# 3. 省エネルギー政策シナリオの設定と省エネルギー・ポテンシャルの推定

### 3.1 はじめに

この章では、前章で行われた省エネルギー対策の経済評価に基づき、政府による経済的刺激策が、省エネルギー対策をどの程度促進するか、を推定し、その上で、省エネルギー・ポテンシャルの推定を行う。

そのために、まず、省エネルギー"対策"と、それを後押しするものとしての、省エネルギー"政策"とを、改めて明確に定義した上で、省エネルギー政策のシナリオを設定し、次いで、それに沿った省エネルギー・ポテンシャルの推定を行う。

# 3.2 省エネルギー "対策" と省エネルギー "政策"

# 3.2.1 "対策" とは何か

(1) 省エネルギーのための基本的な技術的措置

ここでは、省エネルギー対策とは、個々の工場において、省エネルギーのために採られる技術的な措置を指す、と定義する。これらの措置とは、一般的には、次のようなものである。

- a. 燃焼の適正化
- b. 加熱、冷却、および、熱伝達の適正化
- c. 熱損出の防止
- d. 廃熱の回収
- e. 熱の動力への転換の適正化
- f. 電気抵抗損失の防止
  - g. 電気の動力への転換の適正化

第2章に記述されている省エネルギー対策は、これらのうちのどれかに属する、ということができる。

# (2) 省エネルギー対策の3つのカテゴリー

ところで、省エネルギー対策は、その実施の易しさ・難しさ、あるいは、所要資金の 大小などの観点からは、次のような3つのカテゴリー(あるいはステップ)に分ける ことができる。

第1のカテゴリーは、工場、設備などの操業、保守を適正に行うことによる対策である。換言すれば、工場、設備などのエネルギー消費の設計値(あるいはメーカーによる保証値)をできる限り維持するための対策である。このような対策には、一般的に、大きな支出、あるいは、投資は伴わない。

第2のカテゴリーは、既存の設備、機械を前提にして、それらの改良を行うものであり、既存の設備、機械のエネルギー消費の設計値を改善する目的を持って行われる。 このような対策には、一般的に、かなり大きな投資が必要とされる。

第3のカテゴリーは、既存の設備、機械の代わりに、新しいプロセスを体現した新しい設備、機械を導入することである。これは、既存のものよりも改善された設計値を持つ設備、機械を設置することであり、一般的に、第2のカテゴリーに属する対策よりも大きな投資を伴う。

# 3.2.2 "政策"とは何か

ここで、"政策"とは、個々の工場において実施される、上記のような"対策"を促進するために採られる、政府による政策的な措置である、と定義される。

ノールウエーのエコノミストであるHauglandは、同国の省エネルギー政策に関する論文の中で、「単なる工学的な研究は、人間の行動の側面を考慮しない。」といっているが、これに則していえば、"政策"とは、人間の行動を促すために採られる、ということができる。

このような政策には、一般的に、強制的なものと、非強制的なもの(教育や指示にもとずくもの)がある。前者の例には、ガソリン・スタンドを特定日に閉鎖させること、特定の機器を使用禁止にすること、などがある。後者の例としては、教育や指示によるもののほかに、エネルギー価格の引き上げ、税制上の特典の付与、などがある。

本調査において、まず当面、非常に重要な"政策"として検討されるべきものは、前章 の検討結果から明らかなように、上記の第1のカテゴリーに属する"対策"を促すもので ある。換言すれば、工場における広い意味の管理を改善することを促すような"政策" である。

次に検討されるべきものは、中・長期的に採用が可能になるとみられる第2、あるいは第 3のカテゴリーの対策を促進するような政策であろう。

- 3.3 省エネルギー対策についての考察
  - 3.3.1 適正な管理による省エネルギー
    - (1) イランの工場における管理の現状

本調査における工場診断では、対象になった7つの業種について、工場の操業および保守の管理の面(上記の第1カテゴリー)でも、多くの対策が必要である、とされており、診断に基づく提案は、メイン・レポートの第1巻の第2章(経済評価)でも紹介されている。

ここでは、工場診断に基づき提案されている、管理の改善に関する対策のうちから、 対象各業種に共通することの多いものを示すと、以下の通りである。

- a. 製品の歩留まり向上 ……… 鉄鍋、板ガラス、繊維、砂糖について提案;製品の 歩留まり向上は、工場における全般的な生産性向上、コスト削減のために、最も 基本的な対策の1つであり、それが省エネルギーにつながることは、言うまでも ない。このように、工場の管理上、最も基本的な項目において、イランの工場が 大きな問題を抱えていることは、省エネルギー推進のためにも、工場における各 種管理の効率改善という、基本的な対策から取り組んで行く必要のあることを物 語っている。
- b. ボイラー、炉などの燃焼管理の改善 …… 鉄鋼、セメント、石油精製、板ガラス、繊維、植物油について提案;このような対策も、省エネルギー推進のためには、最も基本的なものである。上と同様に、このような対策が多くの業種について提案されていることは、イランの工場では、最も基本的な意味での管理効率の改善が必要とされていることを示している、と言ってよいだろう。
- c. 不要電灯の管理の改善 …… 石油精製、砂糖について提案;工場診断では、この対策は上の2つの産業についてのみ明示的に提案されているが、その他の産業でも同様の問題を抱えている工場は多いだろう、と推測される。この対策も、工場における無駄の排除、という観点からは、極めて基本的(初歩的)なものであ

り、イランの工場において、省エネルギー対策が最も基本的な次元から行われる べきことを物語っている。

## (2) 適正な管理の具体例

既に述べたように、既存のプラントでは、省エネルギー対策は、運転上や保守・点検 上の工夫 … 機器・設備の改善 … 新プロセスの導入、という段階を追って実施され るのが一般的である。

今、「空気比の適正化」という対策について、日本の製油所の経験をたどってみると、 次の通りである。

製油所では、加熱炉やボイラーにおける空気比の適正化が、重要な省エネルギー対策 の1つであるが、この点についての対策の第1段階は、適確な観測を行うことであっ た。

次の段階は、空気供給の管理を行うことである。具体的には、ダンパー、エア・レジスターの開度のコントロールを、手動で木目細かく行う、という作業が必要になる。 3番目の段階は、空気の流入(漏れ込み)を防ぐことである。そのためには、アルミ・テープ、アスベスト・ヤーンなどのシール材を用いて、目地ずめを行うこと、また、未使用のバーナー・ガン装入口にゴム栓を付けたり、点検窓を改善したりすること、などが必要になる。

以上は、第1カテゴリーの対策であるが、次は、第2カテゴリーの対策になる。 この段階では、低O2バーナーの導入やダンパー自動制御システムの導入が行われる。

「空気比の適正化」という対策は、通常、このような段階を追って実施される。 この例に見られるように、設備の管理の適正化を実施するためには、工場の現場における、まさに「木目細かい」作業の着想と、それを行う技能とが必要になる。 日本の製油所におけるこのような着想と技能を担ったのは、多くの場合、現場の作業 者であることが報告されている。同じことは、他の産業についても、いえるであるう。

しかも、現場の作業者の着想と技能が効果をもたらした対象は、単に第1カテゴリーの対策だけに止まらない。全てのカテゴリー、とくに第1および2のカテゴリー、の対策の提案(着想)および実行に関して、彼らの果たした役割は極めて大きかった、ということができる。

一方、日本の発電所における省エネルギー対策の歴史を振り返ってみると、その提案 と実施に関して、次のような事実があることが注目される。

第1に、省エネルギー対策に関する多くの提案が現場の作業者から出された。

第2に、省エネルギー対策の実施のために、多くの場合、グループ、あるいは、サークルが組織され、これらが対策の実施に大きな役割を果たした。

特に注目されるのは、ある発電所の「燃焼管理推進グループ」が運転員全体の中核として、運転員に対して、木目細かな管理を実施するよう、PR し、それをかれらに受けいれさせていった、という例が見られることである。

では、このような現場の作業者による「行動」を促したのは何だったのであろうか。

# (3) 工場(あるいは会社)における組織・制度

1990年代の初めにスタンフォード大学で生まれた、といわれている「比較制度分析」 学派の実証的な研究によると、日米の自動車産業の会社(あるいは工場)における "Coordination System"には、以下のような差異が見られる。

日本では、まず、労働者がシステム全体についての知識をできるだけ共有することが 求められる。また、労働者は生産ラインを止める権限を持ち、加えて、機械の故障な どの非常事態に対しては、可能な限り現場で対応することを求められる。

このような生産システムは、1970年から80年頃までのアメリカの自動車産業の生産システムと多くの点で対照的である。そこでは、職務の区分はより厳密であり、例えば、生産ラインは中央集権的な管理のもとにあったし、非常事態への対処は専門知識を持ったスタッフの仕事として行われた。

ところで、労働者の「行動」は "Coordination System" のみによって決められる ばかりでなく、"Incentive Mechanism" もそれには大きな影響力を持つ、というの が「比較制度分析」学派の見解である。

即ち、日本では、終身雇用(あるいは長期雇用)、年功序列賃金、年功による昇進な どが、これまでの労働者の「行動」を支えてきた、というわけである。

また、より具体的に省エネルギー対策に即していえば、改善提案とそれに対する報奨 授与の制度が、重要なものであった、といえる。 以上のように見てくると、"管理の改善"のためには、次のような認識が必要であるう。

- a. 省エネルギーは、上記の産業を含む全ての産業に共通する課題であるが、 "Coordination System"の適性を見ると、日本の産業における省エネルギーが 欧米に比して、より進展している、という事実からは、日本型システムの省エネ ルギーに対する適性は大きい、といえるであろう。
- b. 「比較制度分析」学派が主張するとおり、このようなシステムは夫々の国の個有の歴史的発展の中で形成されてきたものである。それゆえ、ある国から他の国への単純な移管は不可能である。にもかかわらず、アメリカの自動車産業が多くの点で日本型システムにならい、今日の競争力を回復したように、省エネルギーについても、他の国が日本型システムの一定部分を採りいれることは、十分に可能である。
- c. それと平行して、アメリカータイプの "同システム" や、その他の国のもののある部分も、イランの産業に移転可能かもしれない。
- d. 同じような検討は、ここでもイラン-タイプの特徴を十分に斟酌することによって、"Incentive Mechanism" についても行うことができるであろう。

# 3.3.2 対策のコストと効果の比較分析の必要性

省エネルギー対策のコストと効果の比較分析(経済評価)は、省エネルギー対策に対する経済的な刺激策を検討するために、欠くことのできない作業である。

即ち、①企業が、省エネルギー対策の優先順位を決めたり、その効果を推定したりする場合、②政府が、省エネルギー対策についての経済的支援策を検討したり、そのための支出額を推定したりする場合、このような評価は不可欠である。

その結果については、前章に述べた通りである。

# 3.4 基本的な政策措置の検討

# 3.4.1 管理の適正化のための政策

# (1) イランの工場において解決すべき課題

既に述べたように、工場(あるいは企業)における管理の適正化を図るためには、その国の実情に合ったものとして、"Coordination System"および"Incentive Mechanism"を改善する必要がある。

イランにおける "System" や "Mechanism" をどのように改善すべきか、について、何人かの専門家、関係者から意見を聴取した。 聴取の結果は、かなり断片的なものであるが、それらの結果から判断すると、以下に示した、ある報告書の提案は、電力産業に関するものではあるものの、多くの産業に共通する問題を明確に指摘しているであろう、と思われる。そこで、その当該個所を紹介する。

- a. イランでは、給料は複雑な方式で決定されることが多く、しかも、支払額の差が 小さい。仕事の責任に対応する適度の差を反映し、かつ、高い能力を持つ者の不 足を考慮に入れた、適正な給料システムが開発されるべきである。
- b. 職務規定は、それが存在する場合でも、個々の権限および職務を明記していなかったり、全体的な組織計画の一部になっていなかったりすることが多い。 大々の地位について、必要とされる能力および経験に焦点を当てた、完全な職務規定が整備されるべきである。
- c. 電力産業には、総合的、かつ、長期的なトレーニング・プログラムが存在しない。 全ての職務についてのトレーニングのニーズを総括的に分析すべきでり、また、 必要なトレーニングの個別内容を開発すべきである。
- d. 従業員に対して、正式な業績管理のレビューと改善のプロセス、さらに、業績向 上のためのシステムやインセンチブが存在していない。目標の設定および業績 の評価を統合した業績管理のシステムを確立しなければならない。
- e. 一般に、多くの意思決定が非常に高いレベルで行われる。そこで、職責が低いレベルにある問題についても、操業上の決定は、多くの場合、上層部に仰がれる。 企業および企業内各部署の目標、役割、ならびに、職責に関する明確なステート メントを作成することが必要である。

このような問題指摘と提案をも考慮に入れて、われわれは、今後、次のような検討が 行われることを期待したい。

- a. いわゆるトップ・ダウン方式による全工場的な効率改善プロジェクトの実施
  - 1) トップの指導力が非常に重要である。従って、世界銀行による次のようなコメントは傾聴に値する。即ち、「経営者の任命は職業上の能力および経験に基いて行われなければならず、また、経営上のトレーニングは拡大さるべきである。」
  - 2) 全工場的な効率改善プロジェクトの立案と実施の態勢を整備することが重要である。このプロジェクトの検討には、目標(現実的なもの)の設定に始まって、資料・データの整理の方法に至る、大、小の広い範囲の問題が含まれる。
- b. ミドル・クラス・マネジメントを、目的に向けて組織化・動員する方策
- c. 従業員に対する経済的なインセンチブの設定

# (2) 政府が検討すべき課題

イランの工場が解決すべき問題が上記のようなものであるとすると、政府が採るべき 政策は、次のようなものである、と考えられる。

- a. 「国営」および「公営」の企業、あるいは、工場の最高責任者について;
  - ・その任命方法の改善(適任者の適確な選択)
  - ・そのトレーニングの徹底 …… 次のような各種の問題に対処する能力の向上 のために:(イ)従業員の職務規定の整備と適正化、(ロ)従業員の目標設定と 業績評価の改善、(ハ)各レベルにおける意思決定の効率化。
- b. 各企業の労働者について;
  - ・労働関係諸法規の改善 ……… 専門家・関係者によると、現行の労働関係諸法 規は、企業、あるいは、工場における生産性を低下させる大きな要因になって いる、という (注)。そこで、その改善が必要である。
    - (注)「イランにおける労働関係諸法規は総括的、かつ、詳細である。一般的に、それらは、労働と報酬の最低条件を規定して、労働者を保護することを意図している。それら諸法規の一つの重要な要素は、イラン労働法の27条および165条における、解雇を規制する手続き、および、条件の規定である。」

「…… イランの工場管理者によると、労働諸法規は労働生産性を向上:

させることに対する大きな障害である。イランの工場管理者がしばしば 言うことであるが、非効率的な労働者を解雇するのは、離婚するよりも むずかしい。」(ともに、ある世界銀行の報告書による。)

- ・賃金制度の改善 ……… 労働諸法規の改善とも関連するが、仕事の範囲と職務 を反映した、適度の差を持った、支払い方式を用意する必要がある。
- ・生産性向上のためのトレーニングの実施の制度 ……… 上の「3.3.1 適正な管理 による省エネルギー」で述べたような、木目の細かい対策の着想と実施が可能に なるよう、労働者をトレーニングする制度・方法を開発・実施する必要がある。

これらの政策項目を、より具体的、かつ、現実的なものとして、実施可能なものに磨き上げていくために、次のような、いくつかのレベルにおける検討が実施されることが望ましい、と考えられる。

- a. 工場の省エネルギー促進のための具体的な方策の専門的な検討
  - ……… 政府部内の専門家による検討、あるいは、専門的なコンサルタント・グループに委託しての検討により、工場における管理の改善・適正化について、現実的な具体策を立案する。このような専門家のグループは、後に述べるような他の政策についても、同時に検討を行うこととする。
- b. 国営企業の各グループに省エネルギー促進のための組織を作ること

  - (注) イランの大半の国営企業 (あるいは公営企業) は次の5つのグループに分けることができる。
    - ・工業省 (Ministry of Industry) の持ち株会社であるThe National Iranian Industrial Organization (NIIO) およびThe Industrial Development and Renovation Organization (IDRO) の傘下にあるもの。
    - ・金属・鉱山省 (Ministry of Mines and Metals) の持ち株会社である The National Iranian Steel Corporation (NISC) の傘下にあるもの。

- The Bank of Industry and Mines (BIM) の傘下にあるもの。
- · Mostazafan Janbazan Foundation (MJF) の傘下にあるもの。

なお、これらのうち、NISCの傘下にある Ahwaz Steel や Mobarakeh Steel では、省エネルギーを担当する部署が既に発足している。

また、MJFでは、その「経済部門」に属する "Mines and Petroleum Products Organization" に省エネルギーを目的とする "エネルギー委員会" が設けられ、その傘下の全工場に "エネルギー小委員会" が設けられ、夫々、活動を行っている (MJFには、「経済部門」の他に、「慈善・救済部門」があり、また、「経済部門」には、上記のOrganizationの他に、6つのOrganizationがある)。

