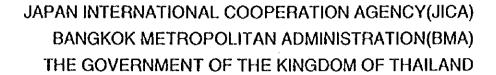


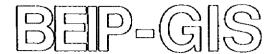
JAPAN INTERNATIONAL COOPERATION AGENCY(JICA)
BANGKOK METROPOLITAN ADMINISTRATION(BMA)
THE GOVERNMENT OF THE KINGDOM OF THAILAND

ENVIRONMENTAL ATLAS

BANGKOK METROPOLITAN AREA

PACIFIC CONSULTANTS INTERNATIONAL SUURI-KEIKAKU CO.,LTD.


SSS


JR

97-043

			:
į			
		·	

1138049 (0)

ENVIRONMENTAL ATLAS

BANGKOK METROPOLITAN AREA

February 1997

PACIFIC CONSULTANTS INTERNATIONAL SUURI-KEIKAKU CO.,LTD.

Preface

In response to a request from the Government of the Kingdom of Thailand, the Government of Japan decided to conduct "The Study on Urban Environmental Improvement Program in Bangkok Metropolitan Area" and entrusted the Study to the Japan International Cooperation Agency (JICA).

JICA sent to the Kingdom of Thailand a study team headed by Dr. Katsuhide NAGAYAMA, Pacific Consultants International, and composed of members of Pacific Consultants International, and Suuri-Keikaku Co.,Ltd., four times between August 1995 and December 1996.

The team held discussions with the officials concerned of the Government of the Kingdom of Thailand and conducted field surveys at the study area. After the team returned to Japan, further studies were made and the present report was prepared.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

I wish to express my sincere appreciation to the officials concerned of the Kingdom of Thailand for their close cooperation extended to the team.

February 1997

Kimio Fujita President

Japan International Cooperation Agency

February 1997

Mr. Kimio FUJITA

President
Japan International Cooperation Agency
Tokyo, Japan

Letter of Transmittal

Dear Sir,

We are pleased to formally submit herewith the special edition of "Environmental Atlas, Bangkok Metropolitan Area" as a supplement to the final report of "The Study on Urban Environmental Improvement Program in Bangkok Metropolitan Area" (referred to as "BEIP Study") which was undertaken in the Kingdom of Thailand from August 1995 through December 1996 by the Study Team, organized jointly by Pacific Consultants International and Suuri-Keikaku Co., Ltd.

The BEIP Study employed a computer-aid planning approach utilizing GIS (Geographic Information System) technique to identify the current environmental planning issues and simulate future changes in Bangkok urbanization in terms of land use, transportation, air quality and water-related environment. Through the planning work, the BEIP Study Team built up the "BEIP-GIS Data Base" in such a way that those who are interested in urban analyses, studies and planning for the Bangkok Metropolis may easily make use of the data base.

This "Environmental Atlas" compiles a number of selected outcomes of GIS derived from the process of the Study for those who want to know the Bangkok urban environment at a glance.

We owed a lot to many people for the accomplishment of the Study. We would like to express our sincere gratitude and appreciation to all those extended their kind assistance and cooperation to the Study Team, in particular, relevant officials of Bangkok Metropolitan Administration, the Thai counterpart agency.

Very truly yours,

Dr. Katsuhide NAGAYAMA

Team Leader,

The Study Team for the Study on Urban Environmental Improvement Program in Bangkok Metropolitan Area

1. An Outline of the Environmental Atlas

1.1 INTRODUCTION

Based on a number of map data collected through the Study on Urban Environmental Improvement Program in Bangkok Metropolitan Area (BEIP), the JICA study Team built a Geographic Environmental Data Base, named "BEIP-GIS" to support the planning work.

Through the GIS-technique, the collected basic data were fully processed and analyzed to generate spatial information on natural attributes, environmental constraints, socio-economic conditions and existing problems of transportation in the study area. Results of those data manipulations were displayed in forms of maps and tables.

This Environmental Atlas compiles a number of selected outputs out of the results of the BEIP-GIS to visibly show the current urban environmental states, intermediate outcomes for planning process to identify planning issues, results of simulation analyses for future urbanization and land use, traffic conditions and air pollution distribution.

This Environmental Atlas has been prepared as an additional material to supplement the main report of the BEIP Study, and will make some contribution to those who are concerned with solution of urban environmental problems and urban planning of BMA.

1.2 ON THE BEIP-GIS

(1) Concept of Environmental Information System

The GIS technique was applied for the planning process in the BEIP study. The system is called "Environmental Information System (EIS)" which was specially designed so as to support planning work for land use and environmental management, incorporating and integrating functional sub-systems of the transport sector, air pollution control measures, water-related environment with socioeconomic data/information for the Bangkok Metropolis. The concept of the architecture of EIS is represented as illustrated on Fig. 1.

(2) System Configuration

For the operation of BEIP-GIS, the most updated hardware and the most standardized software systems were selected. These hard and software systems were installed in the study office, Department of Public Works, BMA, and available for data digitization, analysis and mapping. The system configuration for BEIP-GIS is shown in Fig. 2.

(3) Input Data Items

In order to develop the BEIP-GIS, many kinds of both graphical and statistical data/information have been collected with cooperation of relevant agencies. All collected map data were digitized and input into the computer after necessary modification, adjustment and updating. A total of 22 sets of original map data were stored into the BEIP-GIS, which are demonstrated in this Environmental Atlas.

1.3 DATA PROCESSING BY GIS

Data processing by GIS consists of three hierarchical stages, namely, primary, secondary and tertiary process, according to the degree of the spatial data manipulation.

The primary data analyses: Simple overlay analyses of basic maps were conducted to identify spatial distribution patterns and characteristics in relation with regional factors. Cross tabulations in terms of area, length, density, average and/or frequency calculation were made to identify specific geographic features by district or sub-district unit in this stage. Statistical data such as population and housing were compiled into the corresponding statistical maps. Results of the primary data analysis may not only show existing urban conditions of

the BMA, but also bear informative indicators for urban planning considerations.

The secondary data analyses: Land suitability analyses were conducted to identify degree and characteristics of land suitability for urban development or conservation, based on a urban potential evaluation model. For the model building, a number of evaluation criteria affecting apparent urbanization pressures such as conditions of natural/environmental constraints, transport infrastructure availability/accessibility and public services locations, were selected from the urban planning point of view. To derive the overall evaluation of urbanization potentials, these criteria were weighted in consideration of the inherent meaning and effectiveness of each criterion. The provisional weighting system was calibrated by a multiple computing process up to significantly (more than 90 %) explain the actual present sate. The results of this data processing analyses are the basis for the following tertiary data analysis.

The tertiary data analyses: Simulation analyses for future urbanization in BMA were conducted as the tertiary data analysis. These are the most complex and sophisticated, combining with the results of the secondary data analyses. Future traffic conditions and air pollution distribution patterns were simulated to evaluate proposed policy options as well as get insight into the most-likely future state in the Bangkok urban environment

2. Contents of the Environmental Atlas

In the Environmental Atlas, a total of 57 map sheets are selected out of the BEIP-GIS. These maps are divided into six groups, based on the analytical categories as mentioned in the preceding section.

Data Items of BEIP-GIS

A: Existing Conditions (Basic Data)

- A-1 Bangkok Metropolitan Area Base Map
- A-2 Administrative Boundary
- A-3 Traffic Analysis Zones (Bangkok Metropolitan Region)
- A-4 Inundated Areas by 1983 Flood
- A-5 Simulated Land Subsidence Areas
- A-6 Existing Flood Protection Facilities
- A-7 Population Distribution (1995)
- A-8 Population Growth by Sub-district(1990-1995)
- A-9 Population Density by Sub-district
- A-10 Income Group Distribution by Traffic Analysis
 Zone
- A-11 Existing Land Use
- 1.12 Distribution of Landmarks

- A-13 Characteristics of Recent Building Development (1992-1994)
- A-14 Land Sub-division Development (1988-1996)
- A-15 Recent Land Development in Suburban Areas (interpreted from Landsat TM Data)
- A-16 Green Coverage(except for cultivated land, interpreted from Landsat Data)
- A-17 Current Khlong Water Quality (BOD Concentration)
- A-18 Road and Railway Network
- A-19 Traffic Demands (Traffic Generation and Attraction)
- A-20 Noise Level of Bangkok Metropolis

B: Plans

- B-1 Land Use Zoning (designated by DTCP, 1992)
- B-2 Water Service Area Expansion Plan
- B-3 On-going and planned Road Projects by 2000
- B-4 Planned Bangkok Mass Transit Systems
- B-5 On-going Sewerage Projects and Planned Sewerage Zones)
- C: Primary Data Analysis

- C-1 Built-up Area Ratio by Sub-district
- C-2 Green Coverage Ratio by Sub-district
- C-3 Greens in Built-up Area
- C-4 Accessibility to Large Parks
- C-5 Open Space Ratio by Sub-district
- C-6 Road Density by Sub-district
- C-7 Soi Density by Sub-district
- C-8 Accessibility to City Center (Unloaded)
- C-9 Accessibility to City Center(Loaded)
- C-10 Time Losses Distribution due to Traffic Congestion
- C-11 Disparities between Solid Waste Collection and Generation

D: Urban Environmental Problem Analysis

- D-1 Problem Areas on Natural Constraints
- D-2 Densely Inhabited Area
- D-3 Problem Areas on Living Environment
- D-4 Level of Road Traffic Congestion (1995)
- D-5 Problem Areas on Transport Environment
- D-6 A Simulation on Ambient Air Quality (1995)

D-7 Problem Areas on Sanitary Environment

E: Secondary Data Analysis (Land Suitability Analysis)

- E-1 Assessment on Natural Conditions
- E-2 Assessment on Urban Services
- E-3 Assessment on Transport Services
- E-4 Assessment on Urban Sanitary Services
- E-5 An Overall Evaluation on Urbanization Suitability (1995)
- E-6 Simulated Urbanized Area(1995)
- E-7 Future Urbanization Potential(2011)
- E-8 Future Land Use Simulation-Trend Based Policy Free Case-1

F: Simulation Analysis

- F-1 Traffic Simulation-1: Level of Road Traffic Congestion (Present Demands and Future Supplies)
- F-2 Traffic Simulation-2: Level of Road Traffic Congestion (Future Demands and Supplies)
- F-3 Ambient Air Quality Simulation-1
- F-4 Ambient Air Quality Simulation-2
- F-5 Ambient Air Quality Simulation-3
- F-6 Ambient Air Quality Simulation-4

3. Explanations of Maps

Brief explanations on the Maps complied hereafter in the Environmental Atlas are given as follows. The map code is identical to the one attached to corresponding map.

3.1 BASIC MAP DATA/ INFORMATION

A-1 Bangkok Metropolitan Area Base Map

Preparation of a base map is the first step of geographic data base development. The base map for the study area is compiled at a scale of 1:75,000 with combination of 20 sheets of 1:20,000 and additional 1:50,000 scale topographical maps. Main roads, Khlongs/water ways and railways are digitized and mapped on the 1:75,000 scale base map. Administrative boundaries of districts and sub-districts are also exactly input on this map.

A-2 Administrative Boundary Map

Polygons enclosed with administrative boundaries are the basic units for socioeconomic statistical data analyses as well as the minimum spatial unit for the planning work. Totally 38 districts and 151 sub-districts boundaries are drawn in this map with a name list of these units.

A-3 Traffic Analysis Zone (Bangkok Metropolitan Region)

Traffic Analysis Zone (TAZ) is the unit for traffic data collection and a series of transport analyses. In order to grasp

traffic flows and transport characteristics in Bangkok, the surrounding provinces need to be included for the spatial framework. For this purpose, Bangkok Metropolitan Region (BMR) is divided into a total of 505 TAZs, out of which 332 TAZs are set in BMA. Each TAZ has socioeconomic statistical data and traffic attributes and characteristics derived from "Person Trip Home Interview Survey 1995", conducted jointly by the BEIP Study Team and the Urban Transport Data Management Project (UTDM) Team under OCMRT.

