No. 2

Plan and Budget Organization (PBO)
The Islamic Republic of Iran

TECHNICAL COOPERATION
ON
ANALYSIS

OF

ENERGY CONSERVATION AND RATIONAL USE OF ENERGY

IN

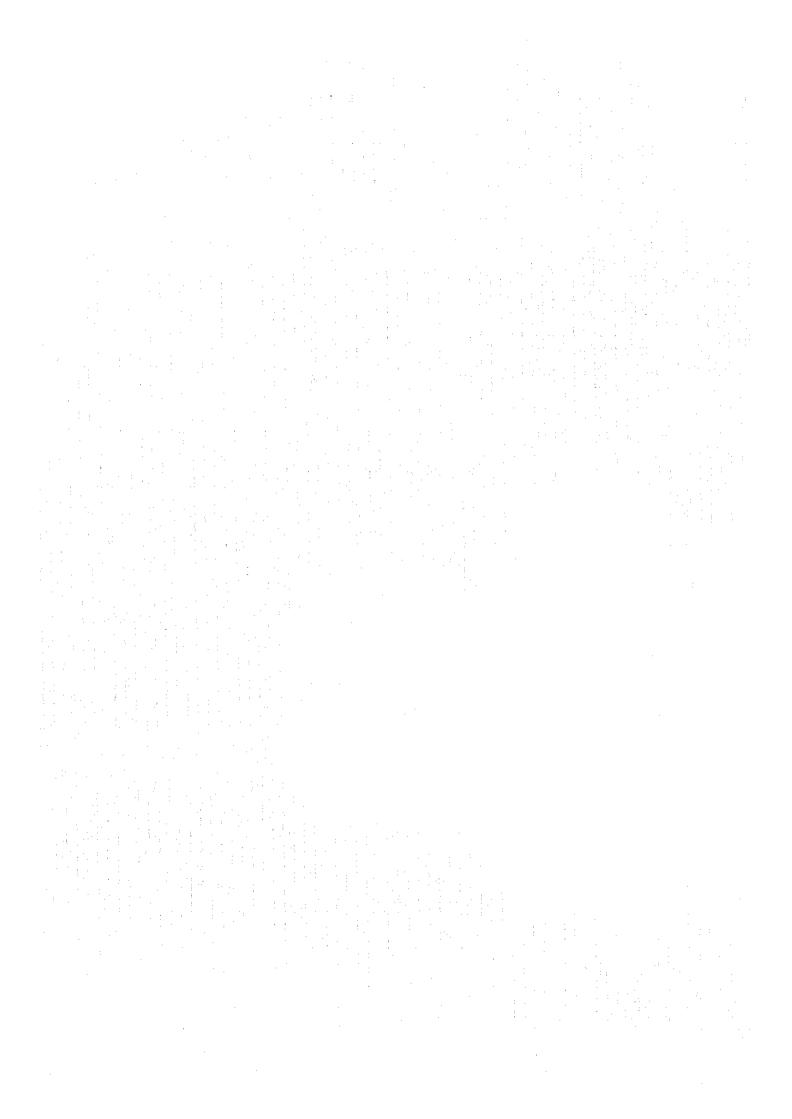
THE SOCIAL AND ECONOMIC SECTORS
OF

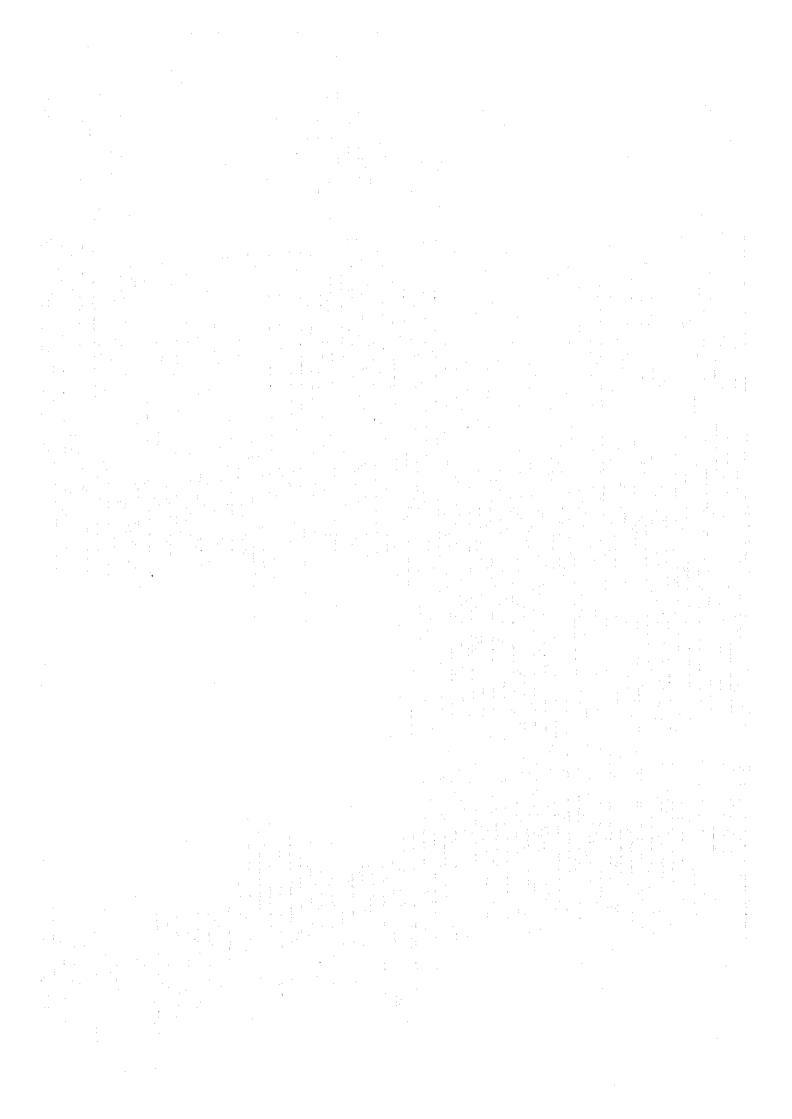
THE ISLAMIC REPUBLIC OF IRAN

FINAL REPORT

**Summary** 

JEN LIBRARY


September 1997


The Energy Conservation Center, Japan (ECCJ)
The Institute of Energy Economics, Japan (IEEJ)

MPN

JR 97-153

FINAL REPORT (Summary) Sep. 1997 JICA Will # 5





Japan International Cooperation Agency (JICA)

Plan and Budget Organization (PBO)
The Islamic Republic of Iran

# TECHNICAL COOPERATION ON ANALYSIS OF ENERGY CONSERVATION AND RATIONAL USE OF ENERGY IN THE SOCIAL AND ECONOMIC SECTORS

OF

THE ISLAMIC REPUBLIC OF IRAN

FINAL REPORT

Summary

September 1997

The Energy Conservation Center, Japan (ECCJ)
The Institute of Energy Economics, Japan (IEEJ)

1137877 (5)

# Contents

# DESCRIPTION OF THE STUDY

| i. Di                                                                                                          | ESCRIPTION OF THE STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i                                                             |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1.1                                                                                                            | Background of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | į                                                             |
| 1.2                                                                                                            | The Objectives of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                             |
| 1.3                                                                                                            | Counterparts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                             |
| 1.4                                                                                                            | Japanese Organization Responsible for Implementation of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                             |
| 1.5                                                                                                            | Organizations and Factories to be Studied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                             |
| 1.6                                                                                                            | Description of the Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                             |
| 1.7                                                                                                            | Methodology of the Study and the Implementation Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                             |
| 1.8                                                                                                            | Members of the JICA Team                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                             |
| 1.9                                                                                                            | Counterpart Members 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O                                                             |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| FACTO                                                                                                          | ORY ENERGY DIAGNOSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . '                                                           |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| 1. TI                                                                                                          | IE OBJECTIVE OF THE STUDY1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ĺ                                                             |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| 2. F/                                                                                                          | ACTORIES TO BE STUDIED1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l                                                             |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| 3. M                                                                                                           | ETHODOLOGY OF THE STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3   3   3   3   3   4   5   5   5   5   6   6   6   6   6   6 |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ^                                                             |
| 1.1                                                                                                            | NERGY MANAGEMENT SITUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |
| 4.1                                                                                                            | Top Management's Policies for Energy Conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| 4.2                                                                                                            | Activities of the Energy Conservation Committees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |
| 4.3                                                                                                            | Grasping the Actual Energy Consumption Situation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                             |
| 5. E                                                                                                           | ckground of the Study  e Objectives of the Study  anterparts  sancese Organization Responsible for Implementation of the Study  ganizations and Factories to be Studied  3 scription of the Study  schodology of the Study and the Implementation Status  6 smbers of the JICA Team  9 unterpart Members  10  FENERGY DIAGNOSIS  OBJECTIVE OF THE STUDY  11  ORIES TO BE STUDIED  11  ODOLOGY OF THE STUDY  12  OF MANAGEMENT SITUATION  13  p Management's Policies for Energy Conservation  13  stivities of the Energy Conservation Committees  13  asping the Actual Energy Consumption Situation  14  OF INTENSITY LEVEL  15  JEBMS IN ENERGY UTILIZATION  16  mbustion Control  17  covery of Waste Heat from Combustion Exhaust Gas  18  19  20  21  21  22  23  24  25  26  26  27  27  28  28  29  20  20  21  21  22  23  24  25  26  26  27  27  28  28  29  20  20  21  21  22  23  24  25  26  26  27  27  28  28  28  29  20  20  20  20  20  20  20  20  20 |                                                               |
| 6 DI                                                                                                           | DODLEMS IN ENERGY LITH IZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                             |
| 6.1                                                                                                            | Combustion Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |
| 10 miles 20 | Passage of Wests Uset from Combustion Hybrid Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٠<br>6                                                        |
| 6.2                                                                                                            | Heat Involation 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |
| 6.3                                                                                                            | Deutse Blant Pauloment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                               |
| 6.4                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| 6.5                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |
| 6.6                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |
| 6.7                                                                                                            | Steet-making Plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | v                                                             |

| 6.8                   | Petroleum Refinery                                               | 17  |
|-----------------------|------------------------------------------------------------------|-----|
| 6.9                   | Cement Plants                                                    | 17  |
| 6.10                  | Glass Plant                                                      | 17  |
| 6.11                  | Textile Plants                                                   | 18  |
| 6.12                  |                                                                  | 18  |
| 6.13                  |                                                                  | 18  |
|                       |                                                                  |     |
| 7. Ei                 | VERGY CONSERVATION MEASURES                                      | 19  |
|                       |                                                                  |     |
| * 8. GI               | JIDELINE                                                         | 19  |
| •                     |                                                                  |     |
|                       |                                                                  | ÷   |
| MASTI                 | ER PLAN FOR ENERGY CONSERVATION IN SIX INDUSTRIES                |     |
|                       |                                                                  |     |
| 1. IN                 | TRODUCTION                                                       | 23  |
|                       |                                                                  | * . |
| 2. CI                 | JRRENT STATUS OF ENERGY USE IN SIX INDUSTRIES AND ECONOMIC       |     |
| EV                    | ALUATION OF MEASURES FOR ENERGY CONSERVATION                     | 25  |
| and the second second | Introduction                                                     | 25  |
| 2.2                   | Iron and Steel                                                   | 25  |
| 2.3                   | Cement                                                           | 38  |
| 2.4                   | Sheet Glass                                                      |     |
| 2.5                   | Textiles                                                         | 48  |
| 2.6                   | Food (Vacatable Oil)                                             | 58  |
| 2.7                   | rood (vegetable On)                                              | 03  |
| 2.8                   | Petroleum Refining                                               | 67  |
| 2.9                   | Conclusion of Economic Evaluation                                | 72  |
| 4 P.O                 | TANK IOUNG BOLLOW GOVERNOON                                      |     |
|                       | TABLISHING POLICY SCENARIOS AND                                  |     |
|                       | TIMATE OF POTENTIAL FOR ENERGY CONSERVATION                      | 73  |
| 3.1<br>3.2            | Introduction "Massures" and "Policy" for Process Consequention   |     |
| 3.3                   | "Measures" and "Policy" for Energy Conservation                  |     |
| 3.3<br>3.4            | Consideration of Pasia Policy Direction for Passas Consideration | 74  |
| 3.4                   | Consideration of Basic Policy Direction for Energy Conservation  |     |
| •                     | Establishing Policy Scenarios for Energy Conservation            | 82  |
|                       | Estimating Potential for Energy Conservation  Conclusion         | 85  |
| 3.1                   | CONCIUSION                                                       | 93  |
|                       |                                                                  |     |
|                       |                                                                  |     |
| •                     |                                                                  |     |
|                       |                                                                  |     |
|                       |                                                                  |     |

|            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 1.  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| *          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   | * . |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
|            | VALUATION OF POLICY SCENARIOS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |
| H          | NVESTMENTS FOR ENERGY CONSERVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94  |     |
| 4.1        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 94  |     |
| 4.2        | Evaluation from "Energy Demand Forecast"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 94  | •   |
| 4.3        | Evaluation from "Energy Utilization Plan"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100 |     |
| 4.4        | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104 |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 5. N       | METHODOLOGIES AND TOOLS USED IN THIS STUDY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105 |     |
| 5.1        | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105 |     |
| 5.2        | Regnomic Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105 |     |
| 5.3        | "Energy Demand Forecast"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105 | V · |
| 5.4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107 |     |
|            | Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109 |     |
| J.J        | Damoaso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . : |     |
| 6 N        | MASTER PLAN FOR ENERGY CONSERVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |
| 0. n       | N SIX INDUSTRIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110 |     |
|            | and the control of th | 110 |     |
| 6.1        | Economic Evaluation of Measures for Energy Conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110 |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.3        | in Six Industries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110 |     |
|            | and the state of the state of the Brown Concernation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |
| 6.4        | E DANUMUM DI LUMCA OCCUSION SIKO BILACOMBANA TAI PRAIR CAMPALAMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111 |     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111 |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| <b>6.5</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
| 6.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |

# List of Tables

|                    | ·                                                                                |
|--------------------|----------------------------------------------------------------------------------|
| Table 2.1          | Equipment List                                                                   |
| Table 2.2          | Summary of Proposals                                                             |
| Table 3.2.1        | Iron & Steel Factories in I.R.Iran                                               |
| Table 3.2.2        | Economic Evaluation of Measures for Energy Conservation in the Iron & Steel      |
|                    | Industry                                                                         |
| <b>Table 3.2.3</b> | Cement Factories in I.R.Iran                                                     |
| Table 3.2.4        | Economic Evaluation of Measures for Energy Conservation in the Cement Industry   |
| <b>Table 3.2.5</b> | Sheet Glass Factories in I.R.Iran                                                |
| <b>Table 3.2.6</b> | Economic Evaluation of Measures for Energy Conservation in the Sheet Glass       |
|                    | Industry                                                                         |
| Table 3.2.7        | Textile Factories in I.R.Iran                                                    |
| Table 3.2.8        | Economic Evaluation of Measures for Energy Conservation in the Textile Industry  |
| Table 3.2.9        | Sugar Factories in I.R.Iran                                                      |
| Table 3.2.10       | Economic Evaluation of Measures for Energy Conservation in the Sugar Industry    |
| Table 3.2.11       | Vegetable Oil Factories in I.R.Iran                                              |
| Table 3.2.12       | Economic Evaluation of Measures for Energy Conservation in the Vegetable Oil     |
|                    | Industry                                                                         |
| Table 3.2.13       | Petroleum Refineries in I.R.Iran                                                 |
| Table 3.2.14       | Economic Evaluation of Measures for Energy Conservation in the Petroleum         |
|                    | Refinery                                                                         |
| Table 3.3.1        | Scenarios for Forecasting Energy Demand in the Industry Sector                   |
| Table 3.3.2        | Assumption of Energy Prices by Scenario                                          |
| Table 3.3.3        | Future Production of Crude Steel in I.R.Iran                                     |
| Table 3.3.4        | Future Consumption of Energy and Energy Intensity in the Iron & Steel Industry   |
| Table 3.3.5        | Future Production of Cement in I.R.Iran                                          |
| Table 3.3.6        | Future Consumption of Energy and Energy Intensity in the Cement Industry         |
| Table 3.3.7        | Future Production of Sheet Glass in I.R.Iran                                     |
| Table 3.3.8        | Future Consumption of Energy and Energy Intensity in the Sheet Glass Industry    |
| Table 3.3.9        | Future Consumption of Energy in Seven Industries                                 |
| Table 3.4.1        | Assumption of Simulation for the Reference Case                                  |
| Table 3.4.2        | Simulation Result of Macro Economy ( 'Reference Case ')                          |
| Table 3.4.3        | Simulation Result of Primary Energy Requirement ( 'Reference Case ')             |
| Table 3.4.4        | Simulation Result of Final Energy Demand ( 'Reference Case')                     |
| Table 3.4.5        | Simulation Result of Energy Demand in the Industrial Sector ( 'Reference Case ') |
| Table 3.4.6        | Assumption of Simulation for the Energy Conservation Case                        |
| Table 3.4.7        | Comparison of Energy Intensities between MEM Results and Micro Analysis          |
| Table 3.4.8        | Factors of Energy Conservation in the Industrial Sector                          |
| Table 3.6.1        | Targets and Policies for Energy Conservation in the Industrial Sector            |
| Table 3.6.2        | Items to be Studied for Promoting Energy Conservation                            |
|                    |                                                                                  |

# List of Figures

| Figure 1.1   | Overview of the Study                                                      |
|--------------|----------------------------------------------------------------------------|
| Figure 3.1.1 | The Conceptual Flow of Studying the Master Plan for Energy Conservation in |
|              | Industries                                                                 |
| Figure 3.4.1 | Sheet Glass Industry Cost-Benefit Function                                 |
| Figure 3.4.2 | Cement Industry Cost-Benefit Function                                      |
| Figure 3.4.3 | Optimum Allocation of Investment to Maximize Three Years Net Benefit       |
| Figure 3.4.4 | Optimum Allocation of Investment Ten Years Net Benefit                     |
| Figure 3.5.1 | Flow Chart of Macro-Energy Model ( MEM )                                   |
| Figure 3.5.2 | Potential Optimum in Domestic Market Value                                 |
| Figure 3.5.3 | Potential Optimum in Economic Value                                        |
| Figure 3.5.4 | EXCEL and the Optimization Module                                          |
| Figure 3.5.5 | Basic Database Structure                                                   |
| :            |                                                                            |

# DESCRIPTION OF THE STUDY

#### 1. DESCRIPTION OF THE STUDY

# 1.1 Background of the Study

- (1) In the Islamic Republic of Iran, it is now an issue of great concern, which may influence the future economic growth, to establish a reliable, efficient and economical energy supply system in good harmony with the social development and environment. In this regard, it is vitally important to work out a comprehensive energy policy.
- (2) Plan and Budget Organization of the Islamic Republic of Iran (hereinafter referred to as "PBO") decided to formulate a "Comprehensive Energy Development Plan" which aims at providing a rational and scientific basis and organizing the data in order to establish a long-term energy strategy, along with the 1st 5-year Economic, Social, and Cultural Development Plan (March 1989 to March 1994) drawn up in July 1989. Hence PBO consulted "Institute for Research in Planning and Development" (hereinafter referred to as IRPD) about drafting the plan.
- (3) In response to the request of the Government of the I.R. Iran for the development and study for providing technical and theoretical recommendations, the Japan International Cooperation Agency (hereinafter referred to as "JICA"), conducted "A Study of the Comprehensive Energy Development Plan of the Islamic Republic of Iran" with IRPD as the counterpart for the period of February 1992 to March 1994.

The purpose of this study was to establish a scientific basis for formulating a comprehensive energy development plan through the Iranian-Japanese joint work as well as to improve the technical capability of the Iranian counterpart.

The following were mainly studied:

- a. Development of energy database
- b. Analysis of economic development
- c. Analysis of energy demand
- d. Analysis of the energy supply system
- e. Review of the energy market
- f. Consideration of energy conservation potentials
- g. Consideration of environmental problems involved in energy supply and consumption
- (4) As a result of this study, the following were suggested to be important for attempting the rational use of energy.
  - a. To optimize the energy supply cost
  - b. To reduce the environmental load as much as possible
  - c. To preserve the resources necessary for acquisition of foreign currency to continue the development
  - d. To optimize energy intensities

- e. To establish the policy for controlling the energy supply and demand
- f. To proceed with energy-related research and development activities

Specifically, optimization of energy consumption intensity among these is one of the important items for I.R. Iran where energy prices are relatively low, and the quantification has been found to be vitally important for promoting the rational use of energy in the social and economic sectors. The necessary data and information available are, however, not so sufficient, thus making it difficult to plan a fully reliable and practical measure at present.

- (5) Hence, the Government of the I.R. Iran requested the Government of Japan to conduct a more detailed study on the current situation of energy use in I.R. Iran, and concurrently to carry out the survey related to the planning of an energy policy based on the foregoing study.
- (6) IICA dispatched the preliminary study team in October 1994 to discuss various necessary issues which would be involved in the implementation of this study. After necessary study and discussion, a Scope of Work (S/W) was concluded between PBO, the counterparting organ of the requesting country for this study and the Japanese study team.

## 1.2 The Objectives of the Study

The objectives of the study are:

- (1) to analyze the use of energy at micro level in the main energy consuming sectors, such as industrial sector, in order to provide detailed information for identifying the potentials of energy conservation and rational use of energy,
- (2) to help expand the energy data and information system and
- (3) to provide a scientific basis for evaluation of the potentials of energy conservation and identification of appropriate measures for improving energy management in the I.R. Iran.

#### 1.3 Counterparts

- (1) Plan and Budget Organization (PBO)
- (2) Institute for Research in Planning and Development (IRPD)
- (3) Sharif University of Technology (SUT)

# 1.4 Japanese Organization Responsible for Implementation of the Study

The study was conducted jointly by The Energy Conservation Center, Japan (Representative) and The Institute of Energy Economics, Japan.

# 1.5 Organizations and Factories to be Studied

- (1) Interview survey (Ministries, industrial organizations and Japanese enterprises operating in I.R.Iran)
  - a. Institute for Research in Planning and Development
  - b. Plan and Budget Organization (Library)
  - c. Ministry of Industry
  - d. Ministry of Mines and Metals
  - e. Central Bank of the Islamic Republic of Iran
  - f. Iran Statistics Center
  - g. Association of Iran Textile Industries
  - h. Sugar Factories Syndicate
  - i. State Sugar Organization
  - j. Iran Cement Engineering Center
  - k. Oilseed Research and Development
  - 1. Cement Research Center
  - m. Consulting Office for Sugar Industries
  - n. JETRO, Tehran Office
  - o. Marubeni, Iran
  - p. Nikki Engineering

#### (2)Interview survey (Factories)

(Glass Industry)

(Steel Industry) Mobarakeh Steel

Khouzestan Steel b.

(Chemical Industry) Razi Petrochemical c.

> d. Mina Glass

Saveh Jam Glass

Aliaf (Textile Industry) f.

> Yazd Baf g.

Esfahan Sugar (Food Industry) ħ.

> i. Shiraz Vegetable Oil

#### Factory survey (3)

(Steel Industry) Esfahan Steel (Chemical Industry) ь. Tehran Refinery

(Cement Industry) Sephahan Cement c.

đ. Tehran Cement

Soufian Cement

Ghazvin Glass (Glass Industry) (Textile Industry) Polyacryl Iran Q.

> Kashan Velvet & Rayon Mills, Ltd. h.

(Food Industry) Behshar Industry

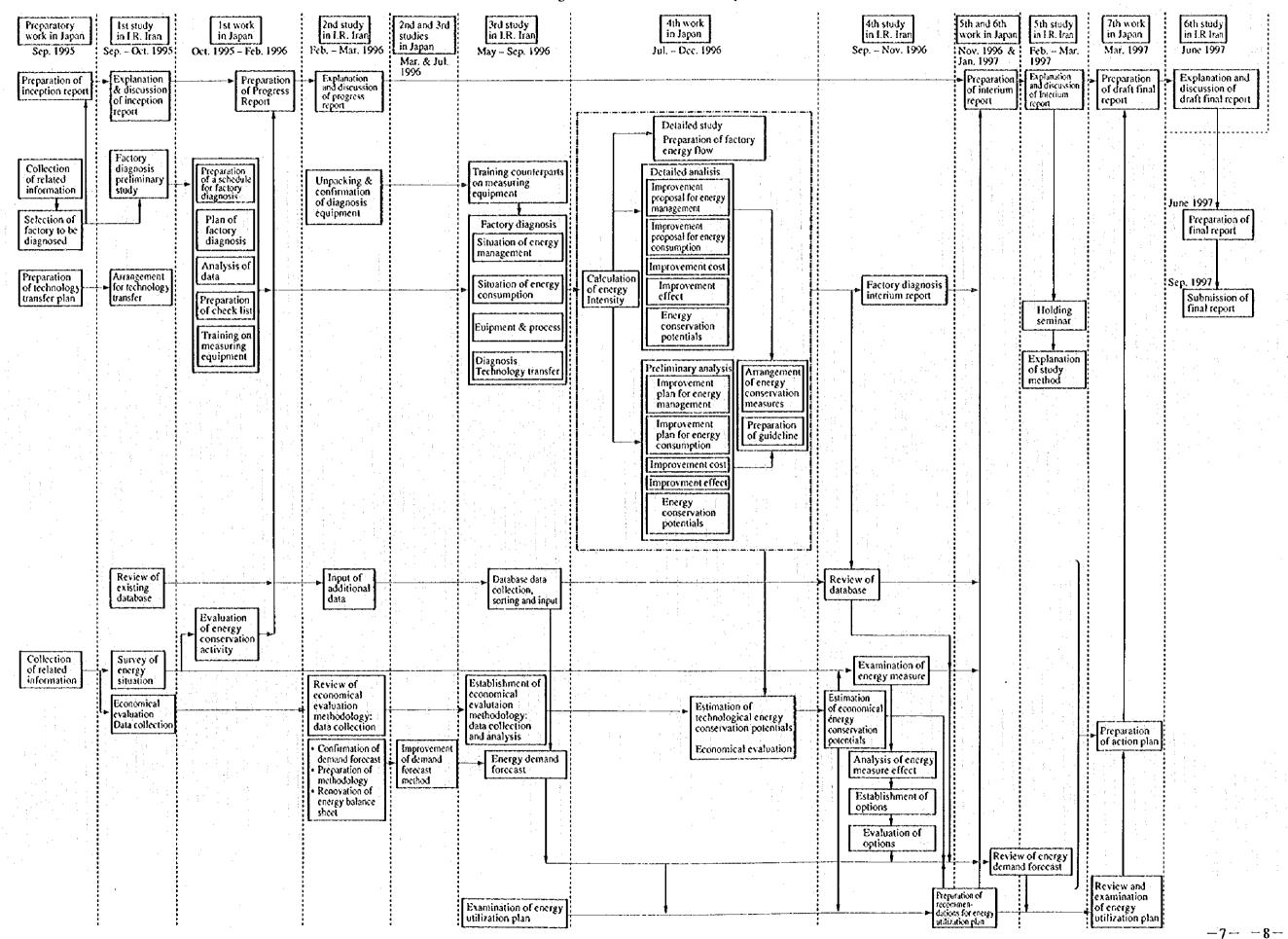
> Karun Cane į.

k. Abkouh Sugar

#### **(4)** Interview survey and observation at organizations and factories in Japan

- Japan Sugar Refiners' Association
- Petroleum Association of Japan b.
- Ċ. Japan Chemical Fibres Association
- Japan Oilseed Processors Association d.
- Japan Cement Association e.
- The Japan Iron and Steel Federation f.
- Association of Japan Beet Sugar Manufacturers g.
- h. Japan Spinners' Association
- Kawasaki Heavy Industries i.
- Kobe Steel j.
- k. . Nisshin Sugar Manufacturing
- I. Nisshin Plant Engineering
- m. Nihon Cement
- Nippon Beet Sugar Manufacturing, Memuro Sugar Beets Factory
- Higashi Nihon Sugar Manufacturing, Chiba Plant
- Hokuren Federation of Agricultural Cooperatives, Shimizu Sugar Beets Factory
- Meiji Sugar Manufacturing

## 1.6 Description of the Study


The study was conducted with regard to the following points according to the "IV. Scope of the Study" in the Scope of Work signed on October 18, 1994.

