Japan International Cooperation Agency (JICA) Ministry of Natural Resources Republic of Malawi

-15

FINAL REPORT OF THE MASTER PLAN STUDY ON SUSTAINABLE MULTIPLE-USE RESOURCE MANAGEMENT OF NKHOTAKOTA WILDLIFE RESERVE, MALAWI

(DATA)

January 1997

Japan Overseas Forestry Consultants Association (JOFCA) Pasco International Incorporated

> 」。LiBRARY 1140021 (5)

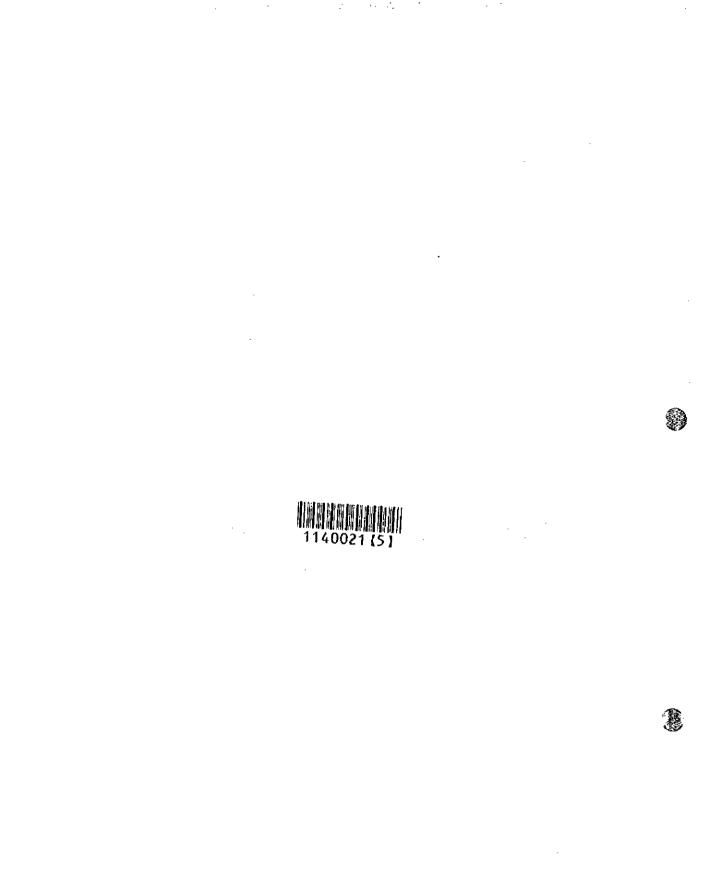
1

No

· .

· · ·

Japan International Cooperation Agency (JICA)


Ministry of Natural Resources Republic of Malawi

發

FINAL REPORT OF THE MASTER PLAN STUDY ON SUSTAINABLE MULTIPLE-USE RESOURCE MANAGEMENT OF NKHOTAKOTA WILDLIFE RESERVE, MALAWI (DATA)

January 1997

Japan Overseas Forestry Consultants Association (JOFCA) Pasco International Incorporated

Contents

1.	Data concerning Social and Economic Conditions of Malawi	1
2.	Locations of Scout Camps in the Reserve	11
3.	Aerial Survey Method of Major Wild Animals	15
4.	Animal Population Estimate by Aerial Survey	31
5.	Major Wild Animal Distribution Maps based on Aerial Survey	37
6.	Results of Animal Ground Survey.	47
7.	List of Birds in the Nkhotakota Wildlife Reserve	51
8.	Results of the Fish Survey	61
9.	Forest Survey Method	67
10.	Results of Forest Survey	77
11.	List of Tree Species Identified in the Forest Survey	83
12.	Results of the Forest Survey by Plot in the Reserve	87
13.	Sectional Profile and Crown Projection Diagram of Forest Survey Plots	101
14.	List of Understory Plants in the Reserve	111
15.	Results of the Understory Vegetation by Quadrat	117
16.	Medicinal Plants and Their Use in Malawi	125
17.	Data on Subcontracted Social Analysis Survey	131
18.	Questionnaire for Social Analysis (typification)	149
19.	Questionnaire for Social Analysis (sampling)	167
20.	Commodity Prices in Nkhotakota Town (August, 1995)	183
21.	Data concerning Plan for Securing Fuelwoods	187
22.	Procedure of LANDSAT Data Analysis	193
23.	Land Cover Area and Land Cover Change Diagram	201
24.	Land Use and Vegetation around the Reserve.	213
25.	Standards for Interpreting Aerial Photographs and Area by Forest Type	217

.

Ì

·. .

and the second second

•

.

.

.

•

 \bigcirc

.

.

•

1. Data Concerning Social and Economic Conditions of Malawi

.

1

.

.

.

.

1

.

.

· · · ·

0

	1977			1987			Annual
	Total	Male	Female	Total	Male	Female	increase
Northern Region	648.853	306.864	341.989	911.787	441.290	470.497	3.4
Central Region	2.143.716	1.044.321	1.099.395	3.110.986	1.521.234	1.589.752	3.7
Southern Region	2.754,981	1.322.404	1,432.487	3.965.734	1,904.612	2,061,122	3.7
Nationwide	5.547.460	2.673.589	2.873.871	7,988,507	3,867,136	4.121.371	3.7

Source: Malawi Population and Housing Census 1987, Summary of Final Results Vol. 1

Table 2 Birth and Death Rates per 1000 Persons in Malawi

Birth Rate	46.7 ‰
Death Rate	16.9 ‰
Infant Death	13.4 ‰
Natural Increase	33.0 %
	100.44

Source: "Malawi in Figures 1994"

- **R**

Table 3	Populations	around	the	Reserve	by Di	strict
						-

		(persons)
Year	1977	1987
Nkhotakota	94,370	158,044
Kasungu	194,436	323,453
Ntchisi	87,437	120,860
Mzimba	301,361	433,696

Source: The figures for 1977 and 1987 were drawn from the Malawi Government, Malawi Population and Housing Census 1987, Vol.1

Table 4 Population by Age (%) according to the 1987 Census

	0-14	15-64	65 or older	Unknown
Malawi	46.0	49.7	4.2	0.1
Central Region	46.6	49.4	3.9	0.1
Kasungu District	44.7	52.4	2.9	0.0
Nkhotakota District	45.2	50.8	4.0	0.1
Ntchisi District	47.7	47.8	4.4	0.1
Northern Region	46.1	49.6	4.3	0.0
Mzimba District	45.7	50.0	4.3	0.0

Source: Malawi Government, Malawi Population and Housing Census 1987, Vol 1

-

Minister of	First Vice President & Minister of Defence Minister of Economic Minister with	tno	President Second Vice President & Minister Irrigation and Water Development Minister of External Minister of Informatic	Second Vice President & Minister of Irrigation and Water Development External Minister of Information	Minister of 1 and
Finance Minister of Education	Planning & Development Minister of Health & Population	Portfolio (unassigned) Minister of Home Affairs	nist	Broadcasting, Posts & Telecommunications er of Minister of sm Agriculture & Livestock	Planning & Surveys Minister of Women, Youth, Community Development &
Minister of Lands & Valuation	Minister of Relief & Rehabilitation Affairs	Minister of Natural Resources	Attorney General & M Ministry of Justice G	Minister of Local Government & Rural Development	Minister of Housing
Minister of Works & Supplies	Minister of Youth. Sports & Culture	Minister of Research & Environmental Affairs	Minister of Minister Commerce and Mining Industry	Minister of Energy & Mining	Minister of Labour Manpower Development

. . .

Fig. 1 Organization Structure of the Malawi Government Administration

.

.

0

9

•••

Year	1991	1992	1993	1994	1995
All Commodities	108.2	133.4	163.8	220.5	404.2
Foods	108.4	138.9	175.6	242.9	468.6
Beverages	106.5	137.4	180.1	259.8	463.6
Clothing	104.8	114.4	126.2	149.3	231.9

Table 5 Changes in Consumer Price Indexes

Source: Monthly Statistical Bulletin, January 1994, January 1995 and February 1996 Note: Beverages include tobacco, and clothing includes footwear.

.

					(million MK)
Sector	1988	1989	1990	1991	1992
Agriculture	318.7	326.6	323.5	364.6	275.0
Industry	102.8	110.6	124.0	128.1	131.8
Expendables	19.1	20.7	23.1	24.5	26.1
Construction	38.1	40.5	41.5	44.3	39.3
Distribution	102.0	113.8	132.7	147.7	141.0
Transportation & Communications	51.6	53.7	57.6	60.4	57.5
Business Services	54.8	59.8	67.1	71.9	71.9
Real Estate	37.7	39.8	42.5	43.9	44.9
Government Works	182.8	184.7	187.5	193.3	191.7
Social Services	39.8	41.1	42.5	43.9	45.9
Adjusted Value (-)	21.1	23.1	25.9	27.8	27.8
Total	926.4	968.3	1,016.2	1,095.0	997.3
Per capita (MK)	112.4	113.8	115.7	120.8	107.3

Table 6 Malawi's GDP by Sector

Source: National Statistical Bulletin (National Statistical Office) 1994

.

····	Сгор	Агеа	Output	Productivity
Maize		1,327,000 ha	1,997,000 tons	1,504 kg/ha
	Indigenous	997	979	982
	Hybrid	326	1,012	3,101
	Compo	4	6	1,494
Rice		39	72	1,859
	Faya	27	42	1,574
	IET 4094	4	15	4,066
	IR 1561	1	7	5,298
Tobacco		44	33	730
	Dark Fired	21	11	519
	Burley	20	21	1,037
	Others	3	1	500
Grandnuts		61	32	524
	Chalimbana	55	28	502
	Manipinta	1	2	1,421
	Others	5	2	600

 Table 7
 Cultivated Areas and Output of Main Crops in 1993

Source: Annual Bulletin (Ministry of Agriculture Statistics) 1993

Table 8	Values of	Crops	through	ADMARC
		~ · · · · ·		• • • • • •

· ·				(mi	llion MK)
Сгор	1988	1989	1990	1991	1992
Tobacco	10.5	9.8	41.6	19.9	34.3
Peanuts	10.9	0.4	4.1	8.7	0.6
Maize	23.3	57.4	53.5	160.3	13.0
Rice	1.5	3.3	2.8	1.5	0.5
Cotton	15.2	20.3	24.8	54.7	11.1

Source: Malawi in Figures (National Statistical Office) 1993

Table 9 Output of Main Crops in Estates

(thousand tons)

								(Jana con
	1987	1988	1989	1990	1991	1992	1993	1994	1995
Tobacco	72.5	75.0	86.3	101.0	113.4	127.2	130.4	. .	•
Tea	31.9	40.2	39.5	38.9	40.5	28.1	39.5	35.1	34.2
Sugar	172.0	174.5	162.2	189.3	191.1	200.4	114.2	203.0	426.6

Source: Monthly Statistical Bulletin, January 1994, January 1995 and February 1996 Note: The output of tobacco represents only those sold at auction.

								100 fo	r 1984
	Weight	1988	1989	1990	1991	1992	1993	1994	1995
All commodities	100	106.6	115.8	131.8	138.6	137.0	129.2	122.9	124.5
Domestic production	63	107.5	120.1	133.8	140.7	138.1	123.6	116.0	113.8
Consumer goods	45	111.3	122.8	137.0	146.8	142.9	131.5	148.6	125.6
Foods, beverages. tobacco	13	127.6	152.1	162.5	150.0	158.8	162.0	150.0	156.3
Clothing. footwear, textile	9	64.2	66.4	76.8	114.7	99.4	79.5	69.8	56.6
Others	23	120.5	128.3	146.0	157.5	151.0	134.7	130.0	135.4
Building materials	18	98.0	113.3	126.0	125.4	126.2	103.8	86.7	84.1
Production for export	23	95.2	95.1	117.8	123.4	116.6	121.9	109.1	122.4
Power and water supply	14	121.7	130.8	145.5	154.0	164.0	166.5	176.3	176.0

 Table 10
 Industrial Production Indexes

Source: Monthly Statistical Bulletin, January 1994, January 1995 and February 1996

- -

. .

1

Sector	Total	Mlimi	Employed	Family-sized management	Self- employed	Employer	Un- employed
Total	3.457.753	2.684.045	549,130	11.366	166.801	1.061	45,350
Professional/ technician	47.846	190	43,185	70	3,599	24	778
Administration/ management	3,172	+	2,980	7	123	26	32
Clerical work	39.795	102	38,744	37	286	12	614
Sales	75,924	92	15.575	3,129	56.544	219	365
Services	98,997	237	95,206	252	2.020	34	1,248
Agriculture. forestry & fishery	2.939.034	2.682.827	203.410	4,418	45,121	524	2,734
Manufacturing/ transportation	171.337	375	112.426	1,407	54,476	174	2,479
Others	81.648	218	37.604	2.046	4.632	-48	37,100

Table 11 Workers by Sector

Source: National Statistical Office, 1993, Malawi Population and Housing Census 1987, Volume III Economic Characteristics, p.455-458

· . ·

	- -			T		,		(millio	n MK)
Year	Total value of exported	T	ea	Tot	рассо	Su	gar	Sub	total
	domestic products	Value	Share	Value	Share	Value	Share	Value	Share
1984	431	· 113	26.2	226	52.4	29	6.7	368	85.4
1985	411	91	22.1	185	45.0	52	12.7	328	79.8
1986	450	69	15.3	245	54.4	42	9.3	356	79.1
1987	601	61	10.1	373	62.1	63	10.5	497	82.7
1988	742	80	10.8	475	60.0	69	9.3	624	84.1
1989	730	101	13.8	458	62.7	65	8.9	624	85.5
1990	1,106	125	11.3	778	70.3	77	7.0	980	88.6
1991	1,299	104	8.0	982	75.6	80	6.2	1,165	89.7
1992	1,401	107	7.6	1.030	73.5	. 98	7.0	1,335	95.3
1993	1,370	157	11.5	938	68.5	69	5.0	1,164	85.0
1994	2.722	261	10.0	1.689	62.0	224	8.2	2,174	80.0
1995	5,996	414	7.0	3.915	65.3	405	6.8	4.734	80.0

Table 12 Malawi's Export Values

Source: National Statistical Office. Monthly Statistical Bulletin, June 1994 and February 1996

lion MK) I	(1111	Exports	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Balance	Total	Reexported products	Domestic products	Total value of imports	Year
-74	289	6	283	363	1983
+59	441	10	431	382	1984
-84	422	11	411	506	1985
-15	464	14	450	479	1986
-45	613	13	601	658	1987
-328	752	30	742	1,080	1988
-657	742	12	730	1.399	1989
-620	1,134	28	1.106	1.575	1990
-643	1.333	34	1.299	1.976	1991
-1,151	1,441	40	1,401	2,592	1992
-995	1.410	40	1,370	2.405	1993
-1.158	2,812	82	2.722	4.264	1994
-1.062	6,193	197	5,996	7.255	1995

Table 13 Themes in Malawis Haue	Table 13	Trends in Malawi's Trade
---------------------------------	----------	--------------------------

Source: National Statistical Office. Monthly Statistical Bulletin. June 1994 and February 1996

				(Output in ton:	
Year	Est	ate	Smallholder		
	Output	kg/ha	Output	kg/ha	
1990	64,019	1,150	14,001	449	
1991	75,013	1,196	15,735	541	
1992	118,000	1,200	12,523	500	
1992	118,000	1,200	12,523	500	

Table 14	Tobacco
----------	---------

Source: Tobacco Control Commission (Lilongwe 1992)

赣

Note: Figures reflect only the Frue Cured variety, cultivated by an overwhelming number of estates and smallholders.

