REPORTE FOTOGRÁFICO

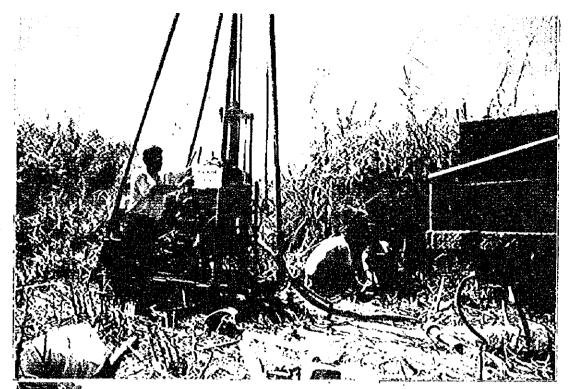


Foto N° T-1: Sitio Perforación P-T-1

Foto N° T-2: Sitio Perforación P-T-2

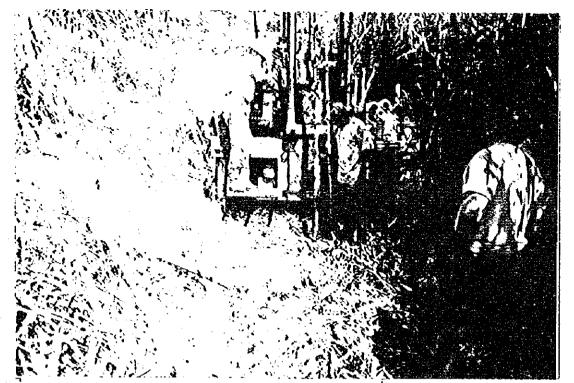


Foto N° T-3: Sitio Perforación P-T-3

Foto N° T-4: Sitio Perforación P-T-4

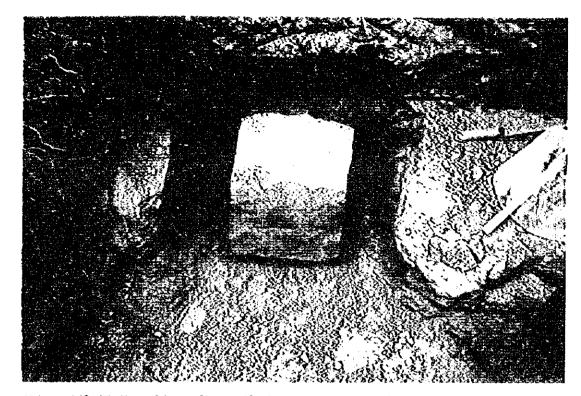


Foto N° T-5: Monolito N° 2, Fosa P-T-F1

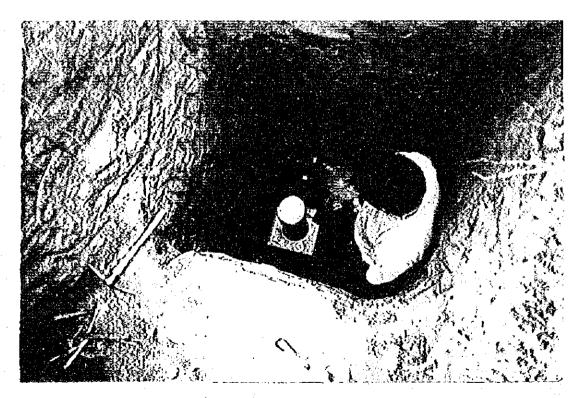


Foto N° T-6:Toma dendidad in situ, Fosa P-T-F1

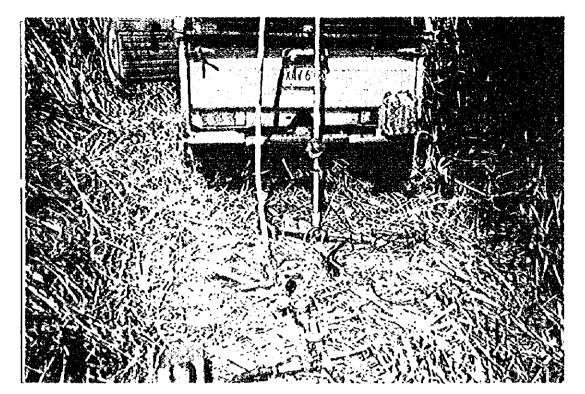


Foto Nº T-7: Sitio Prueba de Permeabilidad, P-C-1

Foto Nº T-8: Sitio Prueba de Permeabilidad, P-C-2

Foto Nº T-9: Ejecución Prueba de Permeabilidad

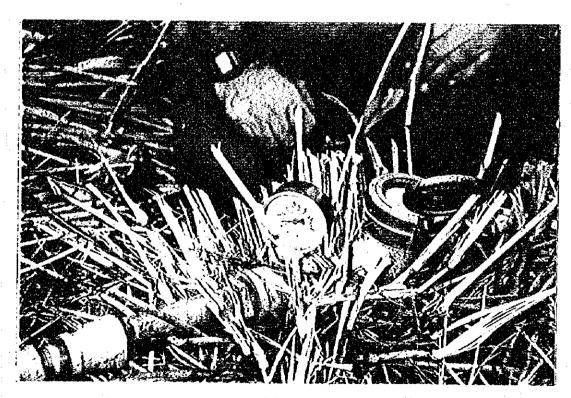


Foto Nº T-10: Manómetro y Medidor de Caudal

INFORME Nº 9657-3

ESTUDIO GEOTÉCNICO PARA EL PROGRAMA DE MEJORAMIENTO AMBIENTAL DEL CAUCE MEDIO Y SUPERIOR DEL RIO TUY EN SAN FRANCISCO DE YARE

PARA: JICA, Japan International Cooperation Agency.

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 1 de 15.

INDICE

·	Página N
1. CONTENIDO	2
2 PROYECTO	2
3. EXPLORACIÓN Y LABORATORIO	3
4 RESULTADOS	4
5.1. LITOLOGÍA	5
5.2. NIVEL FREATICO	
5.3. PARÁMETROS DEL SUELO	7
6 CONSIDERACIONES GEOTÉCNICAS	7
6.1. DESARENADOR	7
6.1.1. CONSIDERACIONES GENERALES DE DISEÑO	7
6.1.2. EXCAVACIONES Y SOPORTES	8
6.1.3. EMPUJES DE TIERRA	9
6.1.4. CAPACIDAD DE SOPORTE	11
6.1.5. SUBPRESIÓN	11
6.2. PUENTE DE TUBERÍAS	12
7. RECOMENDACIONES	

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental
del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 2 de 15.

INFORME Nº 9657-3

ESTUDIO GEOTÉCNICO PARA EL PROGRAMA DE MEJORAMIENTO AMBIENTAL DEL CAUCE MEDIO Y SUPERIOR DEL RÍO TUY EN SAN FRANCISCO DE YARE

PARA: JICA "Japan International Cooperation Agency"

1.- CONTENIDO.

El presente Informe contiene el Estudio Geotécnico realizado para un tanque de sedimentación en San Francisco de Yare, como parte del programa de mejoramiento del cauce medio y superior del Río Tuy, que realiza la agencia JICA "Japan International Cooperation Agency" para el Ministerio del Ambiente y de los Recursos Naturates Renovables. Se presenta una descripción del sitio, los resultados de la exploración realizada con perforaciones y calicata, las pruebas de campo, las condiciones generales del subsuelo, las soluciones de fundación, movimiento de tierra y las recomendaciones para el diseño estructural, todo a título preliminar, debido a que el Programa se encuentra en la etapa de ingeniería conceptual.

Este Estudio se ejecutó de acuerdo con la solicitud del Arqº Héctor BRACHO de ECODIPLA Consultores, C.A. y según nuestra oferta de fecha 25 de noviembre de 1996.

2.- PROYECTO

En el sitio de San Francisco de Yare se proyecta construir un gran desarenador, en un terreno de unas 5 Ha, ubicado en un meandro del río Tuy. El terreno destinado al desarenador presenta topografía plana, la cual se muetra en el plano de la figura Nº Y-1 anexo. Para facilitar la identificación de los planos, figuras, perforaciones y ensayos realizados en Yare, los anexos se identifican por la letra "Y" alusivo al sitio. La topografía indicada en el plano citado fue levantado por "Cartográfica Mercator S.A.", para ECODIPLA Consultores S. A.

Ing° Pedro Carrillo Pimentel, CIV 6543 Ing° Jorge Martinez Ferrero, CIV 7649

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 3 de 15.

A título preliminar, el desarenador tendrá una longitud de 145,0 m, incluidas las transiciones de entrada y salida (de 25,0 y 20,0 m de longitud, respectivamente), un ancho de 54,0 m y una altura interior de 8,0 m. Constará de dos celdas longitudinales, las cuales formarán el cuerpo del desarenador propiamente dicho, con un área total, ambas celdas, de 54,0 x 100,0 m. En la figura N° Y-2 anexa se muestra una sección longitudinal del desarenador.

Además del desarenador se prevé la construcción de un puente de tuberías, situado aguas arriba del desarenador. Según los datos de la ingeniería conceptual que nos suministrara JICA, se trata de un puente colgante, de tres tramos, con una luz principal de 60 m de longitud.

3.- EXPLORACIÓN Y LABORATORIO

Perforaciones.

La exploración preliminar del sitio consistió en tres perforaciones de 15,0 m de protundidad, denominadas: PY-1, 2 y 3, y una calicata de observación denominada PY-F1. Las perforaciones se ejecutaron con máquina de percusión, utilizando forro de protección de diámetro BX. Durante la ejecución de las perforaciones se obtuvieron muestras del suelo en forma continua hasta los 2,0 m, y a cada metro a mayor profundidad. Durante la obtención de cada muestra se ejecutó una Prueba de Penetración Normal SPT, la cual consistió en contar el número de golpes un martillo de 63,5 Kg de peso, dejado caer libremente de una altura de 76 cm, necesarios para hacer penetrar 30 cm un muestreador de "cuchara partida" estándar (ASTM D-1586-84).

En la tabla Nº 1 que se da a continuación se dan las coordenadas, la profundidad y las cota del terreno en los sitios de las perforaciones. En el plano Nº Y-1, citado, también se indica la ubicación de los puntos de exploración.

1

Ing° Pedro Carrillo Pimentel, CIV 6543 Ing° Jorge Martinez Ferrero, CIV 7649

18 de febrero de 1997.

Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare. PARA: JICA

Pág. 4 de 15.

