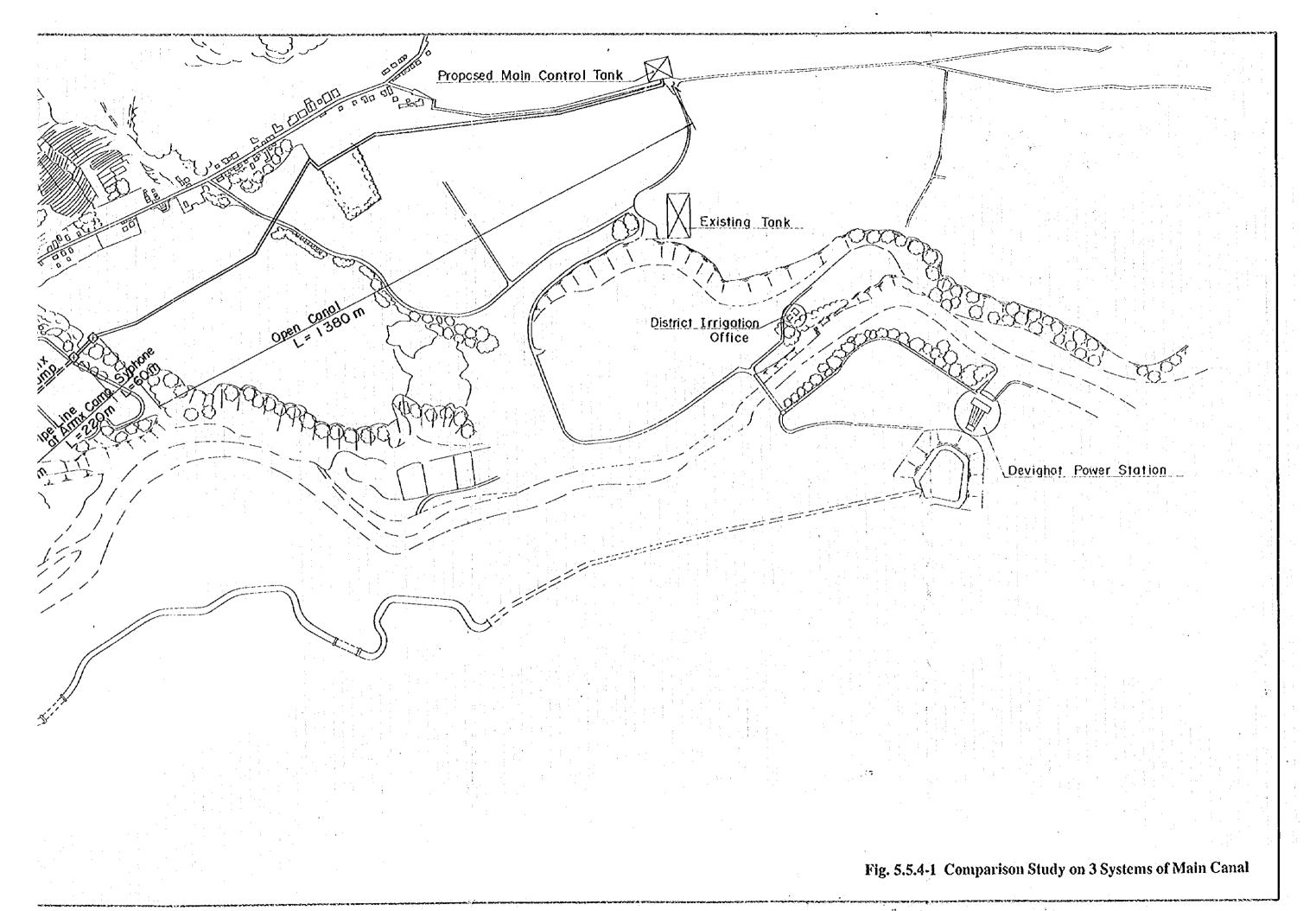





Fig. 5.5.4-1 COMPARISON STUDY ON 3 SYSTEMS OF MAIN CANAL St. 1:12,500 (Based on Scale 1 to 25,000 Aerial Photo)

(1) Open Canal System : ≥L = 7,010 m
(2) Piped Canal System : ≥L = 7,310 m
(3) Alternative Canal System : ≥L = 5,325 m

5.5.5 Identification of Command Area

(1) Net Command Area

The command area during the initial proposal was 1000 ha but based on the topographic map (S=1:5,000) made by the JICA Study Team in February 1997, the command area was calculated at 758 ha including Pokhare Phant (Zone B) on the tailrace at the right bank of the Trishuli river.