Year	Est	ate	Smallholder		
	Output	ton/ha	Output	ton/ha	
1990	189,261	12.62	8,361	10.05	
1991	191,125	12.74	10,078	10.05	
1992	243,895	16.15	10,033	11.75	

Table 15 Sugar Cane

(Output in 1,000 tons)

Note :There were no statistics available on local maize in 1990/1991.Source:Dwanga Sugar Corporation and Smallholder Sugar Authority Dwanga

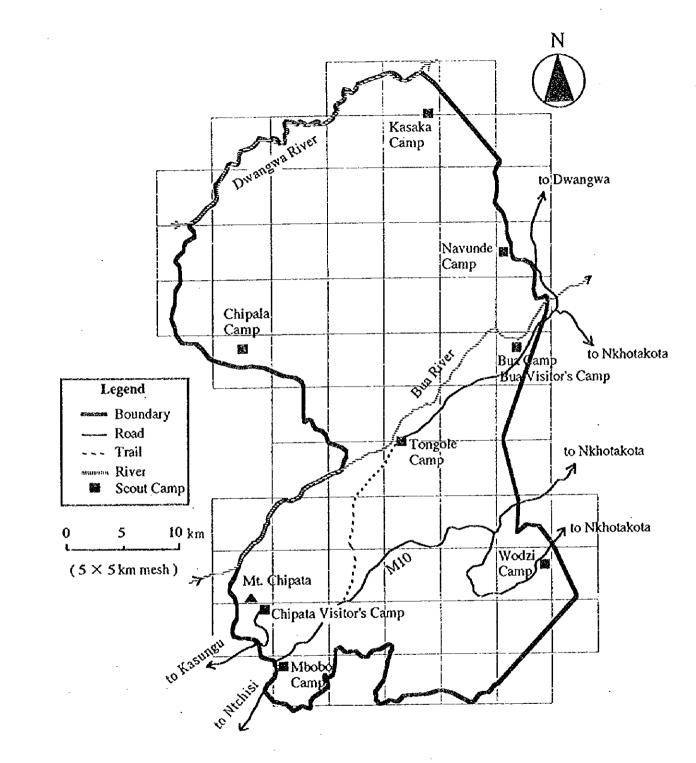
Table 16 (a) Cultivated Area (ha) and Output (tons) of Local Maize

Dis	strict	1988/89	1989/90	1990/91	1991/92
Kasungu	(area)	59,948	68,400	-	70,000
Ū	(output)	65,943	74,615	-	48,441
Ntchisi	(area)	26,333	25,823	•	24,256
	(output)	41,869	28,405	-	17,552
Nkhotakota	(area)	7,600	7,700	-	7,950
·	(output)	8,360	6,100	-	3,187
Mzimba	(area)	32,704	35,509	-	32,123
	(output)	19,622	26,486		16,662

Di	strict	1988/89	1989/90	1990/91	1991/92
Kasungu	(area)	8,494	11,750	12,967	12,874
	(output)	22,084	30,550	35,011	20,221
Ntchisi	(area)	2,810	3,702	5,875	8,089
	(output)	10,762	10,921	22,014	19,458
Nkhotakota	(area)	1,500	2,200	2,790	3,106
	(output)	4,800	6,380	7,812	3,466
Mzimba	(area)	3,950	9,649	5,898	5,984
	(output)	12,810	28,461	15,561	12,078

Table 16 (b) C	ultivated Area (ha) and Output (tons) of Hybrid Maize
----------------	---

Source:


Annual Bulletin (Ministry of Agriculture Statistics) 1993 There were no statistics available on local maize in 1990/1991. Note :

.

2. Locations of Scout Camps in the Reserve

蒋

.

A Location Map of Scout Camps

. .

. .

· · · ·

.

3. Aerial Survey Method of Major Wild Animals

.

.

.

.

.

Aerial Survey Method of Major Wild Animals

The objective of this survey was to obtain the population estimates, densities and distribution of major wildlife species in the Nkhotakota Wildlife Reserve. Data was collected by experienced DNPW observers from an aerial survey using a rotary wing aircraft.

1 Study Method

The study area included the whole of the reserve area and was divided into grid cells as described in the following sections.

(1) Survey area

The area for the purposes of this survey was decided according to Universal Transverse Mercator (UTM) grid alignment as described in the following paragraph. The extent of the area was to include the reserve boundary as defined in 1:50,000 topographical maps to each half grid cell unit where the boundary falls within the transects were to be flown (Fig. 1). Details of transect limit decisions are as follows.

The following options were assessed on deciding the start and end points for the transects flown on the grid cell center.

- 1) To where the transect line crosses the boundary
- 2) To the full length of each grid cell where the transect line crosses the boundary
- 3) To the maximum length of where the boundary reaches in each cell
- 4) To the full length of each grid cell within which any portion of the reserve falls
- 5) To the full length of each half grid cell unit within which any portion of the reserve falls

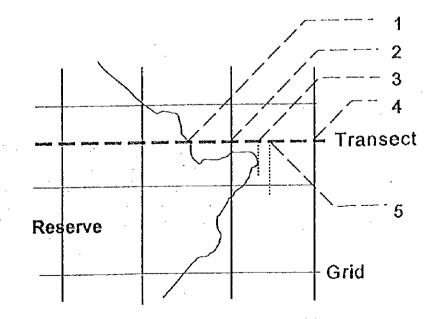


Fig. 1 Transect Limit Decision

The fifth option was considered most applicable due to difficulties in determining the exact boundary on the ground. It also retained possibilities to adjust data when found necessary at a later stage, while it maximizes the use of flight hours.

Planned transect flight lines were drawn on 1:50,000 maps and coordinates were examined where each transect crossed the reserve boundary as defined in the maps. Each grid unit was then determined according to the above mentioned criteria.

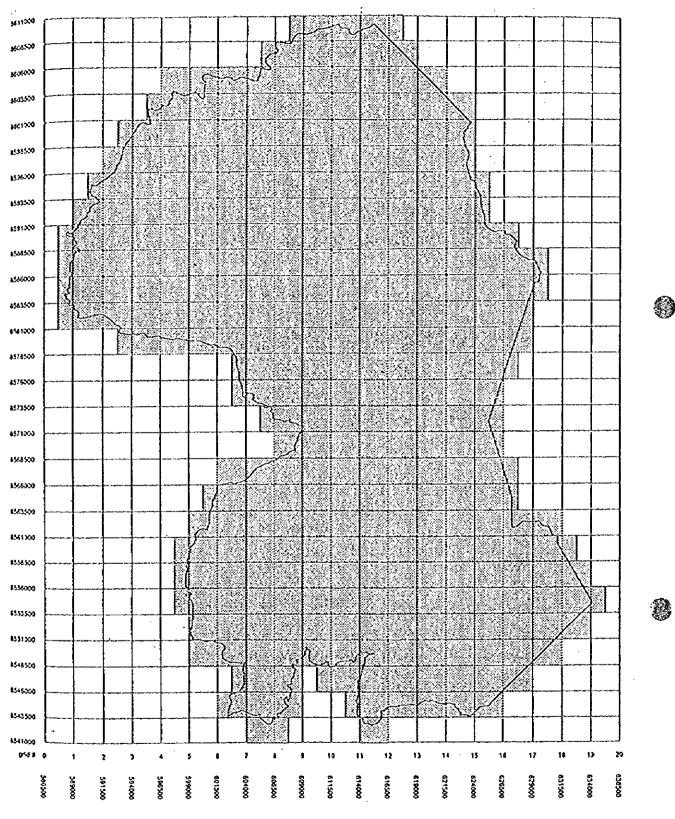
(2) Study Grid

Based on the experience and knowledge of the Study Team's animal survey chief in the area, the Reserve was divided according to an arbitrary "best fit" principle between scout patrol blocks (5 km grid) and the UTM grid to the closest 1000 units. The resulting 5 km grid was further divided into a 2.5 km grid for the purpose of the study. Figures 2 and 3 show the study UTM grid and its comparison with the "Scout Patrol" grid UTM grid coordinates were employed for referencing information as well as navigation using a portable Ensign GPSTM (Trimble Navigation Limited). In addition to UTM coordinates, geodetic coordinates were also assigned to the study grid (Table 1a, b) to seek compatibility with the Pixis GPSTM (Sony), also to serve as a back up option in case of Ensign GPS failure.

Geodetic coordinates were given to matching UTM coordinates by assigning the center reference point to [36 609000 L 8581000] and drawing lateral and longitudinal UTM base line from the center point.

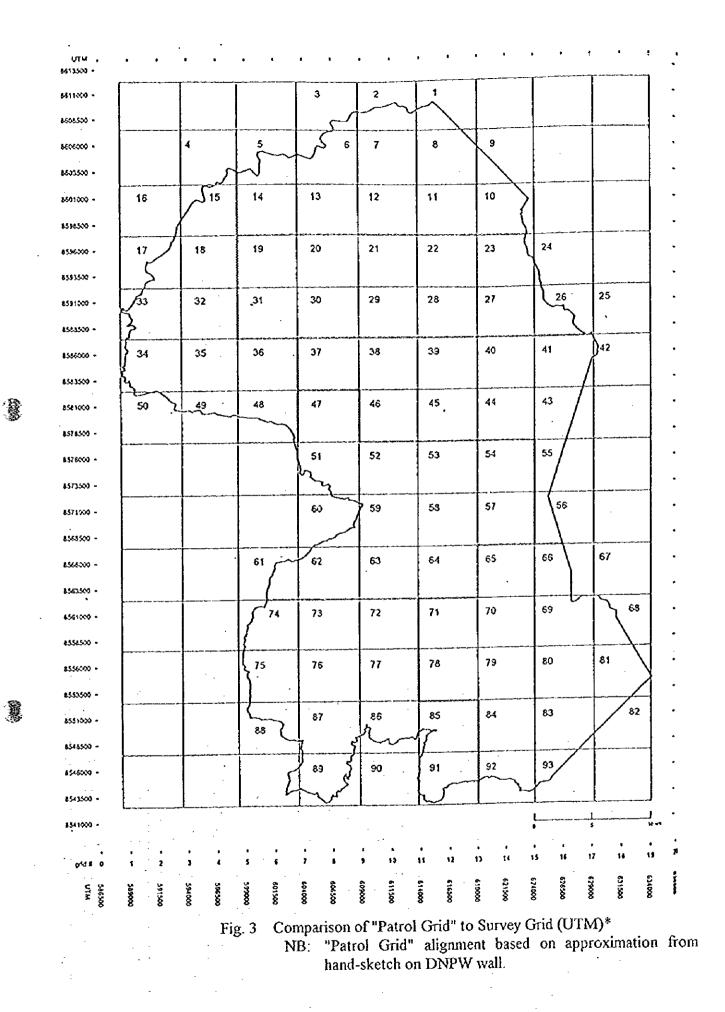
Conversion of base line coordinates was done by inputting UTM coordinates into Ensign GPS (Trimble Navigation Limited) and converting the reading into latitude/longitude display. Geodetic datum used in the study area was ARC 1950 for Malawi location, with the following constants for Molodensky Datum Transformation procedure.

 ΔX =-161 ΔY =-074 ΔZ =-317


Conversion was performed according to a custom datum created by the above constants inputted into the GPS.

Longitudinal UTM grid coordinates were input on the [L 8581000] baseline from [36 586500] to [36 636500] at 2500 unit intervals. The converted geodetic longitude reading was assigned to each UTM grid point, while the grid latitude was uniformly assigned the center reference reading. The same procedure was followed to obtain geodetic latitude readings on the [36 609000] baseline from [L 8541000] to [L 8611000]

(3) Grid errors


Deviation between UTM and geodetic grids in the study area were calculated as to be approximately 160 m at its maximum. This fell within the GPS error margin and the two grid systems were therefore assumed to be identical for the purpose of the survey.

UTM grid north and true north deviations were in the range of 11' to 16' at the centers of 1:50000 sheets used in the study and were assumed negligible for survey purposes.

• • •

Fig. 2 Survey Area and Grid (UTM)

Table 1 a.	Survey Grid UTM -	Geodetic Coordinate C	onversions (Y baseline)
------------	-------------------	-----------------------	-------------------------

.

.

.