- (1) Upgrading the existing energy database
  - a. Confirmation of the existing energy database
  - b. Identification of data necessary for microanalysis of energy conservation
  - c. Upgrading of energy database based on the data obtained through the factory diagnosis
- (2) Study on the present status of energy use in the 6 main industries
  - a. To study the current situation and the future perspective of energy use in the energy consuming sectors, and to investigate the present situation and the future plan of the laws, regulations, activities relevant to energy conservation
  - b. To investigate the current situation of energy utilization in the steel, cement, glass, food, textile, and chemical industries
  - c. To investigate the energy management situation in the above-mentioned industries
- (3) Consideration of energy conservation measures and estimation of energy conservation potentials
  - a. To examine the energy conservation technical measures in the main 6 industries
  - b. To estimate the technical potentials for energy conservation after implementation of energy conservation measures
  - c. To review the energy conservation technological measures in terms of economical efficiency
  - d. To investigate the optimization of energy intensities in the economic and social sectors
  - e. To formulate the framework for energy management measures through establishing energy prices, modernization of technology, improvements of various systems, etc.

# 1.7 Methodology of the Study and the Implementation Status

The overview of the study is illustrated in Figure 1.1.

Figure 1.1 Overview of the Study



# 1.8 Members of the JICA Team

| No  | Name                    | Assignment                              |
|-----|-------------------------|-----------------------------------------|
| 1.  | Mr. Mitsuo Iguchi       | Team leader                             |
| 2.  | Mr. Toru Kimura         | Deputy team leader, Energy policy A     |
| 3.  | Mr. Shin-ya Udou        | Energy policy B                         |
| 4,  | Mr. Norio Fukushima     | Energy conservation potential analysis  |
| 5.  | Mr. Kaoru Yamaguchi     | Database and energy utilization plan    |
| 6.  | Mr. Hisao Kibune        | Energy demand forecasting A             |
| 7.  | Mr. Hiroyuki Ishida     | Energy demand forecasting B             |
| 8.  | Mr. Shigeaki Kato       | Economic evaluation                     |
| 9.  | Mr. Akihiro Koyamada    | Measuring equipment                     |
| 10. | Mr. Jiro Konishi        | Energy management (Heat)                |
| 11. | Mr. Kazuo Usui          | Energy management B (Electricity)       |
| 12. | Mr. Yukio Nozaki        | Energy management C (Heat)              |
| 13. | Mr. Ken-ichi Nakayama   | Energy management D (Electricity)       |
| 14. | Mr. Katsuhiko Kaburagi  | Energy management E (Heat)              |
| 15. | Mr. Toshio Sugimoto     | Energy management F (Electricity)       |
| 16. | Mr. Seiichiro Maruyama  | Factory management A (Steel process)    |
| 17, | Mr. Takashige Taniguchi | Factory management B (Textile process)  |
| 18. | Mr. Hisashi Ikeda       | Factory management C (Cement process)   |
| 19. | Mr. Masami Kato         | Factory management D (Glass process)    |
| 20. | Mr. Shiro Honda         | Factory management E (Food process)     |
| 21. | Mr. Teruo Anzai         | Factory management F (Chemical process) |
| 22. | Mr. Kenji Kazuma        | Factory management G (Chemical process) |

# 1.9 Counterpart Members

Dr. Saboohi

Mr. Ali Mazhari

Mr. Saced Akhavan

Mr. Fereidoun Mianji

Mr. Kasra Azizi

Mr. S. Mehdi Sajadifar

Mr. Abolghasem Schayesteh

Mr. Hossein Moosavi

Mr. Tohangchi

Mr. Seid-Reyhani

Ms. Zarvani

Manager

Energy conservation

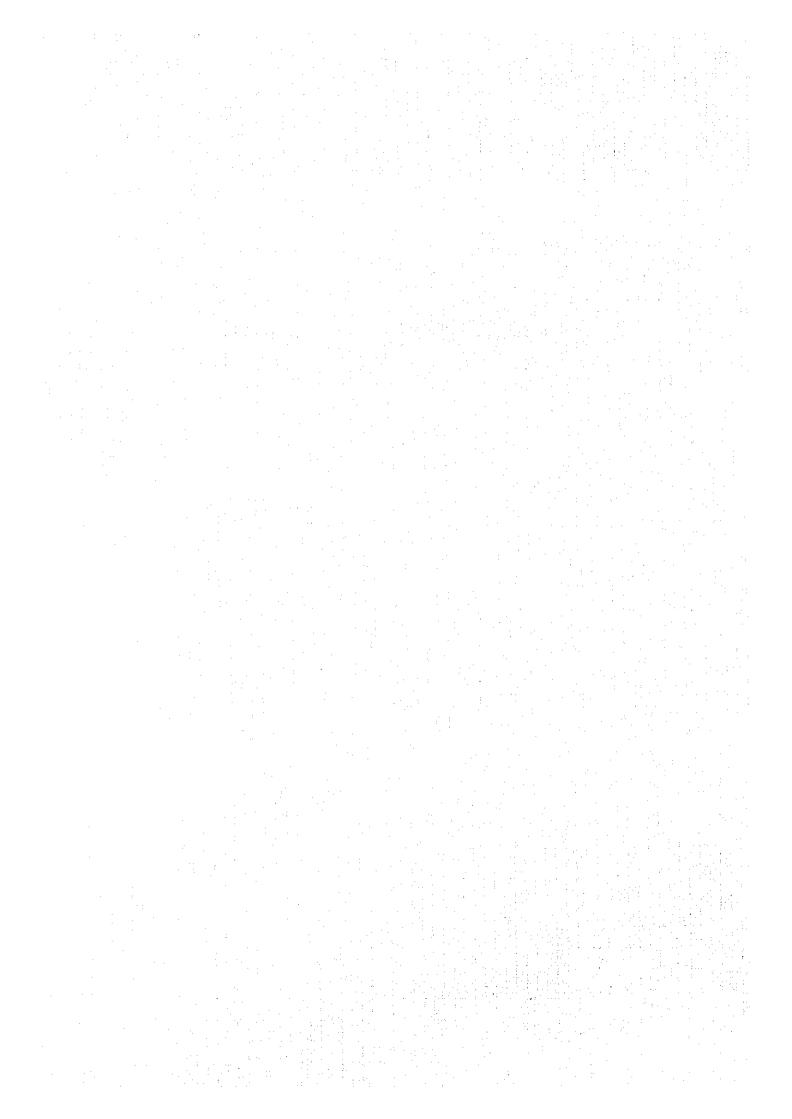
**Energy conservation** 

Micro level energy management

Macro level energy management

Factory management

Instrumentation


Macro level energy management

Micro level energy management

Micro level energy management

Macro level energy management

# FACTORY ENERGY DIAGNOSIS



# 1. THE OBJECTIVE OF THE STUDY

The study was carried out on the typical factories selected from 6 industrial sectors with a view to investigating their energy use in order to make the results available as data for estimating the energy conservation potential of each industry as a whole.

This study was conducted also to recommend effective measures for implementing energy conservation activities as well as to transfer technology for the use of factory diagnosis equipment and methods to the counterpart personnel.

#### 2. FACTORIES TO BE STUDIED

The study was carried out on 11 factories in 6 types of industries, including 1 factory in the iron and steel industry, 1 factory in the chemical industry, 3 factories in the cement industry, 1 factory in the glass industry, 2 factories in the textile manufacturing/processing industry and 3 factories in the food processing industries.

#### 3. METHODOLOGY OF THE STUDY

During the 3- to 5-day study period, the following tasks were carried out: interview survey on the process, energy consumption and energy management situation; factory tours to observe equipment and operation; measurement of the main equipment and exchanging of opinions with the factory management about the results of our factory survey and measurement.

Measurement was conducted using nearly 40 types of diagnosis equipment brought in from Japan. These portable equipment included measuring/recording devices for temperature, temperature distribution, pressure, flow rate, gas composition, water quality, electricity, etc., and data processors. The technological knowhow required for using the equipment was transferred to the counterpart personnel in the course of the study. However, it took long time for the bus to clear the customs; therefore, the equipment had to be transported by air and taxi. Table 2.1 shows the equipment used for factory diagnosis.

Table 2.1 Equipment List

| No. | Name                                              | Set (s)      |
|-----|---------------------------------------------------|--------------|
| 1.  | Energy Audit Bus                                  | 1            |
| 2.  | Ultrasonic liquid flow meter                      | 3            |
| 3.  | High temperature anemometer for gas               | 6            |
| 4.  | Pitot type flow meter                             | . 4          |
| 5.  | Voltex type flow meter                            | $3 \times 3$ |
| 6.  | Oxygen meter for exhaust gas                      | 4            |
| 7.  | Carbon dioxide and monoxide meter for exhaust gas | 4            |
| 8.  | Pretreatment unit for sampling exhaust gas        | 4            |
| 9.  | Sampling tube for exhaust gas                     | 1            |
| 10. | Thermometer for surface                           | 2            |
| 11, | Thermocouple with compensate cable for gas        | 50           |
| 12. | Suction pyrometer                                 | 2            |
| 13. | Radiation thermometer (low range)                 | 2            |
| 14. | Radiation thermometer (high range)                | 2            |
| 15. | Glass thermometer                                 | 5            |
| 16. | Hygrometer                                        | 10           |
| 17. | Thermal video system                              | 1            |
| 18. | Portable hybrid recorder                          | 6            |
| 19. | Desk-top type personal computer                   | 1            |
| 20. | Note type personal computer                       | 2            |
| 21. | SC meter                                          | 2            |
| 22. | pH meter                                          | # • <b>2</b> |
| 23. | Digital low pressure indicator                    | 2            |
| 24. | Pressure transmitter for steam                    | 3 × 3        |
| 25. | Clamp on power meter                              | 5            |
| 26. | Clip-on AC power meter                            | 3            |
| 27. | Tacho meter                                       | 2            |
| 28. | Lux meter                                         | 2 :          |
| 29. | Tester                                            | 2            |
| 30. | Low voltage detector                              | . 5          |
| 31. | Heat-proof gloves                                 | 5            |
| 32. | Cobalt glass                                      | 10           |
| 33. | Camera                                            | 1            |
| 34. | Insulation rubber gloves                          | 5            |
| 35. | Cord reel and others                              | 1            |
| 36. | Stopwatch                                         | 2            |
| 37. | Carrying cart                                     | 4            |
| 38. | Long table                                        | 3            |
| 39. | Transducer for electricity (5 kinds)              | 2 × 5        |
| 40. | Training unit for combustion                      | · 1          |
| 41. | Training unit for liquid flow                     | 1            |
| 42. | Training unit for gas flow                        | 1            |

# 4. ENERGY MANAGEMENT SITUATION

Although the energy use efficiency may differ depending on the performance of the equipment and devices, it is more likely to be affected by the consciousness and behavior of each personnel involved in operation and maintenance.

Therefore, in order to implement energy conservation effectively, it is vitally important to build up the framework to respond quickly to the request of the factory management along with adequate provision of equipment. It is also necessary to set up the framework which will allow all employees to make concerted efforts for achieving the target for energy conservation.

# 4.1 Top Management's Policies for Energy Conservation

No single step can be taken toward energy conservation in the factory unless the management demonstrates its positive willingness or motivation for energy conservation. This factory survey revealed that only about half of all surveyed factories had management or administration staff who showed a strong interest in energy conservation. This is probably because the energy prices stay still at a low level though they are gradually being raised, and thus are not yet considered as an important item in terms of management.

Even in factories showing a more positive interest in energy conservation, none have set up a specific goal with regard to the target date and degree of energy conservation to be achieved. Therefore, they have no framework where all the company members are allowed to exert a united effort for systematic implementation of energy conservation.

# 4.2 Activities of the Energy Conservation Committees

Energy conservation committees have been set up in industries excluding textile and food industries since 1995 partially under the guidance of the Ministry of Industry. Some of these committees make efforts such as setting up an activity plan to collect data, inspecting steam leakages, inspecting a trap and so forth. First of all, it is important to get started with the energy conservation activities. In this regard, having set up energy conservation committees is regarded as a significant step toward energy conservation. This effort as a core is expected to gradually develop into company-wide activities. To this end, it is advisable to have the activities implemented not only by the technical staff but also the operators. Hence arises the need to take some appropriate measures for employee education, an improvement proposal system, and encouragement for autonomous management.

# 4.3 Grasping the Actual Energy Consumption Situation

In order to implement energy conservation activities, it is essential to grasp the energy consumption level for each process or for each main equipment and the fluctuation trend. This allows us to figure out the level of energy conservation to be achieved or to know the area remaining to be improved. It is indispensable as well to provide energy measuring instruments in order to review the results of implemented energy conservation measures.

Many of the factories surveyed this time had no energy measuring equipment for each process or for each equipment though they had records of the purchased energy amount for the entire factory through contract meters, or purchase slips. Under these circumstances, it is natural that the operators should show little interest in energy consumption.

Even factories equipped with meters do not take prompt action to analyze the data of energy consumption data, investigate the factor for fluctuation and thus control an energy increase. In order to control the trend of energy intensity (energy consumption per unit production) to implement energy conservation efforts, it is advisable to provide an adequate number of energy measuring equipment.

## 5. ENERGY INTENSITY LEVEL

The energy intensity of any surveyed factory except the synthetic textile factories is higher than that of the Japanese factory: approximately 1.6 times in the iron and steel industry; about 1.5 times in the oil refinery; 1.06 to 1.38 times in the cement factories; 2.1 times in the glass factory; about 6 times in the textile factories except synthetic textile factories; and 1.6 to 3.6 times in the food factory.

These discrepancies arise from not merely the differences in the scale of equipment but also from the methods of equipment management.

#### 6. PROBLEMS IN ENERGY UTILIZATION

The problems common to every industrial sector include the following.

#### 6.1 Combustion Control

In general, air ratio control is not conducted for combustion equipment, and no equipment was provided with an automatic combustion controller.

## 6.2 Recovery of Waste Heat from Combustion Exhaust Gas

In many cases, the high temperatures of combustion exhaust gas are probably due to insufficient cleaning of the heat transfer surface. Moreover, almost no equipment to recover this waste heat is provided.

#### 6.3 Heat Insulation

Some high-temperature furnaces have inadequate heat insulation. The heat insulation is generally good for steam piping, while such insulation is hardly provided on valves and flanges.

#### 6.4 Power Plant

Many factories are equipped with a private power generator to prepare for a possible power failure due to low reliability of public power distribution line. These power plants are not connected to the public distribution line, and are obliged to operate in inefficient light-load.

#### 6.5 Rotating Devices Including Pumps, Fans and Others

Extremely high pressures and flow rates of pumps and fans result in low-efficiency operation.

## 6.6 Lighting

Some lights remain unnecessarily lit during the daytime.

#### 6.7 Steel-making Plants

Although the electricity intensity for coke plants is satisfactory, coke ovens still need to be improved and rationalized in terms of operation and steam utilization, respectively. Hence it will be effective to introduce coal moisture control equipment.

In sintering plants requiring improvement of operation to reduce coke intensity, taking an air-leak preventive measure and using a direct-fired burner will allow improvement of both electricity intensity and fuel intensity.

The energy intensity of blast furnace in I.R. Iran shows a significant difference from that of similar equipment in Japan. In order to improve fuel ratio, which is high partially due to the increase in production, it is indispensable to control the material charge distribution.

Steel-making equipment show a significant difference in fuel intensity, thus making it necessary to investigate the equipment consuming natural gas in order to use it more appropriately. Under the present situation, the operation method of the converter boiler needs to be improved, but it is recommended that they should employ the gas recovery method in the future.

Rolling mills require improvements in production/process control, reduction of fuel for holding heat and an improvement in combustion control in order to reduce the fuel intensity of the billet reheating furnace. To this end, the use of hot charge will be effective.

Energy equipment involves energy distribution loss problems such as delays in the modernization of boilers, turbines, generators and oxygen plant and oxygen dissipation. For the countermeasure against blast furnace gas dissipation and coke oven gas distribution loss, it is effective to install gas holders.

## 6.8 Petroleum Refinery

In the petroleum refinery there are 37 heating furnaces, where combustion control and recovery of waste heat are not sufficiently carried out. Taking such measures as automation of combustion control, recovery of waste heat, etc. will allow fuel intensity to be remarkably improved. Heat exchanging with hot-temperature products is not adequate enough to heat the crude oil. To increase the efficiency of the steam ejector for vacuum distillation towers, it is effective to enforce the temperature control of cooling water.

#### 6.9 Cement Plants

Air leakage of the raw material mill system lead to a poor draft balance of the entire kiln, causing the cooling capacity of the satellite cooler to decline, reducing the production and worsening the energy intensity. In order to improve the fuel intensity of an SP kiln and a kiln with a new suspension preheater (NSP kiln), it is effective to employ a grate cooler which allows changing the volume of cooling air.

Many of the wet-process kilns and dry-process long kilns now in operation have poor fuel intensity. From now on, therefore, their modification into or their replacement by SP kilns or NSP kilns allows fuel intensity to be improved. Electricity intensity is relatively good, but it will be made much better by means of ball size and level control for both raw material mills and finishing mills or replacing them by vertical roller mills.

#### 6.10 Glass Plant

In the glass manufacturing process, the melting furnace is the largest fuel consumer.

The furnace wall of the glass melting furnace has insufficient heat insulation, and the combustion control is not good enough. The inadequate glass pull-up capacity reduces the load of the melting furnace, thereby worsening the energy intensity. The low product yield contributes to poor energy intensity. The introduction of a floating process will allow the size of the melting furnace to be enlarged and the melting load to be increased, leading to a significant improvement of energy intensity and product quality.

#### 6.11 Textile Plants

The polyester and polyacrylic product manufacturing process has good energy intensity due to the use of continuous polymerization and POY system in the polyester spinning process.

The spinning process produces much pneumatic wastes because of yarn end breakage on the spinning frame, affecting electricity intensity adversely. Controlling temperature and humidity will reduce the number of yarn end breakages to a large extent.

In the utility sector, fuel intensity can be improved by increasing the efficiency of the gas turbine and enhancing the boiler combustion control.

The fuel intensity can also be reduced through recovery of steam condensate, use of waste heat of hot water from the dycing process and recovery of waste heat from diesel generators.

## 6.12 Vegetable Oil Plants

Ejectors consume too much steam for generating vacuum in the deodorizing process.

The volume of steam can be reduced by adjusting the vacuum degree, the steam pressure of the ejector and the temperature of water for the barometric condenser.

Heat exchange between refined oil and raw material oil allows fuel intensity to be improved.

#### 6.13 Sugar Plant

The yield of cane sugar is poor, thereby increasing energy intensity. Storage management of material cane can prevent the deterioration of sugar content.

Poor control of sugar juice in the crystallizer pan makes the boiling time longer, and therefore the energy intensity gets higher. Automatic control of the crystallizing pan and improvement of the vacuum degree allow energy intensity to be reduced. In addition, much scale forming on the heat transfer surface of the evaporator requires pan cleaning, which further increases energy intensity. Purification of sugar liquid through ion exchange resin improves both product quality and yield, thus reducing energy intensity as well. High steam pressure extracted from the power generating turbine results in loss of power generation amount. Lowering the extraction pressure increases the output of the generator.

#### 7. ENERGY CONSERVATION MEASURES

Most of the equipment-related measures currently implemented in Japan are not applicable in I.R.Iran because of the long payback years due to low energy prices there. Therefore, we proposed measures which would enhance energy management and allow lower investment in equipment. Table 2.2 shows the proposal items for energy conservation measures and the possible saved energy for each factory.

Taking feasible measures may lead to fuel savings of about 10% and electricity savings of 9% based on the energy prices in I. R. Iran (energy conservation case).

Even the measures which are described as taking 10 years for payback or as being not feasible in the line "feasibility in energy conservation case" in Table 2.2 can be regarded as being feasible enough if management strategic factors such as production increase, quality improvement, environmental improvement, and others are taken into account. Therefore, such measures are included as well for study. Taking these measures in addition to those mentioned above can be expected to produce fuel savings of about 15 % and electricity savings of about 10 %.

#### 8. GUIDELINE

The guideline for implementation of energy conservation for each industry, which consists of factory diagnosis procedures, energy management, energy conservation technologies and heat calculation worksheet, summarizes technical items useful as references for implementing energy conservation activities. It is recommended that counterpart should utilize this report as a reference to prepare its own guideline and add information, as required, collected through its own future factory diagnosis to make the effort for achieving further substantial results.

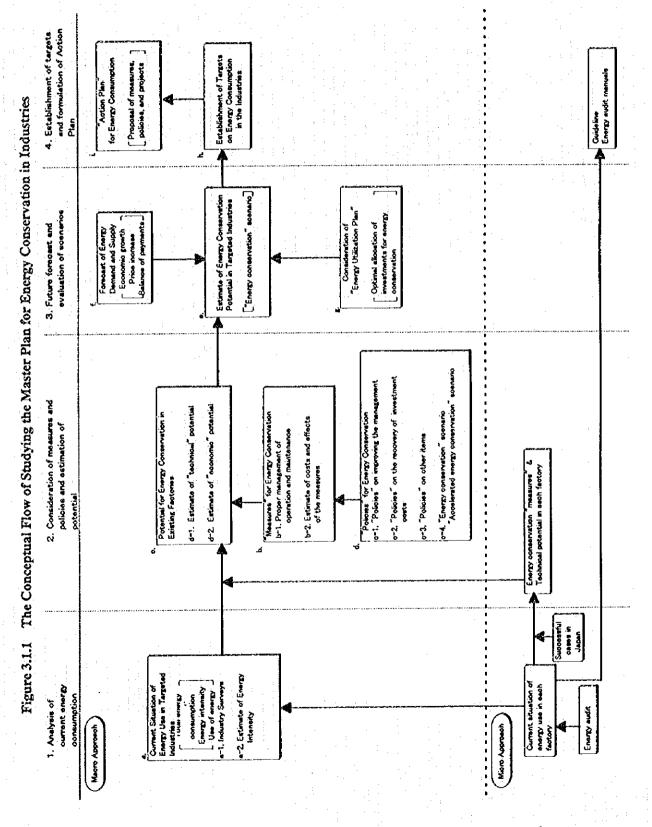
# Table 2.2 Proposal Items for Energy Conservation Measures and Saved Energy

Saved energy is shown in cells from the bigins

ning year of implementation of energy conservation ineasures.

Note 1. Saved energy: Fuel oil(AL), Natural gas(1000m²) and electricity[MWh].

