JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

CENTRE DE DEVELOPPEMENT DES ENERGIES RENOUVELABLES (CDER) KINGDOM OF MOROCCO

MASTER PLAN STUDY IN DECENTRALIZED RURAL ELECTRIFICATION IN HAOUZ REGION IN KINGDOM OF MOROCCO

MAIN REPORT VOLUME-I

JANUARY 1998

CHUO KAIHATSU CORPORATION SANYU CONSULTANTS INC.

À		P ,	Ņ	4
	j J	À		í.
	37 -	20	2	

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) CENTRE DE DEVELOPPEMENT DES ENERGIES RENOUVELABLES (CDER) KINGDOM OF MOROCCO

MASTER PLAN STUDY

ON DECENTRALIZED RURAL ELECTRIFICATION

OF HAOUZ REGION

IN KINGDOM OF MOROCCO

MAIN REPORT VOLUME-I

JANUARY 1998

3.3

CHUO KAIHATSU CORPORATION SANYU CONSULTANTS INC.

PREFACE

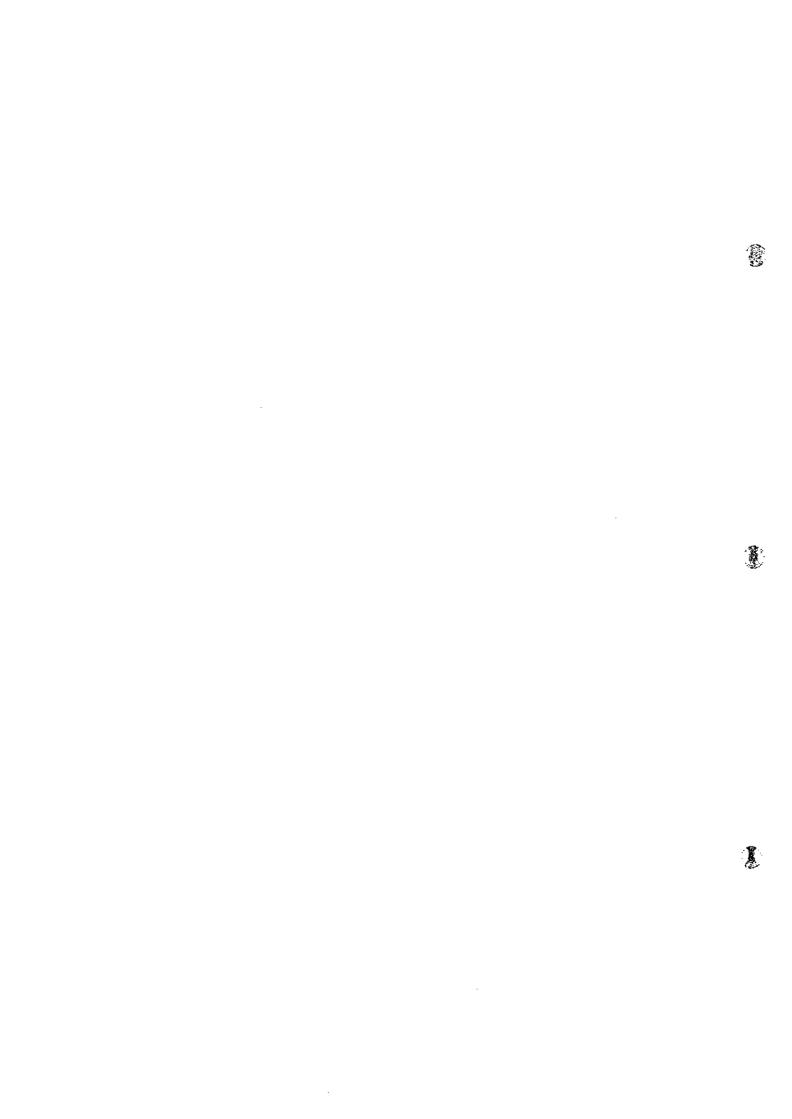
In response to a request from the Government of the Kingdom of Morocco, the Government of Japan decided to conduct the Master Plan Study on Decentralized Rural Electrification of Haouz Region in the Kingdom of Morocco and entrusted the study to Japan International Cooperation Agency (JICA).

JICA sent a study team, led by Mr. Yoshiaki Shimada of Chuo Kaihatsu Corporation and organized by Chuo Kaihatsu Corporation and Sanyu Consultants Inc., to the Kingdom of Morocco five times from March 1996 to January 1998.

The team held discussions with the officials concerned of the Government of the Kingdom of Morocco, and conducted related field surveys. After returning to Japan, the team conducted further studies and compiled the final results in this report.

I hope this report will contribute to the promotion of the plan and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of the Kingdom of Morocco for their close cooperation throughout the study.