- c. 上記のガイドラインに沿って、具体的なプログラムを作るために、各工場に必要 な組織を設けること
- d. 上記各グループ毎に最低1工場をモデル工場とし、外部の専門家のコンサルテーションのもとに、効率改善プロジェクトを実際に推進する。
  - ……… 必要に応じて、外国のコンサルタントを活用する。

# 3.4.2 省エネルギー対策のための投資(あるいは支出)の回収に関する政策

この種の政策としては、以下のようなものがある。夫々について、まず、イランにおける現状を説明し、次に、どのような政策が考えられるか、について述べる。

### (1) エネルギー価格政策

## a. 現 状

イランでは、既に第2次5ヶ年計画において、エネルギー価格の引き上げが行われている。同計画で予定されているのは、期間中の年平均20%のエネルギー価格引き上げである(名目価格)。

# b. 今後の政策

イランの現在のエネルギー価格は、そのコストを大幅に下回っている。PBOチームの推定によると、例えば、重油の価格は1995年に10.7Rial/lであったが、コストは75Rial/lである(いずれも工場渡しで、1993年価格で表示)。

コストと価格の差は、事実上、政府が辅助金で辅う、という形になっている。上記

のようなエネルギー価格の引き上げは、省エネルギーの促進とともに、各種の補助 金を削減、あるいは、撤廃して、現在の政府財政の赤字を縮小する、という狙いも 持っている。

しかし、イラン政府は、貧困層の生活への悪影響を考慮しつつ、エネルギー価格を慎重に引き上げつつある。5ヶ年計画では、物価上昇率が年平均約12%と想定されているので、エネルギー価格の20%引き上げは、実質的には約8%の引き上げ、という計算になる。しかし、実際には、物価はここ数年、毎年、数十%も上昇した(例えば、消費者物価は1990 - 94年に年率32%の上昇を記録している。1995年以降も、ほぼ同じ程度の上昇と見られている)。その結果、1995年から引き上げられつつあるエネルギー価格は、皮肉なことに、実質的には、かなり大きく低下してしまっており、それだけ、省エネルギー効果を薄めている。

にもかかわらず、第2次5ヶ年計画期間中は、少なくとも、上記の年率20%程度の 引き上げを継続することが、省エネルギーのみならず、財政赤字の削減のために、 望ましい、と考えられる。

その後の期間については、後に「エネルギー需要予測」の個所で詳しく触れるよう に、経済成長、物価動向などの経済指標が好転する、と見込まれているので、エネル ギー価格を実質的にも引き上げることが可能であり、また、望ましい、と考えられる。

### (2) 税 制

### a. 現 状

現在、省エネルギーに関しては、税制上の優遇措置は講じられていない。

#### b. 今後の政策

PBOチームとの協議では、少なくとも短期的には、税制による省エネルギーの推進 という政策措置は有効ではないであろう、という結論が出ている。その理由は、以 下の通りである。

- (イ) 一般的に見て、イランの現在の税率の水準は、事実上、かなり低いので、その優遇措置が大きな効果をもたらすとは考えられない(注1)。
- (ロ) イラン政府は、現在、税制の再確立のための努力を開始したところであり(注2)、その終了を待って、省エネルギーのための措置を打ち出すことが望ましい。
  - (注1) 世界銀行のある報告書によると、イランの税制には、次のような特徴があ り、実効税率は極めて低い、という。

「イランの所得税制度は、比較的高い名目税率と、極めて多くの免税措置

やインセンチブとを特徴としている。」

「高い所得税率と低い税収を総合してみると、免税、および、課税上の例 外扱いの効果が大きいことが浮かび上がってくる。」

(注2) イギリスの経済調査機関、Economist Intelligence Unitによると、イランの税収は小さく、政府は、その拡大を目指している、という。

「現行経済計画上の重要な弱点は、税収の水準が比較的低いことである。 イラン経済の発展のためには、税文化 (a tax culture) と税収拡大とが 並行的に発展することが、不可欠である。」

「イラン政府は、次のような野心的なプログラムを明らかにした。即ち、第2次5ヶ年計画期間中に、政府収入に占める税収の割合を、1995/96年度の約17.5%から26%に引き上げる。」

このような現状を踏まえて、2000年までの期間においては、省エネルギー推進のための税制の活用は行わないことが望ましい。

しかし、2000年以降においては、それまでに税制の再確立が終了することを期待して、税控除、あるいは、特別減価償却などの省エネルギー優遇税制を実施することができるであろう。

なお、参考までに、日本の現行制度を紹介しておく ……… (a) 対象:法律で定められた省エネルギー機材、(b) 減税措置:次のいずれかを適用する;1) 機材取得価格の7%に等しい税額の免除(但し、所得税または法人税支払額の20%を越えないものとする。)、2) 通常の減価償却に加え、取得年における機材取得価格の30%の特別償却。

### (3) 金融(低利・長期融資)

# a. 現 状

現在、省エネルギー推進のための金融上の措置は講じられていない。

但し、現行5ヶ年計画においては、そのような指置を採るべきことが謳われている。 即ち、「エネルギー消費構造の改善に関する作業を実施するため、各種産業、団体 に優遇税率で金融措置を講じるための必要な基準を発表し、実施する。」

## b. 今後の政策

今後は、まず、2000年までの期間においても、上記のような措置を早急に検討し、 実施に移すことが望ましい。 また、2000年以降についても、同様に、長期・低利の資金貸付けを継続することとする。

但し、いずれの期間についても、後に「エネルギー需要予測」の個所で述べるように、政府の財政収支は、必ずしも大きく好転するとは限らないので、上記の税制の再確立の進展状況も睨みながら、主として、経済評価の結果として"feasible"とされた対策のみを対象とすることが望ましい、と考えられる。

なお、参考までに、日本の現行制度を紹介する(日本開発銀行によるもの) ……… (a) 対象:法令に規定された省エネルギー機材;(b) 融資限度:40%以内;(C) 金利:3.15% (1995年11月28日現在)。

# (4) 補助金

a. 現 状

現在、省エネルギー推進のための補助金支給の措置は講じられていない。

b. 今後の政策

上記のように、イランでは、多くの商品の販売に補助金が与えられており、それが政府の財政を圧迫している。そして、一般的に、このような補助金については、その削減、撤廃の方向が既に打ち出されている。しかし、省エネルギーの推進は政府の重視する政策の1つであるから、一定の条件を満たす限りにおいて、そのための補助金を支給することは、一般的な補助金の削減・撤廃政策と矛盾するものではない。ところで、その条件とは、後に「エネルギー利用計画」の個所で述べるように、省エネルギー対策のための機器・設備を外国から輸入するコストが、その対策によって節約されるエネルギー(石油)の輸出価格をかなり下回る、ということである。「かなり」の程度は、その時点における国内と輸出のエネルギー価格によるが、後の政策シナリオの設定においては、1つの目途として、省エネルギーによる効果(便益)が対策コストの50%以上であることとした。

参考までに、日本の制度を紹介する (広い意味の省エネルギー対策に対するもの)

(a) 対象:家庭用の太陽光発電システム、

(b) 補助金額 (1995年度現在): 次のA\*B;

A: 以下の小さい方

1) 85 万円プラス消費税

# 2) 1kw当たりのシステム・コストの2分の1 B: 太陽電池モジュールの最大負荷(KW)(但し、5KWが上限)

# 3.4.3 省エネルギーのためのその他の政策手段

その他の政策手段としては、次のようなものがある。これらは、大きなコストを伴わず に実施することができるものが多いので、"管理の改善"に係わる政策とともに、可能な 限り早期に実施することが望まれる。

- (1) 工場の機器・設備に関するエネルギー消費の基準および目標の設定
- (2) エネルギー多消費工場の指定
- (3) エネルギー管理者制度の設定
- (4) 省エネルギーに関する研究・開発の助成 ……… 現行5ヶ年計画では、「計画期間中、エネルギー源の販売から生ずる収入の0.2%を、関係官庁によるエネルギー消費筋減・管理に必要な研究に向ける。」とされている。
- (5) 電気エネルギーの消費の抑制 ……… 同じく5ヶ年計画では、「工場、産業の季節毎の電気エネルギー消費プログラムを関係省庁が調整し、最高消費月における消費量の削減を図る。」とされている。
- (6) 省エネルギー技術情報の提供 ……… 専門家による診断指導、技術ガイドラインの 公表、デモンストレーション、優秀事例の紹介・表彰など。

#### 3.5 政策シナリオの設定

省エネルギー・ポテンシャルの推定を行うために、以上の検討にもとずき、政策シナリオを設定する。ポテンシャルの推定のための設定であるから、このシナリオに組み入れられる要素(政策手段)は、定量的な検討に適したものでなければならない。そのようなものとして、エネルギー価格、経済的刺激策(融資、税制、補助金など)、管理の改善が選ばれた。また、これらの組み合わせによって、次の2つのシナリオが作られた …… 省エネルギー・シナリオ(A)、および、省エネルギー促進シナリオ(B)。

なお、次の章で述べる理由によって、省エネルギー・ポテンシャルの推定は、シナリオ (A) のみについて行われた (次節参照)。

政策シナリオを次の表に示す。

Table 3.3.1 Scenarios for Forecasting Energy Demand in the Industrial Sector

| Scenario      | Energy Conservation       | Accelerated Energy Cons.     |
|---------------|---------------------------|------------------------------|
| Energy Price  | *1995-2000;According to 5 | *1995-2000;To reach price    |
| •             | year plan                 | representing                 |
|               |                           | real cost.                   |
|               | *2001-2005;The same as    | *2001-2005; To be maintained |
|               | above                     |                              |
|               |                           |                              |
|               |                           |                              |
| •             |                           |                              |
| Incentives    | *1995-2000;Subsidy & loan | *1995-2000;Subsidy & loan    |
| or            |                           |                              |
| Subsidization |                           |                              |
|               | *2001-2005;The same as    | *2001-2005; The same as      |
|               | above.                    | above.                       |
|               |                           |                              |
|               |                           |                              |
|               |                           |                              |
|               | 计记录 医玻璃夹织                 |                              |
| Improved      | •1995-2000;To be          | *1995-2000;To be much more   |
| Management    | strengthened              | strengthened.                |
|               | *2001-2005;The same as    | *2001-2005; The same as      |
|               | above                     | above                        |
|               |                           |                              |
|               |                           |                              |
|               |                           |                              |
| Others        | To be considered only     | The same as                  |
| ( R & D; etc) | qualitatively             | Ene. Con. Scenario           |

# a. エネルギー価格

既に述べたように、シナリオ (A) では、エネルギー価格は、今後、実質的に年平均8%の割合で上昇していく (1993年価格で)、と想定されている。

また、シナリオ (B) では、エネルギー価格は、2000年にそれらのコストを反映する水準まで上昇する (同じく1993年価格で)、と想定されている。

Table 3.3.2 Assumption of Energy Prices by Scenario

|      |         | Electricity              | ا<br>ا |         | <b> </b>  | Natural Gas        |      | Fuel Oil |           |           | Gas Oil |              | Coal                     |             |
|------|---------|--------------------------|--------|---------|-----------|--------------------|------|----------|-----------|-----------|---------|--------------|--------------------------|-------------|
|      | :       | (RUKWh)                  | Wh)    |         |           | (RU/m/3)           |      | (RL/1)   |           |           | (RL/1)  |              | 1/SSD)                   | ^           |
|      | Enc. C. | Enc. Con. Acc. Enc. Con. | CC. En | e. Con. | Enc. Con. | on. Acc. Ene. Con. |      |          | Ene. Con. | Enc. Con. | Acc.    | Ene. Con. En | Ene. Con. Acc. Ene. Con. | : Enc. Con. |
| 1993 |         | N.A.                     | :      | N.A.    |           | 18.2               | 18.2 | 15       | 15        |           | 20      | 20           | N.A.                     | N.A.        |
| 1994 |         | 28.6                     |        | 28.6    |           | 15.7               | 15.7 | 10.7     | 10.7      |           | 14.3    | 14.3         | N.A.                     | NA          |
| 1995 |         | 25.6                     |        | 25.6    |           | 14.1               | 14.1 | 10.7     | 10.7      |           | 16      | 16           | Z.A.                     | N.A.        |
| 1996 |         | 27.7                     |        |         |           | 15.2               |      | 11.5     |           | ,         | 17.3    |              |                          |             |
| 1997 |         | 29.9                     |        | . :     |           | 16.4               |      | 12.4     |           |           | 18.7    |              |                          |             |
| 1998 |         | 32.3                     |        |         |           | 17.7               |      | 13.4     |           | . •       | 20.2    |              |                          |             |
| 1999 |         | 34.8                     |        | :       |           | 19.2               |      | 14.5     |           | •.•       | 21.8    |              |                          |             |
| 2000 |         | 37.6                     |        | 001     |           | 20.7               | 123  | 15.7     | 75        |           | 23.5    | 474          |                          | 9           |
| 2001 |         | 40.6                     | :      | 100     |           | 22.4               | 123  | 16.9     | 75        | . •       | 25.4    | 474          |                          | 00          |
| 2002 |         | 43.9                     |        | 100     |           | 24.1               | 123  | 18.3     | 7.5       |           | 27.4    | 474          |                          | 8           |
| 2003 | •       | 4.7                      |        | 100     |           | 26.1               | 123  | 19.8     | 75        | . •       | 29.6    | 474          |                          | 8           |
| 2004 |         | 51.2                     |        | 100     |           | 28.2               | 123  | 21.3     | 75        | .*        | 32      | 474          |                          | 8           |
| 2005 |         | 55.3                     |        | 100     |           | 30.4               | 123  | 23       | 75        |           | 34.6    | 474          |                          | 9           |
| 2006 |         | 59.7                     |        | 100     |           | 32.8               | 123  | 24.9     | 75        |           | 37.3    | 474          | •                        | 09          |
| 2007 |         | 64.5                     |        | 100     |           | 35.5               | 123  | 26.9     | 75        |           | 40.3    | 474          |                          | 3           |
| 2008 |         | 69.7                     |        | 100     |           | 38.3               | 123  | 29       | . 75      | ~         | 43.5    | 474          |                          | 8           |
| 2009 |         | 75.2                     |        | 100     |           | 41.4               | 123  | 31.3     | 75        |           | 47      | 474          |                          | 09          |
| 2010 |         | 81.3                     |        | 100     |           | 44.7               | 123  | 33.9     | 75        |           | 50.8    | 474          |                          | 9           |
|      | :       |                          |        |         |           |                    |      |          |           |           |         |              | 2                        |             |

(Note) Prices are in the real term of 1993 price, including the transportation costs except for electricity. The costs are 10% of the price for natural gas, 10 Rials for fuel oil and gas oil, and negligible for coal.

