2.4.4 Institutional Measures

Planning and implementation of the proposed projects would be facilitated by related institutional measures. Some of them are included as project components as indicated above.

Planning and implementation of multipurpose development projects, including the trans-basin diversion, should be coordinated by the proposed WSB Development Management Office (DEMO). Initiative by the WSB DEMO is essential for the Tha Sae dam/reservoir project, as it is an interprovincial project. Local people/ communities as well as local governments should participate from the early stages as much as possible, guided also by the WSB DEMO.

Land consolidation should be expedited in the existing irrigation areas, especially in the lower Mae Klong river basin, where the intensification of irrigated agriculture is proposed. Rationalization of water charges may also be introduced, first in the lower Mae Klong irrigation area.

Monitoring of water quality in rivers, estuaries, and coastal waters needs to be systematically improved. Considering the ubiquity of the water quality problems, local people/communities should be involved in the monitoring system to be organized through the WSB DEMO.

Table 9.2.1 (1) Sri Nagarindra Dam (Inflow)

Minimum Storage Level Year Jan 1977 1978						•					: !		ואוטוניים
77,	÷	Water Leve		159.00 M. (A	(MSL)		Quantity Level		10,265 Million Cubic Meters	n Cubic Me	ters		
77	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.) S	Nov.	Dec.	Total
1978								171	527	284	130	90	1,202
	65	129	55	63	8	119	322	1,167	1,083	1,172	247	140	4.580
1979	96	73	71	06	106	177	349	827	613	468	157	87	3,114
1980	69	51	99	73	161	183	241	413	720	738	254	122	3,091
1981	31	102	74	65	125	385	530	1,431	1,087	829	1.235	331	6,305
1982	181	102	70	26	93	256	624	1,600	1,009	100	275	149	5.162
1983	101	99	47	.52	78	96	122	298	200	1.839	657	210	4,059
1984	139		81	103	82	322	365	662	842	865	288	159	4,009
1985	118	06	99	95	94	289	790	856	1.606	975	395	197	5.571
1986	134	83	72	106	468	176	343	629	573	995	202	140	3.527
1987	8	75	66	113	74	205	219	411	884	622	366	132	3,294
1988	107	26	77	104	349	488	410	612	1,299	2.097	446	201	6,281
1989	175	126	83	46	159	121	152	493	431	412	128		2.418
1990	115	114	74	63	142	195	411	386	641	1961	222		3,276
1991	81	52	29		69	340	429	1,756	808	1,121	294	:	5,161
1992	135	68	42	65	53	69	288	748	458	713	256	7 -	3,045
1993	111	71	56	62	76	79	206	616	750	354	136	99	2,583
1994	61	76	49	46	186	295	1,445	2,037	1,279	741	225	123	6,581
1995	101	58	51	99	82	127	262	867	1.881	929	334	153	4.901
19961	105	100		5,									
1997												VX 44	
1998							1 11 14 1 1						
1999										-			
2000									· ·				
Mean	109	84	64	122	138	218	417	880	915	887	340		4.276
Max.	181	126	66	113	468	488	1,445	2.037	1.881	2.097	1.235	۳ ا	10,495
Min.	61	51	29	46	53	69	122	298	431	354	128	(99	1,708

Table 9.2.1 (2) Sri Nagarindra Dam (Outflow)

		Quantity Level		18,850 Milli	lion Cubic Meters				O .	Quantity Level		17,745 Million Cubic Meters	n. Cubic Meters
Minimum Storage Level	i	Water Level		159.00 M. ((MSL)		Quantity Level		10,265 Millic	10,265 Million Cubic Meters	ers		
Year	Jan	Feb	Mar	Apr.	Mav.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Totai
1977								39.4	4.1	5.1	5.1	5.3	59.
1978	5.1	26.0	80.9	124.2	78.8	5.1	5.2	4.7	2.1	1.2	1.2	1.2	335.
979	5.7	95.0	154.8	169.8	95.9	28.7	5.4	5.4	5.2	12.5	113.4	11.4	703.2
1980	5.4	44.4	133.5	165.0	107.1	32.0	30.1	15.4	5.2	10.1	6.0	22.0	576.
1981	37.6	180.8	200.7	242.7	188.3	70.2	4.4	0.0	0.0	19.0	0.8	63.7	1,008.
1982	56.2	289.6	363.0	333.5	308.9	253.5	316.7	178.5	516.4	316.5	280.6	287.6	3.501
1983	293.0		465.0	530.9	546.1	541.9	372.4	331.1	216.0	105.3	111.6	148.2	4,005.
1984	149.2	386.4	498.2	486.4	458.4	323.2	211.4	390.9	532.2	272.3	478.0	131.5	4.318.
1985	227.9		527.8	459.1	372.2	206.6	135.4	140.9	135.4	117.2	100.9	140.3	2.94
19861	118.4		478.2	691.2	411.1	688.7	582.8	680.1	604.8	262.1	207.4	233.0	5,092.1
1987	250.8		402.4	391.7	382.1	324.2	261.0	361.5	181.9	225.5	220.7	32.2	3.23
1988	114.1		241.1	202.5	251.4	260.9	373.1	362.2	352.5	249.0	269.7	223.9	3,027.0
19891	161.8		532.5	583.7	641.6	595.5		443.7	440.1	384.8	397.2	62.5	4,988.
1990	139.6		369.7	239.7	233.7	166.8	207.1	326.5	300.8	266.5	262.3	146.7	2.875.6
1991	351.4		363.9	398.1	336.7	205.5	153.7	335.1	397.4	361.3	455.2	257.9	3,882.9
1992	281.4		549.1	489.2	440.8	419.6		171.0	326.6	290.1	242.0	357.1	4.219
1993	169.4		373.8	340.1	310.8	345.1	198.2	145.7	208.4	119.0	165.0	94.9	2.767.8
1994	130.9		237.2	273.2	239.2	146.5	109.3	110.4	198.3	227.3	295.6	336.3	2.542.
1995	342.0	395.0	552.5	429.8	588.7	571.1	381.0	412.8	297.8	408.3	460.3	299.0	5,138.
1996	415.3												
1997								-				e e	
1998		·											
1999													
2000													
Mean	171.3	241.2	362.5	363.9	332.9	288.1	224.8	245.3	262.3	202.7	226.0	158.3	3.079
Max.	415.3	395.0	552.5	691.2	6416	688.7	582.8	680.1	604.8	408.3	478.0	357.11	6,495.4
S.V.		4 44	000		•			•	•	?	C	Ť	,

Table 9.2.1 (3) Sri Nagarindra Dam (Storage)

180 00 M (MSL)		17.745 Million Cubic	Meters	
Water eyel		Quantity Level		
Nomal Change over	ואסוויים פוסימים ויסאפי			
10000	102.40 W. (WOL)	18,850 Million Cubic Meters		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	water Level	Quantity Level		
	Maximum Storage Level Vvater Level			

10,265 Million Cubic Meters

Quantity Level

159.00 M. (MSL)

Minimum Storage Level Water Level

1		,						Ç. (600	ŧ	/ON	٥
	Jan.	reo.	Mar.	AD.	widy.	Juli.	col.	, 21 (; }		
ĺ	1,446	1,478	1,442	1,367	1,353	1,454	1,758	2.862	3.984	5,143	5,375	5,497
	5.569	5.526	5.411	5,301	5,289	5,402	5,751	6,562	7,153	7,626	7,653	7.710
1	7.754	7.738	7,635	7.521	7.546	7.648	7.873	8,237	8,930	9,662	9.888	9,965
l	6266	9.847	9.679	9,467	9.373	9,664	10,159	11.560	12,621	13,443	14,655	14,906
L	15,003	14.783	15.454	14,166	13.904	13,878	14,158	15,541	16,015	16,375	16.343	16,173
1983	15 951	15.620	15,149	14.599	14.065	13,574	13,295	13,237	13,495	15,216	15 720	15,752
1984	15 709	15,395	14.913	14,465	14,016	13,975	14.091	14,542	14.614	15,164	14,939	14.921
1985	14 768	14,416	13,8351	13.405	13.095	13,130	13,739	14,439	15,870	16,646	16.912	16,937
1986	16.918	16.815	16,339	14.679	15.691	15,160	14,984	14,936	14.880	15,152	15,126	14,995
1987	14.786	14,611	14.226	13,859	13,498	13,309	13,240	13,264	13,867	14,226	14,349	14,409
1988	14 364	14.276	14,047	13,899	13,956	14.148	14,156	14,382	15.300	17,118	17.267	17,209
1989	17,180	16.910	16.390	15.763	15.201	14,693	14,408	14,430	14,393	14,386	14.079	14,061
1990	13.956	13,791	13.388	13,126	12,957	12,923	13,088	13,123	13,437	13,938	13.874	13,806
1991	13.497	13.248	12.848	12.435	12.133	12,242	12,485	13,831	14.261	14.933	14,801	14,644
1992	14.463	14,116	13,539	13,057	12,613	12,226	12,175	12,722	12,827	13,223	13,213	12,923
1993	12,796	12.492	12.133	11,807	11,496	11.187	11,162	11,607	12,117	12,318	12,255	12.186
1994	12,080	11.859	11,623	11.344	11,250	11,375	12,691	14,593	15,635	16,108	16,006	15,755
1995	15,477	15.087	14,526	14,094	13,543	13,060	12,909	13,335	14,891	15,385	15,228	15,046
1996	14,704	14.496										
1997												
1998												
1999												
2000												
Į	13,608	13,390	13.008	12,529	12,331	12,211	12.374	12,964	13,547	14,172	14,253	14,200
<u>_</u>	17,180	16.910	16.390	15,763	15,691	15,160	14,984	15,541	16,015	17.118	17,267	17,209
ļ.	5.569	5.526	5.471	5.301	5.289	5.402	5,751	6,562	7,153	7,626	7.653	7,710

Table 9.2.2 (1) Khao Laem Dam (Inflow)

155.00 M. (MSL)	vel 8,860 Million Cubic Meters
Water Level	Quantity Level
Normal Storage Level	ers
160.50 M. (MSL.)	9,500 Million Cubic Meters
Maximum Storage Level Water Level	Quantity Level

67 3,012 Million Cubic Meters Dec. Nov. 604 4677 3657 7383 950 4431 4431 539 516 950 328 . O 981 2.032 563 Quantity Level 3,361 1,280 1,935 1,118 832 832 871 871 871 1,730 1,730 1,531 1,531 1,701 Aug. 3,044 952 3 1,043 487 135.00 M. (MSL.) Jun, 97 May. Apr. 36 မ Water Level 32 Mar. Feb. શ્રુ છુ 4 Minimum Storage Level Jan. 57 rear Mean Max u V

Table 9.2.2 (2) Khao Laem Dam (Outflow)

	•	Quantity Level	'el	9,500 Millio	illion Cubic Meters					Quantity Level	le/	8,860 Million Cubic	Cubic
Minimum Storage Level	Level	Water Level	*	135.00 M. (M. (MSL)		Quantity Level		3,012 Millio	3,012 Million Cubic Meters	ses		
Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1984											13	160	173
1985	40	40	39	37	35	35	744	553	1,013	128	157	418	3,239
1986	326	281	396	433	530	677	419	269	635	251	206		5.100
1987	182		287	222	299	417	294	403	321	254	226		3,247
1988	208	357	529	464	356	292	296	301	324	149	74	80	3,430
1989	215	191	315	271	486	526	207	237	391	283	212		3,594
1990	278		588		596	304	311	492	485	484	365		5,057
1991	267	223	427			145	291	260	782	612	627	403	4,972
1992	315		581			556	513	448	412	529	353	214	5,186
1993	86		370	433	307	200	228	407	334	180	237	172	3,234
1994	236		528			239	176	792	1,260	657	918	700	6.700
1995	41	408	552	493	548	581	340	268	469	381	409	239	5,129
1996	343	368										news :	
1997							The state of the s					e a	
1998												· <u>· · · · · · · · · · · · · · · · · · </u>	
1999							:						
2000						-						*****	
2001												e Frank	
2002												min an	
2003			ţ.				}					ar þet se	
2004													
2005									-		:	, 	
Mean	246	298	419	382	.:	361	347	469	584	355	344		4,462
Max	144	444	588		965	677	744	792	1,260	657	918	7	3,356
Min	()	07	20	44	30	30	32.4	756	200	000	24.	, CO	

Table 9.2.2 (3) Khao Laem Dam (Storage)

		Quantity Level		9,500 Millio	9,500 Million Cubic Meters			•	G	Quantity Level		8,860 Million Cubic
Minimum Storage Level		Water Level		135.00 M. ((MSL)		Quantity Level		.012 Million	3,012 Million Cubic Meters	: ସ	
Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.) ဝဏ	Nov.	Dec.
1984						939	1.403	3.040	4,008	4.591	4.758	4,659
1985	4 673	4 638	4.596	4.586	4.617	5.606	6.407	7,766	8,128	8,435	8,422	8.054
1986			7.037	6.596		5,783	6,047	6,385	6,289	6.375	6,283	6,072
1987			5,349	5,105		4,644	4.782	5,192	5.850	6,156	6,115	6.084
1988		1	4.955	4,497	4.382	4.795	5.044	5,844	6,078	6,851	6.992	6.986
1989			6,292	5.979	5.535	5.178	5,317	6,200	6,469	6,521	6,395	6.147
1990		5.395	4,723	4,144	3,560	3.688	4,125	4.487	5,010	5.240	5,013	4,895
1991	4.646		3.937	3.511	3,273	4,093	5,113	7.712	7.622	7,442	6.881	6,491
1992			5.164	4.599	4,139	3.695	3,674	4,939	5.280	5,158	4,914	4.774
1993			4.047	3,582	3.275	3,212	3,558	5,024	5,612	5.735	5,565	5,407
1994		'	4.218	3,727	3,452	3,692	6,544	9,087	8,860	8.641	7.752	7,054
1995	6.619		5,589	5.044	4,596	4,570	4,803	6,047	7,583	7,712	7.396	7.201
1996							-					
1997							-					
1998												
1999												
2000												
2001						-						
2002												
2003												
2004	om storete									•		
2005	a secondario											
Mean	5,928	5,616	5.082	4.670	4,341	4,451	5,038	6,244	6,616	6.749	6,521	6,288
Max	7.741	7,463	7.037	6.596	6.213	5,783	6,544	9.087	8,860	8,614	8.422	8,054

Table 9.2.3 (1) Vajiralongkorn Diversion Work (Inflow)

Total	4.221	8 444	15,841	11 503	13,956	10,343	9.675	4,567	5.682	3,591	2.518	8,559	8,043	3,925	-3,376	6,235	8.958	4,083	5.802	3,769	3,431	5,390	4,651	2,530	7,276	9.112						0,1			0 n. X
Dec.	90S	240	754	379	588	484	514	74	125	SS	135	219	280	160	301	642	457	192	256	181	218	611	504	4.	1,049	578						0 12 0		1,049	
Nov.	617	554	1.094	720	1,438	1,139	429	8	193	88	177	828	237	519	199	389	192	537	212	185	430	714	429	108	830	759					1			1,438	•
Oct.	1,243	977	2.479	2,023	3,406	2,119	1.532	269	1,377	490	200	069	555	1,213	178	1.087	945	278	1,640	334	069	1,028	867	413	1,023	1,530				1			1,111	3,406	
Sep.	1,853	1,486	3,344	2,589	2.122	1.802	2,284	1,146	1,527	369	742	936	1,513	363	336	1,516	910	623	785	317	267	887	166	328	1,439	1,518							1,188	3,344	
Aug.		1.910	3,346	1,903	3.564	1,804	1,495	1,346	1,782	1 500	359	2,933	3.178	253	109	581	1,036	233	434	171	185	830	288	216	1,314	7997							1.249	3,564	
Jul.		1,756	3.627	1,576	833	1,166	997	573	792	678	178	1.052	1.131	139	140	726	998	187	512	316	193	124	8	130	529	684							762	3,627	
Jun.		810	669	1,152	1.122	638	430	1521	81	ន	73	1.220	309	286	442	186	1.343	590	585	831	276	135	548	384	224	1,099				+			548	1,343	
May.		118	87	163	268	222	298	150	29	59	87	204	168	274	400	203	1,005	416	787	396	259	102	176	156	176	257							260	1,005	
Apr.		180	8	108	114	138	8	1061	51	83	98	118	195	184	379	179	847	335	86	224	153	207	223	198	203	328				:		7 :	198	847	
Mar.		127	7.	202	114	087	13.	136	99	8	65	133	122	167	3771	3	585	386	219	294	283	171	8	186	: 42	455							212	589	
Feb.		141	δ	268	145	200	178	166	51	72	61	132	99,	161	315	150	259	245	230	8	177	195	225	120	188	382							178	382	
Jan		205	158 158	417	220	0.0	100	3,50	92	74	55	176	154	206	5002	186	605	445	243	330	300	476	396	180	159	959	653	3					287	959	
Year	0401	1971	100	4072	1976	1075	5/67	2701	19791	19791	1980	1981	1980	1983	1984	1985	1986	1987	1088	1989	1000	1991	19921	1993	1994	1995	19961	250	1997	1998}	1999	2000	Mean.	Max.	

Table 9.2.3 (2) Vajiralongkorn Diversion Work (Outflow)

Total	3	282	5003	393	580	777	1,249	1,063	1,574	1,238	1,314	1,971	1,570	2,359	2,224	2,461	3,400	3,658	4,994	5,177	5,218	5,116	4,477	4,745	4,224						2,524	5.218	393
Dec	J	,	5	8	110	8	26	14	61	**	101	6	27	48	24	82	26	8	159	113	159	16 8	191	232	141	r.	Mary.	-	June .	स्र	616	232	5
Nov.	•	Q.	33	20	67	28	142	144	204	104	06	218	26	358	245	304	272	366	503	351	517	379	409	570	365						243	570	20
500	R	13	37	30	14	153	243	177;	256	123	130	339	155	330	153	165	414	186	483	366	442	376	330	\$	214				-		236	483	30
Sep		Ş	125	65	108	121	243	226	276	265	231	302	207	373	311	420	444	356	577	645	552	558	434	488	189	_					314	645	65
Aiso		114)	145	22	134	205	156	185	271	234	220	321	236	372	361	386	573	458	572	969	සෙ	502	543	512	460						348	969	57
1111		37	69	1221	81	96	155	121	176	186	139	228	203	179	215	184	382	243	279	406	427	361	330	203	236						508	427	69
1110		0	19	32	24	39	77	22	65	53	69	72	106	109)	122	146	216	260	334	268	351	328	204	243	231					-	141	351	19
VEW	. 1	n	13	45	20	12	95	25	1.1	85	74	108	114	142	122	130	182	320	299	603	572	සුල	538	534	622						240	663	12
Apr			16	16	38	æ	55	78	89	109	127	106	160	173	222	27.1	300	985	229	059	598	673	542	517	642						286	673	16
Mar			14	17	31	12	- 59	677	8	36	26	160	150	166	266	253	301	555	250	623	230	675	513	535	009						279	675	14
Teb 1			17	6	10	15	32	72	55	28	ස	105	108	103	168	163	170	267	286	383	342	.416	371	345	376	•			ļ		168	416	6
r c	:		7	0	0	4	8	7	4	5	3	9	7	9	14	10	11	15	30	. 67	35	66	72	183	148	124		-	<u> </u>		35	35	0
Year		13/51	1973	1974	1975	9261	1977	1978	1979	1980	1981	1982	1383	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	Mean.	Max.	Min.