Note 2. Energy price: Fuel oil = 17.0Rinl/L., Natural gas = 22.4Rial/Nm², electricity


|                                        | Unergy conservation measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1997        | 1998             | Light prince | 7.000<br>2000 | = 17.0Kinl/L., Natural gas.<br>2001 2002 2003 | 02 200             | 3 2004 201                            |            | Saving energy  | Saving energy Saving moncy Investment Pensible 13 | Investment Fe                          | siblity                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|--------------|---------------|-----------------------------------------------|--------------------|---------------------------------------|------------|----------------|---------------------------------------------------|----------------------------------------|-------------------------|
|                                        | casible measures in accelerated energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | +                | -            |               | -                                             | -                  | -                                     |            | 10001<br>10001 | יאלוווזמון ואיפו                                  | 00                                     | scrvation               |
|                                        | conscrivation case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 7                |              |               |                                               |                    |                                       |            | [MWh]          |                                                   | Car                                    | Q                       |
| ctry                                   | 1 Iron & steel industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | - <del>-</del> - |              |               | <br>:.<br>:.                                  |                    |                                       | - -        |                |                                                   |                                        |                         |
|                                        | ) Optimization of combustion air ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27171       | 2717             | 5863         | 2717          | 5863                                          | 2717 27<br>5863 58 | 717 27                                | 177 271    | 3 4104         | 3 547,747                                         | 3.500 no                               | Scassible               |
|                                        | () Optimization of coxing temperature () Review of steam utilization method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1580        | 75801            | 7580         | 7580          | 7580                                          | 7580 7:            | 580 75                                | 852   08   | 0 (8220        | 0 1.528,128                                       | 010                                    | sable                   |
|                                        | ) Yield merense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 10927            | 12230        |               | 12230                                         | 2230 125           | 2301 122                              | 30 1223    |                | 0 1,917,664                                       | 3.500 no                               | Licasibic               |
|                                        | (i) Develop, of low coke operation tech.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  | 26002        | 20092         | 26002 2                                       | 6002 260           | 26002 260                             | 02 26002   |                |                                                   | 5.250 no                               | (Seasole                |
|                                        | 1) Prevention of lenk nir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  | [7104]       |               | (7104) (7                                     | 104] (7]           | 04) (710                              | 7104       |                | 0.050.01                                          | X 750 16                               | sable for 10 ve         |
|                                        | Reduction of fuel ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 1                | 0.00         | 2430          | 2520                                          | 2520 2             | 520 25                                | 25.20      |                |                                                   |                                        | eable for 10 ys         |
|                                        | Commission of blowns organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           | 177121           | (7712)       | (7712)        | (7712)                                        | 77] [217           | 12] [121                              | 2] (7712   |                |                                                   |                                        | rable                   |
| Ĭ                                      | 2) Reduction of electricity in converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [12177]     | [7712]           | [7712]       | [7712]        | 1712 17                                       | 712) [77           | 12) [77]                              | 2)1 (77)2  | -              | 2,824,906                                         | Unterstate<br>Officeration             | suple<br>subje          |
|                                        | 3) Reduction of fuel in converter process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 221171           | 22117        | 7117          | 41740                                         | 1740 41            | 340 413                               | 401 4134   |                |                                                   |                                        | sable                   |
| Ī                                      | 4) Reduction of fuel in steel-making plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 8768             | XYCX         | XYCX          | 8268                                          | 8268 8             | 268 82                                | 68 826     | 8 74412        |                                                   |                                        | ssibie                  |
|                                        | Commentation of production control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 477X2       | 27782            | 47782        | 7             | 47782 4                                       | 7782 47            | 782 477                               | 82 4778    |                |                                                   | () feasi                               | astole                  |
|                                        | Seview of reheating furnace operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1÷          | 30202            | 30202        | ١.,           | 30202                                         | 02021 30           | 202 302                               | 02 3020    |                |                                                   |                                        | Asible                  |
|                                        | 3) Combustion control of reheating flee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 11269            | 11269        | 11269         | 11269 1                                       | 1269 11            | 269 112                               | 69 1126    |                |                                                   |                                        | matche for 30 vs        |
|                                        | 4) Improvement of hot charge ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 15777            | 15777        | 15777         | 177751                                        | 01 (1/10)          | 09 (SXO                               | XS 608     | 1              | 1 226.736                                         |                                        | O feasible              |
|                                        | 5) Improve, of yield in rolling process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cenc        | 2000             | 200          | 6             |                                               |                    |                                       |            |                |                                                   |                                        |                         |
| Ē                                      | Dembusion control of boiler & others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4341        | 4341             | 1            | 4341          | 4341                                          | 4341 4             | 4341 43                               | 41 434     | 3900           | 875.146                                           | 175 to                                 | nerbic                  |
|                                        | 1) Improvement of compressor operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [13167]     | [13167]          | (13167)      | 13167         | 13167 11.                                     | 181 [131           | (67) [1316                            | 57] [1316  | 7) (11850.     | <b>.</b>                                          |                                        | ASIDIC<br>20. P.J.      |
| rtion.                                 | 1) Reduction of oxygen supply loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _           | [112x6]          |              |               | 112%61 11                                     |                    | (11286) (112                          | (6) (11286 |                |                                                   |                                        | 7 Jacasible             |
| Mison                                  | 1) Improvement of water pump operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | [080]            |              | $\equiv$      | 13080) (1:                                    | (13080) [130       | 3801 [130                             | 80] [1308  | 0) 104040      |                                                   |                                        | ANDIA                   |
| ١,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |              |               |                                               | - 2                | _                                     |            |                |                                                   |                                        |                         |
|                                        | 11) Improve, of heating furnace refractory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _           |                  | 538          | . 538)        | . 538                                         | 538                | 538                                   | 38 5       | 538 3766       | 96,022                                            | MICC.                                  | a icasioic              |
|                                        | 2) improve of heating turnace air ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _           | -                | 16983        | 16983         | 16987                                         | 91 88691           |                                       | 6983 16983 |                | <b>(2)</b>                                        | 1.575116                               | aribic                  |
|                                        | (1) Vinhance of heat resovery from cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  | 1781         | 1781          | 1781                                          | 1781               | 1781                                  |            |                |                                                   |                                        | of feasible             |
|                                        | A Confession of court motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 5.1              | 5:1          | 11511         | 151                                           | _                  |                                       | (51) (51)  |                |                                                   |                                        | ot teamble              |
|                                        | 4) Nepinectical of pamp motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 1000             | 100%         | 9082          | 18001                                         | L                  | ]=                                    |            |                |                                                   |                                        | asible                  |
|                                        | 5) l'ump impeller cutting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  | 660          |               | 1, 10,                                        | (10)               | 110                                   | 0          |                |                                                   |                                        | sanbio                  |
|                                        | 6) Turning off unnecessary light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 5                |              | 5             |                                               |                    |                                       |            |                |                                                   |                                        |                         |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  | -            | 1             |                                               |                    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |            | 200            | 578.340                                           | 16X15                                  | 16X Heaethle            |
| 3.1 Sepahan Cement                     | 1) Capacity up of EP induced draft fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3780        | 3780             | 3780         | 3780          | 3780                                          | 37×0               | . 087                                 | /s (08/    |                |                                                   |                                        | 100 P                   |
| l                                      | 2) Raw mill fan oneration control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | [5400]           | 2400         | [2400]        | 1 ((0075)                                     | 5400] [5           | 5400] [54                             | 00] [540   |                |                                                   |                                        | asibic                  |
|                                        | The state of the s |             | 15.70            | 15.50        | 245           | 945;                                          | 2451               | 2451 9                                | 151 94     |                |                                                   |                                        | assible                 |
|                                        | s) con process aran control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 100001           | 0000         | 100001        | 100001                                        | 00001              | 0011 1100                             | 110000     | 100000         | _                                                 | 87678                                  | cashle                  |
| ۱                                      | 4) Keplace of cement mili screen plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 10001            | 120001       | 100/04        | 2000                                          | 1000               | 21 5030                               |            | ľ              |                                                   |                                        | ot feasible             |
|                                        | 1) No.3 kitn: Modification to NSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  | -            |               | 47277                                         | 4.72.7             |                                       | 17.7       | 07.77          | 300.000                                           | 20 000                                 | Crossble                |
|                                        | 2) No.4 kiln: Replacement of cooler (fuel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -           |                  |              |               |                                               | ٠ ا                |                                       |            |                |                                                   |                                        |                         |
|                                        | 2) No.4 kuln: Replacement of cooler (elec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                  |              |               | [(0618)                                       |                    | الل                                   |            | (44550)        |                                                   | Ì                                      |                         |
| 1                                      | 3) No 6 kilo: (morove of operation (fuel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  | 1-           | 6593          | 1_                                            | 1659               | 6593 6593                             | 2659 265   |                | 51 784,567                                        | 7 1.278 1                              | casibic                 |
| ۱                                      | 2) No A total Improves of corretion(aloc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br> -      |                  | 1144001      | 14400:        | 11440011                                      | -                  |                                       |            |                |                                                   | ) (                                    |                         |
| 1                                      | S) two Ami. migaster of opening the significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 4-               | -1-          | 1:            | +                                             | 1.                 | <u>1</u>                              |            |                |                                                   |                                        | ot icarible             |
| 1                                      | ( ) Improvement of Klin operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  | -1.          | 1             | 2007                                          | 24706              | 24786 24                              |            |                |                                                   |                                        | of fensible             |
|                                        | 4) No. 4 Kilm: Modification to NSF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1           |                  |              | - 100         | 100                                           | L                  | ı                                     | 5 Y 1057   | 07 47.153      | l                                                 | ý                                      | of feasible             |
|                                        | 3) No.4 kiln: Replacement of cooler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  | , k          | 2220          | 2223                                          |                    | 1                                     |            | ľ              | 1                                                 |                                        |                         |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                  |              |               | -                                             |                    | -                                     |            |                |                                                   |                                        | 100                     |
|                                        | 1) Excess nir 25% to 15% in melting furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -           | 2863             | 2863         | 2863          | 2863                                          | 2863               | 2863 2                                | 2863 28    |                |                                                   |                                        | Cupitac.                |
|                                        | Dr. W. C. J. G. A. Strampoon Lights tanged page 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1320        | 1330             | 26.40        | 2640)         | 1055                                          | 3955               | 3955                                  | _          |                |                                                   |                                        | or feasible             |
|                                        | 4) NO.4. S & + Intrace light manners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                  | 0000         | 10002         | (\$00.00)                                     |                    | A 3072                                | 4728       | 325            |                                                   |                                        | casible                 |
|                                        | 3) Production yield improvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200         | 200              | (XII)        | OOD.          | 07/5                                          | 07/40              |                                       | ١          | ĺ              | ١                                                 | İ                                      | of frachle              |
|                                        | 4) Checker height increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2500        | 2380             | 2000         | S<br>S<br>S   | 0162                                          |                    |                                       | -          | V/VIV          | DC-176 000                                        |                                        | 11                      |
|                                        | (5) Compressed air leakage stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2) 7)      | [2] 7]           | [217]        | (217)         | [217]                                         | [217]              | 21.7)                                 | [217] [2]  |                |                                                   |                                        | Ulcasible               |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ]                |              |               |                                               | -                  | L                                     |            | -              |                                                   |                                        |                         |
| 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |              | - 58          |                                               | 200                | 500                                   | 100        |                | 510) SX 464                                       |                                        | ensible                 |
|                                        | 1) Improvement of Dowtherm boiler an ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 250         | 290              | 2901         | 250           | 067                                           | 2,7                | 37                                    | 3          | A107           |                                                   | ֓֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |                         |
|                                        | 2) Review of opench cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>        | [2000]           | 120001       | [2000]        | [2000]                                        | 7 (0007)           | 3000) [5 <u>7</u>                     | 00] [20    |                |                                                   | 065                                    | casable for 10 vs       |
| 1                                      | 2) Dansey day of marks have a commit growner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br> -      |                  | 2282         | 2282          | 2282                                          | 2232               | 2282 2                                | 282 22     | 32 159         |                                                   | 262                                    | tensible for 10 vs      |
| .                                      | A) recovery of wante hear in activity occas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                  | 7077         | 70.           | 2 1                                           | 1,500              | 17.20                                 | 35         | 170            |                                                   | (43X                                   | not fearible            |
|                                        | 4) Replacement of chiller system pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  | [886]        | (986)         | (000                                          | 000                | 2003                                  | 8          | (0)            |                                                   |                                        |                         |
|                                        | 5) Improve of easturbine utilization rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7442        | 7442             | 7442         | 7442          | 7442                                          |                    | 7442 7                                | 442 74     |                |                                                   |                                        | CHEDIC                  |
|                                        | 6) Vocingtion of entrolly/wester against                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | X   X            | 1181811      | 1181811       | (1818)                                        | (18181)            | 18181                                 |            | [1818] [14544] |                                                   |                                        | 525 Iteasible for 10 ys |
| 1                                      | מי ער הערינים בין מי פין אי אייני היינים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  | 10000        | 10002         | 1000                                          | ľ                  | L                                     | 3000       |                |                                                   |                                        | casable for 10 vs.      |
|                                        | () Christian of punction of the contraction ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 2000             | -1-          | 1000          | 1000                                          | 1                  | 1                                     | 1          |                |                                                   |                                        | casuble for 10 vs       |
|                                        | (8) Rational use of compressed arr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [3400]      | 3400             |              | [3400]]       | [3400]                                        | 1                  | _                                     | 1          |                |                                                   |                                        |                         |
|                                        | 1) Reduction of pheumatic waste rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [375]       | [375]            | -            | (375)         | [375]                                         |                    | ر<br>(۲۶)                             | 200        | (c/c)          |                                                   |                                        | Custone                 |
| Rayon Mills                            | 2) Stopping of return fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [101]       | [101]            | [101]        | [101]         | [101]                                         |                    |                                       |            |                |                                                   | 1                                      | Casibic                 |
| 1                                      | 3) Enhance, of condensate recovery rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 360         | 095              |              | 1096          | 360                                           | 360                | 360                                   |            | 160 32         | 40                                                | COT                                    | not Icashic             |
| ĺ                                      | 2) Decoument of heat of ducing washing water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 1.124            | ~            | 11241         | 1124                                          | 1124               | 1124 1                                |            |                |                                                   |                                        | ot feasible             |
| 1                                      | אן וורכסגרול פי וורשו פו הגבווול אשיווול אווים                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.          |                  |              | 1.47          | 143                                           | 1.17               | 147                                   | ŀ          |                |                                                   |                                        | camble                  |
|                                        | 5) Improvement of hoties air ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ;           |                  | l            |               |                                               | 1.32               | 1977                                  | 1,27       | 51 11991       | 18851                                             | l                                      | cashie                  |
|                                        | <ol><li>Control of number of air compressor</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [65]        | (65)             | (0)          | (60)          | [co]                                          | [60]               | [60]                                  | ١          |                |                                                   | ı                                      |                         |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |              |               |                                               | į                  | -                                     | ı          | :              |                                                   |                                        |                         |
| 6.1 Behahahr Industry                  | 1) Reduction of steam in deadorizing process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5534        | 5534             |              | 5534          | 5534                                          | 5534               | 5534                                  |            | 1              |                                                   |                                        |                         |
| ı                                      | 2) Boyler combistion control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 1342             | ÷            | 1342          | 1342                                          |                    |                                       |            |                |                                                   |                                        | ot teamble              |
|                                        | 21 Danman of achainst heat of diesel engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                  | 79X          | 798           | 798                                           | l                  |                                       | 362        |                | 5586 125.126                                      |                                        | not feasible            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                  | 17050        | 2504          | 7650                                          | 2594               | _                                     | l          |                |                                                   |                                        | not feasible            |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |                  | 700          | 4700          | 4790                                          | 4790               | 47901                                 |            | 4790 33        |                                                   | _                                      | of feasible             |
|                                        | A) Mulphing to not type for the manner of the form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -<br>-<br>- |                  | 16100        | 2317          | 21.7                                          | 4166               | ļ.,                                   |            |                | \$47,62                                           | 920                                    | camble for 10 vs        |
| I                                      | i) Automatic control of vigaminaming print                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25,0        | 244              | 336          | 3,4,5         | 245                                           | 244                | 245                                   | 255        | 755            | 205 \$1,40                                        | 0 18                                   | 0                       |
| Ĭ                                      | 2) Keduction of steam pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | () ()       | 1                | 13:1         | 3 15 1        | 11.51                                         | 11.511             | 131                                   |            | 11511          | 351 5,495                                         | L                                      |                         |
|                                        | 3) Turning of ununecessary light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2           | 5                | 101)         | [4]           |                                               | 3                  | 17.47                                 |            | 11.4           |                                                   |                                        |                         |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |              | -             |                                               | -                  | - 1                                   | 000        |                | -                                                 |                                        |                         |
| 8                                      | scryation case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -           | 8661             | 6661         | 2000          | 2001                                          | 2002               | 003 20                                | 04 200     | 5              |                                                   |                                        |                         |
|                                        | The state of the s | 475571      | 250056           | SATTAGO      | 4252401       | 105,665                                       | 105065             | 1956                                  | 301 522    | 3802           | \$802969 41 115.823.85                            | 7 1 *1 289,222                         | * on.                   |
| ĺ                                      | Fuci saving amount (xc-inci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -           | 20000            | 200          | 23000         | 1, 2, 3, 1,                                   |                    | 11.                                   | 600        |                | 415.                                              |                                        | Flectricity             |
| ĺ                                      | Electricity saving amount (MWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44141       | N0353            | 102×53       | 102853        | 111043                                        | 111043             | 10431                                 | 043) 1110  |                | 4151                                              |                                        | לכוברו ויכולו           |
|                                        | The same way and the same and t | 1           | ů,               | 7000         | 13 300        | 70071                                         | 1 4 004            | 7 00 21                               | 00%1       | 14 00%         |                                                   |                                        |                         |
| 9                                      | Fuel (consumption: 3,493,787 KiJy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.7%        | 1.6.0            | 7.7.0        | 17.5          | 14.7 0                                        | 1 0 7.41           | 1.7.4                                 |            |                |                                                   |                                        |                         |
| (0,0)                                  | (%) Electricity (consumption: 1,155,133 MWh/v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.8%        | 7.0%             | %6'8         | 8.9%          | 9.6%                                          | 0,69.6             | 9.6%                                  | .6% 9.     | 6%9            |                                                   |                                        |                         |
| 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +           |                  |              |               |                                               | -                  | <u> </u>                              | -          |                |                                                   |                                        |                         |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |              |               |                                               | ľ                  | - 1                                   |            |                |                                                   |                                        |                         |
| COCTE                                  | conservation case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1997        | ×66              | 3861         | 2000          | 2001                                          | 2002   2           | 003 20                                | 04         |                |                                                   |                                        |                         |
|                                        | 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VOLVAL      | 240000           | 274407       | C88855        | 248025                                        | \$5. \$5085        | x025   358                            | 025 3589   |                | 3941*1 96.428.578                                 | x   1   21.581   F                     | I'uel+                  |
|                                        | Fuci saving amount (ktfuci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100493      | 740387           | 2.1440Z      | 200000        | C764000                                       | 67606              | 07.50                                 |            |                | and the co                                        |                                        | L. Lacemander           |
|                                        | Electricity saving amount (MWI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44141       | ×0.33            | 101857       | 01857         | 101X57 1                                      | 01857 10           | 1857   101                            | 857 101857 |                | 278                                               | -                                      | Flectricity             |
| ************************************** | 14/14 FOF ONE F. 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70 V        | , etc. 4         | 7 40%        | 10.00         | 10 3%                                         | 10 3%              | 0.3% 10                               | 01 1000    | 30%            |                                                   |                                        | Payback year.           |
| ratio                                  | (Puc) (consumption: 3,498,787 kL/y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.07        | 6730             | 0.8.         | 10.50         | 10,                                           | 10.1.0             | 0.550                                 | 0.00       |                |                                                   |                                        |                         |
|                                        | 164.123.4630.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 00        | 700              | 7000         | % X V         | VaX X                                         | %X X               | % X0X X                               | % × %%     | VoX.           |                                                   |                                        | 10 years or iess        |
|                                        | Cicement (community or assessment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2           |                  |              |               |                                               |                    |                                       |            |                |                                                   |                                        |                         |

Saved Energy in the Surveyed Factories

# MASTER PLAN FOR ENERGY CONSERVATION IN SIX INDUSTRIES

### 1. INTRODUCTION

The main task of this part of the study is to formulate a master plan for energy conservation in the six industries targeted. We have carried out the following examinations in formulating it (See Figure 3.1.1):



First, we have tried to grasp the current status of energy use in the seven industries.

Second, we have considered measures for energy conservation based upon our grasp of the current status.

Third, we have estimated how much energy can be saved technically by the measures (estimate of technical potential).

Fourth, we have made an economic evaluation of measures for energy conservation by comparing the costs and the benefits of the measures.

The results of these examinations are described in the next chapter: "2. Current Status of Energy Use in Seven Industries and Economic Evaluation of Measures for Energy Conservation."

Fifth, we have considered various policies for promoting energy conservation in the industries, and established policy scenarios on energy conservation.

Sixth, we have estimated the economic potential of energy conservation in 2000 and 2005 in the industries according to the policy scenarios.

Seventh, we have evaluated the policy scenario and its potential, which is estimated according to the scenarios, from the viewpoint of both the Iranian macro-economy and the optimum investment for energy conservation measures. The former is performed to know the impact of the scenarios on economic growth, prices, government's budget, etc., and the latter is performed to know the optimum investment schedule for energy conservation. In other words, these evaluations are made to identify which scenario is the most desirable for the Iranian economy.

The fifth and the sixth above are described in "3. Establishing Policy Scenarios and Estimate of Potential for Energy Conservation," and the seventh in "4. Evaluation of Policy Scenarios and Investments for Energy Conservation."

Then, methodologies and tools used in this part of the study are explained in "5. Methodologies and Tools used in this Study."

Finally, a summary and a conclusion are given in "6. A Master Plan for Energy Conservation in the Six Industries."

## 2. CURRENT STATUS OF ENERGY USE IN SIX INDUSTRIES AND ECONOMIC EVALUATION OF MEASURES FOR ENERGY CONSERVATION

### 2.1 Introduction

fron and steel, chemical (petroleum refining), (cement and sheet glass), textiles, food (sugar and vegetable oil) industries are targeted in this study.

These industries, excluding petroleum refining, consumed various kinds of energy equivalent to 81,600 Tcal in 1994, according to our estimate. This amount accounted for 32% of total energy consumption in the industrial sector, which was estimated at 255,520 Tcal in 1994. In addition, it accounted for 59% of energy consumed in the sector excluding natural gas used as chemical feedstock.

Petroleum refining belongs to the "energy conversion sector" in the energy balance table, which means it is an energy supply industry, not an energy consuming one, therefore, we consider it appropriate to treat this industry as being different from the other industries. Accordingly, it is described at the end of this chapter.

### 2.2 Iron and Steel

### 2.2.1 Outline of the Industry

Demand for steel products is estimated to have shown an annual growth rate of around 10% from the end of the 1980s to the middle of the 1990s in I.R.Iran, while their production increased at an annual rate of around 20% during the same period. The higher increase of production was due to the stabilized production of Ahwaz Steel during this period, as well as the inauguration of Mobarakeh Steel early in 1990s.

Steel production in I.R. Iran started in Esfahan Steel and INSIG (Iran National Steel Group) in 1972, followed by Ahwaz Steel in 1984 and Mobarakeh Steel in 1991. In addition to the four factories, Kavian Steel produces steel products and is a major producer. In 1994 Ahwaz, INSIG, and Kavian, all of which are located in Ahwaz in Khouzestan Province, merged to form Khouzestan Steel.

These factories are divided into the following in terms of production processes:

- Blast furnace Basic oxygen furnace process with rolling mills ------ Bsfahan Steel
- b. Direct reduction furnace Electric are furnace process ----- Ahwaz Steel (without rolling) and Mobarakeh Steel (with rolling)
- c. Reduced from & steel scrap Electric arc furnace process with rolling ------ INSIG
- d. Producing final products from semi-products supplied from other factories ------ Kavian Steel (Slabs are supplied from Ahwaz Steel).

Iron and steel factories are shown in Table 3.2.1

continued

Table 3.2.1 Iron & Steel Factories in LR. Iran

| Company Name Location | Production Manufacturer | Production Capacity(t/y) | ity(t'y)                  | Product               |   |
|-----------------------|-------------------------|--------------------------|---------------------------|-----------------------|---|
|                       | Start up                |                          |                           | (1994 Product Output) |   |
| Esfahan Esfahan       | Phase 1 USSR            | (Crude Steel)            | 2,100,000 Crude Steel     | 1,881                 | Ķ |
| Steel Co.             | 1972                    | Coke Oven *2             | 1,150,000 Hot Rolled Prod |                       |   |
|                       | Phase 2                 | Sinter Plant *3          | 2,516,000 I-beam          | 936                   | × |
|                       | 1983                    | Blast Furnace *2         | 1,925,000 Bar             | 703                   |   |
|                       |                         | LD Converters *3         | 3*130Vcharge Billet       | 229                   |   |
|                       |                         | Billet C.C. *7           | 2,500,000 Channel         | 28                    |   |
|                       |                         | Rolling Mill *6          | 2,150,000 Angle & rail    | 13                    |   |
|                       |                         | Oxygen Plant *6          | 11,000NM3/H (Total)       | 1,909                 |   |
| Mobarakeh Esfahan     | 1993 Kobe Steel         | (Crude Steel)            | 2,769,000 Sponge Iron     | 1,624                 | ğ |
| Steel Complex         | Italimpianti            | Iron Ore Pelletizing     | 4,500,000 Crude Steel     | 1,534                 |   |
|                       |                         | D-Reducta, Unit          | 3,200,000 Hot Coil        | 1,105                 |   |
|                       |                         | Electric Arc Fumaces     | 8*180-200t Pickling Coil  | 341                   |   |
|                       |                         |                          | /charge Cold Coil         | 253                   |   |
|                       |                         | C.C. Slab *4             | 2,700,000                 |                       |   |
|                       |                         | Rolling Mill *2          |                           |                       |   |
|                       |                         | Hot Strip Mill           | 2,500,000                 |                       |   |
|                       |                         | Hot Finishing            | 1,550,000                 |                       |   |
|                       |                         | Cold Rolling             | 986,000                   |                       |   |
|                       |                         | Organ Diant #3           | 10 400004374              |                       |   |

| ompany Name Location | ompany Name Location Production Manufacturer | Production Capacity(t/y)                    | Product                             |
|----------------------|----------------------------------------------|---------------------------------------------|-------------------------------------|
|                      | Start up                                     |                                             | (1994 Product Output)               |
| nouzestan Steel Co.  |                                              |                                             |                                     |
| Uhwaz Ahwaz          |                                              | (Crude Steel)                               | 1,550,000 Crude Steel               |
| steel Complex        | Lurgie Chemie                                | Sinter Plant *2                             | \$,000,000                          |
|                      | 1978 Thyssen(G)                              | D-Reductn. Unit No.1                        | 330,000 (Purofer 1 set)             |
|                      | 1984 Korf(G)                                 | D-Reductn. Unit No.2                        | 1,200,000 (Midrex 3set)+600,000     |
|                      | 1985 Pullmann Swind                          | 1985 Pullmann Swindell D-Reductn. Unit No.3 | 1,000,000 (HYL 3set)                |
|                      | Lectromelt                                   | Electric Arc Furnaces                       | 6*180t                              |
|                      |                                              |                                             | /charge Main products;              |
|                      |                                              | C.C. Slab & Billet                          | 1,550,000 Bloom 1 line &            |
|                      |                                              |                                             | Slab 2line                          |
| ran National Ahwaz   |                                              | (Crude Steel)                               | 150,000 Crude Steel                 |
| Steel Indu. G.       | 1972                                         | Melting 60vb*4set                           | 360,000                             |
|                      |                                              | Casting 2lines                              | Beam                                |
|                      | 1967-1973                                    | Round & Rod Rolling                         | 505,000 Plain & Ribbed Rounds       |
| . :                  | 1977                                         | Beam Rolling                                | 385,000 Flange Beams & channels     |
|                      | 1977 Demag                                   | Pipe Mili                                   | 190,000 Welded Pipe & Seamless Pipe |
|                      | 1973 (Germany)                               | Metal Industry                              | 119,000 Profile, Frame & Electrod   |
| Kavian Ahwaz         | 1991 Spezial Stahl                           | Hot Rolled                                  | Total mainly Plate,                 |
| Steel Co.            | (Germany)                                    | Semifinished Products                       | 840,000 Bloom & Slab                |

(2/2)

Source: Ministry of Mines and Metals
Metal Bulletin Books 11Ed. P.228-9
Estahan Steel Complex
Mobarakeh Steel Complex

Plate 12% Bloom 43%

Slab 55%

### 2.2.2 Process of Producing Steel Products and Energy Consumption

The process of producing steel products is divided into three main parts — iron making, steel making, and rolling. In the iron making process, iron ore is reduced to iron by coal (coke), natural gas, and others in a blast furnace, a direct reduction furnace, etc. In the steel making process, pig iron from the blast furnace is converted into steel in the basic oxygen furnace, or reduced iron from the direct reduction furnace is converted into steel in the electric arc furnace by removing impurities. In the case of INSIG, reduced iron and steel scrap are input into the electric arc furnace. Finally, in the rolling process, slabs and blooms are rolled into final products by a series of processes including hot rolling, cold rolling, and surface treatment.

Usually, iron making consumes two-thirds or three-fourths of the total energy consumed in the whole blast furnace — basic oxygen furnace process. In particular, the blast furnace consumes around 60 % of the total (in Japanese steel mills). In the direct reduction furnace — electric arc furnace process with rolling, iron making usually consumes nearly 50 % of the total (according to an estimation based on the process model).

### 2.2.3 Current Status of Energy Use and Measures for Energy Conservation

The energy intensity of Esfahan Steel is 9,140 Mcal/t-crude steel in 1994, which is 66% higher than 5,500 Mcal/t-crude steel of the newest iron and steel mill having a similar product-mix to Esfahan. The reasons are as follows:

- a. The mill is heavily inclined to increase production and as a result its blast furnaces are operating with a high fuel ratio.
- b. In its operation, there is insufficient coordination between processes.
- c. Blast furnace gas, coke oven gas, and basic oxygen furnace steam, which are by-products of production processes, are not effectively utilized.
- d. Energy related facilities including power plants are operating less efficiently.

The energy intensity of Mobarakeh Steel is 8,890 Mcal/t, which is nearly 40% higher than the 6,500 Mcal/t standard value of a factory with the direct reduction furnace process. The reasons are supposed to be the following:

- a. The capacity factor is still low, which reached 60s % in 1995.
- b. There are many problems in operating facilities, partly because the mill has never operated on a regular basis.
- c. Energy intensive facilities are installed.