3

January 1998

Kimio Fujita

President

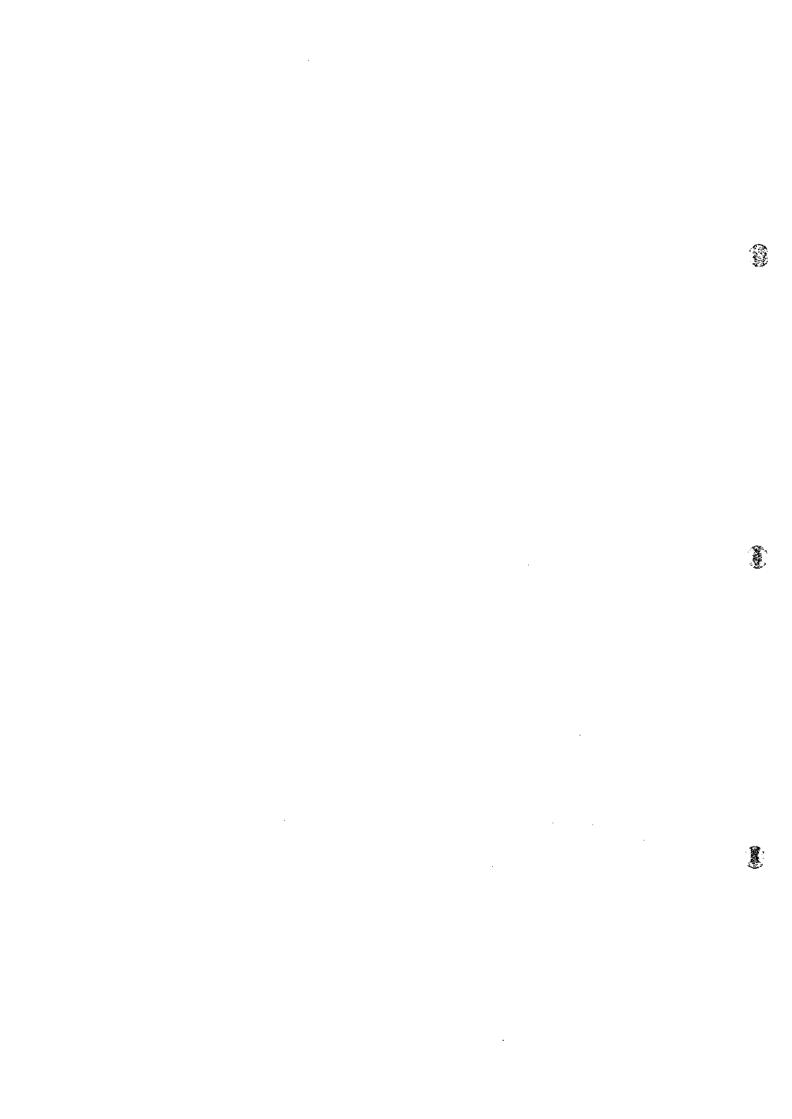
Japan International Cooperation Agency

Mr. Fumio Fujita President, Japan International Cooperation Agency Tokyo, Japan

LETTER OF TRANSMITTAL

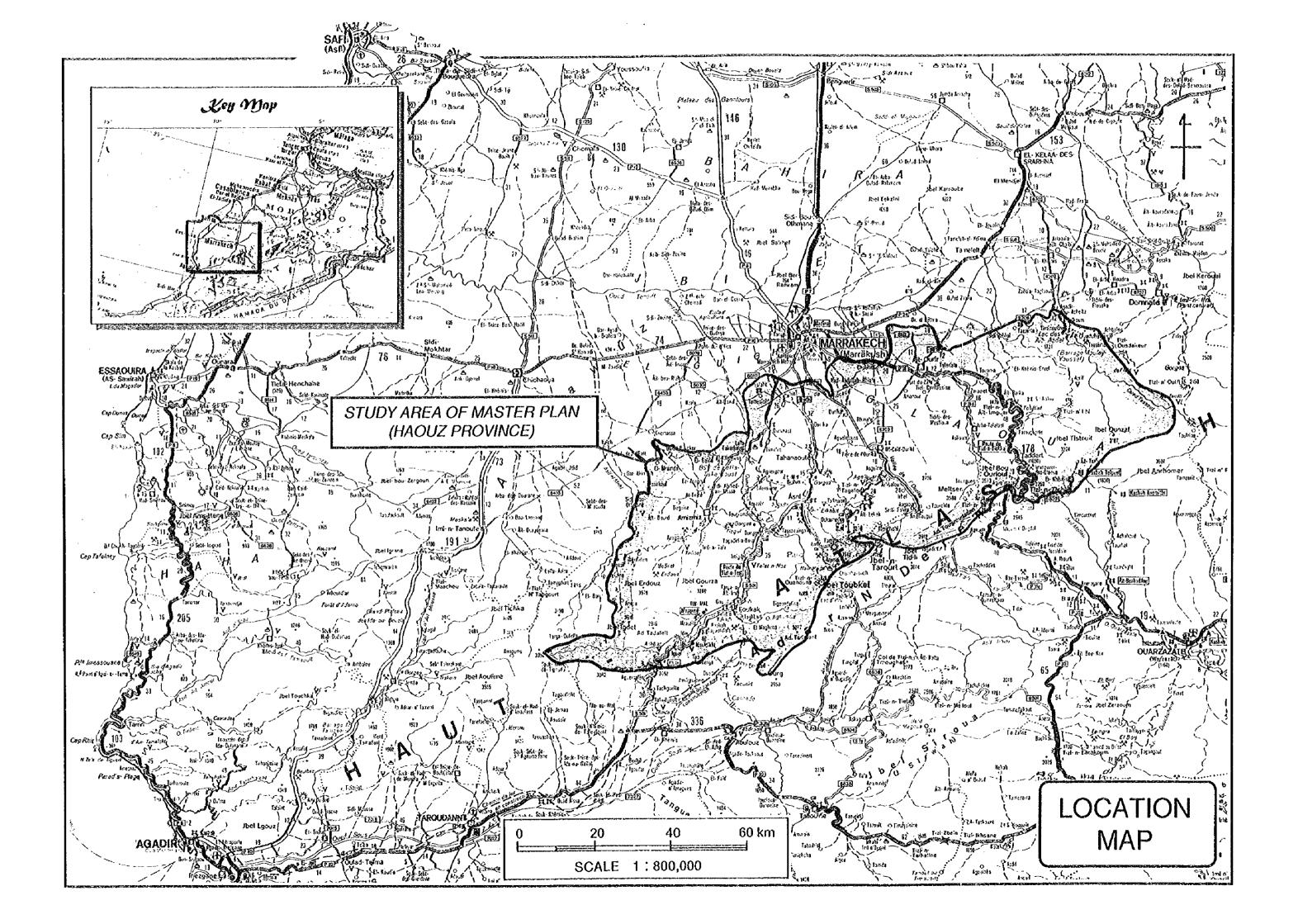
We have the pleasure of submitting herewith the Final Report on the Master Plan Study on Decentralized Rural Electrification of Haouz Region in the Kingdom of Morocco. Under contract with your esteemed organization, the subject Study was carried out over a 22 month period from March 1996 to January 1998 by joint venture between Chuo Kaihatsu Corporation and Sanyu Consultants Inc.

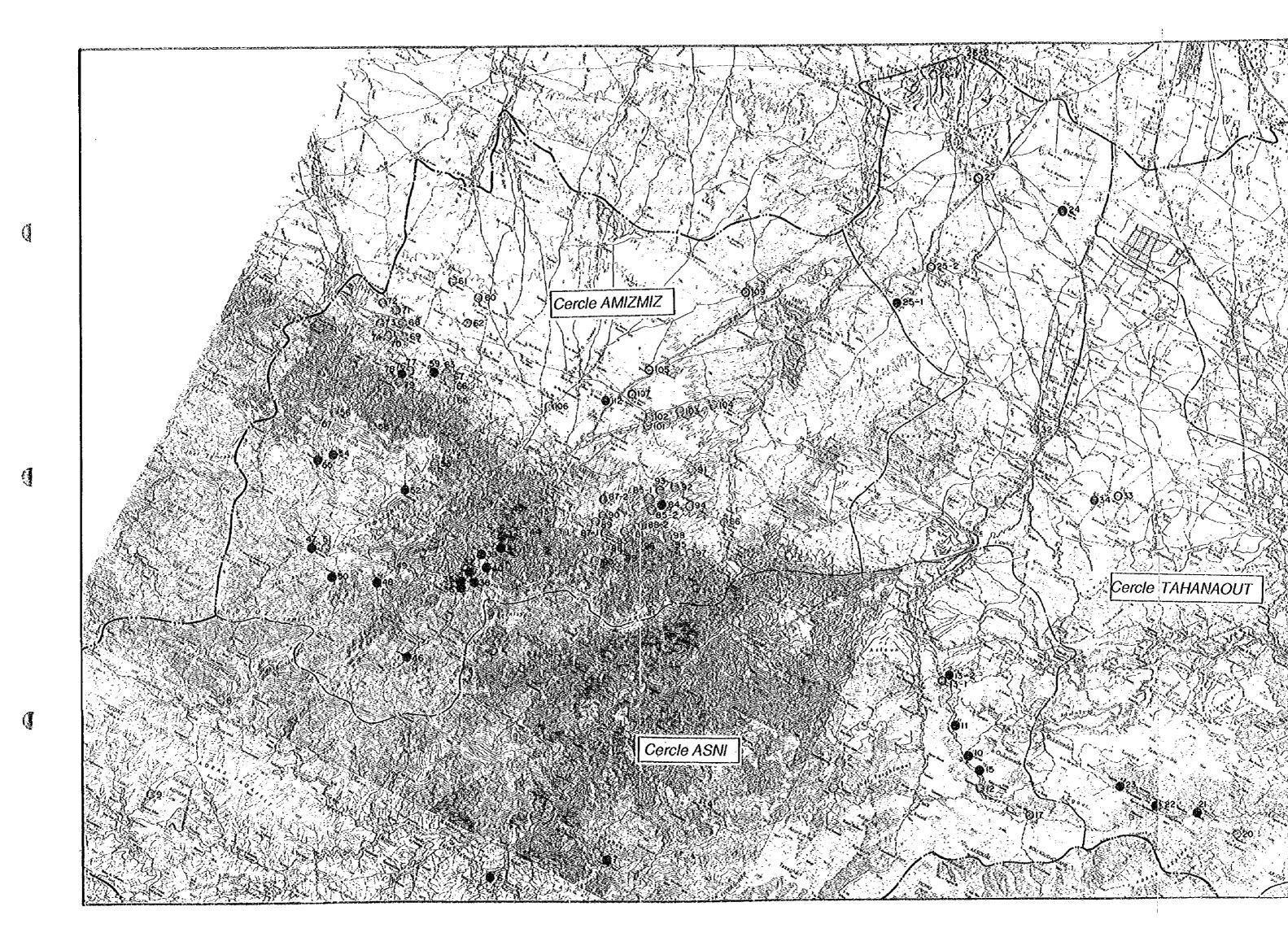
The Study was divided into a Phase I and Phase II. Under Phase I, an inventory survey by means of questionnaire was carried out to identify socio-economic conditions prevailing in the 120 study villages scattered throughout Haouz Region, and a Master Plan formulated encompassing power demand forecast, electrification method, electrification planning, operation and maintenance plan, etc. for each target village. The said Master Plan embodies power supply planning by PV generation, micro-hydropower, diesel generation and extension of the existing grid for an ultimate total of 106 villages (6,938 households) after elimination of villages already targeted for electrification under other ongoing programs. In Phase II, pre-feasibility study and development plan was carried out for 3 micro-hydropower schemes deemed of relatively high development maturity from among the candidate sites selected in Phase I.