Table 9,2.4 (1) Kaeng Krachan Dam (Inflow)

Minimum Storage Level Year Jan. 1960 1962 1963 1963 1966 1966		Water Le	el Mar.		(MSL)		Quantity Level		67 Million Cubic Meters	ubic Meter			Meters
X	Jan. Jan. 662 665 655 655 655 655 658	ED.	Mar.										
				Apr.	May.	Jun.	Jul.	Aug.	Sep.	OG.	Nov.	Dec.	200
				7	10	38	52	127	103	240	54	29	651
			11	12	49	75	268	485	231	159	53	27	1,395
			15	5 17	24	62	170	278	232	115	97	24	1,008
0 0 0			11	15	2	35	127	154	193	215	84	28	894
1000			8	44	30	31	62	138	222	176	26	34	831
9 5			21		37	•	175	151	234	388	11	26	1,302
101			9	3	24	82		100	107	87	49	14	547
		<u>о</u>		12	8		72	312	, 52	144	55		854
1968		11	-	17	9		76	185	142	251	OS	18	813
19	1969	6 8	15	17	8		130	201	134	140	341		1 126
19	1970	7	S	18	22		154	119	81	179	35	131	824
19		7	7	3 24			231	135	138	225	8	82	1,147
19		4					214	231	176	146	104	8	1.138
ر ف	1973 26	5 17			30		120	203	173	184	118	32	1.035
19		18			,	2	1:4	363	147	342	102	42	1.594
19	1975 39	91	-				83	197	124	167	77	28§	921
16	76 19	9 12	22		66		93	130	157	76	101	23	782
18	1977	14	17		42	37	72	164	176	112	47	24	743
19	78 18	17	17				76	300	155	284	65	23	1.088
15	1979 18		18		34		135	263	79	89	38	}6t	789
19	1980	4 19	23	3 20	44		61	85	108	16	43	19	574
18	11	1	20			135	126	323	138	117	160	40	1,171
13				9 37	×	85	136	333	197	85	57	23	1.009
19	1983 20	0 23	10				38	88	8	114	88	29	548
13	1984	71 17	17	·		219	111	137	125	143	77	22	895
100	1985	6 16	19	;			234	225	210	286	28	35	1,317
19	1986 21	1 13	12		105	61	163	162	88	147	25	22	871
18	1987	13	15		141	68	61	89	104	142	89	26	265
5	1988	8 19	18	30	78	185	103	68	119	259	9/	∫ 82	1,023
16	1989	7 18	20		41	47	99	108	103	82	77	25	578
19	1990	8 13	13		24	66	71	52	93	831	40	17	200
Mean	18		17	7 22	37		121	193	148	165	62	31	930
Max.	39	9 23	4			289	268	485	234	368	341	131	1,594
Min.	out-e	2 6	9		9		38	65	16/	7.1	38	14!	200

Table 9.2.4 (1) Kaeng Krachan Dam (Inflow)

Quantity Level 930 Million Cubic Meters Quantity Level 710 Million Cubic Meters Water Level 75.00 M. (MSL) Quantity Level 67 Million Cubic Meters 13 22 23 150 144 50 24 14 18 24 26 150 154 40 15 15 14 18 24 26 150 86 17 14 13 15 16 17 20 25 256 150 86 17 16 17 11 12 14 17 20 25 38 137 26 16 11 6 7 16 21 23 38 17 16 11 6 7 16 21 22 38 17 17 11 13 16 22 35 34 21 17 17 17 17 17 17 17 17 <th>Maximum Storage Level</th> <th>امريم ا من</th> <th>Motor Low</th> <th></th> <th>102 70 %</th> <th>(10/4)</th> <th></th> <th>S como</th> <th>יים אם המבירה. יים אם המבירה</th> <th>1.</th> <th>Mater: evel</th> <th></th> <th>(18W) W 00 66</th> <th><i>(</i></th>	Maximum Storage Level	امريم ا من	Motor Low		102 70 %	(10/4)		S como	יים אם המבירה. יים אם המבירה	1.	Mater: evel		(18W) W 00 66	<i>(</i>
340 Mater Level 75.00 M. (MSL) Quantity Level 67 Million Cubic Meters 75.00 M. (MSL) Quantity Level 67 Million Cubic Meters 75 mil)))	Quantity Leve	- vel	930 Millior	Cubic Me	sters				Quantity Lev		710 Million C	ubic Meters
Jan. Feb. Mar. Apr. Jun. Jul. Aug. Sep. Oct. Nov. Dec. TT 92 13 14 18 28 60 220 107 144 50 24 18 92 15 14 15 24 24 26 150 86 134 25 18 94 14 15 24 24 26 150 86 137 22 16 94 15 24 25 50 28 137 22 16 95 11 8 7 16 27 43 28 17 22 16 90 10 1	Vinimum Storaç	le Level	Water Leve		_	WSL)		Quantity l		57 Million C	ubic Meters		. :	
13 27 13 14 18 28 56 250 107 144 59 24 18 18 18 18 18 18 18 1	Year	Jan.	Feb.	Mar,	Apr	May.	Jun.	Jul	Aug.	Sep.	og -	Nov.	Dec.	Total
920 20 16 16 16 16 16 16 16 16 16 24 25 150 66 150 24 451 15 15 15 15 15 24 25 550 150 260 151 45 15 15 15 15 24 25 260 260 151 24 25 15	1991			13	•					107	144	ន	24	728
1	1992			16	1					84		44;	18	4
949 14 17 20 43 225 500 286 131 227 16 21 43 28 113 241 227 38 17 96 111 8 7 16 21 43 38 113 221 17 98 11 8 7 1 <td>1993</td> <td></td> <td></td> <td>5,</td> <td>÷</td> <td></td> <td></td> <td></td> <td></td> <td>85</td> <td></td> <td>67</td> <td>161</td> <td>587</td>	1993			5,	÷					85		67	161	587
56 11 8 7 16 21 43 113 241 227 32 17 96 11 8 1 4 24 24 251 32 17 96 11 8 1 4 1 4 4 1 96 10 1 1 1 1 1 1 1 1 90 10 1	1994			14	17					288		8	16	1 302
96 11 8 11 8 9	1995			7	16					241		စ္က	171	790
936 958 959 950 970 970 970 970 970 970 970 970 970 97	1996										-			
588 598 698 <td>1997</td> <td></td>	1997													
59 50 <td>1998</td> <td></td>	1998													
00 01 02 03 04 05<	1986											 		
020	2002											}·		
02 02 0.05 0.0	2001						-						323-37-3	
039 908 908 909 <td>2002</td> <td>en en en</td> <td></td> <td>and the second</td> <td></td>	2002	en en en											and the second	
0.2 0.2 <td>2003</td> <td></td> <td>. 4</td>	2003													. 4
05 Columnate with the columnation of the columnat	2002	× 1000											 r©≅ca	
06 Columnation Co	2005													
078 Colored Co	2006	, desire a				* ***							eta: »	
08 Columnation Co	2007	fw.es											Service .	
104 14 11 13 16 22 35 94 217 175 138 38 18 20 27 16 18 24 43 225 500 288 237 50 24 11 8 7 14 20 24 38 105 84 61 22 16	2008													
10 11 13 16 22 35 94 217 175 138 38 18 20 27 16 18 24 43 225 500 288 237 50 24 11 8 7 14 20 24 38 105 84 61 22 16	2009					mean miner of					_		reas:	
11 13 16 22 35 94 217 175 138 38 18 20 27 16 18 24 43 225 500 288 237 50 24 11 8 7 14 20 24 38 105 84 61 22 16	2010												PER TO	
14 11 13 16 22 35 94 217 175 138 38 18 20 27 16 18 24 43 225 500 288 237 50 24 11 8 7 14 20 24 38 105 84 61 22 16	2011						:							
20 27 16 18 24 43 225 500 288 237 50 24 11 8 7 14 20 24 38 105 84 61 22 16	Mean	14		13	16	2		1. 14 14	ľ	175	138	38	100	789
11 8 7 14 20 24 38 105 84 61 22	Max.	20		16	18	2				288	237	50	24	1,472
	Min.	4.	Ø	7	14	2	:			28	61	22	16	410

Table 9.2.4 (2) Kaeng Krachan Dam (Outflow)

Year Jan. Feb. 1960 1961 10 1961 15 10 1962 16 9 1963 15 10 1964 15 10 1965 16 9 1966 25 30 1967 20 29 1972 28 26 1973 34 19 1974 25 35 1975 27 40 1976 27 40 1977 28 41 1978 26 35 1979 26 55 1980 27 47 1985 27 47 1986 27 47 1987 24 47 1988 23 63 1988 27 47 1988 27 47 1988 23 47	Mar	75.00 M. (h	(MSI)					A Matore			Meters
Jan. Jan. Jan. Jan. Jan. Jan. Jan. Jan.	Mar. 13 8 8 22 2 8 8 2 2 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	Apr			לחמווווא בפע		67 Million Cubic Meters	וסוכ ואופופוי			÷
			May.	Jun	Jul.	Aug.	Sep.	Og.	Nov.	Dec.	Total
		7	10	38	54	127	103	240	43	29	651
			49	7.5	268	485	231	159	53	27	1.395
				62	170	278	232	115	46	24	1,008
				35	127	154	193	215	8	28	894
		8 14	30	31	62	138	222	176	92	8	831
				102	113	145	217	375	96	6	1.142
				57	101	102	89	43	29	3	475
				33	84	119	124	52	119	32	609
				89	96	120	101	55	88	24	598
		1		100	132	135	128	70	183	88	1,026
		•		80	131	142	128	63	105	11	878
				128	138	143	133	212	139	53	1,085
				115	118	149	155	131	69	42	950
				113	131	157	154	172	71	18	1,020
		7		224	170	299	222	278	139	46	1,582
				107	142	141	121	82	06	29	1,010
				98	118	113	82	110	44	33	805
		,		97	103	106	97	75	113	50\$	877
	36 5	,		68	74	94	107	87	117	51	811
		}		83	110	117	125	129	115	929	1,086
		7	44	39	45	. 65	85	69	73	36	652
	18			28	81	104	113	10}	9	37	593
				75	111	118	111	152	83	30	975
		:		76	92	76	56	21	25	52	712
		`		99	64	127	132	92	121	37	830
		7		54	88	109	148	205	235	50	1,082
	:	~		168	114	119	130	821	96	187 78	973
)	1.00	74	100	106	103	88	16	13	749
	28 3		21	67	106	102	100	33	107	37	769
1889		~		65	06	105	93	48	52	42	831
-1				54	88	102	100	70	38	18]	909
		7" ' ''		78	112	142	134	118	91	35	893
Max. 40		*	S	224	268	485	232	375	235	89	1,582
Min. 2	5	3	9	28	45	65	99	21	16	Ö	475

Table 9.2.4 (2) Kaeng Krachan Dam (Outflow)

			DA.	930 Willo	S UGDU C	e e e			J	Quantity Level		10 Million	pign
Minimum Storage Level	e Level	Water Level	- 9	75.00 M.	75.00 M. (MSL)		Quantity Level		7 Million Co	67 Million Cubic Meters		Meters	Meters
Year	Jan.	Feb.	Mar	l Apr.	May.	Jun.	Jul.	Aug.	Sep.	ੇ ਹ	Nov.	Dec.	Total
1991	15			20 2					06	35	89	45	697
1992	24	37				52 5	58 75	75	91	26	47	36	609
1993	:			20 23				91	38	Þ.0	59	361	425
1994	17							271	296	151	100	41	1,042
1995	22	32						54	55	191	35	36	706
1996	19	52				<u> </u>					-		
1997												oute M	
1998								-	 -				
1999									 				
2000									 		-		
2001) 				 				
2002												Старыка	
2003							 		 				
2004]	an.	
2005									 	 		e ins	
2006					-								
2007									 			es-Ma	
2008				:					 	-	-		
2009								 	 		 		
2010									 			-	
2011									- 		 		
Mean	19	34		28 32		32 31	1 58	112	114	200	73	39	650
Max.	24			43 46		2 58	22	271	296	191	100	45	1,042
AAin	•									1			

Table 9.2.4 (3) Kaeng Krachan Dam (Storage)

					٠
Waximum Storage Level	Water Level	102.70 M: (MSL)	Normal Storage Level	Water Level	99.00 M.
	Quantity Level	930 Million Cubic Meters		Quantity Level	710 Millio

Waximum Storage Level	Levei	Water Level Quantity Level	·	102.70 M. (930 Million	102.70 M. (MSL) 930 Million Cubic Meters		Normal Storage Level	age Level		water Level Quantity Level		99.00 M. (MSL) 710 Million Cubic
Minimum Storage Level	Level	Water Level		75.00 M. (N	(WSL)		Quantity Level		67 Million C	67 Million Cubic Meters		
Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
1967	199	193	189	188		232	212	406	411	767	428	413
1968	411	:	403	397		396	372	434	471	999	626	614
1961	602		33	808	467	425	415	482	484	253	707	239
1970	929		98S	553		465	488	463	420	523	488	609
1971	622		591	576	559	538	628	616	677	989	623	294
1972	577		553	561	518	464	828	989	259	899	701	742
1973	330		86	659		809	595	623	959	999	711	721
1974	712	689	629	649		738	089	742	999	727	687	679
1975	674	:	908	558		497	436	490	491	574	828	255
19761	542	51.5	472	439	453	426	398	414	487	451	505	492
1977	476		8	362		285	253	310	388	424	356	328
1978	314	292	252	83		223	223	428	475	670	610	578
1979	552	10. 10. 10.	432	374	:	285	309	454		396	287	249
1980	335	197	156	123	122	124	139	158	180	201	170	152
1981	146		131	127	:	283	327	545	568	613	711	709
1982	693		581	547	٠	485	905	702		(209	222	568
1983	989		439	384	332	293	237	224	251	341	402	372
1984	371	339	312.	283		415	722	454	444	497	422	405
1985	392		331	313	8	378	517	615		725	673	649
1986	637	665	535	471		487	230	222	518		534	207
1987	493		416	368	340	323	310	268	266	247	301	310
1988	304		270	360	316	433	430	417	429	භෞ	598	586
1989	999		£.	413	359	336	301	302	309	340	323	310
1990	562		261	237	234	219	203	174		160	161	158
1991	27.	£,	2	112	108	114	152	309	322	433	418	392
1992	383		321	287	251	222	203	228		252	247	228
1993	22		199	191	189	186	171	229	273	382	381	361
1994	358	340	329	318	319	343	200	726	714	691	610	581
1995	995	537	499	465	439	440	416	472	655	869	641	618
1996	60											
Mean	477	451	412	384	369	374	384	446	463	514	501	490
Max.	730	722	069	659	929	738	089	742	114	727	711	747
	,	707	4.00	ľ	00,		7	4			, ,	77 1

Table 9.2.5 (1) Pranburi Dam (inflow)