TABLA Nº 1

Sitio	Exploración	Profundidad	Cota	Coorde	nadas	
		m	m	Norte	Este	44) - 43
San F∞. de Yare	PY-1	15,0	133,60	1.130.224	750.153	1 4 7
	PY-2	15,0	133,36	1.130.144	750.140	11.4
	PY-3	15,0	134,59	1.130.018	750.124	
	Cal-Y-1	3,0	134,07	1.130.192	750.146	

La ubicación de los puntos exploradas se muestran en las figura citada Nº T-1, tomados del plano topográfico suministrado por ECODIPLA Consultores, S. A. y realizadas por CARTOGRÁFICA MERCATOR, S.A.

Además de las perforaciones, se excavó a mano una calicata, con dimensiones de 2,0 X 2,0 metros y hasta una profundidad de 3,00 metros.

Laboratorio.

Todas las muestras obtenidas fueron inspeccionadas visualmente, lo cual permitió seleccionar suelos representativos de las diferentes capas para someterlos a ensayos de clasificación, a saber: contenido de humedad natural, límites de consistencia, granulometría por tamices e hidrómetro, gravedad específica, pesos unitarios secos y compresión sin confinar.

Además de los ensayos de clasificación citados, se ejecutaron ensayos de Compactación Modificada.

4.- RESULTADOS

Los resultados las perforaciones y de los ensayos de clasificación practicados sobre muestras de SPT se presentan en las planillas de resumen de las figuras N° Y-3, Y-4, Y-5 anexas. En éstas se indica los siguiente:

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 5 de 15.

Perforaciones

Número y profundidad de las muestras; Identificación de los estratos y descripción del suelo; Columna con símbolos litológicos; Valores y gráficos de las pruebas de penetración SPT;

Laboratorio

Gráficos del contenido de humedad natural de las muestras; Valores y gráficos de barras de la distribución granulométrica; Valores y gráficos de barras del límite de consistencia; Valores de peso unitario seco; Valores de compresión sin confinar; Peso específico de las partículas sólidas.

Los resultados de la inspección de la calicata y de los ensayos realizados sobre muestras provenientes de ésta se resumen en la figura Nº Y-6 anexa.

Las curvas granulométricas y ensayos de calsificación de muestas representativas de las perforaciones y calicata se presentan en las figuras Nº Y-7 a la Y-12. Los resultados de los ensayos Compactación Modificada se resumen en las figuras Nº Y-13 a la Y-16.

5.- CONDICIONES DEL TERRENO

5.1. Litología.

Los resultados de las tres perforaciones ejecutadas en el sitio del desarenador de Yare se muestran en el perfil geoténico de la figura N° Y-2, cuya secuencia litológica se describe a continuación:

Ingº Pedro Carrillo Pimentel, CIV 6543

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

(

Pág. 6 de 15.

- a.- Desde la superficie del terreno y hasta los 4,0 a 5,0 m de profundidad, en PY-2 y PY-3 respectivamente, se encontró un depósito sedimentario reciente, de carácter lenticular, constituido por arcillas limosas blandas, interrumpidas por lentes de arenas finas limpias y grava, sueltas, especialmente entre los 2,0 y 5,0 m de profundidad en la perforación PY-3. En el sitio de la perforación PY-1 se encontró en los primeros 5,0 m un relleno heterogéneo, formado por grava arenosa arcillosa, con peñones y escombros.
- b.- Subyacente a los materiales anteriores, desde los 4,0 a 5,0 m hasta los 15,0 m, máxima profundidad explorada, se encontró un depósito sedimentario formado por arcillas limosas, de plasticidad media a alta, con trazas de arena fina y contenidos de partículas coloidales (tamaño arcilla) del orden del 20% al 31%. Estas arcillas son de consistencia dura y muy dura, con valores de penetración entre N_{set} = 24 a > 80 golpes/pie.

5.2. Nivel Freático.

En las tres perforaciones se colocaron piezómetros de tubo abierto, lo que permitió hacer medidas del nivel freático durante los días que duró el trabajo de campo.

De las medidas de agua en los piezómetros se deduce que su nivel estático varía con el nivel del río Tuy, encontrándose para enero de 1997 los siguientes niveles de agua.

NIVEL FREATICO EN EL SITIO DE YARE

<u>Sitio</u>	Nivel del Agua	Cota
PY-1	2,10 m	131,50
PY-2	2,33 m	131,03
PY-3	2,64 m	131,95

Los niveles de agua indicados en la tabla anterior fueron los registrados entre diciembre de 1996 y enero de 1997, los cuales coincidieron con períodos de

INFORME Nº 9857-3
Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 7 de 15.

intensas lluvias. Según los datos recabados en el sitio, todo parece indicar que el nivel de aguas máximas puede llegar hasta algo por encima del nivel actual del terreno, es decir, hasta la cota 134,0 aproximadamente, lo cual se deberá verificar sobre la base de los registros hidrológicos y la hidráulica del río en este sitio en particular.

5.3. Parámetros del Suelo

En las planillas de las perforaciones, figuras Nº Y-3 a la Y-5, en el resumen de lo encontrado en la calicata, figura Y-6, y en los gráficos de granulometrías y ensayos especiales, figuras Y-7 a la Y-16, se dan los parámetros del terreno a diferentes profundidades, a saber: pesos unitarios secos en sitio, contenidos de humedad natural, distribución granulométrica, límites de consistencia de muestas típicas, resistencia al corte como compresión sin confinar, y curvas de compactación.

6.- CONSIDERACIONES GEOTÉCNICAS

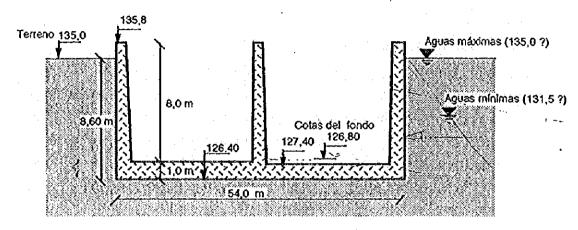
En San Francisco de Yare se contempla la construcción de dos estructuras principales: un desarenador de grandes proporciones, y un puente de tuberías colgantes.

6.1. DESARENADOR

En el proyecto y construcción del desarenador se deben considerar los siguientes aspectos fundamentales: métodos de excavación bajo agua, empujes de tierra, capacidad de soporte y control de la subpresión durante la operación del desarenador.

6.1.1. Consideraciones Generales de Diseño.

El desarenador consistirá en un cajón de concreto armado, el cual estará parcialmente sumergido en todo momento, ya que el nivel freático promedio se encuentra a la cota 131,0 y el fondo del desarenador tendrá cotas variable entre 127,40 y 127,80, según los datos preliminares del


1)

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental
del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 8 de 15.

proyecto suministrados por JICA. En la figura que se da a continuación se muestra una sección del desarenador, donde se indican los datos básicos de profundidades y niveles de agua dentro y fuera de esta estructura.

SECCIÓN DEL DESARENADOR Medidas Preliminares a Verificar

6.1.2. Excavaciones y Soportes.

Para la construcción del desarenador será necesario construir un entibado que permita trabajar en seco durante la construcción.

El sistema de entibado generalmente utilizado en casos como el que nos ocupa, es el de tablestacas hincadas, recuperables. Sin embargo, en nuestro medio este sistema resulta extremadamente costoso debido a que los elementos de la tablestaca son productos de importación, lo que hace competitivos otros sistemas de soporte no usuales en otros sitios fuera de Venezuela. Como prueba de ello podemos mencionar las experiencias recientes del Metro de Caracas en la construcción de la Línea 3, donde todas las trincheras fueron soportadas por entibados con muros colados, eliminando totalmente el uso de tablestacas, por la razones antes señatadas.

g° Pedro Carrillo Pimentel, CIV 6543 g° Jorge Martinez Ferrero, CIV 7649

18 de febrero de 1997.

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental
del Río Tuy en San Francisco de Yare.
PARA: JICÁ

Pág. 9 de 15.

Por otra parte, consideramos inconveniente el uso de tablestacas en este sitio debido a que será necesario penetrar arcillas muy duras, con valores de $N_{\text{SPT}} > 80$, y materiales de relieno con presencia de peñones y escombros, lo cual imposibilitaría la hinca de tablestacas en muchos sitios.

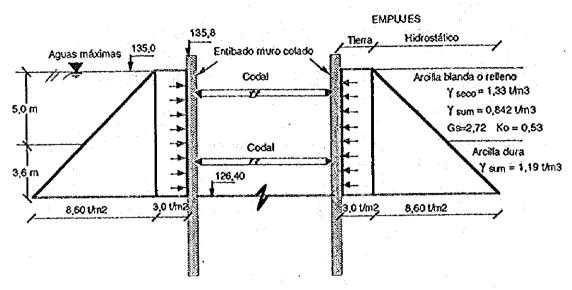
Por las razones antes expuestas, consideramos que la solución para el soporte de la excavación deberá ser la de muros colados, excavados con lodo de bentonita hasta una profundidad de por lo menos 4,50 m por debajo de la cola de excavación, la cual se puede suponer a 1,0 m por debajo del nivel más bajo del fondo del desarenador. Los muros colados se podrán soportar durante la construcción por medio de codales entre paredes opuestas, por anclajes temporales.

Los muros colados tendrían la ventaja de que se podrían utilizar como muros permanentes, lo cual haría necesario la construcción de juntas estancas entre paneles de muro, y habría que dejar las previciones de acero y juntas especiales para vincular y hacer estanca la losa de fondo con los muros colados. Todo esto no aplicaría en el caso de no ser necesaria la estanqueldad del fondo.

6.1.3. Empujes de Tierra.

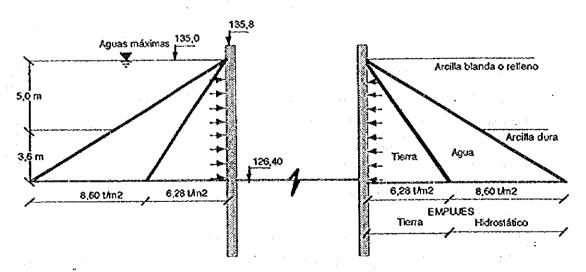
Para el diseño de los muros colados se deberán considerar dos condiciones de empuje de tierra: temporal durante la construcción, y permanente o condición a largo plazo. En ambas condiciones se considerará la máxima presión hidrostática, que se asume en este informe a la cota 134,0, la cual deberá ser verificada, como se dijo antes.

