ATTACHMENT-I MINUTES OF MEETING FOR INCEPTION REPORT

MINUTES OF MEETING

FOR

INCEPTION REPORT

ON

THE STUDY

ON

THE REHABILITATION OF IRRIGATION PROJECTS

IN

THE REPUBLIC OF GHANA

ACCRA, 23 OCTOBER, 1995

Mr. O.K. GYARTENG

Chief Executive

Ghana Irrigation Development Authority

Mr KUNIO IDIE

Leader

JICA Study Team

Witnessed by

Mr. TAKEAKI SATO

Leader

Advisory Team

Japan International Cooperation Agency

1. Date: 20 October, 1995 (9:30 am - 12:00 pm)

2. Place: Conference Room at GIDA

3. Attendants: See attached list

4. Summary of Discussion:

The JICA Study Team (the Study Team) submitted twenty (20) copies of the Inception Report (the Report) to Ghana Irrigation Development Authority (GIDA) on 20 October, 1995 in accordance with the Scope of Work for the Study on the Rehabilitation of Irrigation Projects agreed upon between GIDA and Japan International Cooperation Agency (JICA) on 19 April, 1995.

The meeting was held at GIDA's conference room. Prior to the meeting, the Minutes of Meeting agreed between GIDA and the Preparatory Study Team on 19 April, 1995 were confirmed.

In the meeting, Mr. K. Irie, Leader of JICA Study Team, presented the highlights of the Inception Report. Discussions followed after the presentation with the following as conclusions:

- (1) In principle, the contents of the Inception Report were accepted by GIDA.
- (2) GIDA requested the Study Team that the agricultural development plan to be proposed should be worked out, putting careful attention to the sufficient maintenance period for operation and maintenance of the project facilities. The Study Team agreed to this request.
- (3) GIDA requested the Study Team to study the possibility of expansion of irrigated land in the areas adjacent to the existing project sites. The Study Team agreed to make such a study within the extent economically justifiable.
- (4) GIDA requested that the Steering Committee Meeting be held once a month. The Study Team agreed to this request.
- (5) EIA study shall be executed for the selected priority projects in line with the latest government regulation.

- (6) The proposed cropping pattern should include plan for crop diversification, taking into account the natural, social and economic conditions of the respective study projects.
- (7) The weighted selection criteria which will be used for selection of priority projects should be prepared and discussed with GIDA in advance.
- (8) The possibility of recovering capital cost of the Projects from the farmers should be studied.
- (9) The contractor(s) for execution of any work on the agreement should be selected by bidding, except soil laboratory test.

N & K

LIST OF ATTENDANTS

Ghanalan Side

1. Ministry of Food and Agriculture

Hon. Mr. V.K. Atsu-Ahedor

Deputy Minister of MOFA (Crops)

2. Ministry of Finance

Mr. E.K. Nkansah

Representative of Ministry of Finance

3. Ghana Irrigation Development Authority

Mr. O.K. Gyarleng

Chief Executive Mr. Kwabena Wiafe Deputy Chief Executive (Engineering) Mr. M.A.K. Affram Deputy Chief Executive (Agronomy)

Mr. H.A. Torgbor Director of Development Mr. Yaw Yeboah Deputy Director of Planning

Mr. S. Oduro-Konadu Principal Agronomist Mr. Sammy Akagbor Principal Agronomist (Soils)

Mr. E.T. Obuobi Chief Personnel Officer

Mr. P. Osew-Owusu Solicitor

Japanese Side

1. Advisory Team:

Mr. Takcaki Sato Leader

Mr. Makoto Takahashi Coordinator

JICA Ghana Office:

Mr. Toshiharu Kai Deputy Resident Representative

Irrigation Development Centre (IDC):

Mr. Akira Ogawa Colombo Plan Expert

2. JICA Study Team:

Mr. Kunio Iric Leader

Mr. Hitoshi Shimazaki Irrigation and Drainage System Mr. Tadaharu Murono Social and Farmer Organisation Mr. Noboru Mochizuki Management and Agricultural Aspects Mr. Kisaku Yamada

Agro-economic Study & Project

Evaluation

Mr. Mototaka Nishi Hydrological & Meteorological Study Mr. Yasushi Osato Structure Design & Cost Estimate

Mr. Yoji Mizuguchi Pedology & Environment

Mr. Shigeya Otsuka Coordinator

A - AI - 4

ATTACHMENT-II MINUTES OF MEETING FOR PROGRESS REPORT-I

MINUTES OF MEETING

FOR

PROGRESS REPORT - I

ON

THE STUDY

ON

THE REHABILITATION OF IRRIGATION PROJECTS

IN

THE REPUBLIC OF GHANA

ACCRA, 22 DECEMBER, 1995

Mr. O.K. GYARTENG

Chief Executive

Ghana Irrigation Development Authority

Mr. KUNIOTRIE

Leader

JICA Study Team

1. Date : 22nd October, 1995 (10:00 - 13:30)

2. Place : Conference Room at GIDA

3. Attendants : See attached list

4. Summary of Discussion:

The JICA Study Team (the Study Team) submitted twenty (20) copies of the Progress Report-I (the Report) to Ghana Irrigation Development Authority (GIDA) on 19th December, 1995 in accordance with the Scope of Work for the Study on the Rehabilitation of Irrigation Projects agreed upon between GIDA and Japan International Cooperation Agency (JICA) on 19 April, 1995.

At the meeting, Mr. K. Irie, Leader of JICA Study Team, presented the highlights of the Report, and other experts made additional explanation of their technical sections. Discussions followed after the presentation with the following as conclusions:

- (1) In principle, the contents of the Report were accepted by GIDA.
- (2) GIDA requested the Study Team to:
 - (a) Spell out the title of all tables shown in the paragraphs,
 - (b) Make further study on the water requirements,
 - (c) Make further study on possibility of increasing the reservoir capacity of Ashaiman project,
 - (d) Make a study on improvement of intake valve at Ashaiman reservoir,
 - (e) Study the maintenance method of drainage system,
 - (f) Make further study on fertilizer and other agro-chemicals application effects on environment,
 - (g) Study needs of rehabilitation and new construction of staff quarters in connection with the projects rehabilitation, and
 - (h) Make further study on credit facilities to farmers.

LIST OF ATTENDANTS

Ghanaian Side

1. Ghana Irrigation Development Authority:

Mr. O.K. Gyarteng
Mr. Kwabena Wiafe
Chief Executive
Deputy Chief Executive (Engineering)

Mr. M.A.K. Affram

Deputy Chief Executive (Agronomy)

Mr. H.A.Torgbor Director of Development
Mr. D.N. Ohemeng Acting Director of Operations
Mr. Yaw Yeboah Deputy Director of Planning
Mr. Nana Kofi Koduah Deputy Director of Plant

Mr. Sammy Akagbor Deputy Director of Agriculture

Mr. Chris Bence Agronomist

Japanese Side

1. JICA Study Team:

Mr. Kunio Irie Leader

Mr. Hitoshi Shimazaki Irrigation and Drainage System
Mr. Tadaharu Murono Social and Farmer' Organisation
Dr. Noboru Mochizuki Management and Agricultural Aspects

Mr. Kisaku Yamada Agro-economic Study & Project

Evaluation

Mr. Yasushi Osato Structure Design & Cost Estimate

Mr. Yoji Mizuguchi Pedology & Environment

Mr. Shigeya Otsuka Coordinator

ATTACHMENT-III FIELD MESUREMENT ON CYLINDER INTAKE RATE

ATTACHMENT-III

Measurement of Cylinder Intake Rate

1. General

The intake rate means the rate for irrigation water or rainfall infiltrated into the soil, which is expressed by mm/h. It is an important factor to determine the appropriate method, intensity and interval for irrigation for upland crops. The intake rate is generally measured by cylinder intake rate method or furrow intake rate method, which is to be selected considering the purpose of measurement. In this case, most of the projects to be studied employ the sprinkler system so that the cylinder intake rate method is selected.

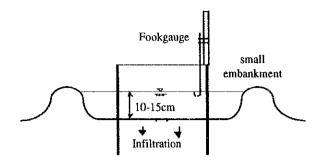
2. Test Apparatus

Test apparatus for cylinder intake rate test are a fookgauge and a steel cylinder with the inner diameter of about 40 cm and the height of about 50 cm. In this test, however, a half-cut dram can is used instead of a steel cylinder.

3. Test Procedure

(1) Installation of steel cylinder

As the accuracy of the test would be affected by installation of cylinder, a cylinder (half-cut dram can) is carefully installed in the following procedure.


- (a) Remove weeds and level the surface on the investigation point without disturbing the surface of the soil to be tested.
- (b) Install the cylinder on the test point and put it horizontally.
- (c) Set the timber on the cylinder and drive it gradually into the land by hammer with keeping the top of cylinder horizontal, so as to attain 20 to 30 cm of driven depth.
- (d) Build a small embankment around the cylinder about 10-20 cm away.
- (e) Set a fookgauge on the cylinder to measure the level of water surface.

(2) Measurement procedure

Measurement for cylinder intake rate is executed as follows.

- (a) Put a vinyl sheet on soil surface in the cylinder to avoid disturbance of soil surface by pouring water.
- (b) Pour water into not only the cylinder, but also the space between cylinder and small embankment until water level becomes 10-15 cm. Both water level shall be almost equal.
- (c) Remove the vinyl sheet, and start measurement of water level immediately.
- (d) Measure the water level at 1, 5, 10, 15, 20, 30, 40, 50, 60 min. after starting the measurement.
- (e) Keep inside and outside of water level almost equal.
- (f) Record the water level just before and after adding water in case additional water is poured into the cylinder.

Apparatus of Cylinder Intake Rate Test

4. Test Result and Analysis

The test results are plotted on a full logarithm paper with the time on a horizontal axis and accumulated intake on a vertical axis. As the plotted points are almost on a straight line, a relation between cylinder intake rate and the accumulated intake is expressed with the following equation:

$$Dc = CT^{n} (mm)$$

$$Ic = 60CnT^{n-1} (mm/h)$$

Where.

D: Accumulated intake amount within T minutes after starting the test

C: Accumulated intake when T=1 minute

n: Gradient

The basic intake rate IB which is defined as the 10% of the rate of decrease in intake rate, is expressed by the following equation.

$$IB = 60Cn\{600(1-n)\}^{n-1} (mm/h)$$

Test results for 8 Projects are given in the next page. In addition, the sample analysis and calculation of the test result is attached hereto.

Project	Test	Texture of Surface Soil	Accumulated Intake Dc (mm)	Cylinder Intake Rate Ic (mm/h)	Basic Intake Rate IB (mm/h)
Ashaiman		Loamy Sand	Dc=5.71T 0.54	Ic=186T -0.46	14.3
Weija	Α	Course Sand	$Dc=4.43T^{-0.50}$	Ic=131T -0.51	7.3
	В	Course sand	Dc=2.03T 0.58	Ic=71T -0.42	6.9
Kpando-Torkor	Α	Loam with Gravel	Dc=12.05T ^{0.68}	Ic=489T -0.32	89.3
	В	Sandy Loam	Dc=2.03T 0.71	Ic=86T -0.29	19.3
Mankessim	Α	Silty Clay	Dc=13.80T 0.94	Ic=780T -0.06	635.0
	В	Sandy Loam	Dc≂6,92T ^{0.69}	Ic≃288T -0.31	58.4
Akumadan	Α	Clay Loam with Gravel	Dc=9.57T 0.83	Ic=477T -0.17	218.6
	В	Clay Loam with Gravel	Dc=8.20T 0.92	$Ic=454T^{-0.08}$	338.2
Tanoso	A	Sandy Loam	Dc=3.03T 0.76	Ic=138T -0.24	42.8
	В	Sandy Loam	Dc=2.01T 0.78	Ic=94T -0.22	32.4
	C	Sandy Soil	Dc=2.07T 0.77	Ic=95T -0.23	30.7
Bontanga	Α	Clay Loam	Dc=2.05T 0.40	Ic=49T - ^{0.60}	1.4
	В	Clay Loam .	Dc=12.05T 0.68	Ic=489T -0.32	20.8
Subinja	Α	Sandy Soil	Dc=0.96T 0.72	Ic=42T -0.28	9,9
=	В	Sandy Soil	$Dc=1.88T^{-0.71}$	Ic=80T -0.29	17.7

Sample Analysis and Calculation of Cylinder Intake Rate Test

Date:

1995/11/28

Weather:

Clear

Place:

Near left embankment of Left Main Canal

Soil Type:

Loamy Sand

Cylinder Diameter:

0.580m

Cylinder Diai	neter.	U.Jouii					
Time	3	Accumulated Time.	Time Interval		Reading of Gauge	Decrease in Water Level	Accumulated Decreased Water Level
(hr.)	(min.)	(min.)	(min.)		(mm)	(mm)	(mm)
14	34	0		0	118.5	0.0	0.0
14	35	1		1	113.0	5.5	5.5
14	39	5		4	105.0	8.0	13.5
14	44	10		5	98.0	7.0	20.5
14	49			5	92.0	6.0	26.5
14	54			5	88.0	4.0	30.5
15	04	30		10	81.5	6.5	37.0
15	23		:	10	77.0	4.5	41.5
15	33			10	72.5	4.5	46.0
15	43			10	68.5	4.0	50.0

From the measurement results mentioned above, the accumulated intake Dc is expressed by:

$$Dc=CT^n$$

$$log_{10}Dc = log_{10}C + nlog_{10}T$$

To calculate $log_{10}C$ and n, a least square method is adopted. In case the graph between x and y shows straight line, it is expressed by the following equation:

$$y = a + bx$$

The above a and b are obtained using a least square method.

$$[y]=aN+b[x]$$

$$[xy]=a[x]+b[x^2]$$

[] is a mark for expressing the total amount, such as

[x]=
$$x_1+x_2+..+x_i$$
,[y]= $y_1+y_2+..+y_i$,[xy]= $x_1y_1+x_2y_2+..+x_iy_i$, [x²]= $x_1^2+x_2^2+..+x_i^2$. Where, N is the number of data.

Namely,

$$a = \{[x^2][y^2]-[x][y]\}/\{[x][xy]\}$$

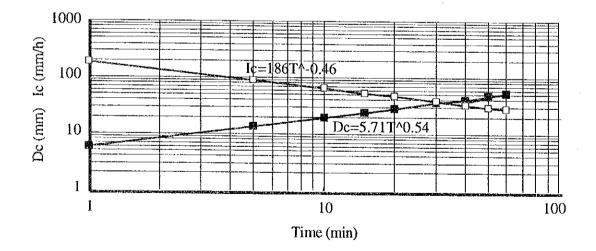
$$b = \{N[xy]-[x][y]\}/\{N[x^2]-[x]^2\}$$

In this test, $x=log_{10}T$, $y=log_{10}Dc$, $a=log_{10}C$, b=n

N	T(min.)	Dc (mm)	log ₁₀ T	log ₁₀ Dc	$(\log_{10}T)^2$	log ₁₀ T x log ₁₀ Dc
1	1	5.5	0.00	0.74	0.00	0.00
2	5	13.5	0.70	1,13	0.49	0.79
3	10	20.5	1.00	1.31	1.00	1.31
4	15	26.5	1.18	1.42	1.38	1.67
5	20	30.5	1.30	1.48	1.69	1.93
6	30	37.0	1.48	1.57	2.18	2.32
7	40	41.5	1.60	1.62	2.57	2.59
8	50	46.0	1.70	1.66	2.89	2.82
9	60	50.0	1.78	1.70	3.16	3.02
Total			10.73	12.64	15.36	16.46

In this case, N=9.

Thus,


$$\begin{split} \log_{10} & \text{C} = \{ [\log_{10} \text{T}] 2] [\log_{10} \text{Dc}] \text{-} [\log_{10} \text{T}] [\log_{10} \text{T x } \log_{10} \text{Dc}] \} \\ & / \{ \text{N} [(\log_{10} \text{T})^2] \text{-} [\log_{10} \text{T}]^2 \} \\ & = (15.36 \text{x} 12.64 \text{-} 10.73 \text{x} 16.46) / (9 \text{x} 15.36 \text{-} 10.73^2) = 0.757 \\ & \text{C} = 5.71 \\ & \text{n} = \{ \text{N} [\log_{10} \text{T x } \log_{10} \text{Dc}] \text{-} [\log_{10} \text{T}] [\log_{10} \text{Dc}] \} / \{ (\log_{10} \text{T})^2 \} \text{-} [\log_{10} \text{T}]^2 \} \\ & = (9 \text{x} 16.46 \text{-} 10.73 \text{x} 12.64) / (9 \text{x} 15.36 \text{-} 10.73^2) = 0.54 \end{split}$$

From this calculation results,

Accumulated intake : $Dc = 5.71T^{0.54}$ (mm) Cylinder intake rate : $Ic = 60x0.54x5.71xT^{(0.54-1)} = 186T^{-0.46}$ (mm/h)

: $IB=60x5.71x0.54x\{600x(1-0.54)\}^{0.54-1}=14.3 \text{ (mm/h)}$ Basic intake rate

The equations obtained above are shown in the following full logarithm paper.

ATTACHMENT-IV

FIELD MESUREMENT
ON
CANAL SEEPAGE RATE

ATTACHMENT-IV

Field Measurement on Canal Seepage Rate

1. General

Measurement of canal seepage rate was executed to grasp the present canal condition, and also to obtain the basic data for rehabilitation plan of the Projects. The results are compiled in a form of the unit of litter/sec/1,000 m2 of wetted perimeter for easy analysis and application to other canals.

2. Test Apparatus

Test apparatus for the measurement of canal seepage consists of dial gauge, float and its supports

3. Test Procedure

(1) Installation of test apparatus

- (a) Install the supports with a dial gauge approximately on the mid-point of total length of the tested canal.
- (b) Set the dial gauge on the support bar and place the float on the surface of the water attached to the tip of dial gauge.
- (c) Check the upstream and the downstream ends of the canal completely with clay soil to create pond in the canal.

(2) Measurement procedure

- (a) Start reading a dial gauge every 5 minutes to record the decrease in water level, immediately After installing the apparatus.
- (b) Measure water depth and surface width with tape at several points of tested canal at 5-20 meters interval just before and after commencement of measurement.
- (c) Continue the measurement until constant of gauge variation, say at least 2 hours.

4. Test Result and Analysis

Relation between time lapse and decrease of water level drawn on the section paper shows that a decrease rate in water level at the initial stage is high, and as the time has passed, it becomes lower. The decrease rate approaches to a certain constant value DR after a few hours, which can be easily estimated from the graph.

With an assumption that the seepage loss is in proportion to the area of wetted perimeter, it is estimated using the following equation.

 $Cs = DR \times L \times WS \times (1,000/AP) \text{ (liter/sec./1,000m}^2\text{)}$

Where,

Cs : Canal seepage

DR : Decreasing rate of water level
L : Tested canal length (m)

Ws : Width of water surface (m)

AP : Area of wetted perimeter of tested canal (m²)

Test results for 4 projects are given below, and the sample analysis and calculation of the test is shown hereinafter.

Project	Place	Date	DR (mm/5min.)	DR (mm/sec.)	Canal Length (m)	Width of Water Surface (m)		Seepage Rate (1/sec./1,000m ²)
Ashaiman	Left Bank Main Canal	1995/11/28	0.10	0.00033	115.65	1.06	180.85	0.23
Atīfe	Lateral Canal	1995/11/17	1.60	0.00533	305.50	1.22	431.35	4.61
Okyereko	Right Bank Main Canal	1995/12/4	1.00	0.00333	85.00	0.80	107.63	2.11
Bontanga	Right Bank Lateral Canal No.2	1995/11/7	0.40	0.00133	25.46	0.79	29.03	0.92
Bontanga	Right Bank Lateral Canal No.1	1995/11/8	0.40	0.00133	33.26	0.68	35.59	0.85

Sample Analysis and Calculation Canal Seepage Rate

Measurement Place: Okyereko Irrigation Project

1995/12/4

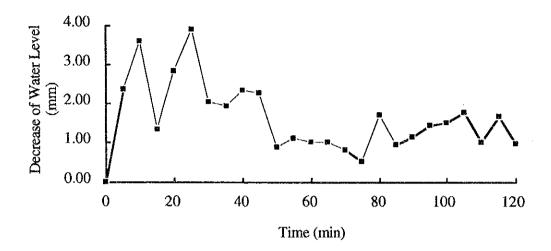
Date: Weather:

Clear

Place:

Right bank of Main canal Precast concrete block lining

Canal type: Test length:


85.00m

		-			
Measure Time		Accumulated Time	Time	Reading	Decrease
	•	11116	Interval	of	in
(h-)	(ma . m .)	()	***************************************	Gauge	Water Level
(hr)	(min.)	(min.)	(min.)	(mm)	(mm)
13	58	0	0	25.00	0.00
14	03	5		22.64	2.36
14	08	10	5	19.06	3.58
14	13	15	5	17.71	1.35
14	18	20	5 5 5 5	14.88	2.83
14	23	25		11.00	3.88
14	28	30	5 5 5 5 5	8.95	2.05
14	33	35	5	7.02	1.93
14	38	40	5	4.70	2.32
14	43	45	5	2.43 17.57	2.27
14	48	50	5	16.70	0.87
14	53	55	5 5	15.58	1.12
14	58	60	5	14.57	1.01
15	03	65	5	13.57	1.00
15	08	70	5 5 5	12.76	0.81
15	13	75	5	12.25	0.51
15	18	80	5 5 5 5	10.56	1.69
15	23	8.5	5	9.62	0.94
15	28	90	5	8.47	1.15
15	33	95	5	7.03	1.44
15	38	100	5	5.53	1.50
15	43	105	5 5 5	3.76	1.77
15	48	110	5	2.74	1.02
15	53	115	5	1.07	1.67
15	58	120	5	0.08	0.99

At the same time, width, and depth of water surface just before and after measurement were measured shown as below.

Point	oint Width Water Depth of Water Surface			tted neter	Area of Wetted Perimeter			
·	(m)	(m)	(m)	(m)	(m)	(m)	(m ²)	(m ²)
	13:58	15:58	13:58	15:58	13:58	15:58	13:58	15:58
1	1.10	1.00	0.33	0.30	1.12	1.04	22.33	20.77
2	1.10	1.00	0.32	0.28	1.09	0.99	21.81	19.73
3	0.98	0.90	0.34	0.30	1.14	1.04	22.85	20.77
4	1.04	0.97	0.34	0.29	1.14	1.01	22.85	20.25
5	0.99	0.90	0.34	0.30	1.14	1.04	22.85	20.77
6	0.90	0.81	0.36	0.31	1.19	1.06	5.97	5.32
Average	0.87	0.80	0.29	0.25	0.98	0.88	118.66	107.6

Relation of time lapse and decrease of water level is shown in following figure. From this figure, it is apparent that the decreasing rate in water level (DR) approaches to a constant value of 1.00 mm/5min., that is 0.00333mm/sec.