Vest Jan. Feb. March Level Accountify Level Gold Million Cubic Meters Model Cubic Meters Accountify Level Gold Million Cubic Meters Model Cubic Meters Accountify Level Accountify Level Gold Million Cubic Meters Accountify Level	Maximum Storage Level		Water Level Quantity Level	- 	58.10 M. (MSL) 650 Million Cubic Meters	(SL) in Cubic M		Normal Storage Level	age Level	30	Water Level Quantity Leve	- 	55.00 M. (MSL) 445 Million Cubic	St.) Cubic
190 190	inimum Storag	e Level	Water Level		37.00 M. (N	SL)		Quantity Lev	<u>.</u>	60 Million	Cubic Mete	δ	:	Meters
10	Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
State Stat	1977		7.0	5.0	4	7.0	0.0	13.0	62.0	93.0	70.0	13.0	2.0	273.0
20 0.0 0.0 0.0 11.0 50.0 157.0 24.0 9.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0	1978			0.0	5.0)	25.0	28.0	22.0	128.0	78.0	152.0	28.0	3.0	477.0
00 00 00 00 00 140 160 180 20 00 51 0.0 0.0 0.0 0.0 118.0 46.0 181.0 74.0 61.0 235.0 24.0 52 5.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 18.0 18.0 64.0 18.0 24.0 26.0 17.0 17.0 18.0 46.0 18.0 40.0 18.0 18.0 18.0 18.0 18.0 18.0 40.0 60.0 18.0 18.0 46.0 18.0 40.0 18.0	1979] ·	0.0	0.0	0.0	11.0	50.0	157.0	24.0	9.0	0.0	0.0	253.0
27 0.0 0.0 0.0 6.0 178.0 46.0 181.0 74.0 61.0 235.0 24.0 28 9.0 13.0 0.0 17.0 17.0 17.0 18.0 41.0 235.0 24.0 28 8.0 13.0 0.0 17.0 17.0 46.0 55.0 180.0 17.0 17.0 180.0 180.0 17.0 17.0 180.0 180.0 17.0 17.0 180.0 180.0 17.0 180.0 <td>1980</td> <td>-</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>5.0</td> <td>14.0</td> <td>10.0</td> <td>18.0</td> <td>18.0</td> <td>2.0</td> <td>0.0</td> <td>67.0</td>	1980	-		0.0	0.0	0.0	5.0	14.0	10.0	18.0	18.0	2.0	0.0	67.0
32 9.0 13.0 0.0 17.0 31.0 55.0 130.0 69.0 41.0 20.0 11.0 33 5.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1	1981			0.0	6.0	10.0	118.0	46.0	181.0	74.0	61.0	235.0	24.0	755.0
5.0 1.0 0.0 0.0 1.0 0.0 1.0 <td>1982</td> <td></td> <td>13.0</td> <td>0.0</td> <td>19.0</td> <td>17.0</td> <td>31.0</td> <td>55.0</td> <td>130.0</td> <td>69.0</td> <td>41.0</td> <td>20.0</td> <td>11,0</td> <td>415.0</td>	1982		13.0	0.0	19.0	17.0	31.0	55.0	130.0	69.0	41.0	20.0	11,0	415.0
46 8.0 3.0 0.0 2.0 3.0 94.0 46.0 55.0 70.0 37.0 2.0 5.0 12.0 9.0 0.0 6.0 16.0 16.0 16.0 16.0 20.0 32.0 17.0 14.0 10.0 20.0 20.0 10.0 14.0 34.0 102.0 102.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 10.0	1983	5.0		0.0	0.0	1.0	00	0.0	16.0	34.0	64.0	102.0	13.0	236.0
12.0 9.0 0.0 6.0 16.0 71.0 77.0 99.0 14.0 54.0 21.0 27.0 13.0 0.0 16.0 0.0 32.0 1.0 38.0 52.0 49.0 199.0 21.0 27.0 15.0 0.0 16.0 0.0 32.0 1.0 32.0 190.0 32.0 20.0 20 16.0 16.0 17.0 17.0 14.0 35.0 127.0 31.0 50.0 4.0 6.0 2.0 11.0 12.0 14.0 35.0 60.0 58.0 40.0 4.0 6.0 2.0 11.0 12.0 14.0 35.0 60.0 58.0 40.0 5.0 4.0 6.0 11.0 12.0 14.0 47.0 15.0 40.0 5.0 0.0 0.0 0.0 0.0 10.0 10.0 11.0 11.0 11.0 11.0 12.0 12.0 12.0 <t< td=""><td>1984</td><td>8.0</td><td></td><td>0.0</td><td>2.0</td><td>3.0</td><td>94.0</td><td>46.0</td><td>55.0</td><td>70.0</td><td>37.0</td><td>2.0</td><td>5.0</td><td>325.0</td></t<>	1984	8.0		0.0	2.0	3.0	94.0	46.0	55.0	70.0	37.0	2.0	5.0	325.0
13.0 0.0 1.0 22.0 1.0 28.0 52.0 49.0 199.0 32.0 20.0 13.0 6.0 0.0 6.0 0.0 30.0 14.0 14.0 34.0 33.0 102.0 44.0 18.0 14.0 13.0 21.0 77.0 36.0 25.0 43.0 127.0 44.0 40.0 127.0 44.0 40.0 127.0 44.0 40.0 127.0 44.0 40.0 127.0 44.0 40.0<	1985	12.0	:	0.0	6.0	16.0	71.0	77.0	99.0	14.0	54.0	21.0	27.0	406.0
5.0 6.0 0.0 6.0 30.0 10.0 14.0 34.0 33.0 102.0 44.0 88 9.0 14.0 14.0 35.0 21.0 77.0 36.0 25.0 43.0 127.0 31.0 60 89 9.0 14.0 12.0 14.0 35.0 58.0 60.0 58.0 9.0 10 0.0 0.0 0.0 11.0 12.0 14.0 47.0 155.0 44.0 9.0 10 0.0 0.0 0.0 0.0 11.0 12.0 13.0 14.0 47.0 155.0 44.0 9.0 10 0.0 0.0 0.0 11.0 12.0 13.0 14.0 <	1986	13.0	:	16.0	0.0	32.0	1.0	38.0	52.0	49.0	199.0	32.0	20.0	452.0
88 9.0 14.0 14.0 13.0 21.0 77.0 36.0 25.0 43.0 127.0 31.0 6.0 99 9.0 3.0 0.0 2.0 6.0 12.0 12.0 14.0 35.0 58.0 60.0 58.0 60.0 58.0 4.0 9.0 10 4.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 35.0 4.0 35.0 4.0 9.0 10 0.0 0.0 0.0 0.0 1.0	1987	5.0		0.0	6.0	0.0	30 0	10.0	14.0	34.0	33.0	102.0	44.0	284.0
9.0 3.0 0.0 2.0 12.0 14.0 35.0 58.0 60.0 58.0 9.0 9.0 4.0 6.0 2.0 5.0 11.0 12.0 16.0 41.0 37.0 35.0 28.0 4.0 9.0 4.0 6.0 7.0 11.0 18.0 114.0 47.0 155.0 44.0 9.0 22 6.0 0.0 0.0 0.0 11.0 18.0 18.0 60.0 22.0 8.0 32 4.0 0.0 6.0 11.0 18.0 26.0 76.0 58.0 44.0 9.0 34 5.0 10.0 2.0 11.0 12.0 15.1 52.0 13.0 268.0 20.0 20.0 20.0 35 36 36 37.0 26.0 26.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 268.0 <	1988	9.0		14.0	13.0	21.0	77.0	36.0	25.0	43.0	127.0	31.0	0.9	416.0
4.0 6.0 2.0 5.0 11.0 12.0 16.0 41.0 37.0 35.0 28.0 4.0 31 0.0 0.0 2.0 1.0 1.0 18.0 14.0 47.0 156.0 44.0 9.0 32 6.0 0.0 0.0 0.0 0.0 1.0 18.0 26.0 76.0 58.0 141.0 37.0 8.0 33 4.0 0.0 8.0 1.0 19.0 26.0 76.0 58.0 141.0 37.0 8.0 34 5.0 10.0 7.0 12.0 15.1 52.0 73.0 52.0 13.0 9.0 35 8.6 8.6 8.6 1.0 12.0 15.0 18.0 18.0 18.0 18.0 36 8.6 8.6 4.2 2.0 13.0 268.0 29.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	1989	0.6	3.0	0.0	2.0	6.0	12.0	14.0	35.0	58.0	60.0	58.0	0.6	266.0
91 0.0 0.0 2.0 1.0 9.0 11.0 18.0 114.0 47.0 155.0 44.0 9.0 92 6.0 0.0 0.0 0.0 7.0 13.0 26.0 22.0 22.0 8.0 93 4.0 0.0 8.0 11.0 19.0 26.0 76.0 58.0 111.0 37.0 8.0 94 5.0 10.0 7.0 2.0 19.0 26.0 75.0 52.0 11.0 25.0 11.0 25.0 13.0 268.0 26.0 27.0 18.2 8.0 85 8.6 8.4 1.0 12.0 15.1 52.0 133.0 268.0 29.0 18.2 150 8.6 8.4 1.0 12.0 12.0 13.0 13.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 1	1990	4.0	6.0	2.0	5.0	11.0	12.0	16.0	41.0	37.0	35.0	28.0	4.0	201.0
22 6.0 0.0 0.0 7.0 13.0 39.0 50.0 60.0 22.0 8.0 44 5.0 0.0 8.0 11.0 19.0 26.0 76.0 58.0 111.0 37.0 35.0 44 5.0 10.0 7.0 2.0 3.0 19.0 89.0 237.0 73.0 52.0 13.0 0.0 56 8.6 8.4 1.0 1.0 12.0 15.1 52.0 13.0 268.0 29.0 18.2 7 8.6 8.6 1.3 268.0 29.0 18.2 18.2 86 8.6 8.4 1.0 12.0 13.0 268.0 29.0 18.2 99 13.0 14.0 16.0 19.0 32.0 118.0 89.0 237.0 133.0 268.0 235.0 12.5 13.0 13.0 0.0 0.0 0.0 0.0 0.0 14.0 14.0 14.0	1991	0.0	0.0	2.0	0.1	9.0	11.0	18.0	114.0	47.0	155.0	44.0	0.6	410.0
3.3 4.0 0.0 8.0 6.0 11.0 19.0 26.0 76.0 58.0 111.0 37.0 35.0 34 5.0 10.0 7.0 2.0 3.0 19.0 89.0 237.0 73.0 52.0 13.0 0.0 35 2.0 0.0 4.0 1.0 12.0 15.1 52.0 133.0 268.0 29.0 18.2 36 8.6 8.4 8.4 8.0 12.0 13.0 13.0 13.0 13.0 268.0 29.0 13.0 13.0 268.0 29.0 13.0 13.0 14.0 14.0 14.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 14.0 9.0 11.0 14.0 9.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0	1992	0.9		0.0	0.0	0.0	7.0	13.0	39.0	30.0	0.09	22.0	8.0	185.0
44 5.0 10.0 7.0 2.0 3.0 19.0 89.0 237.0 73.0 52.0 13.0 52.0 13.0 52.0 13.0 268.0 29.0 18.2 36 8.6 8.4 8.4 1.0 12.0 15.0 133.0 268.0 268.0 29.0 18.2 37 8.6 8.7 8.2 13.0 13.0 12.0 13.0 12.5 12.5 30 4.2 2.8 4.1 9.1 29.4 31.5 80.2 54.5 84.5 43.1 12.5 13.0 13.0 10.0 0.0 <t< td=""><td>1993</td><td>4.0</td><td></td><td>8.0</td><td>6.0</td><td>11.0</td><td>19.0</td><td>26.0</td><td>76.0</td><td>58.0</td><td>111.0</td><td>37.0</td><td>35.0</td><td>391.(</td></t<>	1993	4.0		8.0	6.0	11.0	19.0	26.0	76.0	58.0	111.0	37.0	35.0	391.(
55 2.0 0.0 0.0 4.0 1.0 12.0 15.1 52.0 133.0 268.0 29.0 18.2 77 8.6 8.4 8.4 1.0 12.0 15.0 18.0	1994		10.0	7.0	2.0	3.0	19.0	89.0	237.0	73.0	52.0	13.0	0.0	510.0
86 8.6 8.4 90 90 91 29.4 31.5 80.2 54.5 84.5 43.1 12.5 13.0 14.0 16.0 19.0 32.0 118.0 89.0 237.0 133.0 268.0 235.0 44.0 0.0 0.0 0.0 0.0 10.0 10.0 10.0 0.0	1995		0.0	0.0	4.0	1.0	12.0	15.1	52.0	133.0	268.0	29.0	18.2	534.3
17 18<	1996		8.4											
188 189 189 180 <td>1997</td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>2000</td> <td></td>	1997				,					-			2000	
56 4.2 2.8 4.1 9.1 29.4 31.5 80.2 54.5 84.5 43.1 12.5 13.0 14.0 16.0 19.0 32.0 118.0 89.0 237.0 133.0 268.0 235.0 44.0 0.0 0.0 0.0 0.0 10.0 14.0 14.0 9.0 0.0 <td>1998</td> <td></td> <td>(MAGE)</td> <td></td>	1998												(MAGE)	
5.6 4.2 2.8 4.1 9.1 29.4 31.5 80.2 54.5 84.5 43.1 12.5 13.0 14.0 16.0 19.0 32.0 118.0 89.0 237.0 133.0 268.0 235.0 44.0 0.0 0.0 0.0 0.0 14.0 14.0 9.0 0.0 <td>1999</td> <td></td> <td>-</td> <td>ac v</td> <td></td>	1999											-	ac v	
5.6 4.2 2.8 4.1 9.1 29.4 31.5 80.2 54.5 84.5 43.1 12.5 13.0 14.0 16.0 19.0 32.0 118.0 89.0 237.0 133.0 268.0 235.0 44.0 0.0 0.0 0.0 0.0 10.0 10.0 14.0 9.0 0.0 0.0	2000												- ALTON	
13.0 14.0 16.0 19.0 32.0 118.0 89.0 237.0 133.0 268.0 235.0 44.0 0.0 0.0 0.0 0.0 0.0 14.0 9.0 0.0 0.0	Mean	9.6		2.8	4.1	9.1	29.4	31.5	80.2	54.5	84.5	43.1	12.5	361.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.0 9.0 0.0	Max.	13.0	14.0	16.0	19.0	32.0	118.0	0.68	237.0	133.0	268.0	235.0	0.24	1218.0
	Min.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.01	14.0	0.6	0.0	0.0	33.0

Table 9.2.5 (2) Pranburi Dam (Outflow)

Minimum Storage Level		ביים ביים ביים	/el	650 Mill	650 Million Cubic Meters					Quantity Level		445 Million Cubic	Cubic
		Water Level		37.00 M. (A	(MSL)		Quantity Level	le/	60 Million	60 Million Cubic Meters			Meter
Year	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	- ဗီ	Nov.	Dec.	Total
1978				19.0	23.0	19.0	21.0	23.0	86.1	142.3	55.6	17.5	406.5
1979	7.0	8.2	9.9	7.8	7.9	8.3	8.8	85.1	25.0	20.6	12.8	13.0	214.4
1980	13.0	15.0	18.0	24.3	26.4		17.5	20.8	23.3	24.0	12.3	8.6	219
1981	0.6	17.3	16.0	20.4	17.1	5.3	26.8	101.1	69.6	55.5	207.6	14.7	260
1982	1	22.1	24.1	23.8		67	40.4	49.7	60.5	36.8	26.5	11.6	376.0
1983	10.4	15.3	22.4	29.4			51.4	37.6	42.8	26.3	13.2	18.8	345.8
1984	10.8	8.8	14.9	12.0	25.4	26.3	23.0	52.7	35.1	39.2	52.0	26.8	327.0
1985	18.4	20.6	8.4	16.9	8.4	7.4	26.2	27.6	55.6	19.3	41.0	24.9	274
1986	20.4	6.8	24.6	14.2	11.1	29.5	33.0	50.4	50.3	35.9	37.4	26.9	340
1987	9.7	10.3	25.3	29.8	32.8	32.8	46.8	6.99	50.1	43.1	22.4	12.9	382
1988	7.9	22.9	40.3	37.0	24.1	40.1	48.6	48.9	40.2	32.2	41.7	16.9	400.8
1989		15.3	29.6	41.5	7	24.5	16.0	33.9	51.8	43.4	28.1	27.6	359.
1990	8.7	20.6	16.2	12.5	9.7	9.5	12.6	15.1	29.8	33.5	22.8	18.1	209
1991	6.9	12.2	5.3	4.6			4.8	14.6	32.3	10.8	18.5	14.8	134.3
1992		29.9	29.6	51.4	39.4	18.2	13.3	27.2	41.1	20.8	28.6	25.6	330.2
1993		9.1	21.3	22.5	4.4	31.3	42.0	37.6	43.3	22.9	29.0	30.8	307.8
1994	7.5	25.6	14.8	11.4	13.8		27.1	48.8	80.3	52.9	45.0	24.7	358.6
1995	13.0	25.6	27.3	26.9	29.9	13.2	23.6	27.0	21.0	131.0	44.6	19.4	402
1996	5.8	25.8											
1997			,										
1998												pale.	
1999											-	ren	
2000			1							-		-	
Mean	10.2	17.3	20.5	22.7	22.2	20.2	27.2	43.8	44.2	38.1	40.2	19.8	326.4
Max.	20.4	29.9	40.3	51.4	41.4	40.1	51,4	101.1	80.3	131.0	207.6	30.8	825.

58.10 M. (MSL)
Normal Storage Level
650 Million Cubic Meters

Maximum Storage Level Water Level
Quantity Level

Minimum Storage Level Water Level

Quantity Level

37.00 M. (MSL)

Water Level Quantity Level

55.00 M. (MSL) 445 Million Cubic Meters

	Meters
1	Cubic
	<u>ë</u>
	Š
	8

~~1	O	o	ν̈́	তা	ত	φ	ഉ	മി	ğ	41	41	က္က	Ó	<u>N</u>	9	ģ	ထု	0		7	Ή.	~	_	Ö	တွါ	Ö
Dec.	330	330	245	402	405	366	239	420	392	254	242	133	110	362	189	208	328	410						290	429	110
Nov.	345	362	251	305	409	273	265	431	403	225	256	149	125	371	189	234	362	415						300	431	125
) ပင်း	372	370	255	374	421	187	316	453	411	142	268	120	121	349	197	228	385	436						297	453	120
Sep.	361	379	244	373	423	152	311	421	348	153	175	104	116	207	159	141	396	297				:		259	423	104
Aug.	368	981	235	372	411	163	280	365	352	170	173	96	110	194	173	127	407	182		-			:	282	981	86
Jul	265	307	232	298	333	187	280	599	352	223	200	86	88	8	161	8	222	169						214	352	88
Jun.	267	566	225	281	322	225	249	247	349	792	214	102	98	82	162	106	162	182		-				207	349	82
May.	262	267	228	171	327	267	194	961	376	266	179	116	85	75	175	118	150	187			Action to the second	:		198	376	75
Apr.	264	280	250	181	345	310	218	185	361	305	185	151	98	13	219	116	161	22						214	361	73
Mar.	282	292	273	199	361	345	232	200	388	335	209	193	98	79	280	135	170	247						237	388	62
Feb.	308	310	297	216	380	376	252	214	402	373	623	223	111	8	317	148	178	283	380	 -				266	402	84
Jan.	316	322	318	233	393	395	261	83	417	383	252	244	126	8	359	162	197	316	904					284	417	86
Year	1978	1979	1980	1381	1982	1983	1984	1985	1586	1987	1988	1989	1990	1991	1992	1993	1994	1995	19661	1997	1998	1999	2000	Mean	Max.	Min.

Table 9.2.6 Calculation of Average Availability of Surface Water by River Basin

	Catchment	Average annual basin	Runoff	Average annual
	area (km²)	rainfall (mm)	coefficient	discharge (MCM/year)
Mae Klong		•		2.0704
Lower Khwai Yai	4,100			3,079*
Lower Khwai Noi	2,000		6.1	4,462**
Huai Taphpen	2,600	1,200	0.30	936
Lam Pa Chi	2,500	1,100	0.30	825
Mae Khlong plain	4,300	1,100	0.30	1,419
Sub-total	15,500			10,721
Petchaburi				
Upper Petchaburi	2,210	1,100	0.25	608
Middle "	1,328			650***
Lower "	1,027	1,100	0.25	282
Petchaburi coast	1,042	950	0.25	(247) [*]
Sub-total	5,607		\$ +*	1,540
Western Coast		,		
Pranburi				
- regulated	2,100			290**
unregulated	800	950	0.20	152++
P.Khirikhan coast				
- upper	1,400	1,100	0.20	308
middle	1,600	1,200	0.20	384
lower	1,200	1,300	0.20	312
Sub-total	7,100			1,446
Southeastern Coast				
Khlong Ta Taphra	o 2,230	1,500	0.45	1,505
Upper coast	2,840	1,800	0.30	1,534
Lang Suan	1,650	2,000	0.40	1,320
Sub-total	6,720			4,359

Notes * regulated release from the Sri Nagarindra dam

** regulated release from the Khao Laem dam
(Inter-flows between the respective dams and the Vijiralongkorn diversion works are used mostly outside the Study Area.)

*** regulated release from the Kaen Krachan dam

+ mostly coastal runoffs (not included in the calculation)

++ regulated release from the Kaen Krachan dam plus inter-flow from the unregulated catchment area

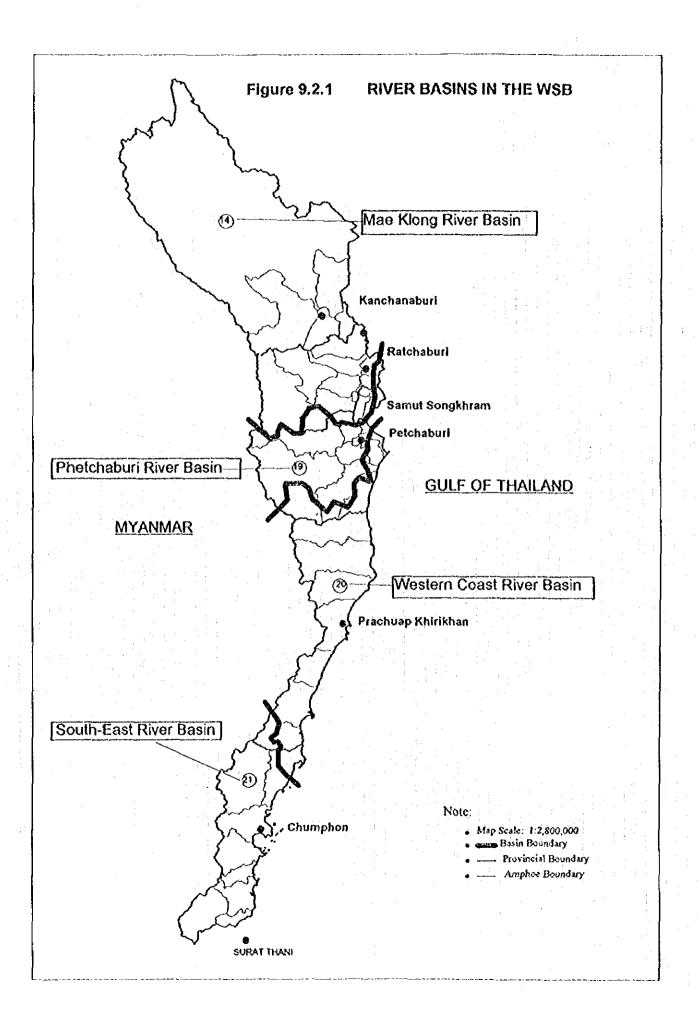


Figure 9.2.2 Annual Rainfall Contour (Mae Klong River Basin)

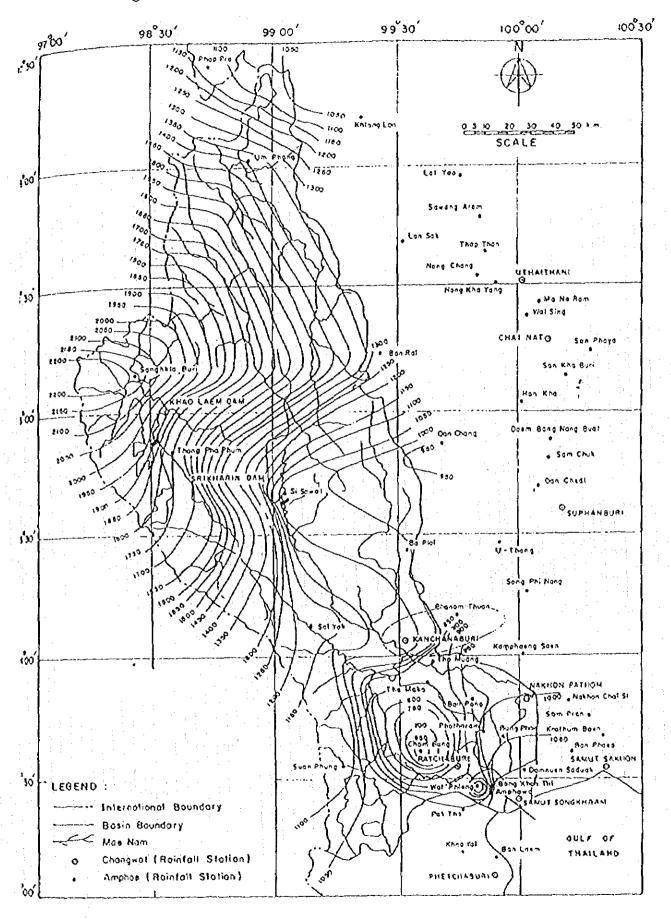


Figure 9.2.3 Annual Rainfall Contour (Petchaburi)

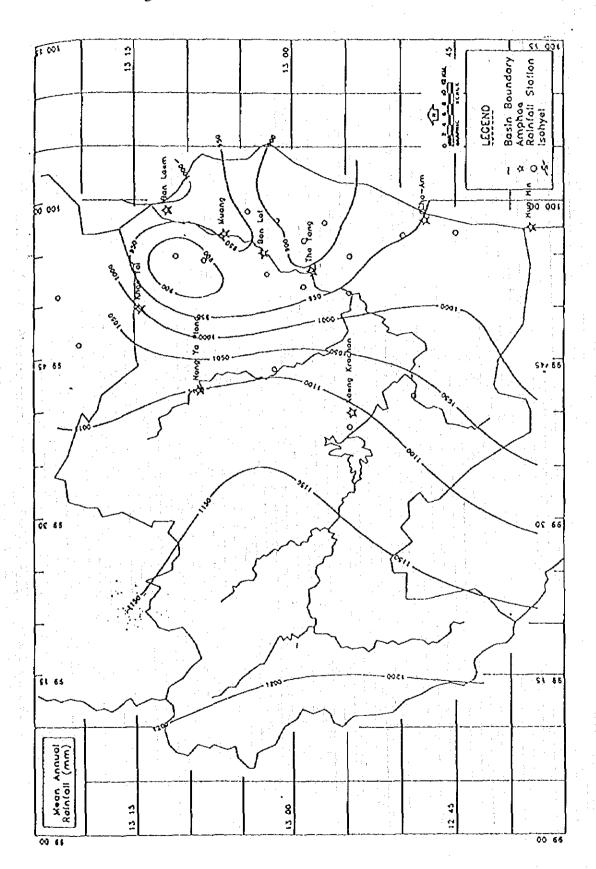


Figure 9.2.4 Annual Rainfall Contour (Western Coast)

APPENDIX I TO CHAPTER 2

PROFILES OF PROPOSED PROJECTS/PROGRAMS

(Project No.)	(Project Title)	(Page)
WRI	Irrigated Agriculture Intensification	A1-1
WR2	Improvement of Water Management	A1-5
WR3	Multipurpose Reservoir Development	A1-11
WR4	Salinity Control	A1-19
WR5	Flood Control And Drainage Systems Improvement	A1-23

Project No. WR1

1. PROJECT TITLE

Irrigated Agriculture Intensification

2. LOCATION

Lower Mae Klong river basin

3. AGENCY

RID and Central Land Consolidation Office

4. OBJECTIVES

- (1) To enhance productivity of irrigated agriculture in the Greater Mae Klong irrigation scheme and Petchaburi agricultural development scheme through land consolidation, agriculture mechanization, crop diversification, and more effective water management
- (2) To increase and stabilize incomes of farm households

5. PHASING

Phase I, Phase II, and Phase III

6. DESCRIPTION

Irrigated agriculture has been extensively developed in the Lower Mae Klong river basin to cultivate not only paddy but also vegetables, sugar cane, and other upland crops and some fruit trees. In this area, water availability is favorable and soil is suitable for a wide range of crops. Intensification of irrigated agriculture is necessary to enhance agricultural productivity to justify continued agricultural land use against urbanization/industrialization pressure.