UTMJ 36	<u> </u>		L (S)		n. (E)	spacing	trar	sect	spacing	X	Y
609000	8611000		33.770'		00.203'	-		•	-	09	28
609000	8608500	12°	35.127'		00.208	1.357	12"	34.449'	•	09	27
609000	8606000		36.483'		00.213'	1.356'	12"	35.805'	1.357'	09	26
609000	8603500		37.839		00.218'	1.356'	12"	37.161'	1.356'	09	25
609000	8601000	12"	39,195'		00.224	1.356	12'	38.517	1.356	09	24
609000	8598500	12°	40.551'		00.229'	1.356'	12°	39.873	1.356	09	23
609000	8596000	12°	41.908	034°	00.234'	1.357'	12°	41.230'	1.357*	09	22
609000	8593500		43.264'		00.240'	1.356'	12"	42.586	1.357'	09	21
609000	8591000		44.620'		00.245'	1.356'	12°	43.942'	1,356'	09	20
609000	8588500		45.976'	034°	00.250'	1.356	12°	45.298'	1.356'	09	19
609000	8586000		47.333'	034°	00.256'	1.357	12*	46.655	1.357*	09	18
609000	8583500	12°	48.689'		00.261'	1.356	12°	48.011	1.357'	09	17
609000	8581000	12°	50.045	034°	00 266	1.356	12*	49.367	1.356'	09	16
609000	8578500	12°	51.401'	034°	00.272'	1.356	12'	50,723	1,356'	09	•• ••••
609000	8576000	12°	52.757'	034°	00.277	1.356	12'	52.079'	1.356'	09	14
609000	8573500	12°	54.114'	034°	00.2831	1.357'	12°	53.436	1.357'	0 9	13
609000	8571000	12°	55,470'	034°	00.288'	1.356	12°	54,792'	1.357	09	12
609000	8568500	12"	56.826'	034°	00.294'	1.356'	12°	56.148'	1.356'	09	11
609000	8566000	12'	58,182'	034°	00.299'	1.356	12*	57,504	1.356'	09	10
609000	8563500	12°	59.538'	034°	00.304'	1.356	12°	58.860	1.356'	09	09
609000	8561000	13°	00.895'	034°	00.310'	1,357'	13°	00.216'	1,357'	09	80
609000	8558500	13'	02.251	034°	00.315'	1.356	13°	01.573'	1.357'	09	07
609000	8556000	13°	03.6071	034°	00.321	1.356	13°	02.929	1,356'	09	06
609000	8553500	13'	04.963'	034°	00.326'	1.356	13°	04.285'	1.356'	09	
609000	8551000	13°	06.319'	034°	00.332'	1.356	13°	05.641	1.356'	09	
609000	8548500	13°	07.676	034°	00.337	1.357	13°	06.998'	1.357	09	
609000	8546000	13°	09.032'	034°	00.343'	1.356	13"	08.354'	1.357	09	
609000	8543500		10.388'		00.348'	1.356	13°	09.710	1.356	09	
609000	8541000		11.744'		00.354'	1.356		11.066'	1,356'	09	
werage spacing					1,356'			1,356'			

Table 1 b. Survey Grid UTM - Geodetic Coordinate Conversions (X baseline)

(UTM) 36	L	La	at (S)	Lon. (E)		spacing	mid-point		spacing	X	Y
586500	8581000	12°	50.088'	033°	47.827	•			-	00	16
589000	8581000	12°	50.083	033°	49.209'	1.382'	033°	48.518	-	01	16
591500	8581000	12°	50,079'	033°	50.591'	1.382'	033°	49.900'	1.382'	02	16
594000	8581000	12°	50.075	033°	51.974'	1.383'	033°	51.283'	1.382	03	16
596500	8581000	12°	50.070	033*	53.356'	1.382	033°	52.665'	1.383'	04	16
599000	8581000	12°	50.065'	033°	54.738'	1.382'	033°	54.047'	1,382'		16
601500	8581000	12"	50.060'	033°	56.120'	1.382'	033°	55.429'	1,382		16
604000	8581000	12°	50.055'	033°	57.502'	1.382'	033*	56.811'	1 382	07	16
606500	8581000	12°	50.050'	033°	58.884'	1.382'	033°	58,193'	1.382	80	
609000	8581000	12	50.045	034*	00,266	1.382'	033°	59.575'	1.382	09	
611500	8581000	12°	50.040'	034°	01.649	1.383'	034°	00.957'	1.382		16
614000	8581000	12°	50.039	034°	03.031	1.382"	034°	02.340	1.383'		16
616500	8581000	12"	50.029'	034	04.413'	1,382'	034°	03.722	1.382	12	16
619000	8581000	12°	50.023'	034°	05.795	1,382'	034*	05.104'	1.382'	13	16
621500	8581000	12°	50.017	034°	07.177	1.382'	034°	06.486'	1.382	14	16
624000	8581000	12°	50.011'	034°	08.559'	1.382	034*	07.868'	1.382'	15	16
626500	8581000	12'	50.005'	034*	09.941'	1.382'	034	09.250'	1,382'	16	16
629000	8581000	12°	49,999'	034°	11.323	1.382	034"	10.632'	1,382	17	16
631500	8581000	12°	49.993'	034*	12.705'	1.382°	034°	12.014'	1.382	18	16
634000	8581000	12°	49,986'	034°	14.087	1.382'	034°	13.396'	1.382	19	16
636500	8581000	12°	49.980'	034°	15.469'	1.382'	034°	14.778	1,382	20	
Average spaci	ng					1.382'			1.382'		

ß

2 Survey Planning

(1) Transect Setting and Alignment

Conventional fixed wing transect sampling methods were followed aimed at maximum accuracy and precision per unit effort in counting multiple species. Transects were flown in an east-west direction for the reason that most valleys run in a north-south direction aligned to the Great Rift Valley. Transects flight plans were drawn onto 1:50,000 map sheets according to the study area boundary in 2.5 km and 1.25 km intervals for northern and southern strata respectively as described in detail in the following section.

Each transect was assigned a number corresponding to the longitudinal UTM grid reading where it was planned to fly. This was to enable exact identification of the transect in terms of navigational purposes as well as data storage, thus preventing problems of "lost flight plans" or "unknown" transect placements.

(2) Stratification

An initial total of 28 transects were flown at 2.5 km intervals over the center of all grid cells as the first "series 2500" to examine the general wildlife distribution inclination noted in previous studies and to justify their stratification procedures. Stratification in this survey was performed according to the number of observations per cell (Fig. 4) dividing the Reserve into two blocks, namely northern and southern blocks. The southern block observations per cell and observations per sample area were more than twice of these in the northern block.

An additional set of 12 transects at 2.5 km intervals offset by 1.25 km to the north (series 1250) were flown in the southern block resulting in a final coverage by 1.25 interval transects. Former "series 2500" transects of the southern block were reassigned "series 2500b" with transect spacing descriptions corrected to 1.25 km, and combined with "series 1250" data. The resultant transect flight plan of all transects is given in Fig. 5.

(3) Aircraft and observer/recorder

Animals were counted from a rotary wing aircraft Aerospatiale écureuil AS 350 L1 of the Malawi Army Air Wing flying at 300 ft (91.4 m) ground height and 40 knots (74.1 kph) ground speed. Observers were recommended from the DNPW as experienced in the practice and accountable for accurate observations of the native species. The observers were not changed during the survey creating a safe margin on consistency of observations.

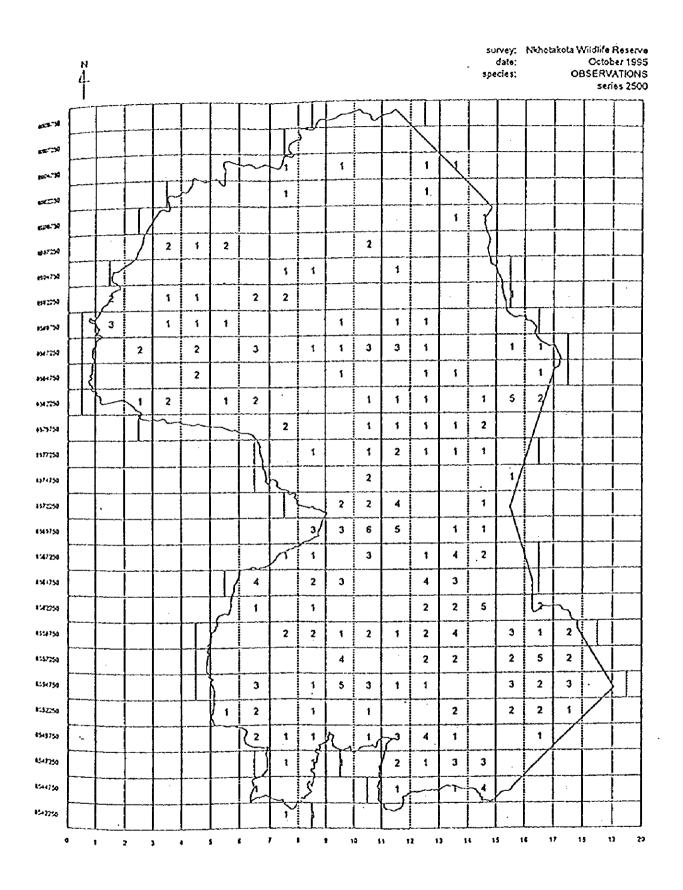
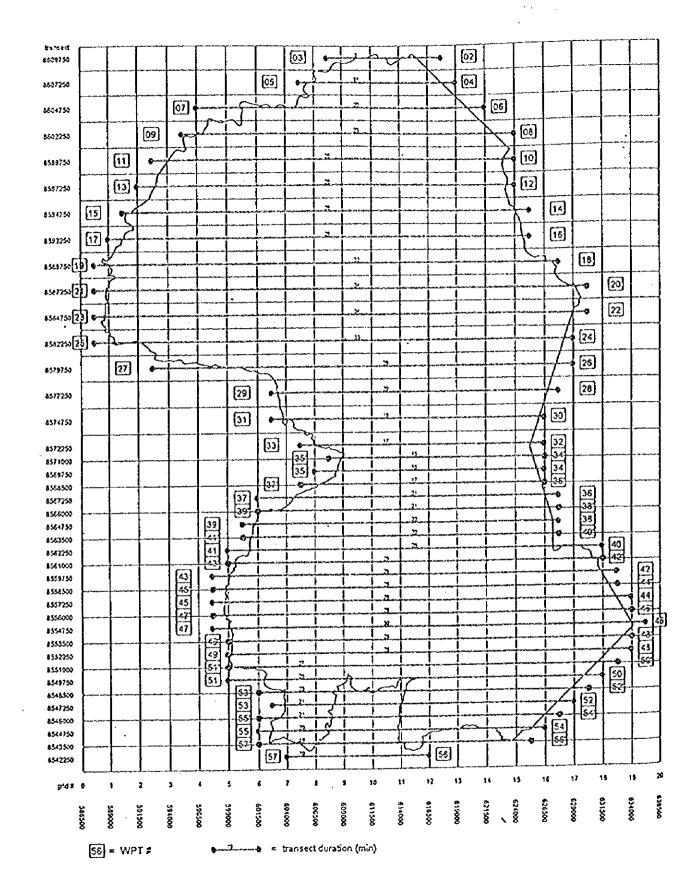
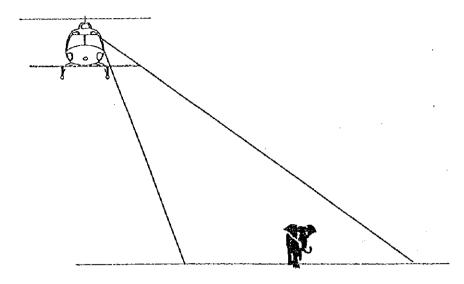



Fig. 4 The Number of Obervation per Cell

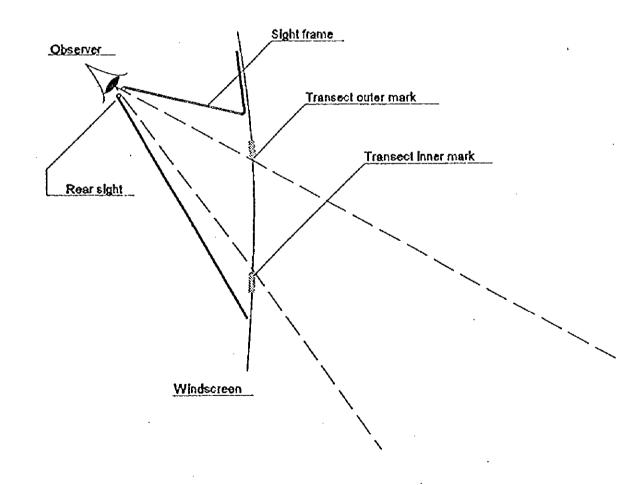
۰.


24

8

Ś

Fig. 5 Flight Plan of All Transects (October 1995)



1) Transect markers

In order to follow basic methods of fixed-wind transect sampling surveys, several modifications were made to the aircraft. Preparations were made to install transverse beams to the aircraft's landing gear, onto which transect markers attach as on wing struts of fixed wing aircrafts (Fig. 6). Fabrication of the device was conducted through extensive technical assistance from the Malawi Army Air Wing engineers. While technical matters were mostly solved, procurement of the aircraft's manufacturer clearance on additional attachments did not materialize during the given time schedule, resulting in the team of abandoning the external device at the last stage.

An alternative internal device was adopted using a sight frame (Fig. 7) to fix the eyepoint, and windscreen transect markers. Being aware of a previous helicopter survey conducted in Malawi resulting in poor quality output, particular attention was given to properly fix the transect width.

Fig. 7 Sight Frame

The sight frame was fabricated from heavy gauge steel wire, and was adjusted to allow the rear sight to be exactly where the observer's eyepoint settles when at a fully comfortable observation posture. After final adjustments, the frame was secured to the aircraft windscreen of the observer's seats. The observer seat's sliding door was prohibited from being fully opened during the operation, preventing the sight frame from distortion or misalignment.

Observations were done with a fixed eyepoint through the rear sight and between transect markers (Fig. 8). Marker measurements were taken twice on pre-operation and post-operation occasions to allow the collection of transect measurements when the observer is closest to the actual posture taken during operation.

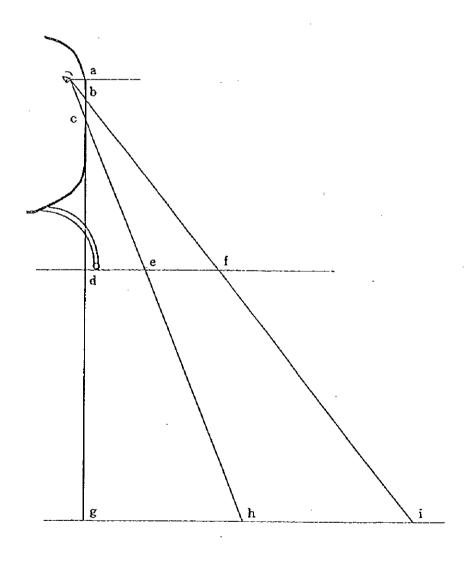


Fig. 8 Transect Marker Measurement

2) Calibration

Calibration of transect strip width was done by observing white and red markers placed every 10 m and 50 m respectively, each made of 90 x 50 cm cloth nailed to the Nkhotakota airstrip to a total length of 600 m. Observed markers were recorded according to a calibration data sheet with ground height simultaneously recorded for each pass. Careful examination was conducted on calibration of flight results and compared against the above mentioned transect marker measurements. The measured transect marker strip width nearest to the overall fly-by average was applied as calibrated strip width for each side, assuming the observer's posture during measurement is identical to that of actual observation when airborne. Resulting left and right calibrated strip widths were 83 m and 74 m respectively. Although hovering observations were conducted on four passes, calibration measurements were later discarded in the process. This was due to the tendency of larger strip widths, i.e., 13% (right observer) to 33% (left observer) wider compared to 40 knot fly-by averages. The tendency was most probably caused by elaborate efforts to see as many markers as possible by shifting the eyepoint, an exercise which does not occur during normal observations.

3 Aerial Survey Operation

A total of 29.1 hours was flown in an 8-day operation included in the total flight hours are general testing, calibration, positioning, and hippopotamus surveys outside of the Reserve.

(1) Transect Strip Width

The calibrated strip width of 300 feet ground height were adjusted for actual observation strip widths during operation. Actual ground height readings from the radar altimeter were regularly recorded at 1.25 km intervals. The mean ground height was calculated from the readings and applied to the calibrated strip width to obtain mean actual strip width for each transect.

(2) Observation and Recording

Routine aerial survey operations in Malawi are conducted with each observer acting as a recorder for his own observation while the front seat observer is occupied with navigation and other general observations. As this study demanded the observers to be fully concentrated in observation, recording was done by an independent recorder seated between the two rear seat observers. Although the initial observation/recording design required the front seat team member to navigate, observe and record, intercom settings were not complete at the time of the survey to allow full interactive communications among all team members on board the aircraft, forcing the partial separation between front and rear seats.