From the above test results, canal seepage rate is expressed by the following equation.

Canal seepage rate Cs= $0.00333 \times 85.00 \times 0.80 \times (1,000/107.63)$ = $2.11 \text{ (l/sec./1,000m}^2\text{)}$

ANNEX-B METEOROLOGY AND HYDROLOGY

그런 그는 그는 사람들이 없다는 그 무료를 하고 있다면 하는데 하는데 하는데 하는데 그 아이들이 모든데 그리다를 다 없다.	
그러고 있다는데, 경영적인 아이는 한민과 되는 것이 모습을 보았다. 이 아픈 스토리를 받고 살았다.	
그렇게 하다. 얼마나를 하고 한 살아가는 게 하다라고 말라고 하는데 된다는데 다녀가 하다고 다른다.	٠_
그는 일반이 되어 있는 것은 사람들은 사람들은 사람들이 되는 것이 되었다. 그렇게 하는 것 같아 없는 것	÷
이 회사는 경우 하루의 교육으로 걸려하면 하고 있는데 모든 가장은 사용 하는데 중요 이 모든 사람이 하는	
그리스 이 아는 집에는 발로들이는 아들이다. 아이스랑은 이렇지만 하는 것은 사람들이 되어 가장한다.	
그리고 있다. 이상 하는 그리고 있는 것도 있는데 하는 사람들은 그리고 있는데 그렇게 되었다. 그렇게 되었다.	
그 일본 발전하다 그들은 회문하다 나는 사람들이 그는 생활하다. 보고 얼마 중요는 생활하는 사람들이 살아왔다.	
그는 계대를 가는 이 본 전에 가장 한 살이 되는 사람들 말을 하는 사람들은 경기가 된 경험을 가득하는 것을 된다.	
그리는 소리는 사고하는 등 대학자 이 사는 회에들이 하는 사람은 사람들이 하를 모르는 사람들이 하고 있다.	
이번 얼굴하는 것이 하면 되는 것이 되었다면 가장하는 것이 그런 바라를 살아가 되는 건강을 가지하다면 다양	
그는 이 일이다는 아내는 것인 이 아이는 사람들들이 가지 않을 수 없는 이 때문에 가는 그들이 없었다.	
이 보고 아랫동안 여자 "동이의 지도 동안 동안 되는 동안 가장들으로 이 등인이의 사람이 되다.	•
이 보고 살아가는 사람들은 것이 되었다. 그는 것이 들은 것이 얼마를 가장 하는 것이 없는 것이 없는 것이 없는데 얼마를 먹었다.	
그러 하는 소문으로 살아가지 않는데 보고 하는 사회 사람이 한 경험 시간 회사의 중 회교이 다구나 하는데요?	4
그런데 그는 사람들의 이름이 나를 다고 가장 살았다. 원인 작동되었는데 모양 나는 사람들이 나를 다 다 했다.	
그는 사람들에 독일했다. 학생의 전에 문에 된 학생은 그들은 본 이 모든 그림을 한 것을 했다.	
- 기업 - 1일 : 1 기업 등실 경험 및 경험 기업 등실 시간 시간 등실 등실 시간 시간 등실 되었다. - 기업 - 1 기업 등실 기업 기업 - 1	
그는 도양에 하는 말이 하는 사람들은 말했다고 하늘을 하고 있어 만하는 것이 살을 생각하고 하는 없었다.	
	1:
이 아이들의 얼마를 하는 것들이 얼마를 내려 되었다. 그 사람들이 얼마를 하는 것이 되었다.	
그리 없는 사람들은 모든 이 화가 가득하게 되는 것이 나는 이 반에 하는 하는 것이 없는 것이 모든 것이다.	
는데 보통 스틴, 16 등 등록 및 15 를 보면 하고 되었다. 그는데 16 등에 보는데 일본 수 있는데 16 등에 보는데 16 등에 보면 함께 보는데 2 - 이번 16 등에 대한 16 등 본 기업을 하고 있는데 16 등에 보는데 16 등에 보면 16 등에	. :
어느 하는데 살아보고 있는데 얼마를 하는데 하는데 하는데 하는데 하는데 그렇게 되었다. 그렇게 되었다.	٠.
이렇게 하는 방문을 가졌다는 것을 하는 사람들은 가장 사람들이 가장 사람들이 되었다. 하는 사람들이 되었다.	-
나는 마음에 살아 하는 사람들이 얼마 집에 가장 되었다. 그를 만든 말을 수 있다는 것이 없어 없다.	
이 시마를 일었다. 얼마나 아들에 마음 현상이 내려가 하고 한 종이 하고 있는데, 돌아들 중에서 동이라는 이셨다다.	
그 마일 마을입니다. 그는 그 마음에 2000 이 것 같은 1200 마음이 하는 1200 는 이 그리고 있다. 이 그리고 그는 그 것이다. 그는 것 같은 1200 는 - 그리고 함께 보고 있는 것 같은 1200 는 1200 를 받는 1200 를 120	-
그들은 이번 경기에 돌아가는 속 없었는데 하다는 그들이 가을 하고 있는데 있다면 그릇을 했다. 아이	
그들었습니다. 얼마하고 이 이 동안되어 한 네 사실용이 되면 하고 않는데 한 경우를 하고 못하는데 보다.	
이 본 회에 즐겁 하는 모든 이 목표를 이용한 수 있습니다. 이 회에 있다는 그리고 있다는 그는 이 사람들이 되었다면 함께	
그는 일반 사람이 있는 하면 이렇게 돼요 하는 것이라고 그렇게 만든 그렇게 하면 가는 것이 없었다. 그 사람들이 함	
그 그의 요즘 하는 사람들은 사람은 그는 가는 그는 사람들은 경험하는 이번 살아갔다고 하는 것을 했다.	:
그러움이 하는 그러지 하지 않아서 얼마 아래 그 사람들이 아이들의 아니는 것이다는 것이다.	
그들 보고하다는 이번 중요한 이 사이 세계. 이번 20 시대 20 시대 회원이 나는 그들은 그들은 기사를 하고 있다.	
그리고 하는 사람들은 이번 생님은 이 사람이 되는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다.	÷
그렇는 물건 하는 이 얼마나 이 집에 하는 것이다. 그는 사람들은 살림이다고 살림을 다 있어 말할 수 있다.	
	•
하는 그들이 많은 이러로 할아보고 있으면 그렇지는 그들이 하는 사람들은 바다 그는 사람들은 사람들이 하는 것	Ş.
그 사람이 보장하게 된다. 그는 그는 것이 없었다. 그런 사람들이 가지 않는 것이 모든 것이 되었다. 그런 그런 그렇게 되었다. 건	
그 시스들은 이번 동물은 사람들이 살아들이 사이를 하고 먹는 아이들이 들었다고 하다 있다.	ì
가게 살아보니 되는 사람들은 회에 가는 사람이 되는 사람들이 되는 사람들이 얼마나 하는 것이다. 그 사람들이 살아 없는 것이다.	
그 보고, 아이전 보는 이는 아는 아이를 하면 먹었다. 그는 보고 있는 모음을 보고 있는 것은 것은 것은 것은 모음을 받는다.	-
그는 이 그리고 한다. 남동하고 하다 한 번째 한 시골에 보고 소리를 걸려고 하는데 그를 불어 있어 들었다.	
그 보고 하는 도 교육되었다. 한 관련 하는 문화한 당한 보다는 하다는 모든 모든 모든 경험에 하는 모든 모든 모든 경험을 하는데 하는 모든	
그는 그는 말이 되면 가을 하고 있는데 만든 생각이 되는 사람들이 되었다. 그들은 사용하면 다른 생각	
그 이번에 있어요 그 그렇게 되는 그리는 상태 사고도 그리고 없다. 그리고 가게 되었다. 그 그들은 그 그리다.	
	:
그림은 시간에 가장 그녀들은 일이 많아 많아 있다는 말이 그를 살고 있다면 가장 안 하나 된다.	
이 본 이 어느를 함께 들어 그렇게 어느님들은 모나에게 살림생각하셨다. 말 빨라 폭제 그리고 말을 하셨다면요?	
그렇게 하면 바라 살아 아이지만 그 보는 것 같아요. 얼마나 나라는 그 생각이 얼마나 없는 사람이 없다.	
그리다는 그 그는 일반이 되는 것이다는 어때는 이 얼마를 하는 것 같아. 그는 그는 그는 것은 것 같아.	-
그들은 사람들은 그 사람들이 가진 것 같다. 살회 사고 되는 사람들에 대한 경기의 전환 그리고 하는 것 같다.	
- 이 보이 되고 있는 것이 되는 것이 되었다. 그는 것이 하는 것이 되었다는 것이 되었다는 것이 되었다. 	

ANNEX - B

METEOROLOGY AND HYDROLOGY

TABLE OF CONTENTS

			<u>Page</u>
1.	MET	EOROLOGY	B-1
	1.1	Climate	B-1
	1.2	Observation Station and Data	B-1
	1.3	Data related to Projects	B-2
	1.4	Rainfall Analysis	В-3
2.	HYL	DROLOGY	В-5
	2.1	River System	B-5
	2.2	Hydrological Observation and Data	B-5
	2.3	Potential Water Source	B-6
	2.4	River Runoff Study	В-8
	2.4	Flood Discharge	В-9
		LIST OF TABLES	
			<u>Page</u>
Table	B-1	List of Rainfall Station	B-11
Table	B-2	Monthly Meteorological Values	B-12
Table	B-3	Monthly Rainfall Data	
Table	B-4	Maximum Daily and 3-Day Rainfall	B-22
Table	B-5	Results of Runoff Study at Ashaiman Project	B-23
Table	B-6	Water Level and Discharge at Kpong Dam Tail Side	B-24
Table	B-7	Monthly Discharge in Ochi-Amisa at Mankessim	B-25
Table	B-8	Maximum Discharge in Ochi-Amisa at Mankessim	B-25
Table	B-9	Monthly Discharge in Ayensu at Winneba Road	B-26
Table	B-10	Runoff Estimation by Tank Model Method at Ashaiman Project on May 1987	B-27
Table	B-11	Runoff Estimation by Tank Model Method from 1986 To 1995 at Ashaiman Project	B-28
Table	B-12	Runoff Estimation by Tank Model Method from 1986 to 1995 at Mankessim Project	B-29
Table	B-13	Runoff Estimation by Tank Model Method from 1986 to 1995 at Okyereko Project	B-30

LIST OF FIGURES

		Page
Figure B-1	Meteo-Hydrological Map	B-31
Figure B-2	Mean Annual Rainfall	B-32
Figure B-3	Operating Water Revel of Akosonbo Dam And Kpong Dam	B-33
Figure B-4	Water Level Fluctuation of Kpong Dam Tail Side And Aveyime Project	B-34
Figure B-5	Water Level Fluctuation of Volta Lake	
Figure B-6	Structure of Tank Model	B-36
Figure B-7	Calibration Result of Tank Model Ashaiman Project	B-37
Figure B-8	Runoff Estimation by Tank Model Method from 1986 to 1995 at Ashaiman Project	B-38
Figure B-9	Runoff Estimation by Tank Model Method from 1986 to 1995 at Mankessim Project	
Figure B-10	Runoff Estimation by Tank Model Method from 1986 to 1995 at Okyereko Project	B-40
Figure B-11	Flood Discharge by Unit Graph Method in Ochi-Amisa River (Return Period 10-Year)	B-41
Figure B-12	Flood Discharge by Unit Graph Method in Ochi-Amisa River (Return Period 25-Year)	B-42
Figure B-13	Flood Discharge by Unit Graph Method in Ayensu River (3-Day Rainfall/Return Period 10-Year)	
Figure B-14	Flood Discharge by Unit Graph Method in Ayensu River (3-Day Rainfall/Return Period 25-Year)	
Figure B-15	Flood Discharge by Unit Graph Method in Ayensu River (Daily Rainfall/Return Period 10-Year)	
Figure B-16	Flood Discharge by Unit Graph Method in Ayensu River (Daily Rainfall/Return Period 25-Year)	
Figure B-17	Flood Discharge by Unit Graph Method in Gyorwulu River (Daily Rainfall/Return Period 10-Year)	

ANNEX - B METEOROLOGY AND HYDROLOGY

1. METEOROLOGY

The analysis of meteorological data is required mainly for the purpose of preparing the basis for irrigation planning and drainage improvement in connection with the projects rehabilitation. The data on rainfall, temperature, relative humidity, sunshine hours and evaporation are the prerequisite for the study on irrigation water requirements and drainage requirements as well. With this view, the analysis and study of meteorological data are made in this Annex.

1.1 Climate

The climate in Ghana is characeterised by distinct wet and dry seasons. The mean annual temperature ranges from 26°C near the coast to 29°C in the north with daily variations of 4°-5°C on an average. In the south, relative humidity exceeds 90% during night time and early morning, but during daytime along the coast it drops on average to 75% on the southwest and 65% on the southeast with variation of about 15% between seasons. Lowest humidity occurs between December and February. In the north, night humidity averages 95% and drops to about 70% during daytime between April and October. Annual evaporation ranges from 1,650 mm to 1980 mm in the Savannah areas, while in the wetter areas it is between 1,370 mm and 1,650 mm. Generally, the climate varies with the agro-ecological zones, and the climatic characteristic in each zone is summarised as follows (refer to Figures B-1 and B-2):

The mean annual rainfall in the Transitional Zone ranges from 1,240 mm at Wenchi (1961-94 average) to 1,410 mm at Koforidua (1963-94 average) normally in two seasons between April and October with about 200 to 220 rain days. Potential evaporation is between 1,400 mm and 1,650 mm per year and exceeds rainfall in the five dry months. The vegetation is mainly secondary forests mixed with scrub which are affected by bush fires during the dry months. During the dry months short term crops cannot be grown without irrigation. There exists only Kpando-Torkor project in this zone.

The mean annual rainfall in the Coastal Savannah Zone varies from 700 mm at Tema (1961-94 average) in the coast to 1,260 mm at Aburi (1961-94 average) inland. The rainfall distribution is bimodel, giving a major period between March and June and minor season between September and November. During the 6 to 7 rainy months, rainfall normally exceeds potential evaporation in only about two months. Irrigation could be valuable for crops in this zone. Ashaiman, Aveyime, Mankessim and Okyereko projects are located in this zone.

1.2 Observation Station and Data

Meteorological observation is being carried out by the synoptic stations under the management of Meteorological Department and also by climatological stations (including agrometeorological stations and rainfall stations) which are managed by other government institutes, agricultural experimental stations and various projects.

There are 20 synoptic stations in Ghana. Meteorological data such as rainfall, temperature, relative humidity, wind speed, and sunshine hours are available from these stations for long period. The reliability of the records is also high. Out of 20 stations, four (4) stations are located relatively near to the priority projects. They are Tema, Saltpond, Ho, and Akuse stations. The data required for the feasibility study are therefore collected from these stations (refer to Figure B-1 and Table B-1).

There exist more than 700 climatological stations in the whole of Ghana, which observe rainfall in the main. However, some of them are not working well, and observation period is also short in general. In addition, the reliability of the records available from these stations is

not so high. Therefore, careful attention should be paid, when the data from these stations are used for the study.

1.3 Data related to Projects

The meteorological data used for the study on each of the five (5) priority projects are collected as follows, taking into account the reliability and observation period of available data:

(1) Ashaiman Project

A synoptic station exists in Tema which is located at about 5 km south from Ashaiman project. The data from this station such as rainfall, temperature, relative humidity and wind speed are used for the project study. Because data of sunshine hours are not available at this station, those observed at Accra synoptic station are used.

The Irrigation Development Centre (IDC) located at this project is being carried out the observation of rainfall, temperature, relative humidity, pan evaporation and radiation since 1991. The observation period is still short, but the reliability is high. Then, rainfall data from this Centre are used for river runoff analysis, and evaporation data are used for water balance study as well as for estimate of irrigation water requirements.

(2) Aveyime Project

Two (2) meteorological stations, Akuse synoptic station and Akasti climatological station, are located near the project, and Akuse station is located more near to the project than Akasti. In addition, not much difference is recognised in the data recorded at both stations. Then, the data such as temperature, relative humidity, sunshine hours and wind speed available from Akuse station are used for the study. As for rainfall data, a 10-year series of daily data are available from Aveyime rainfall station and are used for the study.

(3) Kpando-Torkor Project

Ho synoptic station is located at about 50 km south of the project, and this is only the nearest one to the project. Then, the data such as temperature, relative humidity, sunshine hours and wind speed recorded at this station are used for the study. A 10-year series of daily rainfall data available from Kpando rainfall station is used for the study.

(4) Makessim Project

A synoptic station exists in Saltpond which is located at about 10 km south-west from the project. All meteorological data available from this station are used for the project study.

(5) Okyereko Project

The meteorological data available from Saltpond synoptic station, which is located at about 45 km west from this project, are used for the study of this project. As for the rainfall data, a 15-year series of monthly data are available from the project rainfall station. But daily rainfall data, which are required for estimate of irrigation/drainage requirements and water balance study, are not available at this project station. On the other hand, comparison of rainfall data recorded at Saltpond and project site is made, and shows a close relationship in rainfall pattern between two stations. Then, the daily rainfall at the project site is estimated by using such a relationship, and is used for the project study.

The meteorological data collected for the projects study are summarised in Tables B-2 and B-3.

1.4 Rainfall Analysis

(1) Rainfall Tendency

It is said that tendency of arid climate continues since 1983 when the whole of Ghana has had serious droughts. On the basis of rainfall records collected from the synoptic stations located near the projects, analysis of annual rainfall with 2-year return period at each station is made as shown below:

	Rainfall		Rainfall wit	Rainfall with 2-year Period (mm)				
Project	Station	Climatic Zone		1980 - Latest (2)	Ratio (2)/(1)			
Ashaiman	Tema	Coastal Savannah	773	588	76%			
Aveyime	Akuse	Coastal Savannah	1,175	1,155	98%			
Kpando-Torkor	Но	Transitional Zone	1,359	1,286	95%			
Mankessim	Saltpond	Coastal Savannah	1,100	906	82%			
Okyereko	Saltpond	Coastal Savannah	1,100	906	82%			

The analysis shows that a significant difference of annual rainfall between the period of 1960-1979 and that of 1980 to date is not recognised in the Transitional Zone. On the other hand, there is a tendency that rainfall is decreasing in recent 15 years at the stations located in the Coastal Savannah Zone where Ashaiman, Aveyime, Makessim and Okyereko projects are located. This means the decrease in water resources that can be used for the water projects such as domestic water supply schemes as well as irrigation projects.

(2) Rainfall Intensity

In order to estimate the drainage requirements for respective projects, probability analysis of the maximum daily rainfall and the maximum 3-day continuous rainfall is made on the basis of more than 10-year series of daily rainfall data. Table B-4 shows the result of analysis which is summarised as follows:

Project				bable Rair	ıfall (mm)			
	Observation	Data	Max.	Daily Rain	fall	Max. 3-D	ay Conti.	Rainfall
Tiojoct	Site	Period	2 yrs	5 yrs	10 yrs	2 yrs	5 yrs	10 yrs
Ashaiman	Tema	1976 - 95	72.4	94.4	108.5	87.6	111.9	128.0
Aveyime	Avevime	1980 - 95	70.4	92.6	109.6	91.5	127.3	156.1
Kpando-Torkor	Kpando	1976 - 95	76.9	116.8	152.9	105.7	152.0	187.5
Mankessim	Saltpond	1976 - 95	93.5	120.5	135.4	121.0	152.3	171.4
Okyereko	Saltpond	1976 - 95	93.5	120.5	135.4	121.0	152.3	171.4

In addition, the maximum hourly rainfall intensity is determined through the probability analysis, using the following formula :

$Rt = R24/24 \times (24/t)^n$

where, Rt : (t) hours average rainfall intensity (mm/hour)

R24 : One day maximum rainfall (mm/day)

: Coefficient estimated by the method shown in

"Maximum Rainfall Intensity Duration Requirements in Ghana"

Ashaiman and Weija (Accra) 0.852 Kpando-Torkor (Ho) 0.870 Aveyime (Akuse) 0.870 Mankessim and Okyereko (Saltpond) 0.899

The rainfall intensity with 10-year return period at each project site is estimated as shown below. Relatively high rainfall intensity is indicated in Kpando-Torkor, Mankessim and Okyereko projects.

Project	Observation	R24	10	-Year Reti	ırn Period	Rainfall I	ntensity (r	nm/hr)
•	Site	(mm)	1 hr	2 hrs	3 hrs	4 hrs	6 hrs	12 hrs
Ashaiman	Tema	108.5	67.8	37.6	26.6	20.8	14.7	8.2
Aveyime	Aveyime	109.6	72.5	39.7	27.9	21.7	15.3	8.3
Kpando-Torkor	Kpando	152,9	101.2	55.3	33.9	30.3	21.3	11.6
Makessim	Saltpond	135.4	98.2	52.7	36.6	28.2	19.6	11.6
Okyereko	Saltpond	135.4	98.2	52.7	36.6	28.2	19.6	11.6

2. HYDROLOGY

The analysis of hydrological data is made for the purpose of preparing information required for the water balance study in order to clarify water shortage problem in some of the priority projects as well as for preparation of the most optimum rehabilitation plan of each priority project. Such an analysis is also required for the study on drainage problem caused by floods from the rivers located adjacent to the projects. The results of the analysis are as follows:

2.1 River System

Ghana has five (5) main river basin, namely the Volta, Pra, Tano, Ankobra and the Coastal basins. The Volta river system is the dominant river basin which includes neighbouring countries such as Cote d'Ivoire, Togo and Burkina Faso. It occupies about 70 % of the country. The Volta basin is composed of big rivers such as White Volta, Black Volta, Ochi, Pru and so on. The second largest basin is the Pra basin which occupies 12 % of the country, and followed by the Coastal basin, the Tano basin and the Ankobra basin. These basins occupy about 7 %, 6% and 3 % of the total country area, respectively. All of rivers in Ghana flow into the Gulf of Guinea (refer to Figure B-1).