3.2 Current Physical and Environment Conditions of BMA

In order to identify the current environmental conditions, the following map data/information are visible demonstrated:

A-4 Inundated Areas by 1983 Flood

The distribution pattern of inundated areas by the 1983 flood in BMA is shown in this map. The original data was quoted from the Report of the Flood Mitigation Study for Bangkok conducted by JICA in 1985. As seen in this map, Blue shaded areas represent the inundated areas. The GIS calculates the total inundation area by this flood at 424 km² within the jurisdiction of BMA.

A-5 Simulated Land Subsidence Areas

Land subsidence has been recognized as one of the most crucial problems which worsen urban development conditions and make flood mitigation more difficult in BMA since the 1980s. Extraction of ground water has been accelerated by the rapid economic growth in the 1990s, and land subsidence is still continuing in both BMA and BMR despite the control regulations to ground water use.

This map demonstrates iso-contour lines of anticipated possible height of land subsidence by the year 2017, based on the simulation analysis with the most severe scenario. The original data source is quoted from the JICA Study for Ground Water Management and Land Subsidence conducted in 1995. According to this map, Bangkok and its surrounding areas do/will suffer from continuous land subsidence unless proper counter measures are taken.

A-6 Existing Flood Protection Facilities

After the large flood disaster in 1983, the flood protection project was implemented with construction of dikes, pumping stations and water gates, covering part of the jurisdiction of BMA. In this map, flood protection dikes, which is shown with red lines, were constructed along the fringe of the urbanized area of Bangkok. Inevitably, inland water drainage is recently getting an more important problem in the urban area.

A-7 Population Distribution (1995)

The most recent demographic population data were estimated and treated on a sub-district base. A-7 shows the population distribution 1995, representing its magnitude by sub-district. The original data comes from a series of projection analyses by the UTDM Team and the BEIP Study Team, based on "Population and Housing Census 1990" (National Statistical Office), Population Registration Data (BMA) and the other relevant demographic statistical data.

A-8 Population Growth by Sub-district (1990-1995)

Changes in population during the period between 1990 and 1995 are represented by a distribution pattern of population growth rates by sub-district. Areas with a higher growth rate are identified in outskirts rather than central areas. Obviously urban sprawl is taking place with spatial expansion of urbanization.

A-9 Population Density by Sub-district

As one of significant data to represent the nature of urbanization, A-9 shows a distribution pattern of Population Density

A-10 Income Group Distribution by Traffic Analysis Zone

This is very unique, showing a spatial characteristic of average income groups in BMR. The income groups are classified into seven categories in terms of monthly household income. The original data source comes from the results of "Person Trip Home Interview Survey 1995". It can be observed from this map that higher income groups tend to reside in the outskirts rather than the inner city.

A-11 Existing Land Use (1993)

Identification of the most current 1993 land use in BMA was worked out by Mapping Division, Department of City Planning, BMA, and the information was digitized into the BEIP-GIS by the BEIP study team for the planning purpose. This map, A-11, shows the urbanization pattern and distribution of open space. This is one on the most significant outcomes of the BEIP Study.

Treating the land use data in association with the district and sub-district boundary data through the overlaying data processing technique of GIS, each type of land use by administrative unit can be calculated and tabulated as shown in Table 1. These provide several implications for discussions on the urban growth management. For instance, the total built-up (urbanized) area was calculated at 541 km², or 34% of the entire BMA area, at present as of 1993.

A-12 Distribution of Landmark Facilities

Locational information of main buildings/landmarks and public service facilities were digitized and mapped out on the base map. Each is attached with its locational characteristics and attributes in the data base.

A-13 Characteristics of Recent Building Development (1992-1994)

Map A-13 represents a recent trend of urbanization in terms of the number of permissions of building construction during the period between 1992 and 1994 according to the BMA data. Building development concentrates in the central business district, and at the same time, an active momentum can be seen in some sub-urban areas.

A-14 Land Sub-division Development (1988-1996)

Map A-14 shows another current trend of urbanization observed from the number of permissions of sub-division (housing) projects during the period between 1988 and 1996.

It can be apparently seen that sub-division development is very active in the fringe of the present built-up areas.

A-15 Recent Land Development in Suburban Area

In Map A-15, the yellow-shaded area indicates the non-vegetated land areas and/or urbanized areas which are interpreted from the "Landsat TM Data, May, 1995". And, the red-hatched areas indicate the urbanized areas extracted from the Existing Land Use 1993, Map A-11. Eventually, only the yellow-shaded areas with non-overlapped by the red-hatched areas may be regarded as the areas where were recently developed during the period between 1993 are 1995. For the generation of this map, the Landsat image data and the geographic data of BMA are simultaneously processed in the BEIP-GIS.

A-16 Green Coverage

Using the same satellite image of "Landsat TM Data, May, 1995", vegetated areas within the urbanized area are identified based on the same interpretation and over-laying process as above. This map shows a general trend of land use in BMA, i.e., less green space is accompanying in the urbanization process.

A-17 Current Khlong Water Quality (BOD Concentration)

Water quality at selected points in Khlongs were sampled and tested by MOSTE and the BEIP Study Team. Map A-17 collectively shows the most recent results of BOD concentration. The red-colored points stand for the most contaminated water. As seen in this map, the distribution of contaminated areas in Khlong water is almost equal to that of densely built-up area. In the suburbs of Bangkok, the BOD level is still at a relatively low level. And, it is a notable fact that the historical area, say, Rathnakosin and Phra Nakhon, the

water quality of Khlongs has been considerably improved due to the fresh water inflow from the Chao Phraya river.

A-18 Road and Railway Network

In the Bangkok Metropolis, there are a number of trunk/arterial road projects some of which are being implemented. Map A-18 indicates the exact locations and alignments of these ongoing and/or planned road projects for the 8th National Plan by the responsible agencies, namely, 1) BMA; 2) PWD; 3) DOH and 4) ETA (Expressways) as of December 1996. This map implies a necessity of coordination among these agencies in terms of their alignment and construction schedule, because in some areas, for instance, in western part of the Middle Ring and at the Chao Phraya crossing in the southern part of the Outer Ring and the Middle Ring, different agencies have planned different alignment without any technical coordination among them.

A-19 Traffic Demands (Traffic Generation and Attraction)

Traffic generations and attractions were calculated by each TAZ based on traffic related surveys. Map A-19 shows comparative rations of traffic attraction to traffic generation in a raking system. Rank 1 is the highest zone which means that the volume of traffic attraction is much greater than that of traffic generation, while Rank 5 is the lower zone which means that there are little difference between traffic generation and attraction. Accordingly, it can be said that the zones categorized by Ranks 1 or 2 are thought to have some urban center functions.

A-20 Noise Level

For the compilation of this Environmental Atlas, additional environmental survey data on Noise Level in Bangkok were provided by Department of Environmental Quality Promotion, Environmental Research and Training Center (ERTC).

Noise level indicated in Map A-20 shows "10 minutes equivalent sound level". The data were taken from 7:00 to 22:00 hour in daytime and 22:00 to 0:00 hour in night time in 1966. The grid cell size of this map is 1 km by 1 km in the central areas and 2 km by 2 km for the other surrounding areas.

3.3 Plans

B-1 Land Use Zoning (Designated by DTCP, 1992)

The current Land Use Zoning System for Bangkok had established by DTCP in 1992. Map B-1 shows the future direction of land use in BMA based on the Urban Planning Act, however, many sub-division development has been taking place even in the designated "conservation area". These discrepancies between the institutional framework for land use zoning and the existing actual land use can be easily interpreted by a simple overlay analysis of those two maps.

B-2 Water Service Area Expansion Plan

The planned expansion areas for water service supply up to 2017 are indicated in Map B-2. The expansion of water service areas may indicate the spatial directions of future urbanization.

B-3 On-going and Planned Road Projects by 2000

The spatial structure of Bangkok Metropolis is about to be changed by several trunk arterial highways such as the Outer Ring Road and the Middle Ring Road. And, in order to mitigate heavy traffic congestion, a number of secondary roads are now being developed. Map B-3 shows those on-going and planned road projects targeting at the year 2000.

B-4 Planned Mass Transit Systems

Map B-4 shows the routes of the planned Mass Transit Systems in Bangkok in the long-term, depicted in the Master Plan by OCMRT. The entire mass transit system of Bangkok is structured with several lines to be operated by different bodies such as MRTA, BTSC and SRT/Hopewell. An integration scheme is needed to make the total system really functional.

B-5 On-going Sewerage Projects and Planned Sewage Zones

BMA is divided into 24 sewage zones, which are the planning service coverage unit of sewage treatment facilities. Map B-5 shows the current planning zones. Only "Zone 1" is under operation at present. For the yellow-colored zones such as Zones 2, 3, 4, 5.5 and 5.2, sewerage facilities are now being constructed. This current zone system, however, needs to be revised in accordance with a change in the urbanization pattern.

3.4 Primary Data Analysis

C-1 Built-up Area Ratio by Sub-district

Area characteristics by sub-district unit were analyzed, based on the sub-district boundary data overlaying on several thematic maps with specific items. Some of the results of the analysis are listed in Table 2. These data are all the indicators to explain existing urban environment in BMA.

Map C-1 shows the built-up ratio for each sub-district defined as the percentage of built-up area to the corresponding sub-district area. This data is generated by an overlay process of the sub-district boundary map with the built-up area which is determined by the existing land use map. Each built-up area in terms of percentage was calculated in GIS and compiled into a table format.

C-2 Green Coverage Ratio by Sub-district

Map C-2 was compiled to identify the scarcity of green/vegetated area in BMA. This is treated with two kinds of information: the green coverage areas from the interpretation of "Landsat Satellite Image" and the sub-district boundary data map. Although the location of BMA is well suited for tropical vegetation growing, less green remains in the built-up area. Future urbanization should be well controlled to conserve green coverage and increase green in the built-up area.

C-3 Green in Built-up Area

Topographical allocations of green especially within the builtup area are identified in Map C-3.

C-4 Accessibility to Large Park

Map C-4 shows the equi-distance (3 km) or accessibility to large parks by the GIS technique of "Buffer Zone Generation". The 3 km service coverage area from/to any major large park covers only part of the urbanized area. Newly urbanized areas are generally poor in this public service.

C-5 Open Space Ratio by Sub-district

Map C-5 shows the distribution of percentages of open space (non built-up area) by sub-district. This is an inverse result of Map C-1, Built-up Ratio.

C-6 Road Density by Sub-district

Map C-6 indicates a spatial condition of road service level by sub-district in terms of the road (except for "Soi") length per unit area (hectare). This map gives a significant implication for urban planning. Such a calculation is of powerful technique endowed with GIS.

C-7 Soi Density by Sub-district

Same as the above, Map C-7 shows another indicator of road service level particularly for "Soi". As seen in this map, the

sub-districts with high Soi density are discreetly located, and have no clear-cut relation to the level of road density as shown in C-6.

C-8 Accessibility to City Center (Unloaded) and

C-9 Accessibility to City Center (Loaded)

Maps C-8 and C-9 show a zonal characteristic of accessibility tolfrom the city center by road transport, in terms of time-distance (minutes). The city center is represented by Hua Ranpong Station. These maps imply a general urban spatial economic sphere of Bangkok, and these unique outcomes demonstrate the powerful tool of GIS.

Map C-8 is the case that no traffic congestion takes place, or all road traffic can flow smoothly at the same speed as designed. Within 45 minutes (dark green), most of the built-up areas are covered. This is an ideal state where the urban economy may be performed very efficiently.

On the other hand, Map C-9 stands for the actual existing case as of 1995, based on the traffic analyses. Due to serious road congestion, vehicles run at slow speed. Eventually, the 45 minutes zone is limited only to the small areas in the central area. The urbanized area cannot be covered by "One-hour Economic Zone", and the eastern part of BMA is in almost three hours zone.