The energy intensity of Ahwaz Steel, which is the core of Khouzestan Steel, was 7,880 Mcal/t in 1994, which is 26% higher than the 6,240 Mcal/t standard value of a factory with a similar process-mix to Ahwaz. The reasons are assumed to be as follows:

- a. Seven units of direct reduction furnaces excluding three units of MIDREX originally had a rather high energy intensity. In addition, their capacity factors are low.
- b. Productivity of the electric arc furnaces is low.

The energy intensity of INSIG was 1,450 Mcal/t in 1994, which is 65% higher than the 880 Mcal/t standard value of a similar process. The reasons are assumed to be as follows:

- a. There are many problems in operating the electric arc furnaces, which are small and originally had a high energy intensity.
- b. The capacity factor of the rolling process is low.
- c. Combustion in the heating furnaces is not sufficiently managed.

The energy intensity of Kavian Steel is 1,490 Mcal/t in 1994, which is more than twice the 630 Mcal/t standard value of a similar process. The reasons are assumed to be as follows:

- a. The energy intensity of the heating furnaces was originally high.
- b. Combustion of the heating furnaces is not sufficiently managed.
- c. Productivity of the rolling process is low.
- d. There are many problems in operating facilities.

Based upon the current status of energy use in the factories mentioned above, we have considered measures for energy conservation in each factory, and evaluated the measures economically. The results of the evaluation are shown in Table 3.2.2, where the measures are categorized into three groups — "improvement in management of operation and maintenance," "modification of facilities," and "modification of process."

Table 3.2.2-1 Economic Evaluation of Measures for Energy Conservation in the Iron & Steel Industry (Esfahan Steel)
A. E. C. Case (Natural Gas 123 Rial/Nm³, Electricity 100 Rial/kWh)

| Energy Conservation Potential       |               |                |             | Benefit    |             |              | Countermeasure Cost | istire Cost | Economic Evaluation |
|-------------------------------------|---------------|----------------|-------------|------------|-------------|--------------|---------------------|-------------|---------------------|
|                                     |               | N.G. Elec      | Electricity |            | for 3 years | for 10 years |                     |             | ,                   |
|                                     | Factory       | (1,000m³/y) (M |             | (M Rially) | (M Rial)    | (M Rial)     | Ç£<br>₹             | (M Rial)    |                     |
| Improvement of Management>          |               |                | 2           |            |             |              |                     |             |                     |
| (C.O.P.) Air Ratio for Combustion   | Esfahan Steel | 2,549          | :           | 314        | 778         | 1,925        | 0                   | <b>o</b> ,  | feasible            |
| Carbonization Temperature           | Estahan Steel | 5,501          |             | 119        | 1,678       | 4,154        | 200                 | 3,500       | feasible for 10 Ys. |
| Steam Utilization Method            | Esfahan Steel | 7,1111         |             | 875        | 2,169       | 5,371        | 0                   | 0           | feasible            |
| (S.P.) Vield increase               | Esfahan Steel | 10,252         |             | 1,261      | 3,127       | 7,742        | 100                 | 1,750       | feasible            |
|                                     | Esfahan Steel | 11,474         |             | 1,411      | 3,500       | 8,665        | 200                 | 3,500       | feasible            |
| Low Coke Operation                  | Esfahan Steel | 24,413         |             | 3,003      | 7,447       | 18,438       | 300                 | 5,250       | feasible            |
| Prevention of Air Leak              | Esfahan Steel |                | 7,104       | 710        | 1,762       | 4,362        | 39                  | 525         | feasible            |
| (B.F.) Production Increase          | Esfahan Steel | 76,443         |             | 9,403      | 23,318      | 57,731       | 200                 | 8.750       | feasible            |
|                                     | Estahan Steel | 2,364          | •           | 291        | 12          | 1,786        | 9                   | 175         | feasible            |
| (S.M.P.) Converter Yield            | Esfahan Steel | -              |             |            |             |              |                     |             |                     |
| O2 and Electricity                  |               |                | 15,424      | 1,542      | 3,825       | 9,470        | 0                   | 0           | feasible            |
| Fuel                                |               | 20,750         |             | 2,552      | 6,330       | 15,671       | •                   | 0           | feasible            |
| Reduction of Fuel                   | Esfahan Steel | 38,785         |             | 4,770      | 11,831      | 29,291       | 0                   | 0           | feasible            |
| Boiler Aux. Combustion Method       | Esfahan Steel | 7,757          |             | 8          | 2,366       | 5,858        | 0                   | 0           | feasible            |
| (R.P) Process Management            | Esfahan Steel | 44,828         |             | 5,514      | 13,674      | 33,855       | 0                   | 0           | feasible            |
|                                     | Esfahan Steel | 28,335         |             | 3,485      | 8,643       | 21,399       | 20                  | 875         | feasible            |
| Reheating F. Combustion Control     | Esfahan Steel | 10,572         |             | 1,300      | 3,225       | 7,984        | S                   | 878         | feasible            |
| Hot Charge Ratio                    | Esfahan Steel | 14,802         |             | 1,821      | 4.515       | 11,179       | \$0                 | 875         | feasible            |
| Yield                               | Esfahan Steel | 5,709          | 5,948       | 1,297      | 3,217       | 7,964        | Ó                   | 0           | feasible            |
| (C.C.P.) Low O2 Combustion et al.   | Esfahan Steel | 4,073          |             | 201        | 1,242       | 3,076        | 10                  | 175         | feasible            |
| (O, P) Operation Method             | Esfahan Steel |                | 13,167      | 1,317      | 3,265       | 8,085        | O                   | 0           | feasible            |
|                                     | Esfahan Steel |                | 11,286      | 1,129      | 2,799       | 6,930        | •                   | •           | feasible            |
| Title of the Control of the Control | Lufahan Ctan  |                | 12.080      | 1.308      | 3744        | 8.031        | 01                  | 175         | feasible            |

| <modification facility="" of=""></modification> | •             |                                  | ם           | Denetit              |                 |              | Countermeasure Cost | SUITE CASI.    | Economic Evaluation |
|-------------------------------------------------|---------------|----------------------------------|-------------|----------------------|-----------------|--------------|---------------------|----------------|---------------------|
| <modification facility="" of=""></modification> |               | N.G. E                           | Electricity | ୟ                    | for 3 years for | for 10 years |                     | • .            | Note                |
| Alodification of Facility>                      | Factory       | (1,000m <sup>3</sup> /y) (MWh/y) |             | (M Rially)           | (M Rial)        | (M Rial)     | (¾ ¾)               | (M Y) (M Rial) |                     |
|                                                 |               |                                  | ٠.          | :-                   |                 |              |                     |                |                     |
| (C.O.P.) Moisture Control Facilities            | Esfahan Steel | 9,124                            |             | 1,122                | 2,783           | 168'9        | 1,000               | 17,500         | not feasible        |
| (S.P) Steam Recovery from Waste Heat            | Esfahan Steel | 6,592                            | 966         | 910                  | 2,258           | 5,590        | 1,300               | 22,750         | not feasible        |
| (B.F) Air Preheater for Hot Oven                | Esfahan Steel | 3,349                            |             | 412                  | 1,022           | 2,529        | 250                 | 4,375          | not feasible        |
| (S.M.P) Exhaust Gas Recovery Equip.             | Esfaban Steel | 7.757                            |             | 954                  | 2,366           | 5,858        | 2,000               | 87,500         | not feasible        |
| (C.C.P) Efficiency of the BF Blower             | Esfahan Steel | 54,687                           | -:.         | 6,726                | 16,682          | 41,301       | 3,500               |                | not feasible        |
| (T.P.P) Multi-Purpose Power G.Turbine           | Esfahan Steel | 8                                | <u>ت</u>    | (incl. in the above) | ve)             |              |                     | ٠              |                     |
| (O, P) Air Compressor Efficiency                | Esfahan Steel |                                  | 39,501      | 3,950                | 9,796           | 24,254       | 2,500               | 43,750         | not feasible        |
| (Other) BFG, CDG Holder                         | Esfahan Steei | 97,738                           |             | 12,022               | 29,814          | 73,814       | 800                 | 14,000         | feasible            |
| <modification of="" process=""></modification>  |               |                                  |             |                      |                 | ;            | . *                 | .:             |                     |
| (C.O.P) Introducing CDQ                         | Esfahan Steel | 22,138                           |             | 2,723                | 6,753           | 16,719       | 5,000               | 87,500         | not feasible        |
| (B.F) Introducing TRT                           | Esfahan Steel |                                  | 50,641      | 5,064                | 12,559          | 31,094       | 1,000               | 17,500         | feasible for 10 Ys. |

Blast Furnace (BF), Steel Making Process (S.M.P)
Blast & Power Plant (CPP), Thermal Power Plant (T.P.P) Sintering Plant (S.P), O, Plant (O, P), Coke Oven Plant (C.O.P), Rolling Process (R.P),

Table 3.2.2-2 Economic Evaluation of Measures for Energy Conservation in the Iron & Steel Industry (Esfahan Steel)

E. C. Case (Natural Gas 22.4 RialNm³, Electricity 40.7 RialNWh, for 2000-2002)

(Natural Gas 30.0 RialNm³, Electricity 54.5 RialNWh, for 2000-2009)

| Date Date of the state of the s |               |        | Bene        | Renefit      |                 |              | Countermeasure Cost | ure Cost | Economic Evaluation |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|-------------|--------------|-----------------|--------------|---------------------|----------|---------------------|
| Energy Course various coleman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Z.G.   | Electricity | :            | for 3 years for | for 10 years |                     |          | Note                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factory       | ,/\/.u | (MWh/v)     | (M Rially) ( | (M Rial)        | (M Raal)     | (X Y)               | (M Rial) |                     |
| -(Improvement of Management>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |        |             |              | . 1             |              |                     |          |                     |
| (C.O.P) Air Ratio for Combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Esfahan Steel | 2,549  | . :         | 57           | 142             | 470          | 0                   | 0        | feasible            |
| Carbonization Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Esfahan Steel | 5,501  |             | 123          | 306             | 1,013        | 200                 | 3,500    | not feasible        |
| Steam Utilization Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Esfahan Steel | 7,111  |             | 159          | 395             | 1,310        | 0                   | 0        | feasible            |
| (S.P) Yield Increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Estaban Steel | 10,252 |             | 230          | 869             | 1,888        | 100                 | 1,750    | feasible for 10 Ys. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Esfahan Steel | 11,474 | -           | 257          | 637             | 2,114        | 200                 | 3,500    | not feasible        |
| Low Coke Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Esfahan Steel | 24,413 | : -         | 547          | 1,356           | 4,497        | 38                  | 5,250    | not feasible        |
| Prevention of Air Leak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Esfaban Steel |        | 7,194       | 289          | 717             | 2,377        | 30                  | 525      | feasible            |
| (B.F.) Production Increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Esfahan Steel | 76,443 |             | 1,712        | 4,247           | 14,081       | 200                 | 8,750    | feasible for 10 Ys. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Esfahan Steel | 2,364  | , .<br>, .  | 53           | 131             | 435          | 10                  | 175      | feasible for 10 Ys. |
| (S.M.P) Converter Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Esfahan Steel |        |             |              |                 |              |                     |          |                     |
| O, and Electricity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        | 15,424      | 628          | 1,557           | 5,161        | 0                   | 0        | feasible            |
| in the state of th |               | 20,750 |             | 465          | 1,153           | 3,822        | 0                   | 0        | feasible            |
| Reduction of Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Esfahan Steel | 38,785 | - i         | 698          | 2,155           | 7,144        | 0                   | 0        | feasible            |
| Boiler Aux. Combustion Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Esfahan Steel | 7,757  |             | 174          | 431             | 1,429        | 0                   | 0        | feasible            |
| (R.P.) Process Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Esfahan Steel | 44,828 |             | 1,004        | 2,490           | 8,257        | 0                   | 0        | feasible            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Esfahan Steel | 28,335 |             | 635          | 1,574           | 5,219        | .05                 | 875      | feasible            |
| Reheating F. Combustion Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estanan Steel | 10,572 |             | 237          | 287             | 1,947        | 20                  | 875      | feasible for 10 Ys. |
| Hot Charge Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Estahan Steel | 14,802 |             | 332          | 822             | 2,726        | 20                  | 875      | teasible for 10 Ys. |
| Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Esfahan Steel | 5,709  | 5,948       | 370          | 918             | 3,042        | 0                   | 0        | feasible            |
| (C.C.P.) Low O, Combustion et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Esfahan Steel | 4,073  | :           | 91           | 226             | 750          | 2                   | 175      | feasible            |
| (O.P.) Operation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Esfahan Steel | 1:     | 13,167      | -536-        | 1,329           | 4,406        | 0                   | <b>O</b> | feasible            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Estahan Steel | :      | 11,286      | 459          | 1,139           | 3,777        | 0                   | 0        | feasible            |
| Water Pump Operation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Esfahan Steel |        | 13,080      | 532          | 1,320           | 4,377        | 10                  | 175      | feasible            |
| The district of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |        |             |              |                 |              |                     |          |                     |

| Energy Conservation Potential |               |                                                                                              | Benefit           | -<br> -                           | :                      | Countermeasure Cost | sure Cost     | Economic Evaluation |
|-------------------------------|---------------|----------------------------------------------------------------------------------------------|-------------------|-----------------------------------|------------------------|---------------------|---------------|---------------------|
|                               | Factory       | N.G. Electricity for 3 years for 10 years (1.000 $m^3$ /y) (MWh/y) (MRialy) (MRialy) (MRial) | for<br>(M Rially) | for 3 years for 10 years (M Rial) | r 10 years<br>(M Rial) | ( <b>, k</b> )      | (M ¥) (MRial) | Note                |
| Modification of Facility>     |               |                                                                                              |                   |                                   |                        |                     | :             |                     |
| (Other) BFG, CDG Holder       | Esfahan Steel | 97,738                                                                                       | 2,189             | 5,430                             | 18,003                 | 8008                | 14,000        | feasible for 10 Ys. |
|                               |               |                                                                                              |                   |                                   |                        |                     |               |                     |
| Modification of Process>      |               |                                                                                              |                   |                                   |                        |                     | :             | ,                   |
| (B.F) Introducing TRT         | Esfahan Steel | 50,641                                                                                       | 2,061             | 5,111                             | 16,946                 | 1,000               | 17,500        | 17,500 not feasible |
|                               |               |                                                                                              |                   |                                   |                        |                     |               |                     |
|                               |               |                                                                                              |                   |                                   |                        | -                   |               |                     |

Steel Making Process (S.M.P) Coke Oven Plant (C.O.P), Rolling Process (R.P)

continued

Table 3.2.2-3 Economic Evaluation of Measures for Energy Conservation int the Iron & Steel Industry (Mobarakch/Khouzestan Steel) (Natural Gas 123 Rial/Nm<sup>3</sup>, Electricity 100 Rial/kWh) A. E. C. Case

|                                    |           | ~                     | יייניין איין זיין |                       |                                              |                         |                     |            |                 |
|------------------------------------|-----------|-----------------------|-------------------|-----------------------|----------------------------------------------|-------------------------|---------------------|------------|-----------------|
|                                    |           |                       |                   | Benefit               |                                              |                         | Countermeasure Cost | sture Cost | Economic        |
| Energy Conservation Potential      | Factory   | N.G. F<br>(1,000m³/v) | 113               | foctricity (M.Rially) | for 3 years for 10 years<br>(M Rial) (M Rial | or 10 years<br>(M Rial) | (M USS)             | (M Rial)   | Evaluation Note |
|                                    |           |                       |                   |                       |                                              | :                       |                     |            |                 |
| (P.P) Increasing of productivity   | Mobarakeh |                       | 21,240            | 2,124                 | 5,268                                        | 13,041                  | 0                   | 0          | feasible        |
|                                    | Mobarakeh | 64,984                | 48,738            | 12,867                | 31,910                                       | 79,002                  |                     | 0          | feasible        |
| (S.M.P) Stability of EAF operation | Mobarakeh | 7,672                 | 122,752           | 13,219                | 32,783                                       | 81,164                  |                     | 0          | feasible        |
| Improvement of EAF heat loss       | Mobarakeh |                       | 46,032            | 4,603                 | 11,416                                       | 28,264                  | 0                   | 0          | feasible        |
| Stability of CC                    | Mobaraken | 7,376                 | 14,752            | 2,382                 | 5,908                                        | 14,628                  | 0                   | 0          | feasible        |
| (H. R.) Increasing of productivity | Mobarakeh | :                     | 54.872            | 5,487                 | 13,608                                       | 33,691                  | 0                   | 0          | feasible        |
|                                    | Mobarakeh | 20,577                |                   | 2,531                 | 6,277                                        | 15,540                  | 0.5                 | 875        | feasible        |
| (C. R) Increasing of productivity  | Mobarakeh |                       | 12,675            | 1,268                 | 3,143                                        | 7,782                   | 0                   | 0          | feasible        |
|                                    | Mobarakeh | 2,535                 |                   | 312                   | 713                                          | 1,914                   | 0                   | 0          | feasible        |
| (Others) Pump and blower operation | Mobarakeh |                       | 26,554            | 2,655                 | 585'9                                        | 16,304                  | 0.1                 | 175        | feasible        |
| (P. P) Blower and pump efficiency  | ASCO      |                       | 47,512            | 4,751                 | 11,783                                       | 29,172                  | 0.1                 | 175        | feasible        |
| _                                  | ASCO      | 150,782               |                   | 18,546                | 45,995                                       | 113,874                 | 0                   | 0          | feasible        |
| (S.M.P) Productivity of EAF        | ASCO      | 6,654                 | 133,080           | 14,126                | 35,034                                       | 86,736                  | 0                   | 0          | feasible        |
| Increasing productivity of CC      | ASCO      | 6,280                 | 12,560            | 2,028                 | 5,031                                        | 12,455                  | 0                   | 0          | feasible        |
|                                    |           |                       |                   |                       |                                              |                         |                     |            | 1               |

|                                                |           |             | <b>μ</b> α<br>: | Benefit     |                          |            | Countermeasure Cost                   | sure Cost | Economic        |
|------------------------------------------------|-----------|-------------|-----------------|-------------|--------------------------|------------|---------------------------------------|-----------|-----------------|
| Energy Conservation Potential                  | Factory   | N.G. E      | Electricity     | fo          | for 3 years for 10 years | r 10 years | :                                     |           | Evaluation Note |
|                                                |           | (1,000m³/y) | (MWh/y)         | (M. Rially) | (M Rial)                 | (M Rial)   | (M USS)                               | (M Rial)  |                 |
| (S.M.P) Increasing of EAF productivity         | INSIG     |             | 7,785           | 61.1        | 1,931                    | 4,780      | 0                                     | 0         | feasible        |
| Stability of EAF                               | INSIG     | 973         | 7,785           | 868         | 2,227                    | 5,515      | 0                                     | 0         | feasible        |
| Productivity increase of CC                    | INSIG     | 816         | 918             | 205         | 208                      | 1,257      | 0                                     | 0         | feasible        |
| (P. M) Pipe mill productivity                  | INSIG     | 613         | 1,886           | 264         | 655                      | 1,621      | 0                                     | 0         | feasible        |
| Furnace operation                              | INSIG     | 471         |                 | 88          | 4                        | 356        | 0                                     | 0         | feasible        |
| (R.R.M) Round rolling mill productivity        | DISIG     | 7,397       | 7,767           | 1,687       | 4,183                    | 10,355     | 0                                     | 0         | feasible        |
| Furnace operation improvement                  | DISIC     | 7,397       |                 | 910         | 2,256                    | 5,586      | 0                                     | 0         | icasible        |
| (B.R.M) Beam rolling mill productivity         | INSIG     | 5,749       | 6.036           | 1,311       | 3,251                    | 8,048      | 0                                     | 0         | feasible        |
| Furnace operation improvement                  | INSIG     | 5,749       | : .             | 707         | 1,754                    | 4,342      | 0                                     | 0         | feasible        |
|                                                |           |             |                 |             |                          | !          |                                       |           |                 |
| (R.M) Rolling mill furnace operation           | Kavian    | 2,395       | :               | 295         | 731                      | 1,809      | 0                                     | 0         | feasible        |
| Rolling mill productivity                      | Kavian    | 6227        | 5,029           | 1,269       | 3,147                    | 7,791      | 0                                     | 0         | feasible        |
|                                                |           |             |                 | :-          |                          |            |                                       |           | •               |
| Modification of Facility>                      |           |             |                 |             |                          |            | · · · · · · · · · · · · · · · · · · · |           |                 |
| (DR. P) Waste heat recovery                    | Mobarakeh | 32,492      |                 | 3,997       | 116'6                    | 24,539     | 15.0                                  | 26,250    | not feasible    |
| (R.M) Rolling mill furnace                     | Kavian    | 7,185       |                 | 887         | 2,192                    | 5,426      | 0.5                                   | 875       | feasible        |
|                                                |           |             | . :             |             |                          |            |                                       |           |                 |
| <modification of="" process=""></modification> |           |             |                 |             |                          |            |                                       |           |                 |
| (P. P) Replacement to high eff. P. P           | Mobarakeh | 121,562     | 33,767          | 18,329      | 45,455                   | 112,539    | 70.0                                  | 122,500   | not feasible    |

Table 3.2.2-4 Economic Evaluation of Measures Conservation in the Iron & Steel Industry (Mobarakeh/Khouzestan Steel) (Natural Gas 22.4 Rial/Nm², Electricity 40.7 Rial/kWh, for 2000-2002) (Natural Gas 30.0 Rial/Nm3, Electricity 54.5 Rial/kWh, for 2000-2009) E. C. Case

|                                                   |           | )                                | (1.750 Rial/USS) | (\$)       |                          |            |                     |          | (1/2)           |
|---------------------------------------------------|-----------|----------------------------------|------------------|------------|--------------------------|------------|---------------------|----------|-----------------|
|                                                   |           |                                  | Ä                | Benefit    |                          |            | Countermeasure Cost | ure Cost | Economic        |
| Energy Conservation Potential                     | Factory   | H ON                             | Electricity      | <b>.3</b>  | for 3 years for 10 years | r 10 years |                     |          | Evaluation Note |
|                                                   | 1         | (1,000m <sup>3</sup> /v) (MWh/v) | - 1              | (M Rial/y) | (M Rial)                 | (M Rial)   | (M US\$)            | (M Rial) |                 |
| √improvement of Management>                       | :         |                                  |                  |            | 1                        |            |                     |          |                 |
| (P.P) Increasing of productivity                  | Mobarakch |                                  | 21,240           | 864        | 2,144                    | 7,108      | o'                  | 0        | feasible        |
| (DR. P) Stability of DR plant operation           | Mobarakeh | 64,984                           | 48,738           | 3,439      | 8,529                    | 28,279     | 0<br>:<br>:<br>:    | 0        | feasible        |
| (S.M.P) Stability of EAF operation                | Mobarakeh | 7,672                            | 122,752          | 5,168      | 12,816                   | 42,490     | 0                   | · •      | feasible        |
| Improvement of EAF heat loss                      | Mobarakeh | . :                              | 46,032           | 1,874      | 4,646                    | 15,404     | 0                   | 0        | feasible        |
| Stability of CC                                   | Mooarakeh | 7,376                            | 14,752           | 766        | 1,899                    | 6,295      | 0                   | 0        | feasible        |
| (H. R.) Increasing of productivity                | Mobarakeh |                                  | 54,872           | 2,233      | 5,539                    | 18,362     | 0                   | 0        | feasible        |
| Furnace operation improvement                     | Mobarakeh | 20,577                           |                  | 194        | 1,143                    | 3,790      | 0.5                 | 875      | feasible        |
| (C. R) Increasing of productivity                 | Mooarakch |                                  | 12,675           | 516        | 1.279                    | 4,241      |                     | 0        | feasible        |
| Furnace operation improvement                     | Mobarakeh | 2,535                            |                  | 52         | 141                      | 467        | 0                   | 0        | feasible        |
| (Others) Improvement of pump and blower operation | Mobarakeh |                                  | 26,554           | 1,081      | 2,680                    | 988'8      | 0.1                 | 175      | feasible        |
|                                                   |           |                                  |                  |            |                          | •          |                     |          |                 |
| (P. P) Blower and pump efficiency                 | ASCO      |                                  | 47,512           | 1,934      | 4,796                    | 15,899     | 0.1                 | 175      | feasible        |
| (DR. P) Stop of old type DR plant                 | ASCO      | 150,782                          |                  | 3,378      | 8,376                    | 27,774     | 0                   | 0        | feasible        |
| (S.M.P) Productivity increase of EAF              | ASCO      | 6,654                            | 133,080          | 5,565      | 13,802                   | 45,758     | 0                   | 0        | feasible        |
| Increasing productivity of CC                     | ASCO      | 6280                             | 12,560           | 652        | 1,617                    | 5,360      | 0                   | 0        | fezsible        |
|                                                   |           |                                  |                  |            |                          |            |                     |          |                 |

|                                         |         |                          |             | Benefit            |                          |          | Counterr | Countermeasure Cost | Economic            |
|-----------------------------------------|---------|--------------------------|-------------|--------------------|--------------------------|----------|----------|---------------------|---------------------|
| Energy Conservation Potential           | Factory | N.G.                     | Electricity | ¥                  | for 3 years for 10 years | 10 years |          |                     | Evaluation Note     |
|                                         |         | (1,000m <sup>3</sup> /v) |             | (MWh/y) (M Rial/y) | (M Rial)                 | (M Rial) | (M USS)  | (S) (M Rial)        |                     |
| (S.M.P) Increasing of EAF productivity  | NSIG    |                          | 7,785       | 611                | 1,931                    | 4,780    |          | 0 0                 | feasible            |
| Stability of EAF                        | INSIG   | 57.6                     | 7,785       | 339                | 840                      | 2,784    |          | 0 0                 | feasible            |
| Productivity increase of CC             | INSIG   |                          | 816         | 58                 | <del>7</del>             | 476      | į        | 0 0                 | feasible            |
| (P. M) Pipe mill productivity           | INSIG   | 613                      | 1,886       | 8                  | 224                      | 744      |          | 0                   | feasible            |
| Fumace operation                        | INSIG   | 471                      |             | II .               | 92                       | 87       | . •      | 0                   | feasible            |
| (R.R.M) Round rolling mill productivity | INSIG   | 7,397                    | 7,767       | 482                | 1,195                    | 3,962    |          | 0                   | feasible            |
| Furnace operation improvement           | INSIG   | 7,397                    |             | 166                | 411                      | 1,363    |          | 0                   | feasible            |
| (B.R.M) Beam rolling mill productivity  | INSIG   | 5,749                    | 6,036       | 374                | 929                      | 3,079    |          | 0                   | feasible            |
| Furnace operation improvement           | INSIG   | 5,749                    |             | 129                | 319                      | 1,059    |          | 0 0                 | feasible            |
|                                         |         |                          |             |                    |                          |          |          |                     |                     |
| (R.M) Rolling mill furnace operation    | Kawan   | 1 2,395                  |             | *                  | 133                      | 441      | :        | 0                   | feasible            |
|                                         | Kavian  | 1 6,227                  | 5,029       | ¥                  | 854                      | 2,830    |          | 0                   | feasible            |
|                                         |         |                          | ٠           |                    |                          |          |          |                     | :                   |
| Modification of Facility>               |         | . :                      |             | t<br><br>          |                          |          |          |                     |                     |
| (R.M) Improvement of R. mill furnace    | Kavian  | 7,185                    |             | 161                | 399                      | 1,323    |          | 0.5 875             | feasible for 10 Ys. |

### 2.2.4 Economic Evaluation of Measures for Energy Conservation

An economic evaluation is made for every industry applying the following method:

When

- C = Cost of investment (or expenditure) for energy conservation measures at the time of investment or expenditure
- B = Effect of the measures (present value of energy saved by the measures for three or ten years

And if

B > C

Then, the measures are evaluated as economically "feasible". Actually, however, if investment or expenditure for a measure is difficult to finance, the measure will never be implemented. In addition, the following prerequisites are set for the evaluation:

- a. Every price is expressed in terms of 1993 prices. Exchange rate is also that in 1993, which was US\$1 = 100 yen = 1,750 Rial.
- b. Discount rate is 10% for calculating B.
- c. Two scenarios are established for energy prices (See Chapter 3 for more details):
  - c-1. Energy Conservation (B.C.) Scenario ----- Energy prices will increase at the annual rate of 8% in real terms after 1994.
  - c-2. Accelerated Energy Conservation (A.E.C.) Scenario ----- Energy prices will increase to the level reflecting their real costs, and be maintained after that.
- d. Evaluation is made assuming that measures will be implemented in 2000 and have an instant effect.