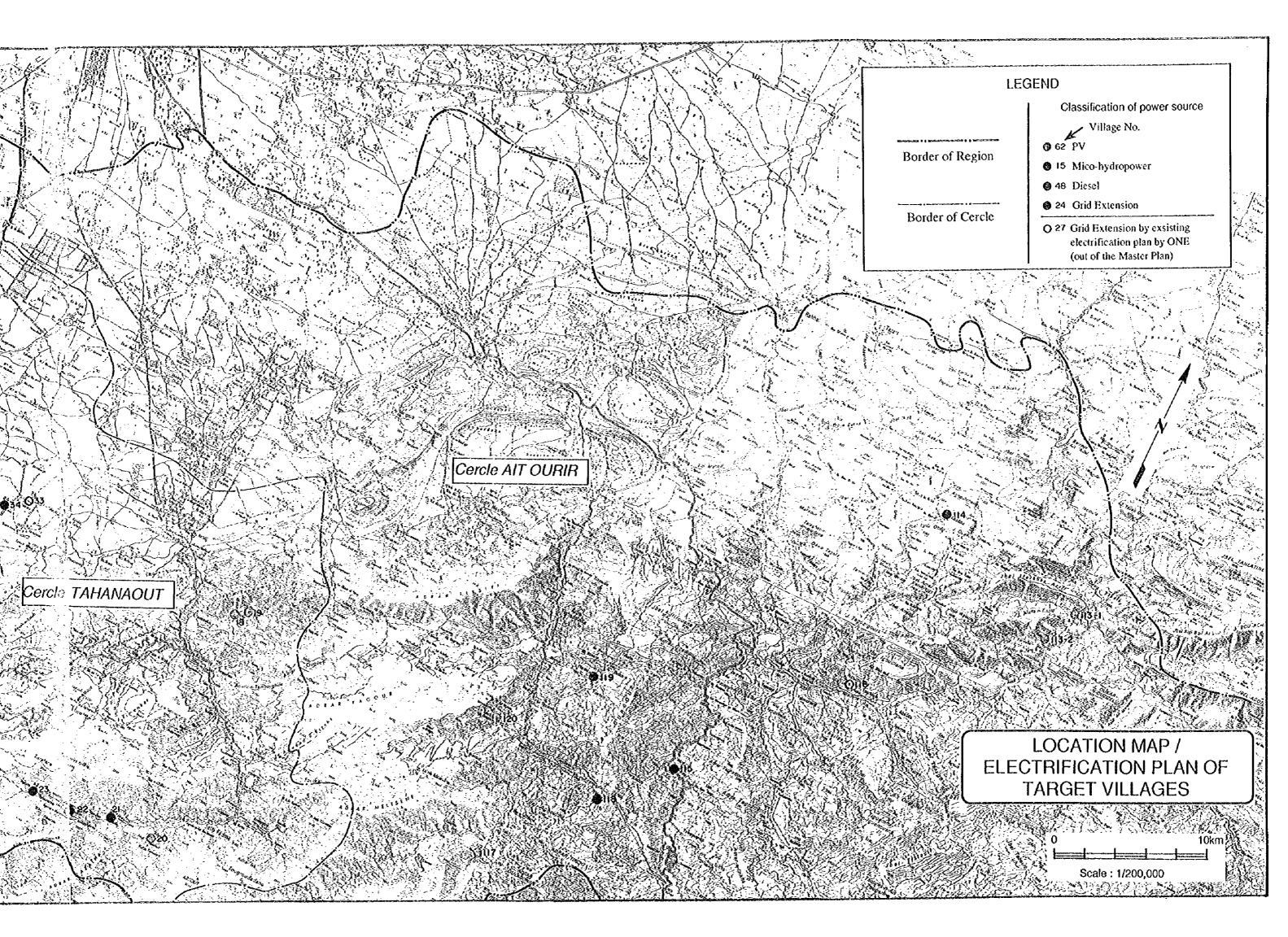

Implementation of the Master Plan will significantly upgrade the electrification rate for Haouz Region. The resultant extension of an electrified standard of living to numerous villagers with subsequent positive impact on overall regional development renders it hopeful that the subject Master Plan will be implemented as early as possible.

We wish to express our gratitude to the Centre de Developpement des Energies Renouvables as well as the other concerned agencies of the Government of Morocco, the personnel of the Japan International Cooperation Agency both in Tokyo and at the JICA office in Morocco, and the Japanese Embassy in Morocco for the gracious guidance and support extended to the Study Team in the course of its work.

It is our sincere hope that this Report will contribute to the implementation of the envisioned Project, which in turn will promote socio-economic development in the targeted region.


1


January 1998


Shimowor Y. Yoshiaki Shimada

Leader for the Study Team for the Master Plan Study on Decentralized Rural Electrification of Haouz Region in the

Kingdom of Morocco

.

MASTER PLAN STUDY ON ELECTLIFICATION PLAN

Decentralized Electrification Plan by CDER

Electrification plan by ONE

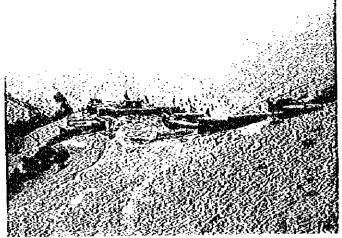
Power source	Nos. of Douars
Photovoltaic	71
M hydropower	18
Diesel	12
total	101

Power source	Nos. of Douars
Grid extension	5

		
Grand total of nos. of douars under the Ma	sterplan Study 10	06

List of power source by Masterplan Study (1/2)

Cerele	Commue R.		Douar	Selected power source	Responsible	Scheme No.
		No.	Name	Mullic	agency	
Asni	Ouirgane	_ 	Tizi Oussem	Photovoltaic	CDER	P-01
			Id Aissa	Photovoltaic	CDER	P-02
		1	Tassa Ovirgane	Photovoltaic	CDER	P-03
	Imgdal		Igrem	Photovoltaic	CDER	P-04
	Talat N'Yacoub		Alla Oumzri	M-hydropower	CDER	H-10
	Ljoukak		ld Ssior	M-hydropower	CDER	H-20
	Ighil		Aghella	Photovoltaic	CDER	P-05
	Aghbar		Ikiss	Photovoltaic	CDER	P-06
	Asni	10	Amsakrou	M-hydropower	CDER	H-31
	į	1)	Arg	M-hydropower	CDER	H-32
		12	Tinerhouhrine	Photovoltaic	CDER	P-07
		13-2	Imskar	Grid extension	ONE	G-01
		15	Ikiss	M-hydropower	CDER	H-33
			Tacheddirt	Photovoltaic	CDER	P-08
Tahanaout	Ourika	- j	Sqour	Photovoltaic	CDER	P-09
	-		Amagdour	Photovoltaic	CDER	P-10
			Tamaterte	Photovoltaic	CDER	P-11
	Settifadma	21	Anfli	M-hydropower	CDER	H-41
		22	Timichi	M-hydropower	CDER	11-42
	Oukaimeden	23	Agouns	Diesel	CDER	D-01
	Tamesloht		Oulad Mansour	Grid extension	ONE	G-02
		26-1	Awin Mazouz	Photovoltaic	CDER	P-12
		26.2	Bouchiha Bon Omar	Photovoltaic	CDER	P-13
		30	Bel Abbas	Photovoltaic	CDER	P-14
		32	Derb Chem's	Photovoltaic	CDER	P-15
		34	Tlat Tedrara	Grid extension	ONE	G-03
Amizmiz	Anougal	35	lmin Tala	M-hydropower	CDER	H-51
	•	36	Addouz	M-hydropower	CDER	H-52
		37	Ain Ghad	M-hydropower	CDER	H-53
		38	Inzaine	M-hydropower	CDER	H-54
		39	lmi N'isly	M-hydropower	CDER	H-55
		40	Dou Anamer	M-hydropower	CDER	H-56
		41	Igoundem	M-hydropower	CDER	H-57
	-	42	Toug Lkheif	M-hydropower	CDER	H-58
_		43	Ait Ouzkri	Photovoltaic	CDER	P-16
-		44	Ait Hmad	Photovoltaic	CDER	P-17
	45	Tizgui	Photovoltaic	CDER	P-18	
		i i	Adardour	M-hydropower	COER	H-60
	Azgour	47	Lemdinat	Diesel	CDER	D-02
	<u> </u>	48	Tnirt	Diesel	CDER	D-03
		49	Ancomi	Photovoltaic	CDER	P-19
		50	Ansmrou	Diesel	CDER	D-04
	1	51	Talat Ait Ihla	Photovoltaic	CDER	P-20
į			Toulkine	Diesel	CDER	D-05
		53	Adghouss	Photovoltaic	CDER	P-21