To enhance agricultural productivity, the following is necessary:

- (1) land consolidation for more efficient farm management and agricultural mechanization,
- (2) organizing farmers to diversify crops in favor of high value-added crops, capitalizing on proximity to the growing urban markets, and also better on-farm water management, and
- (3) extension services and training for new production systems.
- 7. RELATION WITH OTHER PROJECTS

RD 1 (Rural Development Model) AG 9 (Water Application Efficiency)

8. COST (Approximate)

Phase I = 120 million Phase II = 120 million Phase III = 120 million

WR1 IRRIGATED AGRICULTURE INTENSIFICATION

BACKGROUND

The Greater Mae Klong Irrigation Scheme (GMIS) was constructed to supply irrigation water for about 3 million rai (480,000 ha) on the left bank (2.43 million rai) and the right bank (0.59 million rai). However, on-farm development has lagged behind, and ditchand-dike construction covers only 43 per cent (1.3 million rai). The area of land consolidation is as small as 15 per cent (439,500 rai), covering parts of Kanchanaburi (105,200 rai), Ratchaburi (193,600 rai), Petchaburi (40,000 rai), and Suphan Buri (100,700 rai). The area of ditch-and-dike development varies by sub-project; e.g., in the Phanom Thuan sub-project (irrigable area of 330,400 rai), only 93,400 rai or 28 per cent of the irrigable area had been completed by the end of 1996.

In the Petchaburi Agricultural Development Scheme (PAD), on the other hand, Keang Krachan dandreservoir and the Petch diversion works are capable of irrigating 462,500 rai (74,000 ha). The area of land consolidation in the PAD, however, is limited to only 9.6 per cent or 42,100 rai (6,740 ha).

Judging from the above, it was concluded that the water available for irrigation in the GMIS and PAD has not been effectively and efficiently utilized for irrigated agriculture, and that the existing facilities should be utilized to the utmost extent in enhancing agricultural productivity and production in the WSB region.

In the case of ditch-and-dike development promoted by RID, drainage works are not involved and irrigated land is subject to floods and salinization. Ditch-and-dike development has been executed at no cost to farmers, while 20 per cent of land consolidation costs have been charged to farmers for repayment in 15 years. It is further noted that consolidated land is not transferable for uses other than agriculture under the Land Consolidation Act.

PROJECT CONCEPT/RATIONAL

Since water is available at the main, secondary, and tertiary irrigation canals in the GMIS and PAD, on-farm development should be implemented in irrigable areas in a more intensified form to make such a large investment in irrigation works fruitful. Agricultural productivity in the irrigated land should be enhanced through intensification of irrigated agriculture by means of on-farm development and land consolidation.

Constraints on promotion of on-farm development and land consolidation should be analyzed from technical, financial, and institutional points of view, and a solution should be worked out as to how to promote irrigated agriculture intensification in the existing GMIS and PAD irrigation areas.

PROJECT DESCRIPTION

It is proposed that an inter-agency committee be formed to discuss how to promote irrigated agriculture intensification in the GMIS and PAD irrigation areas. At least, the following agencies should take part in the joint committee:

- * Ministry of Agriculture and Cooperatives;
- * Department of Agricultural Economics;
- * Central Land Consolidation Office:
- * Royal Irrigation Department;
- * Department of Agricultural Extension; and
- * BAAC.

The joint committee should review all technical, financial, and institutional aspects, including the following:

- Selection of crops to be cultivated in the irrigated areas on the basis of physical, marketing, and financial studies, as well as in light of agricultural restructuring policies and farmers' intentions;
- (ii) Selection of cropping patterns, including a decision whether paddy-paddy cultivation is to be continued (in this case extensive land consolidation is practicable) or paddy-upland crop cultivation is to be introduced (in this case intensive land consolidation is required);
- (iii) Review of the Land Consolidation Act, to determine if Section 45 should be maintained or modified (under Section 45, it is specified that no landowner in a land consolidation area shall use the land for any purpose other than agriculture);

- (iv) Decision on land consolidation method, whether it should be intensive or extensive in relation to the selection of cropping patterns;
- (v) Review of RID's ditch-and-dike programs, if it should be executed without drainage improvement and if it should be implemented at no cost to the farmers;
- (vi) Analysis of farm budget and capacity to pay of farmers under the new cropping patterns and investment in on-farm facilities; and
- (vii) Review of BAAC financing scheme for the loans to be efficiently integrated into ditch-and-dike, drainage improvement, and land consolidation.

On the basis of the above review, the joint committee should adopt a program for irrigated agriculture intensification in the GMIS and PAD.

Provisionally, it is envisaged that about 75 per cent of irrigable area in GMIS (360,000 ha) and PAD (55,500 ha) would be designated as areas for the irrigated agriculture intensification program (totaling 415,500 ha). Exclusive of the area previously executed by land consolidation (70,300 ha in GMIS and 7,200 ha in PAD, totaling 77,500 ha) and the area executed by ditch-and-dike programs (208,000 ha), the area for the new irrigated agriculture intensification project is estimated to be around 130,000 ha.

PROJECT ASSESSMENT

The cost of the proposed intensive land consolidation cost will be about \$2,800 per ha in present value. If this unit cost is applied to 130,000 ha, the total cost required for the irrigated agriculture intensification project would be in the order of \$360 million. In the event that the irrigated agriculture intensification project is programmed for execution in 15 years, the annual budget is around \$24 million for 8,700 ha.

RECOMMENDED ACTION(S)

It is recommended that MOAC convene a joint committee to review and work out the program and to arrange implementation of the proposed irrigated agriculture intensification program. CLCO, RID, Agricultural Extension Office, and BAAC should join the committee and assume the responsibility to be designated to each agency.

Project No. WR 2

1. PROJECT TITLE

Improvement of Water Management

2. LOCATION

Area of Greater Mae Klong Irrigation Scheme

AĞENCY

RID

4. OBJECTIVES

- (1) To improve water supply management along principal canals through construction of regulation ponds
- (2) To improve farm-level water management through construction of farm ponds
- (3) To improve efficiency in water management and enhance productivity at farmers' level.

5. PHASING

Phase II and Phase III

6. DESCRIPTION

The Greater Mae Klong Irrigation Scheme (GMIS) covers an area of about 480,000 ha on the left and right banks of the Mae Klong river. The main canals extend 80 km on the left bank and 110 km on the right bank. The lateral canals extend a total length of 1,200 km.

Water management through these lengthy canals is inefficient, and water can better be managed through construction of several regulation ponds along the principal canals. The regulation ponds are also effective for management against risks and for changes in water requirement due to shift in cropping patterns.

At the tertiary canal level, water management is facilitated through construction of farm ponds, particularly in the area where upland crops are cultivated.

To improve water management in the GMIS, it is proposed to construct several regulation ponds along the lateral canals and to promote construction of farm ponds together with on-farm development in the irrigated areas.

7. RELATION WITH OTHER PROJECTS

WR 1 (Irrigated Agriculture Intensification)

8. COST (Approximate)

Phase II: \$1 million for study

Phase III: \$20 million for stage-wise execution

WR 2 IMPROVEMENT OF WATER MANAGEMENT

BACKGROUND

The Greater Mae Klong Irrigation Scheme (GMIS) is composed of 10 sub-projects as follows:

	Main Canal	Lateral Canal	Sub-project	Area(ha)	Stage
Right Bank	110 km	430 km	Tha Maka	45,400	- 31
			Petchaburi	48,580	П
Left Bank	80 km	770 km	Phanom Thuan	53,170	H
			Seng Phinong	49,880	11
			Bang Lan	50,620	11
			Kanphang San	40,450	П
			Nakhon Pathom	58,270	1
			Nakohn Chum	42,400	I
		•	Ratchaburi	41,280	, s 1
			Damnoen Sadual	c 53,410	I
Total	190 km	1,200 km		<u>483,460</u>	1
the control of the co					

Note: Stage I: Constructed in 1964-1975 Stage II: Constructed in 1970-1989

The main and lateral canals cover a sizable irrigation area in each sub-project, and water management along these canals becomes less efficient under upland crop cultivation which will substitute for paddy-paddy cultivation through a shift into cultivation of higher-value crops. To make the water supply management more efficient, it is recommended to construct several regulation ponds along the principal lateral canals.

PROJECT CONCEPT/RATIONALE

Water management becomes more and more important in the irrigated area when cultivation is shifted from paddy and sugar cane to upland crops. To this end, it is proposed to construct several regulation ponds along the principal lateral canals of the GMIS.

At the farm level, a shift in cropping patterns will require more efficient water management though the construction of farm ponds. Farm pond construction will be executed together with on-farm development and land consolidation under the Irrigated Agriculture Intensification Project (WR 1).

PROJECT DESCRIPTION

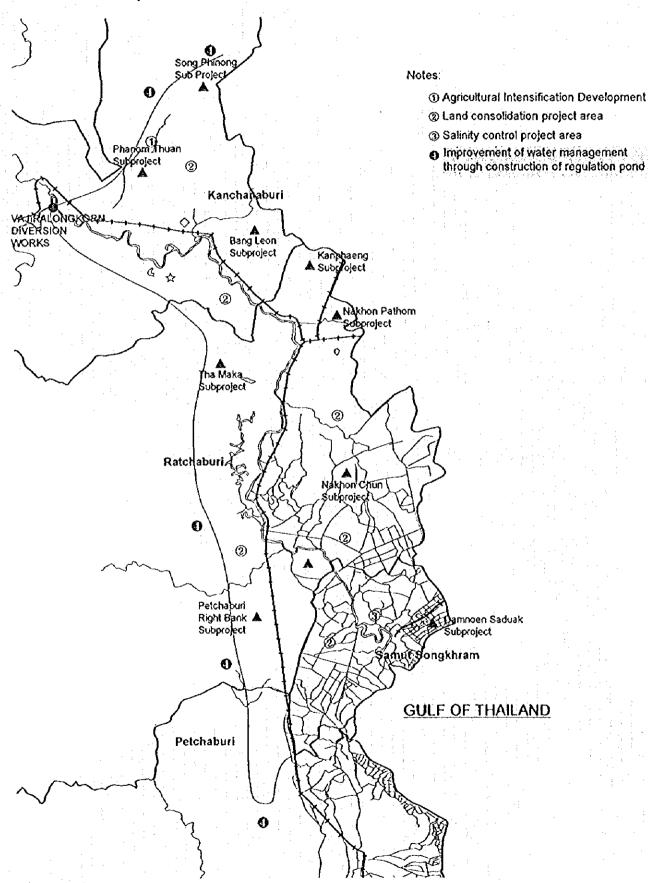
It is proposed that five regulation ponds be constructed along the main canals: i.e., three ponds along the right bank canal and two ponds along the left bank canal, as shown in attached Figure. The location of the proposed regulation ponds should be decided through further in-depth studies.

The capacity of regulation ponds will be decided on the basis of analysis as follows:

- (i) Definition of the area to be commanded by the regulation pond,
- (ii) Cropping patterns to be adopted;
- (iii) Irrigation water requirement in the area;
- (iv) Regulation pond water management practices;
- (v) Risk analysis in water management along the main and lateral canals; and
- (vi) Condition of land acquisition for construction of regulation pond.

It is provisionally estimated that the regulation ponds will have a capacity of 2.5 MCM to 4.2 MCM.

PROJECT ASSESSMENT


Since a shift to cultivation of higher-value crops will be gradually implemented in GMIS, it is envisaged that the construction of regulation ponds be scheduled for Phases II and III. As an indicative figure, the construction of regulation ponds is estimated to cost around \$20 million.

During Phase II, it is proposed to initiate a detailed study of the construction of regulation ponds. The study cost will not exceed \$1 million for technical, financial, institutional, and environmental assessments.

RECOMMENDED ACTION(\$)

In the light of gradual shift in cropping patterns in the GMIS, it is recommended that a study be executed by RID on the proposed construction of regulation ponds along the principal main canals of the GMIS. The construction of farm ponds should be integrated into the Irrigated Agriculture Intensification Project (WR 1).

BASIC CONCEPT IN GMI SCHEME (INTEGRATED AGRICULTURE DEVELOPMENT PLAN)

Checklist of Initial Environmental Examination (Project No. WR2)(PRINATE)

(PRIVATE)						
Environmental Parameters. Affected by the Project Implementation	Impacts on the Environment	Recommended Feavible Miligation Measures		Vizznitude	Magnitude of Impacts:	
			No Significant Effect		Significant Effect	
				Small	Moderate	Major
l. Air and Noise Pollution	Nuisances and health hazards to neighbors and wildlife caused by regulation pond construction.	1. Usage of low emissions and noise construction equipment, selection of propertimes for land clearing and facility construction.		×		
2. Terrestrial Ecology	2. Alteration of wildlife habitats and loss of biodiversity caused by tree cutting.	2. Minimization of the amount of tree cutting and replanting precious vegetation.		×		
3. Water Quality and Aquatic Ecology	3. Alteration of aquatic habitats caused by the change of water flow, and potential water quality deterioration due to pond construction work (e.g., feeal contamination from construction camp and/or oil and grease spill from machine operation).	3. Setting up of machinery maintenance areas and construction camps away from the water bodies nearby; examining aquatic ecology of the project areas.		×		
4. Historical/Cultural Properties	4. Loss of historical/cultural properties.	4. Investigation of these properties and provision of appropriate preservation measures.	×	. :	‡ *	
5. Human Resettlement	5. Relocation of residents.	5. Consideration of alternative site selection and adequate compensation for affected residents.	×			
6. Environmental Aesthetics	6. Loss of scenie value.	6. Careful planning to minimize and offset losses.		×		

A 1-10

Project No. WR 3

1. PROJECT TITLE

Multipurpose Reservoir Development

2. LOCATION

Several river basins in the WSB

3. AGENCY

RID

4. OBJECTIVES

- (1) To promote more effective use of limited water resources in the WSB with multipurpose reservoirs for flood control, water supply, salinity controls and other purposes
- (2) To contribute to the creation of a better living environment with adequate water supply, sanitation, and landscape

5. PHASING

Phase I for implementation of schemes at advanced stage and F/S of other schemes.

6. DESCRIPTION

Water resources availability is limited in the WSB region excepts in the Mae Klong river basin. To make more effective use of the limited water resources, several dam/reservoir projects have been identified. In the Petchaburi river basin, two reservoirs are planned on its tributaries in addition to the existing Kaeng Krachan reservoir. In Chumphon, the Tha Sae and the Lubro dam/reservoirs have been studied at the feasibility level. Several other sites for small-to-medium scale dam/reservoirs have been identified on other rivers.

These dams/reservoirs should be developed for multiple purposes as much as possible. Some of them may be important to meet local water demand such as industrial use at the community level and crop cultivation by drip irrigation. In any case, they should be taken as part of overall watershed management from the upstream to the coastal area. The Tha Sae dam/reservoir project will be implemented first during Phase I.

7. RELATION WITH OTHER PROJECTS

ID 3 (Industrial Core/Bang Saphan initiative)
UD 2 (Specific City Plans)
AG 9 (Water Application Efficiency)

WR 3 MULTIPURPOSE RESERVOIR DEVELOPMENT

BACKGROUND

Water demand in the WSB region has been assessed by major river basin, as summarized below

River Basin	Available Water	Estimated 1996	Demand 2011	Balance 2011
Mae Klong	10,720	8,077	8,133	2,607
Petchaburi	1,540	1,215	1,446	94
Western Coast	1,450	1,215	1,566	- 116
Southeastern Coast	4,360	572	1,502	2,858

As shown in the above table, water resources are abundant in the Mae Klong river basin and Southeastern coast river basins. However, water resources in the Petchaburi river basin and Western coast river basins are insufficient to meet the increasing demand in each sub-region. It is further noted that water resources in the Southeastern coast river basins are not controlled by reservoirs but running as natural flow.

In each river basin, several dandreservoir schemes have been planned by RID, including the following:

Mae Klong river basin:

(1) Pa Chi dam on the Lam Pa Chi river which is a major tributary of the Khwae Noi, with the prime objectives to control floods and secure a potable water supply

Petchaburi river basin:

(2) Huai Mae Prachan dam for flood control and irrigation

(3) Huai Pak dam for supplemental irrigation

Southeastern Coast:

(4) Tha Sac dam for water supply to the Bang Saphan area, irrigation, and flood control

(5) Rub Ro dam for irrigation and flood control

PROJECT CONCEPT/RATIONALE

The most urgent multipurpose reservoir development scheme is the Tha Sae dam/reservoir construction in the Southeastern coast river basin (Chumphon province). The Tha Sae dam is for multiple purposes, i.e., irrigation (13,900 ha), transbasin water conveyance to the Bang Saphan industrial area in the Western coast river basin (30 MCM), and flood control.

Other dam/reservoir construction projects are also multipurpose, particularly for irrigation and flood control. Since available water is limited in the dry season in the Petchaburi river basin and Western coast river basin, it is expected that river discharges can be controlled by means of dam/reservoir construction in these river basins.

PROJECT DESCRIPTION

Tha Sae Reservoir

According to the feasibility study completed by RID, a 59 m high Tha Sae dam would have a storage capacity of 194 MCM (catchment area of 338 km²). About 30 MCM are designed for use by industrial and urban development in the Bang Saphan area. For transbasin water conveyance to Bang Saphan, a 72 km long water pipeline is to be constructed.

In the event that the construction of the Tha Sae dam is delayed, an alternative solution is to take Tha Sae water in the upstream reach (a diversion site at 200 m above sea level, with a catchment area of 181 km²). Since the river discharge is less than 1.0 m³/s at this alternative site during the driest months (February-April), it is necessary to construct water storage facilities in the Bang Saphan river basin.