The whole country is generally classified as a lowland with the greater part less than 300 m above sea level, and none of the ridges exceeding 1,000 m in elevation. However, there is a mountainous area running from Koforidua to Wenchi, a distance of about 260 km, which constitutes a drain divide separating the Volta river basin from other river basins.

Most of the rivers have very gentle slopes and winding courses. In general, hydrological conditions of the river basins give moderate floods. Occasionally, however, very serious floods occur in some part of the country owing to drainage problem such as influence of back water of the main drains or sea. In addition, low or null discharge is observed in most small rivers in the dry season.

The water sources of the priority projects are as follows:

Project	River Basin	Water Source	Catchment Area (km ²)	Type of Reservoir
Ashaiman	Coastal	Gyorwulu River	82.4	Dam
Aveyime	Volta	Volta River	-	River
Kpando-Torkor	Volta	Volta Lake	~	Dam
Mankessim	Coastal, Ochi-Amis	Aprapon River	57.3	Dam
Okyereko	Coastal, Ayensu	Okyereko River	17.6	Dam
		Ayensu River	1,659.0	Weir *

^{*} means supplemental water source for Okyereko project.

2.2 Hydrological Observation and Data

The Architectural and Engineering Service Corporation (AESC) has a hydrological section which observes river discharge and/or water level in the main river basins of Ghana. Some of the main river basins such as Tano, Ayensu and Ochi-Amisa basins, which are related to Okyereko and Mankessim projects, have hydrological observation stations, and available records are collected for the study.

Since Ashaiman project is carrying out the daily observation of water level of the reservoir from the year 1992, such data are also collected for the study. The runoff into the reservoir is estimated for water balance study on the basis of the data on water level record of the reservoir, rainfall, evaporation and intake records.

As for Aveyime project, water level fluctuation of the Volta river is examined by installing a staff gage at the existing pumping site. In addition, water level records at the Kpong dam tail side located upstream from Aveyime are also collected for the study.

Since the water level of the Volta lake fluctuates throughout the year, water level records of the lake are collected from the Volt River Authority (VRA) for the study of Kpando-Torkor project.

These hydrological data are as follows: These data are fully used for the study of available amount of water for irrigation use, rehabilitation plan of the existing project facilities, etc.

Project	Item	Location of Observation	Data Period	Source
Ashaiman	Reservoir water level Rainfall (daily) Pan evaporation (daily) Intake discharge	Ashaiman ditto ditto ditto	1992 - 96 ditto ditto ditto	IDC ditto ditto ditto
Aveyime	Water level of Volta river ditto	Aveyime Kpong dam	1995 - 96 1981 - 96	Project VRA
Kpando-Torkor	Water level of Volta lake	Akosonbo	1976 - 96	VRA
Mankessim	Discharge of Ochi river	Mankessim	1956 - 91	AESC
Okyereko	Discharge of Ayensu river	Okyereko	1962 - 91	AESC

2.3 Potential Water Source

(1) Ashaiman Project

Since IDC at Ashaiman project carries out meteo-hydrological observation such as rainfall, water level fluctuation of the reservoir, pan evaporation and amount of water released from the reservoir, the runoff into the reservoir is estimated through water balance study under the present project condition, using these daily data. The following equation is used for the water balance study:

Qdf = Qin - Qout - Qep - Qol

where, Qdf : Daily difference of storage, which is calculated based on

water level records of the reservoir (m³)

Qin : Runoff into reservoir (m³)

Qout : Amount of water released from reservoir for irrigation

 (m^3)

Qep : Evaporation (m³) Ool : Other losses (m³)

The result of the runoff study is shown in Table B-5 and is summarised as follows: The study shows that average runoff ratio is estimated at 6.8 %, which is very small as compared with those in other river basins.

Period	Rainfall (mm)	(mm)	Runoff (%)	(MCM)	Intake (MCM)	Evaporation (MCM)
Feb. to Dec. 1994	673.7	28.9	4.3	2.380	0.540	1.246
Jan. to Dec. 1995	902.5	90.0	10.0	7.414	0.343	1.795
Jan. to Jun. 1996	602.8	29.7	4.9	2.447	0.189	1.373
Total	2,179.0	148.6	6.8	12.241	1.071	4.416

Such a small runoff ratio may be due to the hydrological conditions such as topography, soils and vegetation in the chatchment area. In fact, water level records show that the dam becomes rarely full. This is the main cause of high water shortage in this project. In addition, high evaporation rate, about 2,000 mm per year from the dam water surface, and shallow effective water depth of the reservoir may accelerate the water shortage problem.

(2) Aveyime Project

As shown in Figgure B-3, water released from the Akosonbo dam is stored in the Kpong dam once, and then the water is released again from the Kpong dam under the supervision of the VRA. The water released from the Kpong dam and the inflow from the downstream basin become the water source for Aveyime project.

The amount of water released from the Kpong dam can be estimated from the relationship between the water level records and the rating curve. The minimum release is estimated at about 200 m³/sec, which corresponds to the discharge with 10-year non exceedence return period (refer to Table B-6). The water available for Aveyime project with about 100 ha of irrigable area is enough for its rehabilitation.

The water level at the tail side of Kpong dam and at Aveyime pump site during the period from Nov. 1995 to Jun. 1996 is shown in Fig. B-4. The water level at the Kpong Dam tail side is about 3.70 m ASL for the observation period which links to the upper operating water level at the dam. For the same observation period, the water level at Aveyime is 1.70 m ASL. Therefore, maximum water level at the Aveyime pump site might be estimated as 1.70 m ASL. Taking into consideration safety for the pump facilities, the fluctuation of the Volta river at Aveyime pump site is estimated from 0 m ASL to 2 m ASL.

(3) Kpando-Torkor Project

The water source of this project is the Volta lake. Its capacity is up to 150,000 million cubic meter (MCM). Although the lake water is used for electric power generation, available water in the lake is sufficient for irrigation use in this project area.

The water level of the lake fluctuates from season to season. On the other hand, irrigation water for this project is lifted from the lake at pump stations to be constructed in the lake shore. This means that the study on water level fluctuation in the lake is required for design of pump stations. Then, the water level records of the lake are collected from the VRA and are shown in Figgure B-5. The water level of the lake is managed by the VRA so as to be within the upper-lower water level regulation, 8 m fluctuation in height.

(4) Mankessim Project

This project has a reservoir constructed on the Aprapon river which is a tributary of the Ochi-Amisa main river, and serious water shortage problem does not occur at present, because irrigated land is very small, about 20 ha, as compared with the storage capacity of the reservoir. The chatchment area of the reservoir is estimated at 57.3 km². Since the Aprapon is not perennial one, in addition, the reservoir becomes full only once a 10-year approximately.

According to the discharge records of the Ochi-Amisa river, it becomes null, when drought year comes. In this case, the water released from the Mankessim reservoir is used not only for irrigation but also for domestic purpose in the downstream areas. It is therefore that consideration should be paid for domestic use of water, when water balance study is made.

(5) Okyereko Project

Since the water source of this project is the existing Okyereko reservoir fed by rainfall only, the irrigated area is severely restricted at present. In fact, the irrigated area in the past five (5) years from 1991 to 1995 ranges from 7.3 ha to 31 ha and averages 21.6 ha. In addition, water balance study shows that irrigable area with 80 % dependability would only be 11 ha, out of 111 ha of potential irrigable area. GIDA has a plan to provide supplemental water source by installing pumps on the Ayensu river located near the project. Then, the study of an alternative plan is made so as to include new pump station in the proposed rehabilitation works of the project.

For the study on the plan, analysis of discharge records in the Ayensu river is required, and the estimated discharges of the Ayensu on monthly basis are obtained (see Table B-9). The following is a summary of the estimated discharges:

						•				Unit:	m3/sec.	
Return											***************************************	
Period	Jan.	Feb.	Маг.	Apri.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
2 years	0.52	0.32		0.84							3.69	2.03
5 yeras	0.23	0.11	0.11	0.37	0.59	10.03	4.06	1.67	1.2	2.77	1.85	1.24
10 years	0.12	0.01	0.06	0.23	0.33	7.78	2.59	0.98	0.72	1.72	1.18	0.91

Design of the pumps required for supply of necessary amount of water to the Okyereko reservoir is made on the basis of the estimated discharges and irrigation water requirements for this project. In this case, consideration should be paid for release of city water supply to Winneba which is estimated at 1 (one) million gallons per day. As a result, pumps could be operated during the period from June to November in a year.

2.4 River Runoff Study

River runoff study is required to estimate available amount of water for irrigation through water balance study for Ashaiman, Mankessim and Okyereko projects whose water source is reservoir. Since the river discharge records related to the projects are not sufficient in terms of observation period and number of gauging stations, the study is made using the rainfall data.

As mentioned in Sub-chapter 2.3, the water balance study is made under the present project condition of Ashaiman, using daily data on rainfall, water level fluctuation in the reservoir, pan evaporation and amount of water released from the reservoir. This water balance study at Ashaiman gives useful information for river runoff study at Mankessim and Okycreko for which the tank model method is applied. The model is composed of four (4) tanks combined vertically, and each tank has two (2) types of outlets, one for runoff and the other for percolation. At first, rainfall is stored in the upper tank, which is divided into runoff and percolation through each outlet by multiplying with coefficients which vary depending on water depth. Finally, runoff is estimated as total water volume passing through the runoff outlets of the four tanks (refer to Figure B-6).

The coefficient to be applied to the tank model is determined using the daily rainfall data at Ashaiman and runoff into the reservoir obtained from the water balance study. Using such input data as daily rainfall and the estimated runoff, calibration of the tank model method is made, and the calibration results are shown in Figure B-7.

The runoff study is made for 10 years from 1985 to 94, using rainfall data at Mankessim and Okyereko and the above tank model method. The results of the study are given in Tables B-10 to B-13 and Figures B-8 to B-10, and are summarised as follows: The results are fully used for water balance study to prepare the most optimum rehabilitation plan for Ashaiman, Mankessim and Okyereko projects.

Project	Rainfall (mm/year)	Runoff (mm/year)	Runoff Coefficient (%)
Ashaiman	610.6	26.728	4.38
Mankessim	885.7	49.319	5.57
Okyereko _	778.1	36.784	4.73

2.4 Flood Discharge

The drainage problem caused by floods from the rivers located adjacent to the project is seen in Mankessim and Okyereko projects. The flood discharge analysis in the Ochi-Amisa river in Mankessim and the Ayensu river in Okyereko is made for the study of the drainage problem in both projects. In addition, the analysis is also required for facility design of pump station to be constructed on the Ayensu river for Okyereko project. As for Ashaiman project, the analysis is necessary for facility design of the drainage canal. Therefore, the flood discharge analysis in Gyorwulu river in Ashaiman is also made.

Discharge observation at both rivers is being carried out by AESC. However, the observation period of daily data is too short to make the frequency analysis. Then, the method applied for flood discharge analysis is as follows:

- a) Unit graph method is applied for the analysis.
- b) Rainfall data are used for the analysis.
- c) Unit graph is made by using the Sato formula which is a function of flood concentration time.
- d) The flood concentration time is calculated by the Kraven formula.
- e) Design rainfall is calculated from three consecutive days rainfall and/or one day rainfall observed at Saltpond for Okyereko and Mankessim, at Tema for Ashaiman.
- f) Effective rainfall is estimated using the observation data at the Ochi-Amisa river.

The results of the analysis are summarised in the following table, and shown in Figures B-11 to B-17 for details. In addition, comparative study of the Unit Graph method with the Rational formula is made in order to confirm the reliability of this flood analysis.

For Ochi-Amisa River (Catchment Area: 1,217km²)					
Return Period	3-Day Rainfall (mm)	Flood Discharge (m ³ /sec)			
2-year	121.0	130			
5-year	152.3	200			
10-year	171.4	230			
25-year	194.0	330			
50_venr	210.0	360			

For A	For Ayensu River (Catchment Area : 1,659km²)				
Return Period	3-Day Rainfall (mm)	Flood Discharge (m ³ /sec)			
2-year	121.0	145			
5-year	152.3	220			
10-year	171.4	255			
25-year	194.0	370			
50-year	210.0	400			

For A	For Ayensu River (Catchment Area: 1,659km ²)				
Return Period	1-Day Rainfall (mm)	Flood Discharge (m ³ /sec)			
2-year	93.5	119			
5-year	120.5	196			
10-year	135.4	228			
25-year	152.0	257			
50-year	163.1	295			

For C	For Gyorwulu River (Catchment Area: 82.4km ²)				
Return Period	1-Day Rainfall (mm)	Flood Discharge (m³/sec)			
2-year	72.4	44			
5-year	94.4	57			
10-year	108.5	66			

TABLES

·		
		·

Table B-1 List of Rainfall Station

Station No.	Station Name	Data P	eriod	Station Type	Latitude	Longitude	Elevation
		Start Date	End Date				(m)
23014TEM	Tema	1956-06-01	Conti.	Synoptic	05-37 N	000-00 E	14.0
	Ashaiman (IDC)	1992-01-01	Conti.	Agromet.	05-41 N	000-03 W	30.0
23016ACC	Асста	1952-01-01	Conti.	Synoptic	05-36 N	000-10 W	67.7
07003AKU	Akuse	1912-04-01	Conti.	Synoptic	06-06 N	000-07 E	17.4
07034AVE	Aveyime	1963-10-01	Conti.	Agromet.	06-02 N	000-22 E	6.1
07017HO	Но	1921-06-01	Conti.	Synoptic	06-36 N	000-28 E	157.6
07017KPA	Kpando	1958-01-01	Conti.	Climate	07-00 N	000-17 E	213.3
23022SAL	Saltpond	1944-01-01	Conti.	Synoptic	05-12 N	001-04 E	43.9
07012NYN	Nyankpala	1952-10-01	Conti.	Agromet.	09-24 N	000-58 W	182.8
	Okyereko	1978-01-01	Conti.	Agromet.	05-24 N	000-36 W	30.0

Table B-2 Monthly Meteorological Values (1/2)

Project: Ashaiman										-			÷		1	47
Item	Station	Period	Cnit	Jan.	Feb.	Mar.	Apr	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	I ot./Ave.
	Tema	1961-94	(mm)	7.3	24.0	48.8	9.68	129.0	178.6	57.8	18.5	49.9	57.4	21.4	16.0	698.2
	Tema	1985-94	(mm)	4.1	21.4	32.7	69.5	132.9	108.5	37.8	15.0	55.9	57.9	15.3	24.4	575.5
	Ashaiman	1992-96	(mm)	3.7	7.6	78.2	75.8	130.6	124.7	57.7	19.0	37.2	59.2	30.9	4.7	
Max. Temperature	Tema	1961-90	(2)	30.4	30.9	31.0	31.0	30.5	28.8	27.3	26.7	27.5	29.2	30.5	30.5	29.5
4	Ashaiman	1991-95	(2)	31.7	31.6	31.8	31.4	30.5	28.3	26.8	27.4	28.5	59.9	31.2	31.3	
Min Temperature	Tema	1961-90	(2)	24.0	24.8	25.0	25.0	24.6	23.7	22.9	22.2	22.7	23.4	24.2	24.0	
	Ashaiman	1991-95	(2)	22.4	24.1	24.4	25.0	24.3	22.9	22.2	22.2	22.7	22.9	23.4	23.1	
Mean Temperature	Tema	1961-90	(C)	27.2	27.9	28.1	28.0	27.5	26.2	25.0	24.7	25.1	26.4	27.3	27.3	
	Ashaiman	1991-95	(C)	24.8	26.0	26.3	26.5	25.9	24.6	23.6	23.5	23.9	24.7	25.3	25.2	
Rel. Humidity	Tema	1965-90	(%)	79	82	82	82	83	98	88	88	87	84	83	8	
S	Accra	1961-90	(hours)	6.8	6.9	6.9	7.0	6.9	5.1	4.7	4.9	5.9	7.5	7.9	6.9	
	Terna	1965-90	(m/s)	2.6	3.1	3.1	2.9	2.8	2.4	2.9	3.1	3.4	3.2	2.8	2.4	
	Ashaiman	1991-95	(m/s)	8.1	2.2	2.4	2.2	2.3	j.9	2.7	2.6	2.5	2.2	1.7	1.6	2.2
A-pan Evaporation	Ashaiman	1991-96	(mm)	172.2	194.2	215.6	180.5	159.6	115.5	111.7	126.6	141.8	168.6	156.0	143.7	1885.7

Project: Avevime											- 1				,	
Item	Station	Period	Unit	Jan.	Feb.	Mar	Apr.				٠,				آ۵	Tot./Ave.
Rainfall	Akuse	1960-90	(mm)	14.0	52.1	92.6	128.9								- 1	1169.7
	Akuse	1981-90	(mm)	3.4	34.3	85.2	99.2		t							1012.4
	Avevime	1982-96	(mm)	4.0	35.5	92.6	127.3			ĺ						952.4
Max Temperature	Akuse	1961-90	(2)	34.0	35.2	34.9	34.1		1		1					32.7
Min Temperature	Aknee	1961-90		215	23.4	23.9	23.8		1	1						22.4
Mean Temperature	Aknice	1961-90		27.8	29.3	29.4	29.0		1	1	t				į	27.5
Rel Humidity	Aknse	1961-90	(%)	69	102	73	76	80	8	82	08	81	82	80	75	77
Synshine Hours	Akuse	1961-90	(hours)	6.5	6.8	6.7	6.7		1	1					l	6.1
Wind Velocity	Akuse	1961-90	(s/w)	6.0	1.3	4.	1.2			1						1.1

Jan. A.C. A.C. <th< th=""><th>Domon</th><th>Domed Hait</th><th>Yair</th><th>-</th><th>Tol</th><th>Teh</th><th>Mar</th><th>Anr</th><th>May</th><th>Lin</th><th>111</th><th>Ano</th><th>Cen</th><th>ļ</th><th>Nov</th><th>Dec</th><th>Tot/Ave.</th></th<>	Domon	Domed Hait	Yair	-	Tol	Teh	Mar	Anr	May	Lin	111	Ano	Cen	ļ	Nov	Dec	Tot/Ave.
(mm) 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 (mm) 14.5 58.5 130.6 111.4 166.2 167.2 151.4 108.2 132.2 (mm) 4.5 21.5 54.2 109.5 122.7 166.8 222.6 177.4 199.3 (C) 33.8 34.0 33.1 32.0 29.9 28.8 29.0 30.0 (C) 22.1 23.1 23.3 23.4 23.0 22.2 21.6 21.3 21.5 (C) 27.9 29.0 28.7 28.2 27.5 26.1 25.2 25.2 25.8 84 83 (%) 65 68 73 77 80 85 84 4.9 (ms) 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 (Total 12.2) 191.2 196.9 170.0 161.2 128.3 9	-	Station	בייים	Oill	301.	i cu.	IVACII.	į	7,442	J'GIA.		634	7	1	1		
1981-90 (mm) 14.5 58.5 130.6 111.4 166.2 167.2 151.4 108.2 132.2 1985-94 (mm) 4.5 21.5 54.2 109.5 122.7 166.8 222.6 177.4 199.3 1961-90 (°C) 23.8 34.0 33.1 32.0 29.9 28.8 29.0 30.0 20.0	ı	Ho	1961-90	(mm)	24.0	φ. 6.6	117.9	127.2	180.6	201.5	137.3	96.2	142.1			35.0	ı
Kpando 1985-94 (mm) 4.5 21.5 54.2 109.5 122.7 166.8 222.6 177.4 199.3 Ho 1961-90 (°C) 33.8 34.8 34.0 33.1 32.0 29.9 28.8 29.0 30.0 Ho 1961-90 (°C) 22.1 23.1 23.3 23.4 23.0 22.2 21.6 21.3 21.5 Ho 1961-90 (°C) 27.9 29.0 28.7 28.2 27.5 26.1 25.2 25.2 25.2 25.8 84 83 Ho 1961-90 (°C) 27.9 29.0 28.7 27.5 26.1 25.2 25.2 25.8 84 83 Ho 1961-90 (°C) 7.1 7.0 7.3 7.5 5.9 4.6 4.9 4.9 Ho 1961-90 (°C) 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9<		Ho	1981-90	(mm)	14.5	58.5	130.6	111.4	166.2	167.2	151.4	108.2	132.2			27.1	
Ho 1961-90 (°C) 33.8 34.0 33.1 32.0 29.9 28.8 29.0 30.0 Ho 1961-90 (°C) 22.1 23.1 23.3 23.4 23.0 22.2 21.6 21.3 21.5 Ho 1961-90 (°C) 27.9 29.0 28.7 28.2 27.5 26.1 25.2 25.2 25.2 25.8 84 83 Ho 1961-90 (°C) 7.3 7.3 7.5 5.9 4.6 4.2 4.9 Ho 1961-90 (ms) 0.8 0.9 0.9 0.9 0.8 0.9		Kpando	1985-94	(mm)	4.5	21.5	54.2	109.5	122.7	166.8	222.6	177.4	199.3			18.9	ĺ
Ho 1961-90 (°C) 22.1 23.3 23.4 23.0 22.2 21.6 21.3 21.5 Ho 1961-90 (°C) 27.9 29.0 28.7 28.2 27.5 26.1 25.2 25.2 25.8 Ho 1961-90 (°C) 65 68 73 77 80 85 84 83 Ho 1961-90 (°C) 7.0 7.1 7.0 7.3 7.5 5.9 4.6 4.2 4.9 Ho 1961-90 (°C) 0.8 0.9	Max. Temperature	Ho	1961-90	(2)	33.8	34.8	34.0	33.1	32.0	29.9	28.8	29.0	30.0			32.8	
Ho 1961-90 (%) (%) 27.9 29.0 28.7 28.2 27.5 26.1 25.2 25.2 25.2 25.8 25.9		Ho	1961-90		22.1	23.1	23.3	23.4	23.0	22.2	21.6	21.3	21.5			22.1	
Ho 1961-90 (%) 65 68 73 77 80 85 84 83 Ho 1961-90 (hours) 7.0 7.1 7.0 7.3 7.5 5.9 4.6 4.2 4.9 Ho 1961-90 (m/s) 0.8 0.9	1.	Ho	1961-90	(2)	27.9	29.0	28.7	28.2	27.5	26.1	25.2	25.2	25.8			27.4	
Ho 1961-90 (m/s) (hours) 7.0 7.1 7.0 7.3 7.5 5.9 4.6 4.2 4.9 Ho 1961-90 (m/s) 0.8 0.9		H	1961-90	(%)	65	89	73	77	80	85	85	84	83	l	76	70	LL
Ho 1961-90 (m/s) 0.8 0.8 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 H 0.9 0.9 0.9 0.9 H 0.9 0.9 H 0.9	į	H	_l	(hours)	7.0	7.1	7.0	7.3	7.5	5.9	4.6	4.2	4.9			7.1	
Ho 4 vears (mm) 191.2 196.9 187.0 170.01 161.2 128.3 97.1 102.3 114.0		Н	ļ	(s/m)	8.0	0.8	6.0	6.0	8.0	6.0	6.0	6.0	6.0			0.7	
	A-pan Evaporation	Ho	4 years	(mm)	191.2	196.9	187.0	170.0	161.2	128.3	97.1	102.3	114.0			158.1	