Cerele	Commue R.		Douar	эсисте рожет	Implemented by	Scheme No.
	<u> </u>	No.	Deuar		,,	
Amizmiz	Azgour	54	Douzrou	Diesel	CDER	D-06
		55	Ait Outmane	Diesel	CDER	D-07
		56	Tagadirt	Photovoltaic	CDER	P-22
		57	Tifirt	Photovoltaic	CDER	P-23
		58	Anfrioune	Photovoltaic	CDER	P-24
	Dar Jamaa	59	Ait Smil	Diesel	CDER	D-08
		60	Tifratine	Photovoltaic	CDER	P-25
		61	Aguenze	Photovoltaic	CDER	P-26
		62	Ifit Baragha	Photovoltaic	CDER	P-27
		63	Agadir Baragha	Photovoltaic	CDER	₽-28
		65	Adar Baragha	Photovoltaic	CDER	P-29
		66	Tadchert	Photovoltaic	CDER	P-30
		67	Tamsoult	Photovoltaic	CDER	P-31
		68	Dar Jamaa Ait Ali	Photovoltaic	CDER	P-32
		69	Agadir Ait Brahim	Photovoltaic	CDER	P-33
		70	Iouraghan	Photovoltaic	CDER	P-34
		71	lmiki	Photovoltaic	CDER	P-35
		72	Ifit Ait Alla	Photovoltaic	CDER	P-36
	Ì	73	Boukhelf	Photovoltaic	CDER	P-37
	!	74	Addar Ait Ali	Photovoltaic	CDER	P-38
		76	Ait Bourd	Diesel	CDER	D-09
		77	Ait M'Barek	Photovoltaic	CDER	P-39
]	78	Agadir Ait Bourd	Photovoltaic	CDER	P-40
		1	Afella Opassif	Photovoltaic	CDER	P-41
	Ameghrass	81	Afella Ighil	Photovoltaic	CDER	P-42
			Anfeg	Photovoltaic	CDER	P-43
		83-2	Aguersouak	Photovoltaic	CDER	P-44
	•	84	Ait Bouzid	Diesel	CDER	D-10
		85-1	Oumast	Photovoltaic	CDER	P-45
		85.2	Ait Zitoun	Photovoltaic Photovoltaic	CDER	P-46
		86	Tagadirt	Photovoltaic	CDER	P-47
		87-1	Zaouit	Photovoltaic	CDER	P-48
	[87-2	Izalaghan	Photovoltaic	CDER	P-49
		88	Tigouder	Photovoltaic	CDER	P-50
		89	Amezi	Photovoltaic	CDER	P-51
		90	Agouni	Photovoltaic	CDER	P-52
		91	Chaabat Tarik	Photovoltaic	CDER	P-53
			lghil Sdidene	Photovoltaic	CDER	P-54
		93	Tizi	Photovoltaic	CDER	P-55
		94	Aghbalou	Photovoltaic ·	CDER	P-56
		95	Ait Hsain	Photovoltaic	CDER	P-57
	Ì	96	Ait Boubker	Photovoltaic	CDER	P-58
		97	Tazatourt	Photovoltaic	CDER	P-59
			Tamsoulte	Photovoltaic	CDER	P-60
			Tizgui	Photovoltaic	CDER	P-61
			Ait Tirghit	Photovoltaic	CDER	P-62
	Sidi Badhaj		Tachbibt Kabli	Photovoltaic	CDER	P-63
		1 1	Tachbibt Echatoui	Photovoltaic	CDER	P-64
			Asgoune	Photovoltaic	CDER	P-65
			Ait Aamara Loued	Photovoltaic	CDER	P-66
			Lakaama	Photovoltaic	CDER	P-67
		112	Lamhamid	Grid extension	ONE	G-04
Ait Ourir	Ait Aadel	113-1		Photovoltaic	CDER	P-68
			Assaka	Photovoltaic	CDER	P-69
	Abadour		Abadou	Diesel	CDER	D-11
	Zerkten	115	Quriz	Grid extension	ONE	G-05
	<u> </u>		Afra	M-hydropower	CDER	11-72
	Tighdouine	117	Ansa	Photovoltaic	CDER	P-70
	i	[118	Tidsi	M-hydropower	CDER	11-71
		119	Ait Atmane	Diesel	CDER	D-12
	t	, ,				

多

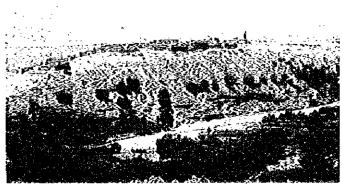
(track)

THE STATE OF THE S

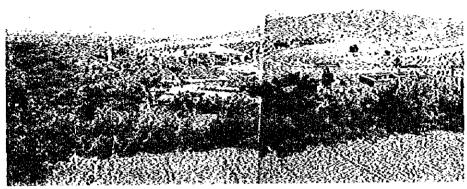
PHOTOGRAPHS

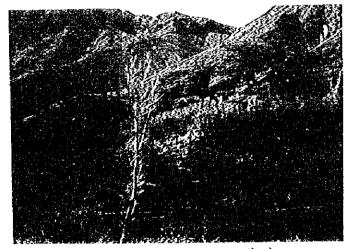
No.2 Id Aissa (Photovoltaic Generation)

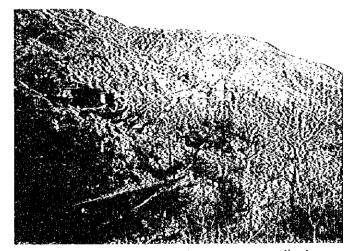
No.4 Igrem (Photovoltaic Generation)

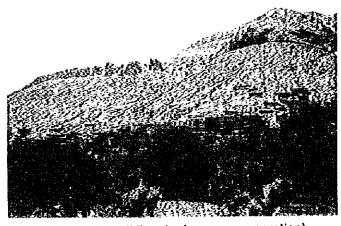

No.65 Adar Baragha (Photovoltaic Generation)

No.73 Boukhelf (Photovoltaic Generation)


No.66 Tadchert (Photovoltaic Generation)


No.101 Tachbibt Kabli (Photovoltaic Generation)


No.84 Ait Bouzid (Diesel Generation)


No.114 Abadou (Diesel Generation)

No.11 Arg (Micro-hydropower generation)

No.46 Adardour (Micro-hydropower generation)

No.7 Id Ssior (Micro-hydropower generation)

No.118 Tidsi (Micro-hycropower generation)

- 8

COMPONENT OF THE REPORTS

ENGLISH

VOLUME-I MASTER PLAN STUDY ON ELECTRIFICATION PLAN

VOLUME -II

PRE-FEASIBILITY STUDY ON MICRO-HYDROPOWER

GENERATION

APPENDICES INVENTORY

SUMMARY

FRENCH

RESUME

EXECUTIVE SUMMARY

I. Background and Objective of the Study

Rural electrification in Morocco commenced in the early 1980's with phase one of the Rural Electrification National Program (PNER-I), which was subsequently followed by phase II of the same program in the 1990's (PNER-II). However, as of 1994, rural electrification rate remains at 21% which is significantly lower that rural electrification rates in other countries of the same region (70~80%).

As a result, the Moroccan government has established rural electrification as a major policy objective, launching in 1993 the Decentralized Energy National Program (PNED) which aims at electrification via renewable energy sources including PV generation, micro-hydropower, etc. Further to this, the Global Regional Electrification Program (PERG) which integrates efforts under the aforementioned PNER and PNED was inaugurated in July 1995.

PERG aims at electrification of 2,000 villages by the year 2000, and ultimate completion of rural electrification nation-wide by 2010.

The subject Decentralized Rural Electrification of Haouz Region is a part of the PERG program. The Study in this regard comprises master plan study and prefeasibility study components originally aimed at electrification of 6,200 households in 120 villages of the Haouz Region, which accounts for 9% of the households in the region. Current electrification rate of the said region is 14%. Electrification planning under the Study focuses on adoption of renewable energy sources including PV generation and micro-hydropower.