C-10 Time Losses Distribution due to Traffic Congestion

Difference in time at a grid cell between the cases of C-8 and C-9 may be defined as "time loss" caused by traffic congestion. Time loss is calculated by overlaying Map C-8 with C-9, and the volume of time loss at each grid cell is categorized into five ranks according to the relative level of traffic accessibility. Areas with a higher rank, represented by the red-colored grid cells, stand for the areas suffering from a higher economic and/or time loss due to the traffic congestion,

thereby requiring the improvement in the traffic accessibility more seriously.

C-11 <u>Disparities between Solid Waste Collection and</u> Generation

Disparities between solid waste collection (supply capacity side) and generation (demand side) were computed based on the district data. The capability of solid waste collection is represented by the number of collection vehicles currently allocated to each district, while the volume of solid waste generation was estimated according to the projected population. The value of 1.0 means that the collection capability is balanced with the generation, and the value of more than 1.0, the generation of solid waste exceeds the collection capability. In Map C-11, red-colored areas shows the largest disparity area for solid waste collection and generation. The current allocation scheme of collection vehicles should be reviewed, based on this outcome.

3.5 Urban Environmental Problem Analysis

Maps of the "D" category are some selected outcomes of the BEIP-GIS from the planning process to identify the current urban environmental problems and planning issues to be tackled.

D-1 Problem Areas on Natural Constraints

Flooded areas by the 1983 flood (Map A-4) and the simulated land subsidence map (Map A-5) were overlaid to identify the spatial distribution of physical and environmental constraints in BMA. Because of the natural background of BMA, flooding and land subsidence are the main physical constraints. Those areas where the potentiality of land subsidence is large and, at the same time, are subject to being inundated are thought to be relatively vulnerable and susceptible area against natural

disasters. In these areas, future urbanization should be careful with improvement of such existing conditions.

D-2 Densely Inhabited Area

The population density of the urbanized/built-up area in BMA was calculated at 150 persons per hectare on the average as of 1995, however, the old city is a high-densely inhabited area. The extremely high value of the population density accounted for 941 persons per hectare in Pom Prap Sattruphai Sub-district. In Talat Noi Sub-district, the population density was also 905 persons per hectare. The distribution pattern of densely inhabited areas are shown in this map.

D-3 Problem Areas on Living Environment

Four kinds of map data were integrated into Map D-3 to identify locations of problem areas in the living environment in BMA. Those are: 1) extremely high density areas; 2) slum problems; 3) urban sprawl areas without sufficient infrastructure; an 4) insufficient park accessibility.

D-4 Level of Road Traffic Congestion (1995)

The traffic volume data and the inventory data on the existing road network are surveyed and stored into the computer in the stream of the BEIP Study. The road network is divided into nodes and segments, and each segment is given to their own attributes such as number of traffics, traffic capacity, number of lanes and so on. These are the basic data base for nay transport analyses.

Based on those data, levels of road traffic congestion under the existing conditions were calibrated, and the results were mapped out on MAP D-4, covering the entire Bangkok Metropolitan Region (BMR) including the surrounding Changwats. The level of calculation is classified into five ranks: 1) Saturated; 2) Heavily Congested; 3) Congested; 4) Acceptable; and 5) Under Capacity.

D-5 Problem Areas on Transport Environment

The road density map (C-6) and the time loss evaluation map (C-10) are overlaid in association with the results of the traffic demand analyses to evaluate the current problem areas on the transport environment in BMA. Map D-5 shows the distribution of significantly serious areas by 1 km grid cell, from three standpoints which may provide with basic planning implications, namely, 1) Low road density, 2) Areas with a large traffic supply-demand gap (the computed traffic demands significantly exceed the capacity of the existing road supply), 3) Area suffering from traffic time loss due to congestion.

D-6 A Simulation on Ambient Air Quality (1995)

The BEIP-GIS is incorporated with the Air Pollutant Diffusion Simulation Model for BMA which holds the following attributes:

1) Simulated air pollutants:

PM-10, CO, SO,, NOx and NO,

2) Computerized value:

Annual arithmetical mean concentration by $500m \times 500m$ grid cell in the urbanized area (within the Outer Ring Road), and $1 \times 1 \times 1$ km grid cell in the outskirts;

3) Pollutants sources:

Motor vehicles, thermal power plants and households; and

4) Model:

Gaussian Puff Equation (following the JEA, 1993).

The detailed methodology is described in the BEIP final report.

The results of the simulation analyses of the present state are shown in Map D-6. The red and orange-colored cell stands for the area with a significantly higher concentration than that stipulated in the current Thai Environmental Standards. As seen in this map, grid cells with the higher concentrations of PM-10 and NO_2 than the standards are distributed almost over the whole built-up area in BMA. On the other hand, the concentration of SO_2 would be more than its standard in some limited areas and that of CO is mostly less than its standard in all areas in MBA.

The main source of air pollutants must be major trunk roads with heavy traffic, since the areas along major roads are with a higher concentration of PM-10 and NO₂ than the surroundings. The most concentrated areas are found along the First and Second Stage Expressways.

D-7 Problem Areas on Sanitary Environment

The air pollution simulation map (D-7), the contamination map of Khlong water (A-17) and the problem map of solid waste collection and generation (C-11) are totally integrated in this Map D-7 to identify the distribution of problem areas on the sanitary environment in BMA. Air pollution and water-contaminated areas are overlapped within the built-up area and the solid waste collection problem areas are distributed in the suburbs of BMA where urban sprawl has been taking place.

3.6 Secondary Data Analysis (Land Suitability Analysis)

Given an arithmetical model, the geographic analysis allows users to study land suitability in the real-world process. The GIS technique enhances this process by providing tools which can be combined with meaningful sequences to develop new models. In the secondary data analyses of the BEIP-GIS, a "Polygon-Overlay Analysis" for evaluation of the urban development potentiality are conducted. The process of the modeling analysis consists of the following steps;

1) Selection of Evaluation Criteria;

- 2) Application of a "Scoring System" given to the selected criteria;
- 3) Consideration of a "Weighting System" among the criteria in consideration of the significance of each criterion;
- 4) Combining and overlaying these different maps.

From Maps E-1 to E-5 are generated based on the above data processing. The basic criteria and each weighted score are as shown in Table 3. The characteristics of each output is described below.

E-1 Assessment on Natural Conditions

Map E-1 shows an overall assessment of the existing natural and physical conditions in BMA, overlaying the flood area map (A-4), the simulated land subsidence map (A-5) and the flood protection facilities map (A-6). Prior to the overlay analysis, each classified elements is weighted according to the importance of urban land use development. The total score was computed by each geographic units and finally classified into five categories.

The greater the score is given, the higher vulnerable to the natural disaster. Potentiality of the land subsidence is an significant element for the environmental management in the deltaic lowland area like Bangkok. Enlargement of inland water inundation due to the progress of land subsidence needs to be stopped with additional enforcement of drainage capability in the urbanized and/or would-be-urbanized areas.

E-2 Assessment on Urban Services

Map E-2 shows the assessment of accessibility (equi-distance) to major urban service facilities such as regional hospitals and main commercial centers/zones in BMA. These were calculated by the "buffer zone creation module" of GIS. For indication of the legend, the greater the score of an area is

given, the better urban services the area may enjoy in Bangkok.

E-3 Assessment on Transport Services

Accessibility to trunk roads, railways and bus services are collectively computed to evaluate the level of transport services, by using the "buffer zone creation module" of GIS. The larger the score, the better accessibility area to the transportation services in Map E-3.

E-4 Assessment on Urban Sanitary Services

The geographic information of the water supply services (Map B-2) and the sewage services (Map B-5) are integrated and compiled for evaluation of the level of urban sanitary services. At present, the sewage service area is limited to the old central area, so the result of the overlay analysis is similar to the water service area map.

E-5 An overall Evaluation on Urbanization Suitability

An overall evaluation on "Urbanization Suitability" is made by overlaying with the above four (4) categories of the assessment, namely, Map E-1, E-2, E-3 and E-4. Totally thirteen (13) kinds of map data are integrated into this map. The yellow-shaded areas having a score more than 21 points are evaluated to be the most suitable areas for urban development, while the red-colored areas stand for being less suitable for urbanization under the present conditions. The intermediate areas are classified into three (3) zones according to levels of suitability for urbanization. It can be seen from the distribution pattern of the areas with higher suitability areas that the transportation networks are likely to be a key factor for future urbanization.

E-6 Simulated Urbanized Area (1995)

Based on the urbanization suitability analysis as shown in Map E-5, an "Urbanization Potential Model" was developed to simulate the urbanization process. The model is a Weighted Scoring Model with thirteen (13) factors same as the above, and calibrated so that the model can explain the existing state at more than 90% accuracy.

Map E-6 shows the result of the simulation analysis under the present conditions. For the simulation analysis, all the data are divided into 1 km x 1 km grid cells. Urbanization is taking place in the higher scored grid cells.

E-7 Future Urbanization Potential

The future urbanization potential, aiming at the year 2011, was simulated with the same model developed as above. is analysis. For this simulation model, the existing future plans of infrastructures such as water supply, sewage, road network and mass rapid transit systems are taken into consideration as new factors, besides the basic urban data. Thus, should the planned infrastructures be provided without any change in the institutional framework for urban growth management, the land potentials of urbanization will be distributed as shown in Map E-7. Higher urbanization potential areas are distributed around the marginal zones of the existing built-up area. Higher potential areas can be observed as a ribbon type of corridor which is extending to the outskirts of Bangkok.

E-8 <u>Future Land Use Simulation (Trend Based Policy Free Case-1)</u>

Map E-8 shows the most-likely urbanization pattern in the future. Based on the future urbanization potential model, a future urbanized land use pattern is simulated with the population of approximately 10.4 million in the year 2011. To this end, the future population density at newly built-up areas is assumed to be 110 person/ha, which is the same level as the present population density at the built-up areas in suburban

districts. Consequently, urbanization is expected to occur in the same direction as present, if no policies for urban growth control was undertaken on the urban spatial structure but the existing planned infrastructures be all provided.

3.5 Simulation Analysis (Tertiary Data Analysis)

F-1 Traffic Simulation (Level of Road Traffic Congestion under Present Demands with Future Supplies)

This traffic simulation model tested the impact on the transport environment, if all the road projects and the mass transit proposed for the 8th national development plan had been completed at present in 1995. In this case, the level of congestion in terms of the length of congested roads decreases significantly in comparison to the presented situation. About 90% of all the road segments fall down into the level of "acceptable" or "under capacity". This analysis implies that the supply schedule of transport infrastructures was behind more than ten years.

F-2 <u>Traffic Simulation (Level of Road Traffic Congestion under Future Demands with Supplies)</u>

This traffic simulation analysis presents the most-likely case in the year 2011. The future trend-based demand was assigned onto the future transport network including all the 8th plan road projects and the mass transit systems. Unfortunately, the level of congestion in this case is not improved in comparison to the present level. Thus, this simulation suggests that additional transport facilities are inevitably required and that other effective transport measures such as the transport demand management and changes of urban structural systems should be introduced in the future to release such a anticipated pressure of traffic congestion.

F-3 Ambient Air Quality Simulation-1, and

F-4 Ambient Air Quality Simulation-2

The BEIP Air Pollutant Diffusion Model simulates <u>annual</u> <u>arithmetic averages</u> of major four (4) kinds of pollutants, namely, PM-10, CO, SO₂, NOx and NO₂, because the air pollution simulation under a short-time span, such as 1-hour-average, is likely to cause a great error. Grid cells (500m by 500m inside the Outer Ring Road and 1 km by 1 km outside it) are categorized into six groups by their simulated concentration, using the results of statistical analysis of existing monitoring data and ambient air standards of various time span.

Maps F-3 and F-4 present the simulation results of the future ambient air quality based on the present vehicle traffic volume as of 1995, given different conditions. In Map F-4, the following conditions differ from Map-3:

- Future Vehicle Emission Factors, reflecting the planned regulations both for New and In-use vehicles and the planned desulfurization of HSD;
- Future road network under the 8th National Plan; and
- Future mass transit system network under the Mass Transit Master Plan.