The GPS was attached to the front windshield for receiving signals and the display was not visible from the rear seat. Therefore grid positions were notified to rear seat recorder by an audible call accompanied by visual display of a flip card indicating the grid number each time the aircraft crossed a grid line. Communication was confirmed by a physical tap by the rear seat recorder. Additionally, random checking of the rear seat activities by the front seat team member was done to keep general operations in control.

Each team member's responsibilities were as follows:

Front seat recorder/navigator

- Navigate pilot to fly planned transect at prescribed ground height and ground speed.
- Notify rear seat of transect start and end.
- Notify rear seat recorder of grid position.
- Record survey and transect particulars to data sheets.
- Record regular observations.
- Overall coordination of operations.

Rear seat observer:

- Continuously observe from transect start to end, the wildlife species and their number that fell between transect markers on respective side and call out for each observation.
- Observe and call water points during transect.
- Observe and call any significant illegal activity or its evidence.

Rear seat recorder

- Record rear seat observations.
- Record grid position
- Record survey and transect particulars to data sheets

4. Animal Population Estimate by Aerial Survey

31

.

.

2

.

· · ·

·

Table 1 Overall Estimates (October 1995)

ī

spp			W		>	0.000	J
	(A)mas	×	Var(1)	1100	-	20.VCF	2
buttalo	68	0.36	71670	268	601	542	06
bushbuck	29	0,15	4592	63	285	137	48
bushpig	C 1	0.05	970	31	12	ខ	33
duiker	181	0.95	30623	175	1770	354	20
oland	4	0.01	257	16	23	32	143
olophant	74	. 0.33	534509	177	1001	1560	150
grysbok	۲	0.02	183	14	32	27	38
hartoboost	•	•		ı	•	•	•
hippo	•		•	•	•	•	•
klipspringer	•			٠		ſ	•
kudu	11	0.00	2763	53	87	107	122
reedbuck	40 -	0.21	8454	32	351	186	S
loon	44	0.23	10814	137	424	277	65
وأنافة	22	0,12	3075	ß	181	128	70
warthog	03	0.42	15412	124	771	251	33
watorbuck	53	0.12	10388	102	244	206	85
zebra	31	0.16	6877	83	246	:68	63
	·	•	ł	3	•	•	•
baboon	000	1.62	891102	944	3555	1909	54
loopard	-	0.01	56	Ð	ស	15	101
lion	ы	0.01	222	15 2	16	30	190
	•	•	•	•	٠	•	•
(pitfall)	58	0:0	14044	119	726	240	33
07 = 0	-	101 - 1(z)mnz	Note: SPP	Jauna species			
N* = 435	10.0)1	(0.05, n-1) = 2.023	SUM (1) R'	I otal animal count Population density			
Z° = 2077	sampto inte	sampio intensity" = 9.2%	Var (Y) SE (Y)	Population estimate variance Standard error in population estimate	variance opulation estimate		
ND: - :00	ND: •: not used for estimate catculations	catchations	Y	Population estimate	. ю		
			95% CL	95% confidence limit	mit `		
			% IO	Percentage of 95%	Percentage of 95% confidence limit to		
				population estimate			

			7 2010 7		Northern Block Estimates (October 1995)	(664)			
spp	sum(y)	var(y)	var(zy)	x	var(Y)	sem	۲	95%CL	CLX
buñalo	6	5.06	0.94	0.11	15856	126	133	268	202
bushbuck	Ð	0.67	0.49	0.10	1942	44	118	96	3
Sjdysng	•	٠	,	ŀ	٠	•	•	٠	•
duikar	67	8.86	2.73	0.60	21446	146	722	312	4
eland	ب	90.0	0.04	0.01	200	14	15	90	205
elophant	66	192.65	7.12	0.80	593531	770	07 3	1642	169
grysbok	•		•		•				•
hartebeest	,	•	•	•	•	t	I	•	••
híppo	•	•	٠	•	•	٠	•		•
klipspringor	٠		•	•	Þ	•	•	•	•
, npnx	•	•	•			ı	,	•	•
reedbuck	S	0.50	0.15	0.06	1582	40	74	85	115
roan	:	2.10	1.05	0.13	6046	78	162	166	102
sabla	••	0.06	0.13	0.01	193	46	15	8	201
warthog	20	2.87	0.46	0.24	9108	<u>95</u>	295	203	8
waterbuck	ດ	2.40	0.28	0.11	7680	53	133	187	141
zobra	•		•	٠		·		•	•
		F	•	•		•		,	•
baboon	162	282.12	12.35	1.97	792295	068	2369	1697	79
leopard	•	٠	•				•	•	•
lion	•	•	•		•	•	•	•	•
	٠	٠	•	-	•			•	•
(IIEAII)	39	4.93	2.02	0.47	11853	109	575	232	64
ю Г		sum(z) = 82		t(0.05, n-1) = 2.131	Note: SPP SUM (Y)	Fauna species Total animal count	Sunt		
902 # N		var(z) = 2.84			Å.	Population density	ity		
Z = 1213	sample	samplo intonsity = 6.8%			Var (Y) SE (Y)	Population estimate variance Standard error in nomilation	Population estimate variance Standard error in nonvitation estimate		
	-				X	Population estimate	mate	-	. •
		-			95% CL CL %	95% confidence limit Percentage of 95% cc	95% confidence limit Percentage of 95% confidence limit to	0	
						population estimate	nate	-	
						9			

Table 2 Northern Block Estimates (October 1995)

Table 3 Southern Block Estimates (October 1995)

	φ γ	Visited State	Var(7V)	04		1-1-10			
spp	(A)WAS	14157	05 0	0.54	55814	236	468	489	20
buffalo	6 0	20,44			7646	52	167	107	2
bushbuck	21	76°	-0.0/	P1.0		i i	÷.	3	8
bushpig	G	0.77	0.24	0.08	0/S		- 1	409	đ
duiker	132	7.57	0.99	1.21	9178	8	1047	0.5	2 0
hade		0.04	-0.05	0.01	56	భ	¢	16	8
	- 6	25.0	0.13	0.07	378	÷	63	33	102
elephant	• •	21.0	21.0 11.0	0.04	183	4	32	28	88
grystok	t				I	•		1	•
hartoboost	•	•	•	•	•	•		•	•
hippo	•	•	•	•	•	•	4	•	
tionelooot	•		•	•		•	•	•	•
	Ţ	00 0	-0.05	0.10	2783	ស	87	100	125
NONX	: }	0.0			6872	68	278	171	8
reodbuck	ß :	00.0			12768	C11	262	234	69
ncor	55	EC.01	17.0		3782	61	167	127	76
sable	51	3.16	10.0	C119		. 1		154	S
warthog	60	5.48	0.97	0.55	6305	6/	0/4	5	5
waterbuck	4	10.1	-0,49	0.13	2708	52	111	80:	
rahea		5.78	1.17	0.28	6877	83	. 246	172	20
1		•	1	•	•	•	•		٠
•	• (- 	36 4	38808	314	1166	650	8
baboon	14/	00'//	00.1			a	e	15	1961
loopard		0.04	-0.05	0.01	20	o	>	2 2	101
lon	и	0.17	-0.03	0.02	222	15	16	in	
		•	•	·	¢	•	•	•	•
(Ilall)	61	1.56	-0.17	0.17	2191	47	151		64
				-	Note: SPP	Faunz	Fauna species		
Ċ	n = 24	501 = (z)uns	8	t(0.05, n-1) = 2.069	SU	SUM (Y) Tot	Total animal count		
ż	N - 190	var(z) = 1.21	21		Υ.	ndod	Population density		
		samolo Intensity = 12.6%	2.6%		Var	Var (Y) Popu	Population estimate variance		
1					SE		Standard error in population estimate	sstimate	-
					Y		Population estimate		
					959	95% CL 95%	95% confidence limit		
					CL %		Percentage of 95% confidence limit to	ce limit to	
							•		

.

.

.

5. Major Wild Animal Distribution Maps base on Aerial Survey

Ê

Į.

.

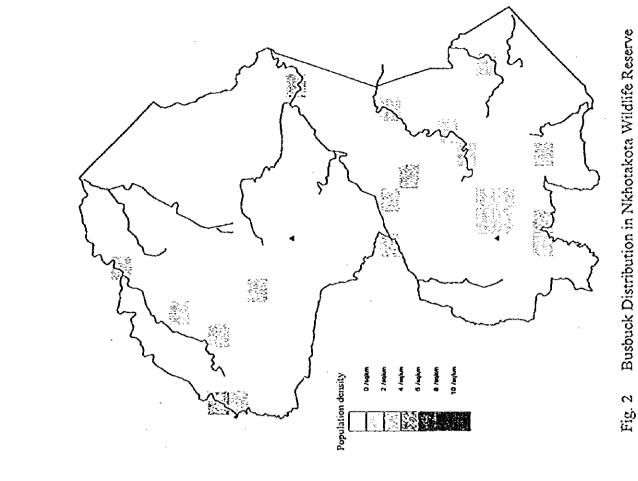
-

.

.

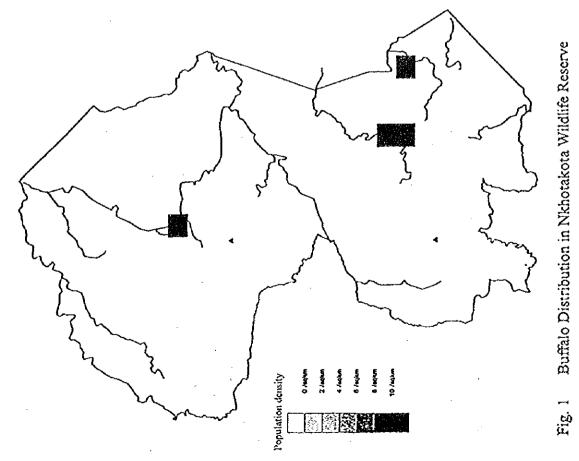
.

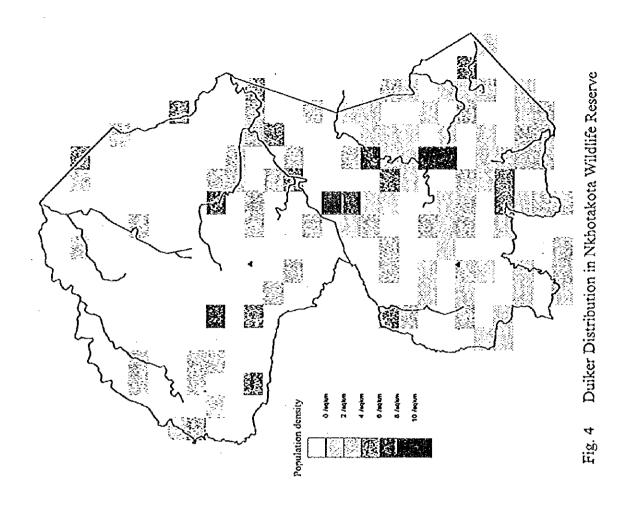
.


. .

.

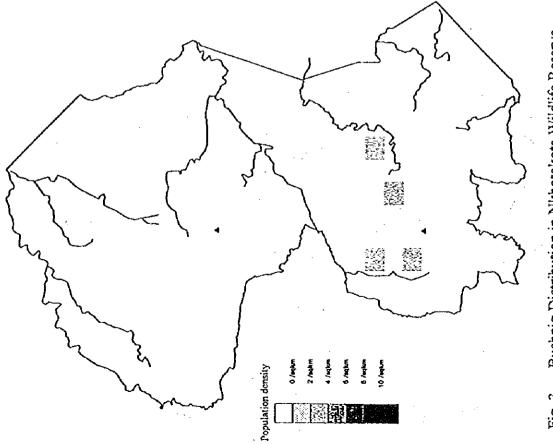
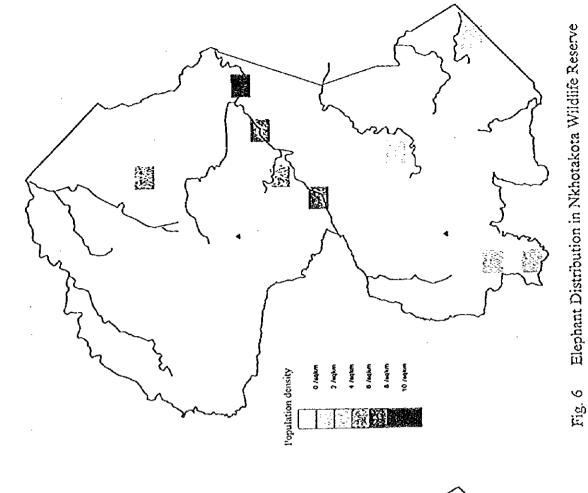
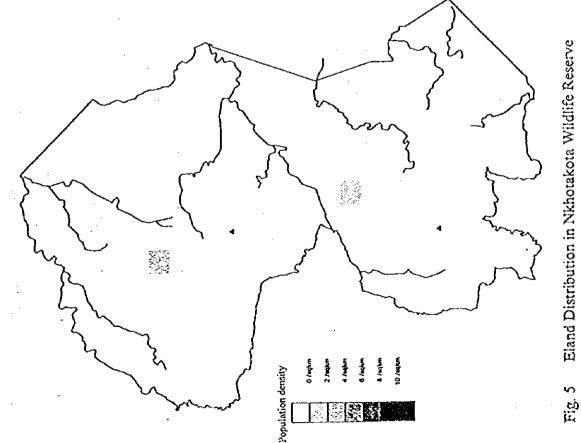
.

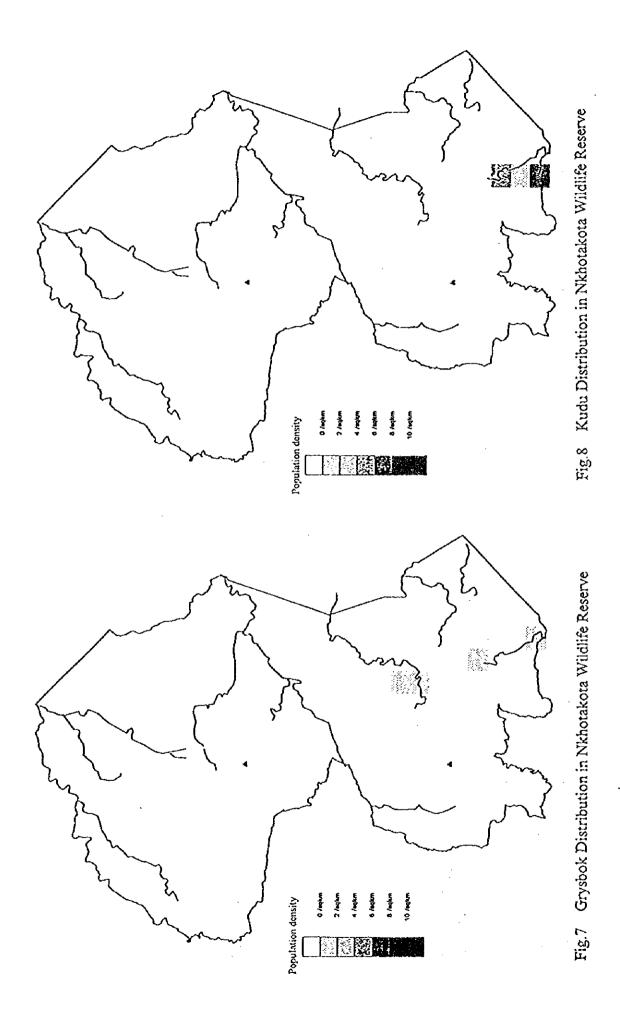

.