The electrification envisioned under the Study is to be completed by 2010, the same target year as adopted under PERG.

II. Study Components

1

The Study comprises the following stage-wise components which together make up a master plan for decentralized electrification of Haouz Region, and a pre-feasibility study for one part of that master plan.

- (i) In the first stage of the Study, an inventory survey was carried out to ascertain the socio-economic conditions prevailing in the 120 villages contained in the original request for cooperation. Under the survey, a detailed investigation was carried out with regard to villager living standards, mode of livelihood and aspirations concerning electrification.
- (ii) In the second stage of the Study, power demand was forecast for each village in response to conditions revealed as a result of the above inventory survey. Unit power desired per household was based in principal on the standard rural electrification criteria applied by CDER (Center for Renewable Energy

Development) of 65 W of power and 240 Wh/day consumption per household (87 W of power and 518 Wh/day of consumption per household in the case of micro-hydropower).

- (iii) In the third stage of the Study, the optimum power supply facility plan was examined to meet the power demand calculated for each village. Candidate power supply categories were PV generation, micro-hydropower, diesel generation and extension of the existing grid, with the most appropriate approach being selected on the basis of technical and economical factors.
- (iv) In the fourth stage of the Study, a pre-feasibility study was carried out for 3 of the 7 selected micro-hydropower schemes which were deemed most warranting of early development. The said pre-feasibility study was carried out for the following 3 scheme sites in order to ascertain technical and economical feasibility.

<u>Site</u>	Facility output (kW)	Household no.
Adardour	26	190
Arg	30	231
Tidsi	15	125

III. Formulation of Electrification Plan

(1) Target Villages for Electrification

Study was carried out for 120 target villages (7,272 households) as selected by CDER and confirmed in the Scope of Works and Minutes of Meeting signed between the Ministry of Energy and Mining (MEM) and the Japan International Cooperation Agency (JICA) on December 13, 1995.

As a result of this study, it was identified that a portion of the original villages are already slated for electrification by programs under ONE. Ultimately, 106 villages (present number of households: 6,205; design number of households under the Study: 6,938) were selected for electrification planning under this Study.

(2) Selection of Power Supply Source

Selection of power supply source was according to the following criteria.

(i) Electrification cost ceiling adopted by ONE for extension of the existing grid is DH 10,000/household. Accordingly, villages where power supply cost is under DH 10,000/household are to be electrified by extension of the existing grid.

I

- (ii) With regard to villages where electrification cost is over DH 10,000/ household, consideration was given to the following technically feasible modes of electrification:
 - PV generation
 - Micro-hydropower
 - Diesel generation

Since the area is not suited to adoption of wind power, this was eliminated from consideration.

(iii) Power demand for each power source category was basically determined adopting PERG criteria.

(PV generation, diesel generation)

- Maximum power per household:

65 W

Consumed power per household:

240 Wh/day

(Micro-hydropower generation)

1

With regard to villages to be electrified by micro-hydropower, the fact that power generation of the same scale is possible both during the day and at night, and that facility scale is planned with leeway in mind, power demand values approximating scale of electrification aspired to by villagers on the basis of the questionnaire survey were adopted as opposed to the PERG criteria.

- Maximum power per household:

87 W

- Consumed power per household:

518 Wh/day

(iv) Concerning micro-hydropower as the energy supply source, field survey was carried out for the 28 villages preliminarily selected by CDER as candidates for electrification by this method. Ultimately, 7 sites were designated under the Study as exhibiting suitable natural conditions for micro-hydropower development. Number of villages finally selected for electrification under the said 7 schemes is 18.

In comparison to PV and diesel generation, micro-hydropower schemes feature less O&M cost, and accordingly becomes the most advantageous form of electrification in the case where facility construction cost is subsidized by the government. As a result, micro-hydropower was given priority for adoption under the Project for cases where natural site conditions provide adequate hydropower potential.

(v) With regard to diesel generation as the power source, pre-conditions for adoption are a steady and easily deliverable fuel supply, as well as availability of local technical and economic resources for generating plant operation and maintenance. As a result, diesel generation was adopted under the Study only in the case of villages above a certain, appropriately determined size.

- (vi) Under the category of PV generation, the 3 approaches indicated below are possible. However, the individual SHS (solar home system) was adopted under the Study whereby the PV module, battery, and controller are installed as one set in each household. This decision was based on the conclusion from past CDER experience that the BCS (battery charging station) and CDS (centralized distribution system) would pose technical and economical difficulties in Haouz Region in terms of system O&M.
 - Solar home system (SHS)
 - Battery charging station (BCS)
 - Centralized distribution system (CDS)

IV. General Description of Electrification Planning

(1) PV Generation

PV generation (SHS) is as indicated below. Power is to be supplied by two types of PV module (75 Wp and 55 Wp) depending on the category of power demand (Wh/d), with module capacity as set out in the following table. Criteria assumed in this regard are 5.4 kWh/m²/d of sunlight volume (value in Marrakech) and 60% system efficiency.

User	Power demand (Wh/d)	PV module (Wp)		
]	Plain	Mountain	
Home	240	75 (75 × 1)	110 (55 × 2)	
School	180	60 (75 × 1)	90 (55 × 2)	
Street light	120	40 (55 × 1)	60 (75 × 1)	
Mosque	160	55 (75 × 1)	83 (55 × 2)	
Clinic	150	47 (55 × 1)	71 (75 × 1)	
Commercial	50	15 (55 × 1)	23 (55 × 1)	

Villages subject to PV electrification are scattered in both plain and mountain areas. In the case of the later, a 50% surplus margin in module scale is adopted to compensate for estimated drop in sunshine intensity.

Number of villages to be energized by PV generation is 71. Total PV module capacity for the same is 233.19 kW.

General households:	3,213
Schools:	54
Street lights:	642
Mosques:	77
Clinics:	1
Commercial establishments:	111

(2) Diesel Generation

As a rural electrification method, diesel generation has been widely adopted in the past due to low cost of facility installation. However, this approach poses problems in terms of the need to deploy technical personnel for operation and maintenance, as well as the prerequisite for a stable and easily deliverable fuel supply. Given conditions in Haouz Province of numerous small villages scattered over a wide area, this is not the most advantageous approach in most cases.

However, in cases where numerous households are concentrated in a tight area with good road access for fuel delivery and availability locally of the technical capability for system operation and maintenance, diesel generation has been adopted under the Study.

The number of villages subject to electrification by diesel generation is 12, comprising the following:

General households:	2,136
Schools:	16
Street lights:	427
Mosques:	17
Clinics:	1
Commercial establishments:	62

Number of diesel generators is 12, with a total power output of 133.4 kW.

(3) Micro-hydropower Generation

Micro-hydropower is possible only under natural conditions of favorable discharge and available head. After examining the potential for micro-hydropower candidate sites in terms of natural conditions, suitability of ultimate micro-hydropower adoption was made on the basis of economic comparison with PV and other modes of energy supply.

A total of 18 villages are to be electrified under the 7 Projects by micro-hydropower, comprising the following:

General households:	1,301
Schools:	27
Street lights:	261
Mosques:	18
Commercial establishments:	49

In comparison to other power sources, demand under micro-hydropower schemes is set as larger under the Study as described above (maximum power at 87 W and consumed power at 518 Wh/day per household). In the target villages in this regard, it is envisioned that 236 units of refrigerator and 7 units of heater would be introduced.