Most of the grid cells would not be rated as "Higher than the Standard" nor "Extremely Higher than the Standard". Vehicle regulations are considered to be the main factor to improve in this simulation.

F-5 Ambient Air Quality Simulation-3

The simulation analysis represented by Map F-5 was conducted under the condition of "Future Transport Demand under free urbanization of Bangkok". The increase of transport demand will offset the air pollution improvement by the planned policies shown in Map F-4. Moreover, new

expressway (Ram Inthra-At Narong Expressway) will cause a new high concentration area.

F-6 Ambient Air Quality Simulation-4

The simulation analysis represented by Map F-5 was based on "Future Transport Demand given the development of "Subcenters" recommended by the BEIP Study. This analysis is to be conducted to identify the impacts of the sub-center development on improvement of air quality. As the result, it can be said that the level of ambient air quality under the transport demand control by the sub-center development would be better than that under the case of "Free Urbanization of Map F-5". However, there would still exist grid cells over than the ambient air standard.

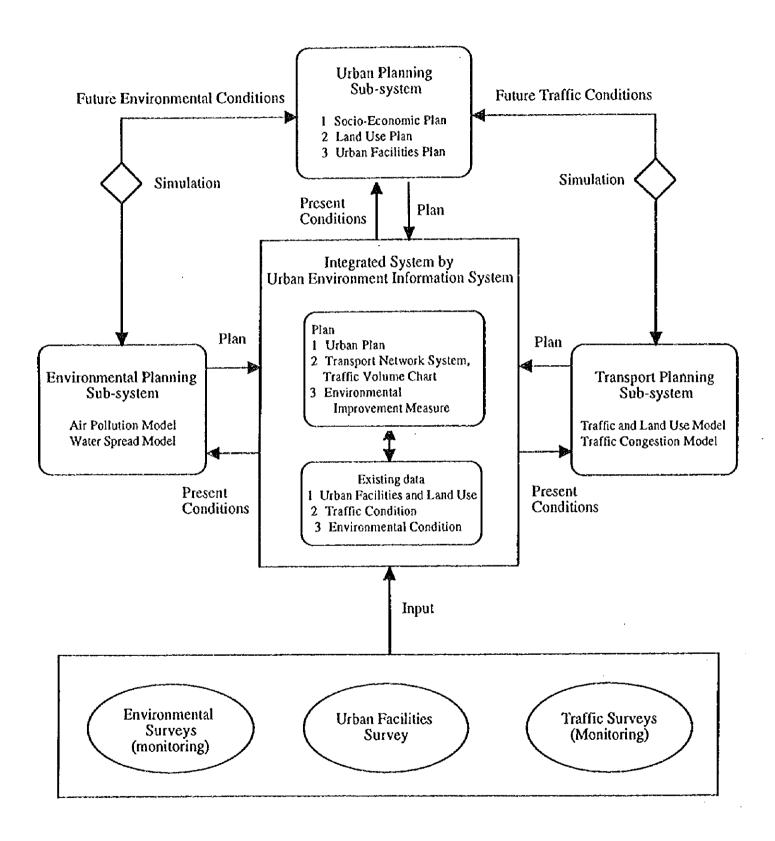


Figure 1 Concept of Urban Environmental Information System

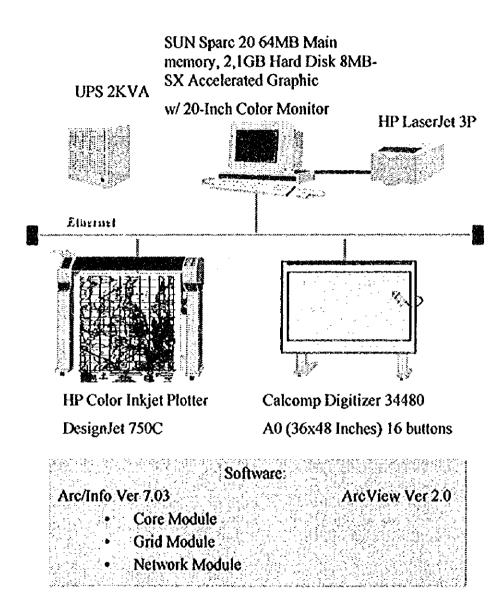


Figure 2 System Configuration

Table 1 Landuse Statistics per District

DISTRICT	mon	MID	row	сомм-	INDUS:		GOYERN		CONSER-	PARK	SCHOOL	RE-	WATER	JATOT
NAME	DENSITY	DENSITY	DENSITY		TRIAL	HOUSE	MENTAL		VATION			LIGION	BODY	
Sang Kapi	1.354	14.175	10.415	2,905	0.398	0	0.610		0	1.584	0.199	0	0	45.074
Bang Khen	C	7.300	8.077	0.836	0	0	8.399			0	0.037	0.438	0	78.343
Bang Kho Luem	0	5.434	0.151	0.552	0.090	0.388	0,115		-	0 .130	0.003	0.100	1.153	1.451
Bang Khon Thian	0	9.663	10.963	0.187	0.910	0.040	0.018	134.339	0,	0.011	0.116	0,103	0.203	156 553
Bang Phlat	0	4.089	4.222	0.959	0.031	0	0.016	1.454	0	¢	0.085	0.648	0.943	11.859
Bang Rak	0	0.036		3.372	0	٥	0,274	, 0	0	0.014	0.205	0.017	0.126	4,044
Bang Suc .	7,435	1.289	0.851	0.745	0.693	0	0,161		0	0	0.091	0.012	0.598	13.085
Bangkok Noi	0.615	3.315	3.379	1.179	0	0	0.882		0	0	0,168	0.210	0.566	12 297
Bangkok Yai	0.085	3,650	0.157	0.864	0.128	0	0.137		O.	0	0.173	0,175	0.189	6.241
Bung Kem	0.985	18,177	7.535	0.389	0.849	0	0.051		0	1.736	0.065	. 0	0	63.119
Chatu Chak	3,519	16,606	2 219	1.368	0.212	0	4,720	0.732	0	2.678	0.419	0	0.005	32,478
Din Daeng	0	6.493	0	1.025	0	0	0.483		0	0.128	0.349	0	0	-8.478
Oon Muang	0.035	15.245	6,451	0.525	0	0	15.586		0	0	0,447	0	0	58.573
Dusit	0.138	2.674	0.018	0.272	0.144	0	5.185	0	0.897	0,824	0.280	0.119	0.749	11.300
lesi Khwang	0	5.693	3.397	1.227	0	0	0.069	5.925	٥	0	0.048	0	0	16.350
omiong	0.011	7.869	3.347	0.906	0.393	0	0.050	10.359	0	0	0.097	0.283	0,439	23.754
Chlong San	0	3.900	6	0.984	0.171	0.047	0.138	0.016	0	0	0.124	0.056	0.579	6.015
(hlong Toci	2 309	16.533	0.285	3.147	0.058	0.872	2.590	0.544	0	0.319	0.348	0	0.949	27.954
at Phrao	0.521	10,175	5,936	0.620	0.066	0	0.050	11.114	0	0	0.062	C	0	28.544
atkrabang .	0.153	2.314	7.012	0	2.038	0	0	116.979	0	0	0.027	0.020	0	\$28,593
dinouri	0,052	3,323	7.202	0.529	1.907	0	0.107	163,895	0	0	0.254	0	0	177.269
Vong Chek	0	0.452	5,656	0	Ð	0	6	234.948	0	0	0,000	0	0	241.056
long Khaem	0	5.071	9,530	0.143	0,746	0.012	0,490	30.622	0	0	0,138	0.203	٥	46.955
aihumwan	0,120	0.375	0.024	3.093	0	0	1,709	0,073	0	1.265	1.355	0	0,066	8,080
hasi Charoen	0.006	16.748	3.523	1,463	0.436	0,196	0.101	33,286	0	0	0,430	0.254	0.175	56,622
haya Thai	0	7.989	0	0,289	0	0	0.529	. 0	0	0.112	0.061	0	0,693	9,073
hra Khanong	1.424	23.853	0,767	0.789	0.239	1.356	0.332	3.738	0	0	0.520	0	0.924	33.942
hra Nakhon	0.196	0 244	0.066	2 065	0.017	0	0.778	0	0 294	0.360	0.333	0.442	0.601	5.396
om Prap Sattrupha	0.181	0.054	0	1.569	0	٥	0.240	0.017	0	0	0.154	0.171	0.058	2.444
rasset	0	13,125	11.399	0.921	0.814	0	0	38,497	0	0.579	0.024	0	0.117	65.476
Ratburana	0 387	10.048	2,129	0.993	0.546	0.454	0.279	30,235	0	0.083	0.248	0.187	1.126	46.725
Retchathewi	0.495	1.375	0,466	1,467	0	0	2.605	0.167	0	0.140	0.453	٥	0.057	7.225
Samphanthawong	0	0	0	1.033	0	0	0.055	0	0	0	0.026	0.123	0.172	1.409
hathon	0.003	5.020	0	0.814	0.140	0.098	0.594	0.096	0	0.018	0.298	0.039	0.131	7.251
ivan Luang	0	9.272	4.201	0,492	0.025	0	0.017	6.090	0	0.121	0.247	0	0.275	20.741
faling Chan	o	5.435	15,712	0	0	0	0,026	65.153	0	0	0.221	0.300	0.755	17.602
Thenburi	0.143	5.202	0.107	1.348	0.072	0.114	0.140			0	0.136	0.194	0.477	8.133
Yan Nawa	1,166	6.957	0.229	0.595	0.087	0.879	0.214	0.526	0	0.025	0.099	0.054	1.574	12.405
Cotal	21.333	269,203	135.426	39.670	11.267	4.466	47.741	1013.470	1.191	10.127	8.370	3.548	13.103	1578.915

Table 3 Criteria and Weighted Score for Urban Development Potential Evaluation

Evaluation Condition		Score	-3	-2	-1	0	
Physical Constraint	Ni	Ground Subsidence	>1.5m	1.0 - 1.5m	0 - 1.0m	Om	
	N2	Inundation by 1983 Flood	Yes			No	
	N3	Inundation by 1995 Flood	Yes			No	
	N4	Flood Protection Zone *1)	A zone	B zone	C zone	Others	
Evaluation Condition		Score	T 1	0	1		
Urban Environment	Tin	Water Services	Yes	No	1		
Services	1	Sewerage Services	Yes	No			
		L	- 	<u> </u>	.4		
Evaluation Condition		Score	5	4	3	2	1
Transportation	TI	Accessibility to Trunk Roads	0.5km of R1/R2	1km of R1/R2	0.5km of R3	Ikm of R3	None
Services	12	Accessibility to Railways	0.5km from STN	Ikm from STN	1.5km from STN	2km from STN	None
	T3	Accessibility to Bus Services	500m zone		1000m zone		None
Evaluation Condition		Score	5	4	3	2	i
Living Facilities		Accessibility to Hospitals	<lkm< td=""><td>1 - 2km zone</td><td>2 - 3km zone</td><td>3 - 5km zone</td><td>>5km</td></lkm<>	1 - 2km zone	2 - 3km zone	3 - 5km zone	>5km
Services	1	Accessibility to Commercial	<2km	2 - 5km zone	5-10km zone	10-15km zone	>15km

^{*1)} A: Eastern King's Dike B: Inner Dike - King's Dike C: Tonburi Lowlands

^{*2)} R1 : Primary Road R2 : Secondary Road R3 : Trough Road

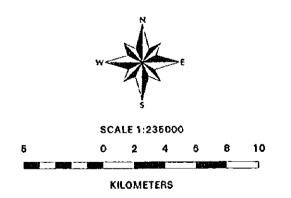
Table 2 Sub-district Statistics Produced by GIS Data Manipulation