The following are the results of the evaluation including those for the "10 years benefit (effect)" case.

First, there are many "feasible" measures among those belonging to "Improvement of management," apart from those which have no cost, in the iron and steel industry.

Second, many of the measures belonging to "Modification of facilities" and "Modification of process" are evaluated as "not feasible" even in the A.E.C. scenario, although energy prices are much higher than in the B.C. scenario. However, we should note that even the energy prices in the A.E.C. scenario are much lower than in many countries including Japan.

Third, some of the measures belonging to "Improvement in management," which cost much (3.5 or 5.3 billion Rial), are evaluated as "not feasible."

### 2.3 Cement

### 2.3.1 Outline of the Industry

Demand for cement is estimated to have increased at an annual rate of around 3% in the first half of the 1990s, and cement production showed almost the same rate of increase during this period to reach 17,500,000 t in 1995.

There were 15 cement companies with 19 factories (excluding those producing white cement) operating in I.R.Iran as of 1995. Table 3.2.3 shows cement factories in I.R.Iran.

|                                | (1/2) | Fuel                            | F.O. 100%      | Gas 100%  | 1000        | - 1         | Gas 100%                 |           |             |         | Gas & F.O.           |       |         | 1        |                 | tary Coal                |         |         | y cas & r.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |          |              | / Gas &                 |                      | tary Gas & F.O.          | tary Gas & F.O. |                  |               | (               | tary cas 100% continued |
|--------------------------------|-------|---------------------------------|----------------|-----------|-------------|-------------|--------------------------|-----------|-------------|---------|----------------------|-------|---------|----------|-----------------|--------------------------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------|-------------------------|----------------------|--------------------------|-----------------|------------------|---------------|-----------------|-------------------------|
|                                |       | Cooler                          | Rotary         | Planetary | Grate       | Orace       | 2 Rotary                 | Planetary | 1 Grate     | 1 Grate | Planetary            | Grate | Grate   | Grate    | FOLAX Grate     | 2 Planetary              | 1 (2.3) | L Cranc | 4 Fianciary                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 1 Rotary | 1 Grate      | 1 Planetary             | Grate                | 2 Planetary              | 2 Planetary     | 1 Rotary         |               | 1 Grate         | 1 Planetary             |
| Cement Factories in I. R. Iran |       | Production Kiln Type 1995 (T/Y) | 143,353 SP PSP |           | SP Polysius | 717,956     | Scrapped 1W Kenedy Vensa | 814.960   | SP Polycine | HI ASN  | 947,292 2SP Polysius |       | 1SP KHD | OHN ASNI |                 | 642,133 3SP Polysius     |         |         | 1,803,987 3W FLS                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 H d21 | 1W GHH   | 1SP Polysius | 595,749 1SP Perago Inv. | 473,407 Voest Alpine | 1,902,540 2SP Humboldt   | 666.589 1W FLS  | 97,138 1W GHH    | 97.138 1D KHD | 457,041         | ISP Polystus            |
| ement Fact                     |       | (D/T)                           | 500            | 3,500     | 4,000       | 2,750       | 300 Scrapped             | 600       | 000         | 2,500   | 300                  | 200   | 1,250   | 1,250    | 2,300           | 200                      | 88      | 3       | 00 00<br>00 | 3 5     | 300      | 98.          | 2,000                   | 2,000                | 3,300                    | 2 000           | 200              | 300           | 300             | 1.250                   |
| Table 3.2.3 Ce                 |       | yes Capacity<br>-ce (T/Y)       |                | 2,250,000 | :           | 708 825,000 | ,404 1,197,000           |           |             |         | 965 1,051,500        |       |         |          | 000.069         | 490 679,500              |         |         | 2,096 2,226,000                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          |              | 900,009                 | 000,009              | 1,375 1,980,000          | 000 099 000     | 14               | 000,66        | 510 492,740     |                         |
|                                |       | Start Employed                  | 1995           | 1974      |             | 1979        | F-4                      | 1968      | 2000        | 1980    |                      | 1961  | 1974    | 1978     | 1989            |                          | 1975    | ١       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1968    | 1967     | 1979         | 1984                    | 1987                 |                          | ×501            | 1967             |               |                 | 1975                    |
|                                |       | Factory                         | 1 Abadeh       |           |             | Behbahan    | Dorud                    |           |             |         | Fars                 |       | 13      |          | at Ourmia       | ıt İsfahan               |         |         | ıt Tehran                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |          |              | Tehran                  |                      | ent Sepahan              | ot Champi       |                  | Ghani-Abad    |                 |                         |
|                                |       | Company                         | 1 Abadeh Cemen | 2 Fars &  | Khouzestan  | Cement      |                          |           |             |         |                      |       |         |          | 3 Ourmia Cement | 4 Isfahan Cement Isfahan |         |         | 5 Tehran Cement                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          |              |                         | 6 Khazar Cement      | 7 Sepahan Cement Sepahan | O Champi Cament | o should Centent |               | 9 Shargh Cement |                         |

| $\sim$ |
|--------|
| S      |
| U      |
|        |

| Factory         Start         Employee         Capacity           -Up         -c         (T/Y)         (T/D)           ment         Soufian         1975         1,428,000         600           1975         1,005         1,000         1,000           1977         456         600,000         2,000           Chach         1995         660,000         2,000           ment         kerman         1974         920         1,104,000         300           1979         2300           1979         2300 | Production Kiln Type Cooler Fuel                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| -Up -cc (T/Y) (7<br>1970 1,075 1,428,000<br>1975 1<br>1984 2<br>1977 456 600,000 2<br>1977 456 600,000 2<br>1977 920 1,104,000<br>1974 1                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 1970 1,075 1,428,000 1<br>1975 1,428,000 1<br>1977 1<br>1984 2<br>1977 456 600,000 2<br>1970 920 1,104,000 1<br>1974 1                                                                                                                                                                                                                                                                                                                                                                                           | -                                                |
| 1975 1.  1977 1.  1984 2.  Charb 1977 456 600,000 2.  Ghaen 1995 660,000 2.  1970 920 1,104,000 1.  1974 1.                                                                                                                                                                                                                                                                                                                                                                                                      | 600 1,372,252 3D FLS 4 Planetary F.O. 100%       |
| 1977   1   1984   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000                                              |
| 1984   2   Charb   1977   456   600,000   2   Chaen   1995   660,000   2   1   1970   920   1,104,000   1   1974   1   1979   2                                                                                                                                                                                                                                                                                                                                                                                  | 000                                              |
| Gharb     1977     456     600,000     2       Ghaen     1995     660,000     2       It kerman     1970     920     1,104,000     1       1974     1     1979     2                                                                                                                                                                                                                                                                                                                                             | 000 ISP FLS                                      |
| Ghaen         1995         660,000         2           1t kerman         1970         920         1,104,000           1974         1         1           2         2         2                                                                                                                                                                                                                                                                                                                                   | ,000 502,553 D Humboldt Planetary F.O. 100%      |
| 1970 920 1,104,000<br>1974 1<br>1979 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .000 NSP FLS FOLAX Grate F.O. 100%               |
| 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300 963,000 2SP Polysius 2 Grate Gas & F.O.      |
| 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,000 1SP Humboldt 1 Planetary                    |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300                                              |
| 14 Shimansaz Loshan 1958 99,000 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 300 108,142 1SP Polysius 2 Grate F.O.            |
| 15 Gorgan Cement Neka 1981 530 600,000 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,000 561,656 1SP Humboldt 1 Planetary Gas & F.O. |
| Total 18,092,540 59,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15,898,594                                       |

Kiln Type W Wet Process
D Dry Process
SP Dry Process with Suspension Preheater
NSP Dry Process with Suspension Preheater and Calciner

Natural Gas Fuel Oil

Gas F.O.

Fuel

Source: Cement Magazine of Iran No.23 Jan. 1996 CEMBUREAU 1991

Global Cement Report P.96-97 World Cement Apr. 1995 P.47

Note:

Production lines in the franian cement industry can be divided into five groups according to their main components, which are kiln and clinker cooler (Unfortunately, data and information of raw mill and cement mill by factory are not available).

- a. Wet kiln-Planetary (Satellite) cooler ------ five lines including No.1, 2, and 3 lines of Tehran Cement (Although one of them installs rotary cooler).
- b. Dry kiln-Planetary cooler ..... five lines including Abyek factory of Fars & Khouzestan Cment, and No.1, 2, and 3 lines of Soufian Cement.
- c. SP kiln-Planetary cooler ------ 11 lines including Esfahan Cement and Sepahan Cement.
- d. SP kiln-Grate cooler ------ 12 lines including Khazar Cement and Kerman Cement.
- e. NSP kiln-Grate cooler ------ four lines including Ourmia Cement and Khorasan Cement.

### 2.3.2 Process of Producing Cement and Energy Consumption

There are three main parts of the process for manufacturing cement – preparing materials, burning, and finishing.

Almost all (more than 90% in Japan) of the fuel required for manufacturing cement is consumed in the burning process, which is the main process in cement manufacturing. In this process, raw materials are burned to form clinker, a semi-product, and the latter is cooled to be moved to the finishing mill. This is the main reason why attention was turned to kiln and clinker cooler when dividing production lines into the groups above. SP kiln (the suspension-preheater kiln) uses waste heat from the kiln for preheating raw materials. The NSP kiln (the new suspension-preheater kiln) has a calciner installed with the preheater. Fuel consumption in the burning process was sharply reduced by adopting SP and NSP in the 1960s and the 1970s, respectively, compared to those of wet and dry kilns.

In addition, the grate type was developed as a more efficient one than the planetary (satellite) type for cooling clinker.

On the other hand, the finishing process consumes around 40% of the total electricity consumption in cement manufacturing, and the burning and raw material process around 30%, respectively, which shows that the difference in electricity consumption by process is not as large as in fuel consumption.

### 2.3.3 Current Status of Energy Use and Measures for Energy Conservation

The energy intensity of cement manufacturing in I.R.Iran is significantly higher than the level of Japanese factories or the newest factories, as is the case for iron and steel making. For example, the energy intensity of No. 6 line of Tehran Cement (SP kiln; Grate cooler), which was targeted by the "Factory Energy Audit" is 880 Mcal/t - cement in fuel, and 126 kWh/t - clinker in electricity. Corresponding figures in Japan are 720 Mcal/t, and 95kWh/t, respectively (1995). In this connection, the energy intensities of "NSP kiln - Grate cooler" group mentioned above are 950 Mcal/t, and 125 kWh/t, respectively.

We can point out the following reasons for the energy intensity of the Iranian cement industry being much higher than that of the Japanese cement industry:

First, looking at the management of operations and maintenance, we can find many factors showing insufficient management, including lower yield and leaking air. These are the reasons why a large difference is generated in similar processes.

Second, looking at equipment and facilities, out-dated and aged ones can be seen among wet kilns, dry kilns, and planetary coolers. These are the reasons why a large difference is generated when comparing the Iranian cement industry with the Japanese cement industry.

Based upon the current status of energy use, we considered measures for energy conservation, and made an economic evaluation of the measures. The results of the evaluation are shown in Table 3.2.4 where the measures are categorized into three groups in the same way as for the iron and steel industry.

### 2.3.4 Economic Evaluation of Measures for Energy Conservation

The results of the evaluation provides roughly the same conclusion as that for the iron and steel industry.

First, many measures belonging to "Improvement in management" are evaluated as "feasible." However, measures with no cost are not listed in Table 3.2.4, which is different from the iron and steel industry. This is because of non-availability of such data and information in the cement industry, not because such measures cannot be found. If this is the case, the potential for energy conservation in the cement industry may be estimated to be relatively smaller than that in the iron and steel industry.

Second, few measures belonging to "Conversion of facilities" are evaluated as "feasible," even in the "Accelerated Energy Conservation" scenario. For example, "Conversion of wet kiln to NSP kiln" and "Conversion of dry kiln to NSP kiln" are "not feasible" even in the "Accelerated Energy Conservation" scenario.

Table 3.2.4-1 Economic Evaluation for Energy Conservation Potential of Cement Industry A. E. C. Case (Fuel Oil 75 Riall, Electricity 100 Rial/kWh, 1,750 Rial/USS)

| Reserve Consentation Potential                  |             |                   |                     | Benefit        |                                               |                                                | Countermeasure Cost | sure Cost | Economic Evaluation | g        |
|-------------------------------------------------|-------------|-------------------|---------------------|----------------|-----------------------------------------------|------------------------------------------------|---------------------|-----------|---------------------|----------|
| chergy conservation rotemen                     |             | 170               | T. Lander Contra    |                | for 2 traces                                  | for 10 spans                                   |                     |           |                     | Note     |
|                                                 | Factory     | rue. (21<br>(XLX) | Electricity (MWh/v) | (M Rial/y)     |                                               | M Rial)                                        | (张 光)               | (M Rial)  |                     |          |
| Improvement of Management Capacity-in of EP IDF | Sepahan C.  | 3.780             |                     | 284            | 703                                           | 1,741                                          | 01                  | 168       | feasible            |          |
|                                                 | •           |                   | +                   | Merit due to   | + Merit due to production increase(60,0002/y) | case(60,0001/y)                                |                     |           |                     |          |
| Raw Mill Fan Operation                          | Sepahan C.  |                   | 5,400               | 540            | 1,339                                         | 3,316                                          | 43                  | 753       | feasible            |          |
| Draft Control for Whole Process                 | Sepahan C.  | 9,451             |                     | 709            | 1,758                                         | 4,352                                          | S                   | 105       | feasible            |          |
|                                                 |             |                   | +                   | Merit due to   | + Ment due to production increase(60,000t/y)  | sase(60,000t/y)                                |                     |           |                     |          |
| Renewal of Screen Plate                         | Sepahan C.  |                   | 10,000              | 1,000          | 2,480                                         | 6,140                                          | 49.                 | 849       | feasible            |          |
| No 6 Kiln Operation                             | Tehran C.   | 6.593             | 14,400              | 1,934          | 4,797                                         | 11,878                                         | 73                  | 1,278     | feasible            |          |
| Operation Improvement                           | Soufian C.  | 4,343             |                     | 326            | 808                                           | 2,000                                          | 95                  | 1,663     | feasible for 10 Ys. |          |
| Au Scaling                                      |             |                   | <b>+</b><br>:       | Ment due to    | + Merit due to production increase(80,000ty)  | case(80,000t/y)                                |                     |           |                     |          |
| Combustion Control                              |             |                   |                     |                |                                               |                                                |                     |           |                     |          |
| Capacity-up of EP fan                           |             |                   |                     |                |                                               |                                                |                     |           |                     |          |
| Utilizing Kiln Exhaust Gas                      |             |                   |                     |                |                                               |                                                |                     |           |                     |          |
|                                                 |             |                   |                     |                |                                               |                                                |                     |           |                     |          |
| Modification of Facility                        |             |                   | Þ                   | 1.             |                                               |                                                |                     |           |                     | :        |
| Satellite C. to Grate Cooler                    | Tehran C.   | 10,385            | 8,190               | 1,598          | 3,963                                         | 9,811                                          | 2,280               | 39,900    | not feasible        |          |
|                                                 |             | . :               | +                   | · Merit due to | production incr                               | + Merit due to production increase(270,000ty)  |                     |           |                     |          |
|                                                 | Soutian C.  | 6,593             |                     | 494            | 1,226                                         | 3,036                                          | 1,323               | 23,153    | not feasible        |          |
|                                                 |             |                   | +                   | · Ment due to  | production incr                               | + Ment due to production increase(300,000ty)   |                     |           | :                   |          |
| Vertical Mill for Raw Materials                 | (300 t/h)   |                   | 16,000              | 1,600          | 3,968                                         | 9,824                                          | 200                 | 3,500     | feasible            | *        |
| Vertical Mill for Clinker                       | (150 t/h)   |                   | 12,000              | 1,200          | 2,976                                         | 7,368                                          | 200                 | 3,500     | feasible for 10 Ys. | 3        |
| High Efficiency Separator                       | (100 t/h)   |                   | 4,000               | 400            | 892                                           | 2,456                                          | 001                 | 1,750     | feasible for 10 Ys  | ٠.       |
| 1ry Air Preheating                              | (3,000 t/d) | 3,024             |                     | 227            | 562                                           | 1,393                                          | . 20                | 1,225     | feasible for 10 Ys. | €        |
| Modification of Process                         | ٠           |                   |                     |                |                                               |                                                |                     |           |                     | -        |
| Wet(No.3 Kiln) to NSP                           | Tehran C.   | 42,527            |                     | 3,190          | 7,910                                         | 19,584                                         | 4,550               | 79,625    | not feasible        |          |
|                                                 |             |                   |                     | - Ment due to  | production inc                                | + Merit due to production increase(420,000t/y) |                     |           |                     |          |
| SP(No.3 Kiln) to NSP                            | Soufian C.  | 34,286            |                     | 2,571          | 6,377                                         | 15,789                                         | 5,720               | 100,100   | not feasible        |          |
|                                                 |             | •                 | Τ.                  | - Merit due to | production incl                               | + Merit due to production increase(600,000t/y) |                     | 1         |                     |          |
| Automatic Operation                             | (6,000 vd)  | 6,048             | 4,140               | 898            | 2,152                                         | 5,327                                          | 200                 | 8,750     | not feasible        | <u>ତ</u> |
|                                                 |             |                   |                     |                |                                               |                                                |                     |           |                     | 1        |

Table 3.2.4-2 Economic Evaluation for Energy Conservation Potential of Cement Industry E. C. Case (Fuel Oil 17.0 Rial/), Electricity 40.7 Rial/kWh, for 28

(Fuel Oil 12.7 Rial/), Electricity 40.7 Rial/kWh, for 2000-2002, 1,750 Rial/USS) (Fuel Oil 22.7 Rial/), Electricity 54.5 Rial/kWh, for 2000-2009, 1,750 Rial/USS)

|                                |             | Fuel Oil E | Electricity    |               | for 3 years to                                 | for 10 years   |       |                |                     |
|--------------------------------|-------------|------------|----------------|---------------|------------------------------------------------|----------------|-------|----------------|---------------------|
|                                | Factory     | (v/[v)     | (KLVV) (MWhVV) | (M Rial/v)    | (M Rial)                                       | (M Rial)       | (米 米) | (M ¥) (M Rial) |                     |
| Improvement of Management      |             |            |                |               |                                                |                | : '   |                |                     |
| Capacity-up of EP IDF          | Sepahan C.  | 3,780      |                | 64            | 159                                            | 527            | 01.   | 168            | feasible for 10 Ys. |
|                                |             |            | +              | Ment due to   | + Ment due to production increase (60,000t/y)  | ase(60,000t/y) | . :   |                |                     |
| Raw Mill Fan Operation         | Sepahan C.  |            | 5,400          | 220           | 545                                            | 1,807          | 43    | 753            | feasible for 10 Ys. |
| Draft Control for Whole Proce  | Sepahan C.  | 9,451      | :              | 191           | 398                                            | 1,317          | 9     | 105            | feasible            |
|                                |             |            | +              | Merit due to  | + Merit due to production increase (60,000t/y) | ase(60,000t/y) |       |                |                     |
| Renewal of Screen Plate        | Sepahan C.  |            | 10,000         | 407           | 1,009                                          | 3,346          | 49    | 849            | feasible            |
| No.6 Kiln Operation            | Tehran C.   | 6,593      | 14,400         | 869           | 1,731                                          | 3,876          | 73    | 1,278          | feasible            |
| Operation Improvement          | Soutian C.  | 4,343      |                | 74            | 183                                            | 509            | 56    | 1,663          | not feasible        |
| Air Sealing                    | ,           |            | +              | Ment due to 1 | + Ment due to production increase(80,000t/y)   | ase(80,000t/y) |       |                |                     |
| Combustion Control             |             |            |                |               |                                                |                |       |                |                     |
| Capacity-up of EP fan          |             |            |                |               |                                                |                |       |                |                     |
| Utilizing Kiln Exhaust Gas     |             |            |                |               |                                                |                |       |                |                     |
| Modification of Facility       |             |            |                |               |                                                |                |       | :              |                     |
| Vertical Mill for Raw Material | (300 Vh)    |            | 16,000         | 651           | 1,615                                          | 5,354          | 200   | 3,500          | feasible for 10 Ys. |
| Vertical Mill for Clinker      | (150 t/h)   |            | 12,000         | 488           | 1,211                                          | 4,016          | 200   | 3,500          | feasible for 10 Ys. |
| High Efficiency Separator      | (100 t/h)   |            | 4,000          | 163           | 404                                            | 1,339          | 100   | 1,750          | not feasible        |
| Iry Air Preheaung              | (3,000 t/d) | 3,024      |                | 51            | 127                                            | 42.            | 70    | 1.225          | not feasible        |

| Conservation                                   | 10 kWh/t * 300 t/h/1.5 * 8000 h/y | 10 kWh/t * 150 t/h * 8000 h/y | 5 kWh/t * 100 t/h* 8000 h/y | 112 l/t * 0.03 * 3000 t/d * 300 d/y | 112 Jt * 0.03 * 6000 t/d * 300 d /y | 115 kWh/t * 0.02 * 300 d * 6000 t/d |
|------------------------------------------------|-----------------------------------|-------------------------------|-----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Note: Calculation Basis of Energy Conservation | (1)*                              | *(2)                          | (£)*                        | *(4)                                | *(5)                                |                                     |

### 2.4 Sheet Glass

### 2.4.1 Outline of the Industry

Production of sheet glass recorded an annual growth rate of around 7.5% in the first half of the 1990's reaching slightly less than 230,000 t in 1995.

Sheet glass is produced by four companies (factories). Ghazvin Glass has the largest capacity, followed by Abguineh Glass, Saveh Jam Glass, and Iran Glass. Table 3.2.5 shows sheet glass factories in I.R.Iran.

### 2.4.2 Process of Producing Sheet Glass and Energy Consumption

There are several steps in manufacturing sheet glass — mixing, melting, refining, forming, annealing, and cutting. Processes for manufacturing sheet glass are divided into several groups according to the technology adopted in the forming process. The float process is the most advanced one and has never been adopted in sheet glass factories in I.R.Iran as can be seen in Table 3.2.5.

The melting process consumes a major part of energy consumed in the whole process, which is estimated to account for 82 - 85% of the total. The differences in the forming process affect energy consumption in the melting process. The float process not only produces better quality products, but also has advantages including lower energy intensity, the large scale of facilities being installed, and production at the full capacity being possible.

Table 3.2.5 Sheet Glass Factories in I. R. IRAN

|   |                          |          |                                         |                  |                  |                  |                        |                    |           | The second section of the second second section is |
|---|--------------------------|----------|-----------------------------------------|------------------|------------------|------------------|------------------------|--------------------|-----------|----------------------------------------------------|
|   | Company Name             | Location | Employee                                | Start-up<br>Year | Estimated<br>MGS | Process<br>Lines | Production<br>Capacity | Production in 1995 | Fuel      | Future plan                                        |
| • | <sheet glass=""></sheet> |          |                                         |                  | (vd)             |                  | (Vy)                   | ( <i>U</i> y)      |           |                                                    |
| 1 | Ghazvin Glass            | Ghazvin  | 1,232                                   | 1968             | 95               | Roll out         | 27,700                 |                    | N. Gas    | Float Process                                      |
|   |                          |          |                                         | 1970             | 55               | Roll out         | 16,100                 |                    | Fuel Oil  |                                                    |
|   | * :                      |          |                                         |                  | 55               | Colburn          | 10,900                 |                    |           |                                                    |
|   |                          |          |                                         | 1972             | 150              | Colburn          | 29,700                 | •                  | Fuel Oil  |                                                    |
|   |                          |          | •                                       | 1978             | 230              | Colburn          | 45,600                 |                    | Fuel Oil  |                                                    |
|   | (Sub-total)              |          | <u> </u>                                |                  | 585              |                  | 130,000                | 89,381             |           |                                                    |
| ź | Abguineh Glass           | Ghazvin  | . ,                                     | 1973             | 100              | Glaverbel        |                        |                    | N. Gas    | Float Process                                      |
|   |                          |          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                  | 45               | Roll out         |                        |                    | N. Gas    |                                                    |
|   |                          | 1        |                                         |                  | 20               | Roll out         |                        |                    |           |                                                    |
|   |                          |          |                                         | 1992             | 230              | Colburn          |                        |                    | N. Gas    |                                                    |
|   | (Sub-total)              | <u> </u> |                                         |                  | 395              |                  | 98,000                 | 71,614             |           | <u> </u>                                           |
| 3 | Saveh Jam Glass          | Saveh    | 300                                     | 1992             | 250              | Glaverbel        | 60,000                 | 55,595             | N. Gas    | 2001? Float Process                                |
| 4 | Iran Glass               | Tehran   |                                         |                  |                  | Fourcault        | 14,000                 | 11,193             | Fuel Oil? |                                                    |
| ) | Azar Glass               | Tabriz   |                                         | (project)        |                  |                  | (100,000?)             | <u> </u>           | 11. 1     | Float Process                                      |
|   | Liya Glass ?             | Liya     |                                         | (project)        |                  |                  |                        | : <b></b>          |           | Glaverbel to Float                                 |
| • | Total                    |          |                                         |                  | 1,285            |                  | 302,000                | 227,783            |           |                                                    |

Source: MOI, Ghazvin Glass, & Saveh Jam Glass

### 2.4.3 Current Status of Energy Use and Measures for Energy Conservation

According to the results of the "Factory Energy Audit," the energy intensity of Ghazvin Glass fluctuated between 5,350 Mcal/t and 7,230 Mcal/t from 1992 to 1995. The energy intensity of Saveh Jam Glass was 4,170 Mcal/t in 1995. In contrast, the energy intensity of Japanese sheet glass factories is less than 3,000 Mcal/t. The reasons why there are such big differences are as follows, according to the results of the "Factory Energy Audit" and other sources:

First, from the viewpoint of "Improvement in management of operation and maintenance," we can point out the fact that product yield is lower. It is also an important factor that combustion in the melting furnace is not sufficiently managed.