Los empujes de tierra temporales, cuando el muro se encuentre soportado : por codales o por anclajes, podrán ser del orden de los que se indican a continuación para una supuesta condición de aguas máximas:


()

18 de febrero de 1997.

INFORME Nº 9657-3 Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare.


PARA: JICÁ

Pág. 10 de 15.

EMPUJE DE TIERRA TEMPORAL Condición de Aguas Máximas

Para la condición permanente, a largo plazo, los empujes de tierra corresponderán a la condición de reposo, cuyos diagramas de presiones horizontales se dan a continuación.

EMPUJE DE TIERRA PERMANENTE Condición de Aguas Máximas

Ing° Pedro Carrillo Pimentel, CIV 6543 Ing° Jorge Martinez Ferrero, CIV 7649

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental
del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 11 de 15.

Las presiones horizontales y empujes de tierra también se deberán calcular para la condición del nivel aguas mínimas, la cual debería dar un empuje de tierra algo menor que los indicados, pero con otras distribuciones de presiones. Por no conocerse las variaciones extremas del nivel freático en este sitio, se excluyen los diagramas de empuje correspondientes.

6.1.4. Capacidad de Soporte.

Para el diseño de la losa de fondo, cuyo nivel de asiento se ha supuesto a la cota 126,40, se podrá considerar una carga admisible del suelo de q_{adm}= 3,0 Kg/cm², lo cual es muy superior a la presión máxima de contacto de esta estructura sobre el terreno.

En el análisis estructural de la losa de fondo se deberá tomar en cuenta que el efecto de la vinculación con los muros colados en el perímetro de la excavación es similar al de un apoyo rígido, mientras que el resto de la losa se apoyaría sobre el terreno, cuyo coeficiente de reacción se ha estimado en k_s= 1,70 Kg/cm³.

6.1.5. Subpresión.

Durante la construcción del cajón del desarenador se podrá achicar por dentro de la excavación. Sin embargo, una vez construido el cajón se podrá generar una subpresión bajo la losa de fondo equivalente a la mayor altura hidráulica posible durante la operación del desarenador. Esta condición se produciría cuando el desarenador se encuentre vacío y ocurra una crecida del río Tuy hasta el nivel de aguas máximas posible en este sitio.

No conocemos cómo será la operación del desarenador, ni cuál será la carga interior mínima en esta estructura, pero en el caso de encontrarse vacío y se produzca un crecida del río Tuy, la subpresión podría ser del

INFORME Nº 9657-3

18 de febrero de 1997.

Estudio Geotecnico para Mejoramiento Ambiental del Rio Tuy en San Francisco de Yare.

PARA: JICA

Pag. 12 de 15.

orden de: $u_{\text{subpresión}} = 8,60 \text{ t/m}^2$, lo cual podría producir la flotación del cajón, de no aliviarse la subpresión.

Para el control de la subpresión se podrían implementar diferentes procedimientos, como podría ser la colocación de un sistema de achique bajo el fondo, la colocación de fusibles de presión en la placa, el lastrado de la estructura o el anclaje del fondo.

De los sistemas citados, consideramos que lo más sencillo podría ser la colocación de un sistema de fusibles para el alivio de la subpresión, calibrados para una presión de diseño dada.

De las otras alternativas citadas, partiendo de la base de una subpresión de 8,60 ½m², se pueden hacer los siguientes comentarios: el lastrado de la estructura es prácticamente imposible de realizar, pues resultarían grandes espesores de la placa de fondo, del orden de los 4 a 5 m. En relación a la posibilidad de anclar el fondo, de igual forma sería necesario construir gran cantidad de anclajes (unos 800 anclajes de 40 toneladas), los cuales deberían tener la posibilidad de repararlos o reemplazarlos por deterioro a largo plazo. El sistema de alivio por medio de un sistema subdrenajes y bombeo presenta la dificultad de contar con instalaciones para el registro de presiones que permitan activar el bombeo del agua a presión bajo la placa, lo cual significaría labores de mantenimiento y de observación permanentes, difíciles de conservar en el tiempo en un sitio como el seleccionado para el desarenador.

6.2. PUENTE DE TUBERÍAS

Aguas arriba del desarenador se proyecta construir un puente colgante de tuberías, de tres tramos, con una luz principal de 60,0 metros de longitud.

Et sitio del puente colgante todavía no formó parte de la exploración preliminar realizada, por lo que no se tienen datos específicos que permitan analizar las condiciones de fundación de esta estructura.

Ing° Pedro Carrillo Pimentel, CIV 6543 Ing° Jorge Martinez Ferrero, CIV 7649

INFORME Nº 9657-3 Estudio Geotecnico para Mejoramiento Ambiental del Río Tuy en San Francisco de Yare. PARA: JICA 18 de febrero de 1997.

Pág. 13 de 15.

Sin embargo, si se supone que el terreno conserva las características geotécnicas encontradas en el sitio del desarenador, se puede suponer que las fundaciones del puente serán sobre pilotes, del tipo excavados con lodo bentonítico y vaciados en sitio. Aunque se considera muy prematuro indicar capacidades de carga, diámetro y longitudes de pilotes, para los fines de estimaciones muy preliminares, se puede suponer que podrían utilizarse pilotes de 65 a 80 cm de diámetro, con longitudes del orden de 12 a 15 m. No se descarta la alternativa de utilizar pilotes hincados de concreto o de tubo, en longitudes similares a las citadas.

7.- RECOMENDACIONES

Las recomendaciones que se dan a continuación tienen carácter preliminar, tanto por el estado actual del desarrollo del proyecto, como por lo sumario de la exploración realizada. Sobre la base de los comentarios del capítulo de Consideraciones Geotécnicas, se formulan las siguientes recomendaciones.

- 1.- Definir las cotas de aguas máximas y mínimas del río Tuy en el sitio del desarenador, por considerar que se trata de datos básicos necesarios para cualquier consideración de diseño.
- 2.- Soportar las excavaciones para la construcción del desarenador con muros colados, excavados con lodo de bentonita, soportados temporalmente por codales o por anclajes. Los muros colados deberán penetrar un mínimo de 4,50 m por debajo del nivel máximo de excavación o lo necesario para garantizar un gradiente hidráulico seguro para prevenir la formación de tubificaciones en el terreno. El uso de tablestacas de acero se considera inconveniente debido a las dificultades de hinca en el terreno del sitio y a los altos costos de los elementos de acero, pues todos son artículos de importación.

INFORME N° 9657-3
Estudio Geotecnico para Mejoramiento Ambiental
del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de febrero de 1997.

Pág. 14 de 15.

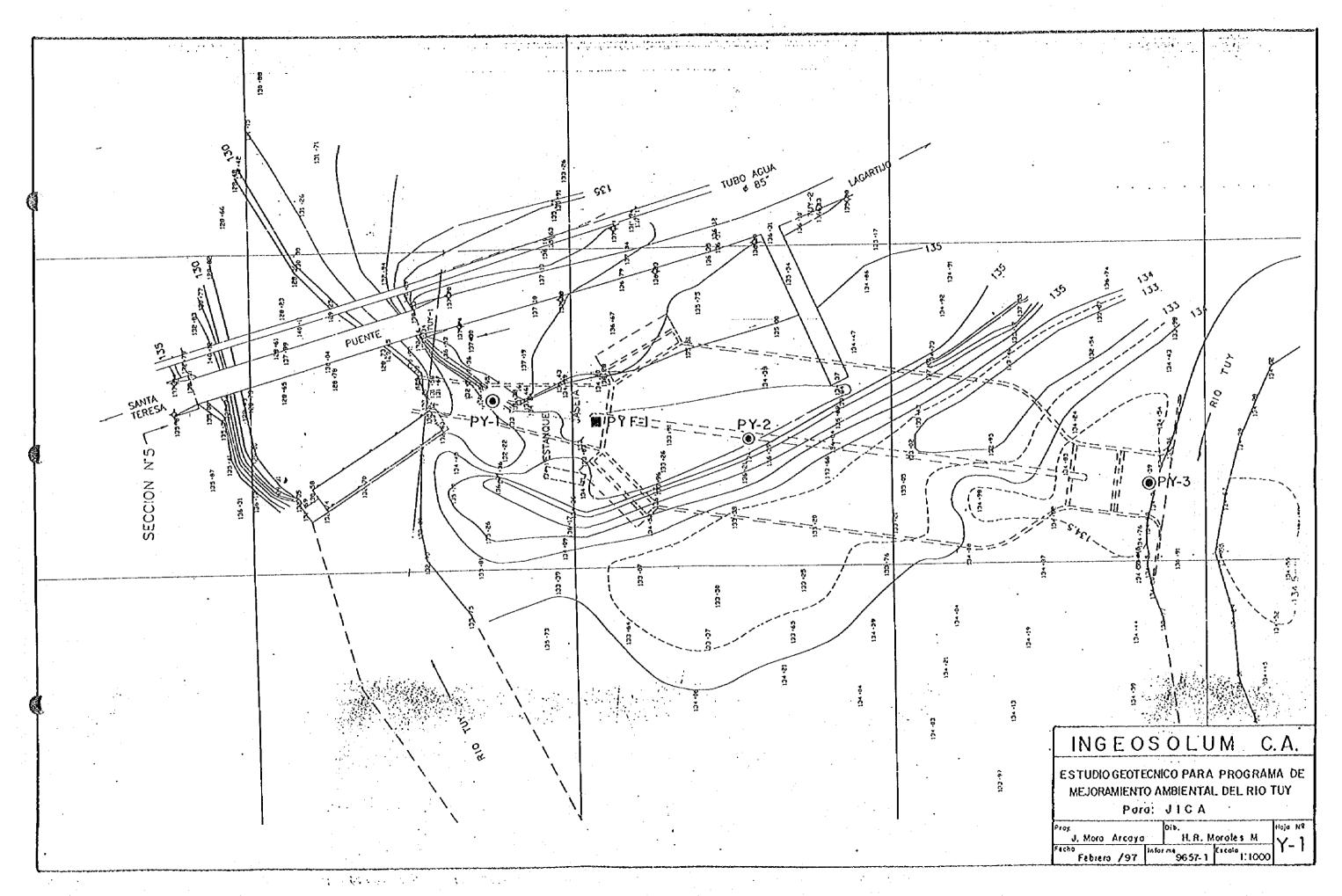
- 3.- Ejecutar las excavaciones con equipo de movimiento de tierra convencional. Achicar el agua dentro de la trinchera por bombeo desde el fondo de la excavación.
- 4. Utilizar los muros colados como muros permanentes del desarenador. Colocar juntas estancas entre los paneles de los muros colados. Diseñar juntas especiales estancas entre la losa de fondo y los muros colados; dejar las previsiones de acero necesarias para la vinculación de estos elementos estructurales.
- 5.- Diseñar los muros colados para las condiciones temporal, durante la construcción; y permanente, una vez integrados a la estructura definitiva. Utilizar los diagramas de empuje de tierra que se dan en la figura de la página Nº 10.
- 6-. Diseñar la losa de fondo para los diferentes casos de carga vertical y de subpresión. Considerar que la vinculación de la losa de fondo con los muros colados se puede asimilar a un apoyo rígido, mientras que el soporte de la losa contra el terreno puede considerarse como un apoyo elástico definido por un coeficiente de reacción o módulo de balasto neto de k_s = 1,70 Kg/cm³.
- 7.- Tomar en cuenta las subpresiones que puedan generarse bajo la losa de fondo debido a las diferencias entre los niveles de agua por fuera y por dentro del desarenador. La máxima subpresión se puede ocurrir cuando el desarenador se encuentre vacío y se presente el nivel aguas máximas del río Tuy.
- 8.- Controlar la subpresión por medio de fusibles de presión colocados en la losa de fondo. Otras alternativas para el control de la subpresión, analizadas preliminarmente, resultan más complicadas y costosas que los fusibles de presión.