Table B-2 Monthly Meteorological Values (2/2)

roject : Okeyereko, ivialikessili	Matressin						-	ı	1	[.,]		Jen.	Ö	Nov.	 O	Tot/Ave.
tem.	Station	Period	Ë	Jan.		Mar.	Apr.		Juli.		1			1 1	1	1 /001
Ī.	-	1000	(2000)	140	770	58.21	7 00		284.9	74.3		56.9		20.7	21.3	1024.1
kaintall	Saltpond	17071	(mm)	13.7	7-1-1	3 0		ļ	0 701	C 1/2	ĺ	6 58	102	38.6	22.0	6,468
	Saltpond	1985-94	(mm)	17.3	17.7	0.69	83.8	ŀ	174.7	7.4.0	J. C.	1 .	110	200	200	803.0
	Overerebo	Ĺ	(mm)	17.1	26.5	52.5	49.5		164.9	55.1	-	1.45	01./	1.70	7.77	0.00
	ONCYCLCNO	1000		200	21.2	21.2	21.0	1	28.5	27.2		27.4	29.2	30.8	30.6	29.6
dax. Temperature	Saltbond	25-1-25	<u>)</u>	30,0	J. 1.	0.10	21.4	1			Т	000	0 00	0.50	220	23.0
010000000000000000000000000000000000000	Coltmond	1061-00		22.9	23.8	23.9	23.9		23.1	22.5		7-77	0.77	0.52	44.7	5.0
ann remperature	ממווסמוום	00.1001		0 00		27.0	276	ı	25.8	24.9		24.8	26.0 <u>i</u>	56.9	26.8	26.3
Aean Temperature	Saltpond	1961-90	<u>.</u>	0.02	-	77.0	21.7	ł	200		1	0	67	85	841	86
Sal Humidity	Saltmond	1961-90	(%)	83	∞	4	45		88	χχ	- 1	60	0	3 6		3
dinaticy 5			(1,01)	t,	7.3	7.2	7.07	l	5.0	8		ري 4.	7.3	2:2	7.7	0.0
unshine Hours	Salmond	7/ years	(SIDOUS)	٧٠/	(C.)	1.	?			-	ı	1 7	2	1	1 3	2
Wind Velocity	Salmond	21 years	(m/s)	1.5		 8:	1.7		1.8	0.1	ŀ	γ.,	0,1	2 1	1 00	1 1000
Ciccia	Paris de la Constantina del Constantina de la Co	3100.7	(mm)	1152	133.8	163.4	160.3	155.4	128.0	119.6		139.5	166.5	170.5	173.1	1097.1
A-nan fiveroration	Saltbonia	, years	(11111)	1	1			1								

Table B-3 Monthly Rainfall Data (1/8)

Project: Station No.: Ashaiman 23014TEM

Station Name: Tema YEAR JAN **FEB** MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YEAR 1961 16.8 1.3 76.5 121.2 139.7 398.0 50.0 0.0 112.5 17.0 12.2 15.0 960.2 62 31.0 26.2 55.4 32.0 235.2 530.9 26.7 8.6 94.7 1.8 22.4 29.7 1,094.6 63 13.0 17.3 34.8 124.2 170.9 169.7 97.5 48.3 77.7 76.5 43.2 11.4 884.5 64 0.0 4.1 79.0 159.8 108.5 169.9 0.3 0.3 0.5 5.3 0.0 0.5 528.2 65 10.4 84.1 2.5 160.0 78.0 244.3 120.6 35.6 20.1 66.0 8.6 847.0 16.8 66 1.5 23.1 78.5 99.8 97.0 63.0 51.8 0.5 14.2 66.5 0.0 0.0 67 36.8 0.0 57.7 102.9 114.6 234.4 7.4 1.3 33.3 17.8 48.8 18.8 68 39.9 80.0 24.6 61.2 105.9 294.6 469.9 98.8 238.3 183.1 94.0 69 21.6 5.6 88.4 65.3 78.2 186.7 23.1 7.9 36.3 56.9 79.5 0.3 1970 19.3 68.1 49.0 66.8 217.2 121.7 13.7 7.4 16.5 81.3 26.2 3.0 71 59.9 0.0 61.7 89.9 48.8 415.0 83.8 29.0 65.8 40.6 2.0 6.4 72 0.0 68.8 39.4 233.4 105.7 239.0 1.5 4.] 23.6 53.6 30.5 23.1 73 0.0 2.3 140.5 49.3 87.9 309.6 54.6 50.5 65.3 60.5 0.0 30.5 74 11.7 94.0 0.0 59.2 178.8 231.4 95.0 17.3 110.0 45.2 0.0 30.7

495.9 673.8 30.2 1,720.5 649.8 690.2 902.9 822.7 851.0 873.3 75 0.0 57.2 122.7 96.5 156.2 114.6 75.9 2.5 17.8 44.7 9.1 0.0 697.2 76 0.0 33.9 40.5 209.0 68.3 140.2 1.0 17.6 4.3 30.3 14.0 0.0 559.1 77 2.5 0.5 19.8 72.8 82.0 20.3 11.3 25.2 1.3 84.8 8.9 0.0 329.4 78 2.6 7.4 7.9 86.1 155.3 56.2 13.5 1.3 10.3 36.1 0.0 2.0 378.7 79 0.0 0.0 61.6 59.5 136.2 274.8 37.2 20.4 27.9 169.5 82.6 0.0 869.7 1980 0.0 0.0 66.7 59.5 136.2 274.8 37.2 23.2 28.4 169.5 82.6 0.0 878.1 81 1.5 0.0 40.2 58.0 132.7 206.6 141.0 26.0 68.0 35.9 9.4 1.1 720.4 82 8.0 8.9 104.1 93.5 108.9 288.9 87.2 8.0 0.5 48.0 0.0 0.0 741.6 83 0.3 0.0 1.8 42.4 83.9 154.8 0.0 47.3 0.0 0.0 0.0 0.0 330.5 84 0.0 0.0 17.3 50.5 99.2 48.0 50.3 20.4 79.9 48.9 15.1 31.7 461.3 85 0.3 8.1 57.3 14.0 171.7 94.0 8.6 46.3 23.9 98.2 21.1 0.0 543.5 86 0.0 47.3 28.6 27.9 85.5 63.4 0.8 0.0 5.3 73.2 6.1 29.9 368.0 87 24.0 5.2 42.6 45.5 106.4 3.4 21.2 57.4 297.9 75.7 0.0 14.0 693.3 88 0.0 90.1 52.2 77.3 99.4 172.2 44.8 1.8 72,9 52.4 1.1 65.8 730.0 89 0.0 0.0 17.3 142.2 93.4 169.6 65.0 9.6 15.7 99.5 30.6 0.0 642.9 1990 1.4 16.0 5.5 79.1 114.8 112.3 13.1 0.1 39.2 31.5 18.9 111.0 542.9 91 5.7 17.3 4.7 175.1 189.6 81.0 189.3 12.9 23.3 59.1 0.1 0.0 758.1 92 0.0 0.0 35.7 35.0 254.3 0.08 24.5 1.6 4.6 16.3 5.9 0.0 457.9 93 0.0 5.9 49.3 61.0 86.7 154.1 7.2 13.2 61.5 54.9 0.0 23.3 517.1 94 9.3 23.7 34.0 37.5 127.4 155.1 3.7 7.0 14.8 73.5 14.7 0.4 501.1 95 0.0 0.2 165.1 97.3 135.8 252.0 140.2 10.9 1.1 4.5 32.1 55.8 895.0 7.1 Ave 22.4 52.5 87.0 125.4 186.4 59.1 18.7 46.1 59.4 22.3 16.7 703.2 39.9 90.1 Max. 165.1 233.4 254.3 530.9 469.9 98.8 297.9 183.1 94.0 111.0 0.0 Min. 0.0 1.8 14.0 48.8 3.4 0.0 0.0 0.0 0.0 0.0 0.0

Table B-3 Monthly Rainfall Data (2/8)

Project:

Ashaiman

Station No.:

							Station	Name	:	Ashain	nan (II	OC)	
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
1992	0.0	0.0	106.2	62.2	150.5	40.3	32.2	4.6	22.1	25.2	4.3	14.1	461.7
93	4.5	2.1	4.8	46.5	106.3	142.4	1.8	18.0	69.2	59.8	34.0	4.5	493.9
94	14.0	4.3	76.8	9.5	136.4	201.1	3.5	14.1	52.4	95.9	32.0	0.0	640.0
95	0.0	4.5	154.9	144.0	89.7	177.1	193.2	39.3	5.1	55.7	53.3	0.1	916.9
96	0.0	27.0	48.5	117.0	170.1	62.4							
Ave.	3.7	7.6	78.2	75.8	130.6	124.7	57.7	19.0	37.2	59.2	30.9	4.7	629.2
Max.	14.0	27.0	154.9	144.0	170.1	201.1	193.2	39.3	69.2	95.9	53.3	14.1	
Min.	0.0	0.0	4.8	9.5	89.7	40.3	1.8	4.6	5.1	25.2	4,3	0.0	

Table B-3 Monthly Rainfall Data (3/8)

Project : Station No. : Aveyime 07003AKU Akuse

							L.)tativii	110		UIUUJA	NU	
							,	Station	Name	:	Akuse		
YEAR	R JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
1966	8.4	23.6	128.0	107.4	76.7	263.9	42.2	49.8	191.8	142.5	80.0	36.1	1,150.4
6	1 19.8	0.5	58.9	158.2	27.7	240.3	140.2	0.3	164.3	146.1	101.1	8.1	1,065.5
6	30.0	48.8	18.9	235.0	227.1	286.0	128.8	64.5	31.5	101.3	90.9	49.5	1,312.3
6:	3 18.3	76.5	77.2	212.3	277.6	244.9	87.6	108.2	150.4	63.2	132.1	2.8	1,451.1
6	10.7	0.0	79.8	186.4	73.6	302.8	42.2	11.9	16.3	62.0	64.5	13.7	863.9
6	5 12.2	53.1	126.0	207.5	95.8	364.0	144.8	31.0	148.6	105.7	99.3	45.5	1,433.5
6	62.2	0.5	103.1	77.2	149.9	246.6	167.1	35.6	233.9	146.3	58.4	47.8	1,328.6
6	7 9.1	51.3	167.4	94.5	182.4	329.2	51.3	10.7	232.9	77.2	96.0	28.2	1,330.2
6	8 2.8	89.4	71.1	337.1	182.1	252.5	284.5	222.5	260.1	178.1	67.1	14.0	1,961.3
6	9 82.3	19.6	47.5	76.5	143.8	331.5	105.2	63.8	24.4	259.3	90.7	49.0	1,293.6
197	0 46.0	104.4	53.1	87.1	392.2	82.6	44.2	3.6	77.0	104.6	182.1	0.0	1,176.9
7	0.5	51.3	84.1	79.8	48.5	96.5	62.7	57.4	156.5	199.4	28.4	9.9	875.0
7	2 0.0	127.0	93.3	196.6	180.1	259.3	49.5	2.5	45.7	94.7	162.6	45.2	1,256.5
7	3 0.0	35.6	50.8	118.9	135.1	204.2	30.7	66.0	200.7	179.6	95.3	30.0	1,146.9
7	4 15.7	49.5	190.2	30.0	164.8	206.5	126.7	41.7	214.6	130.0	43.9	16.3	1,229.9
7	5 0.0	12.4	126.2	149.9	141.2	191.3	152.9	6.9	69.9	137.9	134.1	6.1	1,128.8
7	6 44.2	73.1	98.5	121.7	75.4	110.7	3.1	133.5	51.7	156.7	31.5	38.4	938.5
7	7 21.9	76.9	8.0	30.2	71.8	73.7	11.2	1.0	143.0	88.7	37.6	6.4	563.2
7	8 2.8	192.9	119.3	269.4	131.3	120.2	2.8	13.5	62.1	192.2	59.6	3.3	1,169.4
7	9 0.0	93.4	155.5	30.0	139.4	185.4	158.0	44.0	186.8	46.5	93.2	3.8	1,136.0
198	0.3	39.6	75.6	67.5	198.6	63.2	95.4	111.6	276.7	109.8	116.4	0.0	1,154.7
8	1 5.1	83.5	54.4	52.3	147.2	320.4	98.7	48.9	189.4	113.4	130.0	7.4	1,250.7
8	2 8.4	75.8	85.8	123.4	101.8	209.3	57.2	75.2	12.0	111.8	31.3	42.7	934.7
8	3 0.0	0.0	0.0	87.4	41.4	225.0	12.5	0.0	66.8	85.0	12.8	41.1	572.0
	4 2.8	7.9	165.0	108.0	259.3	113.5	135.2	98.8	174.2	139.6	37.2	40.3	1,281.8
8	5 0.0	30.0	83.1	56.4	121.1	120.3	202.3	63.6	151.5	224.4	38.5	0.0	1,091.2
8	6 0.8	57.4	123.1	102.3	220.5	79.9	42.0	22.9	113.4	94.5	31.2	0.0	888.0
8	1.3	4.1	117.4	84.4	82.1	60.9	38.6	139.0	187.9	87.6	67.0	12.7	883.0
8	8 0.3	26.2	49.2	145.4	145.3	174.3	57.8	54.6	122.1	123.0	64.6	44.7	1,007.5
8	0.0	0.3	102.0	116.1	143.5	241.3	117.1	53.5	197.4	164.1	125.3		1,303.7
199	00 15.0	58.2	71.9	116.6	118.2	140.8	51.7	1.3	100.0	93.7	59.1	85.2	911.7
Av			92.6	128.9	149.9	204.7	91.5	54.6	141.8	132.0	82.1		1,169.7
Ma		· · · · · · · · · · · · · · · · · · ·	~~~~~	337.1	392.2	364.0	284.5	222.5	276.7	259.3	182.1	85.2	
Mi	n. 0.0	0.0	0.0	30.0	27.7	60.9	2.8	0.0	12.0	46.5	12.8	0.0	

Table B-3 Monthly Rainfall Data (4/8)

Project : Station No. : Aveyime 07034AVE

Station Name:

Avevime

								station	Name	: .	Aveyim	e	
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUI.	AUG	SEP	OCT	NOV	DEC	YEAR
1980	0.0	38.6	57.2	99.5	221.3	87.1	22.3	41.7	65.4	101.4	198.9	9.4	942.8
81	2.3	81.8	44.5	32.0	125.0	191.9	47.8	46.6	122.1	67.7	55.0	13.5	830.2
82	2.1	65.5	91.3	100.6	72.0	206.9	63.1	8.4	1.0	101.4	62.5	0.0	774.8
83													
84	0.0	3.8	83.1	66.8	274.8	88.7	199.4	39.2	67.1	140.2	39.1	49.8	1,052.0
85	0.0	2.3	145.4	64.8	158.4	112.3	119,3	28.0	50.6	147.4	49.0	0.0	877.5
86	0.0	61.5	183.2	111.3	119.6	0.0	15.3	2.6	81.5	112.8	35.6	0.0	723.4
87	3.1	6.6	159.8	68.4	166.4	33.3	56.3	169.1	78.3	85.9	2.6	24.6	854.4
88	0.0	68.6	91.8	113.8	154.2	166.6	22.9	8.7	170.9	94.7	86.4	0.0	978.6
89	0.0	19.1	28.9	128.8	75.7	216.3	111.0	20.4	215.3	113.9	48.3	18.3	996.0
1990	0.0	11.5	84.8	128.3	118.4	176.8	131.1	9.2	110.7	73.3	41.0	76.1	961.2
91	17.0	14.2	26.7	206.5	171.9	82.1	154.6	5.2	35.2	167.1	24.1	0.5	905.1
92													
93													<u>.</u>
94	0.0	53.8	36.1	43.3	157.3	72.2	26.9	24.7	116.3	124.7	148.3	0.0	803.6
. 95	0.0	0.3	109.3	309.6	101.8	311.2	118.2	45.2	85.4	159.8	46.3	14.5	1,301.6
96	26.3	118.6	107.3	185.5	221.9								
Ave.	3.6	39.0	89.2	118.5	152.8	134.3	83.7	34.5	92.3	114.6	64.4	15.9	942.9
Max.	26.3	118.6	183.2	309.6	274.8	311.2	199.4	169.1	215.3	167.1	198.9	76.1	
Min.	0.0	0.3	26.7	32.0	72.0	0.0	15.3	2.6	1.0	67.7	2.6	0.0	<u></u>

Table B-3 Monthly Rainfall Data (5/8)

Project:

Kpando-Torkor 07017HO

Station No.:

Ho

Part					······				Station	Name	:	Ho		
62 32.8 16.3 40.9 159.8 376.2 374.4 179.8 87.1 24.4 179.1 57.4 22.4 1,550.6 63 96.5 112.0 144.0 163.0 78.2 162.8 425.7 226.1 235.5 312.9 56.9 40.4 2,054.0 64 50.0 29.5 134.4 110.5 289.6 302.5 207.3 15.2 97.5 60.5 45.7 28.4 1,371.1 65 20.6 98.6 282.7 251.0 207.3 267.7 83.3 146.1 157.7 97.0 32.8 26.2 1,671.0 66 23.1 31.0 106.2 83.6 190.2 152.9 132.8 155.4 112.0 103.9 105.4 61.5 1,258.0 67 0.5 20.6 173.0 180.8 105.9 309.9 56.6 77.7 161.5 51.4 37.8 26.2 1,201.9 68 114.3 98.8 99.3 86.6 97.5 315.5 261.4 241.0 254.3 205.7 37.8 9.9 1,822.1 69 0.3 121.2 75.4 72.6 225.0 298.7 133.1 60.9 101.6 245.4 28.4 91.7 1,463.3 1970 15.5 24.4 164.8 133.9 219.5 91.4 58.4 6.4 193.5 233.7 36.1 0.0 1,177.6 71 40.9 58.4 147.6 150.1 153.7 137.9 127.0 153.7 223.8 55.1 29.5 79.8 1,357.5 72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 155. 79.1 336.1 74.4 17.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 702.1 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 141.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,346.7 198.8 13.9 12.5 43.4 137.2 104.0 51.4 93.4 179.7 193.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,336.6 86 14.1 199.0 14.6 36.5 131.4 155.9 113.4 179.0 154.5 139.0 14.4 155.5 11.3 139.0 14.4 169.0 13.4 179.1 155.9 113.4 179.1 155.9 113.4 179.1 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,336.6 86 1,438.5 16.0 6.9 111.7 9.0.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 121.7 100.2 125.7 186.8 117.3 120.0 21.4 125.1 120.3 147.9 39.1 10.4 1,338.4 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 11.9 254.1 203.0 147.9 39.1 103.4 1,167.7 14	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
63 96.5 112.0 144.0 163.0 78.2 162.8 425.7 226.1 235.5 312.9 56.9 40.4 2,054.0 64 50.0 29.5 134.4 110.5 289.6 302.5 207.3 15.2 97.5 60.5 45.7 28.4 1,371.1 65 20.6 98.6 282.7 251.0 207.3 267.7 83.3 146.1 157.7 97.0 32.8 26.2 1,671.0 66 23.1 31.0 106.2 83.6 190.2 152.9 132.8 155.4 112.0 103.9 105.4 61.5 1,258.0 67 0.5 20.6 173.0 180.8 190.2 152.9 132.8 155.4 112.0 103.9 105.4 61.5 1,258.0 68 114.3 98.8 99.3 86.6 97.5 315.5 261.4 241.0 254.3 205.7 37.8 9.9 1,822.1 69 0.3 121.2 75.4 72.6 225.0 298.7 133.1 69.9 101.6 245.4 28.4 91.7 1,463.3 1970 15.5 24.4 164.8 133.9 219.5 91.4 58.4 6.4 193.5 233.7 36.1 0.0 1,177.6 71 40.9 58.4 147.6 150.1 153.7 137.9 127.0 153.7 223.8 55.1 29.5 79.8 1,357.5 72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 152.1 123.2 182.1 108.7 6.9 1,295.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 156.9 13.4 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81.3 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 139.8 50.0 0.1 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 183.3 0.0 9.1 20.3 132.0 147.9 153.3 139.0 194. 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 265.5 87.0 154.8 53.3 0.0 1,336.6 86 1,38.5 160.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,346.7 88 21.4 77.5 159.0 11.3 124.1 110.9 254.1 203.0 147.9 30.1 1,141.2 10.0 14.6 36.5 23.1 124.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,336.6 14.9 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	1961	8.1	10.2	80.3	136.9	196.9	289.3	165.6	23.6	91.9	128.0	83.3	70.1	1,284.2
64 50.0 29.5 134.4 110.5 289.6 302.5 207.3 15.2 97.5 60.5 45.7 28.4 1,371.1 65 20.6 98.6 282.7 251.0 207.3 267.7 83.3 146.1 157.7 97.0 32.8 26.2 1,671.0 66 23.1 31.0 106.2 83.6 190.2 152.9 132.8 155.4 112.0 103.9 105.4 61.5 1,258.0 67 0.5 20.6 173.0 180.8 105.9 309.9 56.6 77.7 161.5 51.4 37.8 26.2 1,201.9 68 114.3 98.8 99.3 86.6 97.5 315.5 261.4 241.0 254.3 205.7 37.8 9.9 1,822.1 1970 15.5 24.4 164.8 133.9 21.5 91.4 58.4 66.9 101.6 245.4 28.4 91.7 1,463.3 1970 15.5 24.4 164.8 133.9 21.5 91.4 58.4 66.4 193.5 233.7 36.1 0.0 1,177.6 171 40.9 58.4 147.6 150.1 153.7 37.9 127.0 153.7 223.8 551.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 144.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 18.1 198.0 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,445.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,452.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,452.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,452.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 22.5 43.8 179.1 125.3 139.0 19.4 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 188.4 180.9 189.4 205.5 87.0 154.8 53.3 0.0 1,336.6 85 16.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 120.6 115.4 143.8 49.0 31.0 1,010.2 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 11	62	32.8	16.3	40.9	159.8	376.2	374.4	179.8	87.1	24.4	179.1	57.4	22.4	1,550.6
65 20.6 98.6 28.27 251.0 207.3 267.7 83.3 146.1 157.7 97.0 32.8 26.2 1,671.0 66 23.1 31.0 106.2 83.6 190.2 152.9 132.8 155.4 112.0 103.9 105.4 61.5 1,288.0 67 0.5 20.6 173.0 180.8 105.9 309.9 56.6 77.7 161.5 51.4 37.8 26.2 1,201.9 68 114.3 98.8 99.3 86.6 97.5 315.5 261.4 241.0 254.3 205.7 37.8 9.9 1,822.1 69 0.3 121.2 75.4 72.6 225.0 298.7 133.1 69.9 101.6 245.4 24.4 14.6 14.6 18.2 18.2 18.2 19.2 19.4 58.4 6.4 193.5 233.7 36.1 0.0 1,171.6 77.7 15.3 23.8 51.1 29.5	63	96.5	112.0	144.0	163.0	78.2	162.8	425.7	226.1	235.5	312.9	56.9	40.4	2,054.0
66 23.1 31.0 106.2 83.6 190.2 152.9 132.8 155.4 112.0 103.9 105.4 61.5 1,258.0 67 0.5 20.6 173.0 180.8 105.9 309.9 56.6 77.7 161.5 51.4 37.8 26.2 1,201.9 68 114.3 98.8 99.3 86.6 97.5 315.5 261.4 241.0 254.3 205.7 37.8 9.9 1,822.1 69 0.3 121.2 75.4 72.6 225.0 298.7 133.1 69.9 101.6 245.4 28.4 91.7 1,463.3 1970 15.5 24.4 164.8 133.9 219.5 91.4 58.4 6.4 193.5 233.7 36.1 0.0 1,177.6 71 40.9 58.4 147.6 150.1 153.7 137.9 127.0 153.7 223.8 55.1 29.5 79.8 1,357.5 72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74.4 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 6 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 158.4 119.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,236.8 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,236.8 86 21.4 47.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,336.8 86 21.4 47.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,336.8 86 21.4 47.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,336. 86 14.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,336. 86 1,438.5 19.0 14.6 36.5 23.1 224.7 123.4 115.8 115.1 121.1 203.0 147.9 39.1 103.4 1,167.7 40.2 44.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2	64	50.0	29.5	134.4	110.5	289.6	302.5	207.3	15.2	97.5	60.5	45.7	28.4	1,371.1
67 0.5 20.6 173.0 180.8 105.9 309.9 56.6 77.7 161.5 51.4 37.8 26.2 1,201.9 68 114.3 98.8 99.3 86.6 97.5 315.5 261.4 241.0 254.3 205.7 37.8 9.9 1,822.1 69 0.3 121.2 75.4 72.6 225.0 298.7 133.1 69.9 101.6 245.4 28.4 91.7 1,463.3 1970 15.5 24.4 164.8 133.9 219.5 91.4 58.4 6.4 193.5 233.7 36.1 0.0 1,177.6 71 40.9 58.4 147.6 150.1 153.7 137.9 127.0 153.7 223.8 55.1 29.5 79.8 1,357.5 72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 8 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,1415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 205.5 87.0 154.1 455.5 0.0 1,336.6 85 16.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1336.6 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,336.6 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,336.6 86 1.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.8 19.9 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 49.0 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 49.0 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 49.0 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 49.0 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 49.0 14.6 36.5 23.1 224.7 224.0 225.1 374.4 425.7 254	65	20.6	98.6	282.7	251.0	207.3	267.7	83.3	146.1	157.7	97.0	32.8	26.2	1,671.0
68 114.3 98.8 99.3 86.6 97.5 315.5 261.4 241.0 254.3 205.7 37.8 9.9 1,822.1 69 0.3 121.2 75.4 72.6 225.0 298.7 133.1 69.9 101.6 245.4 28.4 91.7 1,463.3 1970 15.5 24.4 164.8 133.9 219.5 91.4 58.4 6.4 193.5 233.7 36.1 0.0 1,177.6 71 40.9 58.4 147.6 150.1 153.7 137.9 127.0 153.7 223.8 55.1 29.5 79.8 1,357.5 72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 6 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 205.5 87.0 154.8 53.3 0.0 1,336.6 85 16.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,228.1 87 8.5 17.1 155.9 119.3 247.5 134.1 110.9 254.1 206.3 124.6 23.0 7.7 1,409.0 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 40.2 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 44.5 14.5 14.5 14.5 14.5 14.5 14.5 14	66	23.1	31.0	106.2	83.6	190.2	152.9	132.8	155.4	112.0	103.9	105.4	61.5	1,258.0
69 0.3 121.2 75.4 72.6 225.0 298.7 133.1 69.9 101.6 245.4 28.4 91.7 1,463.3 1970 15.5 24.4 164.8 133.9 219.5 91.4 58.4 6.4 193.5 233.7 36.1 0.0 1,177.6 71 40.9 58.4 147.6 150.1 153.7 137.9 127.0 153.7 223.8 55.1 29.5 79.8 1,357.5 72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 205.5 87.0 154.8 53.3 0.0 1,336.6 85 16.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,228.1 87 8.5 17.1 155.9 119.3 247.5 134.1 110.9 254.1 206.3 124.6 23.0 7.7 1,409.0 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	67	0.5	20.6	173.0	. 180.8	105.9	309.9	56.6	77.7	161.5	51.4	37.8	26.2	1,201.9
1970	68	114.3	98.8	99.3	86.6	97.5	315.5	261.4	241.0	254.3	205.7	37.8	9.9	1,822.1
71 40.9 58.4 147.6 150.1 153.7 137.9 127.0 153.7 223.8 55.1 29.5 79.8 1,357.5 72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 </td <td>69</td> <td>0.3</td> <td>121.2</td> <td>75.4</td> <td>72.6</td> <td>225.0</td> <td>298.7</td> <td>133.1</td> <td>69.9</td> <td>101.6</td> <td>245.4</td> <td>28.4</td> <td>91.7</td> <td>1,463.3</td>	69	0.3	121.2	75.4	72.6	225.0	298.7	133.1	69.9	101.6	245.4	28.4	91.7	1,463.3
72 19.1 72.6 108.5 185.2 183.6 141.2 52.6 32.8 51.3 162.3 52.1 97.5 1,158.8 73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2	1970	15.5	24.4	164.8	133.9	219.5	91.4	58.4	6.4	193.5	233.7	36.1	0.0	1,177.6
73 6.4 28.2 62.5 101.6 141.5 282.4 71.1 169.7 245.6 134.9 6.4 90.9 1,341.2 74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 <td>71</td> <td>40.9</td> <td>58.4</td> <td>147.6</td> <td>150.1</td> <td>153.7</td> <td>137.9</td> <td>127.0</td> <td>153.7</td> <td>223.8</td> <td>55.1</td> <td>29.5</td> <td>79.8</td> <td>1,357.5</td>	71	40.9	58.4	147.6	150.1	153.7	137.9	127.0	153.7	223.8	55.1	29.5	79.8	1,357.5
74 44.7 17.5 103.9 86.6 197.6 274.3 140.7 76.2 313.7 106.4 15.5 9.7 1,386.8 75 0.0 68.1 120.4 179.1 133.9 195.6 156.5 21.1 123.2 182.1 108.7 6.9 1,295.6 76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 <td>72</td> <td>19.1</td> <td>72.6</td> <td>108.5</td> <td>185.2</td> <td>183.6</td> <td>141.2</td> <td>52.6</td> <td>32.8</td> <td>51.3</td> <td>162.3</td> <td>52.1</td> <td>97.5</td> <td>1,158.8</td>	72	19.1	72.6	108.5	185.2	183.6	141.2	52.6	32.8	51.3	162.3	52.1	97.5	1,158.8
75	73	6.4	28.2	62.5	101.6	141.5	282.4	71.1	169.7	245.6	134.9	6.4	90.9	1,341.2
76 3.6 198.9 97.8 80.0 96.6 220.3 39.6 29.6 98.1 204.4 109.4 70.2 1,248.5 77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 </td <td>74</td> <td>44.7</td> <td>17.5</td> <td>103.9</td> <td>86.6</td> <td>197.6</td> <td>274.3</td> <td>140.7</td> <td>76.2</td> <td>313.7</td> <td>106.4</td> <td>15.5</td> <td>9.7</td> <td>1,386.8</td>	74	44.7	17.5	103.9	86.6	197.6	274.3	140.7	76.2	313.7	106.4	15.5	9.7	1,386.8
77 1.1 33.0 14.0 108.0 155.7 51.5 49.0 42.7 80.8 196.1 14.8 20.2 766.9 78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4<	75	0.0	68.1	120.4	179.1	133.9	195.6	156.5	21.1	123.2	182.1	108.7	6.9	1,295.6
78 15.2 102.5 128.6 164.8 136.8 194.2 8.2 51.9 116.8 186.3 77.5 27.2 1,210.0 79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,429.3 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 205.5 8	76	3.6	198.9	97.8	80.0	96.6	220.3	39.6	29.6	98.1	204.4	109.4	70.2	1,248.5
79 68.3 34.9 122.5 43.8 341.9 193.8 142.4 67.8 125.3 178.5 95.9 0.0 1,415.1 1980 14.1 177.2 24.1 224.0 228.2 117.0 114.2 110.1 134.1 269.4 16.9 0.0 1,429.3 81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 205.5 87.0 154.8 53.3 0.0 1,336.6 85 16.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,228.1 87 8.5 17.1 155.9 119.3 247.5 134.1 110.9 254.1 206.3 124.6 23.0 7.7 1,409.0 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Avc. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	77	1.1	33.0	14.0	108.0	155.7	51.5	49.0	42.7	80.8	196.1	14,8	20.2	766.9
1980	78	15.2	102.5	128.6	164.8	136.8	194.2	8.2	51.9	116.8	186.3	77.5	27.2	1,210.0
81 39.4 46.9 121.9 73.4 278.6 89.5 101.8 105.0 120.4 319.8 50.0 0.0 1,346.7 82 43.4 137.2 104.0 51.4 93.4 179.7 99.1 87.6 47.5 230.1 30.7 37.1 1,141.2 83 0.0 9.1 20.3 132.0 147.9 155.3 139.0 19.4 163.4 143.8 49.0 31.0 1,010.2 84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 205.5 87.0 154.8 53.3 0.0 1,336.6 85 16.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,228.1 87 8.5 17.1 155.9 119.3 247.5 134.1 110.9 254.1 206.3 124.6 23.0 7.7 1,409.0 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Avc. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	79	68.3	34.9	122.5	43.8	341.9	193.8	142.4	67.8	125.3	178.5	95.9	0.0	1,415.1
82	1980	14.1	177.2	24.1	224.0	228.2	117.0	114.2	110.1	134.1	269.4	16.9	0.0	1,429.3
83	81	39.4	46.9	121.9	73.4	278.6	89.5	101.8	105.0	120.4	319.8	50.0	0.0	1,346.7
84 0.0 35.3 265.1 6.9 158.4 180.9 189.4 205.5 87.0 154.8 53.3 0.0 1,336.6 85 16.0 6.9 111.7 90.7 126.9 129.5 283.6 179.2 123.6 136.9 130.6 2.8 1,338.4 86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,228.1 87 8.5 17.1 155.9 119.3 247.5 134.1 110.9 254.1 206.3 124.6 23.0 7.7 1,409.0 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	82	43.4	137.2	104.0	51.4	93.4	179.7	99.1	87.6	47.5	230.1	30.7	37.1	1,141.2
85	83	0.0	9.1	20.3	132.0	147.9	155.3	139.0	19.4	163.4	143.8	49.0	31.0	1,010.2
86 2.1 212.7 100.2 125.7 186.8 117.3 200.6 21.0 62.1 154.1 45.5 0.0 1,228.1 87 8.5 17.1 155.9 119.3 247.5 134.1 110.9 254.1 206.3 124.6 23.0 7.7 1,409.0 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	84	0.0	35.3	265.1	6.9	158.4	180.9	189.4	205.5	87.0	154.8	53.3	0.0	1,336.6
87 8.5 17.1 155.9 119.3 247.5 134.1 110.9 254.1 206.3 124.6 23.0 7.7 1,409.0 88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	85	16.0	6.9	111.7	90.7	126.9	129.5	283.6	179.2	123.6	136.9	130.6	2.8	1,338.4
88 21.4 77.5 187.8 174.1 148.6 223.1 134.7 40.3 166.3 83.6 44.7 80.1 1,382.2 89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	86	2.1	212.7	100.2	125.7	186.8	117.3	200.6	21.0	62.1	154.1	45.5	0.0	1,228.1
89 0.0 5.8 215.8 115.4 150.7 346.4 140.2 148.5 142.2 121.3 43.6 8.6 1,438.5 1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4		8.5	17.1	155.9	119.3	247.5	134.1	110.9	254.1	206.3	124.6	23.0	7.7	1,409.0
1990 14.6 36.5 23.1 224.7 123.4 115.8 115.1 21.1 203.0 147.9 39.1 103.4 1,167.7 Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	88	21.4	77.5	187.8	174.1	148.6	223.1	134.7	40.3	166.3	83.6	44.7	80.1	1,382.2
Ave. 24.0 64.6 117.9 127.2 180.6 201.5 137.3 96.2 142.1 163.7 51.9 35.0 1,342.1 Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	89	0.0	5.8	215.8	115.4	150.7	346.4	140.2	148.5	142.2	121.3	43.6	8.6	1,438.5
Max. 114.3 212.7 282.7 251.0 376.2 374.4 425.7 254.1 313.7 319.8 130.6 103.4	1990	14.6	36.5	23.1	224.7	123.4	115.8	115.1	21.1	203.0	147.9	39.1	103.4	1,167.7
100 100 100 100 100 100 100 100 100 100	Ave.	24.0	64.6	117.9	127.2	180.6	201.5	137.3	96.2	142.1	163.7	51.9	35.0	1,342.1
Min. 0.0 5.8 14.0 6.9 78.2 51.5 8.2 6.4 24.4 51.4 6.4 0.0	Max.	114.3	212.7	282.7	251.0	376.2	374.4	425.7	254.1	313.7	319.8	130.6	103.4	
	Min.	0.0	5.8	14.0	6.9	78.2	51.5	8.2	6.4	24.4	51.4	6.4	0.0	

Table B-3 Monthly Rainfall Data (6/8)

Project : Station No. : Kpando-Torkor 07017KPA Kpando

							•		• •				
								Station	Name	:	Kpando)	
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
1976	1.0	51.1	115.9	121.9	185.5	153.9	150.4	55.3	177.8	283.3	112.1	2.8	1,411.0
77	59.8	6.3	14.5	63.2	100.3	113.8	28.2	26.7	138.7	147.4	0.0	3.3	702.2
78	31.0	61.9	127.4	122.7	133.9	98.4	97.2	57.4	145.5	91.5	116.6	5.3	1,088.8
79	44.4	35.3	73.6	85.3	225.0	174.9	300.0	139.6	218.8	192.3	54.3	9.1	1,552.6
1980	0.0	21.9	70.8	81.3	151.0	108.8	133.1		219.6	197.9	68.4	16.0	
81	14.2		53.3	83.6	148.0	144.5	244.6	216.1	109.2	129.6	9.1		
82	0.0	7.5	38.1	59.3	124.9	246.9	69.8	98.7	47.3	70.8	34.0	5.6	802.9
83	0.0	5.3	53.3	94.9	120.2	163.4	43.4	36.8	140.4	72.9	24.6	59.9	815.1
84	0.0	3.6	172.4	344.4	89.4	128.0	197.1	146.9	65.1	0.0	24.6	59.9	1,231.4
85	25.9	33.3	66.7	124.2	21.4	185.0	289.1	188.4	306.1	51.9	101.0	12.9	1,405.9
86	0.0	17.4	24.4	159.3	155.7	165.4	128.3	42.4	149.7	156.4	20.2	12.9	1,032.1
87	0.0	45.8	77.9	76.1	77.8	164.1	103.7	305.0	207.5	108.8	23.1	9.2	1,199.0
88	0.0	2.8	63.2	66.9	113.4	116.2	350.5	57.7	257.2	97.9	29.4	17.7	1,172.9
89	0.0	56.6	58.7	0.0	99.7	250.5	192.6	278.1	176.4	165.7	3.4	20.1	1,301.8
1990	10.1	4.4	16.2	213.9	117.8	204.1	412.2	88.0	179.4	181.9	37.8	50.5	1,516.3
91	0.0	40.4	57.6	130.2	217.3	114.3	312.8	120.6	134.2	174.3	50.1	25.6	1,377.4
92	0.0	0.0	45.2	106.5	240.2	101.1	181.3	102.6	215.6	111.5	55.5	13.4	1,172.9
93	0.0	3.1	61.0	111.1	85.3	194.7	171.7	141.9	141.7	210.2	110.8	26.8	1,258.3
94	9.3	11.6	70.9	107.1	98.7	172.3	83.3	449.7	224.8	147.6	34.7	0.0	1,410.0
95	0.0	50.8	104.0	129.6	197.6	210.7	209.4	243.4	182.4	136.4	30.7	18.7	1,513.7
Ave.	9.8	24.2	68.3	114.1	135.2	160.6	184.9	147.1	171.9	136.4	47.0	19.5	1,218.8
Max.	59.8	61.9	172.4	344.4	240.2	250.5	412.2	449.7	306.1	283.3	116.6	59.9	
Min.	0.0	0.0	14.5	0.0	21.4	98.4	28.2	26.7	47.3	0.0	0.0	0.0	

Table B-3 Monthly Rainfall Data (7/8)

Project: Station No.: Mankessim 23022SAL Saltpond

								otativii	140	4	430443.		
							\$	Station	Name	: :	Saltpon	ıd	
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
1961	31.5	8.6	54.9	104.4	414.3	430.5	73.4	1.0	10.7	1.5	70.6	8.1	1,209.5
62	73.9	14.5	32.0	19.6	185.7	839.9	18.3	24.9	38.3	177.0	179.3	54.1	1,657.5
63	37.6	10.7	11.9	197.6	120.9	319.5	392.6	62.2	20.8	68.6	159.5	8.4	1,410.3
64	27.4	26.4	20.6	239.0	247.9	626.1	11.9	16.5	16.0	0.3	10.4	1.5	1,244.0
65	0.0	32.3	24.6	254.0	190.2	248.9	65.0	27.4	36.6	53.9	106.2	37.1	1,076.2
66	6.6	3.3	80.8	129.3	204.9	74.2	200.4	51.6	17.8	31.7	53.9	26.9	881.4
67	20.8	6.6	47.2	89.9	211.8	552.7	5.3	13.5	78.7	13.2	58.7	3.3	1,101.7
68	44.7	56.6	29.7	72.4	132.1	258.8	369.0	167.9	122.2	159.5	80.8	0.0	1,493.7
69	1.5	11.7	82.0	17.5	188.9	342.1	52.8	11.9	23.1	231.1	37.6	74.4	1,074.6
1970	13.2	11.2	48.8	101.3	323.1	225.0	15.2	10.9	10.4	94.7	34.3	10.2	898.3
71	25.4	12.2	44.5	170.9	73.4	546.1	117.9	23.6	16.0	0.0	20.8	12.9	1,063.7
72	0.0	69.6	122.9	154.9	55.4	294.4	19.8	9.1	24.6	48.5	33.5	51.1	883.8
73	1.3	12.7	137.4	72.1	219.7	393.7	78.2	92.7	91.2	105.9	1.3	51.3	1,257.5
74	11.4	61.0	80.0	99.1	260.9	668.5	75.9	80.8	217.9	58.9	5.1	34.3	1,653.8
75	0.0	52.1	81.5	52.3	170.9	231.6	57.9	15.0	4.3	33.0	102.4	4.1	805.1
76	0.0	121.9	59.2	177.1	98.2	85.7	7.0	77.8	4.3	16.3	99.0	5.7	752.2
77	21.9	42.0	21.6	142.5	99.7	199.2	8.1	13.2	10.1	44.9	12.2	0.3	615.7
78	1.4	11.2	10.0	151.6	155.8	105.1	38.4	4.5	21.1	48.1	83.6	18.6	649.4
79	0.0	41.1	65.9	124.9	197.8	378.0	74.3	113.0	74.8	311.3	94.0	3.5	1,478.6
1980	0.4	12.5	90.8	55.6	354.9	133.7	113.9	43.4	60.0	156.7	124.9	0.8	1,147.6
81	4.9	7.4	66.5	27.3	387.6	256.1	33.3	31.0	88.6	79.3	32.2	65.3	1,079.5
82	10.3	35.5	69.4	154.5	338.5	351.3	116.7	10.9	0.6	171.9	10.7	11.7	1,282.0
83	0.0	0.0	0.0	19.0	230.9	86.2	3.7	7.0	26.4	10.0	69.6	17.4	470.2
84	35.3	0.0	7.8	94.0	156.8	88.8	34.0	63.5	66.7	121.0	26.1	11.0	705.0
85	54.6	28.1	63.7	75.1	465.0	321.7	38.2	15.9	24.1	45.4	35.6	0.0	1,167.4
86	4.3	50.7	32.5	72.9	141.0	334.8	32.1	10.3	7.9	87.0	119.3	13.4	906.2
87	9.5	0.0	113.0	42.2	85.0	31.7	67.7	108.9	374.9	217.2	34.1	42.6	1,126.8
88	0.0	18.7	60.9	30.9	176.6	234.1	35.5	11.8	129.2	167.9	20.5	23.9	910.0
89	10.6	5.2	121.8	88.7	195.4	314.1	46.3	16.0	24.4	82.8	2.2	0.0	907.5
1990	7.0	0.6	60.4	53.4	59.5	108.1	25.7	2.4	33.3	120.9	25.1	97.7	594.1
91	39.3	13.5	0.0	118.2	433.8	108.1	259.5	51.3	52.5	57.0	1.0	0.0	1,134.2
92	0.0	5.6	62.0	82.7	136.5	156.3	21.0	5.2	54.6	28.9	24.0	24.8	601.6
93	17.0	27.1	73.9	45.5	57.6	143.9	1.6	21.6	65.6	41.3	44.3	14.6	554.0
94	30.4	27.6	102.0	48.6	275.3	196.1	13.9	11.7	85.5	173.0	80.1	2.5	1,046.7
95	0.0	0.0	93.3	222.9	225.7	242.1	154.9	42.6	22.9	23.5	43.5	4.3	1,075.7
Ave.	15.5	23.9	59.2	102.9	207.8	283.6	76.6	36.3	55.9	88.1	55.3	21.0	1,026.2
Max.	73.9	121.9	137.4	254.0	465.0	839.9	392.6	167.9	374.9	311.3	179.3	97.7	·
Min.	0.0	0.0	0.0	17.5	55.4	31.7	1.6	1.0	0.6	0.0	1.0	0.0	-