District	Sub-District	Code	Area (km2)	Build Area (km2)	P_Density Gross (per Km2)	P_Density Net (per Kin2)	Increase Rate	Open Space (%)	8υild-υρ Rate(%)	R_Density Gress (n/Ha)	R_Density Net (m/Ha)	Soi Density (m/ha)
Bang Kaji	Hua Mak	101203	15 70	8 27	7,575	14,376	592	37 22	52 70	95	15)	888
• •	Khlong Chan	101201	12 43	8 52	10,061	14,645	4 94	33.30	6€ 70	116	168	93.2
	Wang Thong Lang	101202	16 97	13 26	8,523	10,905	600	21 85	78 15	118	151	89.2
Bang Khen	Anusawari	101401	15 63	13.99	6,300	7,065	955 158#	10 83 80 37	89 17 19 63	101 . 72	113	87 2: 84 30
	Khlong Thanon	101402 151405	16 70 13 62	3 32 0 82	10,511 430	33 698 7,933	9.97	9397	603	21	401	68.59
	O-ngoen Sai Mai	101403	[4 09	184	3,218	28,233	12 90	86 83	13 17	55	422	83 86
	The Recog	101403	18 14	5 12	2 299	8,150	13 52	71 79	28 21	41	145	87.79
Bang Kho Leem	Bang Kiblo	101503	473	4 0 2	14,941	17,506	2 15	289	85 35	66	77	69 61
. •	Bang Kho Isem	101502	2 14	1 48	13,776	19,882	3 26	6 99	69 29	59	86	71.64
	Wat Praya Kri	101503	161	1 36	27,570	32,589	1.75	1 60	B4 66	66	79	73.53
Bang Khun Thian	Bang Bon	101303	35 36	8 25	2,637	11,511	10 21	76 63	23.35	25	108	79.98
	Same Dam	101303	45 93	11 39	2,357	9,502	10 56	74 99	24.81 : 3.13	35 19	141 617	80.91 88.41
	Tha Khain	101302	75 27	2 35	384 25,310	12,283 40,591	6 32 17 65	96 73 25 16	62.35	56	93	87.30
Bang Phlat	Bang O	101704	3 08 2 40	1 92 2 27	10,149	10,371	-1.45	5 57	94 43	91	96	86.5
	Bang Painru Bang Phiai	101702	333	2 59	13,173	16,962	-6 39	16.39	71.95	\$9	127	80 5
	Bang Yikhan	101703	3 04	2 67	33,111	37,736	19 22	000	87.74	73	84	76 65
Bang Rak	Bang Rak	[01802	0.48	0 35	27,838	37,758	15 83	000	73 73	56	75	55 11
-	Maka Phusharam	101803	0 6 5	0 64	78,122	78,981	15.16	0.00	9391	120	121	58 65
	Si Lom	103804	1 56	1 55	17,345	17,411	9.69	0.00	99 62	88	89	19 7
	Si Phra _p a	101801	0 76	0 76	80,568	80,568	21.45	0.00	100 00	96	96	53 2
	Surawong	101835	0 60	0.60	20,293	20,293	8.76	0 00	100 00	133	133 117	59.44
Bang Sue	Bang Sue	101601	13 09	11 28	25,883	30,030	2 35 0 60	9 26 1.43	86 19 92 85	100 63	68	81.11 83.34
Banghok Not	Arun Amarin	101005 101664	2 94 2 32	2 73	2₹,073 25,973	25,926 27,095	-2 2i	1.43 2.89	92.86 95.86	81 60	87	60 98
	Ban chang Lo Bang Abun Non	101002	165	133	6,138	7,630	12 62	14.11	89.45	53	66	77 80
	Bang Khun Si	101003	400	231	15,169	27,399	531	40.91	51.57	57	100	92 00
	Sinirat	101001	1 38	1 16	34,131	40,567	10 77	0.00	84 14	63	75	57.75
Bongkak Yai	Wat Ania	101102	0 86	0 76	31,834	35,869	4 85	000	88 75	79	89	68 98
•	Wat The Phra	101101	\$ 39	4 64	14,248	16,539	0.52	9 00	86 15	75	87	81 04
Bung Kum -	Khanna Yao	103902	21.33	693	2,266	6,971	\$.53	59 35	32 51	53	163	88 66
•	Khlong Kum	101901	24 85	14 00	6,089	10,810	6.91	43 67	56 33	95	169	93.94
	Saplian Sung	101903	16 96	7 13	3,046	7,249	7.37	57.98	42 02	65	154	87.79
Chatu Chak	Lat Yap	100403	32 48	29.06	7,011	7,835 33,036	2 04 22 79	2 25 0 00	89,49 98,49	113 158	126 161	86 07 87 23
Dia Daeng Dan Manan	Din Dacoy Si Kan	103703	8 49 20 69	8 35 11 20	32,538 4,757	33,038 8,791	872	45.83	54 12	79	145	89.01
Don Musog	Talar Bang Khen	100603	21 24	16.18	4,133	5,426	1.30	23 82	76 IB	60	79	74.54
	Thong Song Hong	100601	16 64	10.91	6,757	10,365	9.36	34,44	65 56	97	148	95.14
Dusit	Desit	190701	2.16	1.96	20,156	24,196	3 59	0.00	8) 30	74	89	45.78
	Si Yak Mahanak	100705	0.37	0 36	49 354	50,912	1 70	000	-96 91	84	87	37.50
	Suan Chitlada	100704	1 88	0.55	14,530	49,553	-0 97	0 02	29.32	60	206	17.41
	Thanon Nakhon Chaisi	100702	5 57	5.12	32,298	35,162	2 (3	0.00	91.85	86	93	60 54
	Wachica Phayabam	100703	1 13	0.84	26,608	35,697	198	0 00	74.54	64	86	54 68
Huai Khwang	Bang Kepi	1036-93	6 13	3 15	1,101	2,139	-22 34	43.55	51.45	56	108	73 91
	Huai Khawang	103601	4 88	2 73	9,611	16,131	-13 75	44 (4	\$5.86	k2 129	146 152	83.49 85.35
	Senisen Nek	103604 100501	5 34 3 41	4 55 1 57	5,281 15,126	6,207 32,834	-693 183	14 92 26 80	85.08 46.08	55	132	88 28
lamtorg	Bang Kho Bang Khon Thian	100503	609	3 94	7,539	11,653	284	34 64	64 69	39	60	81.16
	Bang Mot	100504	8 85	4 69	5,074	9,579	6 66	4193	52 97	26	53	60 15
	Choin Thong	100502	5,40	2 75	10,903	21,374	4 58	45 66	\$1.63	35	70	67.40
Khlong San	Bang Lain Phu Lang	100333	2 25	201	22,876	25,648	4 5 5	000	89.19	78	85	81 07
-	Klong San	190301	1 OB	0.94	29,996	34,236	4 80	000	87.62	63	72	52 40
	Klong Ton Sai	100302	1 74	161	19,992	21,705	0 90	000	92 11	B4	91	51.19
	Sondet Chaophrays	100364	0 94	0 86	27,275	29,833	1 08	164	91 43	112	123	57.64
khlong Toei	Klong Tan	100202	11 34	10 86	7,616	7,959	-2 55	4 03	95 69	129	135	83.93
	Mong Toei	100201	902	8 13	14,692	16,309	6 10	001	90 08	98	109 124	64.68 81.64
- 80	Phra Khanong	100203	7 59 14 47	7 16 7 14	11,547 4,629	12,238 9,372	1 68 5 72	1 t4 50 61	94.35 49 39	117 166	215	8765
at Phrac	Chorakhe Bua Lat Phrao	103101	14 GB	10 28	6,899	9,413	6 24	26 94	73 06	118	162	90 45
athrabang	Ahlong Sam Prawet	103004	17.44	0 84	457	9,474	12 03	95 18	4 62	35	741	82.04
- Strubbang	Khlong Song Tonnan	103003	16 17	1.63	2,210	21,977	1691	89 95	10 05	42	417	92 09
	Khum Thong	103002	26 62	1 38	284	5,466	7.38	9481	5 19	4	69	0.00
	Lain Prathiu	103006	33 28	2 69	558	6,901	9.71	9191	B 09	31	383	72 0
	Lat Krabang	103001	10.73	314	3,593	10,292	5 68	65 09	34.91	70	200	84 3
	Thap Yao	103063	24 36	1 33	630	11,543	8 3 2	94 54	5 46	18	324	76.4
linberi	Bang Chan	102604	?2 60	3.53	1,677	10,735	14.76	84 38	15 62	47	302	74 3
	Minburi	103601	20 26	5,99	4,364	14,772	13,49	70 46	29 54	58	189	82.5
	Sai Kongdin	102602	13.19	0 35	453	17,122	11.48	97.35	265	25	929 777	75 8. 82 54
	Sai Kongdin Tei	102603	16,17	0 87 0 57	610 274	11,324	8 6 7	9461	5.39	42 21	1,474	82.50 85.10
	Santa Tawanok	102606] 102605]	40 08 28,72	0.77	233	19,240 8,631	831 816	. 98 57 \$7.30	1 43 2 70	20	758	80 79
	Sam≠a Ta⊭antok Sansaep	102607	36.72 36.24	1 29	117	20,130	10 87	96.44	3.56	31	864	27.10
	10 ansach	10.001	,,,,,,,	ı '''	• • • • •	,,,,	14.41	79.74				