## b. 経済的刺激策

次の2つの政策が採られる、と想定した。

第1に、2000年および2005年について、先に述べたような方法で省エネルギー対策の経済評価を行った結果、not feasible なものについては、次の場合には、省エネルギー対策のためのコストの不足分に対して、補助金が与えられることとした。即ち、

である (BとCについては、前章を参照されたい)。

要するに、省エネルギー対策によって節約されるエネルギー量の現在価値が、省エネルギー対策のコストの半分以上であれば、補助金が支給される、という想定である。 但し、資金調達 (外貨調達を含む) の観点から、2000年については、17億5,000万リアル、また、2005年については、87億5,000万リアル未満の対策のみを対象とする。

第2に、2000年、2005年とも、経済評価の結果、feasibleであるとされた対策に対しては、上と同様、それにかかるコストが、夫々、17億5,000万リアル、87億5,000万リアルに達しない場合にのみ、コストの40%に当たる金額を有利な条件で融資することとした。

### c. 管理の改善

工場の操業・保守の管理については、本章で述べたような、その改善策が実施され、その効果が期待できる、と想定した。

# 3.6 省エネルギー・ポテンシャルの推定

#### 3.6.1 鉄鋼

鉄鋼業については、各工場毎に、省エネルギー・ポテンシャルの推定を行った。

まず、その前提となる鉄鋼生産については、次のような想定を行った。(1) イランの鉄鋼製品の需要は 1990年代前半は年率約 10 %で成長した。一方、鉄鋼製品の生産は、

Ahwaz Steelの生産の本格化と Mobarakeh Steelの生産開始によって、その間に年平均20%程度の増大を見せた。(2) しかし、今後は経済成長率が低下する、と見込まれている(1990 – 94の年率4.6%に対して、1995 – 2000年は同じく2.3%)ので、需要の伸びは低下するであろう。また、今後は、鉄鋼製品の輸出、輸入とも少量に止まる、と見られるので、生産の伸びは需要とほぼ等しくなろう(これまでは、需要を賄うために、かなり輸入があった)。(3) そこで、生産の伸びは1994 – 2000年は年率5%、2000 – 2005年は3%と想定した(Table 3.3.3)。

# a. 2000年

#### · Esfahan Steel

前の章の検討でfeasibleとされた諸対策のうち、コストが17億5,000万リアル以上のものは、資金調達(外貨の調達を含む)の観点から、実施が不可能と想定し、それ以外の対策による省エネルギー効果を合計すると、1994年のエネルギー消費原単位に対して11%余りとなる。

そこで、2000年における実現可能な省エネルギー・ポテンシャルを1994年の原単 位の約10%と想定する。

# · Mobarakeh Steel

Esfahan と同様の検討を行うと、1994年に対して12%程度の省エネルギー・ポテンシャルが推定される。

そこで、2000年における原単位は1994年に対して12.5%低下と想定する。

# Khuzestan Steel

同様の検討を行うと、1994年に対して約16%の省エネルギー・ポテンシャルが推定 される。

そこで、2000年における原単位は1994年に対して15%低下と想定する。

#### b. 20054F.

## · Esfahan Steel

新たに、High Efficiency Burner、Yield IncreaseおよびLow Coke Operation の3つの対策が実施可能となり、それらによって、約2.5%の原単位の引き下げが可能となる。

これらのうち、High Efficiency Burner は補助金支給 (15億リアル) により、また、他の2つは融資 (7億リアル、21億リアル) により、夫々、実施可能となった。そこで、2005年の原単位は1994年に比して87.5%になる、と想定する。

## · Mobarakeh Steel

同様に、既存の設備については、さらに2-3%の原単位引き下げが可能になる。 そこで、その2005年の原単位は1994年の85%と想定する。

また、年産50トン程度の新設備が運転を開始しており、その原単位は6,500Mcal/t と想定する。

# · Khuzetan Steel

同様に、既存の設備については、さらに5-6%の原単位引き下げが可能になる。 そこで、その2005年の原単位は1994年の80%と想定する。

また、年産100万トン程度の新設備が運転を開始しており、その原単位は6,500Mcal/t と想定する。

以上のような推定によると、イランの鉄鋼業におけるエネルギー消費原単位は1994年の8,830Mcal/t-crude steelから2000年には7,760Mcal/t、2005年には7,340Mcal/tに低下するであろう (Table 3.3.4)。

Table 3.3.3 Future Production of Crude Steel in I.R.Iran

|           | 1994             |       | 2000                     |       | 200             | )5    |
|-----------|------------------|-------|--------------------------|-------|-----------------|-------|
|           | Capacity (1,000t |       | Capacity Pr<br>(1,000t/) |       | Capacity (1,00) |       |
| Esfahan   | 2,100            | 1,880 | 2,100                    | 2,100 | 2,100           | 2,100 |
| Mobarake. | 2,770            | 1,480 | 2,770                    | 2,600 | 3,270           | 3,000 |
| •         |                  |       |                          |       | (500)           | (430) |
| Khuzest.  | 1,700            | 1,350 | 1,700                    | 1,600 | 2,700           | 2,200 |
|           |                  |       |                          |       | (1,000)         | (900) |
| Total     | 6,570            | 4,710 | 6,570                    | 6,300 | 8,070           | 7,300 |

(Note) Figures in parentheses are additional capacity and crude steel produced by the additional capacity, respectively.

Table 3.3.4 Future Consumption of Energy and Energy Intensity in the Iron and Steel Industry in I.R.Iran

|                | 1994          | 20       | 00       | 200      | 05       |
|----------------|---------------|----------|----------|----------|----------|
|                |               | No Meas. | Measures | No Meas. | Measures |
|                | (Mcal/t-c.s.) | (Mcal/   | t-c.s.)  | (Mcal/   | 1-c.s.)  |
| Esfahan        | 9,140         | 9,140    | 8,230    | 9,140    | 8,000    |
| Mobarak.       | 8,890         | 8,890    | 7,780    | 8,890    | 7,410    |
| Khuzest.       | 8,350         | 8,350    | 7,100    | 8,350    | 6,610    |
| Total          | 8,830         | 8,840    | 7,760    | 8,430    | 7,340    |
| Energy         |               |          |          |          |          |
| Consumpt.      | 41,536        | 55,690   | 48,890   | 61,540   | 53,580   |
| (Mill. Mcal/y) |               | (100)    | (88)     | (100)    | (87)     |

#### 3.6.2 セメント

セメントについては、5つのグループ毎に推定を行った(グループについては、前章を参 照のこと)。

まず、その前提となる生産については、次のような想定を行った。(1) イランのセメント 需要は、1990年代前半は年率3%程度の伸びを示し、生産も、これとほぼ同じ速度で上: 昇してきた。(2) しかし、今後は経済成長が鈍化すると予想されるので、需要の伸びも低 下し、生産もこれまでの半分程度の年率1.5%程度の伸びを示すに止まろう(輸出、輸入 とも大きくない) (Table 3.3.5)。

## a. 2000年

まず、"管理の改善"に属する対策をみると、Sepahan Cementでは、fesibleなものの効果がその原単位に対して6-8%ある。また、Tehran CementのNO. $6+\nu\nu$ 、Soufian CementのNO. $4+\nu\nu$ などでも、feasibleな対策によって、同じく大々、5-10%、6-7%の節約が可能である、と推定されている。

そこで、産業全体において、この種の対策によって、10%程度の省エネルギーが可能 になる、と想定した。

他方、2000年までの間に、運転開始以来30年を経過した設備は廃棄される、と想定した。 廃棄されるのは、特に"湿式-プラネタリー・クーラー"グループの中に多い(生

産能力は1995年の2,200トン/日から2000年には300トン/日へ縮小する)。反面、かなり多くの新・増設が行われる(生産能力で20,970トン/日)、と予想した。これらの 廃棄、および、新・増設による、全体としての省エネルギー効果はかなり大きい。

## b. 2005年

まず、"管理の改善"に属する対策によって、全体として、さらに2.5%程度(対1994年)の省エネルギーが可能になる、と想定した。さらに、"機器・設備の改造"に属する対策のうち、2000年には、資金調達の点で実施不可能とされていた原料ミルおよび仕上げミルに関するものが、実施可能になることにより、これらが仮に"Dry-Planetary Cooler"グループ以外の3グループの工場で実施されるとすると、同じく2.5%程度の省エネルギーが可能になる。

これらの対策により、既設分の原単位は 1994年の 1,370Mcal/t-cem から 2000年の 1,220Mcal/t、2005年の 1,140Mcal/t へと低下する見込みである。

一方、2000-2005年の間にも、新・増設はかなり行われるであろう (生産能力で10,660トン/日)。これらの設備の原単位は960Mcal/tと予想される。

その結果、2005年には、セメント産業全体の原単位は1,060Mcal/tにまで低下するであろう。

次の表にセメント産業の生産見通し、エネルギー消費の見通しを示した。

Table 3.3.5 Future Production of Cement in I.R.Iran

|                          | 199                    | 14                     |         | 200               | 0                      | 200                    | )5                     |
|--------------------------|------------------------|------------------------|---------|-------------------|------------------------|------------------------|------------------------|
| Group                    | Capacity<br>(1,000t/d) | Product.<br>(1,000t/y) |         | pacity<br>1001/d) | Product.<br>(1,000t/y) | Capacity<br>(1,000t/d) | Product.<br>(1,000l/y) |
| <existing></existing>    |                        |                        |         |                   |                        |                        |                        |
| Wet-Plan.                | 2,200                  |                        |         | 300               |                        | 0                      |                        |
|                          | (5)                    |                        |         | (1)               |                        | 0                      |                        |
| Dry-Plan.                | 8,100                  |                        |         | 8,100             |                        | 4,000                  |                        |
|                          | (5)                    |                        | :       | (5)               | 200                    | (3)                    |                        |
| SP-Plan.                 | 19,750                 |                        |         | 16,850            |                        | 16,850                 |                        |
|                          | (11)                   |                        |         | (5)               |                        | (8)                    |                        |
| SP-Grate                 | 18,000                 |                        |         | 17,000            |                        | 14,450                 |                        |
|                          | (10)                   |                        |         | (9)               | 100                    | (6)                    |                        |
| NSP-Grate                | 6,050                  |                        |         | 8,050             |                        | 8,050                  | + <u>1</u>             |
|                          | (3)                    |                        |         | (4)               |                        | (4)                    |                        |
| Total                    | 54,100                 | 16,840                 |         | 50,300            | 12,570                 | 43,350                 | 10,840                 |
|                          | (34)                   |                        | :       | (27)              |                        | (21)                   |                        |
| <newly built=""></newly> |                        |                        |         |                   |                        |                        |                        |
| SP(NSP)- Grat.           | 0                      | 0                      | :       | 20,970            | 6,290                  | 31,630                 | 9,490                  |
|                          |                        |                        |         |                   |                        |                        |                        |
| Grand Tot.               | 54,100                 | 16,840                 | . · · · | 71,270            | 18,860                 | 74,980                 | 20,330                 |

(Note) Figures in parenthesis are the number of kiln-line.

Table 3.3.6 Future Consumption of Energy and Energy Intensity in the Cement Industry in I.R.Iran

| and the second second second               |                |                 |          |          |          |
|--------------------------------------------|----------------|-----------------|----------|----------|----------|
|                                            | 1994           | 2000            |          | 2005     |          |
|                                            |                |                 | feasures |          | Measures |
|                                            | (Mcal/t-c.)    | (Mcal/t-c       | .)       | (Mcal/t- |          |
| <existing><br/>Wet-Plan,</existing>        | 1,960          | 1,960           | 1,760    | 1,960    | 0        |
| Dry-Plan.                                  | 1,510          | 1,510           | 1,360    | 1,510    | 1,320    |
| SP-Plan.                                   | 1,390          | 1,390           | 1,250    | 1,390    | 1,180    |
| SP-Grate                                   | 1,280          | 1,280           | 1,150    | 1,280    | 1,090    |
| NSP-Grat.                                  | 1,230          | 1,230           | 1,110    | 1,230    | 1,050    |
| Total                                      | 1,370          | 1,350           | 1,220    | 1,340    | 1,140    |
|                                            |                | + 2             | - 14 L   |          |          |
| <newly built=""><br/>SP(NSP)-Grate</newly> | 0              | 960             | 960      | 960      | 960      |
| Grand Tot.                                 | 1,370          | 1,220           | 1,130    | 1,160    | 1,060    |
| Energy                                     | <b>33.0</b> 70 | 23.010          | 21,310   | 23,580   | 21,560   |
| (Mill. Mcal/y)                             | 23,070         | 23,010<br>(100) | (93)     | (100)    | (91)     |

## 3.6.3 板ガラス

板ガラス産業における省エネルギー・ポテンシャルの推定は、個々の工場毎に行われる。

まず、その前提となる生産については、次のような想定を行った。(1) イランの板ガラス 生産は、1990年代前半は年率7.5%程度の伸びを示してきた。(2) 今後、需要は経済成長 よりやや高めの伸び(1995 - 2000年は年率2%程度、2000 - 2005年は同3%程度)を 示すと見られるが、さらに、2000年には2万トン程度、2005年には5万トン程度の輸出 が見込まれる(1994年の輸出は2万トン)ので、生産量は1995 - 2000年には年率6% 弱、2000 - 2005年には5%弱の伸びになろう(Table 3.3.7)。

# a. 2000年

まず、"管理の改善"に属する対策、即ち、Improvement of yieldおよびCombustion control がともに feasible であり、実施される。これらの対策による効果は、夫々、2%、4%程度であるが、その他の対策とあいまって、この種の対策により、全体として、10%程度の省エネルギーが可能になる、と想定する。

次に、Light insulation、ならびに、Improvement of productivityが、上述の 経済的刺激策 (補助金) の実施によって、実行可能となる。補助金支給の額は、大々、 2億2,600万リアル、2億2,300万リアルである。

さらに、Azar GlassのFloat法の炉が2000年に運転を開始することにより、全体の原単位は大きく低下するであろう。

以上の効果により、板ガラス産業の原単位は 1995年の 6,710Mcal/t-product から 2000年には5,290Mcal/tへ低下するであろう (但し、炉の劣化による原単位の上昇を 4%程度と仮定した)。

## b. 2005年

まず、この時期には、"管理の改善"の対策の余地は大きくは残っていない、と想定する。

次に、Gazvin GlassにFloat法の炉が新たに導入される(2002 - 2003年頃)、と予想する。それに対応して、それまでの4基の炉の能力は何らかの形で縮小される、と想

定する。

また、2000年に新設されたAzar Glassの炉の稼働率の上昇によって、同工場の原単位はかなり低下するであろう。

以上のような効果によって、この産業全体の2005年の原単位は4,090Mcal/tにまで 低下するであろう。

次表に板ガラス産業の生産見通し、エネルギー消費見通しを示した。

Table 3.3.7 Future Production of Sheet Glass in I.R.Iran

|           | 199                | 5   | 200 | )0                 | 200 | )5                 |
|-----------|--------------------|-----|-----|--------------------|-----|--------------------|
|           | Capacity<br>(1,000 |     | •   | Product.<br>00t/y) |     | Product.<br>001/y) |
| Gazvin    | 130                | 89  | 130 | 125                | 260 | 160                |
| Abguineh  | 98                 | 72  | 98  | 93                 | 98  | 82                 |
| Saveh Jam | 60                 | 56  | 60  | 20                 | 60  | 50                 |
| Iran      | 14                 | 11  | 14  | 10                 | 14  | 10                 |
| Azar      | 0                  | 0   | 100 | 56                 | 100 | 80                 |
| Total     | 302                | 228 | 402 | 304                | 532 | 382                |

Table 3.3.8 Future Consumption of Energy and Energy Intensity in the Sheet Glass Industry in LR.Iran

| ************************************** | 1995        | 200      | )0       | 200      | 5        |
|----------------------------------------|-------------|----------|----------|----------|----------|
|                                        | -           | No Meas. | Measures | No Meas. | Measures |
|                                        | (Mcal/t-p.) | (Mca     | 1/t-p.)  | (Mcal    | /t-p.)   |
| Gazvin                                 | 7,230       | 6,440    | 5,300    | 4,020    | 3,650    |
| Abguineh                               | 7,010       | 7,010    | 5,920    | 7,010    | 5,920    |
| Saveh Jam                              | 4,170       | 4,170    | 3,570    | 4,170    | 3,570    |
| Iran                                   | 8,040       | 8,040    | 6,850    | 8,040    | 6,850    |
| Azar                                   | 0           | 3,480    | 3,480    | 3,480    | 3,090    |
| Total                                  | 6,450       | 5,970    | 5,090    | 4,670    | 3,930    |
|                                        | <6,710>     | <6,210>  | <5,290>  | <4,860>  | <4,090>  |
| Energy                                 |             |          |          |          |          |
| Consump.                               | 1,530       | 1,890    | 1,610    | 1,860    | 1,560    |
| (Tcal/y)                               |             | (100)    | (85)     | (100)    | (84)     |

(Note) 6,440 Mcal/t-p.for Gazvin in 2000 is the actual record in 1994.

Figures in <parenthesis> are those reflecting the effect of deterioration in efficiency caused by the duration of operation.