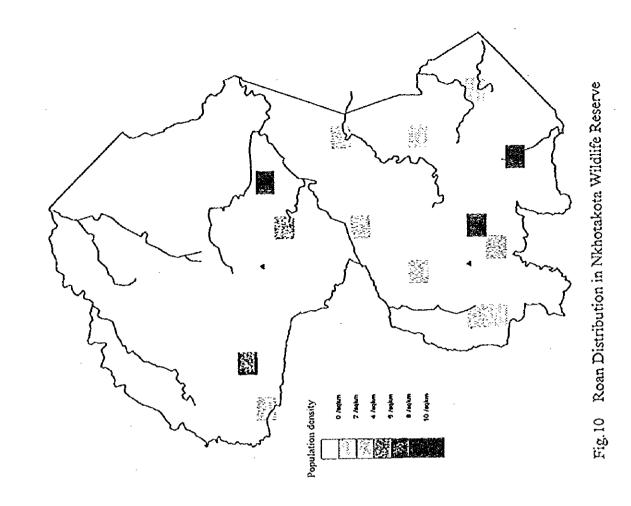

.

ない

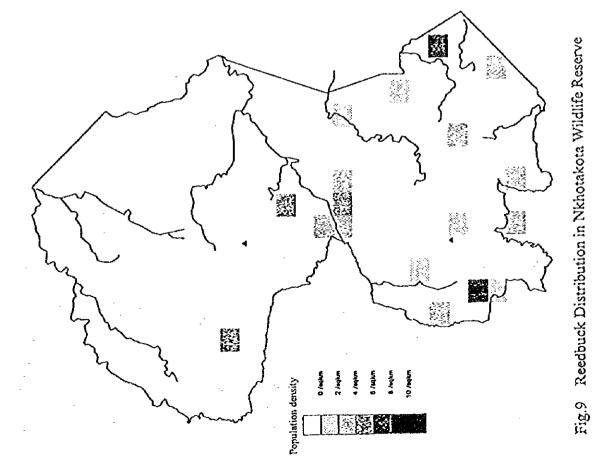
<u>s</u>

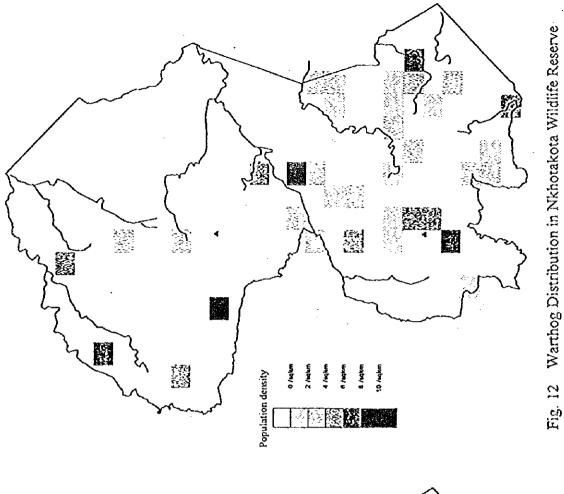




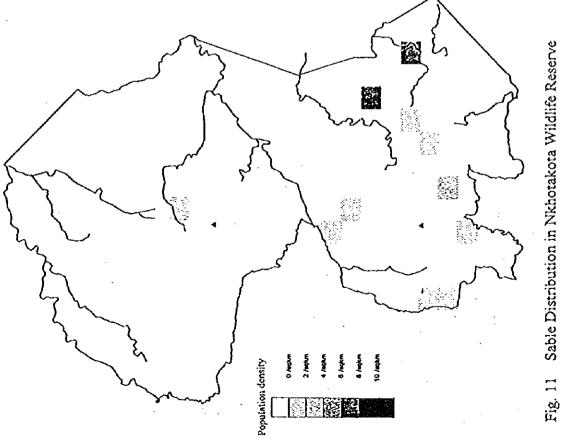

Fig 3 Bushpig Distribution in Nkhotakota Wildlife Reserve

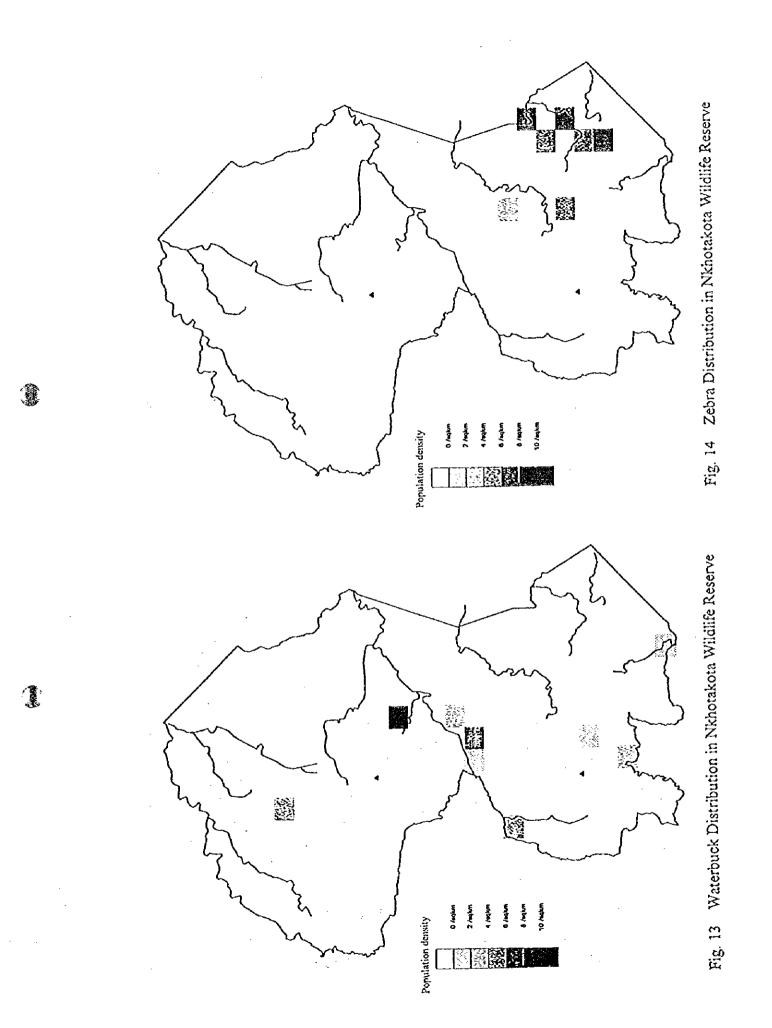


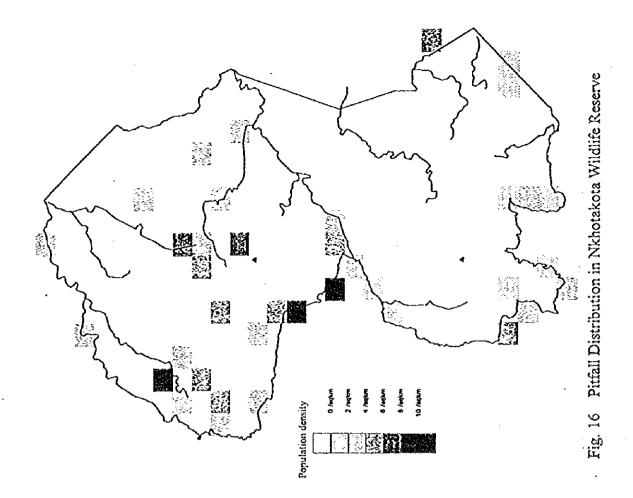
Ì

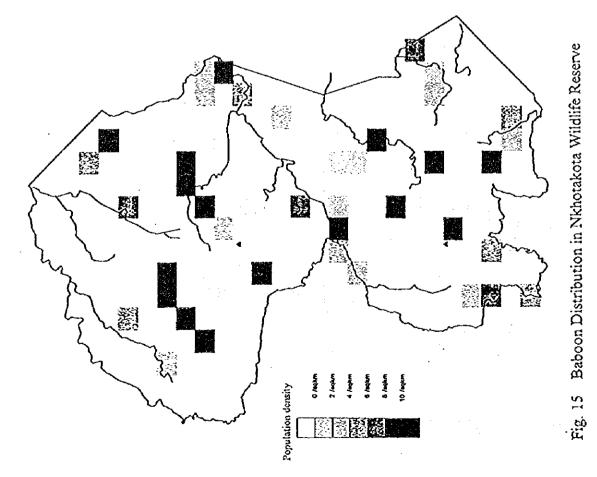

ġ,








Ż



6. Results of Animal Ground Survey

.

.

• • 1 A A A . . . 0

Агеа	ET	BU	SA	RA	WB	ZB	RB	BB	DK	WH	BP	GB
Bua	Т. Х		X	x	X			X	X	x		
Kaombe	x	x	х	x		x		x			x	
Wozi	x	x	x	X		x		x		x	x	
Dwafuni	x	X	x	x			X	x	X	x	X	x

Table 1 Pellet Groups Observed at Each River System

ET: elephant BU: buffalo SA: sable antelope RA: roan antelope WB: waterbuck ZB: zebra RB: reedbuck BB: bushbuck DK: duiker WH: warthog BP. bushpig GB: grysbok

2

.

-

Table 2 Number of Pellet Groups

			1	Number	of Pelle	t Group	s per 10	0 Meter	S		
Location	ET	BU	SA	RA	WB	ZB	RB	BB	DK	WH	BP
Bua	3.0		0.6	1.8	2.4			0.4			
Kaombe	5.0	2.4									
Wozi	4.6	1.6	0.4	0.2		0.8		0.2			0.2
Dwafuni	0.8	1.0	0.4	0.4		-	1.6	1.2	0.4		

Woodland

				Number	of Pelle	t Group	s per 10	0 Meter	S		
Location	ET	BU	SA	RA	WB	ZB	RB	BB	DK	WH	BP
Bua	0.2		0.6		0.4	•		1.8	1.8		
Kaombe	1.0	 0.2	0.4	1.0		0.6	0.8			0.4	
Wozi	0.2		1.2	0.2		1.0			0.2	0.4	
Dwafuni 🚏	2.6						0.2		4.4	0.2	0.2

49

.

Number	Sex	Age	Location
5	IM 4F	5 AD	Bua River (near Bua camp, Bua bridge, Chitete)
6			Damboloyera dambo
6	2M IF 3?	6 AD	Wozi dambo, Wozi - Mbonekela Rd.
2	1M IF	2 AD	Wozi - Mbonekela Rd.
37		30 AD 7Y	Around Bua camp, Mpangamsithu
1		1 AD	Wozi - Mbonekel Rd. (near Wozi camp)
8	IM 7F	8 AD	Damboloyera dambo
14		11AD 3Y	Wozi - Mbonekela Rd, Kaombe bridge, Dwafuni Valley
19	8M 9F 2?	17AD 2Y	Bua River (ner Tongole camp/Bua camp), Kasukusuku hill
6		6AD	Wozi - Mbonekela Rd.
	5 6 2 37 1 8 14 19	5 1M 4F 6 2M 1F 3? 2 1M 1F 37 1 1 8 14 19 8M 9F 2?	5 IM 4F 5 AD 6 2M IF 3? 6 AD 2 IM 1F 2 AD 37 30 AD 7Y 1 1 AD 8 IM 7F 8 AD 14 11AD 3Y 19 8M 9F 2? 17AD 2Y

Table 3 Record of Sightings

Table 4 Measurements of the finished of Elephant (Adult Male)

	Total length	Shoulder height	Front foot circumference	Hind foot circumference	Front foot diameter	Hind foot diameter	Ivory length and circumference
Ì	320	230	110	105	38 (L)	41 (L)	42 (tip - lip)*
					30 (S).	22 (S)	22 (lip cir.)
`		••		· ·····	* meas	ured along the	outer edge

* measured along the outer edge

•

8

Note: Left front leg had been wounded and swollen. It was reported on 23 August and was shot on 24 August near Lisitu confluence. The location was S 12° 49.188' and E 34° 08.268'. Only right ivory was measured as the left was in the water. Unit is in centimeters (cm).

7. List of Birds in the Nkhotakota Wildlife Reserve

Ŧ

Ĩ

.

.

.

.