		T	<u> </u>			T		· · · · · ·	Γ	T		
District	Sub-District	Code	Area	Build Area	P_Deasity Gress	P_Density Net	Increase Rate	Open	Build-up	R_Density Gress	R_Deasity	Soi Rate
		l	(km2)	(Lm2)	(per Km2)	(per Km2)	(%)	Space (%)	Rate(%)	(e1fun)	Net (m/lfa)	(%)
Nong Chok	Khlong Sip	[03502 103503	30.70 41.31	029	274 193	29,322 7,379	9 13 9 39	99.06 97.39	094 261	10	1,069 279	51.56 0.00
1	Khlong Sip Song Khok Faet	103505	21.54	0.93	760	0.58	13.79	95.68	4.32	10	224	38 36
ŀ	Khu Fang Nua	103504	18 60	910	443	55,495	10 08	99 20	0 80	22	2,802	72.57
	Krathum Pai	103501	40 39	0.77	557	29,245	11,01	98 09	191	,	.168	000
	Lain Phak Chi	103507	33 30	1 02	286	9.313	10 33	96 93	3 07	8	245	24 02
ŧ	Lam Toi Ting Nong Chek	103506 103508	24.99 30.82	0 52 1 36	299 422	14,458 9,572	8 49 9 54	97.93 95.59	2 07 4.41	5 9	247 198	000
Nong Khaem	Lak Song	103403	17.83	5 84	3,109	9,497	8.43	67 27	32 73	lý	112	93 99
1	Nong Khacm	103402	14 68	521	2,293	6,467	\$1 27.	64.54	35.46	39	110	100 00
	Nong Khang Plilu	103401	14.43	5 29	3,809	10,3%	[4 74	63.35	36 64	57	155	89.59
Pathumwan	Pathumwan Rong Muang	102002 102003	2 1 1 1 25	1 59 1 21	32,184 65,873	42,700 71,072	13 88 12 23	3.47 0.00	75.37 96.91	39 104	51 108	39 45 37 22
	Suan Lumphini	102004	340	2 77	25,175	30,878	17 59	000	81.53	77	94	51 67
	Wang Mai	102001	1 33	143	38,952	46,647	12.63	0.00	83.50	128	153	60.11
Phasi Chareen	Bang Chak	£02504	1.40	0.39	5,730	20,563	4,17	72 13	27 87	21	76	59.45
	Bang Duan	102507	4 25	1 19	8,964	31,974	2 51	71 97	28 03	40	143	82 67
	Bang Khae	102505 102506	8 00 13 52	4.04 5.45	6,150 5,259	12,183 13,053	4 96 6 33	49.52 59.71	50 48 40 29	35 44	69 109	67.19
	Bang Khae Nua Bang Phai	102568	15 96	5.14	2,125	6,606	591	67.81	32 17	44	136	82 92 69,75
Ì	Bang Wa	102501	5 53	2 79	8,405	16,646	3.82	49.50	50.50	34	67	51.39
	Bang Wack	102509	2 90	I 20	7,859	18,983	4.48	56 03	41.40	50	121	72 69
ł	Khlong Kwang	102502	2 63	0 87	3,486	10,484	4.74	65.74	33 25	24	73	60,30
	Khuhasawan Put Shiona Pasisharana	102503	0.71 1.72	0,47 1 6 2	12,981	19,694 16,650	1 25	30.61	65.91 94.17	54 80	82 65	94 33
Phaya Ihai	Pak Khlong Pasicharoen Samsen Nai	102510 102301	9.07	1 62 8 87	15,585 27,997	16,550 28,644	-0 16 2 94	3.35 0.00	94.17 97.74	80 107	85 109	78 19 24 80
Phra Khanoog	Bang Chek	102401	15 19	14 54	8,751	9.139	6 28	1.45	95.76	132	138	80 92
_	Sang Na	102402	18 75	14,74	6,630	8,501	5 04	18.75	78 58	112	143	78 08
Phra Nakhon	Ban Phan Thom	100106	0.41	0.39	32,382	33,535	-0.49	0 00	95.55	144	149	75 35
	Bang Khun Phrom Bowen Navet	190105 190104	0.45 0.49	0.44 0.46	20,438 23,051	20,837 24,594	0 59 I 53	0 00 0 00	93 73	74 139	76 149	57.13 51.27
	Chana Songkhrann	100102	0.35	0.46	14,025	17,529	-399	0.00	80.01	137	149	45 10
	Phra Borom Maha Ratchawang	100107	1 33	0.81	6,051	11,460	0.98	0.00	52 80	66	125	15 86
	Sain Ran Rat	100111	0 22	0 16	30,880	43,285	-0.90	0 00	7134	81	114	38 72
1	San Chao Phor Sus	100110	0.15	914	41,594	44,118	0.56	0.00	94.28	111	117	65.09
	Sao Chingcha Talad Yot	100112	0 16 0 19	0 13 0.17	33,898 34,011	41,710 37,635	0 32 -0.12	0 00 0 00	81.27 90.37	130 122	160 135	59.16 79.19
	Wang Burapha Philoin	100108	0 70	0.57	29,945	37,008	151	0.00	80 92	135	166	24.20
	Wat Ratchabophit	100109	0 22	0 21	28,757	31,000	136	0.00	92.76	162	175	52.19
l	Wat Sam Phrays	100101	0.52	0.38	11,736	16,028	-1 00	0.00	73.35	71	97	52 24
Pom Prap Sattraphi	Ban Baht Klong Mahanark	102204 102202	0.40 0.58	0.38 0.54	79,785 84,842	84,544 91,297	19.87 22.31	0.00	94.37	111 97	118 164	13 61
	Ропри Salnapihe	102205	0 59	0 59	94,052	91,065	15.57	2 87 0 00	9293 9999	165	165	66.12 55.35
	Wat Debsirin	102203	0.43	0,43	77,014	77,145	21.41	0.00	59 83	168	168	61.67
	Wai Soammanut	162261	0.45	044	65,443	67,109	19 27	0.00	97.52	145	150	38 89
Pranet	Ook Mai	102102 102103	14.95 12.89	8 10	1,400	4,433	12 43	68.78	31 22	65	207	85.17
	Nong Bon Prawet	102101	37 64	13.53	3,579 2,55 8	5,690 7,128	5 64 7.01	36 61 62 43	62 90] 35.89	89 66	146 694	85.60 92.25
Retburens	Bang Mot	102904	0.0	3.30	4,778	16,511	10 65	70.17	28.94	26	91	61.74
	8∍-ը Բոեշե	102903	8 04	4,59	11,771	20,613	5.81	36.20	57.11	37	64	66 18
	Raiburana	102901	5 61	4 02	15,583	21,780	-29 29	84.41	71.55	54	75	66 15
Rutchathewi	Thung Khru Makkasan	102902 102804	21 66 1	3 3? 2 39	2,219 22,893	14,267 23,717	10 30 13.35	84.44 0.00	15.55 96.53	8 92	52 95	67.38 70.03
NE CERT	Than on Phaya Thai	102803	1 25	1 25	27,152	27,251	19.55	0.00	99.54	116	116	6261
	Thanon Photoka Buri	\$02802	0.99	0 85	49,345	57,013	13.26	9.91	86.55	79	91	61.58
	Thung Phay a Thai	102803	2.51	2 37	47,900	50,737	31 68	2.43	94.41	72	76	65 16
Sampheotherong	Chalikrawat Sani Phamhawong	103202 103203	0.19	0.44	42,914 39,792	50,164 43,808	11 29 11 94	000	85.55	124	145	54 20
	Tatat Noi	103201	0.17	0.15	78,650	90,409	15.14	000	90 83 87 00	130 72	143 82	44,30 32,23
Saibon	Thung Mahainek	103302	2.91	2.91	10,582	10,582	1 56	0 00	100 00	107	107	74 63
	Thong Watdon	103303	2 52	2 42	25,501	26,511	1 55	381	96 19	75	78	55.74
	Yаппач а	103301	1 83	i 68	23,015	25,655	-0 12	0 00	91 86	83	95	66.53
Soan Evang Taling Chan	Suan Luang Bang Chuak Nang	103831	20.74 6.95	14 25 0.71	7,896 1,455	11,358 14,167	7.45 8 20	29.36 87.66	68,72 10:27	83 15	128 149	87.65 49.85
140 6 (2.14	Bang Phrom	100806	5.13	0 66	3,267	25,206	7.09	£4.67	12 96	22	168	63 97
	Bang Ramat	100507	15 36	321	1,444	6,915	8.37	78.58	20 68	26	126	73.35
	Chim Phli	100802	15.49	6 00	2,631	6,795	10,72	60 60	38 72	46	119	63.35
	Khlong Chak Phen Sala Thomasses	106831	2.54	1.42	5,453	9,751	9.16	39.40	55 95	39	70	53.81
i	Sala Theirmasop Taling Chan	190808	19.53 6 01	3.94 3.83	1,146 5,429	5,681 8,519	14.91 6.63	79 83 33 20	20 IR 63.72	30 37	149 58	67.58 66.33
	Thawi Warhana	100804	16 60	1.92	787	6,801	9.12	88.42	11.58	25	216	67 94
Thanburi	Bang Yurua	100-301	1 19	1,17	47,978	48,846	0.07	0 00	98 22	76	"	66 54
	Bukkhato	100903	4 30	3.90	34,548	38,054	2 38	1 51	9079	77	85	70.94
	Hiranruchi Esta Dita	100705	0 66	0 65	40,244	41,079	1.52	000	97.97	90	92	87 27
·	Tafat Phlu Wai Kanizya	100902 800904	0,75	0 65	32,607 32,042	37,129 35,783	0.45 4.34	0 00	87.82] 87.11]	65 56	73 64	51 80 37 65
Yan Nama	Bang Phony Pang	102702	4.96	3.74	12,220	16.229	673	7.59	75 30	57	. 76	62 97
1	Chong Nonsi	102701	7.41	6 54	12,384	14,083	9,49	201	87.93	71	81	59 30
Greed Total	8114		1,578.91	541.03	l							

BEIP-GIS

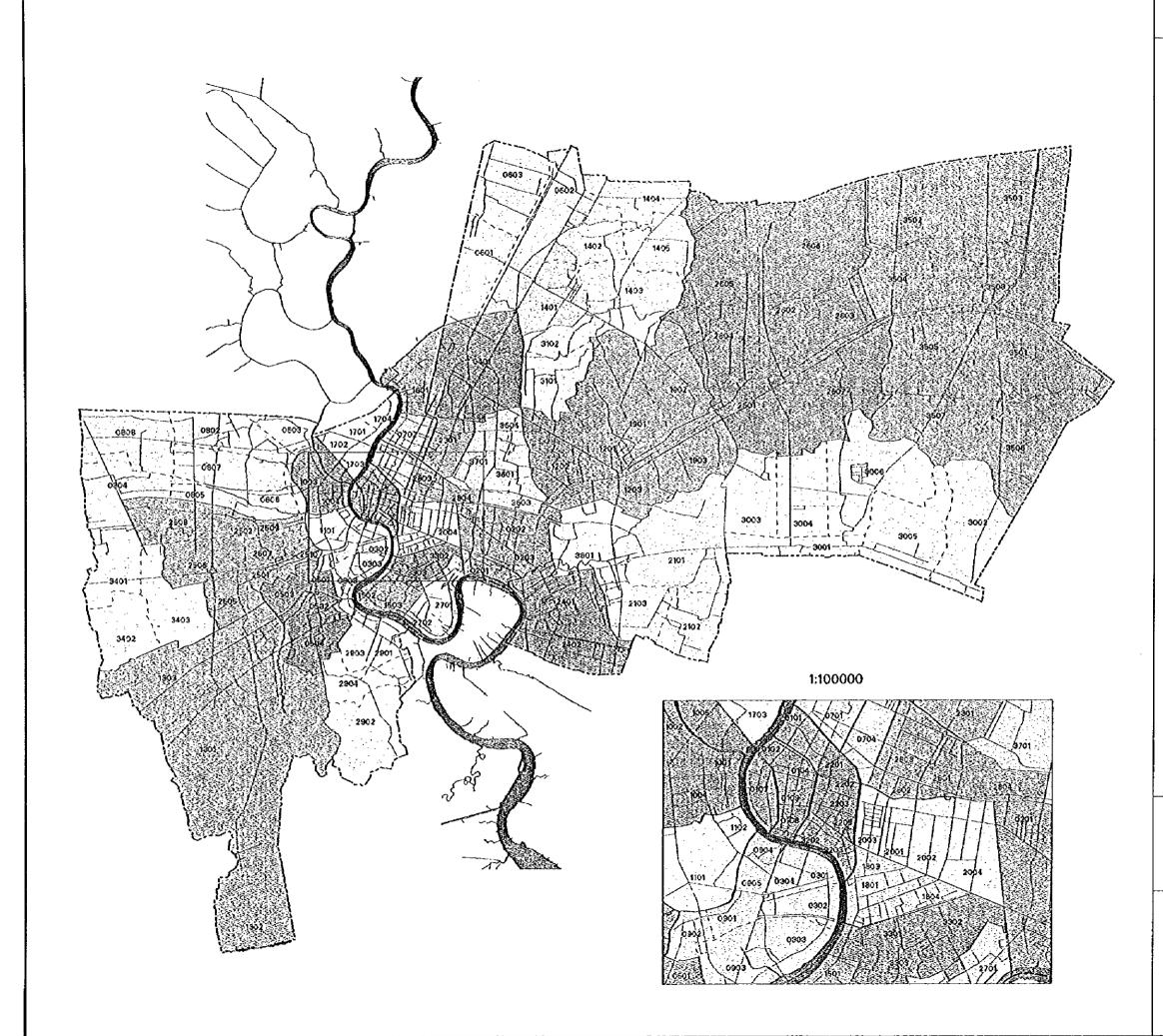
EXISTING CONDITIONS (BASIC DATA)


PACIFIC CONSULTANTS INTERNATIONAL SUURI-KEIKAKU CO., LTD.