# 3.6.4 機 維

データ、情報の入手状況から、以下の3つの産業については、以上の3つの産業とは異なり、かなり簡便な方法によって、推定が行われる。

まず、生産について、次のような想定を行った。(1) 1980年代末からの繊維製品の生産は、既に述べたように、かなり不規則な動きを見せてきた。(2) 従って、今後の見通しは容易ではないが、ここでは、経済成長をやや上回る程度の伸びを示す、と想定した(1994-2000年は2%、2000-2005年は3%)。

工場診断を行った2つの工場のうち、Poyacrylについて見ると、"管理の改善"に属するもののうち、経済評価でfeasibleという結果が出た対策は、同工場の原単位につき8-

9%程度の省エネ効果を有する、と推定される。

さらに、"機器・設備の改造"に属するもので、feasible な対策は、3%程度の効果を有する、と推定される(以上、いずれも2000年時点で)。

一方、Kashan Velvetについて検討された対策のうち、feasibleなものの効果は、電気において7%程度と推定されている。

さらに、前の章で述べたように、イランの繊維工場のエネルギー消費原単位は、全般的に、 日本のそれ、あるいは、標準的な同種の工場のそれに比して、極めて大きな値を示している。 これらのデータから、ここでは、イランの繊維産業のエネルギー消費原単位は1995年を 100とすると、2000年には90、2005年には85の水準に低下するであろう、と想定する。 なお、今後予想される生産の伸びのもとでは、2005年までに設備の新・増設は殆ど行われない、と見てよいであろう。

# 3.6.5 砂糖

まず、ポテンシャル推定の前提となる生産につき、次のように想定した。(1) イランの砂糖 需要は、1990年代前半に年率7.5%程度の伸びを示した。一方、その生産は年率10%を上 回る伸びを示した。(2) 今後、需要の伸びは、経済成長の鈍化にともなって、年率3%程度 に低下し、引き続き、一定の輸入が行われる(2000年に45万トン、2005年には35万トン) とすると、生産の伸びは1995 - 2000年は年率約8%、2000 - 2005年は約5%となろう。

### a. ビート樹

工場診断の対象になった Abkouh Sugar について見ると、2000年に、"管理の改善" に属する対策の実施により、10%程度の省エネ効果が期待できる、と推定される。 さらに、2005年にかけて、5%程度の上乗せが可能であろう、と想定した。

このような傾向をこのグループ全体のものとみなすとすれば、そのエネルギー消費原単位は、1995年を100とすると、2000年には90、2005年には85に低下するであろう。

# b. 甘しゃ糖

工場診断の対象になったKarun Agroでは、バガスの活用の余地があり、それによって、2000年で10%程度の省エネルギーの可能性がある。

また、同工場については、追加対策により、2005年で、さらに7%程度の省エネルギーが可能であろう、と推定されている。これには、前述の経済的刺激策(融資)により 実施可能になる対策が含まれている。それは、Softening Type Iron Exchange Resinで、融資額は4億5,300万リアルである。

そこで、このグループの工場の原単位は、1995年を100とすると、2000年には85、2005年には80になる、と想定した。

# c. 精 製

ビート糖と同じく、その原単位は1995年の100から、2000年には90、2005年には85 になる、と想定した。

## 3.6.6 植物油

まず、ポテンシャル推定の前提となる生産について、次のような想定を行った。(1) イランの植物油の需要は、1990年代前半に年率10%程度の伸びを示し、生産も同じ程度の伸びを見せた。(2) 今後、需要の伸びは経済成長の鈍化に伴って、これまでの半分程度に低下するであろう。製品の輸出、輸入はともに大きくないので、生産も年率5%程度の伸びを示すであろう。

イランの植物油生産のエネルギー消費原単位は1994年に2,980Mcal/t-productと推定される。工場診断を行ったBehsharについて見ると、"管理の改善"に属する対策で、経済評価の結果によりfeasibleとされたものの効果は、1994年の原単位の6-7%に当たる。実際には、それらの対策以外に、細々とした対策もありうるであろう。

そこで、2000年においては、産業全体として、1994年に対して約10%の省エネルギーが可能であろう、と想定した。

また、2005年については、ポテンシャルの具体的な推定値はないが、"管理の改善"を中心として、さらに、約5%の省エネルギーが可能になる、と想定した。

# 3 6.7 石油精製

まず、ポテンシャル推定の前提となる生産については、次のように想定した。(1) 石油製

品の生産は1990 - 94年に年率10%程度の伸びを示した。これは、イラン・イラク戦争 後の需要急増に追いつくために、アバダン製油所を初めとして、製油所の整備、拡張が 行われたことによる。(2) 今後は、経済成長の鈍化に伴い、需要の伸びも低下する結果、 生産の伸びも年率2%程度になるであろう、想定した。

今後の石油精製業におけるエネルギー消費については、次の相反する2つの方向が作用 するであろう。

その1つは、例えば、分解設備、脱硫設備などの新・増設によって、エネルギー消費が増える、という方向である。もう1つは、今後の"管理の改善"によって、省エネルギーが進む、という方向である。

これらの2つの方向を勘案して、イランの製油所における原単位は1994年の100から2000年には90に下がるものの、2005年にも90の水準に止まるであろう、と想定した。

## 3.7 結論

政策シナリオにもとずく省エネルギー・ポテンシャルの推定によって、次のことが明かに なった (Table 3.3.9)。

Table 3.3.9 Future Consumption of Energy in Targeted Industries

|                    | 1994     | 200      | 0        | 200      | )5       |
|--------------------|----------|----------|----------|----------|----------|
|                    |          | No Meas. | Measures | No Meas. | Measures |
|                    | (Tcal/y) | (Tca     | l/y)     | (Tca     | l/y)     |
| Iron & Steel       | 41,540   | 55,690   | 48,890   | 61,540   | 53,580   |
| Cement             | 23,100   | 23,010   | 21,310   | 23,580   | 21,560   |
| Glass              | 1,530    | 1,890    | 1,610    | 1,860    | 1,630    |
| Textile            | 5,650    | 6,240    | 5,600    | 7,220    | 6,130    |
| Sugar              | 7,630    | 10,280   | 9,320    | 12,220   | 10,640   |
| Vegetable Oil      | 2,190    | 2,880    | 2,600    | 3,430    | 2,900    |
| Sub-total          | 81,640   | 99,990   | 89,330   | 109,850  | 96,440   |
| Petroleum Refining | 54,780   | 67,900   | 61,110   | 81,790   | 69,520   |
| Grand Total        | 136,420  | 167,890  | 150,440  | 191,640  | 165,960  |

(Note) Figures for glass, textile, and sugar in the 1994 column are those in 1995.

第1に、石油精製を除く6産業のエネルギー消費量は、全体として、1994年の816億Mcal から2000年には893億Mcal、さらに、2005年には964億Mcalへ増大するであろう。

第2に、しかし、既存の工場において何ら省エネルギー対策が採られなかったとすると、上記の数字は、2000年には1,000億Mcal、2005年には1,100億Mcalに増大していたであろう。

即ち、省エネルギー対策を折り込みずみの上記の消費量は、対策なしとした場合の水準を100とすると、2000年には89、2005年には88と、10%以上も低くなっている。「対策あり」と「対策なし」の場合のエネルギー消費量の差は、2000年には原油換算115万kl、2005年には145万klと推定される。

第3に、一方、石油精製における「対策あり」と「対策なし」の場合のエネルギー消費量の 差は、2000年には同じく73万kl、2005年には133万klと推定される。

第4に、第2と第3を総合して、石油精製を含む7つの産業における省エネルギー・ポテンシャル(「対策なし」の場合の消費量から「対策あり」の場合の消費量を差し引いたもの)は、原油換算で、2000年には188万k1、2005年には278万k1に達する、と推定される。

# 4. 政策シナリオおよび省エネルギー対策投資の評価

### 4.1 はじめに

この章では、政策シナリオ、および、それに沿って推定された省エネルギー・ポテンシャルが、マクロ経済の観点から、さらに、省エネルギー対策投資が、その最適化の観点から、それぞれ、評価される。

前者は、政策シナリオが経済成長、国際収支、物価、財政収支などに対して、どのような 影響をもたらすか、を評価するものである。

また、後者は、各種の省エネルギー対策投資をどこまで進めていくのが、与えられた資金 の使い方としては最適か、を評価するものである。

# 4.2 「エネルギー需給予測」からの評価

マクロ経済の観点からの評価は、エネルギー需給予測の結果によって行う。

# 4.2.1 予測モデルの検討

エネルギー需給予測のために、イランの国情を反映させたマクロ経済モデル、ならびに、 それと連結させたエネルギー需要予測モデルを開発した(Macro-Energy Model; MEM)。

マクロ経済モデルには、イラン経済の現状を踏まえ、①対外債務の国内経済への影響、② 政府の財政収支が国内経済に及ぼす影響、③国内エネルギー価格変化が国内経済に及ぼ す影響、などが明示的に取り込まれている。

また、エネルギー需要予測モデルに組み込まれる推計式は、基本的には、実質所得と実 質価格、ならびに、技術進歩がエネルギー需要を決定する、という需要関数である。

なお、これらのモデルの詳細については、5章を参照されたい。

# 4.2.2 ケース (シナリオ) の設定

本調査では、レファレンス・ケース(シナリオ)と省エネルギー・ケース(シナリオ)の 2ケースについて、シミュレーションを行った。その目的は、2つのケースの比較によっ て、エネルギー価格政策や産業部門の省エネルギー政策が、マクロ経済やエネルギー需 要にどのような影響を及ぼすか、を評価することである。

ところで、後述のように、省エネルギー・ケースでは、レファレンス・ケースに比して、 ①GDP成長率がより低くなる、②物価がより高くなる、という結果が出ている。省エネルギー促進ケースでは、GDP成長率がさらに低くなること、また、物価がさらに高くなることは、上記の予測モデルを使う限り、明白である。そこで、省エネルギー促進ケースについては、シミュレーション作業は行わなかった。

なお、シミュレーション期間は、1994年を予測の基準年として、2005年までの約10年 である。

まず、Table 3.4.1、3.4.2、3.4.3、3.4.4、および、3.4.5にレファレンス・ケースの予測 の前提条件、予測結果などを示した。

外生変数のうち、政策シナリオとの関連で特に注目されるエネルギー価格を見ると、まず、石油製品の代表として取り上げたガソリンの価格は、1994年の130リアル/1から2000年の200リアル、2005年の300リアルへと上昇していく、と想定されている(1994-2000年26%、2000-2005年8%の年平均上昇率)。また、他の石油製品の価格は、ガソリン価格に相関して上昇する、と想定されている。一方、電力価格は1994年から2000年、2005年にかけて年平均5%の上昇を見込んでいる。

このような価格の想定は、エネルギー価格が実質的には低下していくであろうことを物語っている。即ち、予測の結果によると、物価はエネルギー価格を上回る率で上昇していくであろう(消費者物価で、失々、27%、13%の年平均上昇率)。

次に、省エネルギー・ケースでは、エネルギー価格については、1994年以降、実質ベースで年率8%の上昇を想定し、また、産業部門では、3章で述べたような省エネルギー政策が採られる結果として、省エネルギーが政策的に加速される、と予想した。

Table 3.4.1 Assumptions of Simulation for the Reference Case

|                                    |                  | 1990   | *************************************** | 1994      | m ren. rand Pari | 2000   | -     | 2005    |               | WAS CHARGE |
|------------------------------------|------------------|--------|-----------------------------------------|-----------|------------------|--------|-------|---------|---------------|------------|
|                                    | Unit             | 1369   | 90/80                                   | 1373      | 91/90            | 1379   | 00/94 | 1384    | 05/00         | 05/9       |
| LWorld Economy                     |                  |        |                                         |           |                  |        |       |         |               |            |
| a. World Oil Price                 | S/bbl            | 23.2   | -1.5                                    | 16.5      | 8.2              | 20.6   | 3.8   | 23.9    | 3.0           | 3.         |
| b. Price Deflator Export Goods     | 1980=100         | 133.8  | 2.9                                     | 133.5     | -0.1             | 159.4  | 3.0   | 184.8   | 3.0           | 3.6        |
| 2. Economic Policy                 |                  |        |                                         |           |                  |        | 1.0   |         |               |            |
| a. Interest                        | %                | 9.0    | -1.2                                    | 11.5      | 6.3              | 11.5   | 0.0   | 11.5    | 0.0           | 0.9        |
| b.Government                       | l                |        | 1                                       |           |                  |        |       |         |               | 1/         |
| Current Expenditure                | Bil, Rials       | 4,285  | 9.8                                     | 18,841    | 41.8             | 71,873 | 25.0  | 150,958 | 16.0          | 20.        |
| Development Expnd.                 | Bil. Rials       | 1,766  | 12.0                                    | 9,071     | 50.5             | 27,087 | 20.0  | 56,891  | 16.0          | 18.        |
| c.Exchange Rate                    |                  |        |                                         |           |                  | - ) -  | :     |         |               |            |
| for Oil Exports                    | Rials/US\$       | 211    | 11.6                                    | 1,646     | 67.2             | 4,500  | 18.2  | 5,000   | 2.1           | 10.        |
| for Other Exports                  | Rials/US\$       | 1,445  | 34.0                                    | 1,646     | 3.3              | 4,500  | 18.2  | 5,000   | 2.1           | 10.        |
| for Imports                        | Rials/US\$       | 371    | 13.9                                    | 1,829     | 49.1             | 4,500  | 16.2  | 5,000   | 2.1           | - 9.       |
| d. Balance of Payment              |                  |        | :                                       |           |                  |        |       |         |               |            |
| Service net                        | Bil. US\$        | -3.15  | -2.6                                    | -2.99     | -1.3             | 2.99   | 0.0   | -2.99   | 0.0           | 0          |
| Transfer                           | Bil. US\$        | 2.50   |                                         | 1.20      | -16.8            | 1.20   | 0.0   | 1.20    | 0.0           | 0          |
| Capital Balance                    | Bil. US\$        | 0.30   | 138.3                                   | -2.23     |                  | 0.00   | -100  | 0.00    |               | -10        |
| Errors                             | Bil. US\$        | -0.92  | i i                                     | -1.13     | 5.1              | -1.13  | 0.0   | -1.13   | 0.0           | 0          |
| Over All Balance                   | Bil. US\$        | -0.30  | 1                                       | 1.23      |                  | 1.23   | 0.0   | 1.23    | 0.0           | 0          |
| e. Others                          |                  |        | **                                      |           |                  |        |       |         | 1             |            |
| Inventory and Sits.Dif             | Bil, Rials       | -327   |                                         | -2,288    | 62.6             | -2,288 | 0.0   | -2,288  | 0.0           | 0          |
| same as aby, in nominal            | Bil. Rials       | 4,254  | 24.3                                    | 1,948     | -17.7            | 1,948  | 0.0   | 1,948   | 0.0           | 0          |
| Energy Policy                      |                  |        |                                         |           |                  |        | - 4   |         | 2.5           | 7. 4       |
| a Resource Development(Production) | 1, 11            |        |                                         |           | 177              |        |       |         | * .           |            |
| Crude Oil                          | Mil. BOE         | 1,192  | 8.4                                     | 1,382     | 3.7618           | 1,460  | 0.9   | 1,643   | 2.4           | 1          |
| Solid Fuel                         | Mil. BOE         | 4      | -1.0                                    | , :4      | <b>3.</b> 5      | 6      | 5.0   | 7       | 5.0           |            |
| Natural Gas                        | Mil. BOE         | 351    | 13.2                                    | 458       | 6.9              | 687    | 7.0   | 964     | 7.0           | 7          |
| b.Fnergy Plices                    |                  |        |                                         |           |                  |        |       | 1. 1.   |               | ٠.         |
| Gasoline                           | Rials/I          | 50     | 5.2                                     | 50        | - , -            | 200    | 26.0  | 300     |               | 17         |
| Electricity                        | Rials/kWh        | 5.7    | 7.3                                     | 28.5      | 49.7             | 38.2   | 5.0   | 48.7    | 5.0           | 5          |
| c.Power Development                |                  |        |                                         |           |                  |        |       |         | 1.1.1         |            |
| Hydro                              | Mil. BOE         | -9.5   | 0.8                                     |           |                  | -14.7  | 3 4.0 | -17.9   | 4.0           |            |
| Petro Products                     | Mil BOE          | -38.4  | 9.4                                     |           | 4.3149           | -45.4  | 0.0   | -45.4   | 0.0           | (          |
| Solid Fuel                         | Mil. BOE         | 0      |                                         | . 0       |                  | , 0    |       | 0       |               |            |
| Nuclear                            | Mil. BOE         | . 0    |                                         | 0         |                  | 0      |       | : 0     | 1             |            |
| d.Energy Export                    |                  |        | i                                       |           |                  |        | 4.4   |         |               |            |
| Lean Gas                           | Mil BOE          | -13.1  |                                         | -0.84     | -49.68           | -0.84  | 0.0   | -0.84   | 0.0           |            |
| e.Efficiency                       | The state of the |        |                                         |           |                  |        |       | 1057    |               | ٠.         |
| Rate of Effic., FLE                | %                | 32.5   | 0.7                                     | 34.6      | 1.6              | 35.0   | 0.2   | 36.0    |               | •          |
| Rate of Own Use, ELE               | %                | 5.3    | 4.7                                     | 4.6       | -3.6             | 4.0    |       | 4.0     | 7.0           |            |
| Rate of Loss, ELE                  | %                | 14.4   | -0.6                                    |           | 0.6              | 14.5   | -0.3  | 14.5    |               |            |
| Rate of Effic., Petro.             | % :              | 4.4    | 4.3                                     |           | -15.8            | 4.0    | 10.1  | 4.0     | 77.0          |            |
| Rate of Own Use, Petro.            | 98               | 3.8    | 0.1                                     | • 3.3     | -3.2             | 3.0    |       | 3.0     |               | ı          |
| Rate of Effic. LG                  | %                | 8.5    | -0.6                                    |           | 7.5              | 9.0    |       | 9.0     | 0.0           |            |
| Rate of Own Use, LG                | %                | 37.9   |                                         | 16.1      | -19.2            | 35.0   | 13.8  | 35.0    | 0.0           |            |
| 1. Others                          |                  |        |                                         | الم المال |                  |        |       | 0.000   |               |            |
| a. Population                      | 1000 P,          | 54,504 | 3.7                                     | 62,150    |                  | 72,075 | . 2.5 | 81,546  | A CONTRACT OF | 2          |
| b. Time Trend                      | 1959=1           | 32     | 3.8                                     | 36        | 3.0              | 42     | 2.6   | 47      | 2.3           |            |
| c. Dumuny                          | 1 or 0           | 0      | 11.71                                   | 1         |                  | 1      | 0.0   | 1       | 0.0           |            |
|                                    | 1 or 0           | 1      |                                         | 1         | 0.0              | 1      | 0.0   | 1       | 0.0           | (          |

Table 3.4.2 Simulation Result of Macro Economy ('Reference Case')