8

List of Birds in the Nkhotakota Wildlife Reserve

FAMILY AND SPECIES

(New species indicated with an asterisk)

Family Phalacrocoracidae White-breasted Cormorant Long-tailed Cormorant

Family Ardeidae White-backed Night Heron Green-backed Heron

Family Scopidae Hamerkop

Family Ciconiidae Black Stork Woolly-necked Stork

Family Accipitridae

White-headed Vulture Palm-nut Vulture Bateleur Brown Snake Eagle Black Goshawk African Goshawk Augur Buzzard Steppe Buzzard Lizard Buzzard * Crowned Eagle Martial Eagle African Hawk Eagle Ayres' Hawk Eagle Wahlberg's Eagle African Fish Eagle Yellow-billed Kite Osprey

Family Falconidae Lanner Peregrine Taita Falcon Phalacrocorax carbo Phalacrocorax africanus

SCIENTIFIC NAME

Goraschius leuconotus Butorides striatus

Scopus umbretta

Ciconia nigra Ciconia episcopus

Trigonoceps occipitalis Gypohierax angolensis Terathopius ecaudatus Circaetus cinereus Accipiter melanoleucus Accipiter tachiro Buteo augur Buteo buteo Kaupifalco monogrammicus Stephanoaetus coronatus Polemaetus bellicosus Hieracetus fasciatus Hierccetus ayresii Aquila wohlbergi Haliaeetus vocifer Milvus migrans Pandion haliaetus

Falco biarmicus Falco peregrinus Falco fasciinucha Family Phasianidae Coqui Francolin Shelley's Francolin Hildebrandt's Francolin Red-necked Francolin

Family Numididae Helmeted Guineafowl

Family Charadriidae Three-banded Plover

Family Scolopacidae Green Sandpiper Wood Sandpiper * Common Sandpiper

Family Burhinidae Water Dikkop

Family Columbidae Red-eyed Dove Cape Turtle Dove Laughing Dove Tambourine Dove Emerald-spotted Wood Dove Cinnamon Dove African Green Pigeon

Family Psittacidae Brown-necked Parrot

Family Musophagidae Schalow's Turaco Purple-crested Turaco Go-Away-Bird

Family Cuculidae Red-chested Cuckoo Black Cuckoo Klaas' Cuckoo Didric Cuckoo Emerald Cuckoo Yellow-billed Coucal Burchell's Coucal Francolinus coqui Francolinus shelleyi Francolinus hildebrandti Francolinus afer

Numida meleagris

Charadrius tricollaris

Tringa ochropus Tringa glæreola Tringa hypoleucos

Burhinus vermiculatus

Streptopelia semitorquata Streptopelia capicola Streptopelia senegalensis Turtur tympanistria Turtur chalcospilos Aplopelia larvata Treron calva

Poicephalus robustus

Tauraco schalowi Tauraco porphyreolophus Corythaixoides concolor

Cuculus solitarius Cuculus clamosus Chrysococcyx klaas Chrysococcyx caprius Chrysococcyx cupreus Ceuthmochares aereus Centropus burchelli Family Strigidae White-faced Owl * Spotted Eagle Owl Pel's Fishing Owl African Wood Owl

Family Caprimulgidae

Fiery-necked Nightjar Freckled Nightjar Pennant-winged Nightjar

Family Apodidae

African Palm Swift European Swift Little Swift White-rumped Swift

Family Alcedinidae

Pigmy Kingfisher * Giant Kingfisher Pied Kingfisher Half-collared Kingfisher Malachite Kingfisher Striped Kingfisher Chestnut-bellied Kingfisher Brown-hooded Kingfisher *

Family Meropidae European Bee-eater Blue-cheeked Bee-eater * Boehm's Bee-eater Little Bee-eater Swallow-tailed Bee-eater

Family Coraciidae Lilac-breasted Roller Racket-tailed Roller * Lilac-breasted Roller

Family Upupidae Hoopoe

Family Phoeniculiae Red-billed Wood-hoopoe Scimitarbill Otis leucotis Bubo africanus Scotopelia peli Strix woodfordii

Caprimulgus pectoralis Caprimulgus tristigma Macrodipteryx vexillaria

Cypsiurus parvus Apus apus Apus affinis Apus caffer

Ceyx picta Ceryle maxima Ceryle rudis Alcedo semitorquata Alcedo cristata Halcyon chelicuti Halcyon leucocephala Halcyon albiventris

Merops apiaster Merops persicus Merops boehmi Merops pusillus Merops hirundineus

Coracias caudata Coracias spatulata Coracias caudata

Upupa epops

Phoeniculus purpureus Rhinopomastus cyanomelas Family Bucerotidae Pale-billed Hornbill Crowned Hornbill Trumpeter Hornbill Southern Ground Hornbill

Family Capitonidae Black-collared Barbet Whyte's Barbet Yellow-fronted Tinkerbird Golden-rumped Tinkerbird * Moustached Green Tinkerbird

Family Indicatoridae Scaly-throated Honeyguide Greater Honeyguide Lesser Honeyguide

Family Picidae Golden-tailed Woodpecker Cardinal Woodpecker Bearded Woodpecker

Family Alaudidae Flappet Lark

Family Hirundinidae European Swallow Wire-tailed Swallow Red-rumped Swallow Lesser Striped Swallow Grey-rumped Swallow Rock Martin House Martin Eastern Saw-wing

Family Dicruridae Fork-tailed Drongo

Family Oriolidae African Golden Oriole Black-headed Oriole

Family Corvidae White-necked Raven Pied Crow Tockus pallidirostris Tockus alboterminatus Bycanistes buccinator Bucorvus leadbeateri

Lybius torquatus Stactolaema whytii Pogoniulus chrysoconus Pogoniulus bilineatus Pogoniulus leucomystax

Indicator variegatus Indicator indicator Indicator minor

· ·

Campethera abingoni Dendropicos fuscescens Thripias namaquus

Mirafra rufocinnamomea

Hirundo rustica Hirundo smithii Hirundo daurica Hirundo abyssinica Pseudhirundo griseopyga Hirundo fuligula Delichon urbica Psalidoprocne orientalis

Dicrurus adsimilis

Oriolus auratus Oriolus larvatus

Corvus albicollis

Family Paridae Miombo Grey Tit Rufous-bellied Tit

Family Timaliidae Arrow-marked Babbler

Family Campephagidae White-breasted Cuckoo-shrike Black Cuckoo-shrike

Family Pycnonotidae Black-eyed Bulbul Little Green Bulbul Yellow-bellied Bulbul Grey-olive Bulbul Yellow-streaked Bulbul

Family Turdidae Familiar Chat Arnot's Chat Mocking Chat Miombo Rock Thrush White-browed Scrub Robin Central Bearded Scrub Robin * Starred Robin Red-capped Robin Heuglin's Robin Kurrichane Thrush

Family Sylviidae African Sedge Warbler Moustached Warbler Willow Warbler Tawny-flanked Prinia Red-winged Warbler Yellow-breasted Apalis Chestnut-throated Apalis **Bleating Bush Warbler** Fastern Barred Warbler Yellow-bellied Eremomela Green-capped Eremomela Red-capped Crombec Long-billed Crombec Yellow-bellied Hyliota **Red-faced** Cisticola **Rock Cisticola**

Parus griseiventris Parus rufiventris

Turdoides jardineii

Coracina pectoralis Campephaga flava

Pycnonotus barbatus Andropadus virens Chlorocichla flaviventris Phyllastrephus cerveiventris Phyllastrephus flavostriatus

Cercomela familiaris Thannolaea amoti Thannolaea cinnamomeiventris Monticola angolensis Erythropygia leucophrys Erythropygia barbata Pogonocichla stellata Cossypha natalensis Cossypha heuglini Turdus libonyanus

Bradypterus baboecala Melocichla mentalis Phylloscopus trochilus Prinia subflava Heliolais erythoptera Apalis flavida Apalis porphyrolaema Camaroptera brachyura Canaroptera stierlingi Eremomela icteropygialis Eremomela scotops Sylvietta ruficapilla Sylvietta rufescens Hyliota flavigaster Cisticola erythrops Cisticola aberrans

Rattling Cisticola Croaking Cisticola Neddicky Shortwing Cisticola

Family Muscicapidae

Spotted Flycatcher Dusky Flycatcher Ashy Flycatcher Black Flycatcher Chin-spot Batis Wattle-eyed Flycatcher White-tailed Blue Flycatcher Paradise Flycatcher

Family Malaconotidae Brubru

Southern Puffback Brown-headed Tchagra Black-headed Tchagra Tropical Boubou Orange-breasted Bush Shrike Grey-headed Bush Shrike

Family Motacillidae Long-tailed Wagtail African Pied Wagtail Wood Pipit Striped Pipit

Family Laniidae Fiscal Shrike Souza's Shrike *

Family Prionopidae White Helmet Shrike

Red-billed Helmet Shrike

Family Sturnidae Red-winged Starling Lesser Blue-eared Starling Amethyst Starling

Family Nectariniidae Collared Sunbird Olive Sunbird Black Sunbird Cisticola chiniana Cisticola natalensis Cisticola fulvicapilla Cisticola brachyptera

Muscicapa striata Muscicapa adusta Muscicapa caerulescens Melaenornis pammelaina Batis molitor Platysteira peltata Elminia albicauda Terpsiphone viridis

Nilaus afer

Dryoscopus cubla Tchagra australis Tchagra senegala Laniarius aethiopicus Telophorus sulfureopectus Malaconotus blanchoti

Motacilla clara Motacilla aguimp Anthus nyassae Anthus lineiventris

Lanius collaris Lanuis souzae

Prionops plumata Prionops retzii

Onychognathus morio Lamprotornis chloropterus Cinnyricinclus leucogaster

Anthreptes collaris Nectarinia olivacea Nectarinia amethystina Scarlet-chested Sunbird Yellow-bellied Sunbird White-bellied Sunbird Lesser Double-collared Shelley's Sunbird Purple-banded Sunbird

Family Zosteropidae Yellow White-eye

Family Ploceidae Large Golden Weaver Spotted-backed Weaver Spectacled Weaver Olive-headed Weaver Red-headed Weaver Black-winged Bishop Yellow-rumped Widow Red-collared Widow Grey-headed Sparrow Yellow-throated Sparrow

Family Viduidae Broad-tailed Paradise Whydah

Family Estrildidae Golden-backed Pytilia Red-throated Twinspot Brown-backed Firefinch Blue Waxbill Swee Waxbill Common Waxbill Bronze Mannikin Red-backed Mannikin

-

Family Fringillidae Cabanis' Bunting Golden-breasted Bunting Cinnamon-breasted Rock Bunting Cape Bunting Yellow-eyed Canary African Citril Stripe-breasted Seedeater Black-eared Seedeater Nectarinia senegalensis Nectarinia venusta Nectarinia talatala Sunbird Nectarinia chalybea Nectarinia shelleyi Nectarinia bifasciata

Zosterops senegalensis

Ploceus xanthops Ploceus cucullatus Ploceus ocularis Ploceus olivaceiceps Anaplectes rubriceps Euplectes hordeaceus Euplectes capensis Euplectes ardens Passer griseus Petronia superciliaris

Vidua orientalis

- Pytilia afra Hypargos niveoguttatus Lagonosticta rubricata Uraeginthus angolensis Estrilda melanotis Estrilda astrild Lonchura cucullata Lonchura bicolor
- Emberiza cabanisi Emberiza flaviventris Emberiza tahapisi Emberiza capensis Serinus mozambicus Serinus citrinelloides Serinus reichardi Serinus mennelli

.

· · ·

. •

.

. · · · · ••••••

• • • • •

• .

8. Results of the Fish Survey

.

Table 1 Electrofishing Catches from Sampling Sites in the Dwangwa River System

Ż

多

SPECIES No. Wt. Barcusenius livingstonii No. Wt. Marcusenius livingstonii (gm) Petrocephalus catostoma 90 Petrocephalus catostoma 2 Petrocephalus catostoma 4 Poliimyrus castelnaui 4 Petrocephalus catostoma 4 Poliimyrus castelnaui 4 Barbus atkinsoni 4 Barbus sitkinsoni 4 Barbus kerstenii 4 Barbus kerstenii 4 Barbus serstenia 4 Barbus serstenia 4 Barbus tineomaculatus 4 Barbus serstenii 4 Barbus serstenii 4 Barbus tineomaculatus 5 Barbus tineomaculatus 5 Barbus tineomaculatus 5 Barbus terstenii 4 Barbus terstenii 5 Barbus serstelinentus 5	Mt. No. 911) 911 11 24 13 24 13 30 24 13 73 73	Wt. (gm) (gm) 37 37 37	╞────┼─┼─┼─┼─┼─┼─┼━┼━┤╍┼╍┼╍┼	(Gm) (Gm) (Gm) (Gm)	м <u>м</u>	Wt. No. (Gm) 38 38 38	Mt. (gm) 6 6	No.	Wt. (mg)	No.	; (шб
(9m)		(gm) 11 15 15 15 15 15 15 15 15 15 15 15 15	╾╍┨╾┠╍╊╼╊╍╉╾╊╶╉╼╊╼┠╼┨╍╉╼╊╍╋	Ê	╶┈┦╌╀╌┞╶┞╌╄╍┞╍┞╼┞╼┠╼┠╍┠╍┞╸		Шб) ((แย		(EES)
maroi (Maroi (B) (B) (B) (B) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A		11:1 15:3 15:3 15:3 15:3 15:3 15:4 15:4 15:4 15:4 15:4 15:4 15:4 15:4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		32 13						
maroi (A) (B) (B) (B) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	0, 1, 4, 1,	11: 15: 15: 15: 15: 15: 15: 15: 15: 15:			32 13						
maroi: (A) (B) (B) (B) (B) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	6 F 4 V	1: 16 15 15 153 4 4 4 4 27			32 13						
	0 4 7	1 16 153 16 153 153 153 153 153 153 153 153 153 153	~ ~ ~		32 13						
7 3 7	0 1 4 1	16 15 153 6 6 4 4 37	~ ~ ~		32 13						Ţ
4 5 7 3 3 3 7 1 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	0 1 4 7	15 153 48 6 6 4 4 37			32 13						
4 5 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		153 153 6 6 37 37	8		32 13						
4 2 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		153 48 6 4 37			32						
	43 3 73	48 6 37 37	5		32						
		6 4 37			32	88	8 93				
		37			32	38	1 2				
2 2 2		37									
2 L L SD			~				-				
phalum rf sanjika' Jus · 3 7 i 1 nstonii 1 ra us shiranus			2Q V	26	34	15	9 6	،	 	~	-
phalum rf sanjika 20s · 3 7 20s · 3 7 20s · 1 i nstonii 1 ra us shiranus	20	27	65	55		4	41 160	5	16	74	78
phalum rf sanjika ous · 3 7 nstonii 1 ra us shiranus	g	15			1	8.					
ca' ca'	25	244				رب 	36 710				
ca' ca' 3 7 . 3 7 . 1 1 . 1 1 1 . 1 1 1 1	ł	1	1	1				14	ິຍ		
3	3	10									
3	5	2					8				
	76 1	2								ļ	1
Y -	3	41	.	127			8			2	65
Aptocheilichthys johnstonii Astatotilapia calliptera Oreochromis shiranus shiranus	9 22	13	1				17 7				•
Astatotilapia calliptera Oreochromis shiranus						29					
Oreochromis shiranus shiranus	29	101	79	278 2	212 5	534 1	8 93	229	1.179	97	7
	T -		16	77	3	38		ω	68	v	29
Pseudocrenilabrus philander					12	26					
Serranochromis robustus robustus					5	63					
Tilapia rendalli				_	-			~	7		
Tilapia sparmanii					24	122					
Aethiomastacembolus shiranus	7	18					2		~~~~		

-

.

.

Table 2 Electrofishing Catches from Sampling Sites in the Bua River System

•

ŧ.