Rub Ro Reservoir

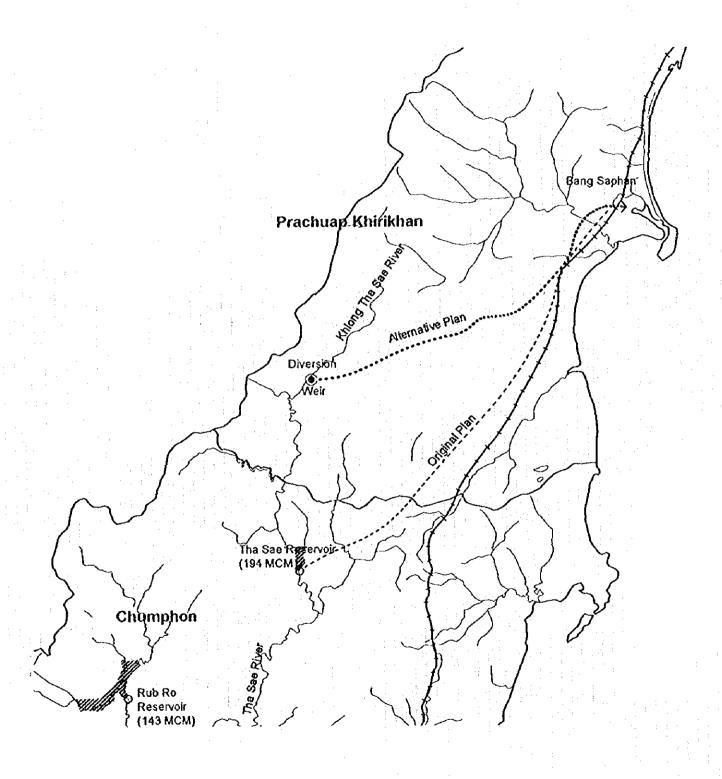
According to the feasibility study completed by RID, a 35 m high Rub Ro dam has a storage capacity of 143 MCM. The flood discharge would be reduced from 880 m³/s to 530 m³/s at the Rub Ro reservoir. Stored water would be used for irrigation (14,660 ha) on the right bank of the Tha Taphao river. Resettlement of people in the reservoir area has to be well programmed to implement the Rub Ro project.

Huai Mae Prachan and Huai Pak Reservoirs

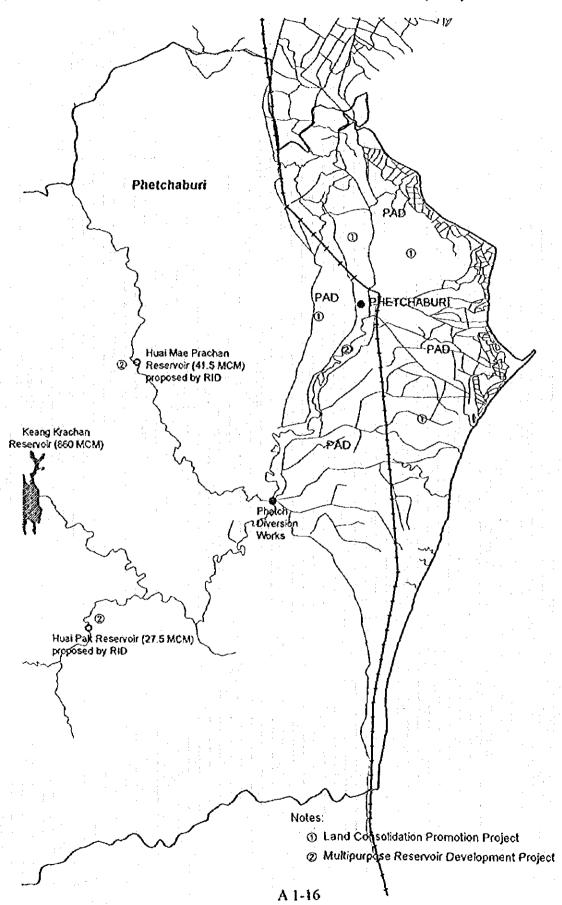
The proposed Huai Mae Prachan reservoir is located on the Prachan river, which is a tributary of the Petchaburi river. The reservoir has a capacity of 41.5 MCM, mainly for

irrigation of 3,520 ha. The Huai Pak reservoir, on the other hand, is located to the south of the existing Keang Krachan reservoir and has a storage capacity of 27.5 MCM. The two reservoirs will be effective in controlling floods in the lower reaches of the Petchaburi river.

Medium-scale Projects in the Western Coast River Basins


Sic medium-scale reservoirs with a total storage capacity of 62 MCM have been identified by RID for irrigation of 8,160 ha in total. Economic viability of these medium-scale reservoirs should be reviewed in further detail.

RECOMMENDED ACTION(S)


It is recommended that the EIA of the Tha Sae dam construction be reviewed and a decision be taken to implement the project as quickly as possible. The construction of the Tha Sae dam and irrigation scheme should be implemented by RID, and the transbasin water conveyance to the Bang Saphan area should be realized by IEAT.

It is also recommended that economic feasibility and environmental soundness be examined regarding the construction of the Huai Mae Prachan and Huai Pak reservoirs in the Petchaburi river basin, as well as the medium-scale reservoirs in the Western coast river basins, in order to meet the increasing water demand in these river basins.

ALTERNATIVE WATER SUPPLY PLAN FOR BANG SAPHAN

PHETCHABURI AGRICULTURE DEVELOPMENT (PAD) SCHEME

Checklist of Initial Environmental Examination (Project No. WR3) PRIVATE 1

		ANALYSIA CONTRACTOR OF THE CON				
PAIVATE.) Environmental Parameters: Affected by the Project Implementation	Impacts on the Environment	Recommended Feasible. Mitigation Measures		Magnitude of Impacts	inpact.	
			No Significant Effect	Sig	Significant Effect	Major
1. Air and Noise Pollution	1. Nuisances and health hazards to neighbors and wildlife caused by dan/reservoir construction.	1, Usage of low emissions and noise construction equipment, selection of proper times for land clearing and facility construction.		×		
2. Terrestrial Evology	2. Alteration of wildlife habitats and loss of biodiversity caused by tree cutting.	2. Minimization of the amount of tree cutting and replanting precious vegetation.			×	
3. Water Quality and Aquatic Exology	3. Alteration of aquatic habitats caused by the change of surface and ground water flow, and potential water quality deterioration due to dan/reservoir construction work (i.e., feeal contamination from construction camp and/or oil and grease spill from machine operation).	3. Setting up of machinery maintenance areas and construction camps away from the water bodies nearby, examining aquatic ecology of the project areas.		** :		
4. Historical/Cultural Properties	4. Loss of historical/cultural properties.	4. Invertigation of these properties and provision of appropriate preservation measures.	×			
5. Human Resettlement	5. Relocation of residents.	5. Consideration of alternative site selection and adequate compensation for affected residents.		×		
6. Environmental Aesthetics	6. Loss of scenic value.	6. Careful planning to minimize and offset losses.	* * * * * * * * * * * * * * * * * * *			

Project No. WR 4

1. PROJECT TITLE

Salinity Control

2. LOCATION

Lower Mae Klong river basin, and

Lower reaches of Tha Taphao and Chumphon

rivers

3. AGENCY

RID

4. OBJECTIVES

To control salinity in the downstream reaches of the Mae Klong river, as well as Tha Taphao and Chumphon rivers, to maintain land productivity and ensure water supply for irrigation and urban uses.

5. PHASING

Phase II for a reservoir operation study along with completion of ongoing dike construction; further implementation subject to outcome of the study and monitoring

6. DESCRIPTION

Downstream areas of major rivers in the WSB region suffer from salinization due to poor drainage and salt water intrusion. Salinization constrains more productive land and water uses. Particularly in the lower Mae Klong river basin, salt water intrusion is becoming more serious during the dry season. RID is constructing a dike along the coast to prevent the salt water intrusion.

A fundamental cause of the salt water intrusion is the drawdown of water level in the river during the dry season caused by increased extraction in the upstream and ineffective reservoir operation. It is necessary to review the reservoir operation in view of changing needs for water supply due to more intensive irrigation, changes in cropping pattern, and increasing urban and industrial uses.

Depending on the outcome of the review, the ongoing dike construction in the Lower Mae Klong river basin may be extended further to the west. In the long run, construction of a salinity control barrage may be required at the estuary, subject to assessment of environmental impact and economic viability.

- 7. RELATION WITH OTHER PROJECTS
- 8. COST (Approximate)

Phase II = \$1 million (feasibility study)

WR 4 SALINITY CONTROL

BACKGROUND

Salinization is in progress in the lower basin of the Mae Klong river due mainly to: (i) seawater intrusion from the coast, (ii) saltwater intrusion in the estuary, and (iii) lack of adequate drainage systems. To protect against seawater intrusion, RID completed the construction of a 36 km long coastal dike on the right bank and planned to construct a 52 km long dike on the left bank.

The Vajiralongkorn diversion works on the Mae Klong river have been designed to secure 50 m³/s of salinity control/maintenance flow in the downstream in the dry season. If this discharge is maintained, salinity at the mouth of Dammoen Sauak canal is kept within 2 gm/liter. However, as experienced in the drought years (1978-1980), salinity increased to the unacceptable level of 11.25 gm/liter.

Salinization is also a problem in Chumphon province. In the lower reaches of the Tha Taphao river and Chumphon river, salinity has increased in groundwater for potable water supply to villages developed in the estuary area and in soils for agricultural use.

PROJECT CONCEPT/RATIONALE

In the lower reaches of the Mae Klong river, further studies should be made to clarify the following aspects:

- (i) Whether the maintenance flow of 50 m³/s in the downstream from the Vajiralongkorn diversion works can be guaranteed through modification of reservoir operations at the Sri Nagarindra and Khao Laen reservoirs;
- (ii) How large is the water requirement in the coastal lands to be protected by the coastal dike, and how drainage works can be improved in this area;
- (iii) Whether water supply from the Mae Klong river basin to the BMA is indispensable; and
- (iv) Whether the construction of a structure on the Mae Klong river estuary to get fresh water of 1,577 MCM is required, and whether it is economically and environmentally feasible.

In the lower reaches of the Tha Taphao river and Chumphon river, further studies should be made to clarify the following:

- (i) How salinization has affected potable water supply and farming in the lower reaches,
- (ii) Whether there are alternative measures to secure fresh water in the affected area; and
- (iii) Whether the construction of an estuary weir is required and whether it is economically and environmentally feasible.

RECOMMENDED ACTION(S)

It is premature as this stage to conclude whether an estuary barrage is required in the lower reaches of the Mae Klong river, Tha Taphao river, and Chumphon river. It is recommended that a detailed study be conducted in Phase II to assess the viability of construction of the estuary barrage and other structures for salinity control.

Project No. WR 5

1. PROJECT TITLE

Flood Control and Drainage Systems

<u>Improvement</u>

2. LOCATION

Major river basins in the WSB

3. AGENCY

RID

4. OBJECTIVES

- (1) To control floods to prevent damage to properties and agricultural lands
- (2) To improve drainage systems in the lower basins of major rivers to enhance land productivity
- (3) To motivate farmers to adapt themselves to new farming practices under improved drainage conditions

5. PHASING

Phase I for planning and design of priority schemes

6. DESCRIPTION

Floods are causing damage in the lower reaches of Petchaburi river, the Tha Taphao river and other rivers in Chumphon province, the Pran Buri river and other rivers in Prachuap Khirikhan province, as well as in the major tributaries of the Mae Klong river, including the Lam Pa Chi river. Floods should be controlled through construction of storage reservoirs upstream, as well as through river improvement, revetments, and other appropriate measures.

Drainage systems should be improved in the lower Mae Klong river basin, and lower basins of Petchaburi river, Chumphon river and other major rivers in the WSB region. Since the water table is relatively high in these lower basins, over drainage may cause soil salinization. Acidity/alkalinity and other soil problems may also occur, depending on the soil types. Therefore, drainage systems should be carefully planned together with selection of crops and the farming system.

In planning for the drainage systems improvement and associated agricultural development, a participatory approach is recommendable involving local farmers, who have adapted to existing local conditions. Such participatory planning would also help to motivate farmers to adopt new farming practices to be introduced under improved drainage conditions. The Chumphon river may be selected for initial application of the participatory planning followed by implementation.

- 7. RELATION WITH OTHER PROJECTS
- 8. COST (Approximate)

Phase I = \$1 million (feasibility study)

WR 5 FLOOD CONTROL AND DRAINAGE SYSTEMS IMPROVEMENT

BACKGROUND

In the Mae Klong river basin, discharge control is an urgent task in the Lam Pa Chi river (a tributary of the Mae Klong), as floods in September-October 1996 caused serious damage to households (6,100 houses) and agricultural land (72,300 ha), as well as a number of bridges and other structures in the flooded areas.

The Lam Pa Chi river has a catchment area of about 2,450 km², with an average annual precipitation of about 1,100 mm. Runoff records (1982-1994) are available at the K25 gauging station (catchment area of 508 km²). On the basis of monthly runoff at the K25 station (74.6 MCM), the total water available in the La Pa Chi river is estimated at around 361 MCM per annum.

Two alternative dam/reservoir sites have been identified in the Lam Pa Chi river basin for flood control, as well as irrigation and municipal water supply. The upper site is located at Ban Suan Phong with a catchment area of about 1,300 km². Annual runoff at this site is estimated at 191 MCM. The lower site (proposed by the Metropolitan Waterworks Authority) is located at Kho Phu Thong or about 25 km upstream of its confluence with the Khwae Noi river, with a catchment area of about 1,960 km². Annual runoff at the lower site is estimated at 288 MCM. On the basis of monthly runoff records in October 1985 (monthly runoff of 78 MCM), the probable flood discharge at the lower site is estimated to be around 2,270 m³/s. This magnitude of flooding will cause serious inundation in the lower reaches of the Lam Pa Chi river and the areas upstream of the Vajiralongkorn diversion works.

In the Petchaburi river basin, floods often cause damage in the section between the Petch diversion works and Petchaburi city, as well as in the lower reaches downstream from the urban center of Petchaburi. The river course is meandering and flood conveyance capacity is limited in these sections.

In Chumphon province, floods along the Tha Taphao river (peak flood of 1,510 m³/s) frequently cause damage in the section downstream from the confluence of Tha Sae and Rub Ro rivers.

Drainage systems in the lower Mae Klong river basin and Petchaburi river basin are inadequate because RID's ditch-and-dike projects have been implemented without improvement in drainage systems. Productivity has been relatively low in the areas where drainage systems are inadequately developed or undeveloped.

PROJECT CONCEPT/RATIONALE

For flood control and drainage systems improvement, it is required that a further detailed study be conducted of the following programs:

- (i) Feasibility study of construction of the Pa Chi dan/reservoir on the tributary of the Mae Klong river,
- (ii) Design of necessary structures for control of floods and improvement of drainage systems in the lower Petchaburi river basin; and
- (iii) Review of economic feasibility and financial viability of flood conveyance canals and drainage systems in the Tha Taphao river basin in Chumphon.

RECOMMENDED ACTION(S)

It is recommended that the above noted studies be executed in Phase I in order to evaluate economic feasibility and priority for implementation. It is also recommended that drainage systems improvement be studied along with salinity control in the lower reaches of the Mae Klong, Petchaburi, and Tha Taphao rivers.

Chapter 3 ENERGY AND POWER SECTOR

3.1 Energy Demand and Supply

3.1.1 Overview

To meet the demands of its impressive economic development, Thailand has depended heavily on imported oil, which covered over 90 per cent of the country's oil requirements during the 1979/80 oil crisis. In the following years, the Thai government managed to increase the share of its indigenous energy consumption. In 1994, domestic energy production was 37.6 million tons of oil equivalent (Mtoe), or 58 per cent of the total primary energy supply. Modern energy consumption, which comprises petroleum products, natural gas, condensate, coal and lignite, hydropower, and others, increased 11.9 per cent while renewable energy grew by 10.3 per cent. In 1994, the total supply of commercial energy in Thailand was 65 Mtoe, an increase of 11 per cent over the previous year. Of the total amount, petroleum accounted for 45.2 per cent, natural gas 14 per cent, lignite 7.9 per cent, electricity 1.6 per cent, and coal 1.5 per cent. In addition, Thailand consumed about 19 Mtoe of renewable energy, about 30 percent of its total energy supply in 1994, mainly in the form of fuel wood, which remained the predominant fuel in rural households. (Refer to Table 9.3.1)

By the end of 1994, Thailand produced 1.3 Mtoe of oil, a small amount compared to its consumption of 23.4 Mtoe. Natural gas was a major domestic energy source, with the total production of natural gas at 9.3 Mtoe or 24.8 per cent of total indigenous energy production. The Electricity Generating Authority of Thailand (EGAT) is responsible for the development of lignite. However, the expansion of lignite mining has had to be severely curtailed due to geotechnical and environmental problems. In 1994, the lignite output in Thailand was 5.2 Mtoe, or 13.8 per cent of total indigenous energy production. With uncertainties surrounding the development of the country's lignite resources, it would be necessary to import coal and establish coal-fired generation by as early as 2000. Although hydropower potential is well over the utilized 2,400 MW, increased opposition to reservoir construction would make development of hydropower in Thailand extremely difficult. In rural areas, traditional fuels have dominated the daily consumption by households, two-thirds of the consumption of which is bio-mass, consisting of charcoal and firewood, causing severe impacts on the forests near inhabited areas.

3.1.2 National Energy Policies and Administration

(1) National Energy Policies

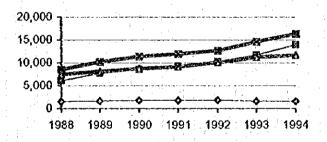
The national energy policies in the 1990s still focus on diversifying supply and utilization of domestic energy, adjusting prices of energy products for more efficient use, introducing energy conservation measures, involving the private sector in the investment and production of electricity and petroleum, and promoting cooperation with neighboring countries.

(2) National Energy Strategy

National energy strategies include: (i) investing in the exploration and development of domestic petroleum and lignite; (ii) accelerating the development of hydropower, coal, natural gas, and petroleum in neighboring countries by cooperative efforts, including the construction of natural gas pipelines; (iii) improving the transmission and distribution system for electricity; and (iv) promoting private sector participation in energy production.

(3) Development Agencies

The National Energy Policy Council (NEPC), the highest level of government in charge of energy policies and directions, is chaired by the Prime Minister. Its members include a deputy prime minister, ministers from relevant ministries, representatives from the National Economic and Social Development Board (NESDB), the director of the Budget Bureau, the secretary general of the National Energy Policy Office, and the director general of the Department of Energy Development and Promotion (DEDP). The National Energy Policy Office (NEPO), a department under the Office of the Prime Minister and the secretary to NEPC, functions as a link between NEPC and the country's state energy enterprises and conducts all energy policy work. The Department of Mineral Resources is responsible for assessment and preliminary exploration of the country's coal and petroleum reserves, while DEDP is in charge of research and development, monitoring energy sector trends, statistics, and rural energy development.


The Petroleum Authority of Thailand (PTT) is a state-owned enterprise responsible for the development and supply of petroleum, petroleum products, and natural gas. In the electricity sector, the Electricity Generating Authority of Thailand (EGAT) covers most power generation and transmission to primary substations. It also manages most minable reserves of lignite in Thailand. The Metropolitan Electricity Authority (MEA) is a power distribution company in charge of power distribution to the Bangkok


Metropolitan Area, while the jurisdiction of the Provincial Electricity Authority (PEA) includes power distribution and rural electrification to areas of the Kingdom not served by MEA. EGAT reports directly to the Prime Minister's Office and both MEA and PEA report to the Ministry of Interior.

3.1.3 Energy Demand

Transportation accounted for 37 per cent of total energy consumption in 1994, followed by manufacturing and mining (31.8 per cent), and residential and commercial consumers (25.6 per cent). The energy consumed by the transportation sector jumped from 6,025 ktoe in 1985 to 16,341 ktoe in 1994, an average annual growth rate of 12 per cent. For reference, the total share of energy consumed by the transportation sector was 32.5 per cent in 1985.

Growth of Final Energy Consumption by Economic Sectors

Energy Consumption by Economic Sector

					<u> </u>	U	nit: ktoc
	1988	1989	1990	1991	1992	1993	1994
Agriculture	1,525	1,639	1,803	1,827	1,879	1,618	1,576
Mining	49	56	58	53	42	42	35
Manufacturing	6,062	7,712	8,541	9,288	10,238	11,732	13,917
Construction	99	109	147	194	220	182	333
Res. and Com.	7,496	8,114	8,725	9,135	10,055	11,173	11,647
Transportation	8,520	10,169	11,368	11,910	12,652	14,581	16,341
Total	23,749	27,799	30,642	32,407	35,104	39,328	43,849

Source: DEDP/Thailand Energy Situation in 1994.