(Unit Billion Rials, 1982 prices) 2000 2005 94/90 00/94 05/00 1990 1994 10,930 13,066 14,944 17,482 4.6 2.3 3.2 2.7 Gross Domestic Expenditure 16,847 12,929 14,624 5.9 2.1 2.9 10,279 2.4 Domestic Demand 12,982 5.3 2.2 8,329 10,251 11,627 2.1 2.2 Private Demand 9,957 4.6 0.9 0.9 0.9 7,564 9,038 9,524 Private Consumption Expenditure 3,025 1,213 2,102 12.2 9.6 7.5 8.7 766 Private Investment 2,997 3,864 1,950 2,678 8.3 1.9 5.2 34 Pubric Demand 2,666 2,231 1,337 1,953 9.9 2.2 3.6 2.9 Government Consumption Expenditure 1,199 613 726 766 4.3 0.9 9.4 4.7 Public Fixed Capital Formation 2,923 Net Foreign Demand 978 2,425 2.607 25.5 1.2 2.3 1.7 4,046 5,191 10.6 5.1 4.0 2,253 3,372 3.1 Exports of Goods & Services 2,098 2,992 3,330 4,148 9.3 1.8 4.5 3.0 Oil & Gas 154 380 716 1,043 25.3 11.2 7.8 9.6 Others 1,274 947 1,438 2,268 -7.2 7.2 9.5 83 Imports of Goods & Services 24.9 36,645 125,789 476,712 950,323 36.1 14.8 20.2 Norminal GDE 100 304 1,076 1,633 32.0 23.5 8.7 16.5 Wholesale Price Index (1990=100) Consumer Price Index (1990=100) 100 249 1,052 1,963 25.6 27.2 13.3 20.6 301 1,646 4,500 5,000 52.9 18.2 2.1 10.6 Exchange Rate for Export(Rials/US\$) 17,898 22,097 24,331 6.0 3.6 1.9 2.8 Active Labor Population(1,000 persons) 14,167 8.33 4.85 3.16 -86 -8.2 84 13.96 -12.1 Unemployment Rate(%)

Table 3.4.3 Simulation Result of Primary Energy Requirement ('Reference Case')

|                         |       |       |       |       |       |       |          |       |        | (l    | Inits:MI | 30E,%) |  |
|-------------------------|-------|-------|-------|-------|-------|-------|----------|-------|--------|-------|----------|--------|--|
|                         | 1990  | 1994  | 2000  | 2005  | 1990  | 1994  | 2000     | 2005  | 94/90. | 00/94 | 05/00    | 05/94  |  |
| Total                   | 624   | 751   | 950   | 1,140 | (100) | (100) | (100)    | (100) | 4.7    | 4.0   | 3.7      | 3.9    |  |
| Solid Fuel              | 5     | 8     | 8     | 9     | (1)   | (1)   | (1)      | (1)   | 13.5   | 0.4   | 2.0      | 1.1    |  |
| Oil                     | 352   | 431   | 495   | 535   | (56)  | (57)  | (52)     | (47)  | 5.2    | 2.3   | 1.6      | 2.0    |  |
| Crude Oil               | 318   | 427   | 489   | 529   | (51)  | (57)  | (52)     | (46)  | 7.6    | 2.3   | 1.6      | 2.0    |  |
| Petroleum Products      | 34    | 5     | 6     | 5     | (6)   | (1)   | (1)      | (0)   | -39.1  | 2.7   | -0.5     | 1.2    |  |
| Gas                     | 255   | 297   | 429   | 576   | (41)  | (40)  | (45)     | (50)  | 3.9    | 6.3   | 6.0      | 6.2    |  |
| Hydro                   | 10    | 12    | 15    | 18    | (2)   | (2)   | (2)      | (2)   | 5.1    | 4.0   | 4.0      | 4.0    |  |
| Others                  | 3     | 4     | 4     | 4     | (1)   | (0)   | (0)      | (0)   | 2.3    | 0.1   | 0.1      | 0.0    |  |
| GDP(1982 Biltion Rials) | 10930 | 13066 | 14944 | 17482 |       |       |          |       | 4.563  | 2.263 | 3.188    | 2.682  |  |
| Intensity(1990=100)     | 100   | 100.7 | 111.3 | 114.2 |       |       |          |       | 0.168  | 1.689 | 0.511    | 1.152  |  |
| Elastisity              |       |       |       |       |       |       | <u> </u> |       | 1.038  | 1.763 | 1.165    | 1.441  |  |

[Note]Figures in parentheses show percentage share of total

Table 3.4.4 Simulation Result of Final Energy Demand ('Reference Case')

|                           |        |        |        |        |       |        |       |        |       | (0     | Units:MI | 30E,%) |
|---------------------------|--------|--------|--------|--------|-------|--------|-------|--------|-------|--------|----------|--------|
|                           | 1990   | 1994   | 2000   | 2005   | 1990  | 1994   | 2000  | 2005   | 94/90 | 00/94  | 05/00    | 05/94  |
| Total                     | 425.3  | 564.8  | 705.3  | 843.2  | (100) | (100)  | (100) | (100)  | 7.3   | 3.8    | 3.6      | 3.7    |
| Solid Fuel                | 4.7    | 7.798  | 7.964  | 8.79   | (1)   | (1)    | (1)   | (1)    | 13.5  | 0.4    | 2.0      | [ 1.1  |
| Petroleum                 | 288.1  | 365.3  | 418.9  | 455.8  | (68)  | (65)   | (59)  | (54)   | · 6.1 | 2.3    | 1.7      | 2.0    |
| Gas                       | 102.7  | 151.9  | 228.9  | 321.4  | (24)  | (27)   | (32)  | (38)   | 10.3  | 7.1    | 7.0      | 7.1    |
| Electricity               | 26.53  | 36.29  | 46.02  | 53.68  | (6)   | (6)    | (7)   | (6)    | 8.1   | 4.0    | 3.1      | 3.6    |
| Others                    | 3.3    | 3.51   | 3.541  | 3.524  | (1)   | (1)    | (1)   | (0)    | 1.6   | 0.1    | -0.1     | 0.0    |
| Industrial Sector         | 149.8  | 170.8  | 190.8  | 199.7  | (35)  | · (30) | (27)  | (24)   | 3.3   | ·· 1.9 | 0.9      | 1,4    |
| Transportation Sector     | 96.8   | 140.4  | 156.3  | 168.8  | (23)  | (25)   | (22)  | (20)   | 9.7   | 1.8    | 1.5      | 1.7    |
| Agricultural Sector       | 27.67  | 27.94  | 31.84  | 34.74  | (7)   | (5)    | (5)   | . (4)  | 0.2   | 2.2    | · 1.8    | 2.0    |
| Residential Sector        | 128    | 190.2  | 288.1  | 397.8  | (30)  | (34)   | (41)  | (47)   | 10.4  | 7.2    | 6.7      | 6.9    |
| Household Sector          | 101.1  | 139.9  | 212.6  | 299.6  | (24)  | (25)   | (30)  | · (36) | 8.5   | 7.2    | 7.1      | 7.2    |
| Commercial Sector         | 26.94  | 50.36  | 75.45  | 98.07  | (6)   | (9)    | (11)  | (12)   | 16.9  | 7.0    | 5.4      | 6.2    |
| Non-Energy Use Total      | 23     | 35.37  | 38.25  | 42,15  | (5)   | (6)    | (5)   | (5)    | 11.4  | 1.3    | ·: 2.0   | 1.6    |
| Population(1,000 persons) | 54,504 | 62,150 | 72,075 | 81,546 |       |        |       |        | 3.3   | 2.5    | 2. 5     | 2. 5   |
| Per Capita(BOE/Person)    | 7.8    | 9.1    | 9.8    | 10.3   |       |        |       |        | 3.9   | 12     | 1.1      | 1.2    |
|                           |        | _      |        |        |       |        |       |        |       |        |          |        |

[Note]Figures in parentheses show percentage share of total

Table 3.4.5 Simulation Result of Energy Demand in the Industrial Sector ('Reference Case')

| •      |                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Juits:MI | 30E,%) |
|--------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
| 1990   | 1994                                                                                                            | 2000                                                                                                                                                                                                             | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |
| 149.8  | 170.8                                                                                                           | 190.8                                                                                                                                                                                                            | 199.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 4.7    | 7.798                                                                                                           | 7.964                                                                                                                                                                                                            | 8.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 58.34  | 56.65                                                                                                           | 65.14                                                                                                                                                                                                            | 66.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 80.75  | 94.49                                                                                                           | 105.4                                                                                                                                                                                                            | _111.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 6.01   | 11.9                                                                                                            | 12.3                                                                                                                                                                                                             | 12.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 21.63  | 32.17                                                                                                           | 38.48                                                                                                                                                                                                            | 41.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 8.1    | 12.12                                                                                                           | 13.23                                                                                                                                                                                                            | 13.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 1.37   | 2.018                                                                                                           | 2.261                                                                                                                                                                                                            | 2.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 1.7    | 2.538                                                                                                           | 2.887                                                                                                                                                                                                            | 3.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 56.39  | 32                                                                                                              | 33.6                                                                                                                                                                                                             | 35.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 45.15  | 67.05                                                                                                           | 72.17                                                                                                                                                                                                            | 74.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (38)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 8.63   | 12.84                                                                                                           | 15.16                                                                                                                                                                                                            | 15.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 6.67   | 9.886                                                                                                           | 12.74                                                                                                                                                                                                            | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 0.16   | 0.232                                                                                                           | 0.294                                                                                                                                                                                                            | 0.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0)_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 1163.9 | 1375.6                                                                                                          | 1997.8                                                                                                                                                                                                           | 3057.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |        |
| 128.71 | 124,19                                                                                                          | 95.514                                                                                                                                                                                                           | 65.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |
|        | 149.8<br>4.7<br>58.34<br>80.75<br>6.01<br>21.63<br>8.1<br>1.37<br>1.7<br>56.39<br>45.15<br>8.63<br>6.67<br>0.16 | 149.8 170.8<br>4.7 7.798<br>58.34 56.65<br>80.75 94.49<br>6.01 11.9<br>21.63 32.17<br>8.1 12.12<br>1.37 2.018<br>1.7 2.538<br>56.39 32<br>45.15 67.05<br>8.63 12.84<br>6.67 9.886<br>0.16 0.232<br>1163.9 1375.6 | 149.8         170.8         190.8           4.7         7.798         7.964           58.34         56.65         65.14           80.75         94.49         105.4           6.01         11.9         12.3           21.63         32.17         38.48           8.1         12.12         13.23           1.37         2.018         2.261           1.7         2.538         2.887           56.39         32         33.6           45.15         67.05         72.17           8.63         12.84         15.16           6.67         9.886         12.74           0.16         0.232         0.294           1163.9         1375.6         1997.8 | 149.8         170.8         190.8         199.7           4.7         7.798         7.964         8.79           58.34         56.65         65.14         66.96           80.75         94.49         105.4         111.3           6.01         11.9         12.3         12.66           21.63         32.17         38.48         41.33           8.1         12.12         13.23         13.42           1.37         2.018         2.261         2.356           1.7         2.538         2.887         3.077           56.39         32         33.6         35.32           45.15         67.05         72.17         74.13           8.63         12.84         15.16         15.65           6.67         9.886         12.74         14.1           0.16         0.232         0.294         0.318           1163.9         1375.6         1997.8         3057.3 | 149.8         170.8         190.8         199.7         (100)           4.7         7.798         7.964         8.79         (3)           58.34         56.65         65.14         66.96         (39)           80.75         94.49         105.4         111.3         (54)           6.01         11.9         12.3         12.66         (4)           21.63         32.17         38.48         41.33         (14)           8.1         12.12         13.23         13.42         (5)           1.37         2.018         2.261         2.356         (1)           1.7         2.538         2.887         3.077         (1)           56.39         32         33.6         35.32         (38)           45.15         67.05         72.17         74.13         (30)           8.63         12.84         15.16         15.65         (6)           6.67         9.886         12.74         14.1         (4)           0.16         0.232         0.294         0.318         (0)           1163.9         1375.6         1997.8         3057.3 | 149.8         170.8         190.8         199.7         (100)         (100)           4.7         7.798         7.964         8.79         (3)         (5)           58.34         56.65         65.14         66.96         (39)         (33)           80.75         94.49         105.4         111.3         (54)         (55)           6.01         11.9         12.3         12.66         (4)         (7)           21.63         32.17         38.48         41.33         (14)         (19)           8.1         12.12         13.23         13.42         (5)         (7)           1.37         2.018         2.261         2.356         (1)         (1)           1.7         2.538         2.887         3.077         (1)         (1)           56.39         32         33.6         35.32         (38)         (19)           45.15         67.05         72.17         74.13         (30)         (39)           8.63         12.84         15.16         15.65         (6)         (8)           6.67         9.886         12.74         14.1         (4)         (6)           0.16         0.232 | 149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (301)         (301)         (34)         (34)         (35)         (34)         (35)         (34)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         (30)         < | 149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100) <th< td=""><td>149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         (100)         (100)         (3)         3.3           4.7         7.798         7.964         8.79         (3)         (5)         (4)         (4)         13.5           58.34         56.65         65.14         66.96         (39)         (33)         (34)         (34)         -0.7           80.75         94.49         105.4         111.3         (54)         (55)         (55)         (56)         4.0           6.01         11.9         12.3         12.66         (4)         (7)         (6)         (6)         18.6           21.63         32.17         38.48         41.33         (14)         (19)         (20)         (21)         10.4           8.1         12.12         13.23         13.42         (5)         (7)         (7)         (7)         10.6           1.37         2.018         2.261         2.356         (1)         (1)         (1)         (1)         (1)         10.2           1.7         2.538         2.887         3.077         (1)         (1)         (2)         (2)         10.5     <!--</td--><td>1990         1994         2000         2005         1990         1994         2000         2005         94/90         00/94           149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         3.3         1.9           4.7         7.798         7.964         8.79         (3)         (5)         (4)         (4)         13.5         0.4           58.34         56.65         65.14         66.96         (39)         (33)         (34)         (34)         -0.7         2.4           80.75         94.49         105.4         111.3         (54)         (55)         (55)         (56)         4.0         1.8           6.01         11.9         12.3         12.66         (4)         (7)         (6)         (6)         18.6         0.6           21.63         32.17         38.48         41.33         (14)         (19)         (20)         (21)         10.4         3.0           8.1         12.12         13.23         13.42         (5)         (7)         (7)         (7)         10.6         1.5           1.37         2.018         2.261         2.356         (1)</td><td>149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         <th< td=""></th<></td></td></th<> | 149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         (100)         (100)         (3)         3.3           4.7         7.798         7.964         8.79         (3)         (5)         (4)         (4)         13.5           58.34         56.65         65.14         66.96         (39)         (33)         (34)         (34)         -0.7           80.75         94.49         105.4         111.3         (54)         (55)         (55)         (56)         4.0           6.01         11.9         12.3         12.66         (4)         (7)         (6)         (6)         18.6           21.63         32.17         38.48         41.33         (14)         (19)         (20)         (21)         10.4           8.1         12.12         13.23         13.42         (5)         (7)         (7)         (7)         10.6           1.37         2.018         2.261         2.356         (1)         (1)         (1)         (1)         (1)         10.2           1.7         2.538         2.887         3.077         (1)         (1)         (2)         (2)         10.5 </td <td>1990         1994         2000         2005         1990         1994         2000         2005         94/90         00/94           149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         3.3         1.9           4.7         7.798         7.964         8.79         (3)         (5)         (4)         (4)         13.5         0.4           58.34         56.65         65.14         66.96         (39)         (33)         (34)         (34)         -0.7         2.4           80.75         94.49         105.4         111.3         (54)         (55)         (55)         (56)         4.0         1.8           6.01         11.9         12.3         12.66         (4)         (7)         (6)         (6)         18.6         0.6           21.63         32.17         38.48         41.33         (14)         (19)         (20)         (21)         10.4         3.0           8.1         12.12         13.23         13.42         (5)         (7)         (7)         (7)         10.6         1.5           1.37         2.018         2.261         2.356         (1)</td> <td>149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         <th< td=""></th<></td> | 1990         1994         2000         2005         1990         1994         2000         2005         94/90         00/94           149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         3.3         1.9           4.7         7.798         7.964         8.79         (3)         (5)         (4)         (4)         13.5         0.4           58.34         56.65         65.14         66.96         (39)         (33)         (34)         (34)         -0.7         2.4           80.75         94.49         105.4         111.3         (54)         (55)         (55)         (56)         4.0         1.8           6.01         11.9         12.3         12.66         (4)         (7)         (6)         (6)         18.6         0.6           21.63         32.17         38.48         41.33         (14)         (19)         (20)         (21)         10.4         3.0           8.1         12.12         13.23         13.42         (5)         (7)         (7)         (7)         10.6         1.5           1.37         2.018         2.261         2.356         (1) | 149.8         170.8         190.8         199.7         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100)         (100) <th< td=""></th<> |          |        |

[Note]Figures in parentheses show percentage share of total

# 4.2.3 予測の結果と政策シナリオの評価

省エネルギー・ケースの予測結果をレファレンス・ケースのそれと比較すると、下記のようになる。

|             | (レファレンス)  | (省エネ)    | <差異>     |
|-------------|-----------|----------|----------|
| 実質 GDP 成長率  | 2.3 %     | 1.4 %    | - 0.9 %  |
| 実質エネルギー輸出金額 | •••••     | + 12%    | + 12 %   |
| 消費者物価上昇率    | 27 %      | 33 %     | + 6%     |
| 財政収支        | (-) 7兆リアル | (+)12兆リア | ル+19兆リアル |

(注) 率は年率。省エネ・ケースの輸出金額はレ・ケースに対する増大率。

(-) は赤字、(+) は黒字を表わす。

Table 3.4.6、3.4.7、および 3.4.8 に、省エネルギー・ケースの想定、シミュレーションの結果などを示す。

Table 3.4.6 Assumption of Simulation for the Energy Conservation Case

| BALLETON OF ACCOUNTS AND | Unit                 | 1990<br>1369 90 | 1994<br>/80 1373   | <br>2000<br>1379 | 00/94        | 2005<br>1384 | 05/00        | 05/94        |
|--------------------------------------------------------------|----------------------|-----------------|--------------------|------------------|--------------|--------------|--------------|--------------|
| b.Energy Prices Gasoline Electricity                         | Rials/I<br>Rials/kWh |                 | 5.2 50<br>7.3 28.5 |                  | 34.6<br>34.8 |              | 25.6<br>25.8 | 30.4<br>30.6 |

[Note]Other exogenous variables are the same as the reference case.