SITE	LE E	φ		எ		10			11	12	~	*	13	ľ	14
SPECIES	So.	۲.		No.	Wt.	No.	Wt.	No.	Ŵ.	No.	Wt.	No.	w.	No.	W:
		(mg)	n)		(am)		(dm)		(gm)		(dm)		(cm)		(mg)
Barbus arcislongae					:			6	17						
Barbus johnstonii				49	300	36	33	473	2,666	21	20				
Barbus kerstenii				r-	ຕ			r- 7-	15						
Barbus lineomaculatus		51	46	5	S	4	2								
Barbus cf. lineomaculatus (A)								**	*						
Barbus cf. lineomaculatus (B)								*	v -						
Barbus macrotaenia			-			10	8	2	8						
Berbus paludinosus				9	4					8	7				
Barbus trimaculatus	*	14	53	48	164		48	128	394	ω	41				
Labeo cylindricus				4	24	9	67	3	32	•				_	
Opsaridium microcephalum			1	19	13	10	3	124	123	4	**				
Opsandium sp. 'dwarf sanjika'		_						ო	10						
Leptoglanis sp.	1	13	7	1	7			40	17						
Clarias gariepinus		1	21	12	1.136	7	265	12	445		29	v -	35		
Chilogianis neumanii				23	46			170	212						
Aplocheilichthys johnstonii			_			۳-	4								
Astatotilapia calliptera	102		184	84	215	143	229	236	415	5	22	82	235	6	3
Oreochromis shiranus shiranus	3	30 29	297	3	11	15	619	11	46			2	105		
Aethiomastacembelus shiranus				4	17	7	45	6	48						

1 T 1 T 1 T 1 T

Table 3 Electrofishing Catches from Sampling Sites in the Kaombe River System

8

S

SITE	۲-	15	٣	16
SPECIES	No.	Wt.	Wt.	No.
		Ê	(HB)	
Hippopotamyrus discorhynchus	2	ဖ		
Marcusenius livingstonii	7	19		
Marcusenius macrolepidotus	3	75		
Petrocephalus catostoma	4	9		
Brycinus imberi	14	37		
Hemigrammopetersius bamardi	34	11	•	
Barbus atkinsoni	9 Q	2		
Barbus bifrenatus	58	28		
Barbus kerstenii	9	9		
Barbus cf. lineomaculatus (A)	68	24	F	1
Barbus cf. lineomaculatus (B)	37	6	ნ	3
Barbus macrotaenia	-	~	21	8
Barbus paludinosus	45	74		
Barbus trimaculatus	46	127	2	3
Labeo cylindricus	18	106	e	25
Cleries geriepinus	9	300	2	39
Aplocheilichthys johnstonii	44	17		
Astatotilapia calliptera	15	18	50	76
Mylochromis sp. juvenile			•	3
Oreochromis shiranus shiranus	111	236	2	5
Oreochromis sp. 'chambo'	2	9	4	6
Pseudocrenllabrus philander	18	6		
Serranochromis robustus robustus	4	07		
Tilapia rendalli	-	1		
Tilapia sparmanii	23	33		
		Į		Į

.

i

9. Forest Survey Method

.

.

.

1. Growing Stock Survey

(1) Survey Plots

For this survey, a total of 27 stands were selected as sample plots, consisting of two plots in the evergreen broad-leaved forest, one plot in the semi-evergreen broad-leaved forest, and 24 plots in miombo forests.

(2) Size and Location of Study Plots

The size of plots is $50m \ge 50m (0.25ha)$ each as a rule, and partially $100m \ge 25m (0.25ha)$ depending on topography and vegetation. Prior to the selection of plots, sites for the survey were chosen as shown in Fig. 6-7. Site selection was determined by the objectives of the survey, the time required to sample each plot, the period of the survey and the road conditions.

(3) Trees Surveyed

Complete enumeration of all trees more than 5 cm in DBH (diameter at breast height) were done in all plots.

(4) Survey Items

• DBH: All trees were measured with a diameter gauge.

• Tree height: All trees in the evergreen and semi-evergreen broadleaved forests were measured. In miombo forests, standard trees were selected by eye measurement from trees whose DBHs were average. After the cutting of these trees, their heights were measured at the same time as sectional volume measurement.

• Crown Density: Trees were classified into thick, medium and thin according to closedness and openness of their crowns

(5) Stumpage Volume Estimation

Based on the results of DBH measurement, basal area was calculated. Then, felled standing trees were subjected to sectional volume measurement according to the Smalian's formula. The volume of these standing trees was estimated, and the breast height form factor was determined in comparison with cylindric volume. The total standing tree volume in sample plots was calculated by the following formula :

 $\mathbf{V} = \mathbf{G} \mathbf{x} \mathbf{H} \mathbf{x} \mathbf{F}$

where V: Stampage volume in standard area

G: Total basal area

H: Average tree height

F: Breast height form factor

As for the evergreen and semi-evergreen broad-leaved forests, where single trees were too large to make sectional volume measurement, the breast height form factor was determined according to the formula for broad-leaved trees used in Japan. The factor was substituted for F in the above formula to determine stampage volume. The formula to determine the breast height form factor is as follows:

$$F = \frac{mn^m}{(m+1)(n^m-1)}$$

where

m = 0.625 as a constant for each species.

 $n = \frac{Average \ height}{Average \ DBH}$

(6) Branch Volume Estimation

First of all, the weight of all branches of the standing trees, which were felled for sectonal volume measurement, was measured. Then, samples were collected from these standing trees, and their weight and volume were measured. In comparison of these measurements, the branch volume of the standard tree was determined according to the following formula.

$$V = \frac{m \times g^n}{g_s}$$

where V: Branch volume of standard tree

g_s: Weight of standard tree sample

m: Volume of standard tree sample

Branch volume percent was calculated according to the following formula on the basis of the ratio of branch volume to stumpage volume determined by the above formula.

$$A = \frac{V_f}{V_e} \times 100$$

where A: Branch volume percent (%)

 V_{δ} : Branch volume of standard tree

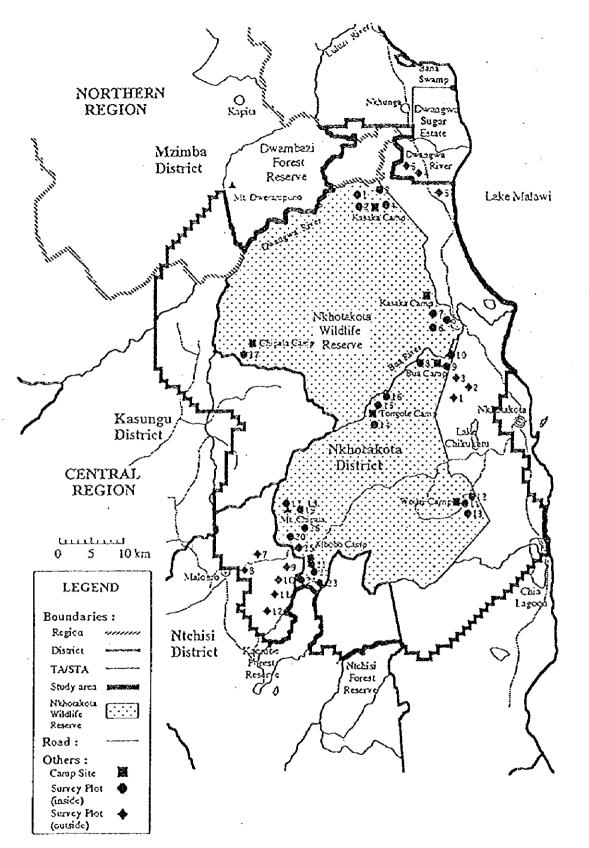
Vi: Stumpage volume of standard tree

The branch volume in the sample plot was calculated by multiplying the total stumpage volume in the sample plot by the branch volume percent. However, as far as the evergreen and semi-evergreen broad-leaved forests are concerned, branch volume could not be estimated because the weight of branches could not be measured.

- 2. Forest Type Survey
- (1) Survey Plots

In 27 plots established in the growing stock survey, all species which appeared were identified. Typical forest types were selected in six plots in view of vegetation type, stand density, crop density, and crown density. These plots consists of one plot in the evergreen broad-leaved forest, one plot in the semi-evergreen broad-leaved forest, three plots in miombo forests and one plot in the riverside forest.

(2) Size and Location of Plots


The size of plots is as rectangular as $50m \times 10m (0.05 ha)$ each. They were established in the same plots as in the growing stock survey except the riverside forest, in which one plot was established on a tributary of the Bua River near the Tongole Camp.

(3) Content of the Survey

The state of vegetation and forest types were surveyed, and a cross Sectional Profile and crown projection Diagram were prepared.

3. Dead Tree Survey

DBH of dead trees in the same plots established for the growing stock survey was measured. The total volume of dead trees in the sample plots was calculated using the breast height form factor obtained from the results of the growing stock survey. However, the branch volume of dead trees could not be measured because they decayed to varying degrees.

8

• · · ·

Fig. 1 A Location Map of Forest Survey Plots

4. Understory Vegetation Survey

(1) Survey Plots

The overall situation of understory vegetation by type was surveyed in the same plots at the same time as the growing stock survey.

In order to grasp understory vegetation in detail, nine quadrats were set in the dry season (July and August 1995) and thriteen quadrats were set in the rainy season (January and February 1996). Classifying these quadrats according to vegetation type, eight are in miombo forests and one in the seasonally wet grassland (dambo) in the dry season, while nine are in miombo forests, one in the dry grassland, and three in the seasonally wet grassland (dambo) in the seasonally wet grassland (dambo) in the rainy season.

(2) Size and Location of Plots

The size of quadrats is 2m x 2m each. As for miombo forests, quadrats were located within the plots established in the growing stock as far as possible in order to compare with forest types. The location of quadrats is shown in Fig. 6-8.

(3) Content and Method of the Survey

- a. Survey on the State of Vegetation
 A field survey was conducted concerning all types of vegetation in the dry and rainy seasons.
- b. Survey on the Species
 All plant species which appeared in the quadrats and during the reconnaissance around the quadrats were recorded. Because of difficulty in identifying plants in the dry season, the survey was conducted in the rainy season.

5. Fodder Plant Survey

In order to estimate the amount of fodder plants, understory plants (herbs on the floor and shrubs 1 m or lower) were cut, and the edible site (leaves) of upper trees was weighed in the light of wild animals' preferences. Moreover, exclosures were established in order to grasp the amount of understory plants grazed by wild animals.

(1) Survey Plots

a. Amount of Available Fodder Plants

The quadrats set in the survey of understory vegetation were used.

b. Amount of Plants Grazed by Wild Animals

Five exclosures were established in miombo forests, while two were in seasonally wet grasslands (dambo).

(2) Size and Location of Plots

a. Amount of Available Fodder Plants

The quadrats set in the survey of understory vegetationwere used.

b. Amount of Plants Grazed by Wild Animals

The size of exclosures is 1m x 1m each. They were established near the quadrats set in the survey of understory vegetation as far as possible. The location of these exclosures is shown along with that of quadrats in Fig. 6-8.

(3) Content and Method of the Survey

a. Understory Vegetation

The total amount of understory vegetation was measured in the quadrats set in the dry season, while the air-dry weight of plants per species was measured in the quadrats set in the rainy season. In this way, the difference in the amount of resources between the dry and rainy seasons and the total amount of resources in the Reserve were analyzed.

However, in the evergreen broad-leaved forest that is as small as 54 ha, the amount of plant resources was omitted from the survey, but just plant species were identified. The semi-evergreen broad-leaved forest is also so small that its distribution cannot be distinguished in aerial photographs. Therefore, the amount of plant resources in the forest was omitted from the survey.

The total amount of fodder plants available in the Reserve was estimated by multiplying the area of forests by type based on the interpretation of aerial photographs by the numbers drawn from the results of the survey.

b. Amount of Upperstory tree Leaves

The total weight of leaves of standard trees in eleven plots in miombo forests was measured during the survey of branch volume. The raw weight of leaves was used to analyze. The total amount of leaves available in the Reserve was estimated by multiplying the area of forest by type by the numbers drawn from the results of the survey.

c. Amount of Plants Grazed by wild animals

A follow-up survey was conducted in the exclosures set in the dry season about six months later (in the rainy season) and the results were compared with the previous ones.

6. Medicinal Plant Survey

Medicinal plants were surveyed in terms of plant species and use. A list of medicinal plants (draft) prepared in Japan on the basis of collected data was examined on site and other unlisted plants were added to the list by interviewing mainly scouts and local people.

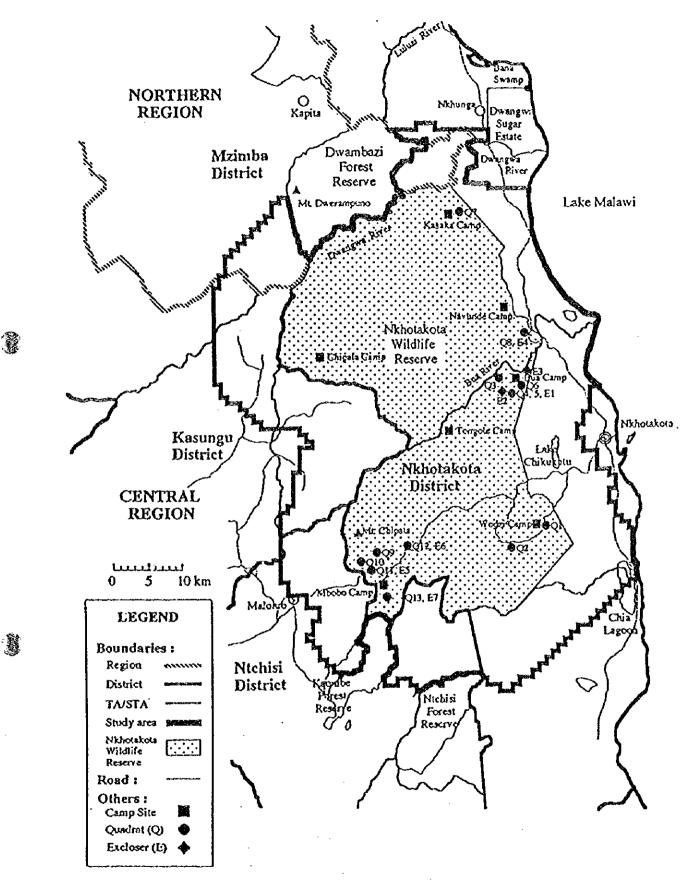


Fig. 2 A Location Map of Understory Vegetation Survey

-

10. Results of Forest Survey

-

200

PRI I

.

- -

.