Petroleum products represented the greatest proportion of final energy consumption in 1994, totaling 23.4 Mtoe, up 10.6 per cent over the previous year and accounting for 53.2 per cent of total energy consumption. Natural gas's role, due to new discoveries in the Gulf of Thailand and neighboring regions, is becoming more important. A total of 0.6 Mtoe was consumed in 1994, a 19.5 per cent jump from the previous year. Coal and lignite consumption in 1994 was 3.1 Mtoe, an increase of 23.1 per cent over the previous year and accounting for 7.1 per cent of the final energy consumption. Electricity consumption in 1994 was 5.3 Mtoe, an increase of 11.1 per cent over the previous year and accounting for 12.2 per cent of final energy consumption.

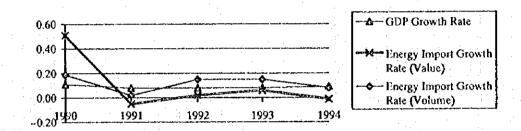
Total renewable energy consumption in 1994 was 11.5 Mtoe, an increase of 10.3 per cent over the previous year and accounting for 26.2 per cent of the final energy consumption.

3.1.4 Energy Supply

Rapid economic development in Thailand has led to a rapid increase in final energy consumption. Since 1989, Thailand's economy has been expanding at an annual rate of 8.9 per cent while its final energy consumption has been growing even faster, at 9.5 per cent annually.

Primary Energy Supply by Source

	1.1		(million KBD)
Energy Sources	1983	1993	2003
Imported Coal	2	11	69
Imported Oil	216	476	844
Imported	-	-	210
NG/LNG	. 3	3	50
Imported Hydro	· 11 ·	53	50
Indigenous Oil	25	157	297
Indigenous NG	11	94	206
Lignite	18	17	28
Hydro	<u> </u>		
Total	286	811	1,750


Source: PTT/Facts and Figures of Petroleum Industry in Thailand, 1994.

In 1994, Thailand produced 37.6 million tons of oil equivalent (Mtoe) and imported 28.3 Mtoe, an increase of 10 per cent and 9 per cent from the previous year, which was higher than the real GDP growth rate of 9 per cent. Thailand will continue to import oil, but imported oil's share will decrease as Thailand starts to purchase natural gas and coal

from abroad. However, the import share will not exceed 70 per cent of the total, which is in line with the targets of the Eighth Five Year Plan. Due to the difficulties in developing domestic hydro power, Thailand has started to cooperate with its neighbors in exploring hydro power potential.

In 1994 Thailand imported 28,258 ktoe of energy, a 9.1 per cent increase over the previous year, among which crude oil accounted for 65.9 per cent, petroleum products for 30.4 per cent, and electricity for 0.3 per cent.

Relation between GDP and Imported Energy

Source: DEDP/Oil and Thailand 1994.

Thailand produces its own natural gas. The largest consumer for natural gas is EGAT, with 716 MMCFD in 1993, followed by industry and feedstocks, 56 MMCFD and 139 MMCFD respectively. On the supply side, most natural gas is domestically produced. PTT projects that by the year 2003 Thailand will import 1,068 MMCFD natural gas, accounting for 36.3 per cent of Thailand's total natural gas supply. Natural gas production accounted for 24.6 per cent of the total domestic energy production in 1993 and 24.8 per cent in 1994. (Refer to Table 9.3.2)

3.2 Electricity Demand and Supply

3.2.1 Electricity Consumption

Electricity consumption in Thailand increased from 20,032 GWh in 1985 to 62,510 GWh in 1994, implying an average annual growth rate of 13.5 per cent. Per capita consumption of electricity increased from 308 kWh in 1982 to 1,058 kWh in 1994. The industry sector was the largest electricity customer consuming 28,920.1 GWh or 46.2 per cent of the total, followed by the commercial sector utilizing 20,116 GWh or 32.2

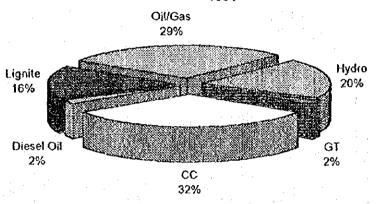
per cent; residential users consumed 12,893 GWh or 20.6 per cent and others (agriculture and temporary consumers) 579.9 GWh or 1 per cent. Consumption by industry, residential, and other sectors increased by 29.3 per cent, 8.1 per cent, and 10.3 per cent respectively, while commercial sector consumption decreased by 8.5 per cent from the previous year.

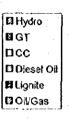
Growth of GDP and Electricity Demand

Source: DEDP/Electric Power in Thailand 1994.

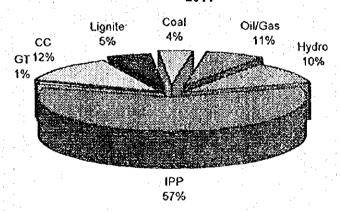
The Bangkok Metropolitan Area (BMA) consumed 27,030 GWh, or 43.2 per cent of the total consumption in the whole country, up 10.5 per cent from the previous year. Areas outside the BMA utilized 35,479 GWh or 56.8 per cent of total electricity consumed in Thailand, an increase of 11.5 per cent over the previous year.

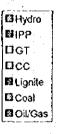
Based on its October 1996 load forecast, EGAT projected that peak demand for generation capacity will increase from 10,709 MW in 1994 to 21,423 MW by 2001, 30,464 MW by 2006, and 41,683 MW by 2011. This projection implies an average annual growth rate of 10.6 per cent in the 7th Plan, which is lower when compared with the 14.0 per cent projected in the 6th Plan. Over longer periods, the average peak demand growth rate is projected at 10.0 per cent, 7.3 per cent, and 6.5 per cent during the 8th, 9th, and 10th plan periods, respectively. (Refer to Table 9.3.3)


3.2.2 EGAT's Generation Requirement


As of September 1994, EGAT's installed capacity was 12,988.9 MW, comprising 2,578 MW hydropower (19.8 per cent), 6,102 MW oil/gas and lignite-fired thermal (47 per cent), 4,100 MW combined cycle (31.6 per cent), and 210 MW gas turbine (1.6 per cent). The share of fuel oil as a source of generation increased from 14 per cent of the total in 1985 to 27.6 per cent in 1994, while the development of hydropower has stagnated. By the end of the 7th plan, EGAT expects to have an installed capacity of 16,142 MW, with 24,102 MW expected by the end of the 8th Plan, and 39,302 MW by

the end of the 9th plan, implying average rates of increase of 9.7 per cent, 9.9 per cent, and 12.6 per cent respectively.


The following figure shows the mix of electric generation by energy source in Thailand, including, but not limited to, the generation units under EGAT.


Mix of Electricity Generation by Energy Sources 1994

Mix of Electricity Generation by Energy Sources 2011

Source: EGAT PDP 97-01.

There are 54 projects that require capital expenditures in the 7th Plan period (1992-1996). Of these, 28 are ongoing projects that have been approved since the 6th Plan while 26 have been approved in the 7th Plan. The total capital expenditure in the 8th Plan requires 268,000 million Baht. Of this amount, the foreign currency requirement is 122,500 million Baht (approximately US\$4.9 billion equivalent) and the local currency portion is 145,500 million Baht.

3.2.3 SPPs, IPPs, and Power Imports

The first step taken by the Government towards increasing private sector participation in the power sector was to allow co-generators and small power producers to sell power to EGAT. Co-generators are power plants that produce both steam and electricity and are often part of industrial entities. Small power producers (SPPs) have an installed capacity of 90 MW (recently increased from a lower ceiling of 60 MW) often utilizing waste materials or traditional fuels such as garbage, bagasse, rice husk, and wood. In 1992, EGAT announced its first offer of 300 MW. In 1995, in its second announcement EGAT offered to purchase up to 1,444 MW. A total of 84 SPPs, representing 4,435 MW, proposed to supply electric power to EGAT. By December 31, 1995, 18 of 50 applicants had signed a Power Sales Agreement with EGAT to provide a total capacity of 343 MW. By June 1996, 50 of 84 applicants had received EGAT's approval to supply a total of 1,720 MW of power, far exceeding the original ceiling, to meet the expected stronger demand. Of the 1,720 MW, 78 per cent is from the larger co-generation projects using natural gas, lignite, and imported coal as fuel, while the rest comes from smaller projects selling 5-20 MW each and running on agricultural waste such as paddy husk. So far, 14 SPPs have started to transmit a total of 155 MW; the majority of them supply power on a "non-firm" basis. The current basic tariff set for the purchase of SPP output stands at capacity charge of 302 Baht/kW/month and energy charge of 0.85 Baht/kWh for delivery on a firm basis and 0.87 Baht/kWh for non-firm supplies.

In response to the Government's policy of privatizing state enterprises, reducing public borrowing, improving enterprise efficiency, and increasing capital investment in the infrastructure, EGAT has started to invite independent power producers (IPPs) to build power plants. An open invitation to bid to produce power is underway following the recent approval by NEPC in May 1994 of the purchase of electricity from IPPs by EGAT in stages as follows:

Stage One: 5,800 MW

Phase One: 1,700 MW for 2000;

Phase Two: 4,100 MW for 2001-2003

By 2011, EGAT will purchase 22,500 MW of power capacity from IPPs; the fuel sources include natural gas, LPN, imported coal, and orlinulsion. Thailand purchases electricity from Lao PDR and Malaysia at the respective borders.

Electricity imports totaled 870 GWh in 1994, 95.2 per cent of which came from Lao PDR and the rest from Malaysia. The total import increased by 35.1 per cent from the previous year and the total imported value accounted for 759 million Baht. This trend is expected to continue (possibly including the import of electricity from Myanmar in the future), since Lao PDR and Malaysia are expected to expand their electricity generation and cooperation with Thailand.

Thai Government signed a new memorandum with Lao PDR to double its long-term power purchase to 3,000 MW, mostly hydropower. The power purchase price ranges from 0.043 to 0.0455 US\$/kWh in 1994 prices.

Implications for the WSB Region

IPPs are expected to be active in the WSB region. As EGAT solicits more and more power supply from diversified energy sources from the private sector and Myanmar continues to supply natural gas, IPPs will play an increasingly important role in the WSB region. Presently, as Phase One of the IPP Stage One, three 600 MW gas generation IPP proposals, based in Ratchaburi, are under negotiation with EGAT. Four proposals in the WSB are shortlisted for Phase Two, three of which are based in Prachaup Khirikhan, of these three, two use coal as fuel and one uses orlimulsion. The one proposal based in Ratchaburi will use natural gas. By 2003, IPPs would account for 27 per cent in generation capacity and 37 per cent in GWh in the WSB region.

IPP Proposals in the WSB Region

Producer	Capacity	Fuei	Location
Stage One, Phase I	MW		
Tri Energy Co.,	700	Nat. gas	Ratchaburi
Bangkok Energy System	326	Nat. gas	Ratchaburi
Thai Oil Co.,	700	Nat. gas	Chonburi
Stage One, Phase II			
Union Energy	1,400	Coal	Bang Saphan
Gulf Electric Co.	700	Coal	Kui Buri
Bowin II Power	673	Nat. gas	Chonburi
BLCP Power Co.	1,341	Coal	Rayong

Source: EGAT

3.2.4 Rural Energy and Biomass Energy

PEA is responsible for rural electrification. As of September 1994, PEA's network comprised 584 circuit-km of 115 kV and 36 circuit-km of 69 kV lines, and over 188,626 circuit-km of 33 kV, 22 kV, 11 kV, and 3.5 kV lines. In the WSB region in 1996, the total length of transmission lines was 824 circuit-km and that of distribution lines is 18,122 circuit-km. There were 30 sets of substations, with a total capacity of 1,325 MVA. (Refer to Table 9.3.3)

With assistance from international organizations, PEA started a plan for rural electrification in 1970. Based on the recommendations of NESDB, the Government adopted a 25-year National Plan for Rural Electrification. The Government adopted several strategies for the successful implementation of the plan: (i) cross-price subsidies from urban to rural and from large to small customers; PEA achieved cost economies through purchasing power at rates 30 per cent lower than those paid by MEA; (ii) an increase in the connection rate and encouragement of productive uses of electricity to keep the program financially sustainable; (iii) mobilization of concessional loans and grants from bilateral and multilateral agencies; and (iv) low-cost and affordable connections. After sixteen years of efforts by the Government, the rural electrification rate is now at 98 to 99 per cent; the Government is aiming at 100 per cent by the end of next year.

In 1994, biomass energy accounted for 26.2 per cent of the total final energy consumption, second only to petroleum products. The amount of biomass energy demand has increased steadily at an average annual growth rate of 6 per cent since 1985. However, the share of biomass energy has declined continuously from 36.4 per cent in 1985 to 26.2 per cent in 1994 as industry grows at a much faster pace. Charcoal, fuclwood, paddy husk, and bagasse are the main sources of biomass energy. Among biomass energy sources, charcoal and fuclwood are used mainly for cooking, process-heating, and cottage industry in residential and commercial areas, accounting for 66 per cent of the total in 1994. The important sources of biomass use are bagasse and paddy husk. Bagasse and paddy husk are used mostly for process-heating in the manufacturing sector. About 2.67 Mtoe of bagasse was consumed in 1994, representing an increase of 34.8 per cent over the previous year; it is totally used in the manufacturing sector. In 1994, 0.448 Mtoe of rice husks was consumed, a decrease of 15.6 per cent from the previous year.

Although the manufacturing sector is experiencing rapid growth, its consumption of biomass energy seems to have declined. In the sector, sugar mills, rice mills, noodle factories, canneries, and tobacco curing establishments are the major consumers. As an agro-industrial economy, Thailand has a large biomass resource base with 60 million tons of biomass energy generated each year.

The government policies related to biomass energy are to encourage the use of domestic energy sources, energy conservation, and private sector participation.

Implications for the WSB Region

Several government strategies are relevant to the WSB region, as set out below:

- (i) Encourage generation of electricity and heat through renewable energy;
- (ii) Promote high efficiency charcoal making kilns, biomass combustion, and energy saving cooking stoves,
- (iii) Enhance private sector involvement in reforestation activities;
- (iv) Encourage small-scale producers (SPP) to invest in and produce electricity and heat from renewable energy sources in the form of cogeneration; and
- (v) Increase public awareness.

As noted by the Ratchaburi Regional Energy Center (RREC), sugar cane is one of the main agricultural products in the WSB region. Sugar factories use bagasse to generate power; some of them have signed contracts with EGAT to provide surplus to the grid. Rural electrification is very high in the region, 98 per cent. However, consistent with the national trend, about 70 per cent of rural households rely on firewood and charcoal, with a majority using inefficient traditional cooking stoves. There are over ten units of Wind for Pumping in Petchaburi and Ratchaburi, but the wind potential in the WSB is low. There are around 1,200 windmill pumps in RREC's Western region (which is bigger than the WSB). However, their numbers will be severely reduced after some are converted to salt farms. The region is experiencing a rice husk shortage as brick factories have to import rice husks from neighboring regions. Previously there was a bio-digester program in which the Government subsidized part of the initial cost to build the digesters, but the budget for this program was eliminated a few years ago. Approximately half of the installed bio-digesters are still operational in the region; there are about 173 biogas digesters for cooking in the area covered by the RREC. RREC planned to build 14 in 1996 and 10 in 1997 solar PV battery charging stations in Kanchanaburi.

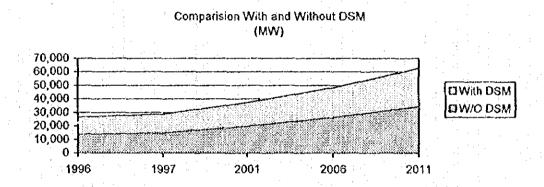
The Potential of Agriculture Residues in the Region

CROP	Residue	Conversion	Output	Potential	KTOE
		factor			<u> </u>
Rice	Husk	0.267	731.4	195.3	1.95
Sugar cane	Bagasse	0.291	10039.8	2921.6	473.1
Cassava	Stalk	0.088	881.9	77.6	NA
Maize	Corn cob	0.273	25.2	6.9	NA

3.2.5 Demand Side Management (DSM)

According to an evaluation of 110 countries and economies by the Global Environmental Facility (GEF), Thailand, with its DSM program, is one of the eight countries that have succeeded in the environmental protection efforts. As the first in the ASEAN region to adopt a DSM program, EGAT is invited by various international organizations to present its DSM program to neighboring developing countries.

The first Five-year (1993-1997) pilot DSM Master Plan was approved by the Government of Thailand in December 1991. EGAT was nominated as the implementing agency. The DSM plan has projected annual savings of 311 MW in peak demand and 1,826 GWh in energy by the end of 1997 at a cost of US\$189 million. Using an avoided cost of \$1,000/kW, the program will have saved US\$122 million, plus additional benefits in environmental protection.


EGAT's DSM plan consists of six sectoral programs, namely Residential Sector, Commercial Sector, Industrial Sector, Load Management, Attitude Creation, and Monitoring and Evaluation. Funding of the program comes from a DSM surcharge in the tariff mechanism, a grant from the World Bank, under the auspices of GEF, and a concessional loan from Overseas Economic Cooperation Fund of Japan.

Thai utilities:	US\$ 149 million
GEF:	US\$ 15 million
OECF	US\$ 25 million
Total	US\$ 189 million

EGAT is also the first in Southeast Asia to have experimented with an Energy Saving Company (ESCO) system. With Thailand's own version of ESCO operations, EGAT's

DSM office is expected to recover part, hopefully all, of the DSM program cost through reimbursement from savings by the beneficiaries. (Refer to Table 9.3.4) The current DSM program involves a four-pronged approach, focusing on the provision of economic incentives for consumers to adopt energy saving practices, development of standards and testing facilities, introduction of new building and appliance codes, and pursuit of best available technologies.

The long-term DSM plan is based on the 17-year Power Development Plan and government policies. Based on estimates of DSM potential, the reduction of accumulated capacity and energy demand is expected to be 551 MW, 3,303 GWh in 1997-2001, 1,551 MW, 9,305 GWh in 2002-2006, and 2,426 MW, 14,553 GWh by 2007-2011.

Implications for the WSB Region

EGAT's DSMO is about to start a pilot program to help four manufacturers to improve their energy consumption process. All of them will be located in the BMA region. There is no specific DSM program in the WSB region, an area that will to be one of major power generation bases in Thailand, with its total generating capacity peaking at 17,236 MW by the year 2009. According to DSMO's projection of 6.4 per cent of savings from the total projected load demand of EGAT, the DSM program might reduce regional generation demand to 16,133 MW. The possible 1,103 MW saved in the WSB implies a major reduction in environmental impacts in the region.

As discussed with EGAT, the industrial program should also be extended to the WSB as economic development in the region accelerates as projected under the social and economic framework. Since it is cheaper, for EGAT as well as for business owners, to install energy efficient equipment in new factories and buildings than it is to retrofit and replace equipment in existing factories, DSMO should formulate new programs specifically targeting new investors in the whole Kingdom in general, and in the WSB in particular.

3.3 Power Situation in the WSB Region

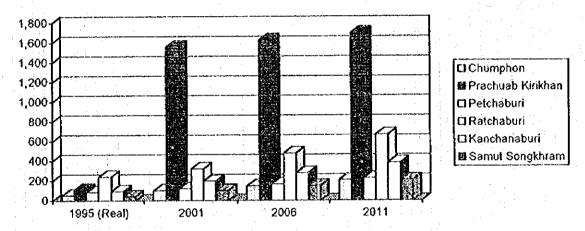
3.3.1 Power Demand in the WSB

The WSB region recorded the use 2433.3 GWh of electricity in 1994, or 3.9 per cent of the total consumption in the Kingdom. Per capita electricity consumption in the WSB was 840 kWh, lower than the national average of 1,058 kWh. (For reference, per capita GDP in the WSB region was 48,620 Baht, while the national average was 61,355 Baht.)