The command area of the Study area proposed by DOI was identified by the Study Team as follows:

Name of Area	Proposed by DIO (Gross, ha)	Identified by the Study Team (Net, ha)
Zone A (L/B of Trishuli R.)		
1) Gravity Area	570	447.2
upper block	200	145.6
down block		301.6
2) Lift Area	230	182.0
Total 1)	(+2) 800	629.2
Zone B (R/B of Trishuli R.)		
	200	128.5
Total: Zone A+B	1,000	757.7

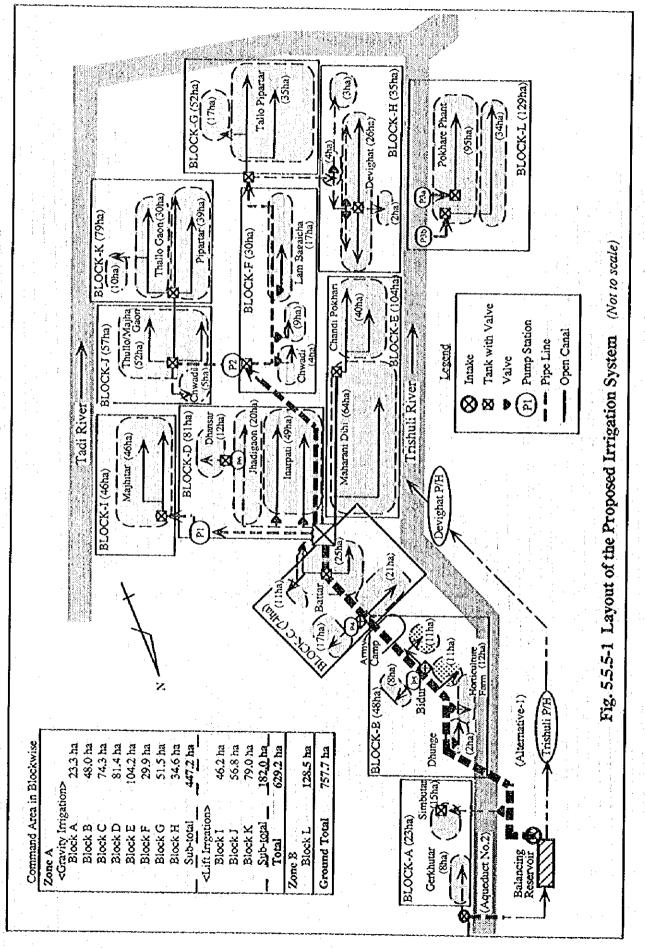
Note: Net command area blockwise and sub-block wise is shown in Table 5.5.5-1

(2) Irrigation System

Layout of the Proposed Irrigation System in 12 Blocks (A ~ L)

Some modifications were carried out by the Study Team for the case of gravity system and lift system based on present site conditions and topography.

Through the site survey, the Study Team divided the design irrigated area into 12 blocks (A to L), as shown in Figure 5.5.5-1.


The gravity irrigation system was adopted to the extent possible in consideration of the ease in operation and maintenance for the beneficiaries. In the case of the old Battar Lift Irrigation Scheme, areas such as Lam Bagaicha, Tallo Pipaltar, Devighat had been designed as pumped schemes. The Study Team identified and proposed to supply water through a gravity system for the above areas.

Six lift irrigation schemes including isolated areas above the intake water level were identified in the Study Area as follows:

Pump Station	Tar	Command Area (ha)	Actual Pump Head (m)	Located Block
PI	Majhitar	46	35	1
P2	Pipaltar	136	45	J, K
P3a+P3b	Pokhare Phant	129	50+30	L
P4	Battar	: : 17	30	C
P5	Bidur	· 8	5	В
P6	Dhansar	12	15	D
Total		348 ha	<u></u>	