<u>n en hanne y dag miljelen in en p</u> ysigeraar in in		Crown Density		
		Dense	Medium	Low
Tree	High	51.128	49.473	37.315
Height	Medium	40.439	24.863	23.051
U	Low	31.021	19.867	10.601

Table 1 Average Stumpage Volume of Miombo Forests by Forest Type

Table 2 Results of the Branch Volume Survey

					Branch	Relative	Branch	Stem	Branch
Standard	Plot	Species	Fores	Туре	Weight	Density (b)	Volume (c)	Volume (d)	
Tree No.		-			(a)				Percent
			Height	Density	(kg)	(kg/m³)	(a)/(b) (m ³)	(m³)	(c)/(d) (%)
1	1	Uapaca nitida	medium	thin	54.2	· 733.33	0.074	0.095	78.0
2		Julbemardia globiflora	low	thin	25.4	1,371.43	0.019	0.023	80.0
3	4	Julbemardia globiflora	medium	thick	35.1	1,200.00	0.029	0.045	64.5
4	5	Julbernardia globiflora	low	thick	10.4	1,181.81	0.009	0.021	41.4
5	7	Brachystegia boehmii	low	thin	16.5	1,120.00	0.015	0.025	58.5
6	8	Julbernardia paniculata	high	thick	97.6	1,101.74	0.089	0.108	81.8
7	11	Brachystegia boehmii	high	thin	148.2	1,025.02	0.145	0.199	72.8
8	16	Uapaca kirkiana	medium	medium	33.7	1,178.02	0.029	0.040	71.0
9	21	Uapaca kirkiana	low	medium	23.7	1,080.65	0.022	0.038	57.8
10	25	Iulbernardia paniculata	medium	thick	30.1	1,132.34	0.027	0.060	44.1
11	27	Julbernardia paniculata	low	medium	13.5	1,236.97	0.011	0.021	51.8

Table 3 Branch Volume Percent by Crown Density

	Crown Density		
	Thick	Medium	Thin
Percent (%)	59.2	6.77	73.3

Table 4 Volume of Dead Tree by Forest Type _____(Unit

.

m³/ha)

			Crown densit	у
		Dense	Medium	Low
	Heigh	0.7032	0.4508	0.4064
Tree Height	Medium	0.3057	0.0590	1.1672
0	Low	0.1614	0.5346	0.1241

Table 5 Results of the Herb Survey

•

Dry Season

5

	Plot		Fores	і Туре	Weight (g/4m ²)
		Vegetation	Height	Density	Total
QI	Tongole Camp	Miombo	Medium	Medium	425.0
Q2	Moobo Camp	Miombo	Low	Medium	740.0
Q3 -	Chipata Camp	Miombo	Low	MeJium	728 2
Q4	MI0 Road	Miombo	High	Medium	385.0
Q5	Chipala Centre	Miombo	Medium	Medium	645.8
Q6	Bua Camp	Dambo		-	3,938.4
Q7	Bua Camp	Miombo	Medium	Low	315.0
Q8	Bua Camp	Miombo (Reverside forest)	Low	Low	215.0
Q9	Navunde Camp	Miembo	Low	Low	560.0

Rainy Season

			Fores	t Type	No. of Species	Weight (g.4m ²)	Weight (g.4m ²)	Weight (g/4m ²)
	Plot	Vegetation	Height	Density		Fodder	Non-Fodder	Total
QI	Wodzi Camp	Miombo	High	Low	11	115.0	83.5	198.5
Q2	Wedzi Camp	Grassland	-		6	154.6	49.7	2043
Q3	Bua Camp	Miomeo	High	Dense	7	399.3	49.7	448.9
Q4	Bua Camp	Dambo	-		3	2.881 2	0.0	2,831.2
Q5	Bua Camp	Dambo	-		3	3.328.1	Ū.0	3,328.1
Q6	Bua Camp	Miombo	Medium	Lon	3	217.6	20.0	237.6
Q7 -	Kasaka Camp	Miembo	Medium	Dense	7	247.0	60.0	306.9
Q8	Navunde Camp	Miembo	Low	Low	7	353.1	35.3	388.4
Q9	Chipata Centre	Miomoo	Low	Dense	11	95.0	61.3	156.3
Q10	Chipata Centre	Miombo	Low	Dense	17	227.3	40.9	268.1
QII -	Chipata Centre	Miombo	Medium	Medium	14	238.1	101.7	339.9
Q12	M10 Road	Mimbo	High	Medium	8	329.3	107.0	436.3
Q13	Mbobo Camp	Daraba		-	4	1.264 2	232 3	1,496.5

 Table 6
 Results of the Amount of Upper Tree Leaves

Plot No.of Growing	Fores	t Type	Weights
Stock Survey	Height	Density	(kg/tree)
1	Medium	Low	5.1
2	Low	Low	6.2
4	Medium	Dense	7.3
5	Low	Dense	2.6
7	Low	Low	2.8
8	High	Dense	20.3
11	High	Low	16.7
16	Medium	Medium	5.2
21	Low	Medium	3.2
25	Medium	Dense	7.1
27	Low	Medium	2.6

		1	Miombo Forest		Grassland	Total
		High	Medium	Low	-	
Fodder	Resource amount (g/4m ²)	281.2	234.2	225.1	1,322.9	-
	Resource amount (kg/ha)	703.0	585.5	562.8	3,307.3	-
	Area by forest type (ha)	68,410	83,161	19,764	6,801	178,118
	Subtotal (ton)	48,092	48,691	11,112	22,493	130,388
Non-fodder	Resource amount (g/4m ²)	80.1	60.6	45.8	63.6	•
	Resource amount (kg/ha)	200.3	151.5	114.5	159.0	
	Area by forest type (ha)	68,410	83,161	19,746	6,801	178,118
	Subtotal (ton)	13.699	12,599	2,261	1,081	29,640
Total	Resource amount (g/4m ²)	- 361.3	294.8	270.9	1,386.5	-
	Resource amount (kg/ha)	903.3	737.0	677.3	3,466.3	-
	Area by forest type (ha)	68,410	83,161	19,746	6,801	178,118
	Subtotal (ton)	61,791	61,290	13,373	23,574	160,028

Table 7 Understory Plant Resource in the Reserve

Note: The amount of resources represents air-dry weight.

-

Table 8 Total Amount of Understory Tree Leaves

Tree Height	Density	Weight	No.of Trees	Total Weight	Area	Total Weight
-		(kg/ha)	(per ha)	(tons)	(ha)	(tons)
High	Thick	20.3	564	11.449	23,676	271,071
High	Medium	18.5	416	7.696	37,191	286,222
High	Thick	16.7	344	5,745	7,543	43,333
Medium	Thick	7.2	859	6.182	40.637	251,234
Medium	Medium	5.2	488	2,538	32,091	81,434
Medium	Low	5.1	328	1.673	10,433	17,452
Low	Thick .	2.6	948	2,465	14,890	36,701
Low	Medium	2.9	737	2,138	4,425	9,462
Low	Low	4.5	381	1,716	431	740
Tot	al	•	-		171,035	993,649

	Estimated	Average	Consumption ³⁾	Consumption4	Consumption	Consumption	Consumption
	Animal	Body	(c)	(d)=(b)x(c)	(c)=(a)x(d)	(f)=(c)x365	rate
	Count ⁱ⁾	Weight ²⁾		(kg/day/head)	(kg/day)	(ton/year)	(%)
	(a)	(b)(kg)					
Buffalo	601	525	2.5%	13.13	7,888.13	2,879	10.85
Bushbuck	285	51	2.5%	1.28	363.38	133	0.50
Bushpig ⁴⁾	71	83	-	-	-	•	-
Duiker	1,770	15	2.5%	0.38	663.75	242	0.91
Eland	23	575	2.5%	14.38	330.63	121	0.45
African elephant	1,037	3,550	1.5%	53.25	55,220.25	20,155	75.94
Grysbok	32	16	2.5%	0.40	12 80	- 5	0.02
Hartebeest	-	-	•	-	-	-	-
Hippopotamus	-	-	-	-	-	-	-
Klipspringor	-	-	-	-	-		-
Kudu	87	94	2.5%	2.35	204.45	75	0.28
Reedbuck	351	73	2.5%	1.83	640.58	234	0.88
Roan	424	265	2.5%	6.63	2,809.00	1,025	3.86
Sable	181	223	2.5%	5.58	1,009.08	368	1.39
Wathog ⁴⁾	771	8 4	-	-	- •	-	-
Waterbuck	244	193	2.5%	4.83	1,177.30	430	1.62
Zebra	246	390	2.5%	9.75	2,398.50	875	3.30
Total	6,123	•	_	113.75	72,717.83	26,542	100.00

Table 9Existing Animals and Estimated Consumptionof Fodder Plants in the Reserve

Notes 1) Data from the aerial survey in October 1996.

2) Collins "Mammals of Africa" 1984

- Ratio of daily consumption (air-dry weight) to body weight Cambridge University Press, The Asian elephant : ecology and managment, 1989
- Excluding consumption by bushpigs and warthogs which graze a very small amount of herbs.

Plot	Location	Forest Type			No.of Trees	Averag	Avera	Stem Volume
No.		1	Height	Density	per ha *1	DBH	Height	(m³/ha)
						(cm)	(m)	
1	Kasaka Camp	Natural	Heigh	Medium	236	18.5	13.5	45.159
2	Kasaka Camp	Natural	Low	Međium	492	7.3	6.5	9.896
3	Kasaka Camp	Natural	Low	Medium	292	7.4	7.5	6.716
4	Kasaka Camp	Man-made	-	-	2,096	9.1	14.5	91.007
5	Dwangwa	Man-made	-	-	1,480	7.7	13.0	41.353
6	Kasaka Camp	Natural	Low	Dense	1,028	6.3	5.0	11.894
7	Mbobo Camp	Natural	Low	Medium	276	8.2	6.5	7.956
8	Mbobo Camp	Natural	Medim	Low	116	14.6	13.0	15.982
9	Mbobo Camp	Natural	Medium	Medium	248	15.2	13.5	41.867
10	Mbobo Camp	Natural	High	Low	176	17.2	16.0	33.964
11	Мосьо Сатр	Natural	High	Medium	232	19.2	14.0	48.654
12	Mbobo Camp	Natural	High	Low	184	23.1	18.0	61.756

Table 10 Summary of Fuelwood Survey Results

Note *1: Dead trees are not included.

11. List of Tree Species Identified in the Forest Survey

and the second s

0

FAMILY	BOTANICAL NAME	LOCAL NAME
Moraceae	Ficus natalensis	Kachere
	Treculia africana	Njayi
	Trilepsium madagascariensis	Kanungunungu
Moraceae, Apocynaceae	Bosqueia phoberos, Strophanthus nicholsonii	Kanungunungu, Mkombe
Proteaceae	Protea sp., Faurea sp.	Chiere
Amaranthaceae	Avnaranthus spinosus	Kalindi, Bonongwe
Annonaceae	Annona senegalensis	Мрога
Ochnaceae	Ochna pidchra	Mpatwe
	Ochna schweinfiothiana	Mgundanguluwe
Dipterocarpaceae, Caesalpinio	sideat Monotes africanus, Swarizia madagascariensi	
Guttiferze	Garcinia huillensis	Mtundira, Musongwa
	Hanıngana madagascariensis	Mbuluni
Rosaceae	Parivari curatellifolia	Muula
Leguminosae	Acacia nilotica	Chiwinn
•	Aftelia quantensis	Msambomfumu, Mngongomwa
	Albizia odianthifolia	Mtangatanga
	Bauhinia petersiona	Mpapa, Mpandula
	Brachystegia boelvnii	Mombo
	Brachystegia bussei	Mseza, Mchenga
	Brachystegia floribunda	Mvukwe, Faija
	Brachystegia longifolia	Mombo
	Brachystegia spiciformis	Мрара
	Brachystegia stipulata Brachystegia stipulata	Mombo, Bobyu
	Brachystegia utilis	Msenga, Chitowe
	Burkea africana	Kawizi, Kawidzu, Mkalati
	Craibia brevicandata	Mpindawago
		Mkalasinga
	Dalbergia nitidula	Mlundo
	Dalbergiella nyasae	Mpangala
	Dichrostochys cinerea	Chisese
	Entada abyssinica	Kamponi
	Julbernardia globiflora	Mtondo
	Julbernardia paniculata	
	Lonchocarpus capassa	Nyamakani, Mpakasa
	Newtonia buchananii	Sendele? (Msenjere), Mkwenyani
	Pericopsis angolensis	Mwanga Maalaan Chilimba
	Piliostigma thonningii	Msekese, Chitimbe
	Pterocarpus angolensis	Mlombwa
	Senna didynobotrya	Njere, Mjere
	Senna petersiana	Mtanthany'erere
·	Tephrosia vogelii	Mthunthu, Mthuthu
Erythroxylaceae	Erythroxylum emorgination	Chikango, Kaplupa, Mlungamo
Euphorbiaceae	Bridelia micrantha	Mpasa, Kapasa
	Croton macrostachys	Mbwani, Mthutu, Chiwalika
	Pseudolachnostylis maprouneifolia	Msolo
	Uapoca kirkiana	Msuku
	Uapaca nitida	Kasokolowe
Rutaceae	Teclea nobilis	Mkulukuku
Meliaceae	Ekebergia benguelensis	Mlyaselu, Muselu
. :	Trichilia emetica	Msikidzi, Msikitsi, Mwavi
	Turraea floribunda	Chikwisimbi
Anacardiaceae	Lannea discolor	Kaumbu, Chiumbu
=	Lannea schimperi	Kaumbu
	Ozoroa resiculasa	Mbewe

List of Tree Species Identified in the Forest Survey

.

FAMILY	BOTANICAL NAME	LOCAL NAME
Melianthaceae	Bersama abyssinica	Chiwindu, Mkanga, Nkanga
Celastraceae	Maytenus senegalensis	Mchema, Mpabula
Icocinaceae	Apodytes dimidiota	Katole, Lifele, Mchima, Mnyembodwe, Msusumba, Mtibulo
Sterculiaceae	Dombeya rohundifolia	Naduwa, Nchiu, Mchiu
Flacourtiaceae	Flacourtia Indica	Mtudza
Nynaceae	Syzygium cordatwn	Njowe
	Syzygium guineense	Mbunguzi, Mpeuma
	Syzygium sp.	Katope
Rhizophoraceae	Anisophyllea poinifera	Mungo
Combretaceae	Combrehum fragraus	Kalama wa ukazi
	Combretum molle	Kadale
	Combretum zeyheri	Kalama
	Terminalia stenostachya	Mkulu
Sapotaceae	Bequaertiodendron magalismontanion	Chiyira
Ebenaceae	Euclea schimperi	Mpukuso
Ebenaceae, Guuilerae	Diospyros sp., Psorosperinium febrifitzium, Rhus longipes	Mdima
Olezceae	Chionanthus battiscambei	Kapanda
Loganiaceae	Strychnos spinosa	Dzaj, Mteme
Apocynaceae	Diplorhynclus condylocarpon	Thombozi
	Rauvolfia caffra	Mvumbamvula, Mwimbi
Rubiaceae	Breonadia microcephala	Mingona
	Oxyanthus speciosus	Chikanga, Msongwe (Yao)
	Polysphaeria lanceolata	Mpeko, Msepauta, Mtola
	Psychotria mahoni	Chipeta
	Randia sp., Xeromphis obovata	Chipembere
	Vangueria infausta	Mvilo, Mzilu
	Yangueria sp.	Mfulukutu
Boraginaceae	Cordia abyssinica	Mbwabwa
Verbenaceae	Vitex doniana	Msipsya
Scrophulanaceae	Halleria elliptica	Mpulupulu
Bignoniaceae	Kigelia africana	Mvunguti, Muungutwa
	Markhamia obtusifolia	Msewa, Mwanambewe
	Stereospermion kunthianun	Kabrunguti
Pedaliaceae	Sesainuon angolense	Mkuyu, Mkuya
Liliaceae	Dracaena laxissima	Mchemani
2	Chavnaete cristata	?
?	Stenoleps lanceolata	?
?	3	Chisimbwe
;	?	Chiwowo, Chiwowa
?	?	Kamilalumba
?	2	Kanamzuro
?	?	Kapilapila
?	?	Katele
?	?	Kige!e
?	?	Mkunhumala
?	7	Mlengwe
?	?	Mlima
?	?	Nalenje? (Mlanje)

Note: Local names are mainly in Chewa language.