Table 3.4.7 Comparison of Energy Intensities between MEM Results and Micro Analysis

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |               |                           | -       |               |                           | <u> </u> | (Unit: 1994=10        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|---------------------------|---------|---------------|---------------------------|----------|-----------------------|
| Control of the Contro | 1994  |               | 2000                      |         |               | 2005                      |          | Note                  |
| Industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Index | (a)High-Price | (b)Energy<br>Conservation | (a)/(b) | (a)High-Price | (b)Energy<br>Conservation | (a)/(b)  | Source                |
| Food                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100   | 94            | 89                        | 0.95    | 82            | 77                        | 0.94     | Micro-analysis        |
| Textile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100   | 99            | 86                        | 0.87    | 93            | 78                        | 0.84     | Average <sup>2)</sup> |
| Wood & Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100   | 99            | 86                        | 0.87    | 94            | 78                        | 0.83     | Average <sup>2</sup>  |
| Paper/pulp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100   | 92            | 92                        | 1.00    | 81            | 81                        | 1.00     | High price            |
| Chemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100   | 99            | 86                        | 0.87    | 96            | 78                        | 0.81     | Average <sup>2)</sup> |
| Ceramics & Non-materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100   | 99            | 82                        | 0.83    | 95            | 77                        | 0.31     | Micro-analysis        |
| Primary Metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100   | 94            | 88                        | 0.94    | 81            | 81                        | 1.00     | Micro-analysis        |
| Machinery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100   | 81            | 84                        | 1.00    | 63            | 63                        | 1.00     | High-price)           |
| Other Manufacturing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100   | 94            | 86                        | 0.92    | 79            | 78                        | 0.99     | Average <sup>2)</sup> |

Note) Ijdicro analysis means the results in the Chapter 2 and 6, 2) Average means the average results among the industries analyzed in the Chapters 2 and 6,

and 3) High-Price means the results by MEM with higher domestic energy prices.

The figures in bold and Ratics are adopted as exogenous in the Energy Conservation Case.

Table 3.4.8 Factors of Energy Conservation in the Industrial Sector

(Units: MBOE, %) 1994 Cases and Factors 2000 2005 00/94 05/00 05/94 170.8 (a)Reference Case 190.8 199.7 1.9 0.9 1.4 (b) High-Price Case 170.8 169.4 163.8 -0.1-0.7-0.4(c)Ene. Consiv Case 170.8 149.7 141.6 -2.2 -1.1 -1.7 -35.9 -2.0 Factor by Price(a)-(b) -21.4 -1.6 -1.8 Factor by Others(b)-(c) -19.6 -22.2 ·2.0 -0.4 -1.3 Total factors -58.1 •**4.0** -41.1 -2.0-3.1

これらの2つのケースの検討結果のインプリケーションは以下の通りである。

第1に、国内エネルギー価格の大幅な引き上げは、結果的に、GDP成長率を引き下げることになる。これは、下記のa.の効果がb.およびc.の効果を上回ることによる。

- a. 国内エネルギー価格の上昇 …… 般物価の上昇 …… 実質購買力の低下 …… GDP の押し下げ
- b. 国内エネルギー価格の上昇 …… 国内エネルギー消費の抑制 …… 石油輸出余力の 増大 …… GDPの押し上げ
- c. 国内エネルギー価格の上昇 …… 政府財政の収入増加・黒字化 …… 政府投資の拡大・マネーサプライの拡大抑制

省エネルギー促進ケースでは、GDP成長率はより低くなること、また、物価上昇率はより高くなること、が明らかである。しかも、このシナリオで想定されているエネルギー価格の上昇率は極めて大きい(重油の場合で、1995 - 2000年の年平均上昇率は実質40%以上である)から、政治的・社会的に見て、このような値上げを実施することは不可能に近いであろう、と考えられる。そこで、このシナリオについては、シミュレーション作業を行わなかった。

第2に、国内エネルギー価格の引き上げによって、上記のように、財政収支が黒字化し、 エネルギー輸出額が増大することは、注目される点である。

第3に、検討結果によれば、産業部門では、省エネルギー量について、価格効果と同程度 の、その他の政策の効果が見込まれる。ある政策が、マクロ経済に悪影響を及ぼすこと なく、省エネルギーを推進できれば、それに越したことはない。そのような政策とは、 "管理の改善"を促すような政策である。

最後に、今後の検討課題として、次のことを指摘しておきたい。

まず、本調査では、省エネルギー政策の対象として、産業部門のみを取り上げた。今後、 それ以外の、民生、輸送などの部門についても、同じような検討を行うことによって、検 討の結果がどのように異なってくるか、を確認する必要がある。

次に、しばしば指摘されることではあるが、モデルの開発において大きな障害になったのは、重要なデータの欠落や、データの信頼性(整合性)であった。地味な作業ではあるが、国全体のエネルギー・モデルの構築や省エネルギー効果の推計のためには、エネルギー・データの整備が不可欠である。

さらに、以上に述べた検討結果は、MEMという時系列計量モデルによって推計されたものである。シミュレーションによる結果や解は、扱うモデルによって異なることは、言うまでもない。従って、本推計結果が、省エネルギー政策の評価に関する唯一の回答ではないことに留意すべきである。シナリオの評価は、総合的な判断によって行うのが、合理的であろう。

# 4.3 「エネルギー利用計画」の検討による評価

省エネルギー対策投資の最適化に関する評価は、本調査における「エネルギー利用計画」 での検討作業によって行う。

#### 4.3.1 最適化モデルの検討

産業部門における省エネルギー対策を、イラン政府、あるいは、その国民経済全体から 見た場合、重要な基準の1つは、対策によって節約される石油の輸出で獲得される外貨 が、対策のために輸入される省エネ機器・設備に費やされる外貨を上回ることである。 一般に、省エネルギー対策投資の限界コストは、投資を進めるに連れて徐々に上昇する のに対して、その限界効果(便益)は、石油価格が変わらなければ、一定である、と見 做される。 そこで、そのような便益とコストとの差額(つまり "純便益")が最大になる点(一定の順序で実施される省エネ対策のうちの、ある対策)を見出すための最適化モデルが開発された(モデルの詳細については、第5章を参照されたい)。

# 4.3.2 対象業種

この評価の対象には、セメント、および、ガラスの2つの産業が選ばれた。その理由は次の通りである。

まず、その産業全体について、かなり万遍なく、具体的な省エネ対策を想定することができることである。

さらに、それらの対策の効果、および、コストの推定が可能であることである。 このような基準に照らして、上記の2つの産業が選ばれた。

# 4.3.3 評価の結果

この評価のために、われわれは、セメントおよび板ガラス産業に関する"費用-便益関数"を開発した。Figure 3.4.1 および 3.4.2 はそれを示している。

これらの関数に基づき、われわれは、これら2つの産業を1つにまとめて、省エネルギー対策のための投資の最適配分を評価した。Figure 3.4.3の「10年純便益」のケースを見ると (Figure 3.4.4は「3年純便益」のケースを示す)、省エネルギー対策の「純便益」は、重油価格の「0%上昇」、「10%上昇」、「20%上昇」のいずれの場合も「Bセメント工場におけるサテライト・クーラーのグレート・クーラーへの改造」あたりで限界点に達していることがわかる。そして、この点を越えると、累積された「純便益」は上記の重油価格の3つのケースのうちの2つでは低下し始めており、また、残りのケース(「20%上昇」)でも、少しの間、横ばいを続けた後、低下している。

Benefit =  $1.411 * Cost^{0.264}$  (R<sup>2</sup> = 0.9873) 3.00 2.50 2.00 Benefit (Mil SUS) 1.50 1.00 0.50 0.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 Cost (Mil \$US)

Figure 3.4.1 Sheet Glass Industry Cost-Benefit Function

Note: R2 is the Coefficient of Determination

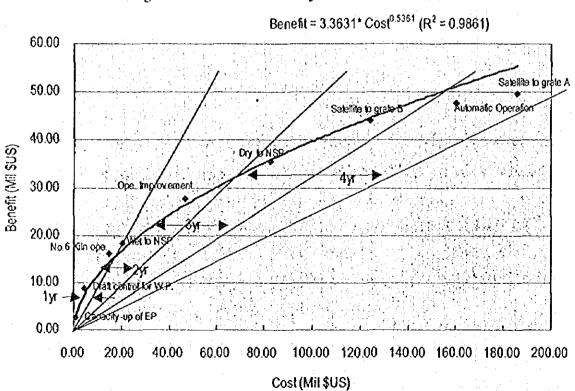



Figure 3.4.2 Cement Industry Cost-Benefit Function

Note: R2 is the Coefficient of Determination

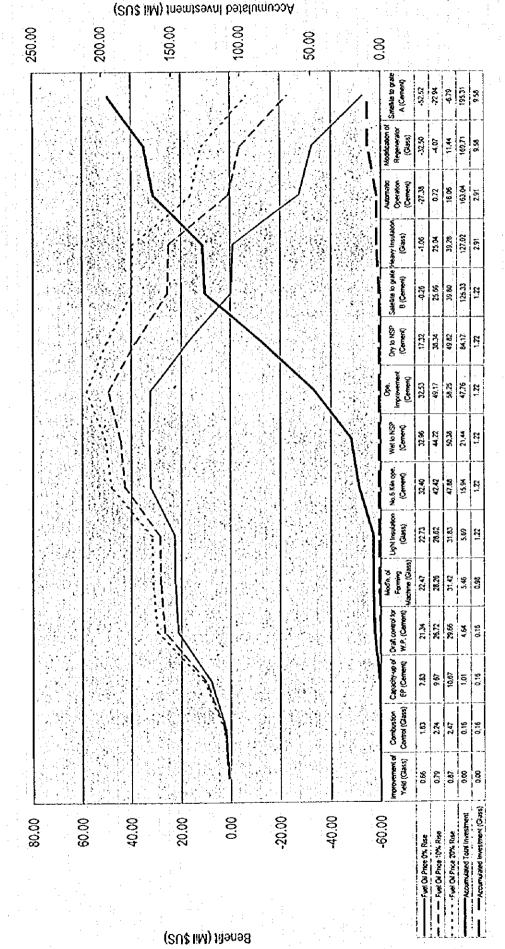
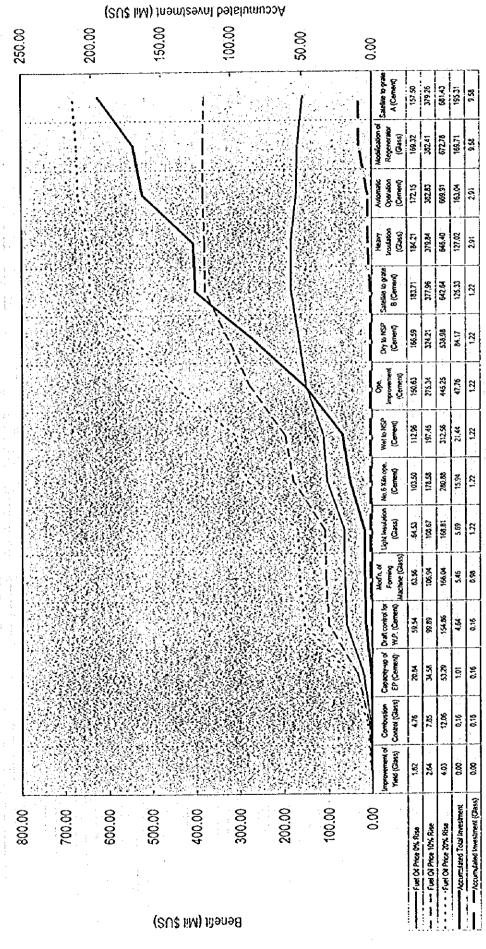




Figure 3.4.3 Optimum Allocation of Investment to Maximize 3 Years Net Benefit

Conservation Measures

Figure 3.4.4 Optimum Allocation of Investment to Maximize 10 Years Net Benefit



Conservation Measures

#### 4.4 結 論

#### 4.4.1 政策シナリオの評価

「エネルギー需給予測」による政策シナリオの評価の結果は、次のように要約することが できるであろう。

- a. まず、省エネルギーのためのエネルギー価格引き上げは、それがGDP成長率、物価などへ及ぼす、好ましくない影響を考慮しつつ、慎重に進めるべきであろう。
- b. 従って、エネルギー価格の引き上げを伴わずに実行可能な省エネルギー対策、即ち、第1カテゴリー、あるいは、"管理の改善"に属する対策を、少なくとも当面は、省エネルギー対策の中心に据える必要がある。
- c. 同時に、①エネルギー関連のデータ、情報の整備、ならびに、②エネルギー需給予測 方法の改善を含め、省エネルギー・マスタープランの作成の機能を強化することが喫 緊の課題である。

### 4.4.2 省エネ対策投資の最適化の評価

「エネルギー利用計画」の検討を通じての、省エネルギー対策投資の最適化の評価は、 データ、情報の利用可能性の限界から、本調査で採り上げた全ての産業を対象にするこ とができなかった。しかし、セメント、および、板ガラスの両産業を採り上げた検討の 結果は、イラン政府が次の点を十分考慮に入れて、省エネルギー政策を推進すべきこと を示唆している。

- a. まず、ある省エネルギー対策は、それが経済評価の結果、"feasible"とされたとすれば、イランの政府、あるいは、国民経済にとっても、"純便益"を生み出すはずである(国内エネルギー価格は、エネルギー輸出価格よりも低いであろうから)。
- b. しかし、政府の経済的刺激策によって、初めて実施可能となる省エネルギー対策の中には、"純便益"を生み出さないもの(エネルギーの輸出価格で経済評価しても、 "feasible"とされないもの)もありうる。
- c. 従って、イラン政府、あるいは、国民経済の観点から見た場合、省エネルギー対策の 結果として累積されていく"純便益"は、いずれは、ある限界点に達し、それを越え ると、通常、低下傾向をたどる。

# 5. 本調査における方法および手法

#### 5.1 はじめに

この章では、本調査で用いられた方法 (メソドロジー) および手法 (ツール) について、「エネルギー需給予測」、および、「エネルギー利用計画」を中心に説明する。

### 5.2 経済評価

省エネルギー対策の経済評価では、前述のように、対策のコスト (C) と対策の効果 (B) とを比較し、B > C の場合には、その対策は経済的に見て実施可能である、と判断した。このような評価のための、いわゆるエレガントな方法や手法はない、と考えられるが、データの収集・整理を含めて、方法、手法を示すと、次のようになる。

まず、Bに関するデータ、情報は、①工場診断の結果、ならびに、②日本におけるデータ、情報をもとにして整理した。

また、Cについては、対策のための機器・設備は主として日本から供給される、と想定した。 そこで、第1に、機器・設備、つまり、ハード部分に関するデータ、情報は、Bと同じソースに依存した。さらに、それらの機器・設備コストについて、データの年次と1993年との エスカレーションに当たっては、日本の専門機関が発表している"コスト・インデクス"を 利用した。

第2に、日本から機器・設備をイランまで輸送する場合の輸送費を推定した。 第3に、イランにおけるエンジニアリング、据え付け、あるいは、建設などの作業はイラン 人によって行われる、と想定して、そのコストを推定した。

次に、価格については、(a) 省エネルギー対策のコスト、(b) Bを評価する国内エネルギー 価格の両者とも、1993年価格による実質価格を用いることとした。また、為替レートも 1993年時点における IUS \$ = 100円=1,750リアルを用いた。これは、主として、イラン の将来の物価および為替レートの動向を予想すると、これらについて名目価格を用いるこ とは、極めて難しい、と考えたからである。

最後に、各産業におけるエネルギー消費原単位の検討に当たっては、必要な場合、夫々の

製造工程につき、モデル値を推定した。例えば、鉄鋼におけるDRI (直接選元法)、セメントにおけるキルンの各種タイプ、板ガラスにおけるFloat法、繊維 (紡績) におけるRing Spinning とOpen End Spinning、砂糖における甘しゃ糖、などのプロセスについてである。