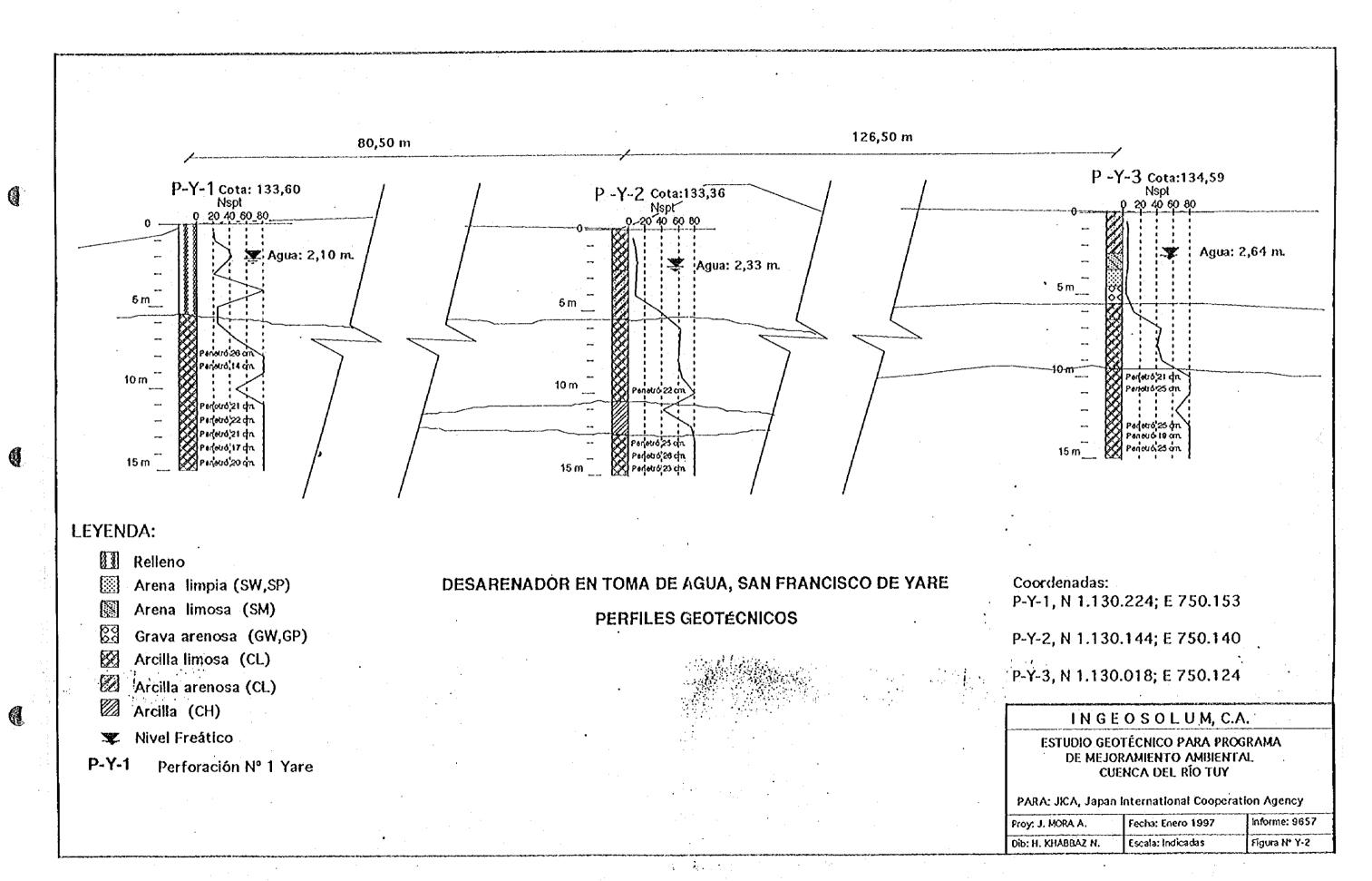
inuicosolum c.a.

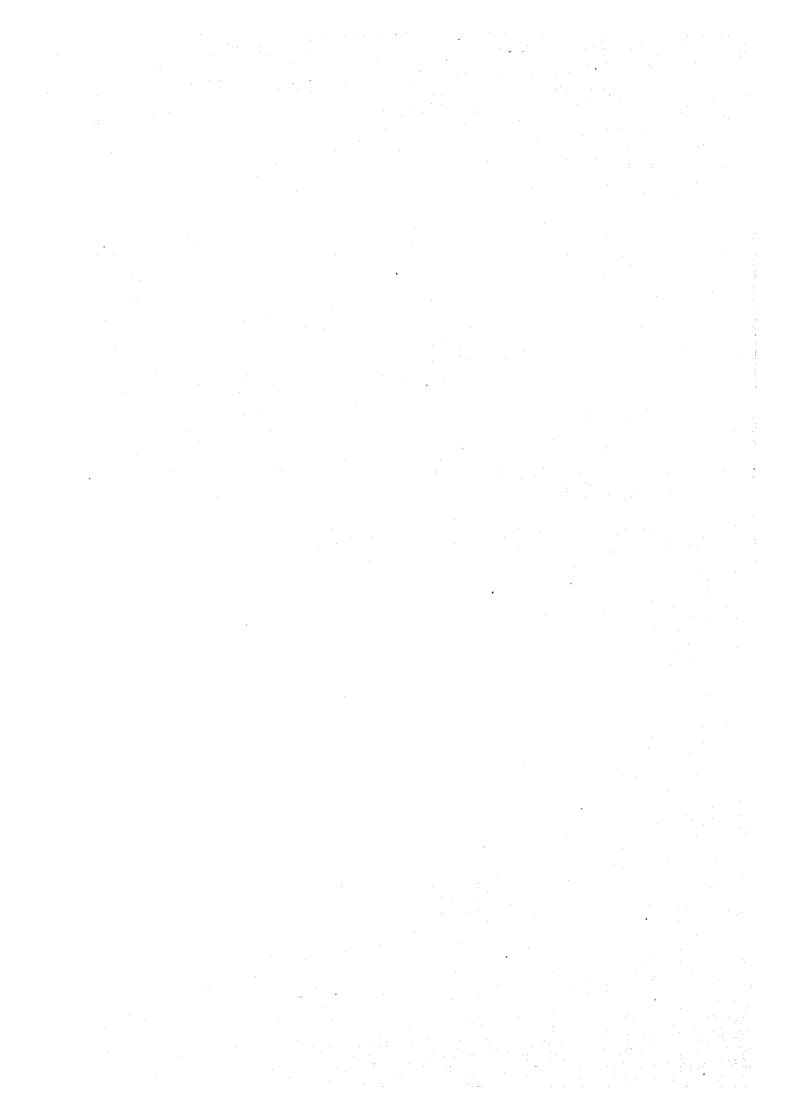
Ing° Pedro Carrillo Pimentel, CIV 6543 Ing° Jorge Martinez Ferrero, CIV 7649

INFORME Nº 9657-3
Estudio Geotecnico para Mejoramiento Ambiental
del Río Tuy en San Francisco de Yare.
PARA: JICA

18 de lebrero de 1997.


Pág. 15 de 15.


- 9.- Revisar los criterios y recomendaciones expuestos bajo el marco de los datos del proyecto definitivo del desarenador de Yare.
- 10.- Completar la exploración del sitio con perforaciones adicionales, ubicadas de acuerdo a los requisitos del proyecto final de la estructura del desarenador.
- 11.- Ejecutar un estudio de suelos en el sitio del puente de tuberías, de donde no se cuenta con dato geotécnico alguno.


Atentamente, INGEOSOLUM C. A.