Second, with regard to equipment and facilities, we can point out that the float process has not been adopted, that the melting furnaces have a lower load and smaller scale, and that they have not been insulated.

Based upon the current status of energy use mentioned above, we considered measures for energy conservation and made an economic evaluation as shown in Table 3.2.6.

### 2.4.4 Economic Evaluation of Measures for Energy Conservation

Looking at Table 3.2.6, we can find that there are many measures which are "feasible" among those belonging to "Improvement in management," but that many measures which need the modification of equipment or facilities are "not feasible."

All of the measures in Table 3.2.6 are for the melting furnace, which we consider important in this study for the reasons mentioned above. In particular, the "Heavy insulation" of the melting furnace and modification of regenerator are "not feasible" even in the "Accelerated Energy Conservation" scenario.

Table 3.2.6 Economic Evaluation of Measures for Energy Conservation in the Sheet Glass Industry A. E. C. Case (Fuel Oil 75 Rial/L for 2000-2002 and 2000-2009, 1,750 Rial/S)

| 3                             |              |             |                                 |                                         |                                         |                         |
|-------------------------------|--------------|-------------|---------------------------------|-----------------------------------------|-----------------------------------------|-------------------------|
|                               | as Fire! Oil | for 3 years |                                 | for 10 years                            | * * * * * * * * * * * * * * * * * * * * |                         |
|                               |              | (M Rial/y)  | Rial)                           | (M Rial)                                | (M Y)                                   | (M Rial)                |
| Improvement of Management     |              |             |                                 |                                         |                                         |                         |
| Improvement of Yield          | 3614         | 271         | 672                             | 1,664                                   | 0.0                                     | feasible                |
| Combustion Control            | 7340         | 551         | 1,365                           | 3.380                                   | 20.0                                    | 350 feasible            |
| Improvement of Productivity   | 4659         | 349         | 867                             | 2,145                                   |                                         |                         |
| Mod'n, of Forming Machine     |              |             |                                 |                                         | 20.0                                    | 875 feasible for 10 Ys. |
| Load up of Melting Furnace    |              |             |                                 |                                         | 0.0                                     | feasible                |
| Insulation                    |              |             |                                 |                                         |                                         |                         |
| Light Insulation              | 9216         | 718         | 1,781                           | 4,410                                   | 0.68                                    | 1,558 feasible          |
| Heavy Insulation              | 8505         | 638         | 1.582                           | 3,917                                   | 813.0                                   | 14,228 not feasible     |
| Modification of Regenerator   | 4782         | 359         | 886                             | 2,202                                   | 202.8                                   | 3,549 not feasible      |
| Energy Conservation Potential |              | Benefit     |                                 |                                         | Cost                                    | Economic Evaluation     |
|                               | as Finel Oil |             | for 3 years for                 | for 10 years                            |                                         |                         |
|                               | (Kel/y)      | (M Rial/y)  | Rial)                           | (M Rial)                                | (M Y)                                   | (M Rial)                |
| Improvement of Management     |              |             |                                 |                                         |                                         |                         |
| Improvement of Yield          | 3614         | 19          | 152                             | 504                                     | 0.0                                     | teasible                |
| Combustion Control            | 7340.        | 125         | 309                             | 1,023                                   | 20.0                                    | 350 feasible            |
| Improvement of Productivity   | 4659         | 42          | 196                             | \$20                                    | 1                                       | 1                       |
| Mod'n. of Forming Machine     |              |             |                                 |                                         | 50:0                                    | 875 not leasible        |
| Load up of Melting Furnace    |              |             | ******************************* | *************************************** | 0.0                                     | reasible                |
| Insulation                    |              | ,           |                                 |                                         |                                         | 1 2 60 and formily 1    |
| Light Insulation              | 9576         | 163         | 404                             | 1,335                                   | 0.68                                    | L'558 not leasing       |
| Heavy Insulation              | 8505         | 145         | 359                             | 1.185                                   | 813.0                                   | 14,225 not icasiple     |
| Modification of Popporator    | 4787         | :<br>:      | 202                             | 299                                     | 202.8                                   | 3,549 not feasible      |

### 2.5 Textiles

### 2.5.1 Outline of the Industry

Production of textile products as a whole increased at an annual rate of around 5% from the end of the 1980s to the beginning of the 1990s. Production by textile product, however, showed differences. Production of chemical fibers and yarn showed a small range of fluctuations, while fabric products showed a declining tendency.

As can been seen in Table 3.2.7, main textile factories are 117, and are divided into following four groups according to production process.

- a. Chemical fiber ----- 3
  b. Spinning ----- 44
  c. Weaving ----- 58
- d. Dyeing, printing, and finishing ----- 12

Table 3.2.7 Textile Factories in I. R. IRAN

(1/4)

| Factory Name                                 | Location                   | Estabsh.<br>Year | Products           | No. of Machines | Capacity        | Production<br>in 1995 |
|----------------------------------------------|----------------------------|------------------|--------------------|-----------------|-----------------|-----------------------|
| <man-made fiber="" production=""></man-made> | same managa/orgale-between |                  |                    |                 | (Úy)            |                       |
| Polyacryl Iran                               | Esfahan                    | 1978             | Polyester Fiber    |                 | 30,800          | 34,707                |
| • •                                          |                            |                  | Polyester Filament |                 | 21,880          | 19,890                |
| v - v                                        |                            | -                | Polyester Tops     |                 | 2,200           |                       |
| •                                            | -                          |                  | Acrylic Fiber      |                 | 23,500          | 24,58                 |
|                                              |                            |                  | Acrylic Tops       |                 | 16,520          |                       |
| 2 Parsilon                                   | Khoramabad                 | 1979             | Nylon 6            |                 | 16,000          | 8,59                  |
| 3 Aliaf                                      | Tehran                     | 1969             | Nylon 6            |                 | 10,000          | 11,50                 |
|                                              |                            |                  | •                  | 14              | •               |                       |
| <weaving-1></weaving-1>                      |                            |                  |                    |                 | (1000m/Y)       | (1000nVY              |
| l Azar                                       | Esfahan                    | 1957             | Cot. F.            | 250             | 3,200           | 1,700                 |
| 2 Atlas Baft                                 | Tehran                     | 1956             | Cot.& PE. F.       | 178             | 4,000           | 1,500                 |
| 3 Abhar Brezent                              | Abhar                      | 1983             | Tarpaulin          | 24              | 2,300           | 1,000                 |
| 1 Ettemadieh Boushehr                        | Boushehr                   | 1938             | Grey F.            | 300             | 9,000           | 3,500                 |
| 5 Iran poplin                                | Rasht                      | 1974             | Cot.& Syn.F.       | 259             | 20,000          | 14,50                 |
| 5 Iran Nou Bast Production                   | Esfahan                    |                  | Cot.& PE. F.       | 11              | 1,200           | 70                    |
| 7 Baresh                                     | Esfahan                    | 1957             | Cot.& PE. F.       | 718             | 21,000          | 11,000                |
| Bafkar                                       | Tehran                     | 1958             | Cot & Syn.F.       | 644             | 28,000          | 12,50                 |
| 9 Bainaz                                     | Esfahan                    | 1950             | Col.& PE, F.       | 883             | 29,000          | 10,000                |
| ) Bast Harir Semnan                          | Semnan                     | 1983             | Cot & PE. F.       | 60              | 3,200           | 2,80                  |
| 1 Brezent Iran                               | Karaj                      | 1967             | Taspaulin          | 32              | 3,200           | 1,800                 |
| 2 Bafteh Mazandaran                          | Ghaemshahr                 | 1982             | Grey F.            | 96              | 2,500           | 1,500                 |
|                                              | Rasht                      | 1973             | Col.& Syn.F.       | 296             | 9,000           | 6,50                  |
| 3 Foumenat<br>4 Tar-e-Esfahan                | Esfahan                    | 1984             | Cot.& Syn.F.       | 50              | 1,200           | 50                    |
|                                              |                            |                  |                    | 60              | 1,200           | 70                    |
| 5 Khazar Weaving                             | Ghaemshahr                 | 1982             | Grey F.            | 57              | 1,000           | 60                    |
| 6 Semnan Weaving                             | Semnan                     | 1983             | Grey F.            | 35              | 400             | 25                    |
| 7 Mohammad Sadegh                            | Yazd                       | 1977             | Grey F.            | 33              | 400             | 4.7                   |
| Khojasteh Weaving                            |                            | 1010             |                    | 506             |                 | 2.50                  |
| 8 Shiraz Weaving                             | Shiraz                     |                  | Grey F.            | 596             | 6,500           | 3,50                  |
| 9 Pakris                                     | Semnan                     | 1973             | Grey F.            | 911<br>80       | 24,000<br>3,000 | 18,50                 |
| O Pileh                                      | Tehran                     | 1962             | Cot & Syn.F.       |                 |                 | 1,95                  |
| 1 Zarpood Weaving                            | Saveh                      | 1982             | Grey F.            | 44              | 2,000           | 1,10                  |
| 2 Joulabaf                                   | Ghom                       | 1982             | Grey F.            | 6               | 900             | 20                    |
| 3 Heydar Esfahan Weaving                     | Esfahan                    | 1985             | Grey F.            | 57              | 2,200           | 1,00                  |
| 4 Rangin Baft                                | Esfahan                    | 1977             | Grey F.            | 220             | 6,000           | 2,50                  |
| S Jonob Yazd                                 | Yazd                       | 1952             | Cot & Syn.F.       | 162             | 5,000           | 3,50                  |
| 6 Chit Behshahr                              | Behshahr                   | 1938             | Cot & Syn.F.       | 978             | 25,000          | 6,00                  |
| 7 Ray Spinning & Weaving                     | Tehran                     | 1947             | Cot & PE, F.       | 1,548           | 40,000          | 18,50                 |
| 8 Khosravi Khorasan                          | Mashad                     | 1968             | Grey F.            | 205             | 4,500           | 1,40                  |
| 9 Kashan Spinning & Weaving                  | Kashan                     | 1934             | Cot & Syn.F.       | 1,396           | 40,000          | 18,00                 |
| 0 Zayandeh Roud                              | Esfahan                    | 1935             | Cot. F.            | 312             | 10,000          | 3,20                  |
|                                              |                            | <del> </del>     |                    |                 |                 |                       |
| Sub-Total                                    |                            |                  |                    | 10,468          | 308,500         | 150,40<br>continue    |

--49---

Table 3.2.7 Textile Factories in I. R. IRAN

(2/4)

| Factory Name               | Location  | Estabsh.<br>Year | Products             | No. of Machines | Capacity    | Production<br>in 1995 |
|----------------------------|-----------|------------------|----------------------|-----------------|-------------|-----------------------|
| <weaving-2></weaving-2>    |           |                  |                      |                 |             |                       |
| Zarran Weaving             | Ghazvin   | 1963             | Cot & PE. F.         | 36              | 1,500       | 45                    |
| Sa-adat Nassajan Yazd      | Yazd      | 1947             | Cot.& Syn.F.         | 490             | 18,000      | 11,00                 |
| Silkbaf Yazd               | Yazd      | 1974             | Grey F.              | 500             | 15,000      | 9,50                  |
| Simin Esfahan              | Esfahan   | 1957             | Cot & Syn.F.         | 577             | 18,000      | 10,00                 |
| S Shahreza-ye-Jadid        | Esfahan   | 1935             | Cot & Syn.F.         | 400             | 8,000       | 3,20                  |
| 5 Sanaye Poshesh Iran      | Rasht     | 1973             | Towel, Denim, Velvet | 580             | 20,000      | 6,80                  |
|                            |           |                  | Velvet, Garments     |                 |             |                       |
| 7 Jahan Industrial         | Karaj     | 1956             | Cot.& Syn.F.         | 655             | 25,000      | 15,00                 |
| 3 Sanaye Chahr Mehal-      | Shahr-e-  | 1984             | Grey F.              | 26              | 1,200       | 40                    |
| Bakhtiari                  | Kord      |                  | :                    | :               |             |                       |
| 9 Kosar Baft               | Esfahan   | 1983             | Grey F.              | 30              | 2,500       | 1,10                  |
| 9 Fakhr-e-Iran             | Ghazvin   | 1958             | Cot.& Syn.F.         | 1,148           | 28,000      | 16,50                 |
| 1 Faragius Baft-Balouch    | Iranshahr | 1974             | Cot & PE. F.         | 939             | 28,500      | 11,56                 |
| 2 Kashan Velvet & Rayon M. | Kashan    | 1950             | Cot.& Syn.F.         | 799             | 24,000      | 9,00                  |
|                            |           |                  | (Spinning)           |                 |             | (1,250                |
|                            |           |                  | (Clothes)            |                 | (10,000)    | (5,03                 |
|                            |           |                  | (Velvet)             |                 | (4,460)     | (1,85                 |
|                            |           |                  | (Carpet)             |                 | (1,235M m2) | (423M m               |
| 3 Mahbaf Weaving           | Yazd      | 1959             | Grey F.              | 66              | 5,000       | 2,10                  |
| 4 Momtaz                   | Tehran    | 1958             | Cot & Syn.F.         | 1,051           | 30,000      | 11,0                  |
| 5 Najaf Abad               | Najafabad | 1945             | Cot & Syn.F.         | 693             | 22,000      | 11,5                  |
| 6 Nakh kar                 | Tehran    | 1955             | Cot.& Syn.F.         | 100             | 2,500       | 1,6                   |
| 7 Asdakan Textile          | Ardakan   | 1984             | Cot.& Syn.F.         | 124             | 10,000      | 4,0                   |
| 8 Ekbatan Textile          | Hamedan   | 1983             | Cot & Syn.F.         | .44             | 4,500       | 3,0                   |
| 9 Boroujerd Textile        | Boroujerd | 1974             | Cot.& PE. F.         | 128             | 10,000      | 8,8                   |
| O Pars Tehran Textile      | Semnan    | 1957             | Cot.& PE. F.         | 400             | 10,000      | 1,50                  |
| 1 Tejarat Textile          | Esfahan   | 1987             | Cot & PE. F.         | 250             | 6,700       | 4,2                   |
| 2 Ghaemshahr Textile       | Ghaemshah | 1930             | Cot & Syn.F.         | 580             | 19,000      | 8,0                   |
| 3 Nasaji Kordestan         | Sanandaj  | 1986             | Grey F.              | 280             | 10,000      | 5,8                   |
| 4 Mazandaran Textile       | Ghaemshah |                  |                      | 1,121           | 40,000      | 16,0                  |
| 5 Yazd Baf                 | Yazd      | 1956             | Cot.& Syn.F.         | 1,309           | 50,000      | 47,5                  |
| 6 Khoub Kar Textile        | Najafabad | 1981             | Grey F.              | 40              | 1,750       | 6                     |
| 7 Kesman Textile           | Kerman    | 1982             | Grey F.              | 30              | 1,200       | 5                     |
| 8 Ali Tex. & Chem.         | Saveh     | 1977             | Cot & Syn F.         | 50              | 2,200       | 1,0                   |
| Total                      | <u> </u>  |                  |                      | 22,914          | 723,050     | 372,0                 |

Estabsh.; Establishment
PE; Polyester
Cot. F; Cotton Fabrics
Cot. & PE. F.; Cotton and Polyester Fabrics
Cot. & Syn. F.; Cotton and Synthetic Fabrics
Grey F.; Grey Fabrics

Table 3.2.7 Textile Factories in I. R. IRAN

(3/4)

| Factory Name              | Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Estabsh.<br>Year | Products        | No. of M         | lachines                                 | Capacity       | Production<br>in 1995 |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|------------------------------------------|----------------|-----------------------|
| <spinning-1></spinning-1> | ppy that the property of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the person of the p | A 440000         |                 | (R.S.)           | (R.O.E.)                                 | (∀y)           | ( <b>t</b> /y)        |
| Alaiyeh                   | Saveb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1973             | Cotton Yarns    | 20,304           |                                          | 2,400          | 819                   |
| 2 Aydin Bonab             | Bonab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1982             | Cotton Yarns    |                  | 400                                      | 600            | 240                   |
| Bebriss Eslahan           | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1958             | Cot.& PE. Y.    | 18,036           | 436                                      | 2,500          | 1,200                 |
| Parvin Esfahan            | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1957             | Cot.& Syn.Y.    | 26,940           | 400                                      | 3,900          | 3,100                 |
| Bandhye Pezeshki Iran     | Takestan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1983             | C.Y. Hyd.C., G. |                  | 768                                      | 1,200          | 900                   |
| Nakh-Va-Gherghereh Gilan  | Chaboksar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1982             | Cotton Yarns    | 10,720           | 1,152                                    | 3,500          | 2,700                 |
| 7 Jahan Nakh              | Takestan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1982             | Cotton Yarns    |                  | 1,344                                    | 1,200          | 900                   |
| B Khambaf Esfahan         | Esfaban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1975             | Cot & PE. Y.    | 10,000           | • •                                      | 1,000          | 700                   |
| Khosh Nakh Yazd           | Yazd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1982             | Cot & Syn.Y.    | 10,000           | •                                        | 1,200          | 700                   |
| Douk Nakh                 | Abhar .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1933             | Cotton Yarns    | 5,000            |                                          | 1,200          | 600                   |
| Rahim Zadeb               | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1933             | Cot.& Syn.Y.    | 40,076           | 672                                      | 4,700          | 2,800                 |
| 2 Reshtan                 | Amol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1973             | Cotton Yarns    | 2,656            | 400                                      | 1,500          | 400                   |
| 3 Riskar Yazd             | Yazd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1957             | Cot.& PE. Y.    | 12,100           |                                          | 1,400          | 500                   |
| Parnakh Spinning          | Arak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1983             | Cot.& Syn.Y.    | 1,152            | 1,152                                    | 2,200          | 1,300                 |
| 5 Khavar Spinning         | Rasht                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1976             | Cot.& PE. Y.    | 27,000           |                                          | 2,500          | 2,450                 |
| Natanz Spinning           | Natanz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1983             | Cot.& Syn.Y.    |                  | 1,344                                    | 1,200          | 850                   |
| 7 Seyed Mohammad Agha     | Yazd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1948             | Cot.& PE. Y.    | 10,160           | . <b>-</b>                               | 1,200          | 60                    |
| 3 Shoukouh                | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1958             | Cotton Yarns    | 11,396           | 1,200                                    | 1,300          | 500                   |
| Doukriss                  | Delijan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1983             | Cot.& Syn.Y.    | ,                | 1,728                                    | 1,500          | 80                    |
|                           | Garmsar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1984             | Cot & Syn Y.    |                  | 1,920                                    | 1,500          | 70                    |
| Nakh Semnan               | Gbazvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1967             | Cot & Syn.Y.    | 32,704           |                                          | 3,000          | 2,48                  |
| l Far Nakh                | Tehran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1960             | Cot Syn Y & Sp. | 35,796           |                                          | 3,500          | 1,87                  |
| 2 Gherghereh ye-Ziba      | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1935             | Spool Yarns     | 14,128           |                                          | 1,900          | 70                    |
| Gherghere Nakhtab Esfahan | Shahroud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1983             | Cotton Yarns    | 14,125           | 1,728                                    | 1,200          | 900                   |
| 4 Gheytan                 | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1971             | Cot.& PE. Y.    | 13,576           | 1,723                                    | 2,200          | 1,50                  |
| Kanaf Esfahan             | Abhar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1982             | Cot.& PE. Y.    |                  | 768                                      | 1,000          | 82                    |
| 5 Golriss                 | Mashad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1980             | Cot.& PEA. Y.   |                  | 1,760                                    | 6,000          | 3,500                 |
| 7 Mashad Nakh             | Ghazvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1974             | Cot.& Syn.Y.    | 36,576           | 3,600                                    | 6,000          | 5,500                 |
| 8 Mah Nakh                | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1969             | Cot.& Syn.Y.    | 10,080           | 3,000                                    | 1,300          | 70                    |
| 9 Mehr Koupa              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Cot & PE. Y.    | 20,400           |                                          | 1,800          | 1,550                 |
| 0 Mahyaran                | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1973             |                 | 20,400           | 1,944                                    | 1,350          | 1,10                  |
| 1 Nabriss                 | Ghazvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1982<br>1947     | Cot. & Syn. Y.  | 15,228           | 1,244                                    | 1,500          | 95                    |
| 2 Nahid                   | Esfahan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                | Cot.& Syn.Y.    |                  | 1,344                                    | 1,600          | 1,25                  |
| 3 Nakhtab Firouzan        | Tabriz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1969             | Cotton Varos    | 15,012<br>20,560 | LJ344                                    | 2,300          | 1,20                  |
| 4 Nakh Rissy Yazd         | Yazd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1931             | Cotion Yarns    |                  |                                          | 6,000          | 3,50                  |
| 5 Nassaji Babakan         | Amol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1973             | Cot & Syn.Y.    | 49,392           | •• • • • • • • • • • • • • • • • • • • • |                | 2,38                  |
| 6 Baftehai-e-Kerman       | Kerman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1990             | Cot.& PE. Y.    | 17,760           | 300                                      | 2,050<br>2,000 | 1,50                  |
| 7 Chookha Textile         | Sari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1976             | Cot. & Syn. Y.  | 15,216           |                                          |                |                       |
| 8 Qarb Textile            | Kermansbah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | Cot. & Syn. Y.  | 47,520           | 768                                      | 6,500<br>900   | 3,500<br>750          |
| 9 Novin-e-Shahreza        | Shahreza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1936             | Cot. & Syn. Y.  | 6,000            | 0.0                                      |                |                       |
| 0 Hamedan Nakh            | Hamedan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1982             | Cot.& Syn.Y.    |                  | 960                                      | 1,200          | 700                   |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 | CEE 100          | 26 000                                   | 01.000         | ¢Ω 11                 |
| Sub-Total                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 | 555,488          | 26,088                                   | 91,000         | 59,114<br>continued   |

-51 -

Table 3.2.7 Textile Factories in I. R. IRAN

(4/4)

|                                                                                                                               | Factory Name | Location | Estabsh.<br>Year | Products     | No. of  | Machines | Capacity | Production<br>in 1995 |
|-------------------------------------------------------------------------------------------------------------------------------|--------------|----------|------------------|--------------|---------|----------|----------|-----------------------|
| <spin< th=""><th>ing-2&gt;</th><th></th><th></th><th></th><th>(R.S.)</th><th>(R.O.E.)</th><th>(t/y)</th><th>(√y)</th></spin<> | ing-2>       |          |                  |              | (R.S.)  | (R.O.E.) | (t/y)    | (√y)                  |
| 41 Yazd 1                                                                                                                     | Гав          | · Yazd   | 1983             | Cotton Yarns |         | 1,344    | 1,100    | 420                   |
| 42 Khoy                                                                                                                       | l'extite     | Khoy     | 1984             | Cot.& Syn.Y. |         | 4,600    | 2,800    | 2,700                 |
| 43 Khame                                                                                                                      | neh Textile  | Khameneh | 1984             | Cot.& PE. Y. |         | 1,728    | 1,700    | 1,500                 |
| 44 Ghaen                                                                                                                      | Baft Jazeb   | Esfahan  | 1983             | Cot & Syn.Y. | 14,796  |          | 1,500    | 1,420                 |
|                                                                                                                               | Total        |          |                  |              | 570,284 | 33,760   | 98,100   | 65,154                |

Note:

Estabsh.; Establishment
Cot.& PB. Y.; Cotton and Polyester Yarn
Cot.& Syn.Y.; Cotton and Synthetic Yarn
C.Y.Hyd.C.,G.; Cotton Yarns, Hydrophil Cotton, Gauze
Cot.Syn.& Sp.; Cotton, Synthetic and Spool Yarns
Cot.& PB-A.Y.; Cotton and Polyester-Acrylic Yarns
(P.S.); Price Serially

(R.S.); Ring Spindle (R.O.E.); Roter Open End

| Factory Name                                  | Location | Estabsh.<br>Year | Products         | No. of Machines | Capacity    | Production<br>in 1995 |
|-----------------------------------------------|----------|------------------|------------------|-----------------|-------------|-----------------------|
| <dyeing, finishing="" printing,=""></dyeing,> |          |                  |                  |                 | (m/y)       | (m/y)                 |
| 1 Aba                                         | Tehran   | 1982             | Finished Fabrics |                 | 4,000,000   | 750,000               |
| 2 Akmal                                       | Esfahan  | 1968             | Finished Fabrics |                 | 9,000,000   | 5,000,000             |
| 3 Takmil Faraz                                | Tehran   | 1978             | Finished Fabrics |                 | 1,200,000   | 800,000               |
| 4 Tehran Gol                                  | Tehran   | 1968             | Finished Fabrics |                 | 12,000,000  | 5,000,000             |
| 5 Golesorkh Printing                          | Tehran   | 1963             | Finished Fabrics |                 | 2,000,000   | 1,000,000             |
| 6 Madbaft Textile                             | Zanjan   | 1982             | Finished Fabrics |                 | 20,000,000  | 11,000,000            |
| 7 Golbaft Industrial Group                    | Esfahan  | 1969             | Finished Fabrics |                 | 10,000,000  | 6,000,000             |
| 8 Golnz                                       | Esfahan  | 1964             | Finished Fabrics |                 | 16,800,000  | 8,700,000             |
| 9 Moghaddam                                   | Ghazvin  | 1959             | Finished Fabrics |                 | 5,000,000   | 3,000,000             |
| 10 Nakh Rang                                  | Hamadan  | 1984             | Finished Fabrics |                 | 15,000,000  | 9,000,000             |
| 11 Naghshin                                   | Yazd     | 1983             | Finished Fabrics |                 | 10,000,000  | 7,000,000             |
| 12 Hell                                       | Ghazvin  | 1973             | Finished Fabrics |                 | 10,000,000  | 4,000,000             |
| Total                                         |          |                  |                  |                 | 115,000,000 | 61,250,000            |

Source: Association of Iran Textile Industries

### 2.5.2 Process of Producing Textile Products and Energy Consumption

### a. Chemical fiber

Among three chemical fiber factories, one is producing polyester and polyacryl fiber, and the other two are producing nylon-6.

Generally, energy used in chemical fiber factories is electricity for electrically-run machines and heating and steam for heating and vacuum devices.

### Polyester

The main methods of manufacturing polyester are the DMT process and the TPA process. Polyacryl Iran's factory, which was targeted for the "Factory Energy Audit," has adopted the DMT process.

The process of manufacturing polyester is divided into polymerization, spinning, and winding/finishing. Energy is consumed mainly for heating and mixing in the polymerization process, melting and extruding out in the spinning process, and heating and winding in the winding/finishing process.

### ♠ Acrylic fiber

The process of manufacturing acrylic fiber is divided into polymerization, stock solution (Polymer is dissolved in solvent and adjusted to uniformly concentrated solution as the original liquid for spinning), spinning, and finishing.

Energy is used mainly for mixing in the polymerization process, mixing, transferring, and heating in the stock solution process, and heating in the spinning process.