Table B-3 Monthly Rainfall Data (8/8)

Project:

Okyereko

Station No.:

Station Name:

Okyereko

							, k	station	1 (dille	•	Onjeic	110	
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	YEAR
1978	0.0	11.2	3.2	104.2	151.2	112.6	22.6	7.0	6.1	99.8	40.1	22.1	580.1
79	0.0	53.3	70.5	65.5	158.5	304.2	63.3	72.3	68.6	226.1	117.2	22.1	1,221.6
1980	6.9	19.6	36.5	137.7	205.6	227.4	81.5	64.6	69.6	104.8	45.4	9.4	1,009.0
81	13.0	31.6	64.8	95.6	319.1	226.0	20.4	55.9	76.1	44.1	7.5	15.0	969.1
82	23.9	0.0	69.9	173.6	219.4	54.2	92.9	0.0	2.5	99.4	19.9	30.3	786.0
83	0.0	0.0	22.0	47.0	76.2	109.2	0.0	15.9	45.6	0.0	69.1	54.7	439.7
84	31.9	0.0	0.0	128.1	136.9	75.9	60.0	30.3	38.3	110.9	35.6	7.4	655.3
85	16.1	0.0	105.0	3.1	550.7	139.6	122.9	54.6	27.7	88.0	44.7	1.7	1,154.1
86	34.0	5.2	27.6	44.9	137.1	143.7	107.1	0.0	25.0	87.3	24.5	6.3	642.7
87	5.7	0.0	184.4	46.5	110.2	92.1	63.9	154.2	214.0	158.0	4.0	18.7	1,051.7
88	0.0	121.6	39.7	40.2	112.2	165.8	32.2	12.5	50.2	97.4	22.7	14.8	709.3
89	0.0	21.7	66.0	63.3	155.1	231.8	11.4	60.5	42.0	62.8	10.6	0.0	725.2
1990	0.0	31.0	6.0	58.3	14.4	331.8	49.4	3.0	41.0	98.4	21.8	127.8	782.9
91	51.4	52.4	40.5	134.8	289.8	74.8	74.6	232.0	20.9	29.6	53.5	5.2	1,059.5
92	0.0	0.0	4.6	29.2	195.3	43.0	45.0	4.0	53.0	47.0	93.0	28.4	542.5
93	31.4	24.5	2.7	62.4	0.0	170.9	11.5	34.4	100.2	82.7	79.3	18.3	618.3
94	32.5	9.0	48.3	12.7	147.8	255.5	33.0	31.1	67.4	66.1	40.1	0.0	743.5
95	0.0	20.0	45.2	32.1	128.2	189.1	85.5	0.0	0.0	67.0			ļ
Ave.	13.7	22.3	46.5	71.1	172.7	163.8	54.3	46.2	52.7	87.2	42.9	22.5	795.7
Max.	51.4	121.6	184.4	173.6	550.7	331.8	122.9	232.0	214.0	226.1	117.2	127.8	
Min.	0.0	0.0	0.0	3.1	0.0	43.0	0.0	0.0	0.0	0.0	4.0	0.0	

Table B-4 Maximum Daily and 3-Day Rainfall

		Maximum One (1) Day Rainfall (mm)	
Year	Ashaiman	Aveyime	Kpando	Mankessim/Okyereko
1976	56.4		115.1	56.4
1977	66.5		50.0	108.2
1978	53.1		52.8	50.5
1979	75.9		82.8	81.3
1980	121.9	50.5	56.1	84.4
1981	114.2	60.7	73.1	115.8
1982	86.1	65.5	52.6	
1983	54.8	N.A.	50.8	72.6
1984	56.4	102.1	213.8	70.9
1985	60.5	82.8	106.7	121.8
1986	43.6	62.7	78.0	132.0
1987	78.8	104.1	85.6	119.7
1988	78.5	68.1	119.5	123.3
1989	41.5	58.9	86.1	67.2
1990	74.5	71.1	91.9	48.3
1991	88.6	82.0	85.8	163.3
1992	88.3	N.A.	77.2	125.5
1993	81.0	N.A.	50.4	67.9
1994	70.7	50.8	234.3	105.5
1995	129.4	137.4	87.3	97.5
R.P.		Frequenc	y Analysis	
2 Years	72.4	70.4	76.9	93.5
5 Years	94.4	92.6	116.8	120.5
10 Years	108.5	109.6	152.9	

	Maxim	um Three (3) Days C	ontinuous Rainfall	(mm)
Year	Ashaiman	Aveyime	Kpando	Mankessim/Okycreko
1976	83.1		118.7	76.5
1977	84.8		72.2	141.5
1978	109.5		67.8	134.1
1979	91.2		92.2	139.0
1980	123.9	64.6	82.8	128.2
1981	126.1	71.9	88.9	136.9
1982	113.8	88.2	92.0	105.9
1983	58.9	N.A.	56.6	110.7
1984	75.5	186.6	213.8	70.9
1985	60.5	120.4	117.8	151.1
1986	58.2	72.6	104.4	134.6
1987	153.8	106.9	121.7	201.4
1988	86.7	84.3	226.9	141.3
1989	69.0	102.6	121.4	106.5
1990	74.5	94.5	165.3	68.8
1991	88.6	85.6	95.9	164.1
1992	90.2	N.A.	90.7	138.9
1993	81.3	N.A.	89.2	
1994	75.3	62.5	269.4	
1995	138.5	202.4	105.3	
		Frequency Analy	/sis	· · · · · · · · · · · · · · · · · · ·
2 Years	87.6	91.5	105.7	121.0
5 Years	111.9	127.3	152.0	
10 Years	128.0	156.1	187.5	

Table B-5 Results of Runoff Study at Ashaiman Project

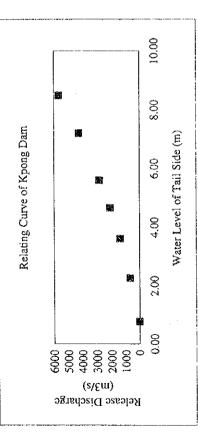

Year	Month	Rainfall	Evapor	ation	Intake		Runoff	
		(mm)	(mm)	(m³)	(n³)	(m³)	(mm)	(%)
1994	Feb.	4.3	199.5	122,193	0	20,952	0.254	5.9
	Mar.	76.8	218.3	126,980	0	190,108	2.307	3.0
	Apr.	9.5	235.1	124,583	0	30,351	0.368	3.9
	May	136.4	160.8	80,583	0	200,267	2.430	1.8
	Jun.	200.7	111.3	98,044	41,429	1,447,279	17.436	8.7
	Jul.	3.5	137.9	127,824	36,598	66,674	0.809	23.1
	Aug.	14.1	125.6	110,068	61,592	45,586	0.553	3.9
	Sep.	49.8	132.8	109,222	106,067	109,320	1.237	2.5
i	Oct.	121.7	150.6	119,593	39,377	179,508	2.178	1.8
	Nov.	56.9	157.4	116,885	121,068	66,312	0.790	1.4
	Dec.	0.0	165.9	110,834	133,589	23,295	0.283	
	Sub-total	673.7	1,795.2	1,246,809	539,719	2,379,654	28.647	4.3
1995	Jan.	0.0	174.4	100,941	113,296	22,382	0.272	
	Feb.	4.5	217.4	113,037	95,348	85,115	0.802	17.8
	Mar.	126.9	218.4	109,625	10,811	234,824	2.850	2.2
ĺ	Apr.	96.5	129.4	66,187	0	65,978	0.799	0.8
	May	89.7	132.1	69,603	0	193,725	2.351	2.6
	Jun.	200.6	99.4	61,603	0	820,917	9.963	5.0
	Jul.	218.7	106.8	171,683	0	4,825,991	58.488	26.7
1	Aug.	34.7	103.7	176,398	0	74,985	0.893	2.6
	Sep.	25.8	143.9	237,555	0	735,809	8,930	34.6
ļ	Oct.	51.7	181.9	295,027	30,780	154,530	1.867	. 3.6
1	Nov.	40.4	121.6	194,013	46,040	157,056	1.906	4.7
	Dec.	13.0	129.3	200,184	46,296	42,409	0.515	4.0
	Sub-total	902.5	1,758.3	1,795,856	342,571	7,413,721	89.636	9.9
1996	Jan.	0.0	138.0	205,662	23,904	95,272	1.156	-
	Feb.	28.2	173.7	250,219	77,076	140,910	1,710	6.1
	Mar.	98.3	208.8	293,088	16,693	284,622	3.361	3.4
	Apr.	70.2	161.0	224,863	71,267	233,612	2.835	4.0
	May	239.9	138.9	191,327	_	802,154	9.316	3.9
	Jun.	166.2	133.3	208,184		890,880	10.632	6.4
	Sub-total	602.8	953.7	1,373,343	188,941	2,447,451	29.011	4.8
	Total	2,179.0	4,507.2	4,416,009	1,071,230	12,240,826	147.294	6.8

Table B-6 Water Level and Discharge at Kpong Dam Tail Side

13n. Feb. Mar. Apr. Apr. Mar. Apr. Apr. <th< th=""><th>Vear</th><th></th><th></th><th></th><th></th><th>Minim</th><th>Minimum Water Level (m)</th><th>ter Leve</th><th>) (m) /</th><th>A.S.L.</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>~</th><th>Minimum Release Discharge (m3/s</th><th>n Relea</th><th>se Disc</th><th>narge (n</th><th>13/s)</th><th></th><th></th><th></th><th></th></th<>	Vear					Minim	Minimum Water Level (m)	ter Leve) (m) /	A.S.L.								~	Minimum Release Discharge (m3/s	n Relea	se Disc	narge (n	13/s)				
2.98 3.35 3.60 3.49 3.10 3.10 3.20 3.00 1083 1279 1358 1353 1147 1147 147	3	Ter	ПРР	Mar	Apr	Mav	frin	Inl	Aug	Sep	Oct.	Nov.	Dec.	Year	Jan.		Mar.	Ι΄.	May.					Oct.	Nov.	Dec.	Year
3.50 3.00 3.05 3.00 <th< td=""><td>1 006</td><td>2 08</td><td>3 35</td><td>رم 15</td><td>3.40</td><td>10</td><td>3 10</td><td></td><td>D</td><td></td><td></td><td></td><td></td><td>2.98</td><td>1083</td><td></td><td>1358</td><td>1353</td><td>1147</td><td>1147</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1083</td></th<>	1 006	2 08	3 35	رم 15	3.40	10	3 10		D					2.98	1083		1358	1353	1147	1147							1083
3.60 3.75 3.56 3.60 <th< td=""><td>1905</td><td></td><td>80.6</td><td>, e</td><td>0</td><td>305</td><td>2, 6</td><td>3.30</td><td>3.30</td><td>3.35</td><td>3.15</td><td>3.10</td><td>3.20</td><td>3.00</td><td>1358</td><td>1094</td><td>1094</td><td>1094</td><td>1120</td><td>1279</td><td>1252</td><td>1252</td><td></td><td>1173</td><td>1147</td><td>1199</td><td>1094</td></th<>	1905		80.6	, e	0	305	2, 6	3.30	3.30	3.35	3.15	3.10	3.20	3.00	1358	1094	1094	1094	1120	1279	1252	1252		1173	1147	1199	1094
3.55 3.50 2.50 <th< td=""><td>1001</td><td></td><td>0 t</td><td>3.75</td><td>36.6</td><td>99.0</td><td>, e</td><td>3.50</td><td>300</td><td>3.00</td><td>2.52</td><td>2.50</td><td>3.30</td><td>2.50</td><td>1411</td><td>1490</td><td>1490</td><td>1437</td><td>1411</td><td>1411</td><td>1358</td><td>1094</td><td></td><td>840</td><td>830</td><td>1252</td><td>830</td></th<>	1001		0 t	3.75	36.6	99.0	, e	3.50	300	3.00	2.52	2.50	3.30	2.50	1411	1490	1490	1437	1411	1411	1358	1094		840	830	1252	830
2.55 3.00 2.95 2.85 2.65 2.80 3.30 3.50 2.55 3.60 2.95 2.85 3.65 2.65 2.35 1.041 1358 1358 1358 1358 1369 909 909 988 1252 2.55 3.00 2.75 2.90 2.50	1007		3,5	, r.	8 6	3.50	30.5	3.50	3.50	3.50	3.50	3.50	3.50	3.05	1226	1252	1358	1358	1358	1120	1358	1358		1358	1358	1358	1120
2.50 3.50 3.50 3.50 2.75 2.90 2.65 2.35 1.041 1358 1358 1358 1358 1358 1358 1358 1358 1359 962 1041 830 830 2.90 3.50 3.50 2.75 2.90 2.55 2.50	000		20.5	00.6	20.0	200	265	265	2.80	3.30	3.40	3.30	3.50	2.55	856	1120	1094	1067	1014	606	606	886		1305	1252	1358	856
2.60 2.75 2.80 2.85 2.70 3.00 2.50 882 962 988 830 1041 962 962 1094 988 830 2.60 2.75 2.90 2.75 3.00 2.80 2.50	1001		9 6	, w	3.50	80	27.5	06.6	2.50	2.50	2.35	2.90	2.65	2.35	1941	1358	1358	1358	1094	362	1041	830		750	181	606	750
2.59 2.55 3.00 3.00 2.80 2.50 2.55 2.50 2.50 1.75 882 856 935 856 935 869 1094 1094 1041 935 1094 988 830 2.99 2.55 3.00 2.90 2.56 2.56 2.50	1000		20.0	280	250	2000	27.5	2.75	3.00	2.80	2.85	2.70	3,00	2.50	882	962	886	830	1041	362	962	1094		1014	935	1094	830
2.60 2.70 2.85 2.70 2.86 9.35 8.86 9.35 8.86 9.35 9.88 1094 8.56 9.62 463 2.60 2.70 2.70 2.70 2.70 2.80 2.60 2.50 2.60 2.20 2.60 2.70 3.68 9.82 988 988 882 882 830 2.70 2.70 2.70 2.60 2.50 2.60 2.50 2.60 2.60 2.60 935 962 909 988 988 882 882 830 2.20 2.40 2.46 2.60 2.50 2.45 2.50 2.07 675 777 777 777 80 828 882 830 830 858 830 830 830 830 830 846 830 846 830 80 80 80 80 80 80 80 80 80 80 80 80 80 80	1080		25.5	00.6	300	2.90	2.70	3.00	2.80	2.50	2.55	2.50	2.50	2.50	1088	856	1094	1094	1041	935	1094	886		856	830	830	830
2.70 2.77 2.77 2.77 777 803 777 803 2.30 2.46 2.40 2.45 2.26 2.40 2.35 2.20 2.24 2.24	1000		02.0	25.5	2.00	280	3.00	2.55	2.75	1.75	2.45	2.60	2.80	1.75	882	935	856	935	886	1094	856	962		803	882	886	463
2.20 2.40 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.60 2.50 2.60	1087		2.70	200	26.5	000	2.80	2.60	2.60	2.50	2.20	2.25	2.60	2.20	935	935	962	606	886	886	882	882		675	669	882	675
1.55 1.55 1.56 1.80 2.00 2.10 1.90 2.00 2.00 2.00 1.50 368 345 486 581 628 533 533 463 1.55 1.55 1.50 1.80 1.90 1.90 1.90 2.00 </td <td>1001</td> <td></td> <td>40</td> <td>240</td> <td>2 40</td> <td>245</td> <td>20.2</td> <td>2.10</td> <td>2.55</td> <td>2.50</td> <td>2.45</td> <td>2.50</td> <td>2.50</td> <td>2.07</td> <td>675</td> <td>777</td> <td>777</td> <td>777</td> <td>803</td> <td>614</td> <td>628</td> <td>856</td> <td></td> <td>803</td> <td>830</td> <td>830</td> <td>614</td>	1001		40	240	2 40	245	20.2	2.10	2.55	2.50	2.45	2.50	2.50	2.07	675	777	777	777	803	614	628	856		803	830	830	614
0.90 0.90 0.90 0.90 0.85 1.00 1.00 1.10 1.46 1.50 1.25 1.55 0.85 61 61 61 61 38 109 109 109 109 156 326 1.80 1.75 1.60 1.60 1.50 1.55 1.70 0.80 0.80 486 463 392 463 448 411 392 392 368 1.80 1.75 1.60 1.50 1.55 1.75 1.70 0.80 0.80 486 463 498 411 392 392 368 2.30 2.40 2.50 2.20 2.48 2.25 2.20 2.25 2.20 2.26 2.20 2.25 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.20 2.26 2.20 2.26 2.20 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26 2.20 2.26	1085		75.1	7.0	2 0	00.0) i c	06-	1.90	1.75	1.90	2.00	2.00	1.50	368	368	345	486	581	628	533	533		533	581	581	345
1.80 1.75 1.60 1.75 1.72 1.64 1.60 1.60 1.55 1.75 1.70 0.80 0.80 486 463 392 463 448 411 392 392 368 2.30 2.40 2.40 2.30 2.25 2.40 2.50 2.40 2.48 2.50 2.25 2.30 2.25 724 777 777 774 699 777 830 777 819 2.30 2.40 2.40 2.50 2.50 2.50 2.45 2.26 2.40 2.35 2.20	1087		000	000	200	80 -	2 -	00	1.10	146	1.50	1.25	1.55	0.85	61	61	61	38	109	109	109	156		345	227	368	38
2.30 2.40 2.40 2.30 2.25 2.40 2.50 2.40 2.48 2.50 2.25 2.30 2.25 724 777 777 724 699 777 830 777 819 819 2.50 2.55 2.50 2.45 2.26 2.40 2.35 2.20	1083	200	1 75	9	1 75	1.72	4	1.60	1.60	1.55	1.55	1.70	0.80	0.80	486	463	392	463	448	411	392	392		368	439	4	4
2.50 2.55 2.50 2.20 2.45 2.26 2.40 2.35 2.20 830 856 830 675 803	1982	2.30	2.40	2.40	2.30	2.25	2.40	2.50	2.40	2.48	2.50	2.25	2.30	2.25	724	777	777	724	669	111	830	111		830	669	724	8
	1981	ì	i	ì		2.50	2.55	2.50	2.20	2.45	2.26	2.40	2.35	2.20					830	856	830	675	.	703	777	750	675

		Year	609	330	217	;	
		Dec.	840	529	300	1	
		Nov.	808	571	463	3	
		Oct.		571		-	
:	(S	Sep	814	552	430	?	
	narge (m3/	Aug.	l	581		1	
	Dischar	ļ	830			- 1	
	Minimum		830				
	X	May.	893	609	7 (5	· / t	
		Apr.	877	548	304	3	
		Mar.	845	495	270	COC	
		Feb.		571			
	L	Jan.		523			
		Year		1 47			
		Dec.	1	1 80		1	70,7
		Nov.	. 1	108		- 1	Section Sectio
		1	2.45	000		1.73	400
	Minimum Water Level (m) A.S.I.	Sep	750 253 247	i -		7.08	300
	vel (m)	Aug.	2 53		3 .	1.14	14.
	AL TOTA	Jel.	250	10	7.7.	1.7	11
	W mum	Inn	256		7	٥.۱	
	Mini	May	3 2 50 2 60 2 50 2	100	Š i	3 1.7	-
		Apr	2 6) c	7	4	**
		Ιŝ	2 2 5	1 -	0 1	رة ارة	
nalyeis	CIC CHI	Heh	0 0 51 0 63	7 .		0 1.6	
Frequency Analysis] <u>[</u>	2 2	7 4 4	υ.	0 1.6	
T O	Vest	3	-		-	1/1	:

Note: Release discharge from Kpong dam is calculated on the basis of relating curve given below.