Ingo Pedro Carrillo Pimentel CIV 6543 ingo José Mora Arcaya

Anexos: Dieciseis (16) figuras, numeradas Y-1 a la Y-16.
Reporte fotográfico

AFI	PERFORACION - P-Y-1	-	PRUEBA		PENETRA	DE PENETRACION S.P.T.	ŀ	L_	UMITES	SS		-	% GRAVA	% ARENA		% < #200 ·
LSÍ		08 t	·		Z 60 50	•	239 S.T. S.T.	LPLASTICO	_	CHOOLDO		الاد د م			1000	Ī
,w	COTA: 133.00		8	8	8	8	100	9	40 00 00	8 8	\$	о 5 _х	શ	AD GO	8	8
7 8 8 8	Rollono: Grava arono-arcillosa con abundantos pohones, e modizmamente dorsa, áspora, calcároa, presenda do	***	2							PE= 2,	5				22	
8-3	Society of St. March areanent y gras. (Sw)		9	F		: :				PE=2,75	. J.	<u> </u>		· · · ·		
5.3	*	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.		ع مستند رور :		٥ ده •		<i>.</i>	\$	PE=2.68	65	1				
		a a		\	i				38							
5.5		A.A.	8	<u> </u>				\				-				
e u		~~~ ^^ ^^		<i>l</i> . :	1			الجير ا		0.0	1.2	<u>.</u>	5		· · · · · ·	k
			renetto 	2	\ 8	۶. ۱.	_		ő				; ; ;			
Ì		4.9. 4.9.		<u>``</u>	\ <u>`</u> .							_!_				
1		**************************************		\ <u>.</u>			<u> </u>	·				Ť				
8	Arcita imosa, dura, do mediana plasticidad, calcárea,									PE=2,78	*	25				
· :																
S 9		×.			/					7 H	_ <u> </u> _	<u> </u> [g				O-KEDAN
S 10	Arcilla limosa dura y muy dura, de mediana plasticidad,				/	/	1,980	•••••	24	96=2:78	· · · · · · · · · · · ·	530				
	cacaroa, nomogenoa, warron amariirento y gris. (CL.)			3		9			4.		ļ	-		: :	: :	
S S	F			4		8	1.837			P E=2,74	4	330				
; ;		*				\					l					
M	พ	X		y			1,736			PE=2,78		5				eyutang:
6	k					/				0	*	. S.				
9		=' &		ಸ		8 /			35	, re-		Ī		R	VICE IN	* *
\$-14	ান			8			1,385			PE-277	·····E	438				
						3		<u></u>				<u> </u>				
	M	2 X	•	\$		-8				PE=2,79	φ					
	k			;	;		<u> </u>					<u>.</u>		5		E DALIGE
3	a	×				8			7	PE= 2,73	<u>.</u>					
_ _																PART N
7		Ž.		8		8				PE= 2,88	88: -	Ť				
֓֞֜֞֜֞֜֜֜֡֓֓֓֜֜֡֡	OBSEDVACIONES: Se installé indusée andered in hard 15 00 an		-8 0	-8	-8	-8	8	Z	NGEOS	SOLUM		C. A.				PURDU
5 		É						₩ <u>₹</u>	TUDIO GE SJORAMIE	SETUDIO GEOTECNICO PARA PROGRAMA DE MEJORAMIENTO AMBIENTAL DEL RIO TUY	PARA PI	C RIO T	AA DE JY		P-Y-1	***
-			4	4 2 2 2				PHOYECT	PHOYECTO: J. Mora Areaya		EXPLOY: INGEOSOLUM C.A.	INGEO	SQUUM		INFOHME N° 9057	12
ζ .	DOEVED ON OUT TO WINDOWN OF THE WINDSWIND A POTACIÓN	18 ×	valores del perseuoriteuo.		3			OIBO10	OBUJO: H. Moratos M.		FECHA: Mon, Jan 13, 1997	fon, Jan	13, 1997	Ž Š	n) ž	**************************************

PERFORACION. P-Y-2	oros		PRUEBA DE PENETRACION S.P.T. Valores de ".N."	ACCON SP T	ς ω / :238 : :CS3	Trastico •	LIMITES I.P.	Odnor	2 WO	% GRAVA	% ARENA	% < #200	8
COTA: 133,36	હર	0	& & &	89	0 Kg	•	HUMEDAD %	8	O K ³ 1	3 R	GHANULOMETHIA 40 (0		: 8
medianamente consistente, de mediana voicea, calcárea, en S-3 y S-4. Marrón	X	4.			386.7	1,342,,	PE-270	2.70	 				
	- X				220		PE-2.83	283 283	- E				
		0,0		233	·•···		D. D.	*	8,0				
				>									· · · ·
Arcilla muy arenesa tina, con grava, de baja padicidad,							/ PE=272	2/12			,		6.80.164
CL-SC)										,			
						8			- Y	ŝ		<u>ي</u>	
		/		****		8		,					
		<u>/</u> `					G.	PE-282	2			.,,	
			/										
imo-aronosa, dura de mediana plasticidad, vetas	X		/		1.675	,	,		3.95	••••		•••	
oe oxedacion, algo cementaca, cuicarea en 5-12, marron rejizo y amanitozo (CL-SC)	88	1		8				ļ	<u> </u>				
	, X				1.870	66	В	PE=2:84:	3,3	8		و	
	X			88		8			-		יייטאעי ::	&= \$1	8
	X						0.	PE= 2:86: * >	4,5				
	X	-							<u> </u>			,,,	
					1.871		a.	PE=280:	7.70				ļ
				2/		سعدة]_ 	<u>.</u>				
		Penotro	22 cms	۶			-3d	PE= 273	5,5				
	? X	÷							T				
Arcitla dura, do alta plasticidad, bolsitas do arena fina,					-	8		*	45.0		: 97		
a, Merron rojizo y gris Verdoso (Cr.)			/				8		-				
					-		9	£= 2:80: * >	4.5				
		1		· · · · · · · · · · · · · · · · · · ·					Ī		Ċ		
Arctio limosa, muy dura, do modiana plasticida,	: 		X	٤	000:1		30	PE=2;82	221				ļ
e. mandi antanimono (CC)		ļ											
	: 					8	ш О.	PE:2:82	7.74 5		8		ļ.
	: ***										i APCI	82 = Y))	Х.
			83	8	:		ii d	PE=281	> 4.5				
	2	Ţ		į		11							
OBSECTIONES: Scientific Section 15 Mm	E	8	8	8	8	N G E	OSOLUM	ن س	۲.				1
	.		1	:		ESTUC	ESTUDIO GEOTECNICO PARA PROGRAMA DE MEJORAMIENTO AMBIENTAL DEL RIO TUY	CO PARA PE BIENTAL DE	ROGRAM R RIO TU	A DE		P-Y-2	
	***	of the second	444			PHOYECTO:	PHOYECTO: J. Mora Arcaya.	EXPLOY: INGEOSOLUM CA	INGEOS	O'CMC	I INFOHME Nº 3657	N° 3657	
P.1 = Muestra a rotación	A	valores del perredotteto.	ica Ottoro			DIBLUO: H. Morafes M.	nales M.	FECHA: Nior., 20 dicl 1996	or. 20 &	9681 7	HOAN	4	
			(6					
								ni in	٠.				

% ARENA % < \$200 GRANULOMETRIA A) PO 100		ARCILLA E 18 %		7.5 5				68			76			AKCILLA = 31 %			P-Y-3	
S # S V & Y	<u>.</u>	6		-8				<u>Ö</u>		ર્સ.	55		203 5		4,5	A.	ENTAL DEL RIO TUY EXPLOR: INGEOSOLUM G.A.	vior., 20 dici 1996
LPLASTICO TIME TENOUIDO 3 PORTO 10 PORT	PE=2:66	27	P E= 278	PE=277) PE=2 83) 162=3d	8	PE=2;81	/ PE=275		86 Z=3 d	82	PE=2:87	p E= 2,74	INGEOSOLUM C.	MEJORAMIENTO AMBIENTAL DEL PIO TUY PHOYECTO: J. Mod Arcaya. EXPLOR: INGEOSOLUM	71
PRUEBA DE PENETRACION S.P.T. COME VAIores de "N" COME VELET PENETRACION S.P.T. COME VAIOR DE 100 DE	1.332	3						7000		Penetio 21 cms. 00	88		202'1	19	35/.1	0 20 40 80 100		Valores del penetrometro.
PERFORACION P-Y-3 SHABOLOS PROP PROP PRO PROP PROP PROP PROP PRO	Arcilla may avancea fina, blanda, euavo, calcánoa, presoncia do raleillas on S-1. Mantón oscuro (CL)	2	Arona fina algo limosa, suolta, bspera, michooa, mal clor. Negro (SP)	Arona lina a grucsa limpia, suolta, aspora, calcárica	Grava gruosa y fina, suotta, áspora, Mamón y gris (GP) 666 5	Arcilla limosa, tiosa, do baja plasticidad. Marrón amarillonio (CL)	Arcitiu irrosa algo arenosa fina, dura, do alta plasticidad, con abundantes trozos duros tamaho grava en \$-9. Marrán amarillente. (CI+)		6	Arcilla limosa dura de modiana plasticidad, calcárea, homogenea, Marrén rejizo y marrén amantilento (CL)	=======================================	22	57	3	\$2	OBSERVACIONES; So instaló tubora portorada hasta 15,00 m.	100	8-1 = Muestra a rotación
AAT83UW	7 2 8	V: S	5-5	9.8	2.5	8.8	8,0	S S	\$.11	8 12	5	\$ 14	S-15	S-16	2.1.2	👸		Č

RESULTADOS DE EXPLORACIÓN SAN FRANCISCO DE YARE PARA: JICA - ECODIPLA

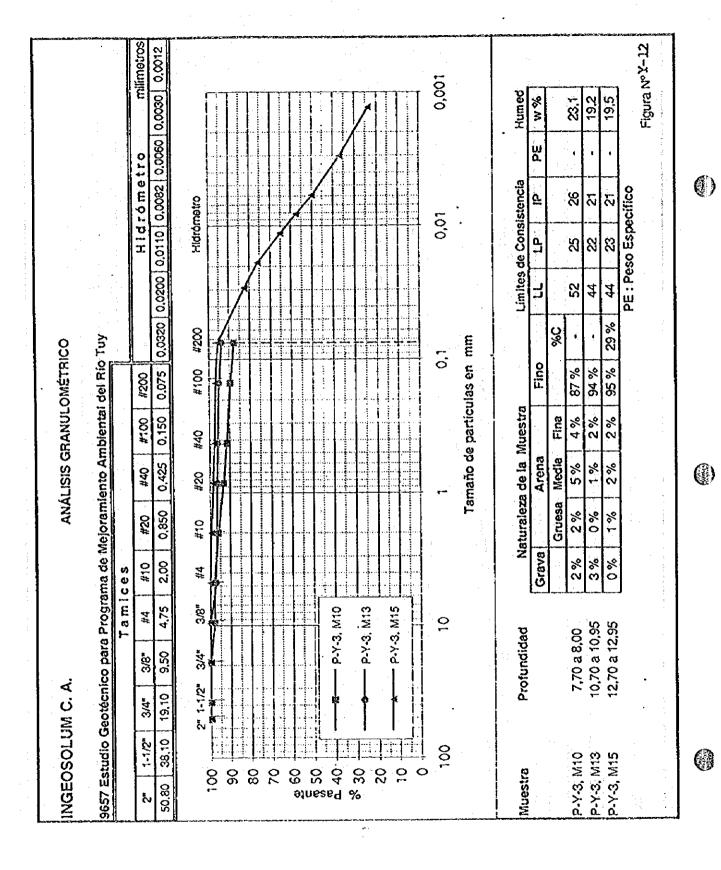
CALICATA Nº P-Y-F1

CALIC	AIAN	P-Y-F1			· .				1		
						ENSA	VYO	S			ĺ
Prof.	Muestra				Gra	nulome	etria	- 1		-	ĺ
Metros	N°	Descripción	Humed			Arena			Plast	icidad	
·			%	Grava	Gruesa	Media	Fina	<#200	LL	IP.	
											ĺ
-	M-1	Relleno: Grava arcillosa algo arenosa.									
_		Marrón oscuro y Gris	22,05	57	3.	4	9	27	34	15	l
		GC			-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
											l
-		Densidad in situ = 1.597 Kg/m3		'		•	1				ĺ
_	.						* *		٠.		
			1				1			4"	ı
_										7	
1,00_	<u> </u>										
]							į	
•-	M-2	Relleno: Grava arcillosa algo arenosa.	13,75	50	4	6	7	33	37	18	
_	.	Marrón oscuro y Gris		•						:	
-	.	GC		}							
	.]										
_	.]	Densidad in situ = 1.695 Kg/m3									
_	_										
_	L	·] .								
_] .								
2,00	M-3	Relleno: Arcilla gravo arenosa de									
		mediana plasticidad. Marrón y Verde	-	23	5	6	10	56	35	16	
	.	CL .									
i	_}				}				:		ĺ
	<u>-L</u>	<u>L</u>	<u> </u>	J	1			<u> </u>	<u> </u>		j