### Nylon

The process of manufacturing nylon is divided into polymerization, spinning, and finishing. Energy is used mainly for heating and mixing in the polymerization process, solution and extruding out in the spinning process, and heating and winding in the finishing process.

### b. Spinning

Usually, spinning processes are divided into pre-spinning, spinning, and winding.

Energy is used mainly in the spinning process, where around half of the total electricity consumption for production is used. Main methods of spinning are "Open end spinning" and "Ring spinning," and the latter is superior in energy efficiency.

In addition, electricity is used in air conditioners installed for conditioning temperature and humidity in each process, and also is used for the automated operation of waste yarn collection and cleaning in factories.

### c. Weaving

The main processes for producing fabric are preparation and weaving. A fabric is made by crossing the west and the warp at a right angle. Conventionally, a mechanism to drive a shuttle was used to pass the west. Recently, the shuttle-less loom, in which air or water is jetted instead of a shuttle, has been developed.

The shuttle-less loom offers higher productivity and lower energy intensity than the shuttle loom. Conditioning temperature and humidity are very important in weaving, where electricity is used for the conditioning.

### d. Dyeing and Finishing

The process for dyeing and finishing is divided into preparation, dyeing, and finishing, in each of which large amounts of heat and water are used.

### 2.5.3 Current Status of Energy Use and Measures for Energy Conservation

Sufficient data and information on individual factories have not been available, mainly because there are so many factories in the textile industry. We have analyzed the current status of energy use and considered measures for energy conservation using data and information collected and organized in Japan, in addition to those the PBO Team and the Association of Iran Textile Industries kindly collected and provided us.

### a. Chemical Fiber

The energy intensity of Polyacryl Iran, which is producing polyester and polyacryl fibers, is of a standard level in world terms. This company has introduced the newest machines with continuous polymerization and direct spinning, which are assumed to be operated efficiently even at the present time.

On the other hand, the energy intensity for producing nylon is more than twice the estimated value of Japanese factories.

We have assumed that there are many items to be improved not only in producing facilities but also in other plants including power plants from the viewpoint of both "Management" and "Equipment/facilities," although we have not obtained data and information for more specific analyses.

### b. Spinning

Iranian spinning factories are divided into three groups by process: "Open end spinning (rotor type)" process, "Ring spinning" process, and both processes.

- Ring spinning
  - The energy intensity of factories using only this process is estimated to be 13,900 Mcal/t (1995), which can be compared to the model value of 8,820 Mcal/t, which is nearly 40% lower.
- Open end spinning (rotor type)
  - The energy intensity of factories using only this process is estimated 12,560 Mcal/t (1995), which can be compared to the model value of 7,560 Mcal/t, again 40% lower.

We have assumed that there are many items to be improved in both factories from the viewpoints of "Management" and "Equipment/facilities," although we could not obtain sufficient data and information for more specific analyses.

### c. Weaving

Itanian weaving factories are divided into three groups by machine type: "Shuttle machine," "Shuttle-less machine," and both machines.

### **Shuttle** machine

The energy intensity of factories using only this process is estimated to be 3,690 Mcal/km (1995), which is lower than the model value of 4,970 Mcal/km.

We cannot clarify the reason why there is such a difference between the two figures, because specific data and information are not available on each factory.

### • Shuttle-less machine

The energy intensity of factories using only this process is estimated to be 5,850 Mcal/km (1995), which can be compared to the model value of 3,580 Mcal/km, which is much lower than the Iranian figure. As can be seen from the model values, it is natural for the intensity of the Shuttle-less process to be lower than that of the Shuttle process, but the Iranian figures above show the reverse relation.

We have assumed that factories using this process are not operating efficiently, although data and information for explaining the difference more specifically are not available.

### d. Dyeing and Finishing

The energy intensity of this process could not be fully estimated for the comparison. If we use data on Kashan Velvet, which was targeted for the "Factory Bnergy Audit," as Iranian figures, a comparison with Japanese figures is as follows:

|               | Electricity intensity | Fuel intensity              |
|---------------|-----------------------|-----------------------------|
|               | $(Mwh/1,000m^2)$      | (Gcal/1,000m <sup>2</sup> ) |
| Kashan Velvet | 0.59                  | 9.39                        |
| Japan         | 0.13                  | 0.94                        |

As shown in this comparison, the Iranian intensities are significantly higher than the Japanese intensities.

Such big differences imply that there is much room for improving the management of waste hot water, checking insulation, and others.

Based upon the current status of energy use mentioned above, we have considered measures for energy conservation and made the economic evaluation of them in chemical fiber, spinning, weaving, and dyeing/finishing, respectively, as shown in Table 3.2.8.

### 2.5.4 Economic Evaluation of Measures for Energy Conservation

As stated for iron and steel, cement, and sheet glass above, there are many measures among those belonging to "Improvement in management" which are "feasible," while measures belonging to "Conversion of equipment and facilities" often include those which are "not feasible."

Table 3.2.8-1 Economic Evaluation for Energy Conservation Potential of Textile Industry
A. E. C. Case (1,750 Ria/USS)

| Dotombin Dotombin                                |                             |                                 | - Sampetit |             |              | to() outresementatio() | man Coet | Homomic Profestion Note | September 1 |
|--------------------------------------------------|-----------------------------|---------------------------------|------------|-------------|--------------|------------------------|----------|-------------------------|-------------|
| Cherry Course various rotessias                  |                             | Ì                               | ZIICIII.   | į           |              | Comment                | inc Cost | ECONOTICE EVALUACE      | DION!       |
|                                                  | N.G., F.O.                  | Electricity                     | *.         | for 3 years | for 10 years |                        |          |                         |             |
| Factory .                                        | (Acm <sup>3</sup> /v, kl/v) | (MWh/v)                         | (M.Rial/v) | (M Rial)    | (M Rial)     | (X X)                  | (M Rial) |                         | :           |
| Improvement of Management                        |                             |                                 |            |             |              |                        |          |                         |             |
| Air Ratio for Dowthern Boiler Polyacryl Iran     | 290                         | :<br>:<br>:<br>:<br>:<br>:<br>: | 36         | <b>88</b>   | 219          | 0                      | 0        | (easible                | S           |
| Quench Cooling Polyacryl Iran                    |                             | 2,000                           | 200        | 456         | 1,228        | 20                     | 350      | feasible                | ÖZ          |
| Utilization Rate of Gas Turbine - Polyacryl Iran | 7,442                       |                                 | 816        | 2,270       | 5,620        | 0                      | o<br>O   | feasible                | ÖZ          |
| Supply/Waste Water & Aeration Polyacryl Iran     |                             | 1,818                           | 182        | 451         | 1,116        | 30                     | 525      | feasible                | Š           |
| Optimization of Pump Capacity Polyactyl Iran     |                             | 3,000                           | 300        | 744         | 1,842        | 25                     | 438      | feasible                | Š           |
| Rational Use of Compressed Air Polyacryl Iran    |                             | 3,400                           | 340        | 843         | 2,088        | 30                     | 525      | feasible                | Š           |
| Reduction of Pneumatic Waste Kashan Velvet       |                             | 375                             | 38         | 93          | 230          | 0                      | Ó        | feasible                | <sub></sub> |
| Stopping of the Return Fan Kashan Velvet         |                             | 101                             | 10         | 25          | 62           | 0                      | •        | feasible                | <sub></sub> |
| Combustion Air Ratio of Boiler Kashan Velvet     | 147                         |                                 | 11         | 27          | 89           | <ul><li>.</li></ul>    | 0        | feasible                | 6           |
| Enhancement of Heat Insulation Kashan Velvet     | 238                         |                                 | 18         | 44          | 110          | 16                     | 277      | not feasible            | G.          |
| Control of Air Compressors Kashan Velvet         |                             | 65                              | 7          | 16          | 40           | 0                      | 0        | teasible                | ပ္ပ         |
| Improve't of Oper'n & Maint'nee Synthetic F. F.  | 4,295                       | 765                             | 605        | 1,500       | 3,713        | 50                     | 875      | feasible                | ÖZ          |
| Spunnig F.                                       | 2,586                       | 28,150                          | 3,133      | 077,7       | 19,237       | 44                     | 770      | feasible                | ÖŽ          |
| Weaving F.                                       |                             | 31,600                          | 3,160      | 7.837       | 19,402       | 250                    | 4,375    | feasible                | ÖZ          |
| Modification of Facility                         |                             |                                 |            |             |              |                        |          |                         |             |
| Waste Heat Recovery(Acryl P.) Polyacryl Iran     | 2,282                       |                                 | 281        | 969         | 1,723        | 15                     | 263      | feasible                | Ů<br>Ž      |
| Exchange of Chiller Pumps Polyacryl Iran         |                             | 966                             | 100        | 247         | 612          | 37                     | 648      | not feasible            | Š           |
| Waste Heat Recovery Kashan Velvet                |                             |                                 |            |             |              |                        |          |                         |             |
| Condensate Recovery                              | 360                         |                                 | 7.7        |             | 36           | Q                      | 105      | feasible for 10 Ys.     | 6           |
| from Dyeing Washing water                        | 1,126                       |                                 | 8          | 209         | 519          | 40                     | 700      | not feasible            | 요           |
| from Diesel Engine                               | 712                         |                                 | . 53       | 132         | 328          | 20                     | 875      | not feasible            | ဝှု         |
| Modification of Facility Synthetic F. F.         | 8,590                       | 1,530                           | 1,210      | 3,000       | 7,427        | 250                    | 4,375    | feasible for 10 Ys.     | Š           |
| Spinning F.                                      |                             | 2,010                           | 201        | 498         | 1,234        | 200                    | 8,750    | not feasible            | ÖZ          |
| Weaving F.                                       | 3                           | 170,000                         | 17,000     | 42,160      | 104,380      | 300                    | 5,250    | feasible                | Ö           |
|                                                  |                             |                                 |            |             |              |                        |          |                         |             |

Modification of Process

(Natural Gas 22.4 Rial/Nm³, Fuel Oil 17.0 Rial/f, Electricity 40.7 Rial/kWh, for 2000-2002) Table 3.2.8-2 Economic Evaluation for Energy Conservation Potential of Textile Industry E. C. Case

(Natural Gas 30.0 Rial/Nm³, Fuel Oil 22.7 Rial/l, Electricity 54.5 Rial/kWh, for 2000-2009) (1,750 Rial/USS)

| Energy Conservation Potential                |                 |               |             | Benefit   |               |              | Countermeasure Cost | ure Cost | Economic Evaluation Note | n Note |
|----------------------------------------------|-----------------|---------------|-------------|-----------|---------------|--------------|---------------------|----------|--------------------------|--------|
| ·<br>·                                       |                 | N.G., F.O.    | Electricity |           | for 3 years t | for 10 years |                     |          |                          |        |
|                                              | Factory         | (km³/y, 1d/y) | (MWh/y)     | (MRially) | (MRial)       | (MRial)      | (# #)               | (MRial)  |                          | :      |
| Improvement of Management                    |                 |               |             |           |               |              | r                   |          |                          |        |
| Air Ratio for Dowtherm Boiler                | Polyacryl Iran  | 290           |             | 9         | 16            | 53           | 0                   | ;        | feasible                 | ÖZ     |
| Quench Cooling                               | Polyacryl Iran  |               | 2,000       | 81.       | 202           | 699          | 20                  | 350      | feasible for 10 Ys.      | SN     |
| Utilization Rate of Gas Turbine              | Polyacryl Iran  | 7,442         |             | 167       | 413           | 1,371        | · ·                 | 0        | feasible                 | SC     |
| Supply/Waste Water & Aeration                | Polyacryl Iran  |               | 1,818       | 74        | 184           | 809          | :<br>0%             | 525      | feasible for 10 Ys.      | Ö      |
| Optimization of Pump Capacity                | Polyacryl Iran  |               | 3,000       | 122       | 303           | 1,004        | 25                  | 438      | feasible for 10 Ys.      | SN     |
| Rational Use of Compressed Air               | Polyacryl Iran  |               | 3,400       | 138       | 343           | 1,138        | 30                  | 525      | feasible for 10 Ys.      | ÖZ     |
| Reduction of Pneumatic Waste                 | Kashan Velvet   |               | 375         | 15.       | 38            | 125          | 0                   | 0        | feasible                 | FO     |
| Stopping of the Return Fan                   | Kashan Velvet   | .5            | 101         | 4         | 10            | 34           | 0                   | 0        | feasible                 | FO     |
| Combustion Air Ratio of Boiler               | Kashan Velvet   | 147           |             | 7         | 9             | 20           | 0                   | Ó        | feasible                 | FO     |
| Control of Air Compressors                   | Kashan Velvet   |               | 65          | <b>6</b>  | 7             | 22           | 0                   | 0        | feasible                 | P      |
| Improve tot Oper'n & Maintnee                | Synthetic F. F. | 4,295         | 765         | 127       | 316           | 1,047        | 20                  | 875      | feasible                 | Ö      |
| •                                            |                 | 2,586         | 28,150      | 1,204     | 2,985         | 968'6        | 44                  | 770      | feasible                 | Ů<br>Ž |
|                                              | Weaving F.      |               | 31,600      | 1,286     | 3,190         | 10,574       | 250                 | 4,375    | feasible for 10 Ys.      | NG     |
| Modification of Facility                     | . ***<br>*      |               |             |           |               |              |                     |          |                          | 1      |
| Weste Heat Recovery(Acryl P.) Polyacryl Iran | Polyacryl Iran  | 2,282         |             | 51        | 127           | 420          | 15                  | 263      | feasible for 10 Ys.      | ÖN     |
| Waste Heat Recovery                          | Kashan Velvet   | 3.            |             |           |               |              |                     |          |                          |        |
| Condensate Recovery                          |                 | 360           | *           | 9         | 51            | 50           | 9                   | 105      | not feasible             | F0     |
| Modification of Facility                     | Synthetic F. F. | 8,590         | 1,530       | 255       | 632           | 2,094        | 250                 | 4,375    | not feasible             | Ŋ      |
|                                              | Weaving F.      |               | 170,000     | 6,919     | 17,159        | 26,887       | 300                 | 5,250    | feasible                 | ÖZ     |
|                                              |                 |               |             |           |               |              |                     |          |                          |        |

### 2.6 Sugar

### 2.6.1 Outline of the Industry

Demand for sugar is estimated to have increased at an annual rate of around 7.5% in the first half of 1990s. Sugar production showed an increase of more than 10% annually, reaching one million t in 1995.

As of 1995, there were 41 sugar factories in I.R.Iran, which are divided into four groups according to feed stock.

- a. Beet sugar factories ----- 31
- b. Cane sugar factories ----- 2
- c. Refining factories using imported crude sugar ----- 4
- d. Both of a, and c, above ----- 4

In 1995, 672,000t of beet sugar, 187,000t of cane sugar, and 141,000t of refined sugar were produced by these factories. Table 3.2.9 shows the facilities, production capacities, and others of sugar factories.

### 2.6.2 Process of Producing Sugar and Energy Consumption

In producing beet sugar, preparation of feed stock (washing and slicing), diffusion (where the sugar content of feed stock is diffused), clarification, evaporation, crystallization, separation, drying and finishing are the main processes.

The process of producing cane sugar basically comprises the same as those for beet sugar. There are, however, at least two differences.

First, "compressing" is usually used instead of "diffusion," because the feed slock is different, although in some cases in other countries "diffusion" is used even for producing cane sugar.

Second, in Iranian cane sugar factories, crude sugar, which has been produced through processes from preparation of feed stock to finishing as mentioned above, is refined once more through basically the same processes as the previous one. For reference, there are sugar factories in south-east Asian countries, for instance, which produce the so-called "plant white sugar" as a final product using only the first half of the process including clarification.

Finally, in sugar refining factories, crude sugar, which is supplied from outside, is refined to produce the final product through the second half of the process mentioned above.

In producing beet sugar, a large volume of heat energy is consumed in the evaporation and crystallization processes. Consumption of heat energy in the two processes accounts for more than half of the total consumed in the whole process. In addition, much energy is consumed for pressing and drying "pulp" produced in the diffusion process to be used as livestock feed. Electricity is consumed mainly for slicing feed stock and powering centrifugal separators.

In producing cane sugar, a large volume of heat energy is also consumed in the two processes above. It is estimated that the crude sugar process consumes around 75% of total heat consumption and the refining process around 25%. Electricity is consumed mainly in compression and in separation.

Table 3.2.9 Sugar Factories in I.R. IRAN

| Company                             | Factory                   | Start   | Capacity                                                                                                       | Ref. Cap.                             | Production in 1995                      | Fuel                                       |
|-------------------------------------|---------------------------|---------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|--------------------------------------------|
| Don't Comme                         | Location                  | -Up     | (T/D)                                                                                                          | (T/D)                                 | 111177J                                 |                                            |
| <beet sugar=""> Abkooh Sugar</beet> | Mashad                    | 1935    | 2,500                                                                                                          |                                       | 22,950                                  | NG/FO                                      |
| ! Torbat-E-Heydaryeh S.             | Torbat-E-Heydaryeh, Khor. | 1951    | 1,200                                                                                                          |                                       | 14,007                                  | F. Oil                                     |
| Torbat-E-Jam Sugar                  | Torbat-E-Jam, Khor.       | 1969    | 1,500                                                                                                          |                                       | 11,992                                  | F. Oil                                     |
| I Joveyn Sugar                      | Joveyn, Khor.             | 1976    | 3,000                                                                                                          |                                       | 31,462                                  | F. Oil                                     |
| Chenaran Sugar                      | Khorassan                 | 1956    | 1,000                                                                                                          |                                       | 12,858                                  | F. Oil                                     |
| Shirvan Sugar                       | Shirvan                   | 1960    | 4,000                                                                                                          |                                       | 31,926                                  | F. Oil                                     |
| 7 Shirin Sugar                      | Khorassan                 | 1964    | 2,500                                                                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 28,014                                  | N. Gas                                     |
| 8 Sabet Khorassan                   | Fariman, Khor.            | 1959    | 2,500                                                                                                          |                                       | 36,009                                  | F. Oil                                     |
|                                     | Assad-Abad                | 1961    | 500                                                                                                            |                                       | 12,235                                  | F. Oil                                     |
| Ghohestan Sugar                     | Mashad                    | 1965    | 1,500                                                                                                          |                                       | 21,482                                  | F. Oil                                     |
| Nelshabour Sugar                    | ,                         | 1962    | 750                                                                                                            | 220                                   | *************************               | F. Oil                                     |
| Shahrood Sugar                      | Shahrood, Semnan          |         | 700                                                                                                            | 220                                   | 5,794                                   | F. Oil                                     |
| Ouromeyeh Sugar                     | Azarbayedjan(West)        | 1950    |                                                                                                                | 100                                   | 20,432                                  | F. Oil                                     |
| Pyranshahr Sugar                    | Pyranshahr, Azar (W)      | 1968    | 1,000                                                                                                          | •                                     | 8,552                                   | F. Oil                                     |
| Khoy Sugar                          | Khoy, Azar (E)            | 1966    | 1,500                                                                                                          |                                       | 32,412                                  | F. Oil                                     |
| Miandoab Sugar                      | Miandoab, Azar(W)         | 1936    | 1,800                                                                                                          |                                       | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | F. Oil                                     |
| Sestam-Abad(West)S.                 | Kermanshah                | 1935    | 1,000                                                                                                          |                                       | 10,742                                  |                                            |
| Bissotoon Sugar                     | Kermanshah                | 1963    | 2,000                                                                                                          |                                       | 23,720                                  | F. Oil                                     |
| Lorrestan Sugar                     | Broudjerd Lorestan        | 1968    | 1,500                                                                                                          | 50                                    | 15,396                                  | F. Oil<br>F. Oil                           |
| Shazand Sugar                       | Shazand, Arak             | 1938    | 600                                                                                                            | 50                                    |                                         |                                            |
| Ghazvin Sugar                       | Ghazvin, Zandjan          | 1966    | 2,000                                                                                                          | · · · · · · · · · · · · · · · · · · · | 22,436                                  | F. Oil                                     |
| l Karadj Sugar                      | Karadj                    | 1932    | 1,100                                                                                                          | 1.00                                  | 10,448                                  | F. Oil                                     |
| Esfahan Sugar                       | Esfahan                   | 1959    | 4,000                                                                                                          |                                       | 46,298                                  | NG/FO                                      |
| 3 Naghshe Jahan Sugar               | Mobarakeh, Esfahan        | 1966    | 1,500                                                                                                          |                                       | 22,836                                  | N. Gas                                     |
| Hekmatan Sugar                      | Hamedan                   | 1955    | 1,000                                                                                                          |                                       | 12,825                                  | F. Oil                                     |
| S Eghlid Sugar                      | Eghlid, Fars              | 1966    | 1,500                                                                                                          |                                       | 37,723                                  | F. Oil                                     |
| 5 Pars Sugar                        | Kavar, Fars               | 1959    | 1,500                                                                                                          |                                       | 23,308                                  | FO/NG                                      |
| 7 Fassa Sugar                       | Fassa                     | 1953    | 800                                                                                                            |                                       | 14,237                                  | F. Oil                                     |
| 8 Marydasht Sugar                   | Marvdasht, Fars           | 1935    | 1,650                                                                                                          |                                       | 25,702                                  | N. Gas                                     |
| 9 Mamassani Sugar                   | Noor-Abad,Fars            | 1965    | 1,000                                                                                                          | ·                                     | 8,101                                   | F. Oil                                     |
| ) Bardsir Sugar                     | Kerman                    | 1955    | 1,000                                                                                                          |                                       | 14,716                                  | F. Oil                                     |
| I *Ahvaz S. Refinery                | Ahvaz                     | 1960    | 2,500                                                                                                          | 250                                   |                                         | F. Oil                                     |
| 2 *Dezfool Sugar                    | Dezfool Khuz.             | 1975    | 5,000                                                                                                          | 600                                   |                                         | F. Oil                                     |
| 3 Chahar-Mehal Sugar                | Chahar-Mehal Khuz         | 1971    | 1,000                                                                                                          | 1.0                                   | 11,151                                  | F. Oil                                     |
| Yassodi Sugar                       | Yassodj                   | 1965    | 1,000                                                                                                          |                                       | 8,276                                   | F. Oil                                     |
| Moghan Sugar                        | Moghan Valley, Azar (E)   | 1978    | 5,000                                                                                                          | · · ·                                 | 21,016                                  | F. Oil                                     |
| (Sub-total)                         |                           |         | <u> </u>                                                                                                       |                                       | 671,712                                 | ·····                                      |
| <cane sugar=""></cane>              |                           |         |                                                                                                                |                                       |                                         |                                            |
| Haft-Tappeh Cane S.                 | Haft-Tappeh, Khuz.        | 1959    | 10,000                                                                                                         |                                       | 81,795                                  | F. Oil                                     |
| Karun Agro Ind.                     | Dalmcheh, Khuz            | 1974    | 20,000                                                                                                         | <u> </u>                              | 104,950                                 | F. Oil                                     |
| (Sub-total)                         |                           | ·       |                                                                                                                |                                       | 186,745                                 | and the state of the state of the state of |
| <refining></refining>               |                           |         |                                                                                                                |                                       |                                         | _ :                                        |
| Ferdows S. R.                       | Meshad                    | 1978    | 1                                                                                                              | 130                                   |                                         | F. Oil                                     |
| Kamyab S. R.                        | Esfahan                   | 1973    |                                                                                                                | 130                                   |                                         | F. Oil                                     |
| Noor-Sepahan S. R.                  | Esfahan                   | 1973    |                                                                                                                | 130                                   |                                         | F. Oil                                     |
| Varamin Sugar R.                    | Varamin                   | 1935    |                                                                                                                | 130                                   |                                         | F. Oil                                     |
| (Sub-total)                         |                           |         |                                                                                                                |                                       | 141,000                                 |                                            |
| Note:                               |                           | W-0-1-1 | Anna de maio de la Maria de la Maria de la Maria de la Maria de la Maria de la Maria de la Maria de la Maria d |                                       |                                         |                                            |
| Azar (E):                           | Azarbayedjan(East)        | * *     | Khor. :                                                                                                        |                                       | Khorassan                               |                                            |
| Azar (W):                           | Azarbayedjan(West)        |         | Khuz.                                                                                                          | **                                    | Khuzestan                               |                                            |

Ref. Cap. means refining capacity of raw sugar Source: World Sugar and Sweetener Yearbook 1995

Syndicate of Sugar Factories, The list of Production of Sugar Factories State Sugar Organization Co.

### 2.6.3 Current Status of Energy Use and Measures for Energy Conservation

The energy intensity of Iranian beet sugar factories is estimated to be 7,800 Mcal/t-product (1995), which can be compared to the Japanese factories' of 5,060 Mcal/t. The level of Iranian factories is 1.5 times that in Japan.

The energy intensity of Iranian cane sugar factories is estimated to be 9,500 Mcal/t (1995), which can be compared to the standard value of 5,100 Mcal/t. The Iranian level is 1.9 times the standard level.

The energy intensity of Iranian refining factories is estimated to be 4,240 Mcal/t, which can be compared to the Japanese average of 1,200 Mcal/t. The Iranian level is 3.5 times the Japanese level.

The reasons why there are big differences between tranian and Japanese factories' or standard ones are as follows, according to the results of the "Factory Energy Audit" and other sources:

First, looking at "Improvement in management," there are many items to be improved in Iranian sugar factories, including lower yield caused by longer storage time of feed stock and insufficient insulation of steam pipes.

Second, with regard to "Modification of equipment and facilities," we can point out (a) a mixer has not been installed in the crystallizing process, (b) an ion exchange process has not been adopted in the clarification process (If adopted, the efficiency of the evaporator is improved), and (c) a few automated control systems have been adopted.

Third, there is one disadvantage in Iranian sugar factories, which is to consume a certain amount of energy in manufacturing "corn sugar."

Based upon the current status of energy use in sugar factories mentioned above, we have considered measures for energy conservation and made an economic evaluation of measures, which are shown in Table 3.2.10 below.

#### 2.6.4 Economic Evaluation of Measures for Energy Conservation

In producing sugar, many measures belonging to "Improvement in management" are evaluated as "feasible," as in the four industries mentioned already.

Also, many measures belonging to "Modification of equipment and facilities" are "not feasible." Even in the "Accelerated Energy Conservation" scenario, these measures are evaluated very often as "not feasible."