H Q (m) (m3/s) 0.77 0 2.27 708 3.61 1416 4.67 2124 5.60 2832 7.21 4248 8.50 5663

Table B-7 Monthly Discharge in Ochi-Amisa at Mankessim

Discharge Units: m3/s YEAR JUL AUG SEP OCT NOV DEC JAN **FEB** JUN APR MAY YEAR MAR 113.72 11.61 26.05 30.87 16.42 1.98 1.13 23.75 14.64 2.41 7.99 56 23.08 36.10 11.50 6.97 8.75 1.33 2.07 11.00 10.53 8.21 28.06 8.41 23.79 19.60 57 1.98 2.10 2.01 0.74 0.34 3.46 0.74 2.32 0.82 8.50 19.34 2.04 58 1.44 1.19 11.44 6.34 1.36 1.27 10.04 17.24 2.46 59 1.22 3.57 18.97 30.44 23.02 2.75 7.73 2.49 0.99 10.23 19.34 17.64 25.74 12.71 5.38 2.38 60 1.81 18.80 7.56 9.94 4.30 2.10 1.22 12.28 9.20 57.26 41.94 6.80 3.68 0.99 6.91 2.89 61 27.92 14.70 4.90 2.83 15.28 71.39 16.31 12.15 4,30 13.11 4.05 9.37 62 2.63 12.91 2.49 1.30 18.73 20.70 15.57 42.16 24.15 28.06 55.73 10.85 6.26 63 2.89 1.36 7.09 1.70 2.46 2.61 6.77 6.37 2.21 2.61 7.76 43.35 3.51 64 4.73 1.30 1.93 9.53 1.84 16.79 6.51 10.22 6.71 4.81 5.35 45.08 65 8.72 5.27 0.71 9 64 8.27 1.87 10.85 14.87 14.44 11.72 11.67 10.56 26.45 1.27 2,12 66 7.78 3.11 2.55 7.65 8.50 6.51 3.40 5.10 5.95 33.98 12.18 3.68 1.02 67 3.03 24.41 12.06 5.49 72.60 35.74 17.50 10.76 32.28 66.54 28.20 5.80 68 1.84 10.13 1.22 4.25 14.10 14.36 5.15 2.61 29.28 13.51 6.80 69 7.73 8.01 14.22 11.64 34.40 20.90 18.72 4.22 4.30 3.17 10.93 3.60 7.56 70 6.29 9.26 16.25 6.75 17.92 4.70 5.52 10.22 5.80 5.66 1.25 0.85 18.38 71 2.29 3.68 4.33 8.47 2.52 2.29 0.91 6.97 17.84 6.94 4.19 3.85 23.98 72 2.21 5.55 4.81 7.60 6.48 2.10 0.45 4.50 11.33 13.08 8.66 12.94 73 0.45 3,14 1.64 26.36 3.85 0.85 1.61 15.18 41,77 16.37 8.55 33.58 10.11 74 1.87 1.27 16.85 45.28 0.57 0.71 6.24 1.61 3.65 5.72 0.65 22.00 4 64 75 4.25 2.41 5.38 22,96 0.59 0.42 0.40 3.57 0.76 0.45 1.95 2.55 3.17 10.79 14.81 3.62 76 3.26 0.14 2.16 1.54 0.28 0.14 0.140.64 0.71 4.16 14.13 3.26 0.42 77 0.42 2.07 3.79 5.83 3.06 3.45 4.19 12.09 78 0.42 5.21 21.58 30.98 23.39 16.99 6.23 4.87 62.67 57.54 14.19 31.74 79 2.15 2.55 5.21 5.18 19.20 55.56 20.81 80 0.28 0.14 4.49 6.29 5.89 2.24 4.11 12.32 10.02 2.52 2.44 86 2.83 4.62 1.20 1.13 2.51 1.99 3.28 5.71 21.68 80.70 58.70 6.95 87 3.94 3.57 12.46 16.74 2.24 10.19 28.97 9.46 3.03 88 2.21 1.98 1.13 3.91 3.79 14.50 46.98 8.64 12.49 16.71 0.62 1.36 89

Table B-8 Maximum Discharge in Ochi-Amsa at Mankessim

Discharge Units: m3/s AUG FEB YEAR OCT NOV DEC JAN SEP JUN JUL YEAR MAR ΛPR MAY 54.82 12.37 1.76 1.27 7.16 13.22 18.26 10.51 71 4.30 13.11 8.47 47.03 54.82 6.97 5.01 82.23 16.00 10.99 17.08 7.48 13.34 17.73 13.05 65.84 82.23 72 6.46 5.97 0.54 85.21 19.74 21.44 20.08 35.68 24.13 10.42 3.88 85.21 58.59 73 3.45 7.28 209.37 209.37 12.91 8.52 1.76 23.16 74 6.46 4.79 73.65 79.32 124.11 28.46 65.84 24.10 21.10 1.10 3.26 2.86 10.14 75 12.60 4.79 22.12 65.84 56.38 9.85 0.42 23.16 0.96 5.01 1.93 0.42 13.51 1.76 76 10.42 8.78 17.41 23.16 9.32 85.21 4.11 7.48 0.42 77 0.42 3.88 13.96 85.21 10.00 6.97 9.60 5.01 6.20 2.27 60.97 78 0.42 5.97 60.97 0.00 0.00 54.17 3,45 10.42 2.66 20.42 54.17 3.26 86 7.22 10.42 6.20 37.29 1.93 203.43 14.27 3.26 1.76 203.43 191.79 59.78 87 0.00 57.48 3.26 19.06 23.53 0.00 126.15 17.41 5.49 0.00 22.46 126.15 4.22 9.06 9.85 34.15 88.32 3.06 88 5.97 3.68 1.42 116.21 11.55 48.03 0.00 2.86 4.73 52.07 116.21 19.74 28.46 89

Table B-9 Monthly Discharge in Ayensu at Winneba Road

Discharge Units: m3/s YEAR MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB 1.98 3.34 8.75 42.08 62 36.39 14.05 4.22 7.59 13.17 11.38 4.59 4.59 63 5.44 14.22 10.28 14.53 36.98 32.96 42.08 44.83 19.43 9.66 6.57 5.21 64 7.22 11.13 16.06 31.29 12.54 4.53 7.36 4.11 3.71 4.22 2.92 4.50 4.79 65 4.13 5.47 39.98 28.46 13.00 15.94 24.61 4.08 4.70 2.89 2.27 66 2.27 4.76 11.10 11.30 16.51 14.44 12,29 15.21 17.98 2.78 16.51 1.98 67 3.54 7.76 44.57 6.85 15.97 4.90 10.22 11.24 8.47 4.30 3.94 3.31 4.98 68 3.57 6.12 35.74 46.84 74.61 111.57 60.31 22.80 12.32 5.80 5.66 69 7.79 9.91 8.44 45.02 14.53 8.64 5.13 6.06 10.65 4.56 3.62 2.24 70 4.70 5.69 14.02 19.06 4.45 2.01 5.27 13.90 14.41 2.86 2.61 1.78 71 2.01 1.84 2.58 13,62 8.86 4.30 5.10 10.02 3.28 2.69 1.25 1.16 72 3.79 3.65 21.97 4.87 3.17 12.60 4.67 3.37 6.03 2.44 1.16 0.76 73 0.71 1.13 9.77 1.16 6.54 * 7.73 * 10.82 7.56 3 3.34 1.78 0.93 0.25 74 2.29 1.95 8.38 52.24 82.80 * 51.65 41.23 16.14 9.09 4.08 1.13 2.12 75 4.13 1.59 3.45 15.29 18.12 * 4.02 * 2.32 * 3.51 5.78 * 3.06 0.42 * 1.36 76 1.19 * 5.24 5.04 4.64 9.68 * 5.07 * 0.59 * 1.08 * 5.30 * 0.91 * 1.64 0.54 * 77 0.62 * 0.34 4,84 14.64 * 3.11 * 0.96 * 1.56 * 6.17 * 3.00 * 2.07 0.57 * 0.82 * 78 1.16 * 4.59 * 11.21 23.22 * 1.78 * 0.88 0.99 * 1.30 * 1.44 * 0.54 0.42 * 79 0.25 * 0.57 * 2.07 38.48 * 20.87 * 10.59 * 11.75 * 19.91 * 10.68 * 0.62 * 4.50 1.08 * 1.25 * 1.02 80 4.11 30.47 * 3.65 1.08 * 1.25 * 81 1.70 * 1.08 * 22.68 * 30.78 * 6.40 * 1.76 82 4.25 * 83 1.27 * 84 2.24 * 18.60 * 16.25 * 20.64 * 4.84 8.72 * 4.70 * 1.56 0.34 * 0.74 * 85 0.85 * 0.03 * 0.17 * 86 0.14 * 1.44 * 0.25 * 87 47.91 * 24.83 * 0.59 * 88 1.22 * 0.68 * 0.65 20.05 * 8.72 * 1.50 7.08 * 6.17 * 3.00 * 0.40 * 0.03 * 89 0.03 * 0.40 \$ 1.47 6.71 * 25.34 * 5.27 * 7.99 2.10 * 1.61 80.0 0.00 * 90 0.00 * 0.08 * 0.31 * 8.07 * 0.59 * 1.76 * 1.02 * 0.48 * Frequency Analysis 2.01 1/2 0.42 0.84 16.18 10.37 5.46 3.97 6.04 3.69 2.03 0.52 0.32 1/5 0.11 0.37 0.59 10.03 4.06 1.67 1.20 2.77 1.85 1.24 0.23 0.11 1/10 0.06 0.23 0.33 7.80 2.59 0.98 0.72 1.72 1.18 0.91 0.12 0.01

Note: Frequency Analysis is made on the basis of the * data

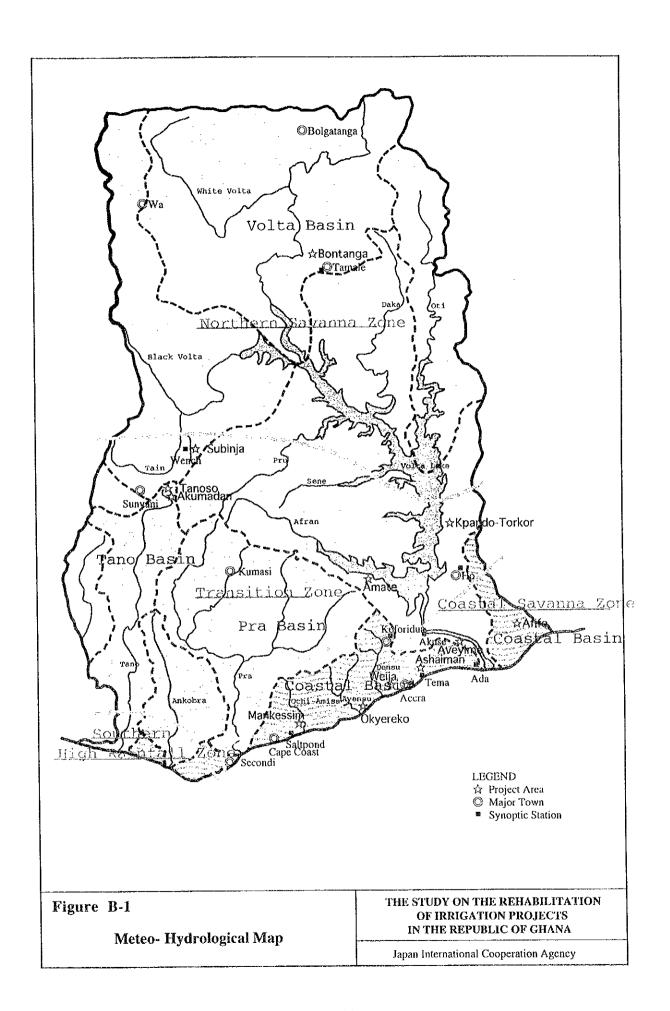
9,00	B-10	Runoff]	Estimate b	y Tank	Model	Method	at Ashai	man in	May 19
1	1 2000	3	0.0350	: :	0.0050	C4=	0.0020	. C5=	0.0010
] [120.00	72=	10.00	Z3=	8.00	Z4=	5.00		
7 X	0.50	2 2	$K_1 = 0.50$ $K_2 = 0.40$ $K_3 = 0.30$ $K_4 = 0.20$	K3=	0.30	K4=	0.20		

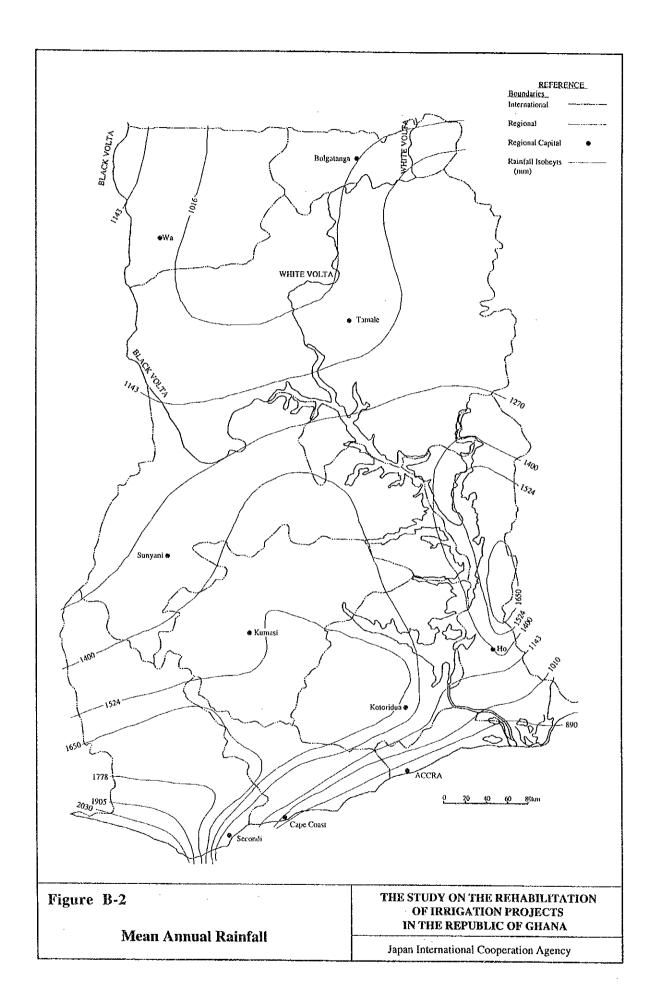
		Estimated	Total	(mm)	(13)	2100	0.110	0.278	0.467	7010	2000	0.082	0.057	0.046	0.039	0.031	1.729	0.024	0.018	0.017	0.015	0.014	0.012	0.011	0.022	0.012	0.013	0.158	0.012	0.010	0.009	0.008	0.007	0.006	0.006			0.542	0.129	4.046			_	
		Т	Percola.	(mm)	(14)	3.053	3.675	4.222	4.764	5 187	7.107	5.411	5.417	5.232	4.903	4.480	 -	4.010	3.528	3.147	2.850	2.596	2.360	2.129	2.020	1.989	1.974		1.935	1.857	1.742	1.598	1.439	1.273	1.110	1.028	1.520	2.323	3.126			:	(10) + (13)	
		یا	'n	(mm)	(13)	0.015	0.018	0.021	0.024	7000	0.020	0.027	0.027	0.026	0.025	0.022	0.232	0.020	0.018	0.016	9.014	0.013	0.012	0.011	0.010	0.010	0.010	0.133	0.010	0.00	0.00	0.008	0.007	900'0	0.00	0.005	0.008	0.012	0.016	0.095	Ç	K4	(4) + (7) +	
		ĸ		(mm)	(12)	15.315	18.376	21.109	23.820	20.02	23.933	27.053	27.083	26.158	24.513	22.401		20.051	17.640	15.737	14.249	12.982	11.801	10.643	10.101	9.947	698.6		9.673	9.284	8.708	7.992	7.193	6.364	5.550	5.140	7.601	11.616	15.632		(13): (12) x C5	(14): (12) x K4	(15):(3)+(4)+(7)+(10)+(13)	
			Percola.	(mm)	<u> </u>	5.821	6.139	6.426	7505	1000	506.0	6.331	5.468	4.519	3.612	2.816	-	2.152	1.620	1.643	1.675	1.598	1.428	1.214	1.597	1.876	1.922		1.787	1.555	1.290	1.034	0.807	0.617	0.465	0.706	3.494	5.542	6.351	-			_	
		Third Tank	Runoff 4	(mm)	(10)	0.029	0.031	0.033	2000	0.036	0.036	0.032	0.026	0.020	0.014	0.00	0.267	0.004	0.001	0.001	0.001	0.00	0000	0000	0.001	0.003	0.003	0.014	0.002	0.000	0.000	0.000	0.000	0.00	0.00	0.000	0.013	0.027	0.032	0.075	n-1 - (11)n			10/1/ (17) (17) (17)
3.5	0.20	Ë	Depth R	(mm)	(6)	19.403	20.465	21 420	071.17	23.181	23.010	21.102	18.227	15,062	12.041	9.385		7.173	5 399	5.475	5.584	5.325	4.761	4.045	5.325	6.253	6.406		5.958	5.183	4.301	3.447	2.691	2.058	1.550	2.352	11.648	18.474	21.170		$(9): (9)_{n-1} + (8) - (10)_{n-1} - (11)_{n-1}$	Z4) x C4	K3	(; ;
741	K4≡		Percola.	(mm)	(8)	8.091	6.911	7 1 2 5	0.000	8.220	6.820	5.031	3.487	2 330	1 5 18	0.00	-	0.612	0.382	1,697	1 752	4	1.034	0.712	2.493	2.527	2.031		1.476	1.015	0.673	0.436	0.278	0.175	0.109	1.267	10.001	10.334	8.265		9): (9)n-1	(10): ((9) - Z4) x C4	(11): (9) x K3	
00.8	0.30	Second Tank	ı	(mm)	6	0.061	0.046	0.00	v + 2.5	0.063	0.045	0.023	0.004	0000	0000	0000	1000	0000	000	000.0	9000	0000	0000	0.000	0000	0.000	0000	0.000	0000	000	0.00	0.000	0.000	0.000	0.000	0.00	0.085	0800	0.063	0.238				
=(7	K3=	Sec	Depth R			900 00	17 070	11.017	C18./1	20.550	17.050	12,576	8719	5.825	0.0 0.0	47.0 707.0	7.470	1 530	7500	0.60	7 7 7	4.500 5.65	2.0.0 2.8.6.0	781	6.733	6.316	5.078		3 691	2.537	1.683	1.090	0.694	0.437	0.272	3 168	200.50	25.95	20.663	222		1 - (8)n-1		
000	0.40		Percola.		(5)	10.812	20.07	207.0	7.494	9.910	4.783	2 302	1 0	0 0 0	0 0	V.2.5	0.147	2500	0.070	750.0	0000	1.00.0	7.7.0	0.459	5 165	2.577	288		0 644	0.327	0.161	0.081	0,040	0.020	0.010	3 00 8	20.00	10.010	10.710	7.77	-	(5): (2) \times (5) \times (7) \times (8) \times (8) \times (9)	2) 4 (5)	こくくじ
	ξ Σ		off 2		(4)	0.407	200	410.0	0.175	0.344	0000	0000	9000	2000	500	000	0.000	6.60	0.000	0.000	0000	0000	0.000	2000	0.00	0000	0000	0.000	1000	0000	000.0	0000	0000	0000	0000	0000	1 267	107.1	414.0	1,600	1.025	(5) (5) A A (6) (6) (6) (6) (7)	, (V) : (i	3 (a) (
2000	0.50	Einet Tank	Runoff 1 R		(3)	000	0.000	0.000	0.000	0.000	0.000	0000	0000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0000	0000	0000	0000	0000	0000	9000	0000	0000	0000	000	200	0000	0000	0.000	0000	3			
71-	- I	- IV	Danth R		(1)	(4)	21.623	10.405	14.988	19.820	9 566	2001	4.703	765.7	1.156	0.598	0.299		0.149	0.075	7.337	3.669	1.834	0.917	V0.4.0	10.529	0.135	7.107	000	887.1	1 6	0.522	0.101	0.00	9 6	020.0	0.010	46.205	21.835	10.303		ma 1,5,5	"(~) - T-II(+	
	******	Icient	Dainfall		(mm)	(ii)	17.5	0.0	8.6	12.5	0	5 6	0.0	0.0	0.0	0.0	0.0	39.8	0.0	0.0	7.3	0.0	0.0	0.0	5.0	7.0	5 6	0.1	4.7.	0.0	5 6)))	0 0	2 6	5 6	0.0) 0 0 0	43.2	0 0	0.0	49.2	: Observation Data at Tema	$(2):(2)^{n-1}+(3)^{n}\cdot(2)^{n-1}+(4)^{n-1}-(4)^{n-1}$	ご
	T Holes	Percolation Coefficient		Days		1		7	m	4	· V	٠ ٢	0 1	-	· •	Ø.	0		=	12	13	4	15				2 6	3					\$ 6						30.		-	servation	(2) + 1-10	(3) · (6) · (7) × C1
	Height of Holes	Percolan	44.	Month			v	S	S	. 12	v	יה	'n	S	S	S	5		S	S	5	5	v	S)	vo I	no 1	ሳ ነ	2		י ראי	יחי	n t	nı	n (n i	n I	ינא)	ላ ን	יסי	43			7) : (7)	2):(6)
			;	Year			1987									-				-																						Note:		

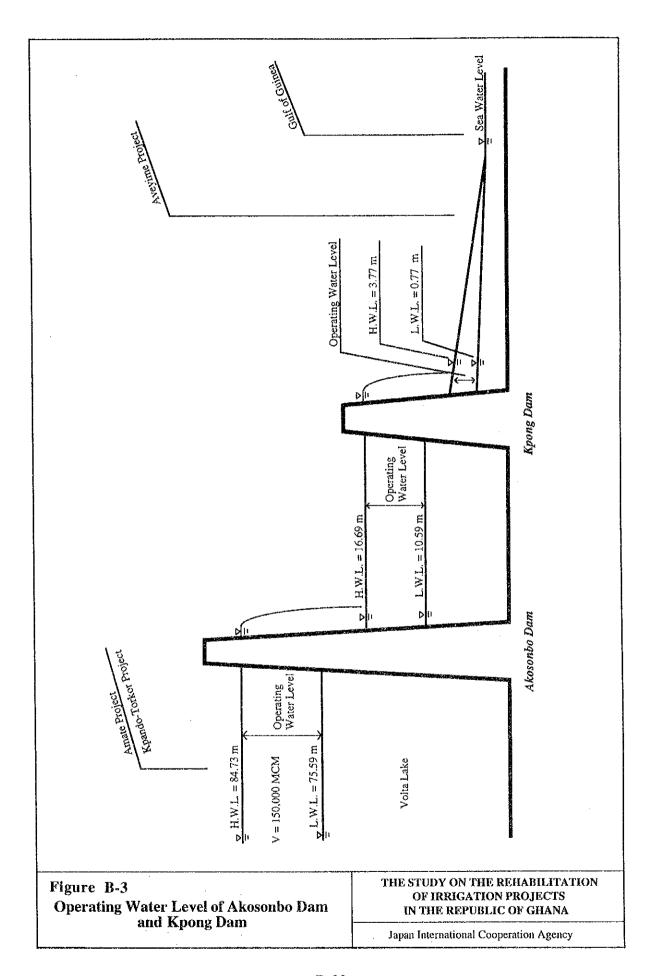
Table B.11 Runoff Estimate by Tank Model Method from 1986 to 1995 at Ashaiman