Electricity Consumption in WSB in 1994

Province	Consumption (GWh)	Rural	Rural Electrification	
		Electrification		
		(Villages)	(Household)	
Kanchanaburi	435.8	93.9%	86.8%	
Samut Songkhram	119.6	100%	81.7%	
Ratchaburi	886.3	100%	97.8%	
Petchaburi	312.1	99.5%	96.5%	
Prachuap Khirikhan	455.0	99.5%	94.4%	
Chumphon	224.5	99.5%	95.6%	
Total	<u>2,433.3</u>	<u>98.7%</u>	<u>92.1%</u>	

Source: NESDB and DEDP/Electric Power in Thailand 1994.


In the past ten years, the growth of industry has outpaced the growth of agriculture, following a similar pattern to that of the national economic structure. Under the medium-growth scenario, the industry sector is expected to grow faster, at an average annual growth rate of 10.8 per cent between 1995 and 2011, agriculture at 2.9 per cent, and the service sector at 9.0 per cent. The whole gross regional product is expected to grow at 9.0 per cent per annum. Based on these growth rates and an energy demand elasticity of 1.1, the Study Team projects that energy demand will increase by 10 per cent per annum, which is close to PEA's demand forecast for the WSB.

The following table presents PEA's load forecast for the WSB area. The forecast has taken into consideration the huge demand in the Bang Saphan area during the 8th and 9th plan period. (Refer to Table 9.3.5 and Table 9.3.6)

Load Forecast in the WSB Area

	4.0				(Unit: MW)
Province	1995 (Real)	2001	2006	2011	Average Annual Growth by %
Chumphon	51.9	101.2	147.7	207.1	9%
Prachuap	107.7	1558.6	1628.8	1700.3	19%
Khirikhan					
Petchaburi	85.3	118.4	164.6	223.6	6%
Ratchaburi	239.7	319.8	476.6	667.0	7%
Kanchanaburi	90.1	195.0	276.3	382.6	9%
Samut	39.6	100.8	146.6	206.9	11%
Songkhram	:				
Total	<u>614.3</u>	<u>2,393.8</u>	3,840.6	3,387.5	11%

Source: PEA

According to statistics for 1995, 98.7 per cent of villages and 92.1 per cent of households in the WSB region have access to electricity. The comparable statistics for the whole Kingdom in 1995 were 98.2 per cent for villages and 92.8 per cent for households (Refer to Table 9.3.7)

3.3.2 Power Generation in the WSB Area

There are several hydropower stations in the region: Khao Laem Dam (3 x 100 MW), Srinagarind Dam (3 x 120 MW and 2 x 180 MW), Tha Thung Na Dam (2 x 19 MW), and Kaeng Krachan Dam (1x 17.5).

EGAT is planning to build 3 x 600 MW combined cycle power units, and 4 x 700 MW thermal power units, in the 8th Five-Year plan period using imported natural gas from Myanmar. The four thermal power units will be gas/oil dual purpose units for power supply security reasons. For planning purposes, EGAT has tentatively decided to build, before 2011, the first five units of imported coal-fired thermal plants in Prachuap Khirikhan province. Based on this plan, EGAT will expand its electricity generation capacity in the WSB region with an addition of 4,600 MW between now and 2001, and by 4,800 MW between 2001 and 2011. PTT has signed a contract to import natural gas (525 MMCFD), through the pipeline presently under construction by PTT on Thailand side, from Myanmar for 30 years from 1998. An international consortium is building the gas pipeline on the Myanmar side, with construction scheduled to be completed in 1998. This amount of gas is sufficient for the new power units in Ratchaburi.

Presently, EGAT is negotiating with independent power producers (IPPs) to purchase power from a power plant possibly located in Ratchaburi (600-700 MW) and in Prachuap Khirikhan (1,400 MW or more).

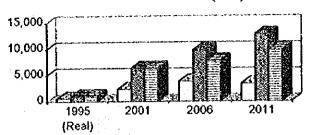
In the long run, EGAT also plans to invite IPPs to build about 4,000 to 5,000 MW generation units (using either imported coal or natural gas) near the Bang Saphan area, where a private sector concern is constructing a large steel production complex and a deep-sea port. To transmit power along the WSB corridor, EGAT has planned a 500 kV line from Bang Saphan to the Bangkok Metropolitan Region. The 500 kV line project is expected to be completed by 2001. Thus, before that year, EGAT's grid only will have limited capacity to accept an additional 700 MW of capacity from IPPs in the WSB region. (Refer to Table 9.3.8)

Generation Capacity Increase in WSB

Project	Number of Units	Total Capacity	Commissioning Year
Combined Cycle	3×600	1,800 MW	1999
Thermal (oil & gas)	4 x 700	2,800 MW	2001
IPP (1)	1 x700	700 MW	2000
IPP(2)	2x700+2x350	2,100 MW	2001
New Thermal (coal)	2x1,000	2,000 MW	2006
			· ·
Total		9,400	2006

Source: EGAT Power Development Plan (PDP-97-01)

Electric power in the WSB region is interconnected to the national grid through 230 kV and/or 115 kV transmission lines. EGAT also has a plan to construct a 500 kV transmission line to integrate the IPPs in Ratchaburi and the IPPs in Prachuap Khirikhan by 2001. (Refer to Table 9.3.9)


3.3.3 Demand vs. Supply

The whole EGAT power grid is an integrated power system; any surplus or deficit in power supply and demand in the WSB region can be adjusted according to the balance of national and local power demand. But within the WSB region the generation capacity now stands at around 1036 MW. In the high-growth GRP scenario put forward in the Macroeconomic Development Scenarios of this Study, real GRP in the WSB will grow at an average annual rate of 10.7 per cent, up to the year 2011. According to the EGAT Power Development Plan (PDP-97-01), the total newly installed generation capacity in the Study Area will be 9,400 MW during the same period, implying an annual growth rate of about 16 per cent, meaning that the WSB region will export much more power by the end of the 10th Five-Year Plan. Assuming that some of the existing generation units will be retired or produce less power by then, one may assume a deduction of about 10 per cent from the planned capacity of 9,400 MW; but the reduction in energy intensity due to new technologies and demand side management is likely to compensate for this effect, considering that one study by an international organization found that DSM could save about 10 per cent of Thailand's electric power consumption.

Growth of Power and GRP

1996		2011	Growth GRI	2 & MW
· .			Rate	Elasticity
· · · · · · · · · · · · · · · · · · ·				
High Power	1,036 MW	12,736 MW	18%	1.68
Growth				
Low Power	1,036 MW	9,736 MW	16%	1.50
Growth				
1988-1994			4	1.43*
GDP	<u> </u>			

Demand and Supply in WSB (MW)

□Demand 図Supply (High) 目Supply (Low)

3.4 Direction of Energy/Power Development in the WSB Region

3.4.1 Constraints and Potentials

The situation of energy and power in the WSB, as reviewed in the previous section, still presents some constraints on development. Major constraints are enumerated below.

- (i) Low Power Consumption Rate: The per capita consumption of 840 kWh/person in the WSB was lower than the national average of 1,058 kWh/person in 1994. This low consumption level in the region reflected a low industrialization level. For reference, per capita GDP in the WSB area was 48,610 Baht, lower than the national average of 61,331 Baht. The intensity of energy consumption showed a similar pattern: 17,285 kWh per 1 million Baht of GDP for the WSB and 17,359 kWh for the whole Kingdom in 1994. Regional energy generation accounted for 2.8 per cent of the total national energy production in the same year while GDP in the WSB was a mere 3.9 per cent that of the Kingdom.
- (ii) Unstable Power Supply: According to a survey in the WSB conducted by the Study Team, 36.8 per cent of the existing industrial enterprises complained that the quality of electricity supply was poor and there were too many brownouts and outages. Some large hotels complained that power shortages occurred during the hottest time of the year. The unstable power supply is mainly caused by the unique characteristics of the region. PBA uses bare wires for its transmission lines, stretching through forests and orchards. Lightening and tree overgrowth often disrupt the power supply, and salt erosion of the electric poles occurs throughout the region. PBA offices in the region have planned and budgeted for the gradual replacement of bare wires with partially insulated cable (PIC), and the installation of better insulation.

- Lack of incentives to steer farmers away from wasteful energy consumption: (iii) Deforestation was identified in the Eighth National Economic and Social Development Plan as a major problem. During the first two years of the Seventh Plan, a forest area of about one million rai was exploited each year, while afforestation could cover only 160,000 rai. The WSB region faces the same problem. According to the RREC, the Western region covering several provinces in the Study Area consumes about 4-5 million m³ of trees, half by rural households as fuelwood, and half by the ceramic and lime industries. About 70 per cent of the rural households use fuelwood or charcoal as fuel, feeding mainly inefficient, traditional cooking stoves. If the new energy-saving cooking stoves could be introduced to each household, the area could save about 40 per cent of its fuelwood requirement. The ceramic and lime industries, with adequate technical and financial support from the government, can also convert their kilns from consuming fuelwood to gas or lignite, although several issues should be addressed before this can happen: (i) tightening of law enforcement against illegal logging and the cutting of public trees; (ii) providing technical assistance and economic incentives for companies to retrofit their kilns; and (iii) making available an alternative energy source, namely domestic lignite, imported coal, and LPG at a reasonable price.
- (iv) Environment: The environment could be an issue since some coal-fired power projects have been proposed in upper Prachuap Khirikhan province, an area known for its bird sanctuary, national park, and coastal amenity zone. An environmental economic cost analysis should be carried out to justify the location of the coal-fired power plants.

On the other hand, the WSB region has significant potential in the energy/power sector. This includes the following:

(i) Government and Private Sector Cooperation for regional economic development. Several industries are envisioned in the WSB area: the Bang Saphan steel complex and related industries, research and tourism centers in Petchaburi and part of Prachuap Khirikhan, a gas pipeline connecting to Myanmar and possible downstream gas industries in Ratchaburi, a new airport at Pathiu in Chumphon province, and several industrial estates. To meet the energy/power demand, a huge power plant using gas from Myanmar is under construction and a 500 Kv line connecting future IPPs is planned in the area. EGAT has also planned to build about 5,000 MW in the WSB region, leaving the area with surplus power to support other regions' economic development in the long run.

- (ii) More IPPs. As Thailand starts to import natural gas from Myanmar and purchase power from the private sector, the WSB region, with its proximity to the load center, and its availability of a deep-sea port, plus the planned 500 kV line to be built to Bang Saphan, will attract more IPPs. Among the eight IPP proposals shortlisted for Stage One, Phase Two, five propose to build power plants in the WSB region, including four in Prachuap Khirikhan, where the WSB's deep-sea port is located.
- (iii) Improving Transmission and Distribution System. EGAT has planned to build a two double-circuit 500 kV line to the Bang Saphan area reserving enough transmission capacity in the region for IPPs. PEA also plans to meet the huge increase in regional power demand by expanding substation and distribution capacity.
- (iv) Improvement of Rural Energy Efficiency. There is easy-to-use technology in the region. According to the Ratchaburi Regional Energy Center, replacement of traditional cooking stoves in the region alone could save 0.7 MMCM of trees and save about 139 million Baht of government funds used to replant them each year, not to say the additional, but important benefits of providing biodiversity, saving farmers' labor time and cost, and reducing flood damage. By giving incentives and disincentives for more ceramic and lime factories to switch from charcoal and wood to LPG, LNG, and lignite, more trees can be saved to achieve one of the major targets in the Eighth-Five Year Plan.
- (v) <u>Subregional Cooperation in Diversification</u>. With the government's interest in subregional cooperation, Thailand will start to import natural gas from Myanmar as early as 1998. With another deposit found in Myanmar (i.e., Yetagun), Thailand is expected to import more natural gas. Hydropower is another area for cooperation. Myanmar has plenty of hydro potential, with at least two points on the Tenasserim river possible hydropower station sites. This power could be sent to the Myanmar city of Tavoy (Dawei) and the Thailand border city of Soi Yok. In the Chumphon area, the Kra river, an international border river between Myanmar and Thailand, is another point of cooperation where Myanmar could export power to Thailand for badly needed hard currency.
- (vi) The WSB's Deep-Sea Port Potential makes power plants fired by imported coal possible. With 4 million tons/year/coal handling capacity in Prachuap port at Bang Saphan, the new power plants in the region can use imported coal as fuel. The Bang Saphan Development Plan has already envisioned a coal handling berth of 4.4 million tons per year, which would be sufficient for coal-fired power plants in the medium term.

Further expansion may be needed if EGAT has finally decided to build all five thermal power plants (5x1,000 MW) it plans in the area.

3.4.2 Development Objectives and Strategies

In the 8th Plan, the Government of Thailand emphasizes the importance of cooperating with neighboring countries to invest in and develop energy sources abroad, promoting efficient and economic use of energy and conservation measures, and encouraging competition in energy production.

To reflect national policies in energy and power development in the WSB region, development objectives are proposed as the following 4 "Ss":

Support To support regional and national economic development through a proactive approach to energy supply and introduction of efficient and productive energy consumption in the WSB region.

Security To achieve power supply security and reduce environmental impact through diversifying the sources of supply and fuel types, exploiting the strategic location of the WSB as a corridor between North and South, as well as between East and West, and also to improve power supply reliability.

Sustainability To promote environment-friendly technology, especially in rural areas where farmers have to rely on primary energy supplies in their daily lives.

Subregional Cooperation To promote subregional cooperation to induce economic development in both Thailand and Myanmar, benefiting people on both sides of the border.

Development of the energy and power sector is proposed to be implemented in a strategic manner, as outlined below.

- (i) Making optimum use of gas imports from Myanmar to meet the energy demand of the region and the country.
- (ii) Soliciting power from IPPs and SPPs to encourage more efficient production of energy through introduction of competition in the power generation system.

- (iii) Initiating a study of possible development of several subregional projects, development of hydropower projects in Myanmar and/or along the border, for the supply of power to load centers in Thailand.
- (iv) Building natural gas-fired power plants and imported coal-fired power plants to achieve diversification in electricity generation. Given the region's deep-sea port potential (Bang Saphan) and the stable international price for coal, coal-fired thermal power plants might be seriously considered there.
- (v) Promoting demand side management (DSM) for the new industries coming to the area since it is cheaper to adopt energy-saving standards from the beginning than to retrofit or revamp existing equipment.
- (vi) Introducing good but affordable technologies in rural energy consumption to preserve the environment through dissemination of energy-saving cooking stoves to curtail the degradation of forest areas.
- (vii) Initiating a study to find the best solution for alternative energy supply to the bulk energy consuming industries in the WSB such as lime and ceramic industries.
- (viii) Tightening environmental monitoring and testing measures, establishing proper evaluation methods and procedures to evaluate the potential environmental cost of proposed power projects in the region.¹ If justifiable, encouraging power plants to use state-of-art technologies to mitigate the environmental impact in the region.
- (ix) Improving stability and reliability in power supply through enhancement of regional transmission and distribution systems and replacement of bare wires with PIC.

¹ A comparative economic cost study should be initiated to evaluate the cost-benefit of imported hydropower against an imported coal-fired power plant in Prachuap Khirikhan. According to a World Bank estimate, power generated by imported coal could cost US\$0.056/kWh, while EGAT purchases power from Lao PDR at only US\$0.043/kWh (1994 prices). Of course, EGAT will have to bear the cost of building a transmission line to the border.

3.5 Ongoing and Planned Projects

3.5.1 Ongoing Projects

Major ongoing projects in the energy/power sector in the WSB region are summarized as follows:

(i) Natural Gas Pipeline From the Border to Ratchaburi

A natural gas pipeline from the Thai-Myanmar border will be linked to a Ratchaburi Power Plant. PTT has signed a contract with Myanmar to import about 525 MMCFD of natural gas, at a border price of around US\$3 per MMBTU. PTT is also responsible for the construction of the gas pipeline, which is expected to be completed by 1998 when the first of the plant's combined cycle generators starts to operate. The estimated investment cost is around 16.4 billion Baht, equivalent to US\$656 million.

The natural gas will come from two offshore fields in Myanmar, Yadana (estimated deposit: 6-7 trillion cubic feet) and Yetagun (estimated deposit: 1.4 trillion cubic feet). EGAT is negotiating to import more gas for power generation. The surplus gas, if the price is reasonable and the quality is suitable, could also be utilized by downstream gas industries in the WSB region.

(ii) Oil Pipeline From the Gulf of Thailand to Ratchaburi

Oil will be provided to Ratchaburi Power Plant as a back-up source. However, three of the four units are scheduled to use oil as the first 525 MMCFD of contracted natural gas is insufficient for all four thermal units. The estimated oil consumption is 126,027,000 MMBTU per year and the total investment cost of the 36 km pipeline is 5 billion Baht. The supply of oil may leave some surplus natural gas for other purposes. The total estimated cost of this project is US\$200 million.

(iii) Power Plant in Ratchaburi

EGAT's power plant in Ratchaburi is composed of three units of combined cycle generators (3x600 MW) and four units of oil/gas dual-purpose thermal generators (4x700). The total capacity, upon completion in 2001, will be 4,600 MW with full energy generation at about 4900 GWh, 23 per cent of the estimated total national electricity supply in that year. The power plant, along with the possible contracting of an IPP (700 MW), would provide Ratchaburi with the status of an important energy center in the nation. It will certainly have positive impact on local economic development.

When the scheduled 500 kV line to Bang Saphan is completed in 2001, EGAT will be able to receive and transmit, if necessary, power in large amounts between Ratchaburi and the Bang Saphan area to support the rapid industrialization of the WSB region. The total estimated cost of this project is US\$4,840 million.

(iv) IPP Stage One in the WSB

For Stage One, Phase One, three proposals have been shortlisted to build a 326 to 600 MW natural gas-fired power plant in Ratchaburi, to be commissioned in the year 2000. In the Stage One, Phase Two IPP program, EGAT has so far shortlisted eight groups as candidates for the supply of 2,800 MW between 2001 and 2003. Five groups have proposed to build power plants in the WSB, three among them proposing coal-fired power units, one proposing use of orlimulsion, and the other the use of natural gas. Two of the proposers, Union Energy and Gulf Electric Co, ranked number one and two on the shortlist, propose imported coal as fuel in conformity with EGAT's intention to diversify primary energy supply and take advantage of the stable international coal price. Also considering the advantage of the region in having the potential for a significant deep-sea port, the probability is reasonably high that EGAT will select at least one of these two proposals for development. The total estimated generation capacity would be as follows: natural gas-fired, 1x600 MW, coal-fired, 2x700. The total estimated investment cost would be US\$367.1 million for the natural gas-fired development and US\$1,330 million for gas-fired development.

The concentration of coal-fired power units would bring about economies of scale in terms of coal port facilities and the process center and water supply. The down side, though, is the possible environmental impact. In this respect, it is important to conduct an economic analysis to compare advantages and disadvantages between imported coal-fired power plants and possible hydropower imports from Myanmar.

3.5.2 Proposed Intraregional Projects

Several projects and programs are proposed for implementation within the WSB region, including:

(i) Cooking Stove Dissemination

Around 60-70 per cent of the 750,468 households in the WSB area use old stoves that could be replaced by new energy saving stoves, consuming less than 40 per cent of energy per unit; the benefit in terms of trees that the Royal Forestry Department would

avoid planting because of the conversion to the new stove would amount to 139 million Baht for the 0.7 MMCM, a figure provided by the Ratchaburi Regional Energy Center. Based on a preliminary calculation, the benefit of providing new stoves at the same price to farmers with the government picking up the cost to cover the price difference between the old and new far exceeds the cost of the status quo. (Refer to Table 9.3.10)

The energy cooking stoves were developed under assistance from the United States Agency for International Development (USAID) about ten years ago but their dissemination has been slow, with only around 3 per cent of the potential beneficiaries now using them. Two actions are required for wider dissemination: stronger government commitment and support, and participation by NGOs. Government support is needed to at least subsidize some part of the cost of converting old stoves to the new ones, but NGOs may prove vital to farmers' acceptance of the new stoves. In the past, it was mainly government officials who drove around and showed farmers the new stoves. Because government officials have other priorities and their time is severely constrained, it is very hard for them to pursue the project in a persistent manner. Since NGOs have long worked with farmers and have established a trusting relationship with them, it is much easier for them to introduce the energy saving cooking stoves.