# 5.3 エネルギー需要予測

### 5.3.1 モデルについて

MEM の基本的なコンセプトは次の通りである (Figure 3.5.1参照)。

第1に、イランのマクロ経済とエネルギー需給とを同時決定で解くことができる。

第2に、エネルギー政策がもたらすマクロ経済への影響を適確にシミュレートできる。

第3に、モデルの操作性がよい。

第4に、時系列データにもとずいた計量経済型である。

第5に、マクロ経済モデルとエネルギー需給モデルからなる。

Macro-Economic Model World Economy, etc. World Economy GDP Component at Crude Oil Prices constant price World Trade GDP Component at Social Indicator market price **Economic Policy** Exchange rate WPI, CPI, Wage, etc. Government exp. Government Financial Binc. **Balance of Payments** Labor Market Potential GDP Growth WPI. CPI GDP,etc. Oil Export Energy Prices ► Energy Revenue Final Energy Demand by sector and energy Industry Residential Commercial Energy Policy Fossil Fuel Production Transportation Crude Oil **Energy Conversion Natural Gas** by energy Carrier Power Development Hydro, Coal, Gas Primary Energy Supply Domestic Energy Price by Energy Carrier Electricity, Gasoline Energy Export Note) Exogenous Energy Supply/Demand Model Endogenous

Figure 3.5.1 Flow Chart of Macro-energy Model(MEM)

イランの抱えている、マクロ経済面の、いくつかの重要な問題をモデルの中に取り込んでいることについては、既に、第4章で述べた通りである。それに加えて、エネルギー需給モデルでは、次の課題が解決できるように試みた。

第1に、一次エネルギー供給から最終エネルギー消費にいたる一連のエネルギー・フロー が確認できること。

第2に、エネルギー需要が、主要なエネルギー政策である国内エネルギー価格政策に適確 に対応できること。

第3に、産業部門では、物理的な数値を分母とした原単位が把握できること。

以上に述べたような基本設計を踏まえて構築された MEM は、次のような特徴を持っている。

第1に、時系列データを用いた推計式群でモデルが構築されていること。

第2に、モデルのパフォーマンスがチェックできること。

第3に、マクロ経済とエネルギー需給の諸変数がモデルによって同時決定されるので、エ ネルギー政策が経済活動に及ぼす影響を容易にシミュレーションできること。

第4に、モデルがコンパクトにできているので、パソコン上で操作できること。

#### 5.32 データについて

モデル開発に当たり用いたデータは、原則的にイランで公表されている統計データである。データ収集作業においては、PBOチームが構築しつつあったデータ・ベースからデータの提供を受けた。

PBOチームのデータ・ベースに欠けているデータに関しては、PBOチームの協力を得て、収集に努めた。

さらに、それでも不足するデータについては、World Bank、OECD/IEA、OPECなどの国際機関や、British Petroleum などの世界企業が公表しているデータを用いた。 最後に、われわれが以上の各種データの整合性をとった。

### 5.4 エネルギー利用計画

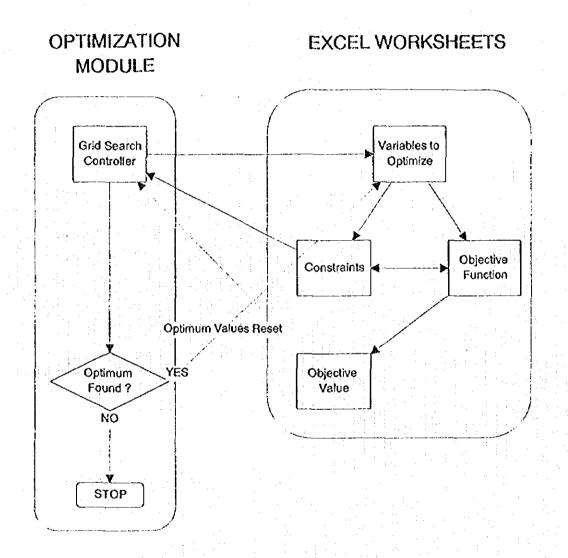
#### 5.4.1 モデルについて

ある産業、または、いくつかの産業をまとめた全体について、省エネルギー対策による "純便益"を最大にするような、省エネルギー対策投資の最適配分スケジュール ……… どこに限界点があるか ……… を見出すことが、このモデル構築の目的である。 第4章で述べた限界便益と限界コストは、夫々、Figure 3.5.2、Figure 3.5.3に示したよ うに、コスト・カーブとベネフィット・カーブの接線勾配によって示される。従って、両 接線勾配の値が等しくなった投資額、もしくは、省石油量が「最大純利益」を与える最 適値となる。即ち、ここにおいて「便益」マイナス「コスト」が最大となる。

**Figure 3.5.2** 

Conservation Cost Rial Conservation Cost Benefit (\$) (Saved Oil x Oil Price) Rial ax Net Benefit Max Net Benefit (\$) (Saved Oil x Oil )Price) Saved Oil (Liter) Saved Oil (Liter) Optimum Optimum

Figure 3.5.3 Potential Optimum in Economic Value Potential Optimum in Domestic Market Value

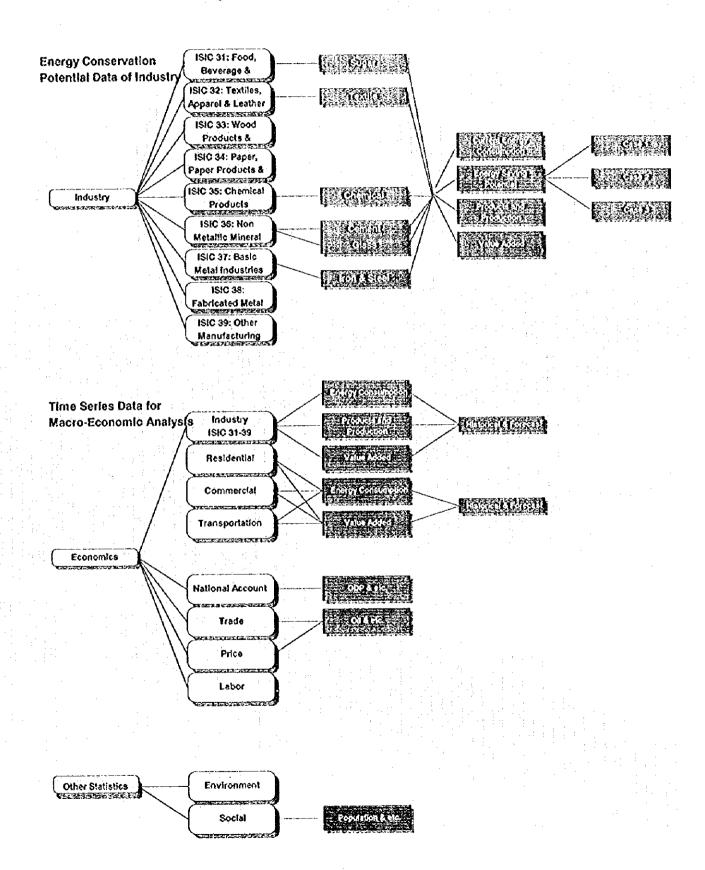

なお、このモデルに加えて、産業の付加価値を最大にするような、対策投資の最適配分 スケジュールを見出すためのモデルの開発も検討された。しかし、信頼しうる付加価値 データの入手が不可能であるため、実データにもとずくシミュレーションができないの で、上記のモデルを容易に拡張して、このモデルを構築できるように、上記モデルを設 計した。

#### 5.4.2 ツールについて

本調査の最適化モデルによるシミュレーションには、スプレッド・シートのEXCELを用 いる。

また、最適化の問題を解くためのプログラムを、EXCELのモジュールとして開発した。 この最適化モジュールとEXCELとの関連を示す概念図を、Figure 3.5.4 に示す。

Figure 3.5.4 EXCEL and the Optimization Module




5.5 データ・ベース

「経済評価」および「エネルギー需給予測」において収集・整理したデータを中心として、 データ・ベースを作成した。

Figure 3.5.5 にデータ・ベースの基本構造を示す。

Figure 3.5.5 Basic Database Structure



### 6. 省エネルギー・マスタープランの検討

本章では、ます、6つの産業の省エネルギーに関するこれまでの検討結果を要約し、次に、それらに基づいて、省エネルギー推進のための「アクション・プラン」を提示する。

# 6.1 6産業におけるエネルギー消費の現状

本調査で対象とした7つの産業におけるエネルギー消費の現状を調査したところ、次のことが明らかになった。

第1に、各産業とも、エネルギー消費原単位は、日本の工場、あるいは、同じような工程、の標準的な水準に比して、かなり高いところにある。いくつかの例について、イランの水準を100とし、日本の工場、あるいは、同じような工程、の標準的な水準と比べると、以下の通りである。

| • | 鉄鋼 (Es | fahan Steel) | 60 |
|---|--------|--------------|----|
| • | セメント   | (全産業)        | 70 |
| • | 板ガラス   | (全産業)        | 44 |
|   | 砂糖     | (全産業)        | 65 |

ここに見られるように、イランの産業部門における省エネルギーの技術的ポテンシャルは 非常に大きい、ということができる。

第2に、このような状態は、工場の操業・保守の管理が不十分であること、機器・設備上の 対策が採られていないこと、さらに、古いプロセスが用いられていること、などによる。

## 6.2 省エネルギーのための対策および政策の検討

上のような現状を踏まえて、各産業毎に、省エネルギー対策を検討した。

次に、それらの対策を促進するための諸政策を検討し、政策シナリオを取りまとめた。

さらに、政策シナリオに取り入れられた、将来のエネルギー価格(実質価格で年率8%の上

昇)を用いて、上記の諸対策の経済評価を行った。

その結果、① "管理の改善"に属する対策は、多くのものがfeasible であること、② "機器・設備の改造"や "プロセスの取り替え"に属する対策は、多くのものがnot feasible であること、が明らかになった。

但し、上記のエネルギー価格は、国際的にみると、なお、かなり低い水準にある、という 事実に留意すべきである。

# 6.3 省エネルギー・ポテンシャルの推定

経済評価に基づき、各産業における実現可能な省エネルギー・ポテンシャルの推定を行った。 その結果は次の通りである。

第1に、石油精製を除く6つの産業全体で、2000年、2005年とも、対策が何ら採られなかった場合に比して、10%余りのエネルギー消費の削減が可能となるであろう。

第2に、石油精製についても、同程度の削減が可能になるかもしれない。

第3に、これらの削減可能量を合計すると、原油換算で2000年には188万kl、2005年には278万klとなる。これらは、夫々、対策が何ら採られなかった場合に比して、10%、13%程度の省エネルギーに当たる。

### 6.4 政策シナリオおよび省エネルギー対策投資の評価

#### 6.4.1 政策シナリオの評価

省エネルギーを推進するためのエネルギー価格の引き上げは、GDP成長率、物価などに 好ましくない影響を及ぼす恐れがあるので、それらの動向を見極めながら、注意深く進 める必要がある。

従って、エネルギー価格の引き上げを伴わないでも実行可能な対策、即ち、第1カテゴリー、あるいは、"管理の改善"に属する対策の実施に努めることが、少なくとも当面は、 極めて重要である。

さらに、地味な仕事ではあるが、適確な省エネルギー政策を作成するために不可欠な、 データ、情報や、予測・評価方法などの整備も早急に必要である。

### 6.4.2 省エネ対策投資の最適化の評価

個々の工場で採られる省エネルギー対策は、ある場合には、イラン経済全体から見ると、 必ずしも、プラスの効果を挙げるとは限らない。

省エネルギー対策による石油輸出の拡大と、対策のための機器・設備の輸入を比較する

と、省エネルギー対策の"純便益"が、ある時点からマイナスに転ずることがありうる。 政策推進に当たっては、そのことに十分留意する必要がある。

# 6.5 省エネルギー目標の設定とアクション・プラン

以上に、本調査の6産業全体に関する検討の結果を要約した。

以下では、それらの検討結果を踏まえ、2005年に至る期間について、省エネルギー促進のための「政策手段」ならびに「今後の検討項目」を含む、アクション・プランを提案する。そこで、まず、アクション・プラン検討の前提として、産業について、一般的な省エネルギー政策・施策の体系はどのようなものであるべきか、についての、われわれの見解を整理しておくこととする。

# 6.51 省エネルギー政策・施策の体系

省エネルギー政策・施策の体系は、主に日本の経験をもとに整理すると、次のようなものである、と考えられる。即ち、第1に、省エネルギー「政策」の決定と公示が行われ、次いで、それに基づいて、いくつかの「施策」が検討、実施される。

### a. 省エネルギー政策の基本方針の決定と公示

- a-1、マスター・プラン (国家省エネルギー計画) の策定 (省エネルギー目標の設定を含む)
- a-2. 経済・社会計画 (5ヶ年計画など) への組み込み
- a-3. 省エネルギー政策の法制化(省エネルギー法などの制定)
- a-4. エネルギー需給見通しへの組み込み
- a-5. 政策財源の確保
- a-6. エネルギー価格政策の決定

# b. 経営者の省エネルギー意識の向上と企業内改善の実施

- b-1. 経営者としての適格者の任命
- b-2. 経営者の教育・訓練の実施 (カリキュラムに基づいて行われる)
- b-3. 企業グループ毎の省エネルギー推進組識の設置
- b-4. 従業員の省エネルギー教育の実施

- c. 省エネルギー推進のための指定工場の設定
  - c-1. エネルギー管理士の配置の義務化
  - c-2. エネルギー消費の実績の報告の業務化
  - c-3、省エネルギー推進組識の設置
- d. 省エネルギー投資促進のための経済的施策
  - d-1. 税 制 …… 税控除、免税、特別減価償却など
  - d-2. 補 助 金 …… 対策投資の一定部分に対して
  - d-3. 融 資 …… 長期、低利の資金貸付け
  - d-4. 外貨割当て ……… 省エネルギー対策のための機器・設備の輸入に対して
- e. 省エネルギー関連技術情報の提供
  - e-1. 専門家の派遣
  - e-2. 省エネルギー推進のためのガイドラインの設定
  - e-3. 省エネルギー・セミナーの開催
  - e-4. 機器・設備の規格の整備
- f. 省エネルギー推進のための研究・開発
  - 1-1. 民間企業、大学などへの助成
- g. その他の省エネルギーに関連する一般的な施策
  - g-1. 労働法規の改善
  - g-2. 賃金制度の改善
  - g-3. 教育制度の改善

#### 6.5.2 アクション・プランの提案

以上のような省エネルギー政策・施策の体系に基づいて、アクション・プランを作成するに当たり、本調査の結果を踏まえて、次のような3つの原則を確認し、アクション・プラン作成の導きの糸とした。

第1に、エネルギー価格の引き上げは、それが一般物価の急激な上昇を招くことのないよ

う、また、経済成長を著しく低下させることのないよう、十分注視しつつ、実行することが重要である(「エネルギー需要予測」の結果から)。

第2に、エネルギー価格の引き上げを伴わない省エネルギー政策が、少なくとも当面の政策としては、最も重視されるべきである(上に同じ)。

第3に、省エネルギー対策に対して経済的な支援策を講ずる場合、その対策が政府、あるいは、国民経済全体から見て、"純便益"を生み出すものであるかどうか、を予め確認することが必要である(一般的に、経済評価の結果、"not feasible"とされた対策は、上の意味で"純便益"を生み出さない、と言える)(「エネルギー利用計画」の検討結果から)。

アクション・プランは、将来の一定期間をいくつかに分けた上で、夫々の期間毎に示される。

- (1) 省エネルギー目標、
- (2) その達成のために採らるべき「政策手段」、ならびに、
- (3) 平行して、それらの「手段」をより現実的、かつ、具体的なものとしてまとめ上げるための「今後の検討項目」、

からなる。

「政策手段」および「今後の検討項目」については、その概要を、夫々、Table 3.6.1 および Table 3.6.2 に示した。

なお、政策の整理に当たっては、それらの分類は上記の政策体系に依るのではなく、本 調査の結果に基づき、「管理の改善」、「投資の回収」、および、「その他」、の3つの分類に 従った。