INGEOSOLUM, C.A.
INFORMEN° 9657
FIGURA N° Y-6

INGE	INGEOSOLUM C. A	M C. A				ANA	TISIS 6	ANÁLISIS GRANULOMÉTRICO	OMÉTR	<u>8</u>						
3 ∠596	9657 Estudio Geotécnico para Programa de Mejoramiento Ambiental del Rio Tuy	eotécnic	co para	Progra	та de Л	/ejoram	iento Ar	nbiental	l del Rio	Tuy			:		1 -	
		* 1		Tamices	ses											*
, 72	1-1/2"	3/4"	3/8.	#4	#10	#20	#40	#100	1/200			H:d	róme	tro	Ë	milimetros
50.80	38.10	19.10	9.50	4.75	2.00	0,850	0,425	0.150	0.075	0.0320	0.0200	0.0110	0.0082	0,0060	0.0030	0.0012
9 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 5 9 9 9 5 9 9 5 9 9 9 5 9 9 9 5 9 9 9 9 5 9	8	2.1-1/2.	\$	\$	1	11 10 1 10 1 10 1 10 1 10 1 10 1 10 1	#20 maño da	#20 #40 #1:00 #20	#100 0,1			Hidromo	Hidrometro 0,01		P-Y-1, M2 P-Y-1, M6 P-Y-1, M9 0,001	2
Muestra	ę.	Pro	Profundidad	ט	ž	Naturaleza de la Muestra	r de la	Muestra			Limites de Consistencia	de Cons	stencia	•	Humed	
:					Grava		Arena		Fino		777	٥	σ	PE	% M	
·				·		Gruesa	Media	Fina		۷ %						
P-Y-1, M2	M2	ò	0,45 a 0,90	<u>_</u>	64 %	%9	7%	%6	14%	,	35	24	11	2.68	14,2	
a.	M6	,; ,;	3,55 a 3,80		54 %	40 %	12%	7%	17%	•	31	21	10	2,72	23,9	
P-Y-1, M9	SM S	9,6	6,55 a 7,55	;	%0	%0	2%	%9	95 %	56 %	44	22	22	2.85	15.0	
				•					•		PE : Peso Específico	o Espe	cífico		Figura N° X-7	° Y-7

()


Note Continue Co	KGEOSOLUM C.				•			,							
Tamices Tami		į			ANA	Lisis G	RANUL	OMÉTR	ပ္သ						
Tame for some state of the first	357 Estudio Geotéci	nico para	Progra	ma de N	/ejorami	ento An	nbiental	def Rio	Tuy						
2. 1-1/2- 3/4- 3/5- 4/7- 2/00 0,850 0,425 0,150 0,075 0,0020 0,011 0,0032 0,0030 0,003 0,			Tami	soo											
2* 1.12* 3/4* 3/8* #4 #10 #20 #40 #100 #200 Hidrometro 2* 1.112* 3/4* 3/8* #4 #10 #20 #40 #100 #200 Hidrometro 2* 1.112* 3/4* 3/8* #4 #10 #20 #40 #100 #200 Hidrometro 10 10 1 10	1-1/2"	3/8"	7#	#10	#20	#40	#100	#200		! }-		as I	tro	Ē	imetros
Profundided	38.10			2:00	0,850	0.425	0.150	0.075				0,0082	0.0060	السند	0.0012
Profundidad Tamaño de particulas en mm			.8/S	#4	01.0	#20	#40	#100	#200	ļ	Hidron	ote	į		[
Profundidad	007			e c)		8 2	7 B						鉄	P-Y-1,	M10
10 1 0,1 0,01	08					in die der			1					P-Y-1	Z 57
10 Tamaño de particulas en mm D,1 D,01	20													- :	>
10 Tamento de particulas en mm	09 8											 		- \ \ -	M16
10 1 0,1 0,01	anta S C											s ⁄]
10 1 0,1 0,1 0,01 Tamaño de particulas en mm	3 5											/			
10 1 0,1 0,01 Tamaño de particulas en mm	7 6														
10 1 0,1 0,01 Tamaño de particulas en mm	3												/	/	
10 1 0,1 0,01 Tamaño de particulas en mm	50				******									٩	
10 1 0,1 0,01 Tamaño de particulas en mm	2			•											
Profundidad Naturaleza de la Muestra Limites do Consistencia Grava Arena Fino LL LP IP PE 7,55 a 7,96 1 % 2 % 3 % 7 % 87 % - 44 24 21 2,75 10,55 a 10,91 0 % 1 % 3 % 96 % 24 % 38 22 16 2,75 13,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,73 13,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,73 14,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,73 15,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,73 15,55 a 13,87 0 % 1 % 1 % 1 % 98 % - 47 31 15 2,73 15,55 a 13,87 0 % 1 %	90	•	01					0			0,0			00,0	مين
Profundidad Naturaleza de la Muestra Limites do Consistencia Grava Arena Fino LL LP IP PE 7,55 a 7,96 1 % 2 % 3 % 7 % 87 % - 44 24 21 2,74 10,55 a 10,91 0 % 1 % 3 % 96 % 24 % 38 22 16 2,75 13,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,75 PE: Peso Específico			:	. :	Ta:	naño de	partice	ulas en	e e	.] 					
Grava Arena Fino LL LP IP PE 7,55 a 7,96 1 % 2 % 3 % 7 % 87 % - 44 24 21 2,74 10,55 a 10,91 0 % 1 % 3 % 96 % 24 % 38 22 16 2,75 13,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,75 13,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,75	:	rofundida	ğ	Ž	sturaleza	de la 1	Muestra			Limites d	fe Const	stencia	•	Humed	•
7,55 a 7,96 1 % 2 % 3 % 7 % 87 % - 44 24 21 2,74 10,55 a 10,91 0 % 0 % 1 % 3 % 96 % 24 % 38 22 16 2,75 13,55 a 13,87 0 % 1 % 1 % 98 % - 47 31 15 2,73 PE: Peso Especifico		•		Grava		Arena		Fino		1	<u>ل</u> و	ď	PE	% M	
7,55 a 7,96 1% 2% 3% 7% 87% - 44 24 21 2,74 10,55 a 10,91 0% 0% 1% 1% 98% - 47 31 15 2,75 13,55 a 13,87 0% 1% 1% 1% 98% - 47 31 15 2,73 PE: Peso Específico	• • • • • • • • • • • • • • • • • • • •				Gruesa	Medla	Fina		3%C				-d		
10,55 a 10,91		7,55 a 7,9	 	1 %	2%	3%	7%	87 %		44	24	2	2,74	14,4	
13,55 a 13,87 0% 0% 1% 1% 98% - 47 31 15 2,73		0,55 a 10	6	%0	%0	1%	3%	% 96	24 %	88	ន	16	2,75	17.4	
* * * * * * * * * * * * * * * * * * *		3,55 a 13,	.87	%0	%0		1%	% 86	•	47	ਲ	15	2.73	83.3	
Figure N° X'-8		٠								PE: Pes	to Espe	cífico			
		:	:			3	:			. ;		3		Figura N	æ-7- 8-7-

100 2 1-1/2 3/4" 3/4	INGEOSC	INGEOSOLUM C. A.	ૡ૽			ANA	YLISIS G	RANUL	ANÁLISIS GRANULOMÉTRICO	001		•			•	
Tamices Tami	9657 Estud	lio Geotécr	ilco para	Progra	ma de N	lejoram	ento Ar	nbientai	dei Río	Tuy		÷				
1910 950 475 200 0.850 0.425 0.150 0.0320 0.0320 0.0310 0.0320				Tami	ces											·
10 19.10 9.50 4.75 2.00 0.455 0.150 0.075 0.0350 0.0110 0.0032 0.0050			3/8#	#4	#10	#20	#40	#100	#200			E H	róm	tro	3	milimetros
Profundidad 10 10 1 1 1 1 1 1 1		{		4,75	2.00	0,850	0.425	0,150	====		0.0200	0,0110	0,0082	0,0060	0.0030	0.0012
Profundidad Arena Fino LL LP IP PE 0,50 a 1,00 0% 0% 0% 3% 97 % - 46 24 23 - 3,70 a 4,00 15 % 3% 4% 25 % 53 % - 30 20 9 - 6,70 a 7,00 0% 3% 4% 25 % 53 % - 30 20 9 - 6,70 a 7,00 0% 3% 36 % 61 % 20 % 32 14 2.84	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			% — — — — — — — — — — — — — — — — — — —	#		#20 1	partici	#100 #100 0, 0,	8 7		Hida O,0		2 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	M6 M9 0,001	5
Grava Arena Fino LL LP IP PE 0,50 a 1,00 0% 0% 0% 3% 97% - 46 24 23 - 3,70 a 4,00 15% 3% 4% 25% 53% - 30 20 9 - 6,70 a 7,00 0% 0% 3% 61% 20% 32 19 14 2.84 PE: Peso Especifico	Muestra	à.	ofundida	ָ פַר	NE	turalez	de la 1	Muestra			im ites	de Cons	stencia	·	Humed	
0,50 a 1,00 0% 0% 3% 97% - 46 24 23 - 3,70 a 4,00 15% 3% 4% 25% 53% - 30 20 9 - 6,70 a 7,00 0% 0% 3% 4% 56% 61% 20% 32 14 2.84 PE: Peso Especifico					Grava		Arena		Fino		נר	4	G	교	% M	
3,70 a 4,00 15% 3% 4% 25% 53% - 30 20 9 - 6,70 a 7,00 0% 0% 3% 36% 61% 20% 32 19 14 2.84	0.Y.0 M2		0.50 & 1.0	c	%0	Gruesa 0 %	Media 0 %	Fina 3 %	97 %	2%	46	90	22		מצ ע	
6,70 a 7,00 0 % 3 % 36 % 61 % 20 % 32 19 14 2.84 PE:Peso Específico	P-Y-2 M6	• • •	3,70 a 4,0	9	15%	3%	, 4 %	25%	53 %	-	8	1 8	3 0		25.5	
PE: Peso Específico	P-Y-2, M9	*	5,70 a 7,0	Q	%0	%0	3%	36 %	61 %	% 0%	g	13	14	2.8	17.0	
The second of th	:						•			\$-dia.	⊃E : Pec	so Espe	cífico		Figura	ያ አ
					:	*					, to	:		٠		