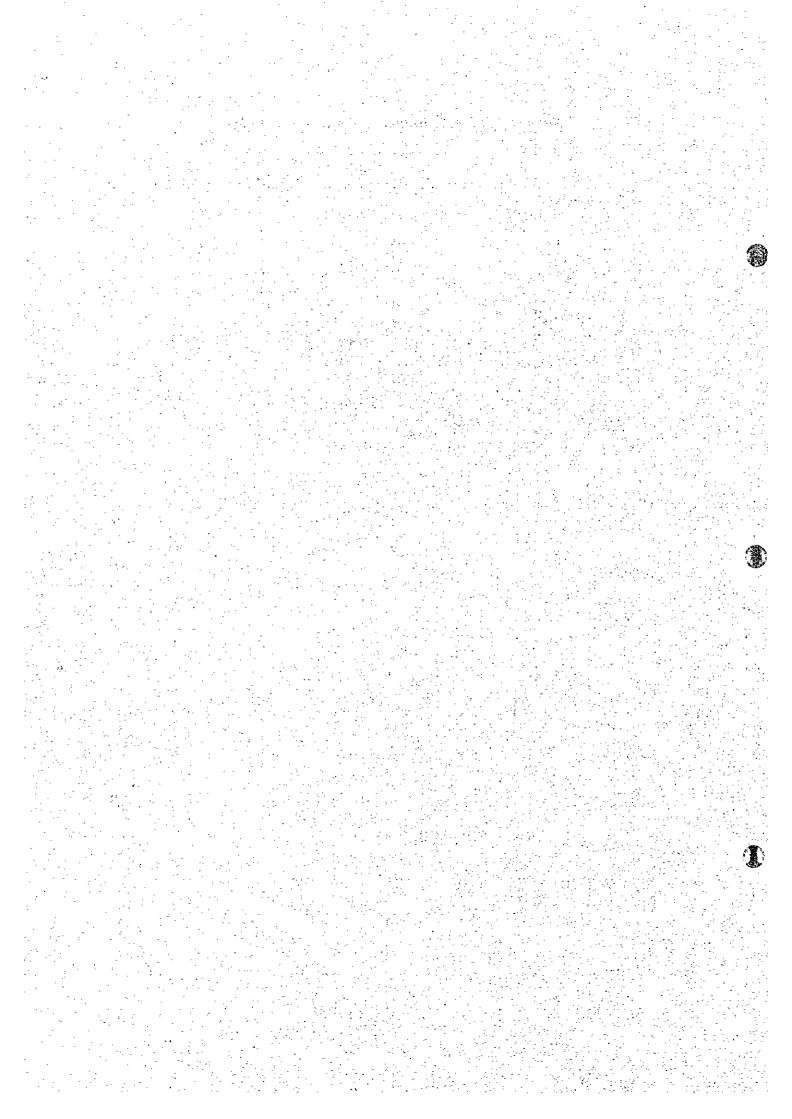
Total output for the 7 sites of micro-hydropower generation is 179 kW, with breakdown as follows:

Site	Facility output (k)	Annual generated energy (kWh)
1. Adardour	26	56,914
2. Inzaine	62	148,900
3. Arg	30	73,648
4. Alla Oumzri	10	42,561
5. Id Ssior	16	54,034
6. Anfli	20	52,092
7. Tidsi	15	22,203
Total	179	450,352

Of the above, the Adardour, Arg and Tidsi sites where subject to pre-feasibility study under the Study.

(4) Extension of Existing Transmission Line

Consideration was also given the possibility of electrification by transmission line extension. Villages subject to such consideration were cases where per household electrification cost would be under DH 10,000, which is the ceiling set by ONE.


A total of 5 villages are planned for electrification by transmission line extension, comprising the following:

General households:	288
Schools:	6
Street lights:	58
Mosques:	8
Commercial establishments:	6

Overall electrification encompassing the above is summarized below.

Summary of Electrification by Power Source Category

	PV	Diesel	Micro- hydropower	Grid extension	Total
1. Target villages	71	12	18	5	106
2. Target households	3,213	2,136	1,301	288	6,938
3. Supplied entities:					
General households	3,213	2,136	1,301	288	6,938
Schools	54	16	27	6	103
Street lights	642	427	261	58	1,388
Mosques	77	17	18	8	120
Clinics	1	1			2
Commercial establishments	111	62	49	6	228
Total	(4,098)	(2,659)	(1,656)	(366)	(8,779)
4. Power source facility capacity	233,19	133.4	179		545.59
5. Preliminary cost estimate	5,811	1,313	5,766	450	13,340
Remarks;	SHS PV module: 75 Wp × 2,555 55 Wp × 2,574	12 units	7 sites		

VOLUME I: ELECTRIFICATION MASTER PLAN

TABLE OF CONTENTS

Location Map of Study Area

Location Map of Study Villages / Electrification Plan

	Photographs	
	Component of the Reports	
	Executive Summary	
	CHAPTER 1 INTRODUCTION	
	1.1 Background of the Study	I-1-1
	1.2 Study Objective	I-1 <i>-</i> 2
	1.3 Scope of the Study	I-1-3
	1.4 Study Execution	
	1.5 Modification of Number of Target Villages	I-1-6
18 s	CHAPTER 2 SOCIO-ECONOMIC CONDITIONS	
	2.1 Socio-economic Conditions of Haouz Province	I-2-1
	2.1.1 General Condition of the Study Area	I-2-1
	2.1.2 Population and Households of Haouz Province and the Study Area	I-2-4
	2.1.3 Industries in Haouz Province	I-2-7
	2.1.4 Present Road Conditions in Haouz Province and in the Study Area	. I-2-14
	2.1.5 Social Conditions in Haouz Province	.1-2-16
	2.2 Socio-economic Conditions of the Study Villages	.I-2-18
	2.2.1 Study Villages	.1-2-18
	2.2.2 Distribution of the Study Villages	.I-2-18
	2.3 Questionnaire Survey	. I- 2-20
	2.3.1 Execution of Questionnaire Survey	.1-2-20
	2.3.2 Results of Questionnaire Survey	.I-2-21
	2.3.3 Analysis of Findings of Questionnaire Survey	.1-2-21
	2.4 Supplemental Survey of Previous Decentralized Electrification Projects	.1-2-30
_	2.4.1 Case Study of Azilal Rural Electrification Project	.J-2-31
	2.4.2 Study of Safi Province and Errachidia Province	.I-2-38
	CHAPTER 3 NATURAL CONDITIONS IN HAOUZ REGION	
	3.1 Natural Conditions in the Study Area and	
	Need for Decentralized Electrification	I-3-1

3.2	Surve	y of Natural Conditions	I-3-1
	3.2.1	Meteorology as Indicated by Existing Data	I-3-1
	3.2.2	Temperature and Rainfall Estimates	I-3-4
	3.2.4	Sunshine Intensity in Mountain Region	I-3-21
3.3	Base I	Data Study for Project Formulation	I-3-24
	3.3.1	Villager Aspirations regarding Electrification, and Affordability Electricity Tariffs	
	3.3.2	Possibility of Electrification by Extension of Existing Transmission Lines	
	3.3.3	Village Household Number, Population and Residential Area	
	3.3.4	Nos. of Facilities to Utilize Power by Category	
3.4		Study of Power Supply Source	
		on 3 Methods of PV Generation	
		Villages for Electrification under the Master Plan	
~	PTER 4		
4.1	Electr	ic Power Situation in Morocco	
	4.1.1	Electric Power Enterprises	I-4-1
	4.1.2	Power Supply and Demand	I-4-2
	4.1.3	Power Facilities	I-4-3
	4.1.4	Power Demand Forecast	I-4-5
	4.1.5	Future Power Development Planning	I-4-5
	4.1.6	Electricity Tariffs	I-4-7
	4.1.7	Per Capita Power Consumption, and Electrification Rate	I-4-12
4.2	Rural	Electrification in Morocco	I-4-13
	4.2.1	History of Rural Electrification	I-4-13
	4.2.2	National Rural Electrification Program (PNER)	I-4-13
	4.2.3	Global Rural Electrification Plan (PERG)	I-4-14
	4.2.4	Rural Electrification Centered on CDER Activities	1-4-23
	4.2.5	Rural Electrification by Micro-hydropower	1-4-29
	4.2.6	International Collaboration on Rural Decentralized	
		Electrification Programs	I-4-31
CHAT	PTER 5	MASTER PLAN FOR DECENTRALIZED RURAL	
		ELECTRIFICATION	
		Strategy	
5.2	Prelim	inary Selection of Micro-hydropower Scheme Villages	
	5.2.1	Strategy in Formulating the Micro-hydropower Plan	I-5-3
	5.2.2	Selection of Micro-hydropower Sites	1-5-4