Table 3.6.1 Targets and Policies for Energy Conservation in the Industry Sector

|                               |                                     | 0000 tempt 2000 tempt                                                  | ACC JOSE DOOR JOSES                                  |
|-------------------------------|-------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| Penod                         | 1990-1994                           | March 1995-March 2000                                                  | March 2000-March 2005                                |
| Economic background           | • Economic growth 4.6%/y            | • Economic growth2.3%/y                                                | - Economic growth…3,2%/y                             |
|                               | • Consumer price32%/y               | - Consumer price 27%/y                                                 | · Consumer price13%/y                                |
|                               | • Gov. budget… \( 0.5 Trill.R1 (93) | <ul> <li>Gov. budget…△7 Trill. RI (2000)</li> </ul>                    | <ul> <li>Gov. budget…△47 Trill, RI (2005)</li> </ul> |
|                               | Capital account                     | • Capital account 0 (2000)                                             | • Capital account0 (2005)                            |
|                               |                                     | - Unemployment 4.9% (2000)                                             | • Unemployment…3.2% (2005)                           |
|                               | - Unemployment…8.3% (1994)          |                                                                        |                                                      |
|                               |                                     |                                                                        |                                                      |
| Policy 1:                     |                                     | · Improvement of appointment of directors in                           | <ul> <li>The same as the previous period</li> </ul>  |
| Improvement of management     |                                     | companies & factories                                                  |                                                      |
|                               |                                     | <ul> <li>Training system for directors</li> </ul>                      |                                                      |
|                               |                                     | · Improvement of labor laws including salary system                    |                                                      |
|                               |                                     | <ul> <li>Training system for workers</li> </ul>                        |                                                      |
|                               |                                     |                                                                        |                                                      |
| Policy 2:                     |                                     | • Energy pricing According to 5 year plan                              | Energy pricing at least around a 5%                  |
| Economic incentives           |                                     | (20% increase per annum in nominal terms)                              | increase per annum in real terms                     |
|                               |                                     | - Finance low interest and long-term loan                              | • Finance · · · to be continued                      |
|                               | ·                                   | <ul> <li>Subsidy paid for "not feasible" measures</li> </ul>           | <ul> <li>Subsidyto be continued</li> </ul>           |
|                               |                                     | * in case of sheet glass industry:                                     | - Taxationtax incentives or special                  |
|                               |                                     | Subsidy: 0.5 Bill RI (price in 1993)                                   | depreciation                                         |
|                               |                                     |                                                                        | * in case of steel industry:                         |
|                               |                                     |                                                                        | Finance: 2.8 Bill RI (price in 1993)                 |
|                               |                                     |                                                                        | Subsidy: 1.5 Bill RI (price in 1993)                 |
|                               |                                     |                                                                        | * in case of sugar industry:                         |
|                               |                                     |                                                                        | Finance: 0.5 Bill RI (price in 1993)                 |
| Policy 3:                     |                                     | <ul> <li>Standards and targets for equipment and facilities</li> </ul> | The same as the previous period                      |
| Others                        |                                     | Designated factories                                                   |                                                      |
|                               |                                     | - Energy managers                                                      |                                                      |
|                               | :                                   | · Research and development                                             |                                                      |
|                               |                                     | · Leveling-off of electricity demand                                   |                                                      |
|                               |                                     | <ul> <li>Factory energy audit by expert groups</li> </ul>              |                                                      |
|                               |                                     | · Others successful cases, bills, information, etc.                    |                                                      |
|                               |                                     |                                                                        |                                                      |
| Target of energy conservation |                                     | around 7-8% (2000)                                                     | around 10~12% (2005)                                 |
|                               |                                     |                                                                        |                                                      |
|                               |                                     |                                                                        |                                                      |

Table 3.6.2 Items to be studied for Promoting Energy Conservation

| Title of Items                                                     | Contents of Items                                                          |
|--------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                    |                                                                            |
| OCollection and organization of data and information for energy    | · To improve institutional arrangements for collecting and organizing data |
| conservation                                                       | and information for energy conservation                                    |
|                                                                    | To develop methodologies for estimating data for energy conservation       |
|                                                                    |                                                                            |
| ODevelopment of methodologies for evaluating energy conservation   | To improve institutional arrangements for developing methodologies for     |
| policies                                                           | evaluating energy conservation policies                                    |
|                                                                    | To develop methodologies for energy modeling for energy conservation       |
|                                                                    |                                                                            |
| OPreparing guidelines on programs for energy conservation in each  | · To establish systems or organizations for preparing guidelines in each   |
| group of public enterprises                                        | group of public enterprises                                                |
|                                                                    | To prepare guidelines for improving management efficiency, as well as      |
|                                                                    | other aspects of measures for energy conservation in factories             |
|                                                                    |                                                                            |
| OPreparing programs for energy conservation in each factory of the | To establish systems or organizations for preparing programs in each       |
| sdnoug                                                             | factory                                                                    |
|                                                                    | To prepare programs for improving management efficiency, as well as        |
|                                                                    | other aspects of measures for energy conservation in each factory          |
| OSelection of model energy conservation factories                  | To select one model factory in each group of public enterprises            |
|                                                                    | To implement the project on improving management efficiency in the         |
|                                                                    | model factory                                                              |
|                                                                    |                                                                            |

#### (1) 期間の設定

2005年までの期間を、1995年3月-2000年3月、および、2000年3月-2005年3月 の2つの期間に分けることとしたい。これは、(a) 夫々、第2次および第3次の5ヶ年計画の期間に対応していることにもよるが、さらに、(b) 本調査の「エネルギー需要予測」の結果により、政策の実施の際に考慮すべき経済状態が、これらの期間毎に、かなりの差異を見せることからも、このような期間分けは、適当、かつ、必要だと考えられる。

# (2) 今後の経済展望(政策実施の条件として)

a. 1995年-2000年

・経済成長 ……… 1990 - 94年の年平均4.6%に対して、2.3%と、低成長の時

期を迎える。

・物 価 ………… 前期間の年率32%に比して、27%と、多少低下するものの、

上昇率は依然として高い(消費者物価指数について)。

・政府財政 ………… 2000年時点で7兆リアルと、依然、財政収支の赤字は続く。

・対外資本収支 …… 1994年には22億ドルの赤字だったが、数年前からの努力に

よって、2000年には収支ゼロとなる。なお、イギリスの専 門機関によると、イランの対外債務は1995年の300億ドル

(対GDP比49%) から2000年には230億ドル (同じく17%)

へと低下する見込みである。

・失業率 ………… 1994年の8.3%から2000年には4.9%へと低下する。

b. 2000 - 2005年

・経済成長 ………… この期間には、年率3.2%と回復を見せる。

・物 価 ………… 同じく、年率13%と、前期間の半分になる。

・政府財政収支 …… 経済成長とともに増大すると見込まれ、2005年に47兆リア

ルに達する。

・対外資本収支 …… 前期に引き続き、収支ゼロと見込まれる。

・失業率 ………… 2005年に3.2%と、さらに改善される。

### (3) 目標の設定

対象とした7つの産業における省エネルギーの目標値を次のように定める。

・2000年について …… 7-8 %程度(各産業の全生産量について、1995年現在での 既存の機器・設備に対して、以下に述べる省エネルギー政策 が採られなかった、とした場合のエネルギー消費量に比し て)

・2005年について …… 10-12%程度(同上)

2000年については、既に述べたように、省エネルギー・シナリオにおいて、10%程度の省エネルギー・ポテンシャルが推定されている。しかし、次に述べるように、ここでの「政策」としては、現実的に見て、名目価格で年率20%のエネルギー価格引き上げ(実質では、低下の見込み)を提案しているので、実現が不可能でない省エネルギー量として、7-8%を設定した。

また、2005年については、同じく、省エネルギー・シナリオにおいて、13%程度の省エネルギー・ポテンシャルが推定されている。しかし、2000年までのエネルギー価格上昇率が、上記のように、省エネルギー・シナリオを下回ること、さらに、次に述べるように、2000年以降の上昇率も、実質価格で5%程度と、シナリオを下回ることから、実現が不可能でない省エネルギー量として、10 - 12%を設定した。

### (4) 省エネルギー「政策」の提案

本調査の工場診断の結果として、各工場毎に多くの対策が検討され、提案されている。 それらを、対策のコストおよび効果とともに、本要約の「工場調査」のTable 2.2 に示し た。 これらの各工場における対策を含め、本調査において採り上げられた7つの産業に おける各種の対策を検討した結果、われわれは、イランの産業部門における省エネル ギー政策として、次のものを提案したい。

## a. "管理の改善" に係わる政策

前出「3.4 基本的な政策措置の検討」で述べた諸「政策」を、期間別に、次のように 実施に移すこととする。 (1995 - 2000)

- ・ 国営、ならびに、公営の企業、あるいは、工場の最高責任者の任命方法の改善
- ・ 同じく、これら責任者のトレーニングの徹底のための制度の整備
- ・ 労働諸法規(賃金制度を含む)の改善(前期に比して、失業率は改善される。)
- ・ 労働者のトレーニングの徹底のための制度の整備 〈2000 - 2005〉
- ・同上の継続(現実には、現時点から2000年までに3年足らずの期間しかないので、 上記の諸政策につき、徹底した実施は困難である、と予想される。そこで、継続 的な実施が必要となろう。)

### b. 対策投資の回収に関する政策

(1995 - 2000)

・エネルギー価格 … 5ヶ年計画に則って、名目価格で年率20%程度の引き上げ。 但し、一般物価がそれ以上の上昇を見せると予想されるの で、実質価格では、下落の見込み。

・金 融 …… 経済評価の結果、"feasible"となった省エネルギー対策に対する低利・長期の融資(但し、本調査の対象7業種については、2000年においては、融資対象なし)

・補助金 …… 経済評価の結果、"not feasible" となった対策への補助金 支給 (2000年時点で、板ガラス産業に対して4.5億リアルの 支給)。

(2000 - 2005)

・エネルギー価格 … 実質価格で年率5%程度の引き上げ。但し、一般物価の上昇 を著しく加速することがないように、慎重に物価情勢を見守 りながらの実施が必要である。

・金 融 ………… 前期の継続。政府財政の収支状況から見て、"not feasible" なものへの融資拡大は不可能であろう(2005年時点で、鉄 鋼業に28億リアルの融資)。

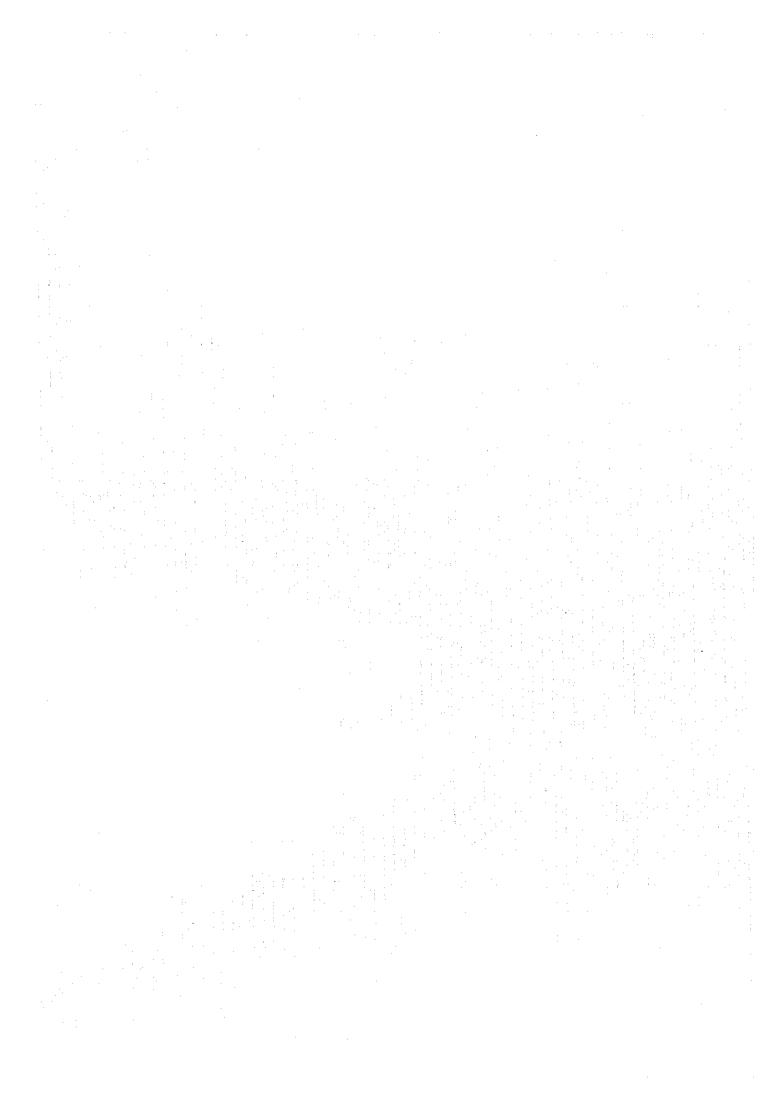
・補助金 ………… 上と同じ (2005年時点で、鉄鋼業に15億リアル、砂糖産業 に4.5億リアルの支給)。

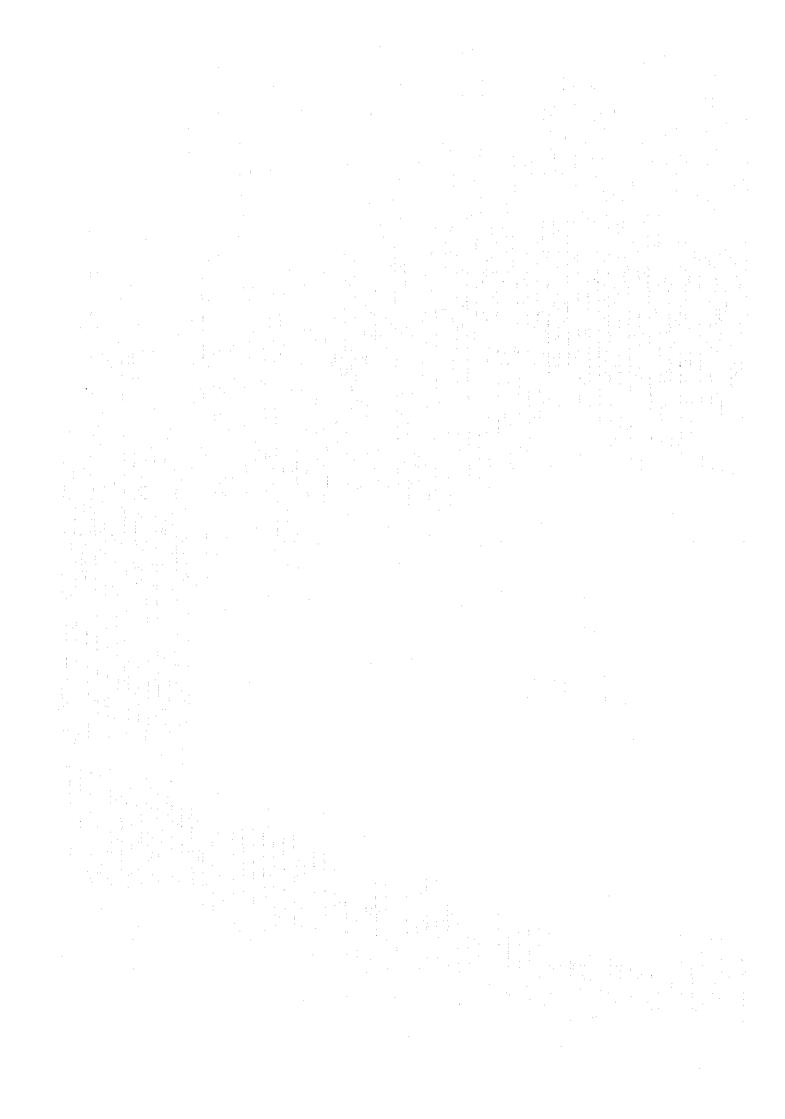
・税 制 ……… 経済評価の結果、"feasible" となった対策への税制上の優遇

措置(税控除、特別減価償却など)(2000年までに税制の整備が進むことによって、実施が可能になると期待されるが、金融・補助金と同じく、政府の財政状況の制約を受けることに注意する必要がある。)

### c. その他の政策

(1995 - 2000)


- ・工場の機器・設備に関するエネルギー消費の基準および目標の設定
- ・エネルギー消費の管理に関する工場の指定(5ヶ年計画には、電気の消費量が 5MW以上、あるいは、燃料の消費量が年間5,000 m以上の工場におけるエネル ギー管理部門の設置に関する基準を作成すること、さらに、そのためのエネルギー 専門家を石油省およびエネルギー省が育成することが定められている。)
- ・エネルギー管理者制度の整備(上記参照)
- ・省エネルギーに関する研究・開発の助成(5ヶ年計画で実施予定)
- ・電気エネルギー消費の抑制(5ヶ年計画で実施予定)
- ·その他 (省エネルギー優秀事例の表彰制度、省エネルギー技術情報の提供、その他) (2000 – 2005)
- 同上の継続


#### (5) 省エネルギー促進のための「今後の検討項目」の提案

上記の省エネルギー「政策」の提案は、言うまでもなく、本調査の結果に基づき行われたものである。しかし、それらは、必ずしも十分なデータ・情報に基づいたものとは言い難い。そこで、上記の「政策」を実施しつつ、平行して、政策の内容を深めていくことが望ましい、と考えられる。そのためには、次のような「今後の検討項目」の検討を行うことが必要である。

- a. 省エネルギーのためのデータ・情報の収集・整理 ……… そのための組織・機構の整備を含む。
- b. 省エネルギー政策の評価のための評価方法の開発 ……… 同じく、組織・機構の整備 を含む。

- c. 国営企業 (公営企業) の各グループ毎に工場における省エネルギー促進のためのガイドライン作成を目的として、必要な組織を作ること (このガイドラインは、本調査の第IV部『ガイドライン』を参考にして、適切に行われることが期待される。)
- d. 各グループ毎に作成された省エネルギー・ガイドラインをさらに具体化したプログラムを作るために、各工場に必要な組織を作ること(このプログラムは、上記の『ガイドライン』を参考にして、適切に行われることが期待される。)
- e. 各グループ毎に、最低1つの工場をモデル工場とし、外部の専門家のコンサルテーションのもとに、効率改善プロジェクトを実際に推進すること。