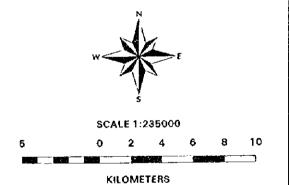
Bangkok Metropolitan Area Base Map

Legend

- Roads
 Railways
- Chaopraya River
- M Khlongs
- ☑ BMA Boundary☑ District Boundary


THE STUDY URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM BANGKOK METROPOLITAN AREA (BEIP)

BANGKOK METROPOLITAN ADMINISTRATION(BMA)
THE GOVERNMENT OF THE KINGOOM OF THAILAND


JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Administrative Boundary

Legend

20 Pathumwan
21 Prawet
22 Pom Prap Sattruphai
23 Phaya Thai
24 Phra Khanong
25 Phasi Charoen
26 Minburi
27 Yan Nawa
28 Ratchathewi 1 Phra Nakhon 2 Khlong Toel 3 Khlong San 4 Chatu Chak 5 Jointong 6 Don Muang 6 Don Muang
7 Dusit
8 Taling Chan
9 Thonburi
10 Bangkok Noi
11 Bangkok Yai
12 Bang Kapi
13 Bang Khun Thian
14 Bang Khen
15 Bang Sue
17 Bang Phlat
18 Bang Rak
19 Bung Kum 28 Ratchathewi
29 Ratburana
30 Latkrabang
31 Lat Phrao
32 Samphanthawong
33 Sathon
34 Nong Khaem
35 Nong Chok
36 Huai Khwang
37 Din Daeng
38 Suan Luang

THE STUDY

URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM

BANGKOK METROPOLITAN AREA (BEIP)

BANGKOK METROPOLITAN ADMINISTRATION(BMA) THE GOVERNMENT OF THE KINGDOM OF THARAND

1405 3501 1903 3004 3005 3001 3403 3402 1:100000 2304 2902 /2803 2651 2002 0301 0304

Administrative Boundary

Legend

1 Phra Nakhon 2 Khlong Toei 3 Khlong San 4 Chatu Chak 20 Pathumwan 21 Prawet 22 Pom Prap Sattruphai 23 Phaya Thai 24 Phra Khanong 5 Jointong 6 Don Muang 25 Phasi Charoen 26 Minburi 7 Dusit 8 Taling Chan 9 Thonburi 27 Yan Nawa 28 Ratchathewi 9 Thonburi 10 Bangkok Noi 11 Bangkok Yai 12 Bang Kapi 13 Bang Khun Thian 14 Bang Khen 15 Bang Kho Laem 16 Bang Sue 17 Bang Phlat 18 Bang Rak 19 Bung Kum 29 Ratburana 30 Latkrabang 31 Lat Phrao 32 Samphanthawong 32 Samphanthaw 33 Sathon 34 Nong Khaem 35 Nong Chok 36 Huai Khwang 37 Din Daeng 38 Suan Luang

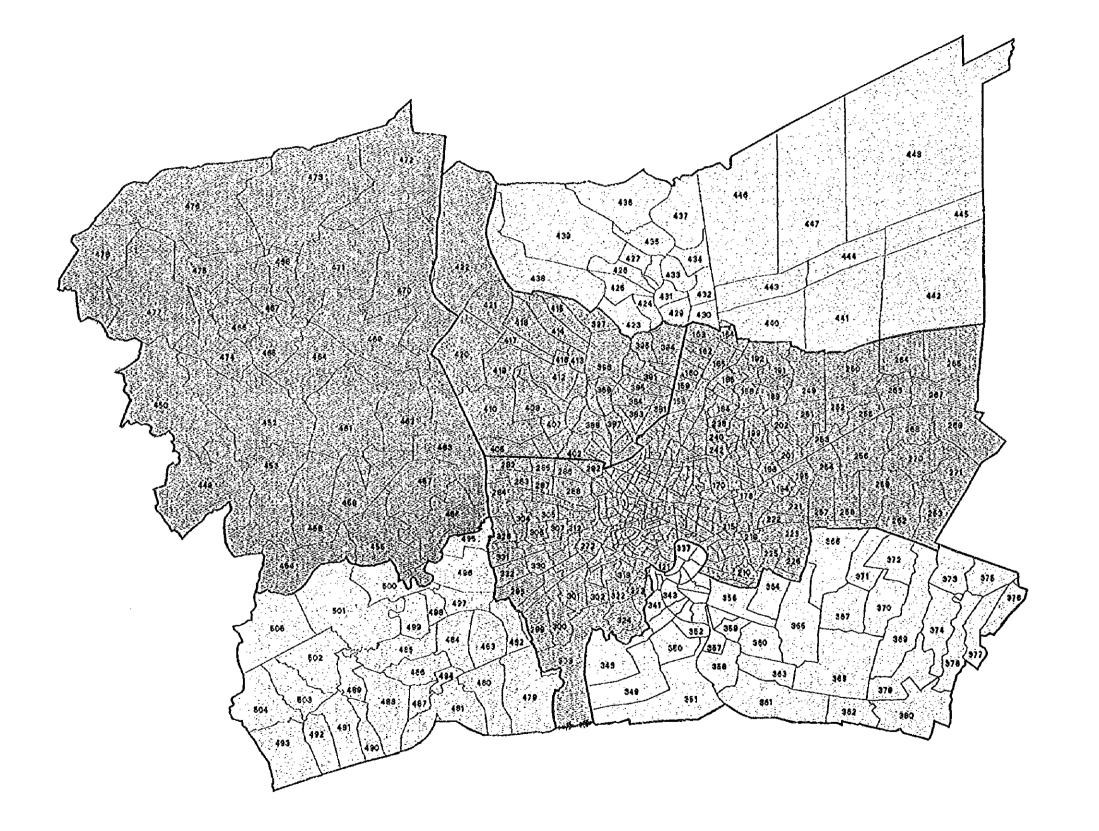
SCALE 1:235000

KILOMETERS

THE STUDY

URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM

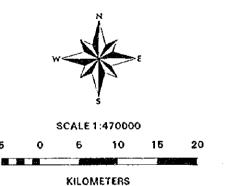
BANGKOK METROPOLITAN AREA (BEIP)


EANGKOK METROPOLITAN ADMINISTRATION(BMA) THE GOVERNMENT OF THE KINGOOM OF THAILAND

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

Sub-district Name List

S	ub-district Code	Sub-district Name	:	Sub-district Code	Sub-district Name		Sub-district Code	Sub-district Name
1	102506	Bang Khae Nua	51	102904	Bang Mot	101	102801	Thanon Phaya Thai
2	102501	Bang Wa	52	102902	Thung Khru	102	103801	Suan Luang
3	102505	Bang Khae	53	100501	Bang Kho	103	103401	Nong Khang Phlu
4	102507	Bang Duan	54	100502	Chom Thong	104	103403	Lak Song
5	102508	Bang Phai	55	100503	Bang Khun Thian	105	103402	Nong Khaem
6	102510	Pak Khlong Pasicharoen	56	100504	Bang Mot	106	101101	Wat Tha Phra
7	102509	Bang Waek	57	101703	Bang Yikhan	107	101102	Wat Arun
8	102503	Khuhasawan	58	101701	Bang Phlat	108	102701	Chong Nonsi
9	102502	Khlong Kwang	59	101704	Bang O	109	102702	Bang Phong Pang
10	102504	Bang Chak	60	101702	Bang Pamru	110	100108	Wang Burapha Phitom
11	100201	Klong Toei	61	101503	Bang Khto	111	100106	Ban Phan Thom
12	100202	Klong Tan	62	101501	Wat Praya Kri	112	100104	Bowon Niwet
13	100203	Phra Khanong	63	101502	Bang Kho laem	113	100107	Phra Borom Maha Ratchawang
14	101402	Khlong Thanon	64	101301	Samae Dam	114	100105	Bang Khun Phrom
15	101401	Anusawari	65	101303	Bang Bon	115	100111	Sam Ran Rat
16	101404	Sai Mai	66	101302	Tha Kham	116	100101	Wat Sam Phraya
17	101403	Tha Raeng	67	103101	Lat Phrao	117	100109	Wat Ratchabophit
	101405	O-ngoen	68	103102	Chorakhe Bua	118	100103	Talad Yot
18	101202	Wang Thong Lang	69	100303	Bang Lam Phu Lang	119	100110	San Chao Phor Sua
19 20	101202	Khlong Chan	70	100303	Klong San	120	100112	Sao Chingcha
20	101201	Hua Mak	71	100302	Klong Ton Sai	121	100102	Chana Songkhrarm
21		Si Kan	72	100304	Somdet Chaophraya	122	103604	Samsen Nok
22	100603		73	100802	Chim Phii	123	103601	Hual Khawang
23	100601	Thong Song Hong	74	100802	Taling Chan	124	103603	Bang Kapi
24	100602	Talat Bang Khen	74 75	100807	Bang Ramat	125	102205	Pomprab Satrupihe
25	100903	Bukkhalo		100808	Sala Thammasop	126	102202	Klong Mahanark
26	100901	Bang Yirua	76	100806	Bang Phrom	127	102203	Wat Debsirin
27	100902	Talat Phiu	77	100801	Khlong Chak Phra	128	102204	Ban Baht
28	100905	Hirunruchi	78		Thawi Watthana	129	102201	Wat Soammanut
29	100904	Wat Kanlaya	79	100804		130	103001	Lat Krabang
30	101901	Khlong Kum	80	100805	Bang Chuak Nang	131	103001	Khlong Song Tonnun
31	101903	Saphan Sung	81	103303	Thung Watdon		103005	Thap Yao
32	101902	Khanna Yao	82	103301	Yannawa	132	103005	Lam Prathiu
33	102401	Bang Chak	83	103302	Thung Mahamek	133		Khum Thong
34	102402	Bang Na	84	102002	Pathumwan	134	103002	Khlong Sam Prawet
35	102301	Samsen Nai	85	102003	Rong Muang	135	103004	•
36	100401	Lat Yao	86	102004	Suan Lumphini	136	101803	Maha Phuttharam
37	101004	Ban chang Lo	87	102001	Wang Mai	137	101801	Si Phraya
38	101003	Bang Khun Si	88	102601	Minburi	138	101804	Si Lom
39	101001	Sirirat	89	102604	Bang Chan	139	101805	Surawong Bang Bak
40	101005	Arun Amarin	90	102607	Sansaep	140	101802	Bang Rak
41	101002	Bang Khun Non	91	102606	Samwa Tawanok	141	103501	Krathum Rai
42	101601	Bang Sue	92	102603	Sai Kongdin Tai	142	103505	Khok Faet
43	100702	Thanon Nakhon Chaisi	93	102605	Samwa Tawantok	143	103508	nong Chok
44	100701	Dusit	94	102602	Sal Kongdin	144	103507	Lam Phak Chi
45	100703	Wachira Phayabarn	95	102101	Prawet	145	103502	Khlong Sip
46	100704	Suan Chitiada	96	102103	Nong Bon	146	103504	Khu Fang Nua
47	100705	Si Yak Mahanak	97	102102	Dok Mai	147	103503	Khlong Sip Song
48	103701	Din Daeng	98	102803	Thung Phaya Thai	148	103506	Lam Tol Ting
49	102903	Bang Pakok	99	102804	Makkasan	149	103203	Sam Phanthawong
50	102901	Ratburana	100	102802	Thanon Phetcha Buri	150	103202	Chakkrawat
						151	103201	Talat Noi

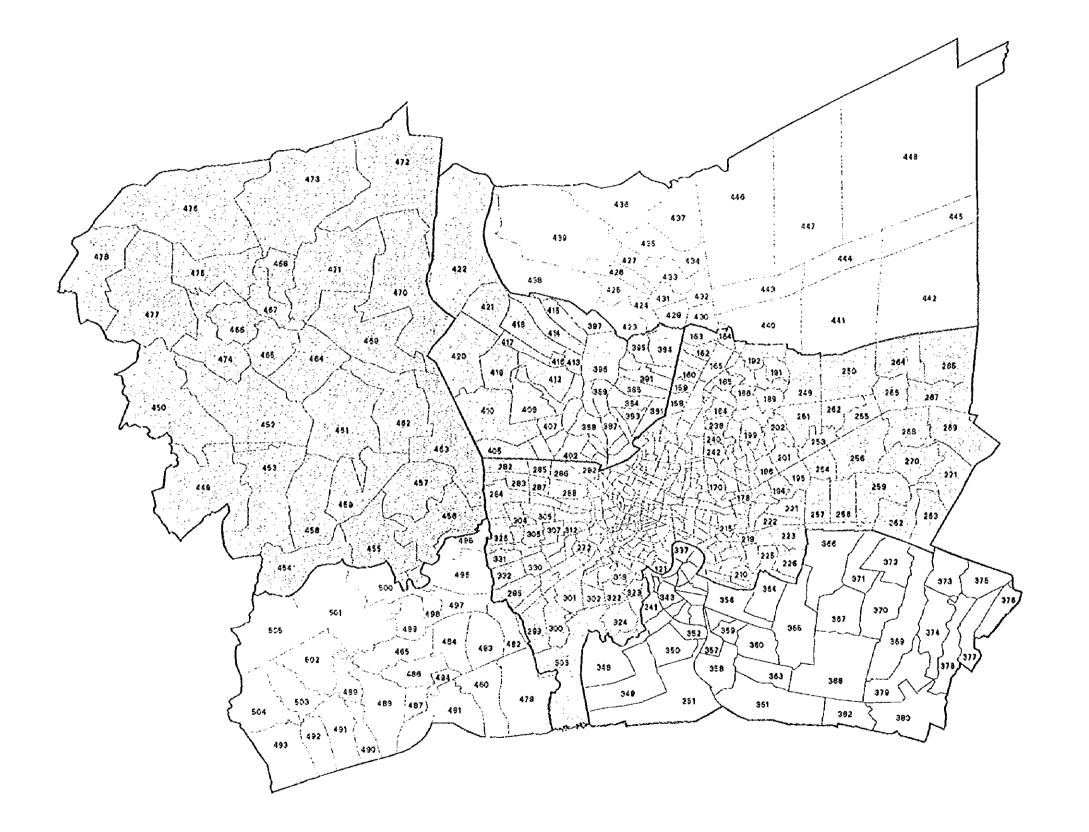

Source: UTDM Boundary

Traffic Analysis Zone

(Bangkok Metropolitan Region)