	5.2,3	Micro-hydropower Electrification	I-5-8
5.3	Villag	e-wise Selection of Power Source	
	5.3.1	Selection Method for Power Source	
	5.3.2	Comparison of Cost of Power Supply	
		under Each Electrification Method	I-5-19
	5.3.3	Characteristics and Special Features of Power Supply Sources	I-5-26
	5.3.4	Result of Power Source Selection	I-5-28
5.4	Power	Demand Forecast	I-5-35
	5.4.1	Demand Forecast Method	I-5-35
	5.4.2	Demand in the Case of PV Generation, Diesel Generation	
		and Transmission Line Extension	I-5-36
	5.4.3	Micro-hydropower Demand	1-5-37
	5.4.4	Results of Power Demand Forecast	
5.5	Power	Supply Plan	I-5-47
	5.5.1	Basic Strategy for Power Supply Planning	I-5-47
	5.5.2	Power Supply Plan	I-5-48
	5.5.3	Optimum Scale for Micro-hydropower Generation	I-5 - 50
	5.5.4	Selection of Pre-feasibility Sites	I-5-57
5.6	Opera	tion and Management Plan	I-5-60
	5.6.1	Start Up	
	5.6.2	Operation and Maintenance	I-5-62
5.7	Imple	nentation Schedule	I-5-70
TIFAT	TER (PRELIMINARY PROJECT COST ESTIMATE	
		Estimate Criteria	1-6-1
		inary Project Cost Estimate	
0.2	rteim	mary reject cost is timate	
CHAI	TER 7	FINANCIAL AND ECONOMIC EVALUATION	
7.1	Task I	Now for Financial and Economic Evaluation	1-7-1
7.2	Financ	cial Evaluation	1-7-2
	7.2.1	Calculation Method	1-7- 2
	7.2.2	Calculation of Power Supply Cost	1- 7- 3
	7.2.3	Balance of Payments Calculation	I-7-6
	7.2.4	Initial Investment Structure	
	7.2.5	Examination of Village-wise Economic Indices	
	7.2.6	Funding Operational Structure	I-7-16
7.3	Econo	mic Evaluation	
	721	Posulte of Regnamic Analysis (R/C)	I-7-19

7.3.2	Sensitivity Analysis for Changes in Fuel Cost for Diesel Generation	1-7-20
7.3.3	Economic Evaluation of Change in Power Source for Present Illumination, TV and Radio Purposes	1-7-21
7.3.4	Study Benefit from Micro-hydropower	
7.4 Evalua	tion of Socio-economic Impacts to Result from	
Village	Electrification	1-7-25
CHAPTER 8	CONCLUSION AND RECOMMENDATION usion Drawn from Study	101
	mendations on Implementation	
Attachment-l Attachment-2		aluation

LIST OF TABLES

Table 1.5-1	Summary of the Changes of the Douars for the Study
Table 2.1-1	Area, Households, Population and Population Density of Haouz Province
Table 2.1-2	Areas of Cercle and Commune Rural in the Study Area
Table 2.1-3	General Features of the Study Area
Table 2.1-4	Changes of Population and Households in Haouz Province from 1960 to 1994
Table 2.1-5	Changes of Numbers of Communes Rurales in each Cercle
Table 2.1-6	Changes of Population and Households in Haouz Province from 1960 to 1994
Table 2.1-7	Annual Income of the Study Villages by Cercle
Table 2.1-8	Agricultural Land Holding in Haouz Province
Table 2.1-9	Land Holding in the Study Villages
Table 2.1-10	Gross Income from Major Crops
Table 2.1-11	Number of Livestock in Haouz Province
Table 2.1-12	Average Number of Livestock per Household in the Study Village
Table 2.1-13	Production Value of Livestock per Household in the Study Area
Table 2.1-14	Dominant Trees and Forest Area in Haouz Province
Table 2.1-15	Firewood Consumption per Household in the Study Villages
Table 2.1-16	Industrial Production and the Major Industrial Cooperatives in Haouz
	Province
Table 2.1-17	Handicraft Industry in Haouz Province
Table 2.1-18	Mining Production in Haouz Province and in Morocco
Table 2.1-19	Education System in Morocco (as of 1996)
Table 2.1-20	Education Rate and Attendance Rate in the Study Villages
Table 2.2-1	Distribution of the Study Villages
Table 2.3-1	Family Size and House Structure of the Sample Households
Table 2.3-2	Review of Declared Incomes of Agriculture and Livestock
Table 2.3-3	Household Budget and Working Members
Table 2.3-4	Annual Fuel Consumption per household in the Study Villages
Table 2.3-5	Annual Fuel Expenditure per household in the Study Villages
Table 2.3-6	Extension of Electric Appliances and Utilization per household in the
	Study Villages
Table 2.3-7	Opinion of the Village Leaders for Electrification
Table 2.3-8	Electric Appliances and Utilization Hours Desired by the Villagers
Table 2.3-9	Average Payable Expense per household declared by Village Leaders and
	Villagers
Table 2.3-10	Water Sources of Drinking and Irrigation Water in the Study Villages
Table 2.3-11	Satisfaction and Frequency of Water Shortage of Water Sources in the
	Study Villages
Table 2.3-12	Occurrence of Floods and Landslides in the Study Villages

Table 2.3-13	Over-cutting and Over-grazing in the Study Villages
Table 2.4-1	Beneficiary Villages and Households in the Azilal PPER Project
Table 2.4-2	Annual Incomes, Desired Expansion of Electric Articles and Payable Cost
	by the Sample Households
Table 2.4-3	Design Features of the Battery Charge Station
Table 2.4-4	Load Level Classification in Each Household
Table 2.4-5	Electrification Level Classification
Table 2.4-6	Recharge Frequency and Status of Electricity Use in Each Household
Table 2.4-7	Electrification Forecast
Table 2.4-8	Features of Villages under the Diesel Generating Plan
Table 2.4-9	Diesel Generating Equipment and Distribution Line
Table 3.2-1	Meteorological Data - Marrakech 1984-1991
Table 3.2-2	Estimated Annual Rainfall - Microhydro Potential Sites
Table 3.2-3	Runoff ratio - Existing Gauging Stations
Table 3.2-4	Specific Discharges - Existing Gauging Stations
Table 3.2-5	Mean Monthly and Annual Mean Discharges - Existing Gauging Stations
Table 3.2-6	Villages Concluded to Experience Low Sunshine Intensity
Table 3.3-1	Distance between Villages and Existing Transmission Line
Table 3.3-2	Nos. of Households and Residential Area Size of Villages
Table 3.3-3	Schools Targeted for Electrification
Table 3.3-4	Public Facilities and Industries Targeted for Electrification
Table 3.3-5	Status of Flour Milling Industry in the Villages
Table 4.1-1	Public Power Distribution Entities
Table 4.1-2	Annual Generated Power
Table 4.1-3	Annual Power Consumption
Table 4.1-4	Total Lengths of Transmission and Distribution Lines
Table 4.2-1	Breakdown by Method of Electrification
Table 4.2-2	Level of Household Electrification
Table 4.2-3	Micro-hydropower Sites under ONE Inventory Survey
Table 4.2-4	Projects with International Collaboration (completed or ongoing)
Table 4.2-5	Projects with International Collaboration (under planning)
Table 5.2-1	Scheme Features of Candidate Sites for Micro-hydropower
Table 5.2-2	Cost Comparison by Composition of Power Source
Table 5.2-3	Scheme Features of Project Sites under Master Plan
Table 5.2-4	Scheme-wise (Micro-hydropower) Target Villages
Table 5.2-5	Preliminarily Selected Villages for Electrification by Micro-hydropower
Table 5.3-1	First Year Investment Cost (Fixed Cost)
Table 5.3-2	20 Year Variable Cost with No Discount Rate
Table 5.3-3	20 Year Overall Cost with No Discount Rate
Table 5.3-4	20 Year variable Cost with 6% Discount Rate