(ii) Study of Alternative Energy for the Lime and Ceramic Industries

In the WSB region, especially in Ratchaburi, the ceramic industry is important consuming 30 per cent of the fuelwood in the region while the lime industry consumes about 20 per cent, with the remaining 50 per cent consumed by households. Lime is used by sugar factories, shrimp farming, and the construction industry. About 50 per cent of lime factories have now converted from using fuelwood to lignite from the North, while the remaining factories continue to use wood or charcoal as fuel, legally, and in many cases, illegally. Almost all ceramic factories use charcoal or wood as fuel. Each year, a large quantity of trees is cut for fuel purposes. Although the government bans the cutting of trees on public land, it lacks resources and manpower to enforce the law. Also, because the trees are free and an alternative energy source (lignite transportation could be a problem) is not readily available, it is cheaper for local businessmen to give bribes than to convert their kilns to use lignite or gas.

The project will initiate a study to evaluate alternative affordable sources of fuel, lignite, imported lignite or coal, piped natural gas, or LPG, among others. By the end of the project, an affordable alternative energy source including transportation availability will be decided, and relevant government actions will be recommended.

(iii) Démand Side Management

Demand side management is an integral part of power development. EGAT's Demand Side Management Office has planned a pilot program to help four large manufacturers in Bangkok to improve their energy consumption process. As more and more new industries will be moving to the WSB region and as it is cheaper, for EGAT as well as for business owners, to install energy-efficient equipment for the new factories and buildings than to retrofit the old ones, the Study Team recommends that a DSM project be initiated in the WSB region. New large investors, in Bang Saphan or other industrial estates, should be informed of the DSM program when they apply for power connections, and one factory should be selected among the interested group to start a similar DSM project.

(iv) Replacement of Bare Wires with PICs

As noted before, the unstable power supply in the WSB region is caused by the special characteristics of the region. PEA uses bare wires for transmission lines, passing through orchards. It is very difficult to trim the fruit trees, and the overgrowth of tree branches sometimes cuts off the transmission lines, causing power supply disruptions. PEA intends to gradually replace bare wires with partially insulated cables (PICs). The estimated cost will be further studied.

(v) Installation of New Transmission Lines and Substations

Both EGAT and PEA have plans to build new transmission lines and substations to match the ever-increasing demand for power generation. Most significantly, EGAT plans to build a 500 kV line to connect the BMR with the Bang Saphan area to receive IPP power supply. PEA also has a plan to expand its transmission and distribution capacity in the region.

3.5.3 Proposed Subregional Projects

Kra Buri River Hydropower Project

1. Project Title: Kra River Hydropower Project 2. Location: Ranong province 3. Beneficiary: Chumphon 4. Implementation: **EGAT** 5. Objectives: Electricity generation with 130 MW installed capacity and 210 GWh annual energy generation. 6. Expected effects: To ensure a reliable supply of electricity to Chumphon area to support regional economic development.

- 7. Implementation Schedule: Commissioning in 2002
- 8. Project Description:

A possible location is in Ranong province on the Kra Buri river, an international river and border line between Myanmar and Thailand. Power generation capacity is estimated at 2x65 MW. EGAT undertook a pre-feasibility study in 1990 and is seeking financial support for feasibility study. Further geological, construction material investigation and topographic, environmental and ecological investigations should be undertaken for the final recommendation.

Reference on Subregional Cooperation

Tenasserim Hydropower Project

1. Project Title: Tenasserim River Hydropower Project

2. Location: Myanmar

3. Beneficiary Prachuap Khirikhan and the WSB

4. Objectives: Electricity generation with a possible 700 MW

of installed capacity

5. Expected Effects To ensure a reliable supply of electricity to

the WSB area to support regional economic

development.

6. Project Description

Tenasserim River runs on the Myanmar side of the border, parallel to the WSB region. Downstream Tenasserim river near Tenasserim town has a catchment area of 16,000 km². A promising reservoir site is found about 190 km from the estuary, with a catchment area of 9,870 km². The potential generation capacity is estimated at 700 MW. A pre-feasibility study will be required at the promising reservoir site.

Table 9.3.1 Total Primary Energy Supply by Sources

unit : ktc

										%
SOURCES	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Modern energy	16,173	16,862	19,505	21,816	25,726	30,340	33,075	36,254	40,885	45,691
	60.1	59.3	61.5	63.1	64.3	67.2	68.4	69.0	69.8	70.2
Anthracite	6	3	. 2	- 5	5	10	14	14	16	6
Coke	56	26	. 38	50	55	60	56	48	54	72
	0.2	0.1	0.1	0 2	0.1	0.1	0.1	0.1	0.1	0.1
Other Coal 1/	151	112	156	185	240	}48	261	293	602	884
	0.6	0.4	0.5	0.5	0.6	0.4	0.6	0.5	1.0	1.4
Lignite	1,376	1,486	1,898	2,031	2,463	3,575	4,135	4,439	4,706	5,158
	5.1	5.2	6.0	5.9	6.2	7.9	8.5	8.4	8.1	7.9
Petroleum	11,384	11,641	13,339	14,285	16,443	17,761	19,436	22,933	26,489	30,190
	42.3	41.0	42.0	41.3	41.1	39.3	40.2	43.7	45.2	46.4
Petroleum Product	2,322	2,301	3,135	4,388	5,233	7,630	8,110	7,550	8,147	8,311
	8.6	8.1	10.0	12.7	13.1	16.9	16.8	14.4	13.9	12.8
Electricity	878	1,293	937	872	1,287	1,156	1,063	977	871	1,070
	3.3	4.5	2.9	2.5	3.2	2.6	2.2	1.9	1.5	1.6
Renewable Energy	10,726	11,571	12,201	12,776	14,284	14,782	15,286	16,281	17,731	19,378
	39.9	40.7	38.5	36,9	35.7	32.8	31.6	31.0	30.2	29.8
Fuel Wood	8,446	9,422	10,217	10,868	11,664	12,437	12,863	13,814	15,181	16,228
	31.4	33.2	32.2	31.4	29.2	27.6	26.6	26.3	25.9	25.0
Paddy Husk	1,061	919	760	624	731	630	455	607	571	483
	4.0	3.2	2.4	1.8	1.8	1.4	1.0	1.2	1.0	0.7
Bagasse	1,219	1,320	1,224	1,284	1,889	1,715	1,968	1,860	1,979	2,667
	4.5	4.3	3.9	3.7	4.7	3.8	4.0	3.5	3.3	4.1
Total	26,899	28,433	31,706	34,592	40,010	45,122	48,361	52,535	58,616	65,069
	100.0	100.0	100,0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Note: 1/ Included bituminous, briquettes and others.

Table 9.3.2 Demand/Supply of Natural Gas

HNIT · MMCED

		UNII	: MMCFD
	1993	1998	2003
DEMAND	911	1,733	2,943
EGAŢ	716	1,224	1,918
INDUSTRY	56	320	836
FEEDSTOCKS	139	189	189
SUPPLY	911	1,733	2,943
UNOCAL	765	925	1,100
BONGKOT	39	500	500
ESSO	56	65	65
THAI STEEL	51	60	60
JDA		į	150
IMPORT		183	1,068

Source: PTT, Facts and Figures, 1994

Table 9.3.3 TOTAL EGAT GENERATION REQUIREMENT (1995 TLFS FORECAST : HIGH CASE)

	Fiscal	Peak	Generation		Energ	y Generatio	n	Load
	Year		Increas			Increas		Factor
L		MW	MW	%	GWh	GWh	%	%
				E	Actual	,		
	1985	3,878.40	331.10	9.33	23,36.57	2,290.13	10.87	68.75
	1986	4,180.90	302.50	7.80	24,779.53	1,422.96	6.09	67.66
	1987	4,733.90	533.00	13.23	28,193.16	3,413.63	13,78	67.99
	1988	5,444.00	710.10	15.00	31,996.94	3,803.78	13.49	67.09
	1989	6,232.70	788,70	14,49	36,457.09	4.460,16	13.94	66.77
1	1990	7,093.70	861.00	13.81	43,188.79	6,731.69	18.46	69.50
	1991	8,045.00	951.30	13.41	49,225.03	6,036.25	13.98	69.85
	1992	8,876.90	831.90	10.34	56,006.44	6,781.41	13.78	72.02
-	1993	9,730.00	853.10	9.61	62,179.73	6,173.29	11.02	72.95
İ	1994	10,708.80	978.80	10.06	69,651.14	7,471.41	12.02	74.25
	1995	12,267.90	1,559.10	14.56	78,880.37	9,229,23	13.25	73.40
L	1996	13,310.90	1,043.00	8.50	85,924.13	7,043.77	8.93	73.69
A	verage Growth							
1	1987-1996		913.00	12.28		6,114.46	13.24	
					precast			
	1997	14,904.00	1,593.10	11.97	97,716.00	11,791.87	13.72	74.84
	1998	16,445.00	1,541.00	10.34	108,234.00	10,518.00	10.76	75.13
	1999	18,010.00	1,565.00	9.52	118,797.00	10,563.00	9.76	75,30
	2000	19,658.00	1,648.00		129,601.00	10,804.00	9.09	75.26
	2001	21,423.00	1,765.00		141,598.00	11,997.00	9.26	75.50
	2002	23,131.00	1,708.00	7.97	153,141.00	11,543.00	8.15	75.58
1	2003	24,848.00	1,717.00		165,460.00	12,319.00	8.04	76.01
	2004	26,645.00	1,797.00	7.23	179,206.00	13,746.00	8.31	76.78
	2005	28,518.00	1,873.00		193,097.00	13,891.00	7.75	77.30
	2006	30,464.00	1,946.00		206,566.00	13,469.00	6.98	77.40
1.	2007	32,536.00	2,072.00		221,170.00	14,604.00	7.07	77.60
1	2008	34,692.00	2,156,00		236,964.00	15,794.00	7.14	77.97
	2009	36,914.00	2,222.00		251,909.00	14,945.00	6.31	77.90
	2010	39,247.00	2,333.00		267,557.00	15,648.00	6.21	77.82
L	2011	41,683.00	2,436.00	6.21	283,858.00	16,301.00	6.09	77.74
A	verage Growth	: "]	¥ .			.:		*
	1982-1986	-	318.44	10.06	÷	1,763.91	9.20	
}	1987-1991		772.82	13.99	<u> </u>	4,889.10	14.71	_]
1	1992-1996	-	1,053.18	10.60		7,339.82	11.79	
	1997-2001	_	1,622.42	9.99		11,134.77	10.51	'
	2002-2006		1,808.20	7.30	-	12,993.60	7.85	
	2007-2011		2,243.80	6.47		15,458.40	6.56	

Thailand Load Forecast Subcommittee, October 1996

Table 9.3.4 Demand Savings (Cumulative Peak MW)

Programs	1993	1994	1995	1996	1997
Residential Sector					
Refrigerator	o	0,25	2	12	27
Air-conditioning	0	2	4	8	22
Lighting System	10	30.5	76	122	145
Res. Sub + Total	10	32,75	82	142	194
Commercial Sector					
Lighting Retrofit	2	15.25	30.5	45.75	61
New commercial & Government	1.5	4.5	9	15	20
Com. Sub + Total	3.5	19.75	39.5	60.75	81
Industrial Sector		- 7			
Motor and Invertes	0.6	1.4	9.5	15	30
Lighting System	0.2	0.6	1.5	3	6
Ind. Sub + Total	0.8	2	11	18	36
Totals	14.3	54.5	132.5	220.75	311

(Cumulative Annual GWh)

Programs	1993	1994	1995	1996	1997
Residential Sector					
Refrigerator		2	15	80	186
Air-conditioning	0	10	20	40	117
Lighting System	50	153	380	610	797
Res. Sub + Total	50	165	415	730	1100
Commercial Sector					
Lighting Retrofit	10	76	153	229	328
New commercial & Government	10	30	60	105	140
Com. Sub + Total	20	106	213	334	466
Industrial Sector					
Motor and Invertes	4	10	70	110	225
Lighting System	[[3	8	15	33
Ind. Sub + Total	5	13	78	125	258
Totals	75	284	706	1189	1826

Table 9.3.5 Forecast of Electrical Demand for the WSB

DEMAND: MW (NON-COINCIDENT)

	Actual		Forecast														
Province	2538	2539	2540	2541	2542	2543	2544	2545	2546	2547	2548	2549	2550	2551	2552	2553	2554
	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Knachaneburi	90.1	104.0	140.1	154.1	167.2	180.8	195.0	209.8	225.3	241.5	258.4	276.3	295.2	315.2	336.3	358.7	382.6
Ratchaburi	239.7	275.2	239.6	241.3	266.6	292.7	319.8	347.7	378.0	409.4	442.0	476.6	510.4	546.7	584.8	625.1	667.0
S. Songlitram	39.6	44.8	50.3	76.8	84.7	92.6	100.8	109.2	117.9	127.0	136.5	146.6	157.2	168.5	180.5	193.3	206.9
Petchburi	85.3	80.0	87.1	94.5	102.2	110.1	118.4	126.9	135.8	145.0	154.6	164.6	175.1	186.2	198.0	210.4	223.6
P.Khiri Khan	107.0	146.4	177.3	218.6	750.2	1,094.2	1,558.6	1,583.5	1,593.8	1,604.7	1,616.1	1,628.2	1,641.0	1,654.5	1,668.9	1,684.2	1,700.3
Chumphon	51.9	59.6	67.5	75.6	83.9	92.5	101.2	110.1	119.0	128.2	137.7	147.7	158.3	169.4	181.2	193.8	207.1
Total	613.6	710.0	761.9	860.9	1,454.8	1,862.9	2,393.8	2,487.2	2,569.8	2,655.8	2,745.3	2,840.0	2,937.2	3,040.5	3,149.7	3,265.5	3.387.5

Table 9.3.6 PEA's Power System in Western Seaboard Areas

NO.	PROVINCE	< 7th	Plan>	< 8th	Plan>	< 9th	Plan>
		2535	2539	2540	2544	2545	2549
1	Kanchanaburi	67.09	122,59	140.12	195.05	209.85	276.300
2	Ratchaburi	188,36	265.85	248.15	527.32	573.25	759,42
3	Samut Songkhran	24.52	44.83	50.29	68.67	74.31	99.04
4	Petchaburi	63.92	79.95	108,03	148.62	159.74	208.71
5	Prachuap Khirikha	44.92	164.07	187,54	1,572.67	1,598.59	1,648.17
6	Chumporn	37.12	59.58	67.47	121.46	132.06	177.30
Ave	Total rage Growth (%)	425.93	736.87 14.69	801,600	2,633.79 29.01	2,747,80	3,168.94 3.77

Table 9.3.7 Number of Electrified Villages

	FY 1980	FY 1980	FY 1981	FY 1982	FY 1983	FY 1984	FY 1985	FY 1986	FY 1987	FY 1988	FY 1989	FY 1991	FY 1992	FY 1993
Total Number of Villages	51,221	51,733	52,250	54,492	55,309	56,139	56,981	57,391	58,252	59,126	60,222	61205	62262	63273
Villages Electrified in the FY		5,155	4,457	3,786	2,120	3,876	4,096	5,810	2,165	3,515	3,405	2,193	2,674	1,029
Number of Villages electrified	17,466	22,621	27,078	30,864	32,984	36,860	40,956	46,766	48,931	52,446	555,851	58,044	60,718	61,747
% of Electrification	34.10%	43.70%	51.80%	56.60%	59.60%	65.70%	71.90%	81.50%	84.00%	88.70%	92.70%	94.80%	97.50%	97.60%

Source: Asian Development Bank Electric Utility Data Book for the Asian and Pacific Region, 1993 and PEA Annual Report 1980 to 1993

Table 9.3.8 Planned Hydro Power Plant Projects

Project	Basin	Province	Installed Capacity (MW)	Generating Energy (GWh/Yr)	Running Energy (GWh/Yr)
1. Vajiralongkorn	Mae Nam Mae Klong	Kanchanaburi	430	380	540
2. Kang Krachan	Mae Nam Phetchburi	Petchburi	800	700	1,000
3. Pranburi No.1	West Coast Gulf	Prachuap Khirikhan	1,500	1,300	1,900
4. Pranburi No.2	West Coast Gulf	Prachuap Khirikhan	470	414	590
5. Khao Laem Yai	Mae Nam Mae Klong	Kanchanaburi	180	160	230
Total			3,380	2,954	4,260

Source:

Potential of Southwest Pumped Storage Project Water Resiurces Planning and Development Division

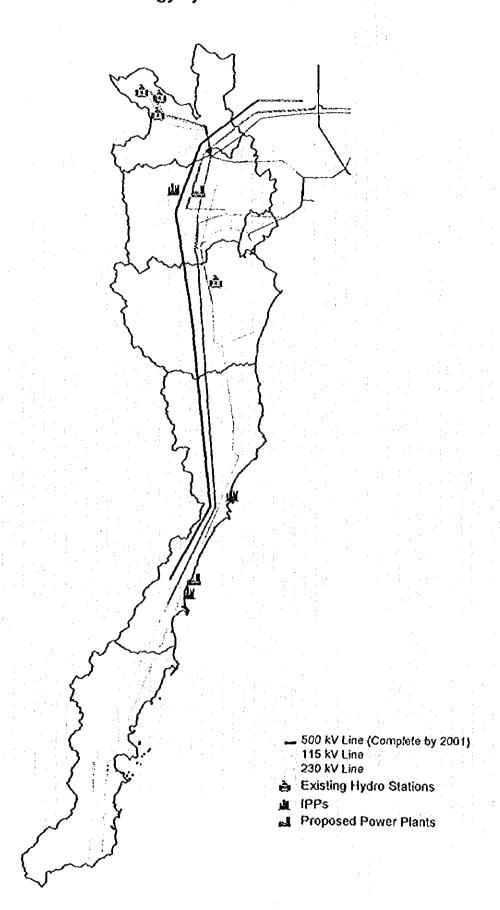
Hydro Power Engineering Department

1988/1/7

Table 9.3.9 PEA's Power System in Western Seaboard Areas

As of February, 1996

No.	Description			Prov	inces			Total
		Kanchanaburi	Ratchaburi	Petchaburi	P. Khirikhao	S. Songkhram	Chumphon	
1	Length of transmission Lines (circuit-km)	272.1	200.65	193.00	73.0	-	85.0	823.75
2	Substations - Number (Set - Size of transfor (MVA)	8 7*50 1*25	8 8*50	6 4*50 2*25	5 4*50 1*25	0.00 0.00	3 3*25	30 23*50 7*25
3	Length of distribution system (circuit-km)	4,624	4,420	2,115	3,181	590	3,191	18,122
4	Peak Load Deman (megawatt)	82.8	208.7	760.0	128.6	30.0	47.0	573.1


Table 9.3.10 Cost and Benefit of Distributing the Energy Saving Cooking Stove With Government Covering the Difference Between Old and New (The Whole WSB)

Mil	llton	Bar	ıŧ

		Cost with Proje	ect		Cost without	Project			ويرديون والمساهدة فالقواف فيطفانه
Year	Cost of Subsidies	Operating Cost	Cost of Using New Stove	Replant Cost	Farmer Labor Cost	lood Damag Cost	Env. Cost	ost of Usin Old Stove	Net Benefits
1998	34.15	3.41	37.56	0.00	0	0		0.00	-37.56
1 9 99	0.00	0.00	0.00	140	14	7		161	161.00
2000	34.15	3.41	37.56	140	14	7		161	123,44
2001	0.00	0.00	0.00	140	14	7		161	161,00
Sub-total	68.29	6.83	75.12	420.00	42.00	21.00	0.00	483.00	407.88

No. of Household	750468	Data to be further sought:
Estimated cooking stove at 65%	487804.2	Labor cost for picking up wood Baht/cm or
Difference between old and new, Baht/Unit	70	Baht/kg
Operation cost as % of the total	10%	Environment cost:
Trees saved MMCM	0.70	1) Health cost reduced by living near the trees
Tree replant cost MillionBaht/MMCM	200	the insurance cost of longevity in Thailand and
Farmer labor saved in picking wood as % of total tree value	10%	US (mixed) or lodd of productivity due to sick
Flood damage reduced in value as % of total tree value	5%	related to the loss of trees
Net present value of total cost using new stove, Million Bahts	60.27	2) Real estate price of wooded area vs.
Net present value of total cost using old stove, Million Bahts	345.26	non-wooded area in same district
NPV of avoided cost of using new stoves to the economy, Million Bahts	284.99	3) Extra cost to prevent soil erosion
Economic Internal Rate of Return	410%	
Discount rate	12%	

Energy system in WSB