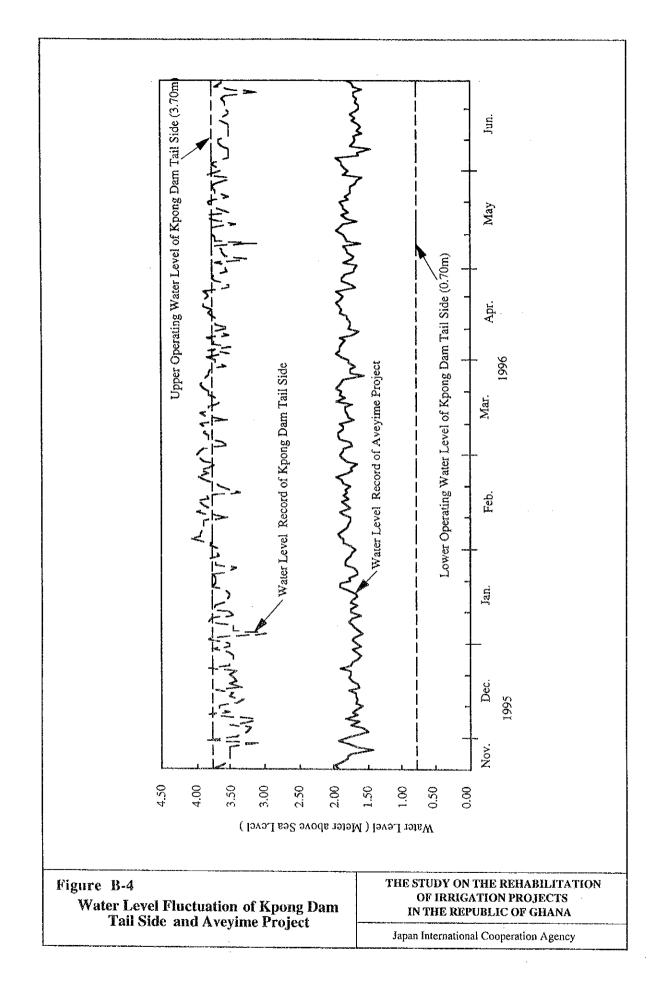
	~	Rainfall	0.0	0.0	0.0	0.0	0.0	0.2	39.0	121.9	4.2	0.0	56.6	40.7	48.6	19.9	67.3	79.2	87.8	85.0	138.5	0.2	1.5	1.7	1.6	7.6	9.0	0.3	0.0	0.0	0.0	4.5	26.1	6.0	0.0	1.8	0.0	54.0	895.0
	1995	Runoff R	0.000	0.000	0.000	0.00	0.000	0.000	1.073	996.9	0.846	0.072	1.419	2.435	2.563	0.633	3.494	3.562	4.425	3.820	29.246	0.408	0.055	0.010	0.00	0.024	0.020	0.005	0.00	0.000	0.000	0.005	0.657	0.052	0.028	0.010	0.005	2.864	64.711 523
		Rainfall R	8.2								3.6						•																4.9		4.4		0.0	0.0	501.1
	1994		0.005	0.029	0.014	0.002	0.276	960'0	0.656	0.307	0.049	1.052	0.075	0.015	0.520	0.134	3.953	5.753	1.626	0.510	0.112	0.022	9000	0.008	0.008	0.016	0.011	0.018	0.030	1.584	0.465	0.075	0.036	0.030	0.025	0.013	0.003	0.000	17.536
		infall R	0.0	0.0	0.0	ري خ	0.1	0.0	1.8	7.7	39.8	12.5	34.4	14.1	27.8	31.7	27.2	118.9	0.8	34.4	7.2	0.0	0.0	0.0	12.5	0.7	53.3	3.6	4.6	0.0	0.0	0.0	0.0	22.0	32.9	20.8	2.5		517.1
	1993	Runoff Ra	0.000	0.000	0.000	0.014	0.013	0.002	0.001	0.018	1.204	0.280	1.038	0.315	0.603	0.597	388	5.905	1.457	1.607	080.0	0.029	0.005	0.000	0.109	0.036	2.590	0.284	0.063	0.017	0.003	0.000	0.000	0.323	0.976	0.425	0.068		18.468
											0.5			_	13.2 (_	0.0	_			0.5	_			رم -	_	_	_	0	0.0	.	457.9 18
	1992	Runoff Rainfal	0.000	0.000	_	_	0.000	0.000	0.000	.503										0.147				.022	.003	0.002	.010	800.	90.	.005	121	0.030	0.013	.018	0.004	0.000	0.000		21.322 4
		_								0	0.0														٠,	1.3			_		_	0.5 0.		0.0	0	0	0		758.1 21
	1661	ff Rainfal	_			_		~					~																			_		~ 1	_	_	_	ı	
Year		Il Runoff	0.0	0.005	.4 0.005		.3 0.04			0.00					101.1	_	_		_				_	_	_				_						_	.7 0.000	.3 0.000	- 1	.9 34.042
	1990	. Rainfall	0	9					1 0.0				5 18.6	_		_																					1 98.3		4 542.9
		Runoff	0.000	0.000	0.005		_			_	_		٠.		3 4.693										0.00	0.00	0.03					0.053			0.014		5.50	ļ	20.244
	1989	Rainfall	0.0	0.0	0.0	0.0	0.0	0.0	3.4	13.5	0.0	39.6	62.0	40.6	50.3	23.8	19.3	56.1	8.7	104.8	6.5	54.3	4.2	0.0	0.5	9.1	3.8	7.1.	0.5	23.8	49.3	26.3	9.6	5.6	16.0	0.0	0.0	0.0	642.9
	19	Runoff	0.010	0.001	0.000	0.000	0.000	0.00	0.003	0.028	0.042	1.744	2.281	1.838	2.220	1.124	0.456	1.875	0.261	3.746	1.368	2.765	0.326	0.045	0.007	0.030	0.016	0.020	0.045	0.656	1.794	1.111	0.065	0.047	0.316	0.029	0.004	0.00	24.274
	8	Rainfall R	0.0	0.0	0.0	90.1	0.0	0.0	26.7	16.5	9.0	59.6	0.2	17.5	53.5	24.5	21.4	34.6	49.1	88.5	43.9	6.0	0.0	0.0	0.8	0.1	14.4	28.4	30.1	15.0	21.6	15.8	0.4	0.7	0.0	17.3	48.5	0.0	730.0
	1988	Runoff I	-	0.000	0.000	4.241	1.254	0.085	0.40	0.735	0.066	3.043	0.180	0.057	2.934	0.341	0.384	0.638	1.148	5.265	1.527	0.288	0.04	0.005	0.002	0.005	0.084	0.700	909.0	0.129	0.204	0.154	0.071	0.017	0.004	0.282	2.767	0.091	27.793
	,	infall		0.0	10.2	0.0	5.2	0.0	ι. Γ.	0.0	36.9	0.1	0.0	5.44	39.8	17.4	49.2	0.0	0.0	3.4	0.0	0.3	21.0	26.7	15.9	14.8	70.8	24.3	202.8	45.6	29.6	0.5	0.0	0.0	0.0	14.0	0.0	1	693.3
	1987	Runoff R	1	0.042	0.024	0.034	0.014	0.015	0.006	0.020	1.524	0.053	0.010	1.389	1.729	0.158	2.106	0.330	0.044	0.010	0.011	0.002	0.362	0.369	0.218	0.106	1.851	1.372	13.062	3.141	0.954	0.137	0.018	0.002	0.000	0.189	0.022	0.003	29.490
		infall	0.0	0.0	0.0	2.8	22.9	21.6	7.1	3.1	18.4	15.2	2.0	10.7	26.8	2.5	56.2	37.0	26.4	0.0	0.0	0.5	0.3			0.0					58.2	4.0	5.8	0.0	0.3	1.2	28.7	0.0	368.0 2
	1986	Runoff Ra	10	0.000	0.000	0.001	0.462	0.481	0.081	0.042	0.377	0.043	0.057	690.0	0.703	0.050	1.090	992.0	0.581	.137	.024	0.003	0.002	0.002	0.000	0.000	0.000	900.0	0.014	0.063	2.811	0.360	0.061	0.022	0.003	0.005	1.031	0.053	9.400
	avs		-	N	ω		61	i M		2	. m	. ~	61	3	-	7	'n		C1	<u>ო</u>	-	7	ю 8		(1	8	1	61	3	-	61	о М	~	7	ω	1	2	3 0	
	Month 10 days		r			7	2	1 6	t m	ות	'n	4	4	4	S	'n	Ŋ	9	Q	9	1-	7	7	0 0	œ	00	6	Φ	0	10	10	10	Ξ		11	12	12	. 17	Total

Table B-12 Runoff Estimate by Tank Model Method from 1986 to 1995 at Mankessim


											Year										
						900		3001		1000		1001		1992		1993	-	1994		1995	
Month	10 days	O.	:	S)			15.03	707. G #301.1G	oy Dainfall D	Dunoff Ra	vinfall R.	unoff Ra	Rainfali F	Runoff Ra	Rainfall R	Runoff Ra	Rainfall F	Runoff Ra	Rainfall R	Runoff Ra	Rainfall
									۔ ا	11011	4	11/	ļ	1 _	0.0	0.277	17.0	0.005		0.00	0.0
		0.010	4.3	0.012	0.6	0.001	0 0	0.000	5 6		9 6	200) v	0000	0.0	0.041	0.0	0.034		0.000	0.0
 1	7	0.009	0.0	0.028	0.0	0.000	0.0	0.001	0.0	0.000	1 0	200	, 00 0 00	000	00	0.007	0.0	0.273		0.000	0.0
puel	E	0.005	0.0	900.0	0.5	0.000	0.0	0.054	10.6	0.024	0.0	0.700	12.0	000	000	0.032	10.2	0.049		0.000	0.0
2	-	0.009	3.6	0.002	0.0	0.008	4 i	0.017)) (900	2 0	250		0.000	y c	0.070	16.9	0.100		0.000	0.0
2	2	0.373	19.5	0.001	0.0	0.019	ب 4. ا	0.003	ې د د	0.00	0 0	‡ 60 c		0.01	9 0	0.053	0.0	0.436		0.000	0.0
CI	3	0.886	27.6	0.000	0.0	0.030	10.5	0.004	4 	0.007	0.0	7000		2000		0.65	30.8	1.143		1.289	52.6
m		0.095	0.1	0.309	18.2	2.331	60.9	3.971	73.6	0.018	11.2	0.003		0.000	0.0	0.00		2.084		1.879	34.3
i (17	. 2	0.029	7.9	2.476	54.6	0.517	0.0	1.515	4.6	0.768	36.6	0.001		7.459	0.10	0.40	1.00	1003		0.195	6.4
) (r	l cr	0.226	23.6	1.185	40.2	0.058	0.0	0.277	3.6	0.288	12.6	0.000		0.254	3 9	250.0	0.0	201.1		200	15.5
י ל		258	901	0.114	3.7	0.592	26.6	0.224	18.2	0.195	8.	0.780		0.043	9, j	0.140	2.5	2000		1000	168.6
1 4		0.097	10.0	0.087	14.4	0.072	1.0	0.471	29.5	0.035	4 G	1.122		1.505	45.6	905.0	52.4	0.010		7.006	42.4
	1 6	2 017	43.3	0.459	24.1	0.024	3.3	1.099	41.3	1.277	39.4	0.896		0.997	27.5	0.278	1.5	7.0.1		0 1000	
י ער	. –	2 199	57.0	0.469	23.0	2.398	58.0	2.485	46.2	0.111	12.2	1.497		4.022	83.9	0.068	o 6	7.081		1 931	5.00
V	· C	0500	10.7	0.884	36.8	5.912	98.8	7.051	105.6	0.522	22.1	991.99		0.738	21.7	C.45.0	C.1.2	7 0 0		100.4	1 0
) ¥		0.477	100	0.00	25.2	0.442	19.8	1.798	43.6	0.415	25.2	13.343		1.276	30.9	0.387	33,1	7.338		0/0.01	1,0,0
י חי		1177	7 6)	7 00 7	03.3	11.580	183.4	0.772	34.8	1.988		16.398	139.3	4.203	95.1	9.368		7.860	7.00
æ;	1	V.481	770		7.7	, c	5 0	9908	1 2 2 4	1 085	38.3	0.391		0.295	15.6	1.788	4.0	1.960		10.873	175.5
Φ.	7	27.708	5.52		4 . 0 .	1.702		2000	7 60	707.0	35.0	1.847		0.076	1.4	2.420	44.8	0.796		0.893	8.3
9	m	2.942	x		7.01	0.101	77.7	77.0	7.4.0	0.130	15.7	7.035		0.021	4 6	0.087	0.7	0.143		10.018	146.3
7		0.670	31.0		9 t	170.1	ر 4:4 د	7,70	ļ -	0.73	. ~	10.083		0.022	11.6	0.014	0.0	0.044		0.428	5.6
7	. 7	0.138	0.8		7.7	0.138	0.7	5 0		50.0	, c	0.512		0.053	5.1	0.002	6.0	0.029		0.069	6.0
L	ςO.	0.028	0.3		2 4.	0.033	5.0	770.0	2 0	F 6	o - i t	2500		0.025	2.2	0.00	2.1	0.022		0.042	11.5
∞		0.00	2.0		24.7	0.005	4.0 4.0	4.00.0	o o o o	0.020	- 0	0.00		0.01	- 2	0.103	13.6	0.00		0.038	1.2
00	(4	0.004	0.1		22.2	0.002	o.;	0.00	2 0	0.00) t	0.040		0000		0.047	5.9	0.038		1.065	29.9
σo	(4.)	0.005	8.2		62.0	0.013	4.1.4	40.0	15.0	2000	. 0	2,162		0.00	2.5	1.862	48.2	3.417		0.063	0.2
U\		0.027	0.3		98.1	3.284	69.5	0.039	×	0.272	0 0	3 6		0.000	¥ 1	0 244	4	0.163		0.012	0.4
σn	.7	0.013	2.0		59.2	1.920	41.3	0.034	10.8	0.079	10.7	2020		1 600	47.5	080	13.3	0.121		0.166	22.3
ú۱	(۲)	3 0.020	5.6	• •	217.6	0.388	× +	0.050	4, 4	0.033	0 0 0 0	0.000		7.1.0	. o	0.207	8	0.672		0.094	2.5
10		0.250	15.4		142.1	16.667	141.3	0.790	36.8	3.394	χ.Ο. 	700.1		+TT-0) V	0.055		0.567		0.022	0.0
10	,	2.544	55.3		62.3	1.371	10.0	1.175	40.8	2.048	 	0.770		0.000	, v	0.120	19.5	5.706		0.250	21.0
1((i)	3 0.535	16.3		12.8	0.377	9.9	0.181	7.0	0.190	2.4	0.100		0.00	200	7200	6	3.046		1.871	43.5
11		1 4.008	8.69		7.0	0.176	16.1	0.032	8.0	0.183	4.7.4	0.003) - -	2000	t 0	0.077	, oc	0.365	16.6	0.088	0.0
	. 1	2 0.230	0.0	0.032	5.0	0.075	4.	0.008	 	0.074	5.5	0.017		707.0		500	2, 20	0.134		0.013	00
,	(٠)	3 2.342	49.5	0.399	22.1	0.027	0.0	0.004	9.0	0.032	4.	0.006		0.049) ;	167.0	7 7 7	0.00		0000	4.0
	٠,	(0.505	12.4	2.060	42.6	0.007	6.0	0.003	0.0	2.150	49.1	300	_	0.078	† ;		2 0	0.00	_	0000	10
		0.062	1.0	0.070	0.0	0.498	23.0	0.001	0.0	1.512	35.2	0.00	0.0	0.112	15.5	6000	5 6	200	9 6	000	}
		3 0.010	0.0		0.0	0.040	0.0	0.000	0.0	0.385	13.4	0.000	0.0	0.042	0.1	0.010	2.5	0.002	5,747	26.087	1075.7
	Total	56.749	"	60.716	1126.8	51.029	910.0	41.570	907.5	17.603	594.1	111.972	1134.2	30.915	901.9	10.030	0.4.0	10.01) }	5.40%	
Rund	Runoff Ratio	6.26%				5.61%		4.58%		2.96%		9.87%		5.14%		2.89%		4.05%		5.5	
7	17	,																			


Table B-13 Runoff Estimate by Tank Model Method from 1986 to 1995 at Okyereko


	Š	Rainfall	0.0	0.0	0.0	0.0	0.0	0.0	44.2	28.9	5.4	10.3	141.8	35.4	1.9	42.3	145.9	49.0	147.4	7.0	123.0	2.2	5.0	6.7	1.0	25.2	0.2	0.3	18.8	2.1	0.0	17.6	36.6	0.0	0.0	2.0	1.6	0.0	904.8	
	1995	Runoff 1	0.000	0.000	0.000	0.000	0.000	0.000	0.965	1.300	0.159	0.054	7.266	3.110	0.243	1.339	8.405	2.104	8.636	0.697	8.146	0.352	0.058	0.036	0.032	0.753	0.054	0.010	0.032	0.073	0.018	0.142	1.371	0.074	0.011	0.004	0.008	9000	45.458	5.02%
	4	Rainfall F	6.5	3.9	11.1	0.0	9.5	10.1	33.7	29.3	9.5	2.7	0.0	31.8	74.9	15.5	105.2	110.2	8.9	22.1	0.1	5.7	4.0	1.0	6.7	9.0	48.4	1.9	10.5	22.5	28.9	71.5	38.5	11.8	6.5	1.8	0.0	0.0	743.2	
	199		0.004	0.024	0.079	0.035	0.00	0.165	0.573	1.110	0.603	0.047	0.013	0.737	4.605	0.250	4.390	5.663	1.135	0.364	0.092	0.031	0.020	0.016	0.007	0.027	2.003	0.108	0.046	0.308	0.167	3.449	1.780	0.176	0.077	0.036	0.00	0.001	28.159	3.79%
		ainfall l	0.61	0.0	0.0	4.	18.8	0.0	34.4	16.9	31.2	0.0	36.2	14.6	3.3	23.9	37.0	106.2	4,5	50.0	8.0	0.0	1.0	2.3	15.2	9.9	53.8	4.6	14.8	21.0	3.3	21.8	10.4	9.4	29.6	16.3	0.0	0.0	618.3	
	1995	Runoff R	0.366	0.046	0.008	0.077	0.124	0.062	0.771	0.372	0.816	0.164	0.661	0.334	9/0.0	0.647	0.517	4.790	2.105	2.853	960.0	0.015	0.002	0.007	0.162	0.053	2.201	0.284	0.094	0.390	0.061	0.175	0.112	0.068	0.387	0.493	0.065	0.011	19.465	3.15%
	-1	Rainfall F	0.0	0.0	0.0	0.0	5.0	0.0	0.0	55.5	0.5	8.7	41.2	24.8	75.6	19.6	27.9	125.7	14.0	1.3	3.9	10.5	4.6	2.0	1.1	1.6	2.3	4.2	42.8	7.6	14.0	4.5	8.5	12.5	9.0	10.3	12.0	0.1	542.9	
	1992	Runoff R	0.000	0.000	0.000	0.000	0.012	0.010	0.003	2.061	0.221	0.039	1.230	0.813	3.466	0.602	1.060	8.694	0.274	0.071	0.019	0.020	0.048	0.023	0.010	0.008	0.004	0.016	1.577	0.101	0.059	0.058	0.039	0.131	0.044	0.037	0.064	0.038	20.850	3.84%
		ainfall F	0.0	8.8 8.9	27.8	11.7	0.4	9.0	0.0	0.0	0.0	37.9	39.2	33.3	38.9	173.6	192.7	34.4	11.7	55.1	106.7	135.2	0.5	13.4	13.9	20.6	47.1	5.5	0.5	34.6	4.0	14.6	0.0	1.0	0.0	0.0	0.0		059.7 2	
	1991	unoff Ro	0.059	0.018	0.830	0.386	0.041	900'0	0.003	0.00	0.000	0.645	0.965	0.800	1.337	12.791	2.279	1.800	0.347	1.621	6.347	9.286	0.475	0.077	0.045	0.594	1.937	0.192	0.033	0.914	0.231	0.134	0.057	0.016	0.005	0.001	0.000			8.90%
Year		ainfall R	_		9.2		8.0		14.8												20.7								5.0			5.6	_		~	7.4	46.4	17.7		
	1990	moff R	0.000	0.000	0.031	0.012	0.002	0.003	0.025	1.355	0.571	0.413	0.046	2.036	0.176	0.970	0.765	1.434	1.939	1.436	0.286	0.105	0.053	0.027	0.010	0.003	0.572	0.226	0.076	4.975	3.939	0.268	0.371	0.115	0.042	3.219	2.327	0.675	28.503	.64%
		Rainfall R	0.0	0.0	8.5	0.0	0.7	3.4	58.9	35.6	5.9	14.6	23.4	33.0	36.9	84.4	34.9	146.6	46.6	57.8	35.9							. ^	3.9			4.1	9.0	9.0	ıv.	0.0	رے		725.7 2	
	6861	moff Ra	0.004	0.000	0.027	0.014	0.002	0.003	2.844	0.945	0.199	0.097	0.256	0.683	1.695	5.282	1.206	8.635	2.055	1.512	2.079	0.128	0.022	0.003	0.001	0.034	0.031	0.025	0.040	0.448	0.755	0.135	0.026	900'0	0.003	0.002	0.001		. 002.6	.02%
		Rainfall Ru	0.0	0.0	0.0	3.7	2.7	8.2	47.5	0.0	0.0	20.7	8.0								25.2								14.4					3.4				ļ	709.3 2	4
	1988		0.001	0.000	0.000	900.0	0.015	0.024	1.550	0.315	0.046	0.275	0.054	0.019	1.493	4.222	0.284	3.467	1.202	3.412	1.053	0.118	0.026	5.004	0.003	_						0.213	0.074	0.056	0.021	0.005	0.275	0.031		4.12%
		Rainfall Runoff	8.4	0.0	0.5	0.0	0.0	0.0	17.0						21.5						9.0				20.8						58.2			4.7	20.7	~		ļ	1052.0 29	4
	1987	Runoff Ra	0.011	0.026	900.0	0.002	0.001	0.000	0.259	2.199	1.040	0.105	0.058	0.389	0.402	0.746	0.858	0.074	0.149	0.173	0.052	0.013	1.785	0.927	0.218	2.473	3.991						0.084	0.030	0.337	1.861	990.0	0.010		4.50%
		Rainfall Ru	3.0	0.0	0.0		13.9	9.61			16.7			30.7				71.2														11.6				8.8		0.0	642.8 47	4
	1986	Runoff Ra	0.007	900.0	0.001	900.0	0.118	0.375	0.064	0.021	0.054	0.246	0.061	1.158	1.283	0.143	1.140	3.283			0.334	0.000	0.020	0.007	0.003	0.004	0.019	0.009	0.014	0.064	1.490	0.269	2.458	0.154	1.375	0.225	0.044	0.007		3.95%
	ays	Ru		64	ന	۳-4	7	m	•(7	m	_	ci	m	~	c1	ጣ	-	71	(1)	ü	7	m	-	0	3		7	8	<u></u>	7	3		7	<u>ო</u>	-	7	3 (İ
	Month 10 days			F-4		73	61	2	ო	e	ĸ	4	4.	4	S	Ŋ	S	9	9	9	[~	7	7	∞	œ	∞	6	6	6	. 10	10	10	11	11	E-ref	12	12	12	Total	Runoff Ratio


FIGURES