Table 5.3-5	20 Year Overall Cost with 6% Discount Rate
Table 5.3-6	20 Year Variable Cost with 12% Discount Rate
Table 5.3-7	20 Year Variable Cost with 12% Discount Rate
Table 5.3-8	Ranking of 20 Year Overall Cost with No Discount Rate
Table 5.3-9	Ranking of 20 Year Overall Cost with 6% Discount Rate
Table 5.3-10	Ranking of 20 Year Overall Cost with 12% Discount Rate
Table 5.3-11	Ranking of 20 Year Overall Cost with Respective Discount Rates of 0%,
•	6% and 12%
Table 5.3-12	Basic Strategy for Electrification of Target Villages (comparison of overall
	cost including variable cost)
Table 5.3-13	Basic Strategy for Electrification of Target Villages (comparison of
	variable cost only)
Table 5.3-14	Selection of Power Supply Source (comparison of overall cost)
Table 5.3-15	Selection of Power Supply Source (comparison of variable cost)
Table 5.3-16	Final Results of Power Source Selection
Table 5.3-17	Villages to be Electrified by PV Generation
Table 5.3-18	Villages to be Electrified by Diesel Generation
Table 5.3-19	Villages to be Electrified by Micro-hydropower Generation
Table 5.3-20	Villages to be Electrified by Transmission Line Extension
Table 5.4-1	Power Demand (2000) for PV Generation
Table 5.4-2	Power Demand (2010) for Diesel Generation
Table 5.4-3	Power Demand (2010) for Transmission Line Extension
Table 5.4-4	Power Demand (2010) for Micro-hydropower Generation
Table 5.5-1	PV Module Composition
Table 5.5-2	PV Module Capacity (2000)
Table 5.5-3	Facility Output Under Diesel Generation (2010)
Table 5.5-4	Facility Output Under Micro-hydropower Generation (2010)
Table 5.5-5	Power System Load Under Extension of Existing Grid (2010)
Table 5.5-6	Facility Output for Ordinary Power Demand (Case-A)
Table 5.5-7	Comparison of Cost Effectiveness for Optimum Generating Scale
Table 5.5-8	Results of Study on Evaluation of Micro-hydropower Schemes
Table 5.6-1	Payment Framework Under Solar Home Systems (per household)
Table 5.7-1	Project Implementation Schedule
Table 6.3.1	Preliminary Estimate of Overall Project Cost
Table 6.2-1 Table 6.2-2	Breakdown of PV Generation Project Cost
Table 6.2-3	Breakdown of Diesel Generation Project Cost
Table 6.2-4	Breakdown of Micro-hydropower Project Cost
Table 6.2-4	Breakdown of Transmission Line Extension Project Cost (1/2)
1 adie 0.2-3	Dicardown of Figure 1990 in Date Date Island 1 Toject Cost (172)
Table 7.2-1	Monthly Cost to be Paid per Household (excluding operation cost)
Table 7.2-2	Monthly Cost to be Paid per Household (including operation cost)
Table 7.2-3	Overall Balance of Payment Calculation

The second

Table 7.2-4	Cost per kWh of Consumed Power (including operation cost)
Table 7.3-1	Setting of Conversion Factors
Table 7.3-2	Benefit-Cost comparison (Total Villages under Each Category of
	Electrification Method)
Table 7.3-3	Benefit-Cost Comparison (Assuming a Two Fold Increase in Fuel Cost for
	Diesel)
Table 7.3-4	Breakdown of Cost Elements, and Calculation of Monthly Shadow Prices

LIST OF FIGURES

Figure 1.4-1	Study Works Flow Chart
Figure 2.1-1	Income Composition in the Study Village
Figure 2.1-2	Road Network in the Study and Surrounding Area
Figure 2.2-1	Administrative Divisions of Haouz Province
Figure 2.4-1	Sites (PPER) Subject to Supplementary Survey
Figure 2.4-2	Distribution of Month-wise Electricity Consumption
Figure 2.4-3	Summer Load Curve (overall)
Figure 2.4-4	Summer Load Curve (phase-wise)
Figure 2.4-5	Winter Load Curve (overall)
Figure 2.4-6	Winter Load Curve (phase-wise)
Figure 3.2-1	Location Map - Existing & Installed Gauging Stations and Proposed Microhydro Sites
Figure 3.3-2	Meteorological Chart - Marrakech
Figure 3.2-3	Annual Isohyetal Curve
Figure 3.2-4	Mean Monthly Precipitation of the Gauging Stations
Figure 3.2-5	Estimated Temperatures - Existing Hydrological Stations
Figure 3.2-6	Estimated Temperatures - Microhydro Potential Sites
Figure 3.2-7	Linear Relationship between Annual Rainfall and Elevation
Figure 3.2-8	Mean Monthly Annual Discharge - Existing Gauging Stations
Figure 3.2-9	Distribution of Daylight Intensity in Morocco
Figure 4.1-1	Annual Generated Power by Hydropower (GWh)
Figure 5.2-1	Conceptual Diagram for Composition of Micro-hydropower and PV Generation
Figure 5.2-2	Location Map of Microhydro Generation Schemes
Figure 5.2-5	Site Location of Microhydro Generation: Adardour
Figure 5.6-1	Government Administrative Organization and Village Organization
Figure 7.2-1	Flow of Funding and Related Tasks

. Party. 3

ABBREVIATIONS AND UNITS OF MEASUREMENT

(1) Abbreviations

T

ADEME	Agence de l'Environnement de la Maitrise de l'Energie et le Ministère des Affaires Etrangeres de France	Development and Control Agency
BCS		Battery Charging System
CDER	Centre de Developpement des Energies Renouvables	The Center for Renewable Energy Development
CDS	·	Centralized Distribution System
Cercle	Cercle	District
COSPER	Comite de Suivi des Programmes d'Electrification Rurale	Committee of Supervision of Rural Electrification Program
C.R. / Commune R.	Commune Rurale	Rural Commune
DGLL	Direction Generale des Collectivites Locales	The Ministry of Autonomy
Douar	Douar	Village
EC	~	European Community
ECU		European Community Unit
El		Elevation above Sea Level
ERD	Electrification Rurale Decentralisee	Dicentralized Rural Electlification
GTZ	Deutche Gesellshaft für Technishe Zusammenarbeit (German)	
нн		Household
JICA		Japan International Cooperation Agency
KſW	Kreditanstelt fur Wiederaufbau (German)	
MEM		Ministry of Energy and Mining
MHG		Micro-hydropower Generation
M/M	-	Minutes of Meeting

ONE	Office National de l'Electricite	National Electric Power Corporation
ONEP	Office National de l'Eau Potable	The Waterworks Bureau
PERG	Programme d'Electrification Rurale Global	Global Regional Electrification Program
PNED	Programme National d'Electrification Decentralisee	Decentralized Electrification National Program
PNER	Programme National d'Electrification Rural	Rural Electrification National Program
PPER	Programme Pilote d'Electrification Rurale Decentralisee	Pilot Decentralized Rural Electrification Program
PSE	(German)	Special Energy Supplying Program
PSER	(German)	Regional Energy Supplying Program
PV		Photovoltaic
SAER	(German)	Regional Energy Supplying Program
SHS		Solar Home System
S/W		Scope of Work
USAID	-	United States Agency for International Development

ない

(2) Units of Measurement

Length		
nım	=	millimeter
cm	==	centimeter
m	=	meter
km	:3	kilometer
<u>Area</u>		
mm2	=	square millimeter
cm2	=	square centimeter
m2	==	square meter
ha	Ħ	hoctare
km2	==	square kilometer
Volume		
cm3	=	cubic centimeter
lit	=	liter
m3	=	cubic meter
Weight		
g	=	gram
kg	=	kilogram
ton	=	metric ton
Time		
s	==	second
min	==	minute
hr	==	hour
d	==	day
У	==	year
Electrical measures		
V	20	volt

To a

1

Other measures

%	=	percent
PS	==	horsepower
v	=	degree
,	F2	minute
••	==	second
°C	==	degree centigrade
10 ³	=	thousand
106	=	million
109	==	billion (milliard)
ppm	=	parts per million
рН	=	scale of acidity

Derived measures

nus	==	cubic liters per second
m3/s	==	cubic meters per second
Wh	==	watt hour
kWh	=	kilowatt hour
GWh	22	gigawatt hour
kWh/y	=	kilowatt hours per year
kVA	=	kilovolt ampere
rpm	==	revolutions per minute

Money

DH	=	Dirham
US\$	==	US dollar
		(US\$1 = DH9.31
		as of May 1997)
¥	=	Japanese Yen
		(US\$1 = \$115.0
		as of May 1997)

V	22	volt
kV	**	kilovolt
Α	=	ampere
W	==	watt
kW	=	kilowatt
MW	=	megawatt
GW	74	gigawatt
Wp		watt peak
kWp	=	kilowatt peak