)

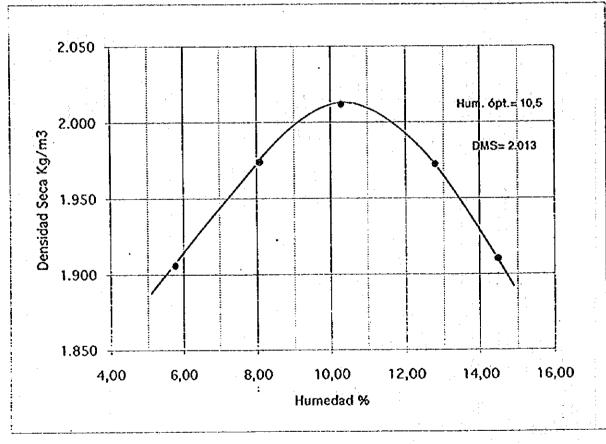
							ļ								ſ
INGEOSOLUM C. A.	IM C. A.				ANA	S SISIT	RANUL	ANÁLISIS GRANULOMÉTRICO	0	; ;					
9657 Estudio Geotécnico para	seotécnic		Progra	na de M	Programa de Mejoramiento Ambiental del Río Tuy	ento An	nbienta	del Río	Tuy	-					
╌┞			2 L 8									1			
2" 1-1/2" 50.80 38.10	3/4"	3/8" 50 50	475	410	0.850	0.425	0,150	0.075	0,0320 0,0200		0,0110 0,0082	0,0082 0,0060		0,0030 0,0012	0.0012
	2" 1-1/2"	3/4"	3/8	#4	#10	#20	1140	. #	11.200		Hidrómetro	atro			
90,000					3	, i.e.						> 0	D-Y-9 M13		
S 8															•
28													F-T-2, M 16	Щ	*.
6 6 8116										ø					
S Sear											***	1			
40								***************************************							
3 6													/-	9	
2 5															
))															-
001		• -	. 0					0	0,1		0,0			0,001	
:					Tar	naño de	partic	Tamaño de particulas en mm	e e e						
Muestra	Prof	Profundidad		SN.	Naturaleza de la Muestra	de la	Muestra		_,	Lim Ites de Consistencia	Consis	tencia	. Ä	Humed	
:		*	L	Grava		Arena	:	Fino		77	47		PE	% M	
		-	·		Gruesa	Media	Fina		3%C		. 3			1	. •
P-Y-2, M13	10,7	10,70 a 11,00	0	%	%	7%	1%	% 86		26	88			22.4	
P-Y-2, M16	13.7	70 a 13,9	 	%	%	2%	3%	95 %	27 %	42	8	2,2	2.82	15.0	
									u.	PE: Peso Especifico	, Espec	ifico			
					1 1 2 2	1	:			•	:		ΙĒ	Figura N°Y-10	27
															-

22 1-1/2 342 367 Estudio Georganico para Programa de Mejoramilento Ambientol del Rio Tuy 22 1-1/2 342 367 43 1310 350 4.75 12.00 0.850 0.455 0.150 0.0250 0.0250 0.0250 0.0110 0.0050 0.0000 0.0010 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000 0.	INGEOSOLUM C. A	M C. A.		AN	análisis granulométrico	RANUL	OMÉTR	0	:				
Taml ces	9657 Estudio C	eotécnico para		Mejoram	iento An	nbienta	del Rio	Tuy					
13.10 3.50 4.75 2.00 0.650 0.075 0.075 0.0200 0.011 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001 0.0000 0.001			O	1				***************************************			1		
2* 1:1/2* 3/4* 3/6* #4 #10 #20 #40 #100 #200 Hidrometro P-Y-3. O 10 Tamaño de particulas en mm Profundidad Greva Arena Fino LL LP IP PE Grussa Media Fina %C LL LP IP PE Grussa Media Fina %C 15% 33% 30% 5% 17% 35 27 16 - 150 #2.00 1.50 #2.00 2.00% 12.% 33% 30% 5% 17% NP NP 277 PE: Peso Especifico					#40	4100	0,075	0.0320		HIG F	metro	0.003	milimetros
10 1 0,1 0,1 0,01	5	l	1	{	02#	#40	#100	#200		Hidrôme	1	-{I	
Profundidad Carava Arena Fino Limites de Consistencia Grava Arena Fino LL LP IP PE 0,50 a 1,00 0 % 0 % 13 % 87 % - 38 22 16 - 1,50 a 2,00 1 % 3 % 14 % 17 % 65 % 17 % 35 21 14 - 3,70 a 4,00 20 % 12 % 33 % 30 % 5 % - NP NP NP 277	8		2		maño de	particu	lias en						5
Gress Arena Fino LL LP IP PE 0,50 a 1,00 0 % 0 % 0 % 13 % 87 % - 38 22 16 - 1,50 a 2,00 1 % 3 % 14 % 17 % 65 % 17 % 35 21 14 - 3,70 a 4,00 20 % 12 % 33 % 30 % 5 % - NP NP NP 277	Muestra	Profundidad		Vaturalez	a de la l	Muestra		***	im ites do	Consist	ancia	Humed	İ
Gruesa Media Fina %C 0,50 a 1,00 0 % 0 % 13 % 87 % - 38 22 16 - 1,50 a 2,00 1 % 3 % 14 % 17 % 65 % 17 % 35 21 14 - 3,70 a 4,00 20 % 12 % 33 % 30 % 5 % - NP NP 2,77 PE: Peso Especifico			Grav	[6	Arena		Fino		1	_ ئ	_	% M	
0,50 a 1,00 0 % 0 % 13 % 87 % - 38 22 16 - 1,50 a 2,00 1 % 3 % 14 % 17 % 65 % 17 % 35 21 14 - 3,70 a 4,00 20 % 12 % 33 % 30 % 5 % - NP NP NP 2,77	(•	LJ.	┠╌╁	f L	Fina		ပ္စ					
1,50 a 2,00	P-Y-3, M2	0,50 a 1,00	<u> </u>		%0	13%	87 %	•	38	22	16	28,5	
3,70 a 4,00 20 % 12 % 33 % 30 % 5 % - NP NP NP 2,77	P-Y-3, M4	1,50 a 2,00		_	14%	17%	65 %	17%	35		14 -	30.4	
	P-Y-3, M6	3,70 a 4,00		{	33%	30%	2%	·	ď		-,		
Figure No.								bûn	E: Pesc	Especi	၂င၀		
												מונים ביו	<u> </u>

				•										ľ
INGEOSOLUM C. A.	4 C. A.		·	ANA	LISIS G	RANULC	ANÁLISIS GRANULOMÉTRICO	8						er pagainte en
9657 Estudio Geotécnico para P	otécnico pare	Prograi	ma de M	ejorami	ento Arr	biental	rograma de Mejoramiento Ambiental del Rio Tuy	Tuy		.e. 9				, , , , , , , , , , , , , , , , , , ,
		Tamices	263											
2* 1-1/2*	3/4" 3/8"	#4	#10	#50	#40	#100			1 1-	Hidr		0	E	milimetros
50,80 38,10	19,10 9,50	4,75	2.00	0.850	0,425	0.150	0,075	0.0320	0.0200	0.01 10 (0.0082	09000	0.0060 0.0030 0.0012	942
9tneseq % 0 0 8 0 0 0 0 0 0 0 0	2- 1-1/2- 3/4-	8 / 2	#	#10	#20 meño de	#40	#20 #40 #100 #20	88		Hidrometro 0,0	- 1 1 2 7 7 1 1 1 1 1 1 1 1	P-Y-F-1, M1 P-Y-F-1, M3 P-Y-F-1, M3	[] [[] [] [] [] [] [] [] [] [BALLE LOCAMON P. M. GEOGRAPH C. S. M. C.
Muestra	Profundidad	ad	ž	Naturaleza de la Muestra	a de la 1	Muestra	-	-	Límites de Consistencia	se Consi	stencia	[Humed	
30.4			Grava		Arena		Fino		77	٦.	ц	36	% *	± 22.08
·				Gruesa	Media	Fina		သွ						
P-Y-F-1, M1	0.00 a 1.00	8	% 99	3%	4%	%6	12%		8	6	15	2,73	22,1	
P-Y-F-1, M2	1,00 a 1,80	80	20 %	4%	%9	7%	14%	,	37	19	138	2.74	13,8	
P-Y-F-1, M3	1,80 a 2,32	88	88	5%	%9	10%	% 95	•	35	19	16	2,71	,	
genopercursor (photoletic				•:	.:				PE: Po	PE : Poso Específico	cífico		Figura N° X-13	¥-13
											Î			

INGEOSOLUM C. A.