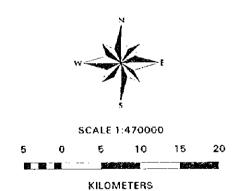
Legend

- Bangkok Metropolitan Area
- Nakhon Patho
- Nonthaburi
- Patum Thani
- Samut Prakan
- Samut Sakhon
- **M** BMR Boundary


THE STUDY URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM BANGKOK METROPOLITAN AREA (BEIP)

RANGKOK METROPOLITAN ADMINISTRATION(BMA)
THE GOVERNMENT OF THE KINGDOM OF THAILAND

JUNE JAPAN INTERNATIONAL COOPERATION AGENCY(JCA)

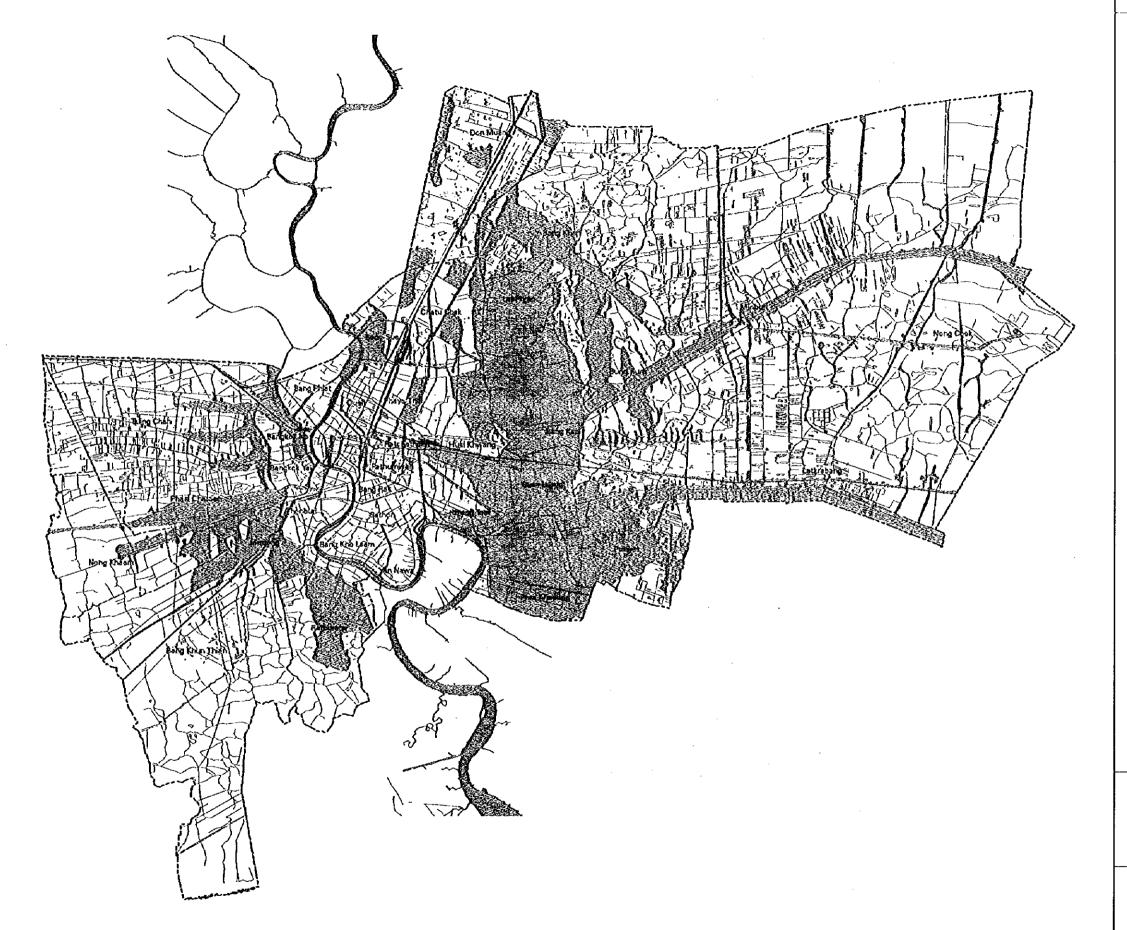

Source: UTDM Boundary

Traffic Analysis Zone

(Bangkok Metropolitan Region)

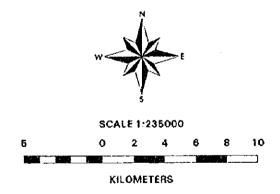
Legend

- Bangkok Metropolitan Area
- Nakhon Patho
- Nonthaburi
- Patum Thani
- Samut Prakan
 - Samut Sakhon
- **W** BMR Boundary


THE STUDY URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM BANGKOK METROPOLITAN AREA (8EIP)

BANGKOK METROPOLITAN ADMINISTRATION(BMA) THE GOVERNMENT OF THE KINGOOM OF THAILAND

JUPAN INTERNATIONAL COOPERATION AGENCY (JICA)

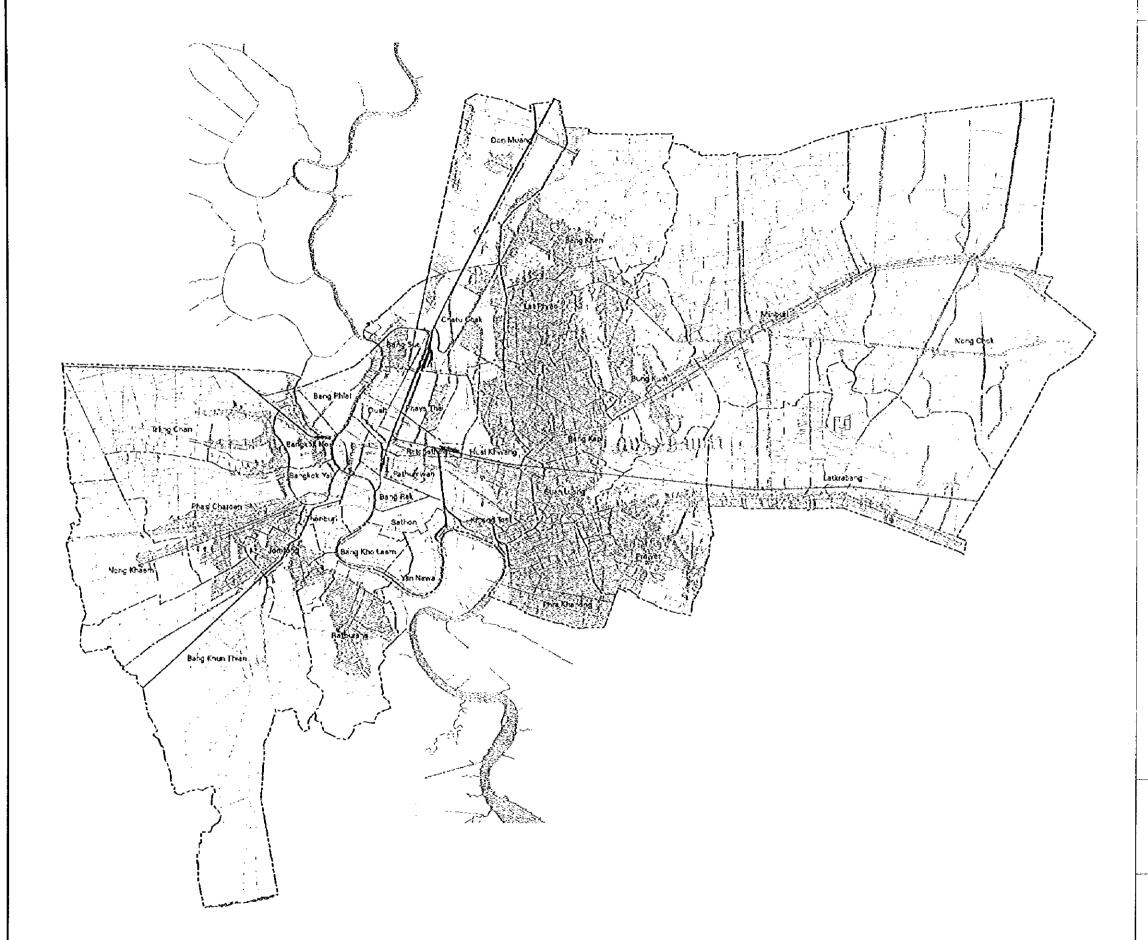


Source: Flood Mitigation Study for Bangkok by JICA, 1985

Inundated Area by 1983 Flood

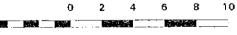
Legend

- Flooded Area in 1983
- Roads
- Chaopraya River
- M Khlongs
- M Railways
- M BMA Boundary
- M District boundary


THE STUDY URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM IN BANGKOK METROPOLITAN AREA (BEIP)

BANGKOK METROPOLITAN ADMINISTRATION(BNA)
THE GOVERNMENT OF THE KINGDOM OF THAILAND

JIMES JAPAN INTERNATIONAL COOFERATION AGENCY(JICA)



Inundated Area by 1983 Flood

Legend

- ☐ Flooded Area in 1983
- Roads
- Chaopraya River
- ☐ Khlongs
- M Railways
- ☑ BMA Boundary☑ District boundary

KILOMETERS

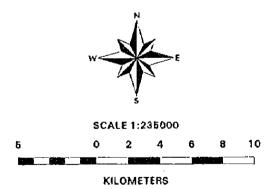
THE STUDY URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM

IN BANGKOK METROPOLITAN AREA (BEIP)

EANGKOK METROPOLITAN ADMIRISTRATION(6M4) THE GOVERNMENT OF THE KINGOOM OF THAILAND

JAPAN INTERRATIONAL GOOPERATION AGENCY (JICA)

Source: Flood Mitigation Study for Bangkok by JICA, 1985


·75

Source: JICA Study for The Management of Groundwater and Land Subsidence in 1995

Simulated Land Subsidence Areas

Legend (cm)

- (> -50)
- (-50 -> -75) (-75 -> -100)
- [] (-100 -> -125)
- **1** (-125 -> -150)
- **(** < -150)
- Railways
- Chaopraya River
- ☑ Klongs☑ BMA Boundary
- ☐ Buildup Area

THE STUDY ON URBAN ENVIRONMENTAL IMPROVEMENT PROGRAM BANGKOK METROPOLITAN AREA (BEIP)

BANGKOK METROPOLITAN ADMINISTRATION(BMA) THE GOVERNMENT OF THE KINGDOM OF THAILAND

JAPAN INTERNATIONAL COOPERATION AGENCY(JICA)