Table 5.5.5-1 Net Command Area in Blockwise

	Iniga	ion	1:	Municipality/MINO	Command Area (ha) Sub-block Block			L:Lift G:Gravity
	Block Su	b-block	Location	Municipality/VDC	Sub-bic Gravity	ck . Lift	Block Total	O,OIAN
	-Crasita	1 mags			Olavky	1,114	10(7)	
ie A	<gravity a<="" td=""><td>arca> I Gerkhut</td><td>ar</td><td>Gerkhu VDC</td><td>8.56</td><td></td><td></td><td>G</td></gravity>	arca> I Gerkhut	ar	Gerkhu VDC	8.56			G
		2 Simbuta		Bidur-1	5.58			G
	A	Gerkhut	ar+Simbutar	Bidur-I	9.17		23.31	G
		Dhunge		Bidur-	2.17			G
		Horticul		Bidur-I	11.93			G
	B.	3 Trishuli	Hotel	Bidur-3	3,99			G
		4 Bidar		Bidur-4	10.76			G
		5 Bidar		Bidur-4	11.25			G
		5 Bidur		Bidur-3		7.89	47.99	L
		Battar +	Damaki	Bidur-3 & 4		17.59		L
			asitol (Battar)	Bidur-4	21.04			G
		3 Battar C		Bidur-4	11.67			G
		4 Battar	•	Báttar-4	11.20			G G
	C	5 Battar		Bidur-4	12.80		74.30	G
- 1	D D	Inarpati		Bidur-6	22.98	the second the		G
		2 Inarpati		Bidur-6	17.50			G
			& Chadigaon	Bidur-6	8.27		:	G
1		4 Ghadiga		Bidur-6	7.00	. "		G
:	D	5 Chadiga	on	Bidur-6	9.06			G
		6 Chwadi		Bidur-6	4.00	12.66	06.34	G
100		7 Dhansai		Bider-5		12.55	81.36	- G
		Dihigau		Bidur-6	8.00			G.
		Mahara		Bidur-6	17.00			G
	8	3 Mahara	nidihi	Bidur-6	7.67			G
	E	4 Dihigae	ก	Bidur-6	12.40	1. 17		G
1		5 Mahara		Bidur-6	19,47			. G
		6 Chandip		Bidur-6	14.82 11.76			G
		7 Chandip		Bidur-6	10.04			Ğ
		8 Chandin		Bider-6	3.05		104.21	Ğ
		9 Chandig	OKHAIT	Bidur-6 Bidur-6	4,22		207.51	 с
		Chwadi		Bidur-6	8.31		·	Ğ
		2 Chandig		Bidur-7	10.28			Ğ
		3 Lambag		Bidur-7	7.09	1	29,90	Ğ
		4 Lanı Ba I Tallo Pi		Bidur-7	22.00			Ğ
1.		2 Tallo Pi		Bidur-7	12.20		, i .	; G
		2 Tallo Pi		Bidur-7	17.34	er 😽 e 🕌	51.54	G
		1 Deurali		Bidur-7	3.61			Ğ
		2 Devigh		8idur-7	3.00			G
		3 Devigh		Bidur-7	13.72	facilities		G
		4 Devigh		Bidur-7	14.26		34.59	G
		ravity Ar	ea>Total (Block		409.17	38.03	447.20	:
:	<lift are<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>:</td></lift>							:
		I Maihita	ic.	Bidur-5		7.40		L
		2 Majhita		Bidur-5	sa Talik	17.80		L
		3 Majhita		Bidur-S	en anno anno anno anno anno anno anno an	9.00		- 1.
		4 Majhita		Bidur-5	in the second	12.00	46.20	<u> </u>
			aon (Pipaltar)	Bidur-5		9,30		I.
	زُ الله الله	2 Maihag	aon (Pipaltar) 🗀	Bidur-5		12.40		L,
		3 Thulog	aon (Pipaltar)	Bidur-5		9.75		L
		4 Thulog	aon (Pipaltar)	Bidur-5		5.66		Ŀ
			aon (Pipaltar)	Bidur-5		15.00		Į.
		6 Chwadi	i (School) 🔠	Bidur-5		4.69	56.80	<u> </u>
			on (Pipaltar)	Bidur-5		6.30	***	L
	K	2 Tadi ba	ink	Bidur-5		9.85		L
	K		ion (Pipaltar)	Bidur-7		9.10		Ļ
•	K	4 Pipaltai		Bidur-7		14.64		Ļ
		5 Pipaltai		Bidur-7	100	17.17		L
. :		6 Pipaltai		Bidur-7	F. L. C. C.	10.16	50.03	L
	: <u>k</u>	7 Pipaltai	<u> </u>	Bidur-7		11.80	79.02	L
÷ .	्रा	ift Area>	Total (Block I, J	(, K)	0.00	182.02	182.02	
:	Zone A T	otal (Bloc	k A ~ K)		409.17	220.05	629.22	
					Low Head [ugn Head		
ine B	i i l			t Khadgabhanjyang	7.63			L,
			Pokharephant	Khadgabhanjyang	31.12			L
٠.		L1-3 I	Dhodeni	Khadgabhanjyang	21.68			L
	. :		Sirkhali	Khadgabhanjyang	20.98		1, 1	L
		L1-5 1	Kumaltar	Khadgabhanjyang	13.59			Ļ
	i		Majhigaon	Khadgabhanjyang		8.79		L
			Pokharephant	Khadgabhanjyang		9.81		L
			Sirkhali	Khadgabhanjyang		11.52		L
			Kumaltar	Khadgabhanjyang	<u> </u>	3.40		L
•	Zone B T	otal (Bloc	kL)		95.00	33.52	128.52 757.74	