ENSAYO DE COMPACTACION PROCTOR MODIFICADO AASHO T-180


PROYECTO: 9657 Estudio Geotécnico para Programa MARTILLO: MOLDE 6 "

de Mejoramiento Ambiental del Río Tuy Peso: 4.5kg Diámetro cm 15.240
Caida: 45,7cm Altura cm: 11.612
Volumen cc: 2118
Peso gr. 5.260

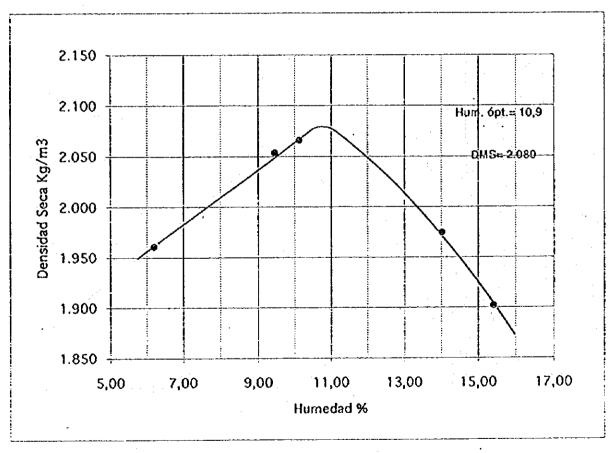
Fecha:

13/2/97

Punto Nº	2%	29 Jan 19 20 20 20 20 20 20 20 20 20 20 20 20 20	4%		6%		8%		10%	:
Peso muestra+ molde	9.530		9.780		9.960		9.972		9.892	
Peso muestra	4.270		4.520		4.700		4.712		4.632	
Densidad humeda	2.016		2.134		2.219		2.225		2.187	
Tara N°	B-1	8-4	B-3	B-5	C-1	C-4	E-2	E-26	C-22	C-5
Peso total humedo	124,92	134,62	140,18	127,73	131,46	130,03	135,86	139,58	139,95	143,87
Peso total seco	119,78	129,26	132,73	119,97	122,75	121,04	124,29	128,66	126,53	130,57
Peso tara	33,36	33,91	32,48	31,28	39,60	32,42	35,81	41,26	36,42	36,19
% Humedad	5,9%	5,6%	7,4%	8,7%	10,5%	10,1%	13.1%	12,5%	14,9%	14,1%
Humedad promedio		5,8		8,1		10,3		12,8		14,5
Densidad seca		1.906	1	1.974		2.011		1.972		1.910

INFORME N° 9857 FIGURA N° Y-14

INGEOSOLUM C. A.


ENSAYO DE COMPACTACION PROCTOR MODIFICADO AASHO T-180

MARTILLO: MOLDE PROYECTO: 9657 Estudio Geotécnico para Programa de Mejoramiento Ambiental del Río Tuy Peso: 4,5kg Diámetro cm 15.240 Calda: 45,7cm Altura cm: 11,612 Volumen cc: 2118 P-Y-F-1, M2 **MUESTRA:** Peso gr. 5.260

Fecha:

13/2/97

Punto Nº	0%		2%		4%		6%	L	8%	
Peso muestra+ molde	9.670		10.020		10.080		10.030		9.910	
Peso muestra	4.410		4.760		4.820		4.770		4.650	
Densidad humeda	2.082		2.247		2.276		2.252		2.195	
Tara N°		C-32		C-3		8-7		B-35		B-16
Peso total humedo		127,31		132,71		135,39		122,62		133,51
Peso total seco		122,11		124,09		126,19		111,48		119,28
Peso tara		38,36		32,86		35,38		32,10		27,03
% Humedad	1	6,2%		9.4%		10.1%		14,0%		15,4%
Humedad promedio		6,2		9,4		10,1		14,0		15,4
Densidad seca		1.960		2.053		2.066		1.975		1.902

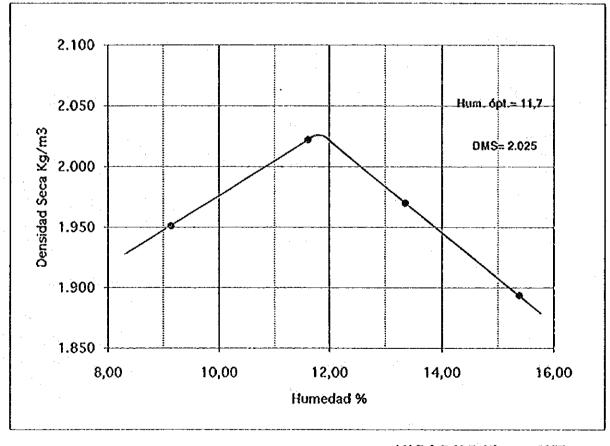
INFORME N° FIGURA N°

9657 Y-15

INGEOSOLUM C. A.

ENSAYO DE COMPACTACION PROCTOR MODIFICADO AASHO T-180

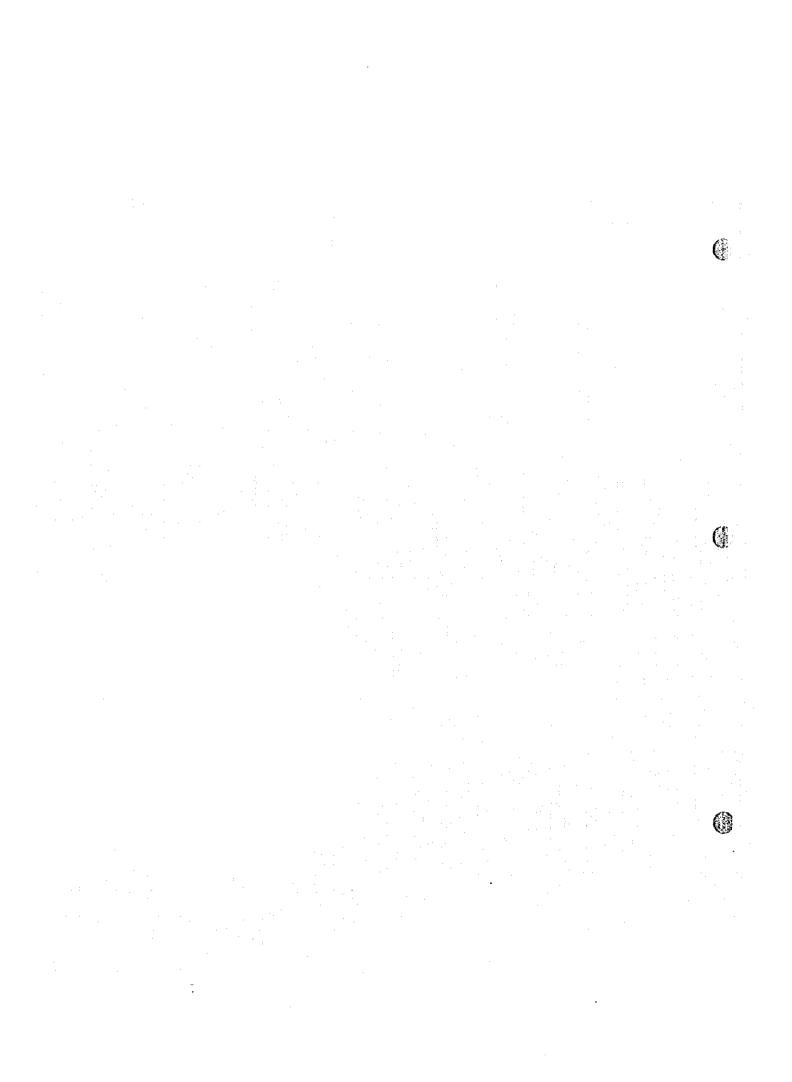
PROYECTO: 9657 Estudio Geotécnico para Programa MARTILLO: MOLDE 6 "


de Mejoramiento Ambiental del Río Tuy Peso: 4,5kg Diámetro cm 15,240

Calda: 45,7cm Altura cm: 11,612

Volumen cc: 2118
Peso gr. 5,260

Fecha: 13/2/97


Punto Nº	2%		4%		6%		8%			
Peso muestra+ molde	9.770		10.040		9.990		9.888			
Peso muestra	4.510		4.780		4.730		4.628			
Densidad humeda	2.129		2.257		2.233		2.185			
Tara Nº	E-13	E-14	C-41	C-42	C-2	C-8	C-15	C-35		
Peso total humedo	150,20	143,86	155,97	122,98	131,05	149,05	130,11	136,98		
Peso total seco	140,98	135,08	143,55	113,52	119,63	135,46	117,20	123,72		
Peso tara	37,55	41,34	33,92	33,96	31,97	36.03	33,74	37,12		
% Humedad	8,9%	9,4%	11,3%	11,9%	13,0%	13,7%	15,5%	15,3%		
Humedad promedio		9,1		11,6		13,3		15,4		
Densidad seca		1.951		2.022		1.970		1.893		

INFORME N° FIGURA N°

9657 Y-16

REPORTE FOTOGRÁFICO

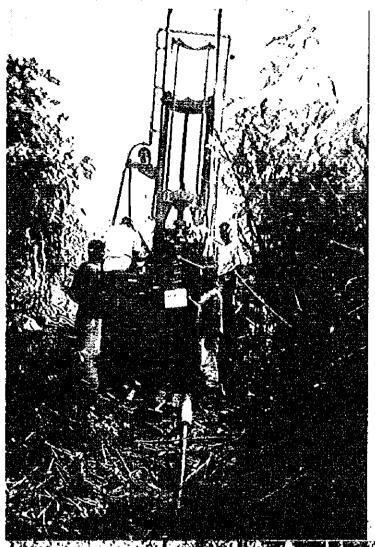


Foto N° Y-1: Sitio perforación P-Y-1

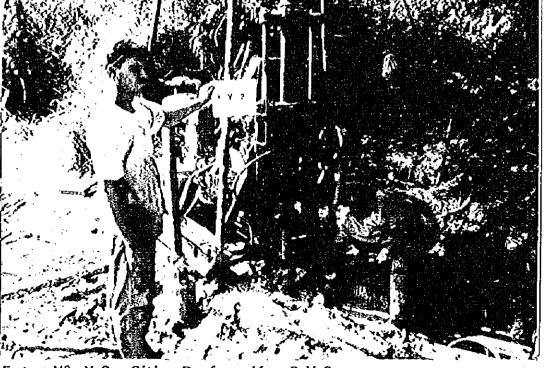


Foto N° Y-2: Sitio Perforación P-Y-2

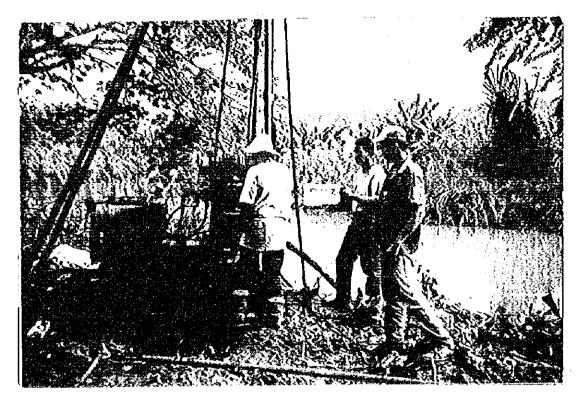


Foto N° Y-3: Sitio Perforación P-Y-3

Foto N° Y-4 : Sitio Fosa P-Y-F1

G