Table 3.2.10-1 Economic Evaluation of Measures for Energy Conservation in the Sugar Industry

A. E. C. Case
(1,750 Rial/USS)

| Encray Conservation Potential  |               |                       | ď                                     | Benefit    |             |              | Countermeasure Cost | sure Cost | Economic Evaluation Note |
|--------------------------------|---------------|-----------------------|---------------------------------------|------------|-------------|--------------|---------------------|-----------|--------------------------|
|                                | Factory       | Natural Gas           | Electricity                           |            | for 3 years | for 10 years |                     |           |                          |
|                                |               | (kcm <sup>3</sup> /v) | (MWh/v) (MRial/v)                     | (M Rially) | (M Rial)    | (M Rial)     | (¥.<br>(¥.          | (M Rial)  |                          |
| Improvement of Management      |               | :                     |                                       |            |             |              |                     |           |                          |
| Automatic Control              |               |                       |                                       |            | -           |              |                     |           |                          |
| of the Crystallizing Pan       | Karun Cane    | 2,594                 |                                       | 319        | 791         | 1,959        | 30                  | 525       | feasible                 |
| of the Crystallizing Pan       | Abkouh Sugar  | 2,217                 |                                       | 273        | 929         | 1,674        | 20                  | 350       | feasible                 |
| Reduction of Steam Pressure    | Abkoun Sugar  | 255                   | · · · · · · · · · · · · · · · · · · · | 31         | 78          | 193          | 0                   | 0         | feasible                 |
| Turning off Unnecessary Lights | Abkouh Sugar  |                       | 15                                    |            | **          | 6            | 0                   | 0         | feasible                 |
| Improvement of Management      | Ali Sugar F.  | 28,600                | 2,080                                 | 7,416      | 18,391      | 45,533       | 400                 | 7,000     | feasible                 |
|                                |               |                       |                                       | 1 -        |             |              |                     |           |                          |
| Modification of Facility       |               |                       |                                       |            |             |              |                     |           |                          |
| Adoption of                    |               |                       |                                       |            |             |              | ,                   |           |                          |
| Softening Type Ion E. Resin    | Karun Cane    | 4,790                 |                                       | 589        | 1,461       | 3,618        | 100                 | 1,750     | feasible for 10 Ys.      |
|                                | Abkouh Sugar  | 1,108                 |                                       | 136        | 338         | 837          | 100                 | 1,750     | not feasible             |
|                                | All Sugar F.  | 45,000                |                                       | 5,535      | 13,727      | 33,985       | 4,000               | 70,000    | not feasible             |
| R-Cl Type Ion E. Resin         | Karun Cane    | 2,874                 |                                       | 354        | 877         | 2,171        | 200                 | 3,500     | not feasible             |
| Steam Pipe Insulation          | Abkouh Sugar  | 107                   |                                       | 13         | 33          | 81           | 23                  | 403       | not feasible             |
| Bagasse Fuel for Boiler        | Cane Sugar F. | 100,800               |                                       | 12,398     | 30,748      | 76,126       | 300                 | 5,250     | feasible                 |
| Install'n of Stirrer to Crys'r | All Sugar F.  | 23,300                | -550                                  | 2,811      | 6,971       | 17,259       | 760                 | 13,300    | feasible for 10 Ys.      |
| Heat Recovery                  |               |                       |                                       |            |             |              |                     |           |                          |
| from Crystallizer              | All Sugar F.  | 2,800                 | . •                                   | 344        | 854         | 2,115        | 1,280               | 22,400    | not feasible             |
| from Boiler Exhaust Gas        | All Sugar F.  | 1,680                 |                                       | 207        | 512         | 1,269        | 1,680               | 29,400    | not feasible             |
|                                |               |                       |                                       | ٠          |             |              |                     |           |                          |

(Natural Gas 30.0 Rial/Nm<sup>3</sup>, Fuel Oil 22.7 Rial/l, Electricity 54.5 Rial/kWh, for 2000-2009) (1,750 Rial/USS) (Natural Gas 22.4 Rial/Nm³, Fuel Oil 17.0 Rial/I, Electricity 40.7 Rial/kWh, for 2000-2002) Table 3.2.10-2 Economic Evaluation of Measures for Energy Conservation in the Sugar Industry E. C. Case

| Energy Conservation Potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V.                                                   |                        | Benefit                          |                                            |                      | Countermeasure Cost | aure Cost | Economic Evaluation Note |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|----------------------------------|--------------------------------------------|----------------------|---------------------|-----------|--------------------------|
| Factory of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta | Natural Gas Electricity (Acm <sup>3</sup> /v) (MWh/v | Electricity<br>(MWh/v) | lectricity<br>(MWh/v) (M Rial/v) | for 3 years for 10 years (M Rial) (M Rial) | 10 years<br>(M Rial) | (¥ ¥)               | (M. Rial) |                          |
| Improvement of Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                        |                                  |                                            |                      | ı                   |           |                          |
| Automatic Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |                        | .*                               |                                            |                      |                     |           |                          |
| of the Crystallizing Pan Karun Cane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,594                                                |                        | 88                               | 14.                                        | 478                  | 30                  | 525       | not feasible             |
| of the Crystallizing Pan Abkouh Sugar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,217                                                |                        | 50                               | 123                                        | 408                  | 20                  | 350       | feasible for 10 Ys.      |
| Reduction of Steam Pressure Abkowh Sugar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 255                                                  |                        | 9                                | 14                                         | 47                   | 0                   | 0         | feasible                 |
| Turning off Unnecessary Lights Abkouh Sugar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | 23                     | -                                |                                            | 8                    | 0                   | 0         | feasible                 |
| Improvement of Management All Sugar F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28,600                                               | 2,080                  | 1,397                            | 3,465                                      | 11,490               | 400                 | 7,000     | feasible for 10 Ys.      |
| Modification of Facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | :                      |                                  |                                            |                      |                     |           |                          |
| Adoption of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |                        |                                  |                                            |                      |                     |           |                          |
| Softening Type Ion E. Resin Karun Cane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4,790                                                |                        | 107                              | 266                                        | 887                  | 100                 | 1,750     | not feasible             |
| Bagasse Fuel for Boiler Cane Sugar F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100,800                                              |                        | 2,258                            | 5,600                                      | 18,567               | 300                 | 5,250     | feasible                 |
| Install'n of Surrer to Crys'r All Sugar F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23,300                                               | -550                   | 500                              | 1,239                                      | 4,108                | 760                 | 13,300    | not feasible             |

## 2.7 Vegetable Oil

## 2.7.1 Outline of the Industry

Demand for vegetable oil is estimated to have increased at an annual rate of around 10% in the first half of the 1990s, reaching 780,000 t in 1995.

Some 90-95% of vegetable oil consumed in I.R.Iran is refined from imported crude oil, and only 5-10% is refined from domestically produced feed stock.

Some 90-95% of vegetable production is the hardened oil (solid state oil), and the liquid oil account for only 5-10% (sunflower oil, olive oil, etc.).

In summary, a major part of the vegetable oil consumed in I.R.Iran is hardened oil refined from imported crude oil. We will confine our description below mainly to this type of oil.

Table 3.2.11 shows vegetable oil factories in I.R.Iran.

Table 3.2.11 Vegetable Oil Factories in I. R. IRAN

| Сомрану                                                                                       | Location                                            | Start up                     | Employee<br>(1981)        | Capacity                                                   | Preduction<br>(1995)                                     | Fuel                                                | Share                          |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------|---------------------------|------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--------------------------------|
| i Behshahr<br>2 Pars<br>3 Shiraz Vegetable Oil<br>4 Jahaan Vegetable Oil<br>5 Margarin        | Tehran<br>Tehran<br>Shiraz<br>Karadj<br>Tehran      | 1953<br>1969<br>1956<br>1960 | 1012<br>966<br>417<br>647 | (Uy)<br>227,500<br>140,000<br>140,000<br>70,000<br>140,000 | (Vy)<br>243,475<br>112,106<br>80,151<br>67,421<br>60,121 | NG/Gas Oil<br>N. Gas<br>N. Gas<br>Gas Oil<br>N. Gas | 31 %<br>14.4%<br>10.3%<br>9.3% |
| 6 Naab<br>7 Golnaz<br>8 Kesht Va Sanat<br>9 Naz-Esfahan<br>0 Fazle Neishaboor                 | Tehran<br>Kerman<br>Sari<br>Esfahan<br>Neishaboor   | 1963<br>1989                 | 131                       | 35,000<br>37,500<br>35,000<br>35,000<br>17,500             | 40,600<br>37,892<br>34,261<br>30,649<br>20,055           | Gas Oil<br>G.O/F.O                                  |                                |
| Etka Co (Processing oil)     Gorgan Center Cutton     Ganje Roodbar     Shokufeh Oil Industry | Varamin<br>Shar Ray<br>Kordkooy<br>Roodbar<br>Babol | 1959                         | 245<br>157<br>182         | 35,000<br>35,250<br>(30T/D)<br>11,900                      | 16,724<br>15,931<br>6,869<br>5,863<br>3,195              | Fuel Oil                                            | (Olive oil)                    |
| 5 Tehran Golnaab<br>(Sub-total)                                                               | Arak                                                | 1995-96                      | <del></del>               | 3,000<br>932,650                                           | 775,313                                                  |                                                     | <del></del>                    |

Source: Oil Seed Research & Development Co.

#### 2,7.2 Process of Producing Vegetable Oil and Energy Consumption

The process for producing the hardened oil from imported crude oil is as follows:

Crude oil contains phospholipid, free fatty acid, trace metal, and pigments, as well as its unique odorant matter. Refining removes these unnecessary components while retaining useful components as much as possible. The refining process is divided into degumming (removing phospholipid), neutralization (alkali refining), decolorization, dewaxing, hydrogenation (hardening), and deodorization.

#### 2.7.3 Current Status of Energy Use and Measures for Energy Conservation

The energy intensity of Iranian vegetable oil factories is significantly higher than that of Japanese factories. Heat energy intensity in the refining process in I.R.Iran is estimated 3.6 times that in Japan. Electricity intensity in I.R.Iran, however, is almost the same as in Japan.

Such big differences in heat energy consumption imply that Iranian factories have been facing problems in "Improvement in management" and "Modification of equipment and facilities" as we can see in other industries.

According to the results of the "Factory Energy Audit" and other information, we can point out the insufficient recovery of waste oil, problems in the quality and the operation of vacuum makers, and insufficient insulation.

Based upon the current status of energy use mentioned above, we considered measures for energy conservation and made an economic evaluation of measures in the Iranian vegetable oil industry, which is shown in Table 3.2.12 below.

#### 2.7.4 Economic Evaluation of Measures for Energy Conservation

As in other industries mentioned above, measures belonging to "Modification of equipment and facilities" are evaluated as economically "not feasible" in this industry. These measures are evaluated as "not feasible" even in the "Accelerated Energy Conservation" scenario.

Also, the number of "feasible" measures belonging to "Improvement in management" seems to be relatively small.

Needless to say, it is very difficult to consider and evaluate measures for energy conservation at the same level or depth for every industry, mainly because of the availability of data and information.

Consequently, it may be reasonable for us to consider that a fewer "feasible" measures does not necessarily mean a greater difficulty in energy conservation in this industry.

Table 3.2.12-1 Economic Evaluation of Measures for Energy Conservation in the Vegetable Oil Industry

A. E. C. Case
(1,750 Rial/USS)

| Energy Conservation Potential  |                 |                          |             | Benefit    |                          |             | Countermeasure Cost | Economic Evaluation Note |
|--------------------------------|-----------------|--------------------------|-------------|------------|--------------------------|-------------|---------------------|--------------------------|
|                                | Factory         | Natural Gas              | Electricity |            | for 3 years for 10 years | or 10 years |                     |                          |
|                                |                 | (1,000m <sup>3</sup> /v) | (MWh/v)     | (M Rial/y) | (M Rial)                 | (M Rial)    | (M Y) (M Rial)      | 0                        |
| Improvement of Management      |                 |                          |             |            |                          |             |                     |                          |
| Adjustment of                  | Behshahr ind.   | 5,534                    |             | 681        | 1,688                    | 4,179       |                     | 0 feasible               |
| Vacuum Degree                  |                 | -                        |             |            |                          |             |                     |                          |
| Ejector Steam Pressure         |                 |                          |             | -          |                          |             |                     |                          |
| CW Temp. for B. Condenser      |                 |                          |             |            |                          |             |                     |                          |
|                                | All Veg. Oil F. | 13,193                   |             | 1,623      | 4,024                    | 9,964       | <b>Ö</b>            | 0 feasible               |
| Boiler Combustion Control      | Benshahr Inc.   | 1,342                    |             | 165        | 607                      | 1,014       | 30 525              |                          |
|                                | Ali Veg. Oil F. | 3,174                    |             | 390        | 896                      | 2,397       | •                   | •                        |
| Modification of Facility       |                 |                          |             | · •.       |                          | -:          | -                   |                          |
| Heat Insulation of Steam V & F | Behshahr Ind.   | 566                      |             | 33         |                          | 201         |                     | 3 not feasible           |
|                                | All Veg. Oil F. | 629                      |             | 1          | 192                      | 475         | 76 1,330            | 0 not feasible           |
| Recovery of Exhaust Gas Heat   |                 |                          | •           |            |                          |             |                     |                          |
| from Diesel Generator          | Behshahr Ind.   | 798                      |             | 86         | 243                      | 603         | 50 87               | 5 not feasible           |
|                                | All Veg. Oil F. | 9 <del>4</del> 4         |             | 116        | 288                      | 713         | 250 4,375           | 5 not feasible           |
|                                |                 |                          |             |            |                          |             |                     |                          |

-65-

E.C. Case (Natural Gas 22.4 Rial/Nm<sup>3</sup>, Fuel Oil 17.0 Rialf, Electricity 40.7 RialfkWh, for 2000-2002) (Natural Gas 30.0 Rialfnm<sup>3</sup>, Fuel Oil 22.7 Rialf, Electricity 54.5 RialfkWh, for 2000-2009) (1,750 Rialfus) Table 3.2.12-2 Economic Evaluation of Measures for Energy Conservation in the Vegetable Oil Industry

| Energy Conservation Potential              |                                  |                                              |                     | Benetit    |                                   |                          | Countermeasure Cost | ture Cost | Economic Evaluation Note     | Note |
|--------------------------------------------|----------------------------------|----------------------------------------------|---------------------|------------|-----------------------------------|--------------------------|---------------------|-----------|------------------------------|------|
|                                            | Factory                          | Factory Natural Gas (1.000m <sup>3</sup> /v) | Electricity (MWh/v) | (M Rial/v) | for 3 years for 10 years (M Rial) | for 10 years<br>(M Rial) | (M ¥)               | (M Rial)  |                              |      |
| Improvement of Management<br>Adjustment of | Behshahr Ind.                    | 5.534                                        |                     | 124        | 202                               | 1,019                    | 0                   | 0         | feasible                     |      |
| Vacuum Degree<br>Ejector Steam Pressure    |                                  |                                              |                     |            |                                   |                          | - 1                 |           |                              |      |
| CW Temp. for B. Condenser                  | All Veg. Oil F.                  | 13,193                                       |                     | 296        | 733                               | 2,430                    | 0                   | 0         | feasible                     |      |
| Boiler Combustion Control                  | Behshahr Ind.<br>All Veg. Oil F. | 1,342                                        |                     | 8 4        | 75<br>176                         | 247<br>585               | 30                  | 2,100     | not feasible<br>not feasible |      |
| Modification of Facility                   |                                  | • :                                          |                     | : .        |                                   |                          |                     |           |                              |      |
| Modification of Process                    |                                  |                                              |                     |            |                                   |                          | :                   |           | 1                            |      |
|                                            |                                  |                                              |                     |            |                                   |                          |                     | ÷         |                              |      |

## 2.8 Petroleum Refining

#### 2.8.1 Outline of the Industry

Production of petroleum products increased from 47,800,000 kl in 1990 to 70,400,000 kl in 1994. There are eight refineries in I.R.Iran, which are categorized as follows:

- a. Abadan and Lavan refineries ------ built for exporting petroleum products in the Persian Gulf.
- b. Tehran, Kermanshar, and Shiraz refineries ------ built for supplying petroleum products to domestic demand which increased since the second half of 1960s
- c. Tabriz and Esfahan refineries ----- built for satisfying domestic demand by NIOC itself.
- d. Arak and Bandar Abbass refineries ------ built or being built by Japanese companies after the war.

Table 3.2.13 shows production, production capacity, and others of petroleum refineries in I.R.Iran.

# 2.8.2 Process of Producing Petroleum Products and Energy Consumption

Petroleum refining is a process in which various hydrocarbon compounds in crude oil are processed into fuels and other useful products. There are four main processes in petroleum refining, which are separation (distillation), conversion (cracking), reorganization (reforming), and finishing (treating). Energy consumed in each process of petroleum refining depends upon the type of refinery. In the refineries of Royal Dutch Shell Group in late 1960s, energy consumed in crude oil distillation was 25% of the total in a refinery, and 80% in another. According to a study done by the Office of Technology Assessment, the U. S. Congress, in early 1990s, the distillation process consumed 23% of the total energy consumption in the U. S. refining industry.

There are refineries as Kermanshar and Lavan with only crude distillation units installed. In other refineries cracking and reforming do not have such a big weight. Accordingly, it is assumed that energy consumed in the distillation process accounts for a larger part of total energy consumption than in the U.S. and Japan.

Usually, liquids, gas, and solids generated inside a refinery are used as a fuel for in-house consumption, and, according to some documents, they account for 90-99% of the total input of energy. And, 55-70% of the fuels is consumed in heating furnaces for supplying process heat to the distillation, cracking, and other processes. Around 25-45% is consumed for generating steam to be supplied to equipment and facilities including power plants in the refinery.

Around half or more of the energy generated by fuels in this way is lost for cooling products in the final stage of refining. Accordingly, it is generally very important from the viewpoint of energy conservation for refineries to reduce such heat losses as much as possible by improving and reinforcing the method of heat recovery.

Table 3.2.13 Petroleum Refineries in I. R. Iran

|                         | Tchran | Esfahan | Tabriz | Shiraz Kermanshahr | shahr | Lavan | Abadan | Arak  | Total                    |
|-------------------------|--------|---------|--------|--------------------|-------|-------|--------|-------|--------------------------|
| 1988 Capacity (k bbl/d) | 220    | 200     | 8      | 40                 | 15    | ç     |        |       | 1000                     |
| Crude Input(M 1/y)      | 13,350 | 17.568  | 3.965  | 2,307              | 1.099 | 066   |        |       | C) C                     |
| Production (M I/v)      | 12,482 | 16.791  | 3.590  | 2 128              | 1 030 | 810   |        |       | 617,80                   |
| 1989 Capacity (k bbl/d) | 220    | 200     | 8      | 0.                 | 15    | 200   | 130    |       | 36.849                   |
| Crude Input(M I/v)      | 13,671 | 17,949  | 4,701  |                    | 1.376 | 1251  | 7316   |       | CD/                      |
| Production (M I/v)      | 12,909 | 17,411  | 4,402  |                    | 1.314 | 1,211 | 7.184  |       | 955'94<br>92 <b>5</b> 97 |
| 1990 Capacity (R bbl/d) | 220    | 200     | 08     | 40                 | 15    | 20    | 360    |       | 834                      |
| Crude Input(M I/y)      | 14,126 | 18,171  | 5,144  | 2,137              | 1,557 | 1,339 | 8.044  |       | \$0 518                  |
| Production (M I/v)      | 13.154 | 17.393  | 4.806  | 1.976              | 1.472 | 1.288 | 7.747  |       | 758.64                   |
| 1991 Capacity (k bbl/d) | 220    | 200     | 08     | 40                 | 15    | 20    | 260    |       | 928                      |
| Crude Input(M 1/y)      | 13,776 | 19,282  | 5,102  | 2,495              | 1,659 | 1.254 | 13 968 |       | 725 LS                   |
| Production (M I/v)      | 13.022 | 18,408  | 4.704  | 2.249              | 1.579 | 1 221 | 13.484 |       | 2000                     |
| 1992 Capacity (k bbl/d) | 220    | 200     | 08     | 40                 | 15    | 70    | 260    |       | /00°#7                   |
| Crude Input(M I/y)      | 13,738 | 20,353  | 5,020  | 2,608              | 1,334 | 1,333 | 13.252 |       | 57,638                   |
| Production (M 1/v)      | 13,048 | 19.688  | 4.711  | 2,424              | 1.271 | 1,288 | 12.817 |       | 55.247                   |
| 1993 Capacity (k bbl/d) | 220    | 200     | 110    | 40                 | 15    | 20    | 350    | 150   | 1 105                    |
| Crude Input(M I/y)      | 13,470 | 19,767  | 5,725  | 2,277              | 1,424 | 1,309 | 16,254 | 5.791 | 66.017                   |
| Production (M. I/v)     | 13.180 | 18,757  | 5.407  | 2.193              | 1,364 | 1,268 | 15,764 | 5.246 | 63 170                   |
| 1994 Capacity (k bb!/d) | 220    | 200     | 110    | 40                 | 15    | 20    | 350    | 150   | 1 105                    |
| Crude Input(M 1/y)      | 13,981 | 20,481  | 6,083  | 2,474              | 1,416 | 1,563 | 18.742 | 8.595 | 73 335                   |
| Production (M I/v)      | 13,330 | 20,182  | 5,723  | 2,420              | 1,353 | 1.468 | 17,942 | 8.037 | 70.455                   |
|                         |        |         |        |                    |       |       |        |       |                          |

Source: The Energy Balance Sheet of 137

# 2.8.3 Current Status of Energy Use and Measures for Energy Conservation

Depending upon data and information for Tehran Refinery, which was targeted for the "Factory Energy Audit," we have estimated that energy equivalent to around 8% of crude oil throughput is consumed in Iranian petroleum refineries. This is 1.6 times that of Japanese refineries. If this estimate is accurate (although, unfortunately, data and information on other refineries than Tehran are not available), and if we consider that many more cracking and reforming facilities are installed in Japanese refineries, we can conclude there is much room for saving energy in refining in I.R.Iran. Specifically, such items as management of combustion in heating furnaces and boilers, operation and maintenance of heat exchangers, insulation of storage tanks and pipes, recovery of waste heat are to be improved.

Based upon the current status of energy use mentioned above, we have considered measures for energy conservation and made an economic evaluation of the measures. The results are shown in Table 3.2.14.

## 2.8.4 Economic Evaluation of Measures for Energy Conservation

Many measures belonging to "Improvement in management" are estimated to be "feasible." All measures belonging to "Modification of equipment and facilities," at least those listed in this table, are "not feasible".

Table 3.2.14-1 Economic Evaluation of Measures for Energy Conservation in the Petroleum Refinery A. E. C. Case (Fuel Oil 75 Rial/L., Electricity 100 Rial/kWh, 1,750 Rial/USS)

| Energy Conservation Potential   |           |                                         |             | Benefit                    |                          |            | Countermeasure Cost | sure Cost | Economic Evaluation |
|---------------------------------|-----------|-----------------------------------------|-------------|----------------------------|--------------------------|------------|---------------------|-----------|---------------------|
|                                 | ż         |                                         | Electricity | for                        | for 3 years for 10 years | r 10 years |                     |           |                     |
|                                 | Refinery  | (KJ/v)                                  | (WMWb/v)    | (MWhy) (M Rially) (M Rial) | M Rial)                  | (M Rual)   | (# #5)              | (M. Kral) |                     |
| Improvement of Management       |           |                                         |             |                            |                          | 1000       |                     |           | ٠.                  |
| Combustion Air for Reheating F. | Tehran R. | 16,983                                  |             | 1,274                      | 3,159                    | 7,821      | 06                  | 1,575     | feasible            |
| Insulation of Steam Valves      | Tehran R. | 1,789                                   |             | 179                        | 44                       | 1,098      | 115                 | 2,013     | not feasible        |
| Pump Impeller Cutting           | Tehran R. |                                         | 899         | 8                          | 223                      | 552        | m                   | 53        | feasible            |
| Turning off Unnecessary Lights  | Tehran R. |                                         | 16          | 6                          | 23                       | \$\$       | 0                   |           | feasible            |
|                                 |           |                                         | : .         |                            |                          |            |                     |           |                     |
|                                 |           |                                         |             |                            |                          |            |                     |           |                     |
|                                 |           | :                                       |             |                            |                          |            |                     |           |                     |
| Modification of Facility        |           |                                         |             |                            |                          |            |                     |           |                     |
| Reheating F. inside Refractory  | Tehran R. | 538                                     |             | 40                         | 100                      | 248        | 20                  | 350       | not feasible        |
| Preheating of Combustion Air    | Tehran R. | *************************************** | : -         |                            |                          |            |                     |           |                     |
| for Reheating Furnace           |           | 27,053                                  |             | 2,029                      | 5,032                    | 12,458     | 1,795               | 31,413    | not feasible        |
| for Boiler                      |           | 21,177                                  |             | 1,588                      | 3,939                    | 9,752      | 1,649               | 28,858    | not feasible        |
| Heat Recovery from the Cooler   | Tehran R. | 1,781                                   |             | 134                        | 331                      | 820        | 62                  | 1,085     | not feasible        |
| Exchange of Pump Motors         | Tehran R. |                                         | 15          | 2                          | 4                        | 6          | 7                   | 12        | not feasible        |
|                                 |           | . :                                     |             |                            |                          |            |                     |           |                     |

Table 3.2.14-2 Economic Evaluation of Measures for Energy Conservation in the Petroleum Refinery

E. C. Case
(Fuel Oil 17.0 Rial/L, Electricity 40.7 Rial/kWh, For 2000-2002, 1,750 Rial/USS)
(Fuel Oil 22.7 Rial/L, Electricity 54.5 Rial/kWh, For 2000-2009, 1,750 Rial/USS)

| Fuel Oi<br>Refinery                                  |                                                                   |
|------------------------------------------------------|-------------------------------------------------------------------|
| Refinery                                             |                                                                   |
|                                                      | $(AV_{i})$ $(MW_{i})$ $(MR_{i})$ $(MR_{i})$ $(MR_{i})$ $(MR_{i})$ |
|                                                      |                                                                   |
| Combustion Air for Reheating F. Tehran R. 16,983 289 | 289 716 2,367 90 1,575 feasible for 10 Ys.                        |
| Pump Impeller Cutting Tehran R. 899 37               | 899 37 91 301 5 53 feasible                                       |
| Turning off Unnecessary Lights Tehran R. 91          | 91 4 9 31 0 0 feasible                                            |

Modification of Facility

#### 2.9 Conclusion of Economic Evaluation

We have made an economic evaluation of measures for energy conservation in seven industries mainly according to the "Energy Conservation" scenario. In summary, many measures which need a certain amount of investment are evaluated as "not feasible" mainly because energy prices in LR.Iran are much lower than in many countries including Japan even in the "Accelerated Energy Conservation" scenario. Consequently, efforts for promoting energy conservation should be concentrated on measures belonging to "Improvement in management of operation and maintenance" for the time being. As stated later, we have estimated that such measures can accomplish at least around 10% of energy conservation in every industry.

More specifically, our conclusions are as follows:

First, in every industry, we have found many "feasible" measures which belong to "Improvement in management."

Second, also in every industry, many measures among those belonging to "Modification of equipment and facilities" and "Modification of processes" are evaluated as "not feasible."

Third, at least in some industries, we can find that measures belonging to "Improvement in management" sometimes include those evaluated as "not feasible."

In addition, we should notice the following concerning energy prices:

The "Energy Conservation" scenario assumes that energy prices will increase at an annual rate of 8% in real terms through 2005 (As mentioned already, these prices are and will be still much lower than those in many countries including Japan). The trend of energy prices as well as commodity prices since 1995, however, show that the former has been decreasing in real terms, and it is probable that commodity prices will increase at a higher rate than energy prices, at least for a few years in the future. Considering these past and future developments, measures evaluated as "feasible" in the future may be fewer than those evaluated as "feasible" according to the "Energy Conservation" scenario above.